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Optimal information in authentication of food  
and beverages
Luis Gutiérrez1 and Fernando A Quintana2

1 Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile
2 Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de 
Chile

Abstract:  Food and beverage authentication is the process by which food or beverages are verified 
as complying with their label descriptions (Winterhalter, 2007). A common way to deal with an 
authentication process is to measure attributes, such as, groups of chemical compounds on samples 
of food, and then use these as input for a classification method. In many applications there may be 
several types of measurable attributes. An important problem thus consists of determining which  
of these would provide the best information, in the sense of achieving the highest possible  
classification  accuracy  at  low  cost. We  approach  the  problem under  a  decision  theoretic  strategy, 
by framing it as the selection of an optimal test (Geisser and Johnson, 1992) or as the optimal 
dichotomization of  screening  tests  variables  (Wang  and Geisser,  2005), where  the  ‘test’  is  defined 
through  a  classification model  applied  to  different  groups  of  chemical  compounds.  The  proposed 
methodology is motivated by data consisting of measurements of 19 chemical compounds (Anthocyanins, 
Organic Acids and Flavonols) on samples of Chilean red wines. The main goal is to determine the 
combination of chemical compounds that provides the best information for authentication of wine 
varieties, considering the losses associated to wrong decisions and the cost of the chemical analysis. 
The proposed methodology performs well on simulated data, where the best combination of responses  
is known beforehand.
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1 Introduction

Authentication of food and beverages is the process by which food or beverages 
are  verified  to match  their  label  description  (Winterhalter,  2007). Authentication 
problems  are  typically  treated  from  the  viewpoint  of  classification  (Brown  et al., 
1999; Dean et al., 2006; Toher et al., 2007; Gutiérrez et al., 2011). The accuracy of 
a classification model used for authentication depends on the available information. 
An important issue in this process is to determine what chemical compounds should 
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be analyzed to verify that a given food product complies with its label description. 
For example, to verify the authenticity of tea varieties and products, different groups 
of chemical compounds like Catechins, total Phenolics, Theaflavins or caffeine, have 
been proposed (Engelhardt, 2007).

Motivated by a data set concerning samples of red wines from different varieties 
and origins (Gutiérrez et al., 2011), in this article we address the problem of selecting 
the compounds  that give  the best performance. By  this we mean  that  the cost of 
analyzing the compounds should be low and the accuracy of results good. From a 
Bayesian viewpoint this can be seen as a decision problem (Berger, 1985). A similar 
problem arises in a biomedical context, when it is necessary to choose between  
two  screening  tests. A possible  solution  involves  the definition of  a  loss  function  
that combines the penalty associated to a wrong decision with the cost of each 
test. See for example Geisser and Johnson (1992). A related approach involves the 
optimal dichotomization of screening test variables as in Wang and Geisser (2005). 
See the following and Section 2 for a discussion of both methods.

We adapt the methods in Geisser and Johnson (1992) and in Wang and Geisser 
(2005) for the optimal selection of information for the authentication process. We 
assume that various types of chemical compounds can be potentially measured, and 
that additional information leads to increased classification accuracy, but at a higher 
cost. Our ‘test’ is a multivariate classification model (Gutiérrez and Quintana, 2011) 
that can be applied to the different groups of chemical compounds. We consider 
two populations: one where food samples comply with their label description 
and the other where they do not. For simplicity, we refer to these as populations 
having characteristics U or Uc,  respectively. The method by Geisser and  Johnson 
(1992) considers the problem of optimally deciding whether a certain characteristic 
is  present,  based  on  one  or  two  screening  tests.  The  authors  discuss  the  relative 
merits of giving either one or two tests, including the order in which they might 
be given, as well as their costs. For this method, the input consists of the results of 
a screening test, e.g., the ELISA test for presence or absence of AIDS. In our case 
we take the input as the results coming from the classification model, namely, the 
posterior probability that the sample has characteristic U. To do so, it is necessary 
to select a threshold for the posterior probability that a given individual is assigned 
to characteristics U or Uc. On the other hand, the method by Wang and Geisser 
(2005) considers the problem of finding a most favourable dichotomizer, that is, a 
cut-off value or threshold for which optimal test performance is obtained. This is so 
because the accuracy of the screening test often depends on the dichotomization of 
the test outcome variable. Determination of the optimal dichotomizer is considered 
under a decision-theoretic Bayesian approach. For this method, the input consists of 
the outcome test variable values; e.g., in AIDS screening, an ELISA test measuring 
the level of certain antigens in the blood is used for ascertaining the presence of the 
human immunodeficiency virus (HIV) antibodies, and a cut-off value is chosen for 
dichotomizing the screening outcomes, to indicate the presence or absence of the 
antibodies (Wittes, 1987). When adapting the Wang and Geisser (2005) method 
to our case, we take the log-posterior predictive density for a new sample as input. 
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It will be argued that the expected loss function depends on this value, so that we 
simply proceed to find an ‘optimal’ dichotomizer using minimization techniques.

In our classification approach, we model a response vector y ∈ Rp as function 
of covariates x ∈ Rq. We deal specifically with the case where the dimension p of 
y can be changed based on the available information, while the dimension q 
of x  remains  constant.  This  differs  from most  traditional  approaches, where  the 
response vector dimension remains constant and the focus is on covariate selection. 
Furthermore, we take into account the cost cj required to obtain information, and 
so it is natural to consider the problem of optimally selecting information. The basic 
idea can be summarized as follows. Let j = 1, 2, … index the different combinations 
of chemical compounds to be considered, yielding a response vector y of dimension 
pj  to which we fit a classification model  pj

M . We also define a  loss  function  that 
balances the worth of correctly classifying these samples, with the cost cj required to 
measure the chemical compounds. The optimal group of compounds to use is then 
determined as the one minimizing the expected loss function, i.e., the one giving 
the best classification results at the lowest possible cost. Calculations are based on 
adapted versions of the methods by Geisser and Johnson (1992) and Wang and 
Geisser (2005). We compare these methods and show that they ultimately lead to the 
same decisions for our problem.

The rest of the article is organized as follows. In Section 2 we introduce the ideas 
and  concepts  for  defining  a  loss  function  and  the  two  approaches  for  estimating  
the expected loss. In Section 3 we apply the proposed methodology to a simulated 
data set. We also briefly describe a classification model that we have found to be 
particularly useful for authentication in this context (Gutiérrez and Quintana, 2011). 
In Section 4 we describe the motivating wine data set, which includes measurements 
of 19 chemical compounds: Anthocyanins, Organic Acids and Flavonols. We 
implement and compare the two methods for optimal information selection, 
considering all possible combinations of groups of compounds that can be used. We 
conclude in Section 5, where the results are compared, and a final discussion of the 
proposed methodology is given.

2 Methodology

2.1 A decision-theoretic approach to find an optimal information subset

We  assume  a  classification  approach  for which  a  training  data  set  concerning n 
experimental units {( , , )}i i iy x g , = 1, ...,i n  is available. Here,  = ∈′1( , ..., ) p

i i ipy y y R  
is the observed response vector for the ith unit, and = 1( , ..., )i i iqx x x  and ∈ig E = 
{1, . . ., m} denote the corresponding covariate vector and known group label, 
respectively. Let = 1 1 1( , ..., , , ..., , , ..., )n

n n ny y y x x g g  denote the complete data. 
Let 1

1 1= ( , )n
n ny y x+

+ +  be the observed data vector for a future unit, for which 
the corresponding label 1ng +  is unknown. We adopt a predictive approach for 
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classification,  so  that  the  focus  is  on  inference for +1ng . Assume a partition of E 
as =  cE U U , where { },U k k E= ∈  and { | }cU j E j k= ∈ ≠ . Using the foregoing 
set-up, we consider two sub-populations: one consists of those units that comply 
with its label description (which will be referred to as having characteristic U), and 
the other formed by those units that do not, which we denote as Uc. In this context, 
there are two possible actions, 1 =ng U+  and 1

c
ng U+ = , denoted respectively by A 

and Ac. Here, U and Uc define a partition of the set E as defined earlier. In other 
words, our actions are based on classification predictions that result from a certain 
model. Concretely, assume now that we have a generic hierarchical model, denoted 
by M, for the available responses, covariates and group labels, of the form

       | , ~ ( | , ), ~ ( | ).i i i i i i i iy x p y x Gθ θ θ θ φ  (2.1)

In  simple words,  the data vector yi for the ith sampling unit is assumed to be 
sampled from a probability model parameterized by a vector qi, in turn modelled 
by a distribution G that depends on hyperparameters f. Our main motivation and 
focus is on the problem of computing predictions when the dimension p of yi can 
be changed based on the available information, and on the cost required to obtain 
that information. For example, in our application, p = 9 when we choose to use 
Anthocyanins, p = 4 when we use the Organic Acids, p = 6 for Flavonols and 
p = 19 when we use all of the available compounds. See a full list of the mentioned 
groups of  chemical  compounds  in  the Appendix.  In all  cases  the dimension of xi 
remains constant, so the covariates are the same for all models. For the wine data 
set, the covariates are the grape variety and valley for all models. Denote by pj

M  a 
model of the form (2.1), with a corresponding response vector 

pj
iy R∈ , = 1, 2,...j . 

We assume there is a cost cj associated with model pj
M , and losses in making 

wrong decisions. Selecting a particular model pj
M  implies selecting the compounds 

or  combinations  of  them  that  yield  the  best  performance.  By  this we mean  that 
the cost cj of determining the compounds should be low and the accuracy of the 
classification predictions should be good. In our case, we have information on all the 
different compounds, but we shall take the perspective of identifying the groups or 
combinations thereof that are most useful for classification. The idea is that, if in the 
future a producer needs to verify, for example, whether a sample of wine is Cabernet 
Sauvignon or not, then the analyst will not need to measure all compounds included 
in the current data-set, but only those providing the best classification for this grape 
variety at low cost. Therefore we propose a solution that implies the definition of a 
loss function that combines the penalty associated to a wrong decision with the cost 
c

j of collecting the data for each model pj
M .

In the case of actions A and Ac and states U and Uc, a useful loss function is given 
in Table 1. For example, the loss of deciding action A is AUl  when the true state is U.

Now, following Geisser and Johnson (1992), given a decision rule R for model 
pj

M , the optimal decision is the one minimizing ( | )E Loss R , given by

   
+ + +( | ) = ( , ) ( , ) ( , ) ( , ).c c c c

c c c cAU AU A U A U
E Loss R l Pr A U l Pr A U l Pr A U l Pr A U  (2.2)
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If the cost associated to model  pj
M , cj , is expressed in the same unit as the losses, 

then we would minimize

   ( ( | ), ) ( | ) .j jf E Loss R c E Loss R c= +  (2.3)

We can therefore estimate (2.3) for each model under consideration, and select 
the one yielding the lowest expected loss. To do so, it is necessary to assign values 
to the losses and the corresponding probabilities as expressed in (2.2). The order of 
magnitude of the quantities in Table 1 is crucial for defining the optimal model, and 
this choice depends on the analyst’s viewpoint. In authentication problems, it could 
be argued that from the viewpoint of a ‘honest producer’, i.e., a producer that says 
the truth with probability 1,

    .c cc cAU AU A UA U
l l l l≤ ≤ ≤  (2.4)

The worst-case scenario occurs when U is present in the food under authentication 
but the model estimates this to be not true. A customer may interpret such model 
results as an indication that the producer is committing a fraud, and the losses for 
the producer could be devastating. A different situation arises when the food under 
authentication does not have the characteristic U, but the model estimates that U 
is  present.  If  so,  a  customer may  think  that  the  producer  does  not  have  enough 
knowledge of her product, which could generate distrust and possible losses. When 
U is absent from the food under authentication and the model estimates this to 
be true, the image of the honest producer is strengthened and, probably, no loss 
is  generated. The  best  scenario  is when U is present in the food, and the model 
estimates this to be true, in which case the honest producer is reliable and most of 
the time a profit will be made.

2.2 Estimation of the expected loss function

Note first that we can rewrite the expected loss function (2.2) as

−( | ) = ( ) ( | )( )cAU A UE Loss R Pr U Pr A U l l

 
+ − − + + −(1 ( )) ( | )( ) ( ) (1 ( )) .c c

c c c c cA U AU A U AUPr U Pr A U l l Pr U l Pr U l  (2.5)

Table 1 Loss function

Decision rule outcome 

True      State

U Uc

A AUl  cAU
l  

Ac
cA U

l
 

c cA U
l

 
Source: Authors' own.
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Denote the probabilities in (2.5) as = ( )Pr Uπ , the probability that a randomly 
drawn unit from the population exhibits characteristic U; = ( | )Pr A Uη , the 
probability that the model correctly estimates the presence of U (sensitivity); and 

( | )c cPr A Uϕ = , the probability that the model correctly estimates the absence of U 
(specificity).

Conceptually, when all of these quantities are known, we only need to introduce 
the costs and/or losses, and a few manipulations to determine the optimal decision 
procedure, given an outcome of the classification model  pj

M . In our case, as in many 
other practical situations, p, h and j are all unknown.

We describe now two different approaches for estimating the expected loss 
function (2.5).

2.2.1 Geisser and Johnson Approach

A simple approach for estimating p, h and j was proposed by Geisser and Johnson 
(1992) in the context of a screening test. The method consists of applying the model 
to  n1 units which are known to have the characteristic U, and also to n2 units which 
are known to be free of U. Assuming that r1 out of n1 yield A in the first sample, and 
r2 out of n2 yield Ac in the second, we obtain binomial distributions for both r1 and 
r2, with parameters h and j, respectively. If p is unknown, we need an additional 
independent sample of size v, from which we can count the number tu of units 
having U. We obtain another binomial distribution for tu with parameter p. Let 

= 1 1 2 2( , , , , , )ud r n r n t v . Since the samples are independent, the likelihood function 
is given by

  = 1 1 2 2( , , | ) ( | , ) ( | , ) ( | , ).uL d L n r L n r L tη ϕ π η ϕ π ν  (2.6)

Under a Bayesian viewpoint it is necessary to assign prior distributions  ( , , )p η ϕ π  
on ( , , )η ϕ π , from which the joint posterior density is obtained as

   ∝( , , | ) ( , , ) ( | , , ).p d p L dη ϕ π η ϕ π η ϕ π  (2.7)

We will discuss specific choices in the following.
We now describe how to obtain the quantities r1 and r2 from model pj

M , using 
the predictive probability 1

1( = | , )n n
nP g u y y+

+ , which can be approximated as (De la 
Cruz-Mesía and Quintana, 2007; Gutiérrez et al., 2011)

      
+

+
+ +

=
=

Θ
= ≈

Θ
∑ ∑

1 ( )
1

1 1 ( )
1

1

( | )1
( | , ) ,

( | )

n cC
n n u u

n m n c
c l ll

p y
P g u y y

C p y

υ
υ

 (2.8)
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where Θ = …( ){ , 1, , }c c C  denote a sample of size C from the posterior distribution 
( | )np yθ  under the classification model. Details of this model will be given in Section 3. 

We note that a conventional procedure consists of choosing action A (i.e., declare 
feature U to be present in the sample) or Ac (i.e., feature U is absent), according to 
the zero-one law (Hastie et al., 2001):

   
+ + += = = =1 1 1ˆ ˆarg ( | ) and arg ( | , ),max maxn n

i i n n nu u
g P g u y g P g u y y  (2.9)

i.e., assigning the label as the category that maximizes the classification probability 
(2.8). Instead, we use (2.8) as follows: take action A if +

+ = >1
1 0( | , )n n

nP g u y y p  and 
Ac otherwise. This rule is, of course, dependent on the threshold or cut-off value p0. 
Therefore, the results depend on the choice of  ∈0 (0, 1)p , but it is easy to evaluate 
the expected loss on a suitable grid of values on (0, 1), from which we can select the 
value of p0 that gives the minimal expected loss.

2.2.2 Wang and Geisser Approach

A second approach for estimating h and j, proposed by Wang and Geisser (2005) 
in the context of dichotomization of screening test variables, consists of assuming 
that = = 0c cAU A Ul l  (i.e., no loss for right decisions), =cAU

l b  and =cA U
l a  with b a≤ . 

Under these assumptions, (2.5) simplifies to

   ( ) (1 )(1 ) (1 ).E Loss b aπ ϕ π η= − − + −  (2.10)

Wang and Geisser (2005) further assume that 1 η−  and j can be reexpressed 
in terms of two distribution functions, 11 ( )Fη = −   and 2( )Fϕ =   where  is part 
of the output of a classification model  pj

M . We select 1log( ( | ))n np y y+= , because 
the posterior predictive density is the key element in a Bayesian classifier. In fact, 
the Monte Carlo approximation in (2.8) is the average of posterior predictive 
odds for category u. Thus,  the  logarithm of posterior predictive density  is a very 
natural  choice  as  an  optimization  variable.  This  approach  allows  us  to  find  the 
minimum expected loss with respect to   and  to  find  =  0 arg min ( )Loss , the 
optimal dichotomization of the classification model  pj

M . Assume that Fi has density 
function fi, depending on a parameter xi, i = 1, 2. To estimate x1 and x2, it is necessary 
to fit the model to n1 units for which U is present, and also to n2 units for which U 
is absent. We refer to these as sub-populations = 1, 2i , respectively. For = 1, 2i , let 

= …  1{ , , }ij ij ijni
 denote the values of 1log( ( | ))n np y y+  obtained when model pj

M  
is applied to each of the ni units above, and where j indexes the various groups or 
combinations of chemical compounds to be considered. Wang and Geisser (2005) 
suggest using the predictive distribution

  =

∝ =∏∫
1

( | ) ( | ) ( | ) ( ) 1, 2,
ni

ij ij i i i ijm i i i i
m

F F f p d iξ ξ ξ ξ     (2.11)
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from which the expected loss for model pj
M , as a function of , can be 

expressed as

  2 2 1 1( ) (1 ) {1 ( | )} ( | ).j j j j jLoss b F a Fπ π= − − +     (2.12)

The value of p can be inferred just as in Section 2.2.1. To simplify calculations, 
ensuring the availability of an analytical expression for the posterior predictive 
distribution, we assume, as an approximation, that , the value of 1log( ( | ))n np y y+ , 
is distributed as 2~ ( , )i i iF N µ σ , = 1, 2i  and that the prior distributions for iµ  and 

2
iσ  are given by

 = =2 2 2 2 2
0 0 0 0( , ) ( | ) ( ) ( | , / ) ( | , ).i i i i i i i i i i i i i i ip p p N n IGµ σ µ σ σ µ µ σ σ α β  (2.13)

Here,  0in  is the hyperparameter that controls our prior knowledge about iµ . 
The foregoing assumptions imply that the posterior predictive distribution follows 
a Student t distribution (Wang and Geisser, 2005) λ ν( , , )i i it T , with parameters 
given by

 

µ +
=

+
0 0

0

iji i i
i

i i

n n
n n

T

 
λ α β µ

−
 +

= + + − + − + + + 


1

2 20 0
0 0 0

0 0

1 1 1
( ) ( 1) ( )

1 2 2 2
i i i i

iji i i i i ij i
i i i i

n n n n
n n s

n n n n

 ν α= +02 .i i in

Here,  ij  is the mean of 1{ , }ij ijni
…   and ijs  its sample variance. The value of  0 

can be obtained numerically from Newton-Raphson’s method. Given an initial value 
=( 0)

0
k , we iteratively evaluate

 
( 1)

( ) ( 1) 0
0 0 ( 1)

0

( )
, 1,2,...,

( )

k
k k

k

Loss
k

Loss

−
−

−

′= − =
′′


 


until convergence is reached. Once 0  has been computed, we can estimate the 
minimum expected loss in terms of arbitrary choices of a and b. Under the foregoing 
assumptions, we have that ( )Loss′  and ( )Loss′′  are given by

 

ν ν
λ λπ π
ν ν

− + − +
   

= − − + − + + −′    
  

  
12( 1)/2 ( 1)/2

2 22 1
2 2 1 1

2 1

( ) (1 ) 1 ( ) 1 ( )Loss b A a AT T  (2.14)
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Alternatively, we could try other approximations based on distributional 
assumptions for , such as a Student t or a mixture of normals. For some choices, 
however, the corresponding posterior predictive distribution is analytically 
unavailable. In those cases, Wang and Geisser (2005) proposed using Markov Chain 
Monte Carlo (MCMC) to generate a posterior sample 1, ...,i iCξ ξ , for sub-population 
= 1,2i . Conditional on each ilξ , we would sample an *

il
 from ( | )i ilF ξ⋅ , = 1,2i , 

= 1, ...,l C. Then  0 can be approximated by minimizing

   π π−∞ −∞
= =

 
− − + 

 
∑ ∑  ( , ] ( , ]2 1

1 1

1 1* *(1 ) 1 1 1 ,
C C

l l
l l

b a
C C

 (2.16)

where

 −∞

 ∈ −∞= 
∉ −∞



 


 
( , ]

*1, ( , ]
*1

*0, ( , ].

il
il

il

if

if

Having the value of  0 available, we estimate the minimum expected loss as a 
function of losses a and b which can vary on an arbitrary range. The final decision 
consists of selecting the model that yields the minimum expected loss over the range 
of values for a and b. An additional advantage of this approach is that we can 
evaluate the sensitivity of conclusions to the choices of a and b.

3 Application to a simulated data set

To illustrate the use of the proposed methodology we simulate a data set considering 
m = 2, p = 4, k = 2 and n  =  200. Here, m = 2 means that we have to classify 
between two categories; p = 4 is the dimension of multivariate normal components; 
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k = 2 means that we have a categorical covariate z with  two  levels;  and  finally, 
n = 200 is the sample size, where n1 = 100 are from category (sub-population) 1 and 
n2 = 100 come from category 2. Given the simulation scenario, we will also assume 
the prevalence to be known as = 0.5π .

The observations were simulated from a mixture distribution, with components 
given by p-variate normal distributions. Specifically, we consider a four-component 
mixture, 

4

1
( , )i ii

Nω µ
=

Σ∑ , where 1 = (0.8,0.6,1.4,2.2)tµ  and 2 = (8.8,8.6,9.4,10.2)tµ  
are the means for category 1, levels 1 and 2 of the covariate, with weights  

1 2= = 0.25ω ω ; 3 = (1.2,1.4,2.6,3.8)tµ  and 4 = (9.2,9.4,10.6,11.8)tµ , are the means 
for category 2, levels 1 and 2 of the covariate, with weights 3 4= = 0.25ω ω , = pIΣ . 
Figure  1,  panel  (a),  shows  scatter  plots  of  the  first  two  dimensions  of  the  four 
dimensional data set (y1and y2), while the third and fourth dimensions (y3 and y4) are 
shown in panel (b). Our aim here is to correctly classify circles and triangles, which 
represent the fixed covariate x in model (3.1). Also, z is a discrete random covariate, 
indicated as solid/empty symbols. Furthermore, it is clear that the data in Figure 1 
are clustered in two groups, which justifies using a flexible modelling approach.

We now need to specify a model for estimating 1
1( | , )n n

nP g u y y+
+ =  and 

1log( ( | ))n np y y+= ,  the  input  quantities  in  the  decision  problem  under  the  two 
approaches described in Section 2. To this effect, we will use the model proposed by 
Gutiérrez and Quintana (2011) for food and beverages authentication, which was 
motivated by the analysis of part of the wine data set to be described in the next 
section. This model  turned out  to be flexible  and useful  for  classification  in  that 
context,  outperforming  some  other  competing  alternatives.  The model  considers 
a semiparametric multivariate hierarchical linear mixed specification for the mean 

Figure 1 Simulated data. (a) components y1 and y2, (b) components y3 and y4.

Source: Authors’ own.
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responses, and covariance matrices that are specific to the classification categories. 
The model also considers a flexible distribution  for  the random effects, using  the 
formalism of dependent random probability measures as in De Iorio et al. (2004). 
Concretely, the model assumes

 + Σ = =( | , ) ~ ( , ), 1, ..., , 1, ...,iu iu iu p iu iu u uy x z N Bx i n u mθ  (3.1)

    ~ ( )iu z iuHθ θ

    θ θ α α= ∫( ) ( | , ) ( )zH N z dGT

   0~ ( , ),G DP M G

where = ( : = )iu i iy y g u , 1, ,u m= …  is the response vector for the ith unit in the uth 
group, and gi is the label for the ith unit. The subscript u denotes the group or class in 
the classification context; B is a p q×  matrix of fixed effects, with columns given by 

= 1 2[ , , ..., ],qB β β β ( : )iu i ix x g u= =  is a vector of covariates in qR  for fixed effects, 
iuθ  is a 1p ×   vector  of  unit-specific  random  effects,  = =( : )iu i iz z g u  is a ×p pk 

design matrix for random effects, a is a 1pk ×  vector of latent variables that define 
the random effects, and 0( , )DP M G  denotes the Dirichlet process prior (Ferguson, 
1973) with total mass parameter M and centring distribution G0. Model (3.1) implies 
that θ θ α∞

=
= ∑ 1

( ) ( | , )z h hh
H w N z T  is an infinite mixture of normal distributions. As 

usual in mixture models, posterior simulation proceeds by breaking the mixture in 
(3.1) via the introduction of latent variables iα :

   θ α η α η= + 0, ~ , ~ ( , ), and ~ (0, ).iu iu i i i i pz G G DP M G N T  (3.2)

We choose a multivariate normal model for the base measure, 0 : (0, )pkG N= Ω . 
Matrix Ω in the model allows for correlation between all components of vector iα , 
which implies correlation between different components of the response vector and 
between different levels of z. Also, T is the covariance matrix for iuθ . The Bayesian 
formulation of the model is completed with a prior specified as follows. For matrix B 
we assume column-wise independence, that is, 1 2, , ..., qβ β β  are mutually independent 
with 0~ ( , )j p jNβ β Λ  for = 1, ..., .j q   The  prior  distributions  for  the  variance–
covariance matrices Σ ,u  = 1, ..., ,u m  and T are given by Σ Σ1 0 0, ..., ~ ( , )m pIW Qν  
and γ Φ0 0~ ( , )pIWT , where ( , )pIW Qν  indicates the inverse-Wishart distribution 
on p  dimensional positive definite matrices, with v degrees of freedom and mean 

1( 1)p Qν −− − . We complete the Bayesian formulation of model (3.1) by assuming 
0 0~ ( , )pkIW r RΩ , 01 0 0 0, ..., ~ ( , )q pNβ β α T , 0 0~ ( , )pIW L tΛ , and 1 2~ ( , )M Ga a a , 

the Gamma distribution with mean 1 2/a a . More details about properties and 
performance of the model and a suitable posterior simulation scheme can be found in 
Gutiérrez and Quintana (2011). To illustrate the methodology developed in Section 
2 we consider the models listed in Table 2.
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The hyperparameter values in model (3.1) were taken as  =0 (0, ..., 0) ,tβ =0 100 pIT , 
=0 ,pQ I  =0 ,pL I  = +0 2,pν  = +0 2,r pk  = +0 2,t p  0 1000 pkR I= , 0 2pγ = + , 

0 0.1 pIφ =  and 1 2 1a a= = . The resulting prior densities are proper, but the one for 
B is vague and hence relatively uninformative. The prior density for Ω is relatively 
uninformative  too.  All  the  prior  variance–covariance  matrices  were  assumed 
diagonal. Table 3 shows the classification results obtained for the three models using 
the zero-one law, as described in (2.9). Sorting the models in decreasing order by 
their classification performance we have  3sM , followed by 2sM , and finally  1sM .

Letting U  denote  category  1,  each model  in  Table  2 was  applied  to  the  data 
simulated,  as  described  earlier.  From  each  model  we  estimated  the  quantities 

1
1( | , )n n

nP g u y y+
+ = , and 1log( ( | ))n n

ij p y y+= , where as before, i indexes sub-
populations with characteristic U (i = 1) and Uc (i = 2) and j refers to model pj

M . 
Recall  also  that  quantity  1

1( | , )n n
nP g u y y+

+ =  is used to obtain 1jr  and 2 jr , the 
number of samples that yield A and Ac from sub-populations 1 and 2, respectively, 
using model j.

For  the  first  approach  in  Section 2.2.1 we  complete  the Bayesian  formulation 
assuming independent beta prior distributions for h and j:

 ( ) ~ (1,1), ( ) ~ (1,1).Beta Betaη ϕ

Recall also that we assume p to be known and fixed at 0.5. From the discussion 
leading to (2.4), we choose 0AUl =  US$, = 0c cA U

l  US$ (i.e., no loss for right 

decisions),  = 10,000cA U
l  US$ and = 4,000cAU

l  US$. We also assume that the cost 

of collecting data for these models were 1 200c = , 2 50c =  and 3 250c = , all in US$. 
These values, though arbitrary, depict a scenario where measuring variables y1 and 
y2 to apply 1sM  is more expensive than measuring coordinates y3 and y4 for model 

Table 2 Proposed response vector for each model

Model Coordinate p 

1sM  y1, y2 2 

2sM  y3, y4 2 

3sM  y1, y2, y3, y4 4 

Source: Authors’ own.

Table 3 Classification performance for the simulated data set. The real state of nature is represented by 
columns 1 and 2. The classification results are represented by rows

  1sM    2sM    3sM   

 1  2 1  2 1   2 

Category  1 90 10 97  3  99   1 
 2 13 87  3  97  0 100 

Source: Authors’ own.
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2sM . Note also that the cost of 3sM  is 3 1 2c c c= +  because that model uses all four 
coordinates 1 2 3 4, , ,y y y y . With the losses and costs described earlier we estimated 
the expected loss (2.5) as a function of the threshold p0. The expected loss for each 
of the three models is given in Figure 2.

From Figure 2 we can see that the minimal expected loss for all models was reached 
for values of p0 in the range of 0.4 to 0.5. In this range,  2sM  and 3sM  obtained the 
same performance and they are better than 1sM .  Because models  2sM  and 3sM  
have similar expected loss and 2sM  is cheaper than 3sM , under this approach 2sM  
is preferred. To evaluate the sensitivity of the conclusions to the choices of  cA U

l  and 
cAUl in Figure 3 we present the minimum expected loss, that is, the expected loss 

at the optimal p0 value. The optimal p0 value was selected using a discrete grid in 
the interval (0,1) following the ideas in Greiner (1996). For cA U

l  we evaluated the 
minimum expected loss over the range from 50 (small loss) to 20 000 US$, keeping 

Figure 2 Expected loss as a function of p0

Source: Authors’ own.
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cAUl   fixed at 1 US$. For  cAUl  the minimum expected loss was calculated between 
1 and 7000 US$, keeping cA Ul  fixed at 10 000 US$. These choices were motivated by 

inequality (2.4). The optimal values of p0 vary between 0.34 and 0.41 for 1sM , 0.41 
to 0.53 for 2sM , and there is a unique p0 value for 3sM , because, as we can see from 
Figure 3 (panel (a) and (b)) 3sM  shows a linear behaviour of the minimum expected 
loss. Thus, from Figures 2 and 3 we conclude that the group of variables formed by 
y3 and y4 provides the optimal information.

For the second approach, described in Section 2.2.2, we selected the prior 
distribution parameters as 0 0iµ = , 0 1in = , 0 3iα = , 0 1iβ = . After a minimization 
process we obtained 0, the optimal value of , and evaluated the expected loss as 
a function of losses =cA Ul a  and =cAUl b  using the values of a and b as in the first 
approach. Figure 4 shows the minimal expected loss as a function of loss a, panel (a), 
and the minimal expected loss as a function of loss b, panel (b).

From Figure 4, panel (a), we can see that 2sM  yields the minimum expected 
loss as a function of loss a; and from panel (b) the same model ( 2sM ) produces 
the minimum expected loss as a function of loss b. The  results  agree with  those 
obtained under the previous approach. Furthermore, Figures 3 and 4 show that for 
all considered values of a and b the conclusions are the same; therefore, these are 
invariant to the choices of the values of losses in Table 1. Thus, variables y3 and y4 
provide the optimal information. It is interesting to point out that in this simulation 
example the best classification results are obtained using model  3sM . But because the 
cost associated with variables y1 and y2 is high, the model that uses all the available 
information is not the optimal one. Of course, in this application, we deliberately 
simulated coordinates y3 and y4 to be more informative for classification purposes 

Figure 3 Minimum expected loss as a function of losses cA U
l  (a) and cAU

l  (b)

Source: Authors’ own.
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than coordinates y1 and y2. In real applications though, we only have some intuition 
about the quality of information for authentication problems, and it is in this aspect 
that the proposed methodology could be useful.

4 Application to the wine data set

The  wine  data  set  consists  of  measurements  of  concentration  of  19  chemical 
compounds  in 149 samples of Chilean red wines. The grape varieties  in  the data 
set are Cabernet Sauvignon (101 samples), Carménère (29 samples) and Merlot  
(19 samples). All wine samples came directly from wineries located in the valleys 
of Aconcagua, Maipo, Rapel, Curicó and Maule. Most of the samples came from 
2004 vintage and some of them from 2002 vintage. These samples form a data set 
with mixed wine types, representing the most abundant grape varieties cultivated 
in Chile across different valleys. Our aim is to verify grape authenticity using 
the  decision  theoretical  approach  laid  up  in  Section  2.  The  19  compounds were 
9 Anthocyanins, 4 Organic Acids and 6 Flavonols. A full list of the compounds  
is given in the Appendix. All the compounds have been proposed and used for red 
wine variety authentication  (see,  e.g.,  von Baer et al., 2007). Anthocyanins are a 
group of chemical compounds present on the grape skins, which are transferred to  
the wine during the winemaking process. They also confer red wines their charac-
teristic  colour.  Anthocyanin  determination  was  made  by  reverse  phase  High 
Performance  Liquid  Chromatography  (HPLC),  a  chromatography  technique 
that can separate a mixture of compounds and is used in analytical chemistry to 
identify, quantify and purify the individual components of complex mixtures, like 
wines and other beverages or foods. The analytical chemistry procedure was based 

Figure 4 Minimum expected loss as a function of losses a and b

Source: Authors’ own.
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on  the method  described  by Holbach  et al. (1997), Otteneder et al. (2002) and 
by  the  International Organization of Vine  and Wine  (OIV),  as  described  in OIV 
(2003), with minor modifications. More details about Anthocyanin determination 
can be found in von Baer et al. (2005) and von Baer et al. (2007). Flavonols and 
Organic Acids  are  antioxidant  compounds. Flavonols were determined by HPLC 
based on the methodology of McDonald et al.  (1998) with minor modifications. 
Organic Acids were determined by a combination of reverse phase and ion exclusion 
chromatography in series, as described by Holbach et al. (2001) and OIV (2004). 
More details about Flavonols and Organic Acids determination can be found in von 
Baer et al. (2007).

We apply the methodology developed in Section 2 to determine the best 
combination of chemical compounds for wine authentication. To do so, we consider 
fitting  several models,  using  the  groups  of  compounds  or  combinations  listed  in 
Table 4 as response vector, and grape variety and valley as covariates in all cases. 
For further discussion of these covariates, see Gutiérrez and Quintana (2011).

The hyperparameter values in model (3.1) were taken as β = …0 (0, ,0)t , =0 100 pIT , 
=0 0.1 pQ I , =0 0.01 pL I , ν = +0 2p , = +0 2r pk , = +0 2t p , =0 10 pkR I , γ = +0 2p , 

φ =0 0.01 pI  and = =1 2 1a a . The selected hyperparameter values  imply proper but 
vague prior distributions, representing the lack of genuine prior information on the 
parameters. All the prior covariance matrices were assumed of diagonal form.

We  fitted  each  of  the  seven  models  in  Table  4,  and  in  particular,  evaluated  
the  classification  performance  using  the  wine  data  set  described  earlier.  Quite 
remarkably, all models yielded perfect classification (i.e., 100% accuracy) with the 
zero-one law over the observed data (training set). To explore possible differences 
among these models, we computed some model adequacy measures (a full leave-one-
out cross-validation study of each of the models is unnecessary for our purpose).  
Table 5 shows two model adequacy measures, LPML and DIC. LPML (Geisser and 
Eddy, 1979) is the log-pseudo marginal likelihood, defined as 

=
= ∑ 1

log( )
n

ii
LPML CPO , 

where the CPOi’s are the Conditional Predictive Ordinates (Chen et al., 2000). 

Table 4 Proposed response vectors for each model

Model Information # variables pj 

1pM Anthocyanins  9 

2pM  Organic Acids  4 

3pM  Flavonols  6 

4pM  Anthocyanins, Organic Acids 13 

5pM  Anthocyanins, Flavonols 15 

6pM  Organic Acids, Flavonols 10 

7pM  
Anthocyanins, Organic Acids, Flavonols 19

Source: Authors’ own.
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Models with higher LPML are preferred. DIC is the Deviance Information Criterion 
proposed by Spiegelhalter et al.  (2002), and models with the smallest DIC values 
are preferred. We specifically compute DIC1 (Celeux et al., 2006). For all models, 
the effective dimension p

d
 as described in Celeux et al. (2006) was positive. From 

Table  5  we  can  generally  conclude  that  models  including  more  information  
perform better.

In  our  application, U represents that the grape variety under consideration is 
correctly classified using the model described earlier. We therefore take the view of 
an individual who wants to learn the best combination of chemical compounds to 
determine whether the wine variety under consideration is indeed as indicated in the 
bottle label. Thus, when U = Cabernet Sauvignon, each model in Table 4 was applied 
to n11 = 101 samples that are Cabernet Sauvignon, and n21 = 48 samples where U is 
absent, corresponding to the 29 Carménère plus 19 Merlot samples. Similarly, for 
Merlot we apply the models to n12 = 19 samples (so n22 = 130), and for Carménère 
we have n13 = 29 and =23 120n . With these samples we obtained the values of ijmr  
and ijm, for = 1,2i , j = 1, 2, …, 7, and = 1,2,3m  where i denotes sub-population, 
j denotes model pj

M  and m denotes the grape variety.
To estimate p we used an additional independent sample of size ν = 100, where 

the number of Cabernet Sauvignon samples (as declared by the producer) was  
=1 54ut , the number of Merlot was =2 20ut  and the number of Carménère was 
=3 26ut . This  additional  independent  sample was  taken  from a part  of  the wine 

data set that was left out when estimating h and j, because in all cases some of the 
chemical compound values were missing.

Under  the  first  approach,  model  specification  is  completed  by  assuming 
independent beta prior distributions for p, h and j:

 η ϕ =( ) ~ (1,1), ( ) ~ (1,1) 1,2,3m mBeta Beta m

 π π π1 2 3( ) ~ (2,2), ( ) ~ (1,3), ( ) ~ (1,5).Beta Beta Beta

Table 5 Model adequacy measures

Model LPML DIC1 

1pM  1095.7 –2492.3 

2pM   163.2 –381.1 

3pM   294.2 –1103.6 

4pM  1348.7 –3459.9 

5pM  1833.7 –4560.6 

6pM   665.2 –2134.1 

7pM  
2097.3 –5759.9

Source: Authors’ own.
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The  prior  distribution  for  iη  and iφ  are proper and uninformative. 
The  prior  for  π = =1 ( Cabernet Sauvignon)Pr U , π = =2 ( )Pr U Merlot  and 
π = =3 ( )Pr U Carménère  were assigned using information about nation-wide pro-
duction (thousands of litres by grape variety) supplied by the National Statistics 
Institute of Chile (INE, 2008).

As part of routine procedures related to wine exports, a sample of bottles is taken 
upon arrival to the corresponding customs point, and chemical analysis of the samples 
is performed to verify authenticity. Specifically, the analysis may include measuring 
concentrations for some of the chemical compounds, including those listed in the 
Appendix. The bottles in the sample are then representative of the whole set of bottles 
in the container or batch. We therefore think of the loss as associated to a batch. 
From the discussion leading to (2.4), we choose = 0AUl  US$, = 0c cA U

l  US$ (i.e., no 
loss for right decisions), = 10000cA Ul  US$, and = 4000cAUl  US$. We note that the 
actual costs for wrong decisions of a batch depend on additional information which 
we do not have, such as, the batch size, number of rejected bottles, transportation 
costs and publicity. Nevertheless, the values were chosen keeping in mind that our 
goal is to select a model, and that the expected loss for a particular model is not 
important in itself, but in relative ordinal terms. In fact, all models assume the same 
loss, so what varies between models is the cost of collecting data cj. The cost of an 
Anthocyanin analysis for wines in a lab in Chile is about US$ 73.7, an Organic Acid 
analysis  costs US$ 81.9  and  a Flavonol  analysis  costs US$ 102.4. Therefore,  the 
cost of collecting data for the seven models were: =1 73.7c , =2 81.9c , =3 102.4c , 

=4 155.6c , =5 176.1c , =6 184.3c  and =7 258c , all expressed in US$ as of January 
2011 (von Baer, 2010).

With the losses and costs described as earlier we estimated the expected loss (2.5) 
as a function of the threshold p0. The expected loss for Cabernet Sauvignon for each 
of the seven models is given in Figure 5.

For almost all values of p0, 1pM  is the best model. The expected loss of 
2pM is 

similar to the expected loss of 
1pM . Therefore, measurements of Anthocyanins or 

Organic Acids are most useful when a producer wants to verify that a sample of 
wine is Cabernet Sauvignon. All the expected loss functions in Figure 5 look similar, 
which  is  due  to  the  similar  classification  of  the  seven models  of  Table  4. When 
examining the estimated probabilities +

+ = 1
1

ˆ( | , )n n
nP g u y y  for Cabernet Sauvignon 

samples, we realized that these values were unusually high, e.g., about 0.9999. Thus 
the proposed model is very flexible for classifying these data, to the point of rendering 
the expected loss not sensitive to the value of p0. We also point out that this was not 
at all the case for the simulated data example; indeed the behaviour of the expected 
loss  function was quite different, because  the simulated classification pattern was 
more complex. This explains why the expected loss functions in Figure 5 are so flat. 
The zero-one  law gives  the same classification, but when varying  the value of p0, 
the expected loss for model 3, 

3pM  in Figure 5, exhibits some differences, because 
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Figure 5 Expected loss for Cabernet Sauvignon as a function of p0

Source: Authors’ own.

Flavonol concentrations are less informative than Anthocyanins and Organic Acids 
to authenticate Cabernet Sauvignon (von Baer et al., 2007).

Figure 6 shows the expected  loss  function for Merlot.  In this case, 
1pM  yields 

good results but not for all range of p0 values, as 
3pM  is better than 

1pM  when p0 is 
near 1. Although the expected loss function for 

2pM  is not invariant to the choice 
of p0, for values of p0 in the range of 0.3 to 0.6 this model presents lower losses than 

3pM , and, moreover, it is cheaper. Therefore, if a producer wants to verify that a 
sample of wine is Merlot, measurements of Anthocyanins and Organic Acids are 
suggested.

Finally,  Figure  7  shows  the  expected  loss  function  for  Carménère.  We  find  
that 

1pM  is the best over a wide range of p0. When p0 is near 0.5, 
2pM  and 

1pM  
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Figure 6 Expected loss for Merlot as function of p0

Source: Authors’ own.

have similar performance. On the other hand, 
4pM  implies a bigger loss but it 

is almost invariant to the choice of p0. Therefore if a producer wants to verify that 
a sample of wine is Carménère, measurements of Anthocyanins and Organic Acids 
are the best choice. Following the same scheme of analysis of the simulated data 
example, we evaluated the sensitivity of the conclusions to the choices of cA Ul and cAUl . 
Here, we used the same range of values for cA Ul and cAUl employed in the simulated 
data example. Figure 8 shows the minimal expected loss (that is, the expected loss 
at the optimal p0 value) as function of cA Ul  (left panels) and cAUl  (right panels) for 
the  three  grape  varieties.  The  minimum  expected  loss  shows  a  linear  behaviour 
due to  the flat  shape of  the expected  losses of  the Figures 5, 6 and 7; due  to  the 
linear behaviour there are unique optimal values for p0. The optimal p0 value for 
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Cabernet Sauvignon was 0.5 for 
1pM , 

2pM , 
4pM , 

5pM , 
6pM  and 

7pM ; for 
3pM , 

p0 was 0.51. For Merlot, p0 was 0.5 in the case of 
3pM , 

4pM , 
5pM , 

6pM  and 
7pM ; 

for 
1pM  p0 was 0.38 and 0.43 for 

2pM . In the case of Carménère, the optimal p0 
was 0.5 for 

4pM , 
5pM , 

6pM  and 
7pM ; for the other models the values were 0.61 

(
1pM ), 0.56 (

2pM ) and 0.49 (
3pM ). The results from Figure 8 are concordant with 

the  results  obtained  in  Figures  5,  6  and  7.  In  conclusion,  under  this  approach, 
measurements of Anthocyanins and Organic Acids are the best choice for the three 
grape varieties.

For the second approach described in Section 2.2.2, we selected the prior 
distribution parameters as µ =0 0i , =0 1in , α =0 3i , β =0 1i  for the three grape 

Figure 7 Expected loss for Carménère as a function of p0

Source: Authors’ own.
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varieties. After a minimization process we obtained 0, the optimal value of , 
and evaluated the expected loss as a function of losses a and b. For a we evaluated 
the expected loss over the range from 50 (small loss) to 20 000 US$ (big loss), 
keeping b fixed at 1 US$. For b the expected loss was calculated between 1 and 7000 
US$, keeping a  fixed at 10 000 US$. These  choices were motivated by  inequality 
(2.4). Again, the losses of wrong decisions are the same for all models and the cost 

Figure 8 Minimum expected loss as a function of losses cA Ul  (left panels) and cAUl  (right panels).

Source: Authors’ own.
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of data collecting cj  varies  across models. The  loss  ranges were  selected  so  as  to 
obtain a broad view of the minimum expected loss under different scenarios. Under 
this approach we can see how sensitive our conclusions are, regarding the choice of 
groups of chemical compounds, to the choice of values in Table 1 The results are 
shown in Figure 9.

Figure 9 shows, for grape variety Cabernet Sauvignon, that 
1pM  attains the 

minimal expected loss for all values of a. A similar performance was obtained by 

Figure 9 Minimum expected loss as function of losses a and b

Source: Authors’ own.
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2pM . For b, 
2pM  attains the minimal expected loss uniformly over the whole range. 

In the case of Merlot the minimum expected loss is attained by 
1pM  as function of 

a and 
3pM  as function of b, especially when b increases. For Carménère, 

1pM  
reached the minimum loss; as function of b, 

2pM  attains the minimum loss for the 
same grape variety.

Additionally, we performed a sensitivity analysis for different values of prevalence 
(fixing p in 0.1, 0.2, ..., 0.8  for each grape variety). From this analysis we found 
that the prevalence affects the expected loss; but for all values of prevalence, the 
conclusions for each grape variety were not affected.

In summary, the two approaches lead to the following conclusions: (i) to verify 
whether a wine sample is Cabernet Sauvignon or not, Anthocyanins or Organic 
Acids measurements are more appropriate than Flavonols; (ii) to verify whether 
a wine sample is Merlot or not, Anthocyanins or Flavonols are more appropriate 
than Organic Acids; and (iii) to verify whether a wine sample is Carménère, Organic 
Acids or Anthocyanins are appropriate. Figures 8 and 9 show that the conclusions 
are invariant to the values in Table 1 for a broad range of loss values.

5 Concluding remarks

The  methodology  discussed  allows  the  user  to  select  the  optimal  information 
needed  to  verify  authenticity  of  red wine  varieties.  In  our  examples,  the  conclu-
sions are invariant to the choice of values in Table 1 under the constraint in (2.4).  
The  methodology  could  be  applied  to  any  authentication  problem  where  more  
than one group of chemical markers are available for the analysis. In the case of red 
wines, many chemical markers have been proposed for authentication purposes, 
but as we can see in the results, different groups of chemical markers provide dif-
ferent information. For instance, if we want to verify whether a sample of wine 
is Cabernet Sauvignon or not, Anthocyanins or Organic Acids measurements 
are  more  appropriate  than  Flavonols.  The  methodology  allows  us  to  incorpo-
rate the cost of chemical determination, so that an analyst can decide the best 
combination of chemical compounds to use when verifying the authenticity of  
each sample.

In  our  application  we  used  a  semiparametric  Bayesian model,  but  the model 
could be parametric as well, and there is no constrain about it. The focus is on the 
information that the model uses, and as suggested by the adequacy measurements 
DIC and LPLM, the more information we add to the model, generally the better fit 
we get. But improving the fit might be too expensive, and so our approach balances 
the achieved precision with the cost required to use the additional information. In 
that sense, the conclusions we draw can be useful to producers and consumers, 
as they allow them to focus their efforts on the most appropriate combination of 
chemicals to consider for each wine variety.
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Appendix

Table 1A Measured compounds

Anthocyanins Organic Acids Flavonols 

Delphinidin-3-glucoside Tartaric Myricetin 
Cyanidin-3-glucoside Shikimic Quercetin 
Petunidin-3-glucoside Lactic Total myricetin 
Peonidin-3-glucoside Acetic Total quercetin
Malvidin-3-glucoside  Conjugate myricetin 
Peonidin-3-acetylglucoside  Conjugate quercetin
Malvidin-3-acetylglucoside   
Peonidin-3-coumaroylglucoside   
Malvidin-3-coumaroylglucoside   

Source: Authors’ own.
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