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RICARDO MONTOYA MOREIRA

MARCEL GOIC FIGUEROA
RICHARD WEBER HAAS

Este trabajo ha sido parcialmente financiado por CONICYT

SANTIAGO DE CHILE
2014



RESUMEN DE LA MEMORIA PARA OPTAR AL
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HETEROGENEIDAD DE ESTADOS EN HIDDEN MARKOV MODELS

Hidden Markov models (HMM) han sido ampliamente usados para modelar comportamientos
dinámicos tales como atención del consumidor, navegación en internet, relación con el cliente,
elección de productos y prescripción de medicamentos por parte de los médicos. Usualmente,
cuando se estima un HMM simultáneamente para todos los clientes, los parámetros del modelo son
estimados asumiendo el mismo número de estados ocultos para cada cliente. Esta tesis busca estu-
diar la validez de este supuesto identificando si existe un potencial sesgo en la estimación cuando
existe heterogeneidad en el número de estados.

Para estudiar el potencial sesgo se realiza un extenso ejercicio de simulación de Monte Carlo.
En particular se estudia: a) si existe o no sesgo en la estimación de parámetros, b) qué factores
aumentan o disminuyen el sesgo, y c) qué métodos pueden ser usados para estimar correctamente
el modelo cuando existe heterogeneidad en el número de estados. En el ejercicio de simulación, se
generan datos utilizando un HMM con dos estados para el 50% de clientes y un HMM con tres
estados para el 50% restante. Luego, se utiliza un procedimiento MCMC jerárquico Bayesiano para
estimar los parámetros de un HMM con igual número de estados para todos los clientes.

En cuanto a la existencia de sesgo, los resultados muestran que los parámetros a nivel individ-
ual son recuperados correctamente, sin embargo los parámetros a nivel agregado correspondientes
a la distribución de heterogeneidad de los parametros individuales deben ser reportados cuida-
dosamente. Esta dificultad es generada por la mezcla de dos segmentos de clientes con distinto
comportamiento.

En cuanto los factores que afectan el sesgo, los resultados muestran que: 1) cuando la pro-
porción de clientes con dos estados aumenta, el sesgo de los resultados agregados también aumenta;
2) cuando se incorpora heterogeneidad en las probabilidades condicionales, se generan estados du-
plicados para los clientes con 2 estados y los estados no representan lo mismo para todos los clientes,
incrementando el sesgo a nivel agregado; y 3) cuando el intercepto de las probabilidades condicionales
es heterogéneo, incorporar variables exógenas puede ayudar a identificar los estados igualmente para
todos los clientes.

Para reducir los problemas mencionados se proponen dos enfoques. Primero, usar una mezcla
de Gaussianas como distribución a priori para capturar heterogeneidad multimodal, y segundo usar
un modelo de clase latente con HMMs de distintos número de estados para cada clase. El primer
modelo ayuda en representar de mejor forma los resultados agregados. Sin embargo, el modelo
no evita que existan estados duplicados para los clientes con menos estados. El segundo modelo
captura la heterogeneidad en el número de estados, identificando correctamente el comportamiento
a nivel agregado y evitando estados duplicados para clientes con dos estados.

Finalmente, esta tesis muestra que en la mayoŕıa de los casos estudiados, el supuesto de un
número fijo de estados no genera sesgo a nivel individual cuando se incorpora heterogeneidad. Esto
ayuda a mejorar la estimación, sin embargo se deben tomar precauciones al realizar conclusiones
usando los resultados agregados.
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ABSTRACT

HETEROGENEITY IN THE NUMBER OF STATES OF HIDDEN MARKOV MODELS

Hidden Markov Models (HMM) have been widely used in marketing to model dynamic con-
sumer behavior such as consumer attention, web search behavior, customer relationships, choice
selection and medical prescription behavior. When estimating simultaneously the same HMM for
all customers, researchers usually assume a common number of hidden states for all customers. In
this thesis, we analyze the potential bias of such assumption when there is heterogeneity on the
number of states across customers.

To analyze the potential bias, we perform a comprehensive Monte Carlo simulation exercise.
Specifically, we study: a) the potential bias on parameter estimates; b) under which conditions
the bias increases or decreases; and c) which methods can be used to estimate correctly the model
when there is heterogeneity on the number of states. In the simulation exercise, we generate data
using a HMM with two states for 50% of customers and a HMM with 3 states for the other 50% of
customers. Next, we use a hierarchical Bayesian MCMC procedure to estimate the parameters of a
HMM with the same number of states for all customers.

First, the results show that parameters are correctly recovered at individual level. However,
aggregate parameters from heterogeneity distribution have to be reported with precautions. This
issue is generated by averaging the mixture of two segments of customers with different behavior.

Second, regarding the factors that affect the bias, we show that: 1) when the proportion of
customers with two states increases, bias on aggregate results increases as well; 2) when hetero-
geneity in conditional probabilities is introduced in the model, duplicated states are estimated for
customers with 2 states, and states are not identified as the same for all customers, which increases
the bias on aggregate results; and 3) when the intercept of conditional probabilities is heterogeneous,
introducing covariates to the model helps in identifying states across customers.

Third, we proposed two models to account for heterogeneity in the number of states: 1) using
a mixture of Gaussians as prior distributions of individual level parameters, to capture multimodal
heterogeneity; and 2) a latent class model with a HMM of different number of states on each class.
The first model provides a better interpretation of aggregate results. However, this model does not
avoid estimating duplicated states for customers with two states. The second model captures the
heterogeneity on the number of states, identifying correctly the behavior at the aggregate level and
avoiding the estimation of duplicated states for customers with two states.

Finally, in this thesis we show that in most cases, the assumption of a common number of
states does not generate a bias at the individual level, given that accounting for heterogeneity
improves the estimation results. However, conclusions from aggregate level results have to be made
with precautions.
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A mi futura compañera de la vida, mi familia y mi amigos...



Agradecimientos

Quisiera reflejar en estas palabras lo agradecido que estoy de cada una de las personas que me
ayudaron de alguna u otra manera dentro de mi proceso académico y personal. Probablemente
se me olvide más de alguno, pero eso no significa que no haya sido parte importante de mi vida
universitaria.

Primero que todo quiero agradecer a Jacqueline, que ha sido mi fiel compañ́ıa y apoyo los ulti-
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Miguel, Pablo y Óscar, por sus bromas respecto a mi eterna vida universitaria; a mis amigos de
plan común: Gabriel, Gaspar, Sebastián, Yerko, Nicolás y Bruno; a mis amigos(as) del CERET y
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Chapter 1

Introduction

1.1 Motivation

Hidden Markov models (HMM) have been successfully applied to model the changes in consumer
behavior across different and unobserved states. HMM allows to characterize an underlying process
generating an observable sequence. The underlying process is modeled using a Markov chain, and
the observable sequence distribution is conditional on the state of the Markov chain.

In marketing, Bayesian models as well as latent class models have been used to account for
unobserved customer heterogeneity whereas hidden Markov models have been used to account for
dynamics.

HMM applications in marketing include customer attention [Liechty et al., 2003], web search
behavior [Montgomery et al., 2004], customer relationship [Netzer et al., 2008], response to market-
ing activities [Montoya et al., 2010], learning in behavioral games [Ansari et al., 2012], and churn
and usage [Ascarza and Hardie, 2013].

One key point that has been neglected in the literature is the heterogeneity in the dynamic
structure. That is, researchers assume that customer transitions take place among a fixed unique
number of states, i.e., all customers have same number of states in the Markov structure. Criteria
such as BIC, AIC or DIC have been used to identify the appropriate structure in consumer dynamics
but always assuming a common number of states for all consumers. This simplification helps
the parameter estimation procedure and their convergence. In contrast, it can lead to spurious
parameter estimation, biasing the parameter estimates and the implied results.

In this thesis, we address the following questions: (1) Is there a bias when assuming the same
number of HMM states for all customers? (2) What factors increase/decrease the bias? (3) What
alternative methods can be applied to estimate a HMM with heterogeneity in the number of states?
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1.2 Main objective

The main objective of this thesis is to study the effects of assuming homogeneity in the number of
states in a HMM.

1.3 Specific objectives

The specific objectives of this work are to:

1. Characterize the bias on the estimation of the parameters of a HMM when the data have
heterogeneity in the number of states.

2. Determine the factors that improve or deteriorate the estimation results when the data have
heterogeneity in the number of states.

3. Develop a method that estimates a HMM capturing heterogeneity in the number of states.

1.4 Structure of this thesis

This work is organized as follows. In Chapter 2 we describe the theoretical framework used in
this thesis. We also provide a literature review of HMM applications in marketing and current
approaches to select the number of states. In Chapter 3 we describe the general model used in this
thesis. In Chapter 4 we describe the simulation experiments we perform to analyze the potential
bias on the estimation when the data have heterogeneity in the number of states. In Chapter 5, we
develop two models to incorporate the heterogeneity not captured by the standard model: a HMM
with a mixture of Gaussians as prior distribution and a latent class of hidden Markov models. In
Chapter 6 we apply the proposed models to empirical data. Finally, in Chapter 7 we summarize
the conclusions of this work and give further research directions.
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Chapter 2

Theoretical Framework

2.1 Hidden Markov Models

2.1.1 Motivation

A Hidden Markov Model (HMM) allows to study the dynamic behavior of systems, in which, unlike
the traditional Markov Chains, the state of the system at each point of time is unknown. Instead,
random variables, with distributions that depend on the unobserved hidden state, can be observed.
HMM was first introduced in a series of papers by Baum and his colleagues in the late 1960s, and
it was treated as probabilistic functions of a Markov chain before the name Hidden Markov Model
became popular.

The most known applications of HMM are in speech recognition [Rabiner, 1989], cryptanalysis
[Green et al., 2005] and genetics [Eddy, 1998]. Also there is a growing use of HMM in marketing
for its flexibility to model dynamics and underlying motivations for customer behavior.

Figure 2.1 shows a HMM with states {xt}∞t=1 and observable random variables {yt}∞t=1.
xt are hidden states that are not necessary something in concrete, i.e., not necessary measurable
values. Examples of hidden states are degrees of customer relationships [Netzer et al., 2008], goals in
online searching behavior [Montgomery et al., 2004], willingness to prescribe pharmaceutical drugs
[Montoya et al., 2010], among others. yt, in contrast, are observable data, measurable values such
as purchases, visits to a website, usage of a service, among others.

The essence of HMM is that the hidden state affects how the data are generated. Formally,
the distribution of the observable variables depends on the hidden state. In addition, the system
evolves dynamically between different states, and is modeled using a Markov chain.
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x1 x2 x3 x4 · · ·

y1 y2 y3 y4 · · ·

� : Observable Data
© : Hidden states

Figure 2.1: Discrete-time discrete-space HMM

2.1.2 Model specification

As the hidden state follows a Markov chain, a HMM consists of three components: initial probabil-
ities, transition probabilities and the conditional distribution of the observable variable.

Let S a set of all possible hidden states, {Xt}∞t=1 ∈ S the hidden state variable and {Yt}∞t=1

the observable variable. To identify a HMM, these three components must be estimated.

1. Initial probabilities

πs = P (X1 = s)

where π ∈ R|S| such as πs ≥ 0 and
∑

s∈S πs = 1.

2. Transition probabilities

qss′t = P
(
Xt = s′|Xt−1 = s

)
where qss′t ∈ R such as qss′t ≥ 0 and

∑
s′∈S qss′t = 1.

3. Conditional probabilities

fst (y) =

{
P (Yt = y|Xt = s) if Yt is discrete

p (y|Xt = s) if Yt is continuous

where p (y|Xt = s) is the conditional density of Yt if Yt is continuous.

Estimating {πs, qss′t, fst (y)} is necessary to identify the model but usually {πs, qss′t, fst (y)}
is parameterized in a vector of parameters.

2.1.3 HMM applications in marketing

The flexibility of HMM to define what a hidden state is for each problem has allowed researchers
in marketing to model several applications of customer behavior. In most cases, it is not needed
to specify what the hidden state is, but instead, to understand that those states exist, and they
influence the decisions that customers make. For example, Netzer et al. [2008] define the hidden state
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as the strength of the relationship between customer and firm. Most HMM applications consider
a set of customers with an observable behavior, such as customer expenditure [Kumar et al., 2011;
Ascarza and Hardie, 2013], prescriptions [Montoya et al., 2010], donations [Netzer et al., 2008],
online browsing logs [Montgomery et al., 2004], among others.

Exogenous effects can also be incorporated in the model, such as marketing actions. Models
defined by Netzer et al. [2008] and Montoya et al. [2010] incorporate exogenous factors (covariates)
that influence both transitions between states and the conditional behavior. The transition matrices
are modeled using an ordered multinomial logit model that allows for covariate effects [Greene,
1997]. For example, in a physician’ prescription context, the model described by Montoya et al.
[2010] captures not only short term effects of marketing actions (detailing and sampling) but also
the long term effect, by introducing those covariates on the transition matrix of the hidden Markov
model.

Multiple observed variables can be modeled using a single HMM as well. Ascarza and Hardie
[2013] model jointly the usage and churn of customers in contractual settings (e.g. a warehouse
with membership needed to purchase goods). In this work, the observable variable models the usage
of the service (e.q. purchases of each customer) and the hidden state is the “commitment” of the
customer to the firm. Then, every four periods if the customer is in the lower state of “commitment”
then the customer quits the membership. Customer usage is modeled using a Poisson process with
parameter λ depending on the hidden state and customer. The hidden state is modeled explicitly
using a Multinomial-Dirichlet model1, where the multinomial process models the state dynamics,
and the Dirichlet distribution models the rows of the transition matrix.

Endogeneity in marketing actions can also be introduced in a HMM. Kumar et al. [2011]
describe a HMM with endogeneity to model the expenditures of customers in a B2B context with
marketing actions, and uses it to suggest that higher states are not stable, i.e., customers in higher
state do not remain in that state as long as customers in other states. Kumar et al. [2011] models
the marketing actions as function of marketing actions and revenues of previous periods to account
for non-random allocation of marketing efforts.

Usually the conditional relationship on the observable variable distribution is parametrical,
i.e., the functional form of the conditional distribution is the same for all states, but parameters are
state dependent. However, different structures for the observable distribution can me modeled as
well. Ansari et al. [2012] uses a HMM to model the strategies in behavioral games. The attraction
to a specific strategy is computed either using a Reinforcement Learning model or a Belief Learning
model depending on the hidden state.

Most of the HMM applications consider a discrete time Markov chain. Nevertheless, Mont-
gomery et al. [2004] uses a continuous time HMM to model the behavior in online browsing on an
e-commerce web site. The observable data are the path of pages that each customer follows on the
site. On the other hand, the hidden state is the “goal” of the customer when he is browsing in
the site (browse orientation or purchase orientation). The time each customer stays on a specific
orientation state is modeled as continuous and follows a exponential distribution.

1Dirichlet distribution is a conjugate prior of the multinomial process [Rossi et al., 2005].
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2.1.4 Selecting the number of states

There is not a single correct method of selecting the number of states of a HMM. The number of
states is a parameter that changes the dimension of the parameters of the HMM, therefore selecting
the number of states is often seen as a model selection procedure as mentioned in Scott [2002] and
Netzer et al. [2008] among others.

Penalized likelihood criteria such as Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) use log-likelihood function penalizing with the number of parameters for
AIC and both number of parameters and observations for BIC [McLachlan and Peel, 2004]. Netzer
et al. [2008] also uses a Markov Switching Criterion (MSC) which is an adapted version of the
Kullback-Leibler divergence described in Smith et al. [2006] to penalize for higher number of states.

Hypothesis test approaches such as Likelihood Ratio Test uses a number of states n as null
hypothesis (H0) versus a number of states m, usually m = n + 1 (H1), and moving forward until
do not reject H0 [McLachlan and Peel, 2004].

Scott [2002] proposed a posterior probability of the number of states computed using the
results of a Monte Carlo simulation. Given a set of possible number of states {1, . . . ,M}, and
L draws of parameter θn of each HMM with number of states n (Θ = {θn}Mn=1), the posterior
distribution of the number of states can be computed as follows:

P (n|Y ) =

∫
P (n|Y ) p (Θ|Y ) dΘ

≈ 1

L

L∑
l=1

P (n|Y,Θl)

≈ 1

L

L∑
l=1

 p (Y |n, θnl )P (n)
M∑
m=1

p
(
Y |m, θml

)
P (m)

 (2.1)

Embedded algorithms also have been applied to estimate both number of states and parameters of
HMM simultaneously. Robert et al. [2002] uses a reversible jump Markov chain Monte Carlo (RJM-
CMC) to estimate the number of states and parameters simultaneously. RJMCMC was introduced
by Green [1995] as a Bayesian model selection procedure that estimates the parameters as well as
the model that fits best the data. RJMCMC is a complex method that changes the dimension space
of parameters between draws. Robert et al. [2002] uses birth, death, split and join moves to increase
and decrease the number of states.

The papers cited before use a fixed number of states for the single HMM or for all HMMs
estimated, and use the procedures we described before to estimate that number. When individual
level HMMs are estimated, (Netzer et al. [2008] defines a HMM for each customer, and Montoya et al.
[2010] defines a HMM for each physician) the number of states is usually common across customers.
Accounting for heterogeneity in the number of states of HMM has not been clearly treated. Gunter
and Bunke [2003] use a method with heterogeneity on the number of states in the context of
handwriting recognition, but use an ad hoc procedures where the number of states is flexible of
each HMM and correspond to the average length of the corresponding sequence of feature vectors
times a constant f . This method is specially designed for the handwriting recognition problem.
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Those papers do not use a more general framework for testing for presence of heterogeneity on the
number of states in their data, or methods to capture it.
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Chapter 3

Model Specification

3.1 Heterogeneous Hidden Markov Model

The specification of the hidden Markov model used in this thesis is based on the work of Netzer
et al. [2008] and Montoya et al. [2010]. We use three subscripts in this model: i denotes an
individual customer (i = 1, ...,K), t denotes a time period t = 1, ..., T and s denotes a hidden state
(s = 1, ..., S). Let Yit be the observed behavior for customer i at period t, zit ∈ S the state of
customer i at period t, and Xit the vector of C covariates for customer i at period t.

As shown in Section 2.1.2 a HMM includes three components: (1) initial probabilities (πi),
(2) transition probabilities (Qit) and (3) conditional probabilities of the observed purchase behavior
(Mit).

3.1.1 Initial probabilities

Let his = P (zi1 = s) be the probability that customer i is on state s at period 1, and

Πi = [hi1 . . . hiS ] (3.1)

the initial hidden state probability of customer i. These probabilities can be incorporated as a
parameter of the model and be estimated with the rest of the parameters. However, in this work,
we consider Πi as fixed values that are not estimated.

3.1.2 Transition matrices

The transition matrix Qit is modeled at the individual level as a function of customer level parame-
ters and covariates. Individual level parameters are incorporated to estimate the intrinsic propensity
of a given customer to transition from one state to another.
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Let qiss′t be the probability that customer i switches from state s at period t to state s′ at
period t+ 1 , i.e.:

qiss′t = P
(
zit+1 = s′|zit = s,Xit

)
(3.2)

where qiss′t ≥ 0 and
∑
s′∈S

qiss′t = 1.

Equation 3.2 implies that covariates at period t, Xit, affect transitions from t to t + 1. Ac-
cordingly, transition matrices Qit can be written as:

Qit =

qi11t qi12t . . . qi1St
...

. . .
...

qiS1t qin2t . . . qiSSt

 (3.3)

To parametrize the transition probabilities and incorporate covariate effects in the transition
matrices, we use the ordered logit model [Netzer et al., 2008; Montoya et al., 2010]. To compute
the s’th row of Qit, let consider a latent variable uit that accounts for the propensity of moving
from state s. We define uit = ρTisXit + εit, where ρis is the vector of marketing effect parameters on
the transition matrix and ε is an error term i.i.d., with extreme value distribution. uit controls the
customer propensity to move to higher states. Let {τ̂iss′}s′∈{1...S−1} be the thresholds parameters

for state s. If τ̂iss′ ≤ uit ≤ τ̂iss+1′ then customer i moves from state s to state s′.

The transition probabilities qiss′t can be written as:

qis1t =
exp

(
τ̂is1 − ρTisXit

)
1 + exp

(
τ̂is1 − ρTisXit

) ,
qiss′t =

exp
(
τ̂kss′ − ρTksXkt

)
1 + exp

(
τ̂iss′ − ρTisXit

) − exp
(
τ̂iss′−1 − ρTisXit

)
1 + exp

(
τ̂iss′−1 − ρTisXit

) , s′ = 2, . . . , S − 1

qisSt = 1−
exp

(
τ̂isS−1 − ρTisXit

)
1 + exp

(
τ̂isS−1 − ρTisXit

) , (3.4)

To ensure a proper ordering of the states, we impose an increasing ordered parametrization
of the threshold parameters as described in Equations 3.5, using unbounded parameters τiss′ .

τ̂is1 = τis1 s = 1, . . . , S

τ̂iss′ = τ̂iss′−1 + exp (τiss′) s = 1, . . . , S; s′ = 2 . . . S − 1 (3.5)

These equations imply that τ̂is1 < τ̂is2 < . . . < τ̂isS−1.

3.1.3 Conditional probabilities

The conditional probabilities matrix Mit capture the distribution of the observed behavior Yit.

Let mist be the probability of the observed behavior given that customer i is on state s at
period t, as:

mist = P (Yit = yit|zit = s) (3.6)
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Following Montoya et al. [2010], we model the conditional distribution of Yit as a Binomial
distribution, with parameters Nit as the number of Bernoulli variables, and pist as the Bernoulli’s
probability of success. Parameters pist imply that this distribution is conditional on the hidden
state s. In a marketing context, Yit may represent the purchase behavior of a customer i at period
t, Nit represents the total category purchases made by customer i at period t and pist represents
the market share of the product for that customer at that period. Formally, this can be written by:

mist = P (Yit = yit|zit = s)

=

(
Nit

yit

)
pyitist (1− pist)Nit−yit (3.7)

Probability pist is modeled using a logistic regression model with intercept α̂0
s and vector αis

which captures the effects of covariates Xit.

pist =
exp

(
α̂0
s + αT

isXit

)
1 + exp

(
α̂0
s + αT

isXit

) (3.8)

To avoid the label switching problem on hidden states we impose an increasing ordered
parametrization of α̂0

s, using unbounded parameters α0
s.

α̂0
1 = α0

1

α̂0
s = α̂0

s−1 + exp
(
α0
s

)
s = 2, . . . , S (3.9)

These equations imply that α̂0
1 < α̂0

2 < . . . < α̂0
n.

Finally, conditional state probabilities Mit are written using the notation for HMM models
[MacDonald and Zucchini, 1997] as a diagonal matrix with mist as the s’th diagonal component.

Mit =



mi1t 0 . . . . . . 0

0
. . .

...
... mist

...
...

. . . 0
0 . . . . . . 0 miSt


(3.10)

3.1.4 Parameters of the model

In sum, the parameters of the three components of the HMM model can be grouped in two sets:
individual level parameters and population parameters. Let θi be the individual level parameters
of customer i and Φ the population parameters of the model. Then:

θi = {τis1, . . . , τisS−1,ρis,αis}Ss=1 (3.11)

Φ =
{
α0
s

}S
s=1

(3.12)

We define nθ as the length of vectors θi and nΦ as the length of vector Φ.
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3.1.5 Likelihood function

Using the set of parameters
{
{θi}i∈K ,Φ

}
, and T observations for each customer (Y ={

{Yit}t∈T
}
i∈K) , the likelihood function for individual i can be written as [MacDonald and Zucchini,

1997]:

Li
(
θi,Φ| {Yit}t∈T

)
= P (Yi1, Yi2, . . . , YiT |θi,Φ)

= ΠiMi1

∏
t∈T

QitMit1
T (3.13)

where 1 is a 1× S vector of ones.

Using this equation, likelihood function for all customers can be written as:

L
(
{θi}i∈K ,Φ|Y

)
=
∏
i∈K

Li
(
θi,Φ| {Yit}t∈T

)
=
∏
i∈K

ΠiMi1

∏
t∈T

QitMit1
T (3.14)

3.2 Variations of the model

Several simplifications and variations of this general model are used throughout this thesis. This
section aims to explain the differences among these modified versions and the general form of the
HMM described in Section 3.1.

3.2.1 Covariates

The presence of covariates in both the transition matrix (Qit) and the conditional behavior (Mit)
affects the parametrization of both variables. Covariates are incorporated in the transition matrix
using an ordered logit parametrization to ensure that the effect of a covariate either increases the
propensity to transition to higher states or increases the propensity to transition to lower states.
When covariates are not included in the model, the transition matrix is constant for all periods,
i.e., Qit = Qi ∀t ∈ T . In such a case, we parametrize the rows of Qi using a multinomial logit model
with unconstrained parameters τiss′ as follows:
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qiss′ =
exp (τiss′)

1 +
S−1∑
l=1

exp (τisl)

, s, s′ = 1, . . . , S

qisn =
1

1 +
S−1∑
l=1

exp (τisl)

, s = 1, . . . , S (3.15)

Additionally, we use a simpler parametrization of Mit including only intercepts of the logistic
regression to compute the probabilities pist as follows:

pist =
exp

(
α̂0
s

)
1 + exp (α̂0

s)
(3.16)

To avoid the label switching problem, we define parameters α̂0
s as shown on Equation 3.9

using unbounded parameters α0
s.

3.2.2 Heterogeneity

The variations of the models used in this thesis also include accounting for heterogeneity on different
components of the model.

The components where we alternatively account for heterogeneity are:

• Covariate effects on the transition matrices (ρs)

• Covariate effects on the conditional probabilities (αs)

• Conditional probabilities on the intercept (α0
s)

Each model used in this thesis describes which components are heterogeneous.
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Chapter 4

Simulation Exercise

To assess the effects of the assumption of homogeneity in number of states in a HMM, we design a
Monte Carlo simulation exercise.

The objective of this Monte Carlo simulation is to measure the potential bias on the estimation
of the parameters of a Hidden Markov Model when customers are heterogeneous in their dynamics
and one assumes homogeneity in the number of states.

In order to achieve this objective, the data are generated using two hidden Markov models with
different number of states for two segments of customers. Each segment is simulated independently
using a single hidden Markov model. Then, we join the data of both segments of customers and
estimate a unique HMM with a fixed number of states for all customers. We assume that segment
1 (K2) has two latent states whereas segment 2 (K3) has three latent states.

The simulation exercise is structured in two steps. First, we simulate the state transitions and
the observable behavior following a hidden Markov model. Second, we use these data to estimate the
parameters of a HMM, selecting the model with the number of states that maximizes penalized fit.
Finally, to estimate the potential bias on the parameter estimates we use the results of the Monte
Carlo simulations to measure the differences between the estimated model with a fixed number of
states and the simulated model.

Several factors are manipulated to analyze their effect on the the potential bias when homo-
geneity in the number of states is assumed. In this thesis we modify: (1) the mixture of customers
with 2 and 3 states, (2) the presence of full heterogeneity on the intercept parameters of the condi-
tional probabilities, and (3) the presence of covariates on both transition matrices and conditional
probabilities.

In Table 4.1 we summarize the simulation experiments that were performed. Experiment 1.1
is the basic model with no covariates and no heterogeneity in the conditional probabilities, and 50%
customers on K2 and 50% customers on K3. Experiments 2.x, 3.x and 4.x are modified versions of
Experiment 1.1. Experiments 2.x have different mixture of customers. Experiment 3.1 incorporates
heterogeneity on the intercept of the conditional probabilities. Finally, Experiments 4.x incorporate
covariates, and those experiments differ on the presence of heterogeneity on the model components
and whether the covariates are discrete or continuous random variables. For Experiment 4.5 we
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analyze two scenarios that differ in the magnitude of covariate effects.

Heterogeneity
Mixture of

Experiment Customersa Covariateb Intercept of P Effects on Q Effects on P
Xkt α0

s ρks αks

1.1 50% - 50%
50% - 50%
70% - 30%
80% - 20%
90% - 10%
95% - 5%
98% - 2%

100% - 0%
50% - 50%
50% - 50%
50% - 50%
50% - 50%
50% - 50%
50% - 50%
50% - 50%
50% - 50%

− − − −
2.1 − − − −
2.2 − − − −
2.3 − − − −
2.4 − − − −
2.5 − − − −
2.6 − − − −
2.7 − − − −
3.1 −

√
− −

4.1 Continuous − − −
4.2 Discrete − − −
4.3 Continuous − −

√

4.4 Continuous −
√

−
4.5.1 Continuous

√
− −

4.5.2 Continuous
√

− −
4.6 Continuous

√ √ √

Table 4.1: Simulation experiments

aPercentage of customers that belong to segments K2 and K3, respectively.
bIf a experiment includes covariates, this column indicates whether these covariates are continuous or

discrete.

4.1 Simulation Design

In this section we explain how we designed the Monte Carlo simulations to capture the potential
bias on the estimation if homogeneous dynamics are assumed when the number of states of HMM
are truly heterogeneous.

4.1.1 Data generation process

Using MATLAB, we simulate data for two segments of customers using two different HMM. The
first segment, K2, is simulated using a HMM with 2 states. The other segment, K3, is simulated
using a HMM with 3 states. We denote the set of all customers as K = K2 ∪K3.1

For all versions of the simulations performed, we consider that the states 1 and 2 are the same
for customers in K2 and K3, and the higher state could be reachable only by customers in K3.

1By abuse of notation, we use K2, K3 and K for referring both the set and subsets of customers and the
number of customers in each set, respectively.
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Table 4.2 shows the total number of customers, the number of periods T , the number of trials
of the Binomial distribution of observable data Nkt, and covariate Xkt. On these experiments, we
use a single covariate, but this can be easily extended to a vector of covariates (see Chapter 6).

Number of customers |K| 300

Number of periods |T | 20

Number of trials Nkt 100
(Binomial distribution)

Covariate
Continuous Xkt ∼ N (0, 1)

Discrete Xkt ∼ B(1, 0.5)

Table 4.2: Parameters used in the Monte Carlo simulations

Following the model specified in Section 3.1, customers transition between different states;
each state s is represented by a different parameter ps of the Binomial distribution of the observable
behavior. States are ordered increasingly by the parameter ps, i.e., a higher state means a state
with higher probability ps.

According to Section 3.1, we set parameters Πk, Qk, and pkst as follows:

Sets
K2 K3

Number of states |S| 2 3

Initial Probabilities Πk

[
1 0

] [
1 0 0

]
Transition Probabilities Qk

[
0.7 0.3
0.3 0.7

] 0.7 0.2 0.1
0.2 0.5 0.3
0.1 0.2 0.7


Conditional Probabilities pkst

[
0.1 0.5

] [
0.1 0.5 0.9

]

Table 4.3: Simulation HMM parameters

As described in Section 3.1, parameters Qk and pkst are computed using parameters τ̂kss′ , ρks
and α0

s. To obtain the values for Qk and pkst described on Table 4.3, τ̂kss′ , ρks and α0
s must take

specific values. Table 4.4 shows simulated values of transition matrix parameters for models with
and without covariates separately2.

2Given the different parametrizations described in Section 3.2.1.
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Sets
K2 K3

Transition Matrix Parameters without Covariates

Intercept of transition probabilities τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

τk12

τk21

τk22

τk32

τk33

Transition Matrix Parameters with Covariates

Transition threshold parameters τ̂k11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

τk12

τk21

τk22

τk31

τk32

Covariate effectsa ρk1 0.51
0.48
.

0.51
0.48
0.41

ρk2

ρk3

Table 4.4: The simulated values for parameters corresponding to the transition matrix

aThe simulated effects of the covariates are different on experiments 4.x. These specific values are simulated
values for experiment 4.1. The values simulated for each experiment are detailed in Appendix A.

In addition, Table 4.5 shows simulated values of conditional probabilities. Models with and
without covariates are simulated using the same intercepts.
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Sets
K2 K3

Conditional Parameters

Intercept α0
1 -2.20

0.79
.

-2.20
0.79
0.79

α0
2

α0
3

Covariates Effectsa α1 0.26
0.46
.

0.26
0.46
0.63

α2

α3

Table 4.5: The simulated values for parameters corresponding to the conditional probabilities

aCovariate effects simulated parameters are different on experiments 4.x. These specific values are sim-
ulated values for experiment 4.1, however simulated values for each experiment are detailed in Appendix
A.

When we account for heterogeneity in a specific component of the model the values of the pa-
rameters of that component described on Tables 4.4 and 4.5 represent the mean of the corresponding
parameters.

We simulate individual parameters θk by drawing from a Multivariate Normal distribution
with mean µθ and covariance matrix Σθ. As mentioned before, we set µθ values as described in
Tables 4.4 and 4.5 for each component of the model. On the other hand, we generate the covariance
matrix Σθ as follows3:

Σθ =
1

50
diag(|µθ|)

Appendix A details the standard deviation of heterogeneous parameters for each experiment.

The simulation procedure is performed as follows:

Simulation procedure

For each segment Kn, with n ∈ {2, 3}:

Step 1: Initialize µθ and Σθ.

Step 2: Initialize Φ.

Step 3: For each i ∈ Kn draw θi ∼ N (µθ,Σθ)

Step 4: For each i ∈ Kn draw Xit from the corresponding distribution (see Table 4.2)

3We use |x| for the vector of absolute values of x, therefore |x|i = |xi|.
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Step 5: Compute Qit from θi, Φ and Xit.

Step 6: Compute pist from θi, Φ and Xit.

Step 7: Compute zit using a discrete time discrete space first order Markov chain with
transition matrix Qit.

Step 8: Draw Yit|zit = s using a Binomial distribution with parameters Nit and pist.

4.1.2 Estimation procedure

The model is estimated using a Bayesian approach from simulated data Y . In particular, the model
parameters are estimated using a Markov Chain Monte Carlo procedure assuming a fixed number
of states for the HMM (2 and 3) choosing the one that fits the data best.

It is important to recall that in this estimation procedure we do not estimate the initial
probabilities (Πk) and the number of trials of the Binomial distribution (Nkt), therefore we consider
those parameters as given.

In Appendix B we described the estimation model with priors and full conditionals distri-
bution. We estimate the model using a Markov chain Monte Carlo technique implemented in
MATLAB, specifically, a Gaussian random-walk Metropolis-Hastings algorithm (M-H), described
in Appendix C. We use the modified version of M-H introduced by Atchade [2006], and described
in Appendix D.

Finally, to select the best model we compare HMM with 2 and 3 states using log-marginal
likelihood (LML) criterion, the deviance information criterion (DIC) and the Markov switching
criterion (MSC).

4.2 Results

4.2.1 Basic Model: Experiment 1.1

For Experiment 1.1, we report in Table 4.6 the model comparison criteria. Criteria DIC and MSC
identify the 3 states HMM as the best model.

Model LML DIC MSC
2 states -71280.89 142637.53 152197.16
3 states -30750.53 61699.86 72471.99

Table 4.6: Experiment 1.1: Model Comparison

We report in Table E.1 on Appendix E the parameter estimates of Experiment 1.1. Standard
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Monte Carlo simulation reports consider the comparison of simulated and estimated parameters, and
concluding if those parameters are correctly recovered. However, on these simulation experiments
the set of simulated and estimated parameters have different dimensions.

The estimated model has parameters according to a HMM with 3 states. Therefore, for
customers in segment 1 with two states, the simulated parameters and the estimated parameters
have different interpretations. Furthermore, the population parameters represent the aggregate
behavior of all customers (including those customers with two true hidden states). However, the
simulated experiment do not have population parameters because the simulated parameters for
different segments have different dimensions depending on the segments of the customers. Thus,
to analyze if the estimated model is biased we compare the transition matrices and the conditional
probabilities computed using the simulated and the estimated parameters. To accomplish this, we
compare separately customers with 2 and 3 real states, by averaging the individual parameters
within segments 1 and 2.

Let θkl be the l’th draw of parameter θ for customer k. We compute µ2
θl as the average of θkl

with k ∈ K2.

µ2
θl =

1

K2

∑
k∈K2

θkl

Analogously, we define µ3
θl as the average of the l’th draw of parameter θ across customers in K3.

µ3
θl =

1

K3

∑
k∈K3

θkl

In summary, we compute a different ’population mean’ for customers with 2 and 3 states.

Next, for each draw l, we compute separately a transition matrix Ql using θ2
l and θ3

l .

In addition, we compute the transition matrix using population mean µθ for each draw (which
aggregates behavior of all customers in K), as it is common4 to report transition matrices computed
using the posterior mean of µθ.

Finally, we compute the mean and the 95% CI for those transition matrices, and we compare
them with true values5.

Given that conditional are homogeneous on Experiment 1.1 across customers, we report the
posterior mean and 95% CI of pkst.

We report in Table 4.7 the comparison of posterior mean transition matrix (with its corre-
sponding 95% CI below) and simulated transition matrix using the methodology explained before.

4Montoya et al. [2010] and Netzer et al. [2008].
5Simulated transition matrix does not apply for the aggregate analysis of customers in K given the mixture

of customers with 2 and 3 states.
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Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.72]

0.31
[0.29 0.33]

0.16
[0.13 0.21]

0.29
[0.27 0.31]

0.67
[0.65 0.69]

0.16
[0.12 0.20]

0.01
[0.01 0.01]

0.01
[0.01 0.02]

0.68
[0.61 0.74]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.68 0.72]

0.18
[0.16 0.20]

0.11
[0.10 0.13]

0.21
[0.19 0.23]

0.55
[0.52 0.58]

0.21
[0.19 0.22]

0.08
[0.07 0.10]

0.27
[0.24 0.30]

0.68
[0.66 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.72
[0.70 0.73]

0.24
[0.22 0.26]

0.13
[0.12 0.15]

0.24
[0.23 0.26]

0.65
[0.63 0.68]

0.19
[0.16 0.21]

0.04
[0.03 0.05]

0.10
[0.08 0.13]

0.68
[0.65 0.71]

K 2 NA

3

Table 4.7: Experiment 1.1 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10 0.50 0.90 0.10 0.50 0.90
[0.10 0.10] [0.50 0.50] [0.90 0.90]

Table 4.8: Experiment 1.1 conditional probabilities posterior mean and 95% CI

Confidence intervals for pkst shown on Table 4.8 indicate that the model can capture correctly
the conditional behavior on each state, despite the heterogeneity in the number of states. This
result is important to fix the states for all customers (K2 and K3), i.e. a specific state means the
same in terms of the conditional behavior for all customers (a probability of 0.1, 0.5 and 0.9 for each
state). Quantiles for Q on K2 and K3 also show that the states are correctly identified (the states
represent the same for all customers). For customers in K2, the transitions between states 1 and 2
are correctly recovered and the third state becomes unreachable from those states (the probability
of moving to state 3 from the others is close to zero). For customers in K3, the transition matrix is
correctly recovered. These results suggest a good recovery of the parameters at the individual level.

We report in Table 4.9 the individual-level recovery of transition probabilities. The parameter
is recovered if the posterior interval of qij contains the respective simulated transition probability.
For customers in K2 is only countable the 2 × 2 upper-left sub-matrix given that those customers
only move through the first two states, i.e. the total number of transition probabilities that need
to be recovered to estimate correctly the transition behavior is 4. For customers in K3 on the other
hand, all 9 transition probabilities need to be recovered.

This table shows that 96.7% of customers in K2 have all 4 transition probabilities estimated
correctly. For K3, 75.3% of customers have all 9 transition probabilities estimated correctly; and
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Set of Customers qij recovered
customers # % # %

K2 145 96.7 % 4 100.0 %
5 3.3 % 3 75.0 %

K3 113 75.3 % 9 100.0 %
16 10.7 % 8 88.9 %
7 4.7 % 7 77.8 %
9 6.0 % 6 66.7 %
2 1.3 % 5 55.6 %
3 2.0 % 4 44.4 %

Table 4.9: Experiment 1: Number and percentage of transition probabilities qij recovered for
sets K2 and K3

using the first three rows, 90.7% of customers in K3 have at least 75% of 9 transition probabilities
correctly identified. This result shows a good recovery at the individual level.

At the aggregate level instead, results are different. Using the results of the first two rows on
Table 4.7, on average, customers on K2 move between states 1 and 2, and the probability of moving
to the third state is close to zero regardless of which state the customer is at. On the other hand,
customers on K3 have a 27% probability to move from state 2 to state 3. These results can not be
captured by observing only the aggregate level. In fact, the third row shows that the probability of
moving from state 2 to state 3 is 10%, but this probability lies outside of both confidence intervals
of K2 and K3 (see Figure 4.1).

Figure 4.1: 95% confidence intervals of q23(·) using θ2
l , θ

3
l and population mean µθ

Given the model described in Section 3.1 parameters τk21 and τk22 generate the second row
of the transition matrix Q, i.e., the probabilities to move (or not) from state 2.
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(a) Heterogeneity in τk21 (b) Heterogeneity in τk22

Figure 4.2: Heterogeneity in τk21 and τk22.

We show in Figure 4.2 the distribution of τk21 and τk22 across customers. In red (blue), the
histogram of the mean of τk21 and τk22 for each customer of K2 (K3) across draws, i.e., showing
the heterogeneity within K2. The black line represents posterior mean of population parameter
µθ for components τ21 and τ22. Yellow lines represents the 95% confidence interval of population
parameter µθ for τ21 and τ22.

These graphs show that the heterogeneity distribution on τk21 and τk22 are bimodal, and µθ
does not represent either the set K2 or K3.

In conclusion, we showed that this model has an acceptable recovery of the parameters at the
individual level. However, at the aggregate level, the heterogeneity in θ is misinterpreted if observing
only the population parameter µθ and the transition matrix obtained from that parameter Q(µθ),
yielding results that do not represent the transition behavior of any customer (on K2 nor K3).
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4.2.2 Mixture of customers: Experiments 2.x

In the previous section we showed that the probability of moving to the third state is biased at the
aggregate level. In this section, we test if a smaller proportion of customer reaching the higher state
could affect the bias of this probability at the aggregate level.

We report in Table 4.10 the model comparison criteria for each experiment. The model with
3 states is indicated by both DIC and MSC as the best model for all experiments but experiment
2.7 (100%-0%).

Experiment Proportion States LML DIC MSC

2.1 50% 2 States - 50% 3 States
2 -71280.89 142637.53 152197.16
3 -30750.53 61699.86 72471.99

2.2 70% 2 States - 30% 3 States
2 -58026.75 116101.98 125611.97
3 -30489.47 61147.56 71814.21

2.3 80% 2 States - 20% 3 States
2 -50564.49 101161.76 110608.53
3 -30345.92 60818.21 71440.15

2.4 90% 2 States - 10% 3 States
2 -40810.01 81650.51 91015.99
3 -30172.50 60477.85 71551.59

2.5 95% 2 States - 5% 3 States
2 -36169.86 72372.65 81673.22
3 -30133.04 60365.64 63062.98

2.6 98% 2 States - 2% 3 States
2 -32077.28 64180.14 73436.39
3 -32087.83 64177.01 73406.71

2.7 100% 2 States - 0% 3 States
2 -29951.47 59925.04 69171.60
3 -29953.43 59921.84 69243.06

Table 4.10: Experiments 2: Model Comparison

In Appendix F we report the parameter estimates for each experiment.

The results show that as the proportion of customers of K2 grows, the probability of going
from state 2 to state 3 (computed using the population mean µθ) decreases. Figure 4.3 shows how
the 95% CI of q23 decreases when the proportion of customers in K2 increases.

23



Figure 4.3: 95% confidence intervals of q23(·) using population mean µθ by mixture of cus-
tomers

This effect has two main causes. First, the weight of the parameters of segment 1 increases
on the estimation of the population parameters6. Second, there is a decreasing trend of q23 for
customers in K2 as shown on Figure 4.4. This plot shows the same decreasing trend than the
probabilities computed using the population mean µθ. On the other hand, this relationship cannot
be observed clearly for customers K3 (Figure 4.5), as there are true parameters q23 for segment 2.
However, the variance of this estimation increases due to the decrease in the number of observations
(customers) of this segment.

Figure 4.4: 95% confidence intervals of q23(·) for customers in K2 by mixture of customers

6In the Gibbs step that updates µθ on the M-H algorithm described in Section C the average of individual
parameters (θ̄), captures the values of the individual parameters at the aggregate level, therefore if the
proportion of customers with 2 states increases, the behavior of this group becomes more relevant on the
computation of θ̄ and µθ.
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Figure 4.5: 95% confidence intervals of q23(·) for customers in K3 by mixture of customers

Using Table 4.10 we can also conclude that the HMM with 3 states is chosen in all experiments
with more than 5 customers in segment 2. The main reason is that the 3-state HMM is more flexible
than a 2-state HMM. Therefore, the behavior of a customer with 2 states can be captured by a
3-state model but for a customer with 3 states, the 2 state model can not capture correctly the
behavior. We explain this effect using the results of P and Q on Appendix F.

In this context the HMM with 3 states performs considerably better at the individual level for
customers with 3 states than a 2 state HMM, and it does not perform worse for customers with 2
states. Then, the greater number of parameters on 3 state HMM is the only penalty that can make
a 3-state model worse than a 2 state model. For this reason, the 3-state model is the best model
on almost every mixture tested in this simulated exercise, and all states are identified as different
between each other on those estimations7. The only exception is the 98%-2% proportion, where the
lower state is estimated by two states and the state on the middle is estimates as the higher state
(see Appendix F.2.5).

In summary, increasing the proportion of customers with less states can lead to worse aggre-
gate results. In this case, we showed that the wrong inferences described from Experiment 1.1 can
increase if the proportion of customers with fewer states increases.

Next, we investigate the effect of including heterogeneity in the potential bias.

7When no heterogeneity is accounted for α0.
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4.2.3 Heterogeneity in the Conditional Probabilities: Experiment
3.1

For models of Experiments 1.1 and 2.x the conditional behavior probabilities are fixed for all cus-
tomers (not accounting for heterogeneity on α0). However, there are examples in the literature that
model otherwise. Netzer et al. [2008] introduces a HMM where the intercepts of the parameters
that control the conditional behavior are estimated at the individual level.

As expected, homogeneous parameters Φ converge faster in comparison with the individual
level parameters θk. We show in Figure 4.6 how parameter α0

s in Experiment 1.1 converges on the
first 1900 iterations8 still in the burn-in period of the estimation algorithm (first 40000 iterations).

(a) Convergence of α0
1 (b) Convergence of α0

2

(c) Convergence of α0
3

Figure 4.6: Convergence of α0

Fast convergence of α0 allows to identify each state properly, therefore the transition ma-
trix can be correctly recovered. If conditional probabilities are not correctly identified, then it is
impossible for the model to capture the transition between the states properly.

8The algorithm saves the draws every 20 iterations to avoid high correlations, therefore plots in Figure
4.6 have approx. 90 iterations shown in the horizontal axis.
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In this experiment we study the effects of accounting for heterogeneity in the conditional
probabilities (α0) on the estimation results when there is heterogeneity in the number of states.

The choice of the number of states that fits the data best was based on the log-marginal
likelihood (LML) criterion, the deviance information criterion (DIC) and the Markov switching
criterion (MSC). Given these criteria, we choose the 3 states model as the right model (see Table
4.11).

Model LML DIC MSC
2 states -48745.88 97999.16 152197.16
3 states -33804.60 68316.14 85675.77

Table 4.11: Experiment 3.1: Model Comparison

As explained in Section 4.2.1 we show results for Q and P given the different dimension of
simulated parameters. However, we report the parameter estimates of the 3-state HMM in Table
E.9, on Appendix E.3. We report in Table 4.12 posterior mean and 95% CI for transition matrix
Q, computed separately using customers in K2, customers in K3 and population mean µθ.

In addition, we report in Table 4.13 posterior mean and 95% CI for conditional probabilities
pks, computed separately using customers in K2, customers in K3 and population mean µθ.

Posterior Mean Simulated
1 2 3 1 2 3

1 0.71
[0.69 0.73]

0.27
[0.20 0.33]

0.30
[0.28 0.32]

0.02
[0.01 0.03]

0.24
[0.18 0.32]

0.01
[0.01 0.02]

0.27
[0.26 0.29]

0.49
[0.42 0.54]

0.69
[0.67 0.71]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.68 0.72]

0.20
[0.18 0.23]

0.12
[0.10 0.13]

0.18
[0.17 0.20]

0.51
[0.49 0.54]

0.18
[0.17 0.20]

0.12
[0.10 0.13]

0.28
[0.26 0.31]

0.70
[0.68 0.72]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.75
[0.72 0.76]

0.24
[0.21 0.27]

0.20
[0.18 0.22]

0.07
[0.05 0.09]

0.37
[0.32 0.43]

0.05
[0.04 0.07]

0.19
[0.17 0.20]

0.38
[0.34 0.42]

0.75
[0.73 0.77]

K 2 NA

3

Table 4.12: Experiment 3.1 transition matrix posterior mean and 95% CI
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Posterior Mean Simulated
1 2 3 1 2 3

K2 0.10
[0.10 0.10]

0.16
[0.15 0.18]

0.51
[0.51 0.51]

0.10 0.50 NA

K3 0.10
[0.10 0.10]

0.49
[0.49 0.49]

0.90
[0.90 0.90]

0.10 0.50 0.90

K 0.10
[0.10 0.10]

0.26
[0.22 0.29]

0.71
[0.68 0.74]

NA

Table 4.13: Experiment 3.1 conditional probabilities posterior mean and 95% CI

As described in Section 4.2.1, the conditional probabilities are correctly identified on Exper-
iment 1.1. The model identifies three states, with probabilities 0.1, 0.5 and 0.9. Customers with
two states are modeled with the same states but the probability of making transitions to the higher
state is 1%. For further references to this, we define this result of identifying correctly the three
state as EF1.

In this experiment, results are different. As the intercept α0 is not fixed across customers
in this experiment all parameters of the model are heterogeneous. Besides, the relationship of
parameters across customers is weaker than in Experiment 1.1 since in this experiment there is
no fixed parameter across customers. Only heterogeneous parameters such as population mean
µθ and covariance matrix Σθ account for a relationship between parameters of different customers.
Consequently, the individual parameters of a specific customer are estimated to capture the behavior
of each hidden state depending on the data of that customer. For customers with three states, the
model identifies three different latent behavior and account for them on the estimation. Customers
with two states have data generated by only two latent states. However, the model forces to capture
the behavior using three states for all customers. This means that for customers in K2, which were
not simulated with a state of probability 0.9, the estimation procedure identifies a state that is
equal to one of the two lower states. For further references of this effect, we define this result as
EF2.

Table 4.13 indicates the presence of EF2 on Experiment 3.1. For customers in K2, states 1 and
2 have both conditional probabilities pks that represent the lower simulated state with probability
pks = 0.1. State 3 represents the second state simulated with probability pks = 0.5. Given this
estimation results for parameters α0, transition probabilities are estimated accordingly. Table 4.12
shows that the probabilities of moving from state 1 and 3 to state 2 are 2% and 1%, respectively.
Customers in state 1 and 3 have probability of approximately 70% of remaining in the same state,
as it has been simulated for both states for customers in K2. These results show that transitions of
customers in K2 occur mostly between states 1 and 3, i.e., between two states with pks 0.1 and 0.5
as simulated.

Although for customers in K3, Table 4.12 and Table 4.13 show good recovery of both transition
matrices and conditional probabilities, duplicated states for customers in K2 generates bias on
aggregate results. At the aggregate level (considering the results using µθ) parameters Q and pks
are affected by the mixture of states that do not capture the same behavior in terms of conditional
probabilities. Table 4.13 shows that the lower state is the only one recovered in terms of pks. The
other estimated states represent behaviors where pks is 0.25 and 0.7, both values of pks do not
represent any of the two segments of customers. In addition, Table 4.12 shows also a transition
matrix that do not represent either the dynamics of customers in K2 or K3. Furthermore, µθ is
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estimated as the mean of the distribution of θk over the population of customers, therefore the
transition matrix at the aggregate level can not be interpreted as the average of transition matrix
but as the transition matrix of the average of the individual parameters, given that the average
is estimated at the parameter level (θk) and logistic transformation for computing Q is nonlinear.
The most intuitive examples of it are the transition probabilities involving state 2, e.g. from state
1 to state 2. The probability of moving from state 1 to state 2 is reported as 7% at the aggregate
level, however at the individual level it is 2% for customers in K2 and 18% for customers in K3,
which do not average 7%. Moreover, those probabilities do not represent the same dynamics in
terms of changes in parameter pks of the Binomial distribution. Similar effects could be observed
on transition probabilities q13, q22, q23, q31 and q32.

Confidence intervals of q11 are another example of bias on the aggregate level. Considering
results overK2 andK3 separately, q11 is 0.71 and 0.70 respectively, but we observe that q11 computed
using µθ is between 0.72 and 0.76 with 95% of probability. This effect is caused by the differences
of the probabilities q12 and q13 between customers in K2 and K3. q12 is 0.02 for K2 but 0.18 for K3,
and q13 is 0.27 for K2 but 0.12 for K3. In addition, transition matrix at aggregate level is computed
using µθ, therefore logistic transformation is performed over the mean of parameters and does not
represent the average of transition matrices but the transition matrix of the average of parameters.
Accordingly, q11 increases while the other probabilities of the same row take values between the
values of customers in K2 and K3.

To illustrate this, we introduce a simple example, where we change the parametrization of Q.
We define e1 = 0, e2 and e3 such as q1s = exp(es)∑

l exp(el)
. Considering this definition, we can compute es

from q1s as follows:

es = log

(
q1s

q11

)
Using the values of q1s for customers in K2 and K3, we obtain e2

1 = 0, e2
2 = −3.57, e2

3 = −0.97 and
e3

1 = 0, e3
2 = −1.36, e3

3 = −1.76.

Then, we average es of K2 and K3 to obtain eµ1 = 0, eµ2 = −2.46, eµ3 = −1.37. If we compute
q1s from eµs , we obtain transition probabilities 75%, 6% and 19% of moving to the first, second and
third state. It is interesting to observe how even both customer segments have probabilities q11

similar between them (∼ 70%), aggregate results could show biased values. This effect is caused by
averaging on the parameters and compute a logistic transformation on those averaged values.

Taken together, we conclude that, for this experiment, using aggregate results could lead to
misinterpretation of the customer behavior at the individual level. It is important to highlight
that on Experiment 1.1 the parameters are only biased on transition matrix given that states were
fixed in terms of conditional probabilities for all customers, whereas on Experiment 3.1 conditional
probabilities are also biased at aggregate level.

29



4.2.4 Covariates: Experiments 4.x

As there are many applications that incorporate marketing actions in the HMM (Netzer et al. [2008]
and Montoya et al. [2010]), we include covariates in the model. In this section we present the results
of several experiments that incorporate covariates both in the transition matrix and the conditional
probabilities in the model described in Section 3.1. Throughout the experiments of this section, we
modify the presence of heterogeneity in the components of the model. Experiments 4.5.1 and 4.5.2
differ on the magnitude of the effects simulated (see Appendix A.6).

Heterogeneity

Experiment Covariatea Intercept of P Effects on Q Effects on P
Xkt α0

s ρks αks

4.1 Continuous × × ×
4.2 Discrete × × ×
4.3 Continuous × ×

√

4.4 Continuous ×
√

×
4.5.1 Continuous

√
× ×

4.5.2 Continuous
√

× ×
4.6 Continuous

√ √ √

Table 4.14: Simulation experiments 4.x

aIf a experiment include covariates, this column indicates whether these covariates are continuous or
discrete.

For all experiments in this section, LML, DIC and MSC imply that the 3-states HMM fits
better than 2-states HMM.

In Experiment 4.1, both covariates effects (ρ, α) and conditional probabilities parameters
(α0) are recovered correctly (see Appendix E.4.1). Heterogeneous parameters at the individual
level (τ) are correctly recovered as well, but not at the aggregate level. Considering the results of
Q and pks in Appendix F.4.1, we could observe EF19 on experiment 4.1. This means that even if
there is no customer with 2 states reaching the third state, conditional probability pks for each state
is the same for all customers. Consequently, the effects of the covariates can be estimated correctly
because states have the same conditional distribution for all customers and covariate effects are
modeled as homogeneous.

As estimation of Experiment 1.1, customers with 2 states have a low probability (∼ 0) of
transitioning from state 1 or 2 to state 3, therefore those customers move between states 1 and

2 following a Markov process as simulated (with transition matrix ∼
[
0.7 0.3
0.3 0.7

]
). Dynamics of

customers with 3 states are correctly recovered. However, as well as in Experiment 1.1, results
of Experiment 4.1 show that the transition matrix computed at the aggregate level (using µθ)
could lead to misinterpretation of customer dynamics. The probability of transitioning from state
2 to state 3 is biased at the aggregate level as it was in Experiment 1.1. In this case, aggregate
results show that there is a 4% probability of transitioning to state 3 from state 2, but 50% of the

9Described in Section 4.2.1. States are fixed for all customers due to the homogeneity on α0.
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customers have a 28% probability of making such transition, and the other 50% have probability
0% of transitioning to state 3 from state 2.

Experiments 4.2, 4.3 and 4.4 present similar results. Covariate effect parameters are recovered
in most cases, and when some parameters are not recovered, those simulated parameters are slightly
off the posterior confidence intervals. Individual level parameters are also correctly recovered, as
well as the intercept of conditional probabilities α0. These experiments also present the EF1, i.e.,
states are identified as the same for all customers.

Considering the results of Section 4.2.3, it is interesting to see the results of Experiment 4.5.
The main objective of this experiment, is to observe if states can be correctly identified for all
customers if covariate effects are homogeneous. For this case two instance were studied. The first
one (4.5.1) has similar values for simulated covariate effects across states, whereas in the second
instance (4.5.2) we simulated using significantly different covariate effects values across states (for
details about simulated parameters see Appendix A.6).

Posterior Meana Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.71]

0.27
[0.24 0.36]

0.25
[0.23 0.27]

0.04
[0.04 0.07]

0.12
[0.10 0.16]

0.06
[0.04 0.10]

0.26
[0.23 0.28]

0.61
[0.50 0.65]

0.69
[0.65 0.71]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.69 0.72]

0.22
[0.21 0.25]

0.13
[0.12 0.14]

0.19
[0.17 0.20]

0.48
[0.45 0.51]

0.19
[0.17 0.21]

0.11
[0.10 0.12]

0.30
[0.26 0.32]

0.69
[0.66 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.70
[0.69 0.71]

0.24
[0.22 0.30]

0.18
[0.16 0.20]

0.10
[0.09 0.13]

0.26
[0.21 0.30]

0.10
[0.09 0.14]

0.20
[0.17 0.22]

0.50
[0.43 0.54]

0.72
[0.68 0.73]

K 2 NA

3

Table 4.15: Experiment 4.5.1 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.
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Posterior Meana Simulated
1 2 3 1 2 3

K2 0.10
[0.10 0.10]

0.46
[0.45 0.47]

0.54
[0.54 0.56]

0.10 0.50 NA

K3 0.11
[0.10 0.11]

0.51
[0.51 0.52]

0.89
[0.88 0.90]

0.10 0.50 0.90

K 0.10
[0.10 0.11]

0.49
[0.47 0.50]

0.70
[0.66 0.73]

NA

Table 4.16: Experiment 4.5.1 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

1 0.69
[0.68 0.71]

0.29
[0.28 0.31]

0.24
[0.21 0.36]

0.31
[0.29 0.32]

0.70
[0.69 0.72]

0.20
[0.18 0.26]

0.00
[0.00 0.00]

0.00
[0.00 0.00]

0.55
[0.41 0.60]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.69
[0.68 0.71]

0.22
[0.20 0.24]

0.11
[0.10 0.13]

0.20
[0.19 0.22]

0.50
[0.46 0.53]

0.19
[0.18 0.22]

0.10
[0.09 0.12]

0.28
[0.25 0.32]

0.69
[0.66 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.69
[0.68 0.70]

0.26
[0.24 0.27]

0.17
[0.15 0.22]

0.28
[0.27 0.30]

0.71
[0.69 0.73]

0.20
[0.18 0.25]

0.02
[0.02 0.04]

0.04
[0.02 0.06]

0.63
[0.54 0.65]

K 2 NA

3

Table 4.17: Experiment 4.5.2 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K2 0.10
[0.10 0.10]

0.51
[0.51 0.52]

0.90
[0.88 0.92]

0.10 0.50 NA

K3 0.10
[0.10 0.10]

0.49
[0.49 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

K 0.10
[0.10 0.10]

0.50
[0.49 0.51]

0.90
[0.89 0.91]

NA

Table 4.18: Experiment 4.5.2 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

32



We show in Tables 4.15 and 4.16 posterior mean and CI of Q and pks for Experiment 4.5.1.
In addition, we show in Tables 4.17 4.18 the corresponding results for Experiment 4.5.2.

We observe that if covariate effects are significantly different across states, then those pa-
rameters fixed the states for all customers, i.e., the states have conditional probabilities 0.1, 0.5
and 0.9 for all customers even if α0 is modeled as heterogeneous. This means that the estimated
model follows EF1. However, when covariate effects are similar, those parameters do not provide
differentiation from states, therefore EF210 is present in the estimation model and duplicated states
are identified for customers in K2 (for details see Appendix F.4.5 and F.4.6). It is important to
recall that, even though these experiments do not have a different simulation structure and they
only differ on the values of simulated parameters, experiments 4.5.1 and 4.5.2 present very different
results in terms of how the states are identified across customers.

For experiment 4.5.2, only the transition matrix at the aggregate level is biased (and only the
probabilities related to transitions to the higher state), whereas for experiment 4.5.1 conditional
probabilities are also biased at the aggregate level, and the transition matrix is completely biased
due to different identification of states for customers in K2 and K3.

Following the previous analysis, in Experiment 4.6 we incorporate heterogeneity on all param-
eters. Tables F.29 and F.30 in Appendix F show that state with conditional probability pks = 0.5
is identified for two states for customers in K2 (EF2). This effect causes not only misinterpretation
on the aggregate results of Q and P but also underestimation of the effects on the transition matrix
of covariates for the higher state (ρ), as shown in Table E.16 (Appendix E.4.6). Parameter ρ3 is
simulated as 0.8 and posterior mean is 0.37 (95% CI: [0.29 0.45]). This biased result is caused due
to different interpretations of state 3 for customers in K2 and K3. For customers in K2, the third
state correspond to the middle simulated state, which has a simulated effect of ρ2 = 0. On the
other hand, for customers in K3 the same state correspond to the higher simulated state which was
simulated with ρ3 = 0.8.

Figure 4.7 shows the histogram of individual level posterior means for ρ3, with customers in
K2 marked in red, and customers in K3 marked in blue. The black line represent the posterior mean
of µθ and the yellow lines, its 95% CI. Using this plot, we can show how aggregate level covariate
effect on the higher state is underestimated. We highlight that distribution of that parameter for
customers in K2 is approximately centered in 0, whereas the same distribution for customers in
K3 is approximately centered in 0.8. However, aggregate results show that the effect is estimated
between 0.29 and 0.45.

Although, we showed similar results in Experiment 1.1 for parameters τ21 and τ22, the causes
that generate both bimodal distributions are different. In Experiment 1.1, states are identified
as the same for all customers and the bias on aggregate results is caused for different values of
individual level estimated parameters between two customer segments (EF1). On the other hand,
in Experiment 4.6 the bias is mainly caused by the fact that states capture different behavior for
customers in K2 and K3 (EF2), due to duplicated states for customers in K2, which increases the
differences on individual level parameters between customers of different segments.

In summary, we showed that when there is homogeneity on α0, EF1 is present: states are
identified as the same for all customers, individual level parameters are correctly recovered, covari-

10Described in Section 4.2.3. States are not fixed for all customers, and duplicated states are estimated for
customers in K2.
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Figure 4.7: Experiment 4.6: Heterogeneity in ρ3

ate effects are mostly recovered (except for some cases in which the simulated values are slightly off
the CI), but aggregate result are biased. In addition, when there is heterogeneity on α0, if covariate
effects are homogeneous and different between states, those parameters allow the correct identifi-
cation of states across customers and EF1 is present as well. However, when α0 is heterogeneous
but covariate effects are similar across states EF2 is observed: states are identified differently across
customers, customers with fewer simulated states identify two different states and a third that is a
duplicated state of the others, and aggregate results are biased not only for transition matrix but
for conditional probabilities as well. In addition, when there is heterogeneity on all parameters, we
observe EF2, and covariate effects are also biased at aggregate level.
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Chapter 5

Proposed Model

We identified in the previous chapter, a bias on the recovery of the parameters at the aggregate
level when the heterogeneity in the number of the states of a HMM is not incorporated in the
estimated model. When there is no heterogeneity on the intercept of the conditional probabilities
and the mixture of customers with different states is balanced (50%-50%), allowing for enough
heterogeneity on the parameters can help to recover the parameters at the individual level, but not
at the aggregate level. This is because the model can not distinguish between the two latent class
with different number of states. Therefore, a model which can capture the dynamics and behavior at
the aggregate level considering the segments of customers with different number of states is needed.
The following models attempt to improve the results on the estimation of the parameters when
there is heterogeneity on the states.

5.1 Mixture of Gaussians as a prior

When using a Normal distribution as prior distribution of the parameters, the report of results
at the aggregate level usually includes only the results of the mean µθ and the covariance matrix
Σθ which leads to wrong conclusions of customer behavior. Moreover, computing the transition
matrix using µθ can lead to mix the probability of transitioning from the middle state to the higher
state between the customers who make those transitions (q23 = 0.3) and the customers who do not
(q23 = 0) (see Figure 4.2).

In this context, we suggest an approach that uses a mixture of Gaussians as the prior of the
individual level parameters (MOGP). The model is defined using the same notation as in Section
3.1.

It is important to highlight that this model does not capture directly different number of states
for different customers, but allows detecting if there is a segment of customers with low probability
of reaching a certain state. Then it does not mix the results of different segments at the aggregate
level but shows them as different components of the mixture of Gaussians instead.
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5.1.1 Model specification

Let consider a fixed number of states S. Let θi be the individual-level parameters and Φ the
population-level parameters of the HMM described in Section 3.1. Let M ∈ N+ be the number of
components of the mixture of Gaussians. Let µmθ and Σm

θ be mean and covariance matrix of the
m’th component of the heterogeneity distribution on θi. We define a latent variable him, where
him = 1 if parameter θi is drawn from component m of the mixture, and him = 0 otherwise. Let

πm be the probability that a vector is drawn from component m, where
M∑
m=1

πm = 1 and πm ≥ 0.

We modify the model only in terms of the prior distribution of θi. Using description in
Appendix B, prior and full distribution can be written as follows [Koop, 2003]:

µ0 V0 f0 S0 α

µmθ Σmθ

πm

him

µΦ ΣΦ

θi

Φ

z

Y

µmθ ∼ N (µ0, V0)

(Σm
θ )−1 ∼ W (f0, S0)

[π1 . . . πM ] ∼ Dirichlet (α)

[hi1 . . . hiM ] ∼Multinomial ([π1 . . . πM ])

θi ∼
∑
m

him · N (µmθ ,Σ
m
θ )

Φ ∼ N (µΦ,ΣΦ)

� : Prior hyperparameters
© : Observable Data

Figure 5.1: Mixture of Gaussians Hierarchical Heterogeneous Model
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5.1.2 Results

Basic model: Experiment 1.1

We tested this model using the simulated data from Experiment 1.1.

For MOGP, the number of the states that fits the data best is 3 (see Appendix G.3). The
number of components of the Mixture of Gaussians used by that model is 2 (see Appendix G.2).

We compare this model with the best model using a fix number of states, which is the 3-State
model (3HMM). As we show in Table 5.1, according to all criteria MOGP is better model than
3HMM, given that likelihood function is the same for both models but a bimodal prior allows for
more heterogeneity and generates a better estimation at the individual level.

Model LMD DIC MSC
3HMM -30750.53 61699.86 72471.99
MOGP -30317.22 60671.90 70311.26

Table 5.1: Model Comparison

We report in Table 5.2 the posterior mean and CI of Q for customers in K2 and K3 and for
population mean of each component of the prior distribution µ1

θ and µ1
θ. In addition, we report in

Table 5.3 the posterior mean and CI of pks.

37



Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.71]

0.31
[0.29 0.32]

0.31
[0.27 0.36]

0.29
[0.28 0.31]

0.68
[0.67 0.70]

0.18
[0.13 0.25]

0.01
[0.01 0.01]

0.01
[0.01 0.01]

0.50
[0.44 0.56]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.65
[0.61 0.69]

0.19
[0.16 0.21]

0.12
[0.10 0.14]

0.22
[0.19 0.25]

0.51
[0.48 0.55]

0.21
[0.18 0.24]

0.13
[0.11 0.15]

0.30
[0.27 0.34]

0.68
[0.64 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.70
[0.68 0.71]

0.31
[0.29 0.32]

0.32
[0.27 0.36]

0.29
[0.28 0.31]

0.68
[0.66 0.70]

0.18
[0.13 0.25]

0.01
[0.01 0.01]

0.01
[0.01 0.01]

0.50
[0.44 0.56]

Component 1 2 NA
(51%)

3

1 0.65
[0.60 0.68]

0.18
[0.15 0.21]

0.12
[0.10 0.14]

0.22
[0.19 0.25]

0.50
[0.46 0.55]

0.21
[0.18 0.24]

0.14
[0.12 0.16]

0.31
[0.28 0.35]

0.68
[0.64 0.71]

Component 2 2 NA
(49%)

3

Table 5.2: MOGP: Experiment 1.1 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table 5.3: MOGP: Experiment 1.1 conditional probabilities posterior mean and 95% CI

The main advantage of this model is that enables to represent correctly the behavior of
customers at the aggregate level. Although this model does not allow for heterogeneity on the
number of states, it can be seen that a subset of customers does not reach the higher state. The
first component of the mixture of Gaussians represents the behavior of the customers in K2 and the
second component represents the behavior of the customers in K3. Using this model, the transitions
matrices between states can be interpreted correctly at the aggregate level.
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Mixture of customers: Experiment 2.3

In the simulation shown in the previous section, the mixture of customers with 2 and 3 states
is balanced. In Section 4.2.2 we show that when the proportion of customers with fewer states
increases, the bias at the aggregate level increases as well. We showed that parameters are correctly
recovered at the individual level but not at the aggregate level. Specifically, the probability of going
from state 2 to the higher state decreases as the proportion of customers with two states increases.

We test the performance of this model using data from Experiment 2.3 as an example of
different mixture of customers (80% customers in K2 and 20% customers in K3 ). We report in
Table 5.4 the model selection criteria LML, DIC, and MSC.

Model LML DIC MSC
3HMM -30345.92 60818.21 71440.15
MOGP -30307.93 60668.66 70317.84

Table 5.4: Model Comparison

As it can be observed in Table 5.5, the main advantage of this model is that the two dif-
ferent aggregate components allow to identify two segments, each of them representing a different
conditional behavior.

Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.71]

0.31
[0.29 0.32]

0.41
[0.37 0.46]

0.29
[0.28 0.31]

0.68
[0.67 0.70]

0.17
[0.13 0.22]

0.01
[0.01 0.01]

0.01
[0.01 0.01]

0.42
[0.34 0.49]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.65
[0.61 0.68]

0.18
[0.15 0.22]

0.12
[0.10 0.14]

0.22
[0.19 0.25]

0.51
[0.47 0.55]

0.21
[0.18 0.24]

0.13
[0.11 0.15]

0.30
[0.27 0.34]

0.68
[0.64 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.65
[0.60 0.68]

0.18
[0.15 0.21]

0.11
[0.09 0.14]

0.22
[0.19 0.25]

0.51
[0.46 0.55]

0.21
[0.18 0.24]

0.14
[0.12 0.16]

0.31
[0.28 0.36]

0.68
[0.64 0.71]

Component 1 2 NA
(20%)

3

1 0.70
[0.68 0.71]

0.31
[0.29 0.32]

0.41
[0.37 0.46]

0.29
[0.28 0.31]

0.68
[0.67 0.70]

0.17
[0.13 0.22]

0.01
[0.01 0.01]

0.01
[0.01 0.01]

0.42
[0.34 0.49]

Component 2 2 NA
(80%)

3

Table 5.5: MOGP Experiment 2.3 transition matrix posterior mean and 95% CI
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MOGP identifies two segments of customers, in an approximate proportion of 80%-20%, where
customers in the 80% segment make transitions mostly among the first 2 states and customers of
the other segment can move along all states. In terms of conditional distribution probabilities pks,
states are correctly identified (see Table 5.6). Moreover, states are fixed for all customers given that
conditional probabilities are homogeneous.

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table 5.6: MOGP: Experiment 2.3 conditional probabilities posterior mean and 95% CI

Finally, and using results from this model on the data of experiments 2.1 and 2.4, the prob-
ability of moving from state 2 to 3 does not have a significant decrease while the proportion of
customers with two states increases (see Figures 5.2 and 5.3 ).

Figure 5.2: Quantiles of q23(µ1
θ) by mixtures of customers, for Component 1 of MOGP)
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Figure 5.3: Quantiles of q23(µ2
θ) by mixtures of customers, for Component 2 of MOGP)

Heterogeneity in the conditional probabilities: Experiment 3.1

In Section 4.2.3, we showed that introducing heterogeneity on the conditional probabilities generates
duplicated states and these states do not identify the same conditional behavior for all customers,
which increases the bias at aggregate level (EF2). We applied the MOGP model to simulated data
from Experiment 3.1. LML, DIC and MSC indicates MOGP as the best model. We report in Tables

Model LMD DIC MSC
3HMM -33804.60 68316.14 85675.77
MOGP -30636.06 61851.26 76145.69

Table 5.7: Model Comparison

5.8 and 5.9 posterior mean and CI for Q and pks.
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Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.69 0.72]

0.32
[0.25 0.37]

0.32
[0.30 0.35]

0.06
[0.05 0.08]

0.22
[0.18 0.29]

0.06
[0.03 0.11]

0.23
[0.21 0.26]

0.46
[0.42 0.49]

0.62
[0.56 0.66]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.69
[0.67 0.71]

0.21
[0.19 0.23]

0.12
[0.10 0.13]

0.19
[0.18 0.21]

0.52
[0.50 0.55]

0.19
[0.18 0.21]

0.12
[0.11 0.13]

0.27
[0.25 0.29]

0.69
[0.67 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.69
[0.67 0.71]

0.20
[0.18 0.23]

0.12
[0.10 0.13]

0.20
[0.18 0.22]

0.53
[0.50 0.55]

0.20
[0.18 0.21]

0.12
[0.11 0.13]

0.27
[0.25 0.29]

0.69
[0.67 0.71]

Component 1 2 NA
(50%)

3

1 0.70
[0.68 0.72]

0.32
[0.25 0.37]

0.32
[0.30 0.35]

0.06
[0.05 0.08]

0.22
[0.18 0.29]

0.06
[0.03 0.11]

0.23
[0.21 0.26]

0.46
[0.42 0.50]

0.62
[0.56 0.66]

Component 2 2 NA
(50%)

3

Table 5.8: MOGP Experiment 3.1 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

Component 1 0.10
[0.10 0.10]

0.49
[0.48 0.51]

0.90
[0.89 0.91]

0.10 0.50 0.90
(50%)

Component 2 0.10
[0.10 0.10]

0.48
[0.46 0.50]

0.52
[0.51 0.54]

0.10 0.50
(50%)

Table 5.9: MOGP: Experiment 3.1 conditional probabilities posterior mean and 95% CI

The results show that the MOGP model does not solve the problem detected for 3HMM when
assuming the same number of states for all customers. EF2 is present in this model as well, and
the posterior mean of conditional probabilities show that component 1 identifies two states (2nd
and 3rd) as the middle state simulated (0.5). As it is the case for 3HMM, this effect is caused in
MOGP model because we assume that all customers have the same number of states. Although
this model allows to capture aggregate information of different segments by identifying them on
different components of the distribution, it does not account for heterogeneity in the number of
states. However, this model does not average aggregate results from different segments (which is
the case for 3HMM).

In summary, the MOGP allows to identify the segments on the population, however it does
not avoid the duplicity on the states for customers with fewer states than the estimated model.
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Covariates: Experiments 4.x

In Section 4.2.4 we showed that EF2 is present when all parameters are heterogeneous or when the
intercept of conditional probabilities α0 is heterogeneous and the covariate effects are homogeneous
and similar across states. We estimate the MOGP model for Experiment 4.6 and found consistent
results. First, as in the case of previous experiments, MOGP is a better model according to DIC
and MSC measures (see Table 5.10).

Model LML DIC MSC
3HMM -30483.06 62163.14 83787.11
MOGP -30574.38 62099.28 82964.79

Table 5.10: Model Comparison

We show in Table 5.11 and Table 5.12 that MOGP estimates duplicated states for customers in
K2 which is captured for the second component of the mixture of Gaussians distribution. Component
1 captures correctly the parameters of customers in K3.

Posterior Meana Simulated
1 2 3 1 2 3

1 0.69
[0.68 0.71]

0.41
[0.38 0.44]

0.29
[0.28 0.31]

0.07
[0.06 0.08]

0.19
[0.17 0.22]

0.10
[0.09 0.12]

0.24
[0.22 0.25]

0.40
[0.36 0.43]

0.61
[0.58 0.63]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.69
[0.68 0.71]

0.21
[0.20 0.23]

0.11
[0.11 0.12]

0.21
[0.19 0.22]

0.53
[0.51 0.55]

0.21
[0.19 0.23]

0.10
[0.09 0.11]

0.26
[0.24 0.28]

0.68
[0.66 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.69
[0.67 0.71]

0.21
[0.20 0.23]

0.11
[0.11 0.12]

0.21
[0.19 0.22]

0.53
[0.51 0.56]

0.21
[0.19 0.23]

0.10
[0.09 0.11]

0.26
[0.23 0.28]

0.68
[0.65 0.70]

Component 1 2 NA
(51%)

3

1 0.69
[0.68 0.71]

0.41
[0.38 0.44]

0.30
[0.28 0.31]

0.07
[0.06 0.08]

0.19
[0.16 0.22]

0.10
[0.09 0.12]

0.24
[0.22 0.25]

0.40
[0.36 0.44]

0.60
[0.58 0.63]

Component 2 2 NA
(49%)

3

Table 5.11: MOGP Experiment 4.6 transition matrix posterior mean and 95% CI

aTo report these values, we use only the intercept, i.e., we assume that covariates Xkt = 0.
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Posterior Meana Simulated
1 2 3 1 2 3

Component 1 0.10
[0.10 0.11]

0.50
[0.49 0.52]

0.90
[0.90 0.91]

0.10 0.50 0.90
(51%)

Component 2 0.10
[0.10 0.11]

0.48
[0.47 0.50]

0.52
[0.50 0.53]

0.10 0.50
(49%)

Table 5.12: MOGP: Experiment 4.6 Latent Class 3 conditional probabilities posterior mean
and 95% CI

aTo report these values, we use only the intercept, i.e., we assume that covariates Xkt = 0.

To illustrate the effect of duplicated states on the estimation of covariate effects we report the
parameter estimates by component in Table 5.13 and Table 5.14.

Parameter Simulated Posterior Mean 95% CI
K2 K3 Component 1

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.81
0.32

-1.31
0.87

-2.06
0.27

[
[
[
[
[
[

0.73
0.24

-1.40
0.81

-2.14
0.21

0.89
0.40

-1.22
0.92

-1.98
0.34

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.50
0.00
.

0.50
0.00
0.80

0.47
-0.05
0.79

[
[
[

0.39
-0.14
0.71

0.56
0.02
0.88

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.17
0.78
0.80

[
[
[

-2.21
0.76
0.78

-2.13
0.80
0.83

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.50
0.10
.

0.50
0.10
0.10

0.48
0.10
0.09

[
[
[

0.45
0.08
0.06

0.50
0.12
0.12

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table 5.13: MOGP Experiment 4.6: Component 1 parameter estimates
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Parameter Simulated Posterior Mean 95% CI
K2 K3 Component 2

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.81
-1.05
-0.37
-0.26
-0.87
-0.80

[
[
[
[
[
[

0.74
-1.17
-0.49
-0.41
-0.95
-0.94

0.89
-0.93
-0.24
-0.12
-0.78
-0.68

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.50
0.00
.

0.50
0.00
0.80

0.43
0.13

-0.10

[
[
[

0.35
0.00

-0.18

0.50
0.24

-0.02

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.16
0.73

-1.90

[
[
[

-2.20
0.71

-1.99

-2.12
0.76

-1.81

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.50
0.10
.

0.50
0.10
0.10

0.50
0.11
0.09

[
[
[

0.48
0.07
0.07

0.53
0.15
0.11

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table 5.14: MOGP Experiment 4.6: Component 2 parameter estimates

Component 1 identifies correctly the behavior of customers with 3 states, including all covari-
ate effects, given that we estimate the model with the correct number of states for those customers.
On the other hand, component 2 represents the behavior of customers with two states. However,
state 2 and 3 captures the behavior of the true middle state of pks = 0.5. Therefore, covariate effects
of states 2 and 3 attempt to capture independently the same effect. Specifically, the true value for
ρ2 is 0, but the estimated values of ρ2 and ρ3 are 0.13 and −0.10. In this scenario, heterogeneity
in ρ2 is captured by two different states.

In summary, using a model for detecting the aggregate behavior of different segments, as
MOGP, allows for a correct interpretation of the results at the aggregate level by avoiding to average
parameter estimates from different segments. This model recovers correctly the aggregate behavior
when the states are fixed and identify the same conditional behavior for all customers. However, it
does not eliminate the effect of duplicated states (EF2) when conditional probabilities parameters
are heterogeneous. Given this effect, covariate effect ρ2 is biased. We introduce heterogeneity
specifically on the number of states in the following section to capture aggregate behavior correctly.

45



5.2 Latent class of Hidden Markov Models

The model we described in Section 5.1 does not account for heterogeneity in the number of states
of the HMM. In this section, we proposed a model that attempts to estimate the number of states
of the HMM for each customer.

Discrete heterogeneity is usually captured by using a Latent class model, in which there are
group of customers (classes) with similar characteristics within the group but different across groups.
We define a latent class model that considers a HMM of different number of states on each class.

One important fact is that in Latent class models usually the model is the same for all classes,
but parameters are different and capture heterogeneity across customers within the same model.

The previous model we described in Section 3.1 includes continuous heterogeneity within a
HMM, using a hierarchical Bayesian model. In this model instead, the latent class component
captures structural heterogeneity, specifically, classes where each class contains a HMM with a
different number of states, i.e., dynamics across different classes not only differ on the values of
their parameters but are also structurally different.

5.2.1 Model specification

Accordingly, we formalized the latent class of hidden Markov models (LCHMM) as follows.

Let consider latent class m = 1 . . .M a HMM with Sm number of states. For simplicity, we
assume Sm = m.

Following the notation used in Section 3.1, let θmi be the individual-level parameters for
HMM m and customer i, and Φm be the population parameters for HMM m. In addition, we define
Θm = {θmi }Ki=1 as the set of individual parameters θmi for HMM m.

We define πm ≥ 0 as the membership probability of a random customer belongs to model m

(
M∑
m=1

πm = 1). We parametrize πm using a multivariate logistic transformation over α ∈ RM−1 as

follows:

πm =
exp (αm)

M−1∑̃
m=1

exp (αm̃)

m = 1, . . . ,M − 1

πM = 1−
M−1∑
m=1

πm (5.1)

Let Θ = {Θm}Mm=1 be the set of individual level parameters and Φ =
{
{Φm}Mm=1 , α

}
the

population parameters.
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Let zmi,t be the state of customer i on period t on the HMM m. Note that each customer has
parameters for M HMMs, therefore each customer has a path of hidden states through periods for
each HMM m.

The likelihood function at the individual level Li(θi,Φ|Yi) is computed by conditioning on the
latent class model m = 1, . . . ,M .

Li(θi,Φ|Yi) =
M∑
m=1

πm Li(θ
m
i ,Φm|Yi, S = Sm) (5.2)

where Li(·, ·|Yi, n = nm) is the individual likelihood function of the HMM with Sm states for
customer i described in Equation 3.13. Therefore, the likelihood of the model is computed using
the product of the likelihood of each customer as follows:

L(Θ,Φ|Y ) =
∏
i∈K

Li(Θi,Φ|Yi)

=
∏
i∈K

(
M∑
m=1

πm Li(θ
m
i ,Φm|Yi, n = nm)

)
(5.3)

Finally, we estimate this model using a Bayesian hierarchical approach to account for unob-
served heterogeneity at the individual level. The MCMC algorithm we implemented is described in
Appendix H.

5.2.2 Results

Basic model: Experiment 1.1

We tested this model using the simulated data from Experiment 1.1. For LCHMM, three Latent
class were used (m = 1, 2, 3): single state HMM, 2-state HMM and 3-state HMM. This model is
compared with the best model using a fix number of states, which is the 3-State model (3HMM).
In this case, LML and DIC were used to choose the best model, given that LCHMM is not a HMM
itself but a latent class model instead, therefore MSC does not apply as a valid information criterion.

Model LML DIC
3HMM -30750.53 61699.86
LCHMM -30882.14 61761.18

Table 5.15: Model Comparison

Although LCHMM is not a better model than 3HMM (according to LML and DIC), we will
show next that LCHMM provides better results at aggregate level, in terms of posterior means of
transition matrices and conditional probabilities.

We report the posterior mean and the CI for probability of class membership πm in Table
5.16. In addition, we report in Tables 5.17 and 5.18 the posterior means and the CI for Q and pks,
for the HMM of each class.
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Latent Class Membership Probability
πm

1-state HMM 0.01 [0.00 0.02]

2-state HMM 0.50 [0.45 0.56]

3-state HMM 0.49 [0.43 0.54]

Table 5.16: πm Results for LCHMM model Results format: (2.5%, 50%, 97.5%)

Posterior Mean Simulated
1 2 3 1 2 3

1 0.71
[0.70 0.72]

0.32
[0.31 0.32]

0.29
[0.28 0.30]

0.68
[0.68 0.69]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

Latent Class 2 2
(50%)

3

1 0.69
[0.68 0.70]

0.20
[0.19 0.20]

0.10
[0.10 0.11]

0.21
[0.20 0.22]

0.51
[0.51 0.52]

0.21
[0.21 0.22]

0.10
[0.10 0.11]

0.29
[0.28 0.30]

0.68
[0.67 0.69]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

Latent Class 3 2
(49%)

3

Table 5.17: LCHMM Experiment 1.1 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

Latent Class 1 0.50
[0.12 0.87]

NA
( 1%)

Latent Class 2 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.10 0.50
(50%)

Latent Class 3 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90
(49%)

Table 5.18: LCHMM: Experiment 1.1 conditional probabilities posterior mean and 95% CI

As expected, customers have either 2 or 3 states. The probability that a customer has no
dynamics on their hidden state, i.e., that he has only 1 state, is 0.01. Moreover, a random customer
has a 0.5 probability of having 2 hidden states and 0.49 probability of having 3 hidden states.

Even though the states are not fixed across classes (we do not impose in the model a relation-
ship between states of different HMMs), the second class represents correctly the 2 lower simulated
states for customers in K2 and the third class identifies all three simulated states for customers in
K3 (see pks posterior mean and CI in Table 5.18). In addition, latent class 2 recovers correctly the
transition matrix of customers in K2 and latent class 3 recovers the transition matrix of customers
in K3 as well.

One of the advantages of using this model is to be able to identify the heterogeneity in the
number of states. Using the results of this model we compute the individual posterior membership
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probability to test if the number of hidden states simulated for each customer are correctly identified.
We compute πm using the posterior parameter estimates at the individual level. The individual
posterior membership probability can be computed using the same procedures as in any latent class
model.

Let xk ∈ {1 . . .M} be the latent class of customer k. The membership probability that
a random customer belongs to class m, πm is described in Equation 5.1. We define: θ̄mk as the
posterior mean of θmk , Φ̄m as the posterior mean of Φm, and ᾱ as the posterior mean of α. The
posterior individual probability (which we denote as πkm) can be computed proportional to the
likelihood of the latent class m, times the posterior aggregate membership probability πm (ᾱ) as
follows:

πkm = P(xk = m|Yk)

=
πm (ᾱ)Lk(θ̄

m
k , Φ̄

m|Yk, n = nm)
M∑

m′=1

πm′ (ᾱ)Lk(θ̄
m′
k , Φ̄m′ |Yk, n = nm′)

(5.4)

∝ πm (ᾱ)Lk(θ̄
m
k , Φ̄

m|Yk, n = nm)

Using the membership probability πkm, we assign customers to the latent class with the highest
probability, i.e., if h∗i ∈ {1 . . .M} is the individual posterior latent class, then h∗k = arg max

m
πkm.

We report in Table 5.19 the number of customers of sets K2 and K3 assigned to each latent
class using πkm. In this table, it can be seen that most of the customers are correctly assigned to
the true number of states. The single customer that was incorrectly assigned did not reach to the
higher state in any simulation period despite having a positive probability of making that move;
therefore, as expected, it was identified as a customer with two hidden states.

Number of states

Predicted
True 1 2 3

1 0 0 0
2
3

0
0

150
1

0
149

Table 5.19: Customers assigned to each latent class using posterior membership probabilities

Mixture of customers: Experiment 2.3

As shown for model MOGP in Section 5.1.2, we estimate the LCHMM with data from Experiment
2.3 (80% customers in K2 and 20% customers in K3) to test if this model identifies the two segments
at the aggregate level. Additionally, we test if the probability of going from state 2 to the higher
state decreases as the proportion of customers with two states increases when using LCHMM.
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We report in Table 5.20 the model selection criteria LML and DIC. The results are not
conclusive about which model is better.

Model LML DIC
3HMM -30345.92 60818.21
LCHMM -30406.51 60811.52

Table 5.20: Model Comparison

We report in Tables 5.21 and 5.22 posterior means and CI for Q and pks, for the HMM of
each class.

Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.70 0.71]

0.31
[0.31 0.32]

0.30
[0.29 0.30]

0.69
[0.68 0.69]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

Latent Class 2 2
(80%)

3

1 0.68
[0.67 0.69]

0.20
[0.20 0.21]

0.10
[0.10 0.11]

0.22
[0.21 0.23]

0.50
[0.49 0.51]

0.21
[0.20 0.22]

0.10
[0.10 0.11]

0.30
[0.29 0.31]

0.69
[0.68 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

Latent Class 3 2
(19%)

3

Table 5.21: LCHMM Experiment 2.3 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

Latent Class 1 0.49
[0.12 0.87]

NA
( 1%)

Latent Class 2 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.10 0.50
(80%)

Latent Class 3 0.10
[0.10 0.10]

0.50
[0.50 0.51]

0.90
[0.90 0.90]

0.10 0.50 0.90
(19%)

Table 5.22: LCHMM: Experiment 2.3 conditional probabilities posterior mean and 95% CI

Table 5.21 shows that the model identifies two segments of customers, in a 80%-20% proportion
where customers in the 80% segment have two states whereas customers in the 20% segment have
three states. Although according to LML and DIC this model is not clearly better than 3HMM
and MOGP, LCHMM explicitly identifies a segment with 2 states, by capturing heterogeneity on
the number of states. Additionally, Table 5.25 shows the correct recovery of pks for each state on
all relevant latent classes (2 and 3).

In addition, the probability of going from state 2 to 3 does not have a significant decrease
while the proportion of customers with two states grows as shown in Figure 5.4.
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Figure 5.4: Quantiles of q23(µ3
θ) by mixtures of customers, for 3 states class of LCHMM

Heterogeneity in the conditional probabilities: Experiment 3.1

Aggregate parameter estimates of models 3HMM and MOGP on this experiment are considerably
biased as shown in Sections 4.2.3 and 5.1.2, as a result of duplicated states and averaging over
customers from different segments. In this context, we test LCHMM using simulated data from
experiment 3.1, where conditional probabilities are heterogeneous across customers.

We show in Table 5.23 that LCHMM is the best model.

Model LML DIC
3HMM -33804.60 68316.14
LCHMM -30973.70 62337.79

Table 5.23: Model Comparison

We report posterior mean and CI of Q and pks in Tables 5.24 and 5.25 .

Results show that LCHMM does not estimate duplicated states. Although conditional prob-
abilities are heterogeneous, latent classes 2 and 3 recover correctly those probabilities for each
segment. Conditional behavior of customers in K2 is captured by the latent class with 2 hidden
states, and conditional behavior of customers in K3 is captured by the latent class with 3 hidden
states. In addition, results for transition matrix show that dynamics are correctly recovered as well.
In contrast with aggregate results of 3HMM and MOGP, results of transition matrix and condi-
tional probabilities using population parameter µθ capture correctly the behavior of all segments
of customers. Therefore, using a model with latent class of different number of states allows for
delivering accurate interpretations of the group of customers.
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Posterior Mean Simulated
1 2 3 1 2 3

1 0.71
[0.71 0.71]

0.31
[0.30 0.31]

0.29
[0.29 0.29]

0.69
[0.69 0.70]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

Latent Class 2 2
(50%)

3

1 0.70
[0.70 0.70]

0.20
[0.20 0.21]

0.10
[0.10 0.10]

0.20
[0.19 0.20]

0.50
[0.49 0.50]

0.20
[0.20 0.21]

0.10
[0.10 0.11]

0.30
[0.30 0.31]

0.70
[0.70 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

Latent Class 3 2
(49%)

3

Table 5.24: LCHMM Experiment 3.1 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

Latent Class 1 0.50
[0.50 0.51]

NA
( 1%)

Latent Class 2 0.10
[0.10 0.10]

0.52
[0.51 0.53]

0.10 0.50
(50%)

Latent Class 3 0.10
[0.10 0.10]

0.49
[0.48 0.50]

0.90
[0.90 0.91]

0.10 0.50 0.90
(49%)

Table 5.25: LCHMM: Experiment 3.1 conditional probabilities posterior mean and 95% CI

In summary, introducing heterogeneity in the structural model can avoid duplicity on states,
it helps identifying correctly customers with two and three states, and it allows obtaining accurate
results at aggregate level.

Covariates: Experiments 4.x

In Section 4.2.4 we showed that EF2 is present when all parameters are heterogeneous or when the
intercept of the conditional probabilities α0 is heterogeneous and the covariate effects are homo-
geneous and similar across states. We applied LCHMM to Experiment 4.6 and found consistent
results with the previous section. In Table 5.26 we report the model comparison criteria. As in
previous experiments, LCHMM is worse than 3HMM in terms of information criteria. However, as
we show later, this model provides more accurate aggregate results.

Model LML DIC
3HMM -30483.06 62163.14
LCHMM -31235.94 62834.56

Table 5.26: Model Comparison
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In Section 4.2.4 we show that states do not represent the same for all customers when the
effects are heterogeneous or homogeneous but not different enough among states. However, if the
effects are different, then the states represent the same for all avoiding the duplication of states for
segment 1. We report in Tables 5.27 and 5.28 posterior mean and CI for Q and pks of the model.
The results show that LCHMM captures correctly segments with 2 and 3 states.

Posterior Meana Simulated
1 2 3 1 2 3

1 0.70
[0.70 0.70]

0.30
[0.30 0.30]

0.30
[0.30 0.30]

0.70
[0.70 0.70]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

Latent Class 2 2
(50%)

3

1 0.70
[0.69 0.70]

0.20
[0.20 0.21]

0.10
[0.10 0.10]

0.20
[0.20 0.20]

0.51
[0.51 0.51]

0.20
[0.20 0.21]

0.10
[0.10 0.10]

0.29
[0.28 0.29]

0.70
[0.69 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

Latent Class 3 2
(49%)

3

Table 5.27: LCHMM Experiment 4.6 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

Latent Class 1 0.10
[0.10 0.10]

NA
( 1%)

Latent Class 2 0.10
[0.10 0.11]

0.51
[0.50 0.52]

0.10 0.50
(50%)

Latent Class 3 0.10
[0.10 0.11]

0.51
[0.50 0.52]

0.91
[0.90 0.91]

0.10 0.50 0.90
(49%)

Table 5.28: LCHMM: Experiment 4.6 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

In addition, most covariate effects are correctly recovered as reported in Tables 5.29 and 5.30.
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Parameter Simulated Posterior Mean 95% CI
K2 Latent Class 2

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
-0.85

0.85
-0.85

[
[

0.85
-0.86

0.86
-0.84

]
]Low transition threshold state 2 τk21

Covariate effect on state 1 ρk1 0.50
0.00

0.48
0.01

[
[

0.47
0.01

0.48
0.02

]
]Covariate effect on state 2 ρk2

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
-2.16
0.79

[
[

-2.18
0.78

-2.14
0.81

]
]Intercept of state 2 α0

2

Covariate effect on state 1 α1 0.50
0.10

0.50
0.10

[
[

0.49
0.09

0.51
0.10

]
]Covariate effect on state 2 α2

Table 5.29: Experiment 4.6: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K3 Latent Class 3

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
0.30

-1.39
0.80

-2.20
0.30

0.82
0.31

-1.36
0.82

-2.20
0.31

[
[
[
[
[
[

0.82
0.30

-1.37
0.82

-2.20
0.31

0.83
0.32

-1.35
0.83

-2.19
0.32

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.50
0.00
0.80

0.49
-0.01
0.81

[
[
[

0.49
-0.01
0.81

0.50
-0.00
0.82

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.79

-2.16
0.78
0.80

[
[
[

-2.18
0.77
0.79

-2.14
0.79
0.82

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.50
0.10
0.10

0.47
0.10
0.09

[
[
[

0.47
0.10
0.08

0.48
0.10
0.09

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table 5.30: Experiment 4.6: Parameter estimates
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In summary, introducing latent classes with different HMM on each class increases importantly
the number of parameters, therefore information criteria such as DIC can indicate that this model is
worse than a model with the same number of states. However, this model captures heterogeneity on
the number of states, avoiding the effect of duplicated states and providing more accurate aggregate
results that lead to better conclusions from the population behavior.
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Chapter 6

Empirical illustration

In this chapter we describe an application of both proposed models in empirical data. For this pur-
pose we test the models using data from physicians’ prescriptions behavior of a new drug [Montoya
et al., 2010]. Data comprised new prescriptions of a specific new drug at the physician-level and
monthly detailing and sampling activities from the pharmaceutical company over a 2 years period.
Moreover, data contain the total number of prescriptions given by each physician in the same cate-
gory of the new drug, this helps to incorporate changes in demand. We estimate the model described
in Section 3.1, and both proposed models, modified to incorporate the data specific structure. We
compare all three models to identify differences among the parameter estimates.

6.1 Data description

We use the data set of the empirical application analyzed by Montoya et al. [2010]. The dataset
contains new prescriptions and marketing efforts of a drug from 300 physicians for the 24 month
period after its introduction to the market. The dataset contains for each month and each physi-
cian, the number of prescriptions given, and the number of details and samples received from the
pharmaceutical company. Detailing corresponds to the number of contacts with a physician in order
to give information about the drug. Sampling corresponds to the number of free samples of the
new drug given by the pharmaceutical company to an specific physician. Additionally, the dataset
contains the total number of prescriptions on the category given by each physician at each month.
Each physician on the sample has received at least one detail and one sample. For further details
and descriptive statistics of this data set, see Montoya et al. [2010].

6.2 Model specification

We use the specifications described in Chapter 3.1, and Sections 5.1.1 and 5.2.1 with the following
definitions:
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1. Initial Probabilities: Customers starts on lower state.

Πk = [1 0 . . . 0]

2. Covariates: Standardized Detailing and Sampling

Xkt = [f(Detailingkt) f(Samplingkt)]

where f(x) = ln(x+1)−µ
σ , with µ = mean(ln(x+ 1)) and σ = std(ln(x+ 1)).

3. Observable data: Number of prescriptions

Ykt : Number of new prescriptions of new drug written by physician k on month t

4. Number of trials of Binomial distribution: Total category prescriptions

Nkt : Total number of prescriptions written by physician k on month t in the category

6.3 Model estimation

We use a MCMC procedure to estimate each model using proper definitions of prior distributions,
following the estimation procedure for each model on the simulation exercise.

6.4 Results

Using results from [Montoya et al., 2010], we tested the models with constant number of states
(S = 2 and S = 3). As we show in Table 6.1 that the model with 3 states is the best model.1

Model LML DIC MSC
Validation

log-likelihood
2 States -9071.50 18488.08 26460.80 -2439.83
3 States -8852.25 17265.21 22304.10 -2305.60

Table 6.1: Empirical data: Homogeneous number of states models Comparison

Using this result, we report in Table 6.2 LML, DIC, MSC and validation log-likelihood for
3HMM, MOGP and LCHH. Given those criteria, it is not clear which is the best model. The fact
that LCHMM and MOGP have more parameters than 3HMM, may induce over-fitting on proposed
models, specially for LCHMM, given that more covariates imply more parameters per latent class
and LCHMM is estimated with three classes (HMMs with 1, 2 and 3 states).

We report in Tables 6.3 and 6.4 the differences between those models on posterior means and
CI of Q and pks of each model.

1These models were estimated using the first 20 periods of each physician, and periods 21-24 were used
to compute the validation log-likelihood.
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Model LML DIC MSC
Validation

log-likelihood
3HMM -8852.25 17265.21 22304.10 -2305.60
MOGP -8963.54 17201.93 21237.77 -2322.41
LCHMM -8432.88 17477.22 – -2753.77

Table 6.2: Empirical data: Model Comparison

Model Component / Class Posterior Meana

1 2 3

3HMM

1 0.62
[0.58 0.65]

0.19
[0.16 0.44]

0.30
[0.24 0.40]

0.35
[0.32 0.37]

0.72
[0.47 0.76]

0.38
[0.22 0.44]

0.03
[0.02 0.07]

0.09
[0.06 0.13]

0.32
[0.25 0.43]

– 2

3

1 2 3

MOGP

1 0.66
[0.56 0.69]

0.29
[0.23 0.53]

0.29
[0.24 0.35]

0.29
[0.22 0.32]

0.62
[0.28 0.71]

0.38
[0.11 0.40]

0.05
[0.03 0.18]

0.09
[0.05 0.32]

0.33
[0.30 0.63]

Component 1 2
(66.67%)

3

1 0.48
[0.45 0.64]

0.30
[0.25 0.41]

0.10
[0.09 0.30]

0.33
[0.22 0.37]

0.26
[0.18 0.30]

0.18
[0.12 0.28]

0.19
[0.14 0.24]

0.44
[0.30 0.50]

0.72
[0.42 0.77]

Component 2 2
(33.33%)

3

1 2 3

LCHMM

1 0.59
[0.52 0.67]

0.17
[0.13 0.23]

0.41
[0.33 0.48]

0.83
[0.77 0.87]

Latent Class 2 2
(70.39%)

3

1 0.39
[0.28 0.51]

0.23
[0.15 0.32]

0.09
[0.06 0.13]

0.55
[0.42 0.66]

0.33
[0.18 0.52]

0.09
[0.05 0.18]

0.06
[0.01 0.18]

0.44
[0.24 0.62]

0.82
[0.71 0.88]

Latent Class 3 2
(29.31%)

3

Table 6.3: Empirical data: Transition matrix posterior mean and 95% CI

aTo report these values, we use the average covariates Xkt = 0.
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Model Component / Class Posterior Meana

1 2 3

3HMM
0.01

[0.01 0.01]

0.07
[0.07 0.08]

0.21
[0.19 0.23]

1 2 3

MOGP
- 0.01

[0.01 0.02]

0.07
[0.06 0.07]

0.17
[0.14 0.18]

1 2 3

LCHMM

Latent Class 2 0.00
[0.00 0.01]

0.07
[0.07 0.08](70.39%)

Latent Class 3 0.01
[0.01 0.02]

0.03
[0.02 0.04]

0.19
[0.19 0.22](29.31%)

Table 6.4: Empirical data: Conditional probabilities posterior mean and 95% CI

aTo report these values, we use the average covariates Xkt = 0.

Following the labels used by Montoya et al. [2010], we label the lower state “Inactive”, the
second state “Infrequent” and the higher state, “Frequent”. Using the results of the conditional
probabilities, we can conclude that states do not exactly represent the same behavior across models
in terms of the conditional probabilities. The first two states are comparable between 3HMM,
MOGP models. Nevertheless, the frequent state is slightly different between those models. In
LCHMM, a random customer has less than 1% probability of having only one state, which indicates
that customers’ behavior is dynamic. 70% of customers have 2 states, and those states capture the
inactive and infrequent states estimated by 3HMM and MOGP. For latent class 3, the higher state
captures the behavior of frequent state of model 3HMM (slightly different) and infrequent state of
this class has a lower conditional probability than class 2 and the other two models.

At the transition matrix obtained by model 3HMM, we can suggest that the “frequent”
state is a highly unstable state, only with a 34% probability of staying there on the next period.
However, LCHMM indicates that for 29.3% of customers, that state has a 82% probability of staying
in the ”frequent” state the next period; and 70.3% are moving only between the first two states.
Similar results show the MOGP model. Moreover, the probability of moving from “infrequent” to
“frequent” state is underestimated at the aggregate level for that 29% of customers. 3HMM reports
a 9% probability of making that move, while MOGP and LCHMM reports a 44% probability of
reaching to the higher state using that movement for an approximate 30% of customers. This
indicates that there is a misinterpretation of the results when there are observed at the aggregate
level. Although LCHMM and MOGP tend to overfit to training data, those models give a better
interpretation of the transition matrix results at the aggregate level, allowing to make more accurate
conclusions from them. In addition, these results suggest that over-fitting of LCHMM is driven by
customers which have not reached the frequent state on the estimation periods, but they move to
the higher state on the validation period. However, if a customer never moves to the higher state
over the estimation periods, most models that account for heterogeneity in the number of states
will probably identify such customer as a customer with 2 states.

We also report posterior means of covariate effects for each model in Table 6.5.
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Parameter 3HMM MOGP LCHMM
Comp. 1 Comp. 2 1 state 2 states 3 states
(66.67%) (33.33%) (0.30%) (70.39%) (29.31%)

Transition Matrix

Detailing State 1 ρd1 0.23
-0.05
0.02
0.12
0.13
0.21

0.08
0.04

-0.12
0.19

-0.09
0.36

-0.01
0.70

-0.11
0.40

-0.33
0.20

. 0.37
0.02
.

0.19
0.09
.

0.48
0.00

-0.13
0.32
0.16
0.51

Detailing State 2 ρd2 .
Detailing State 3 ρd3 .
Sampling State 1 ρs1 .
Sampling State 2 ρs2 .
Sampling State 3 ρs3 .

Conditional Probabilities

Detailing State 1 αd1 0.18
0.02

-0.05
0.24
0.05
0.01

-0.02
-0.00
-0.06
0.18
0.06

-0.06

0.07
0.21

-0.02
0.70

-0.38
0.14

0.00
.
.

0.01
.
.

-0.05
0.02
.

0.21
-0.07

.

0.56
-0.03
-0.02
-0.14
0.17
0.11

Detailing State 2 αd2
Detailing State 3 αd3
Sampling State 1 αs1
Sampling State 2 αs2
Sampling State 3 αs3

Table 6.5: Empirical data: Covariates Estimates Results by model

Regarding the covariate effects on the transition matrix, the 3HMM underestimates the detail-
ing effect on the inactive state, in comparison with LCHMM. In addition, the 3HMM underestimates
the sampling effect on the frequent state, in comparison to component 1 of MOGP and class 3 of
LCHMM. On the other hand, aggregate covariates effects on conditional probabilities are also bi-
ased. 3HMM indicates that detailing effect on inactive state is 0.18. However, using LCHMM,
aggregate results show that 70% of customers (2 states) do not present a significant effect, whereas
for the rest 30% with 3 states, the effect of detailing is higher (0.56).

In summary, results using empirical data show that assuming the same number of states
induces to biased aggregate results. Incorporating more heterogeneity on the model allows for
capturing the behavior of different segments, in particular, a segment with fewer states. Both
proposed models identify a segment of customers (∼ 30%) with 44% probability of moving to the
higher state, whereas the basic model underestimates the same probability. In addition, the basic
model underestimates the probability of staying in the frequent state. Moreover, the basic model
also present biased aggregate results for covariate effects.
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Chapter 7

Conclusions and Further Research

7.1 Conclusions

Estimating a HMM is usually a difficult task, specially due to the number of parameters and the
correlation between transition and conditional distribution parameters. First, to estimate a HMM
it is necessary to determine the number of states of the HMM and that task is usually made using
criteria such as Log Marginal Likelihood (LML), Deviation Criterion (DIC) and Markov Switching
Criterion. On the other hand, in marketing applications, observable behavior of each customer is
usually modeled using a HMM, and heterogeneity is incorporated at the parameter level, using a
Bayesian approach. Selecting the number of states for HMM in marketing involves assuming that
all customers have the same number of states. If there is presence of heterogeneity in the number
of states, the procedure to estimate a HMM may not deliver the correct results.

Monte Carlo simulations with heterogeneity in the number of states (customers with two
or three states) show that heterogeneity at the parameter level helps estimating correctly at the
individual level a HMM with different number of states across customers, when assuming the same
number of states for all. However, aggregate results should be used carefully. The number of states
which fits best the data is the highest individual level number of states in data. This means that
the model that fits best the data is, for each customer, either the correct one for that customer or a
HMM with more states. In the experiments we showed, the best model is the 3 state HMM, when
data include customers with 2 and 3 states1. This model recovers correctly parameters of customers
who have the same number of states than the HMM chosen. For customer with fewer states than
the HMM selected, two effects can appear:

1. States have the same interpretation of states of customers with 3 states, but customers with
2 states do not reach to the states that they do not actually have (EF1).

2. To complete the number of states of the HMM selected for those customers, some states
are duplicated, meaning that there are states that have the same interpretation and tran-
sitions between each other, and moves between those states have no changing effect on the
distribution that is conditional on the hidden states (EF2).

1Except for experiment 2.7 with 100% customers with 2 states described in Section 4.2.2
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When there is homogeneity on the conditional probabilities, results show the first effect (EF1).
In this case, parameters associated with the conditional probabilities are correctly estimated, as
well as the individual level parameters associated with the transition matrix. However, aggregate
results of heterogeneous parameters are estimated as the mean of a mixture of individual results of
customers who reach to every states and customers who do not. Given that, aggregate results induce
interpretations about the population behavior that do not correspond to any individual customer
in the mix.

One of these results at the aggregate level is the probability of making transitions to the
higher state. At the individual level this probability is estimated correctly for customers with 3
states, and is recovered as zero for customers with 2 states. However, the aggregate parameter of
this probability is estimated between the correct value of 3 state customers and zero, which does
not represent transitions of any subsets of customers mentioned before. This finding can lead to
conclude that, on average, it is difficult to move customers to the highest state, when in fact for
some customers this probability is higher and for the rest this value is zero. Additionally, this
aggregate probability decreases when the proportion of customers with two states increases, due to
the higher weight of those customers in the total population.

When we incorporate heterogeneity on the conditional probabilities, there are not common
parameters across customers in the model2 and individual parameters are free to adapt to data of
each customer. In this case, results show the second effect (EF2). Estimating a state duplicated
from another, generates a transition matrix for those customers on which transitions between du-
plicated states must be interpreted as transitions in which the customer remains in the same state.
This effect makes more difficult to understand the behavior of those customers at the individual
level. Consequently, aggregate results are affected. The transition matrix obtained from aggregate
parameters differ completely from the individual level transition matrices, given that states have
different interpretations for different customers. Conditional probabilities at the aggregate level, as
well, represent a mixture of conditional probabilities of the two sets of customers resulting in proba-
bilities that no represent any customer in the set. Incorporating covariates could help identifying the
states, as homogeneous effects fix the states across customers. If the effects are homogeneous and
different then the result is (EF1). When those effects are homogeneous and not different enough,
the states do not represent the same for all customers and the results show the second effect (EF2).
If the effects are heterogeneous, even with effects different enough across states, the states can not
be identified as the same across customers and the results also show effect (EF2).

The main issue, generated by not accounting for heterogeneity on the number of states,
relies on how to interpret the results at aggregate level. Observing multimodal distribuion at the
heterogeneity distribution is the first signal to detect bias on aggregate results. Usually Normal
distributions are used as priors. Fitting a mixture of Gaussians could help detecting a multimodal
mixture on the posterior distribution of the parameters obtained by MCMC. Additionally, it is
also helpful to incorporate more heterogeneity on the model. Using a mixture of Gaussians as a
prior instead of Normal distributions helps solving the first effect (EF1) by reporting clearly at
aggregate level the presence of two or more groups with different behaviors, and be able to detect
subsets of customers that never reach to certain states. Moreover, another procedure to introduce
more heterogeneity to solve the problems described, is to incorporate structural heterogeneity. The
latent class of hidden Markov model is a method to introduce discrete structural heterogeneity, in
this case, with a HMM of different size by each class. However, LCHMM increases the number of
parameters, which implies obtaining worse results in terms of information criteria. On the other

2Besides the heterogeneity distribution.
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hand, LCHMM identifies the heterogeneity on the number of states, which prevent biased aggregate
results and eliminate both effects (EF1) and (EF2).

Applying those models to empirical data helped to understand better those effects. Individ-
ual level parameters were correctly estimated using a HMM with fixed number of states. At the
aggregate level, results show that “frequent” state is more stable than reported. 70% of customers
do not reach the higher state, and the rest have a 44% of moving from “infrequent” to “frequent”
state instead of 9% as reported by the classical HMM.

In summary, we conclude that assuming the same number of states usually does not gen-
erate bias at the individual level, but conclusions from the aggregate level have to be made with
precaution. In addition, introducing heterogeneity to all parameters could let free the states for
each customer making more difficult to make conclusions from the results. Specifically, the model
could identify transitions between different states (changes of behavior) when there is no change in
observable behavior (when a customer makes moves between duplicated states). Improvements to
support the model involves incorporating more heterogeneity in parameter estimation and methods
to detect at the aggregate level the heterogeneity across customers.

7.2 Further Research

There are several research areas that could extend this work.

First, all HMM studied in this work have a first order discrete time Markov chain for modeling
the latent variable. More research can be done by studying the heterogeneity on the number of
states for hidden states modeled by continuous time Markov chains and higher ordered Markov
chains.

Second, an embedded algorithm could be used to estimate both parameters and number of
states simultaneously, such as reversible jump Markov chain Monte Carlo, and discover the effects of
heterogeneity on the number of states when the model is estimated using this method. Additionally,
reversible jump Markov chain Monte Carlo could be extended to capture the heterogeneity on the
number of states, by estimating the number of states at the individual level, taking precautions on
the label of states across customers (and parameters accordingly µθ, Σθ and φ) when birth, death,
join and split moves are made.

Finally, we have focused the analyses on the estimation of the model parameters. It could be
interesting to investigate whether the heterogeneity of the number of states affects the procedure
to optimize the marketing mix allocation, and to measure the potential impact on the optimal
solution.
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Appendix A

Simulated mean and standard
deviation of HMM parameters

This chapter contains simulated mean and standard deviation of heterogeneous parameters and
simulated values for homogeneous parameters for each experiment.

A.1 Simulation Experiments 1.1 and 2.x

Table A.1 shows simulated mean and standard deviation of parameters for experiments 1.1 and 2.x.
Recall that experiments 2.x differ from experiment 1 only on the proportion of customers with 2
and 3 states.
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Parameter Mean Std. dev.

2 State Customers

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
0.85

0.13
0.13Intercept of probability 2→ 2 τk22

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.
.

Intercept of state 2 α0
2

3 State Customers

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 1.95
0.69

-0.41
0.51
0.69
1.95

0.20
0.12
0.09
0.10
0.12
0.20

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.79

.

.

.
Intercept of state 2 α0

2

Intercept of state 3 α0
3

Table A.1: Mean and std. deviation of simulation experiments 1.1 and 2.x

67



A.2 Simulation Experiment 3.1

Table A.2 shows simulated mean and standard deviation of heterogeneous parameters for experiment
3.1.

Parameter Mean Std. dev.

2 State Customers

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
0.85

0.13
0.13Intercept of probability 2→ 2 τk22

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.21
0.13Intercept of state 2 α0

2

3 State Customers

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 1.95
0.69

-0.41
0.51
0.69
1.95

0.20
0.12
0.09
0.10
0.12
0.20

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.79

0.21
0.13
0.13

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table A.2: Mean and std. deviation of simulation experiment 3.1
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A.3 Simulation Experiments 4.1 and 4.2

Table A.3 shows simulated mean and standard deviation of heterogeneous parameters for experi-
ments 4.1 and 4.2.

Parameter Mean Std. dev.

2 State Customers

Transition Matrix Parameters

Transition threshold parameter - state 1 τk11 0.85
-0.85

0.13
0.13Transition threshold parameter - state 2 τk22

Covariate effect on state 1 ρk1 0.51
0.48

.

.Covariate effect on state 2 ρk2

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.
.

Intercept of state 2 α0
2

Covariate effect on state 1 α1 0.26
0.46

.

.Covariate effect on state 2 α2

3 State Customers

Transition Matrix Parameters

Low transition threshold parameter - state 1 τk11 0.85
0.30

-1.39
0.80

-2.20
0.30

0.13
0.08
0.17
0.13
0.21
0.08

High transition threshold parameter - state 1 τk12

Low transition threshold parameter - state 2 τk21

High transition threshold parameter - state 2 τk22

Low transition threshold parameter - state 3 τk32

High transition threshold parameter - state 3 τk33

Covariate effect on state 1 ρk1 0.51
0.48
0.41

.

.

.
Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.79

.

.

.
Intercept of state 2 α0

2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.26
0.46
0.63

.

.

.
Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table A.3: Mean and std. deviation of simulation experiments 4.1 and 4.2
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A.4 Simulation Experiment 4.3

Table A.4 shows simulated mean and standard deviation of heterogeneous parameters for experiment
4.3.

Parameter Mean Std. dev.

2 State Customers

Transition Matrix Parameters

Transition threshold parameter - state 1 τk11 0.85
-0.85

0.13
0.13Transition threshold parameter - state 2 τk22

Covariate effect on state 1 ρk1 0.51
0.48

.

.Covariate effect on state 2 ρk2

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.
.

Intercept of state 2 α0
2

Covariate effect on state 1 α1 0.26
0.46

0.07
0.10Covariate effect on state 2 α2

3 State Customers

Transition Matrix Parameters

Low transition threshold parameter - state 1 τk11 0.85
0.30

-1.39
0.80

-2.20
0.30

0.13
0.08
0.17
0.13
0.21
0.08

High transition threshold parameter - state 1 τk12

Low transition threshold parameter - state 2 τk21

High transition threshold parameter - state 2 τk22

Low transition threshold parameter - state 3 τk32

High transition threshold parameter - state 3 τk33

Covariate effect on state 1 ρk1 0.51
0.48
0.41

.

.

.
Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.79

.

.

.
Intercept of state 2 α0

2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.26
0.46
0.63

0.07
0.10
0.11

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table A.4: Mean and std. deviation of simulation experiment 4.3
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A.5 Simulation Experiment 4.4

Table A.5 shows simulated mean and standard deviation of heterogeneous parameters for experiment
4.4.

Parameter Mean Std. dev.

2 State Customers

Transition Matrix Parameters

Transition threshold parameter - state 1 τk11 0.85
-0.85

0.13
0.13Transition threshold parameter - state 2 τk22

Covariate effect on state 1 ρk1 0.51
0.48

0.10
0.10Covariate effect on state 2 ρk2

3 State Customers

Transition Matrix Parameters

Low transition threshold parameter - state 1 τk11 0.85
0.30

-1.39
0.80

-2.20
0.30

0.13
0.08
0.17
0.13
0.21
0.08

High transition threshold parameter - state 1 τk12

Low transition threshold parameter - state 2 τk21

High transition threshold parameter - state 2 τk22

Low transition threshold parameter - state 3 τk32

High transition threshold parameter - state 3 τk33

Covariate effect on state 1 ρk1 0.51
0.48
0.41

0.10
0.10
0.09

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Table A.5: Mean and std. deviation of simulation experiment 4.4
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A.6 Simulation Experiment 4.5

Table A.6 shows simulated mean and standard deviation of heterogeneous parameters for experiment
4.5.

Parameter Mean Std. dev.

2 State Customers

Transition Matrix Parameters

Transition threshold parameter - state 1 τk11 0.85
-0.85

0.13
0.13Transition threshold parameter - state 2 τk22

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.21
0.13

Intercept of state 2 α0
2

3 State Customers

Transition Matrix Parameters

Low transition threshold parameter - state 1 τk11 0.85
0.30

-1.39
0.80

-2.20
0.30

0.13
0.08
0.17
0.13
0.21
0.08

High transition threshold parameter - state 1 τk12

Low transition threshold parameter - state 2 τk21

High transition threshold parameter - state 2 τk22

Low transition threshold parameter - state 3 τk31

High transition threshold parameter - state 3 τk32

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.79

0.21
0.13
0.13

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table A.6: Mean and std. deviation of simulation experiment 4.5
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A.7 Simulation Experiment 4.6

Table A.7 shows simulated mean and standard deviation of heterogeneous parameters for experiment
4.6.

Parameter Mean Std. dev.

2 State Customers

Transition Matrix Parameters

Transition threshold parameter - state 1 τk11 0.85
-0.85

0.13
0.13Transition threshold parameter - state 2 τk22

Covariate effect on state 1 ρk1 0.51
0.48

0.10
0.10Covariate effect on state 2 ρk2

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.21
0.13

Intercept of state 2 α0
2

Covariate effect on state 1 α1 0.26
0.46

0.07
0.10Covariate effect on state 2 α2

3 State Customers

Transition Matrix Parameters

Low transition threshold parameter - state 1 τk11 0.85
0.30

-1.39
0.80

-2.20
0.30

0.13
0.08
0.17
0.13
0.21
0.08

High transition threshold parameter - state 1 τk12

Low transition threshold parameter - state 2 τk21

High transition threshold parameter - state 2 τk22

Low transition threshold parameter - state 3 τk32

High transition threshold parameter - state 3 τk33

Covariate effect on state 1 ρk1 0.51
0.48
0.41

0.10
0.10
0.09

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
0.79

0.21
0.13
0.13

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.26
0.46
0.63

0.07
0.10
0.11

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table A.7: Mean and std. deviation of simulation experiment 4.6
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Appendix B

Prior and Full Conditionals
Distributions

Figure B.1 shows each component of the model, with prior distribution and hyperparameters for
population parameters (µθ,Σθ) and fixed parameters (Φ).

µ0 V0 f0 S0

µθ Σθ µΦ ΣΦ

θk Φ

µθ ∼ N (µ0, V0)

Σ−1
θ ∼ W (f0, S0)

θk ∼ N (µθ,Σθ)

Φ ∼ N (µΦ,ΣΦ)

zkt

Ykt

� : Prior hyperparameters
© : Observable Data

Figure B.1: Hierarchical Heterogeneous Estimation Model

74



Given this structure, full conditionals distribution of parameters θk, Φ, µθ, and Σθ are de-
scribed as follows:

P (θk|µθ,Σθ,Φ, {Ykt}t∈T ) ∝ exp

(
−1

2
(θk − µθ)TΣ−1

θ (θk − µθ)
)
Lk
(
θk,Φ| {Ykt}t∈T

)
(B.1)

P (Φ|µθ,Σθ, {θk}k∈K , Y ) ∝ exp

(
−1

2
(Φ− µΦ)TΣ−1

Φ (Φ− µΦ)

)
L ({θk}k∈K ,Φ|Y ) (B.2)

µθ ∼ N (µn, Vn) (B.3)

Σ−1
θ ∼W (df1, S1) (B.4)

where:

Vn =
(
V −1

0 +KΣ−1
θ

)−1
(B.5)

µn = Vn
(
µ0V

−1
0 +Kθ̄Σ−1

θ

)
(B.6)

S1 =

(
S−1

0 +
K∑
k=1

(θk − µθ)(θk − µθ)T
)−1

(B.7)

θ̄ =
1

K

K∑
k=1

θk (B.8)

MCMC procedure generates draws from these distribution using a Gaussian random-walk Metropolis
Hastings algorithm with an adaptive step, described in Appendix C, with an acceptance ratio of
approximately 20% (see Appendix D).

We set uninformative prior hyperparameters as follows:

µ0 =
[
0.69 0.33 −0.69 0.33 −0.69 0.33 0 . . . 0

]
V0 =

1

5
Inθ

df0 = K + 5

S0 = (df0 −K − 1)Inθ
µΦ =

[
0 −4 −4 0 . . . 0

]
ΣΦ = InΦ
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Appendix C

Markov chain Monte Carlo algorithm

The Bayesian approach used to estimate the parameters is a hierarchical Bayesian Markov chain
Monte Carlo (MCMC), specifically the adaptive Metropolis-Hastings procedure introduced by
Atchadé Atchade [2006] with both Gibbs moves and Metropolis-Hastings acceptance criterion, and
used by Netzer Netzer et al. [2008] and Montoya Montoya et al. [2010].

Each iteration of the algorithm consists in updating the parameters value to obtain draws
from the posterior distribution, in four major steps:

1. Update Φ (Metropolis-Hastings acceptance criterion)

2. Update Σθ (Gibbs move from full conditionals)

3. Update µθ (Gibbs move from full conditionals)

4. Update θk for each k separately (Metropolis-Hastings acceptance criterion)

A more detailed explanation of each of the steps of the algorithm follows next.

Consider the (i + 1)’th iteration, and the parameters obtained in the i’th iteration
(
{
θik
}
,Φi, µiθ,Σ

i
θ).

For the following equations, recall that nθ and nΦ represent the length of vectors θk and Φ
respectively. Therefore, θk and µk are nθ × 1 vectors, Φ is a nΦ × 1 vector and Σθ is a nθ × nθ
matrix.

1. Update Φ (Metropolis-Hastings acceptance criterion)

Let xi =
{{

(θk)
i
}
k∈K

,Φi
}

the point where the MCMC is, before updating Φ.

The proposed candidate is computed using a random walk as following:

Φc = Φi + σiφ · z
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with z ∼ N (0,Λiφ)

The choices of σiφ and Λiφ are made by the algorithm using the adaptive part described in
Appendix D.

Then the acceptance probability is αiΦ = min
{

1, αΦ

(
Φi,Φc

)}
where:

αΦ

(
Φi,Φc

)
=
L
({
θik
}
k∈K ,Φ

c|Y
)
e−

1
2 (Φc−µΦ)

T
Σ−1

Φ (Φc−µΦ)

L
(
{θik}k∈K ,Φi|Y

)
e−

1
2 (Φi−µΦ)

T
Σ−1

Φ (Φi−µΦ)

Let u ∼ U (0, 1). If u < αiΦ then the candidate is accepted, i.e., Φi+1 = Φc, otherwise is

rejected, i.e., Φi+1 = Φi. Also xinew =
{{
θik
}
k∈K ,Φ

i+1
}

.

xinew is not the (i + 1)’th draw of the MCMC given that the movements on θk still have to
be considered.

2. Update Σθ (Gibbs move from full conditionals)

Let:
f1 = f0 +K

S1 =

(∑
k∈K

(
θik − µiθ

) (
θik − µiθ

)T
+ S0

−1

)−1

Then the algorithm just draw from a Wishart distribution with parameters (f1, S1):(
Σi+1
θ

)−1 ∼W (f1, S1)

(i.e., Σi+1
θ ∼ IW

(
f1, S

−1
1

)
).

3. Update µθ (Gibbs move from full conditionals)

Let:

θ̄ =
1

K

∑
k∈K

θik

V1 =
[
V −1

0 +K ·
(
Σi+1
θ

)−1
]−1

µ1 = V1

[
V −1

0 · µ0 +K ·
(
Σi+1
θ

)−1 · θ̄
]

Then the algorithm just draw from a Multivariate Normal distribution with parameters
(µ1, V1):

µi+1
θ ∼ N (µ1, V1)

4. Update θk for each k separately (Metropolis-Hastings acceptance criterion)

For each k ∈ K the algorithm does the following:

Propose a candidate using a random walk aproach:

θck = θik + σiθk · z

with z ∼ N (0,Λiθk)

The choices of σiθk and Λiθk are made by the algorithm using the adaptive part described in
Atchadé 2006.
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Then the acceptance probability is αiθk = min
{

1, αθk
(
θik, θ

c
k

)}
where:

αθk
(
θik, θ

c
k

}
=
Lk
(
θck,Φ

i+1| {Ykt}t∈T
)
e−

1
2(θck−µ

i+1
θ )

T
(Σi+1

θ )
−1

(θck−µi+1
θ )

Lk
(
θik,Φ

i+1| {Ykt}t∈T
)
e−

1
2(θik−µ

i+1
θ )

T
(Σi+1

θ )
−1

(θik−µ
i+1
θ )

Let u ∼ U (0, 1). If u < αiθk then the candidate is accepted, i.e., θi+1
k = θck, otherwise is

rejected, i.e., θi+1
k = θik.

Finally, when the movements for each k are made, accepted or rejected, the algorithm gener-

ated the (i + 1)’th draw of the posterior distribution: xi+1 =
{{
θi+1
k

}
k∈K ,Φ

i+1
}

, µi+1
θ and

Σi+1
θ .
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Appendix D

Adaptative Process

This chapter describes the adaptive process that selects parameters (σiφ,Λiφ, σiθk ,Λiθk) for random
walk steps to improve convergence introduced by Atchadé (2006).

The adaptive process is computed on each iteration after all four updating parameter steps.

Let A1 = 107, ε1 = 10−7 and ε2 = 10−6. Let τ̄ = 0.2 the target acceptance rate of the
candidates of the MCMC. Consider iteration i’th, then let γi = 10/i.

The adaptive process modifies on each iteration i, (ui, σi,Γi) the parameters needed to com-
pute (σi,Λi) for the random walk step. Λi is computed using Λi = Γi + ε2 where d is the numbers
of rows (columns) of Λi and Γi.

Given that the algorithm has random walk steps on Φ and on θk for all k, it is needed
a process for each type of random walk step, i.e., (uiφ, σiφ,Γiφ) and (uiθk , σiθk ,Γiθk) for all k to
compute (σiΦ,ΛiΦ) and (σiθk ,Λiθk) for all k.

The parameters (ui, σi,Γi) will be restricted to move only inside the space B(0, A1)×[ε1, A1]×
ΘΓ, where B(0, A1) is the ball of center 0 and radius A1 in Rd (where d is the dimension of Φ or
θk for each case), and ΘΓ is the space of all semipositive-definite (spf) matrices Γ of d × d where
|Γ| ≤ A1

1

Let p1, p2 and p3 the three projection functions that keep (ui, σi,Γi) in B(0, A1)× [0,∞)×ΘΓ:

p1 : R −→ [0,∞) p2 :Md×d, spf −→ ΘΓ p3 : Rd −→ B(0, A1)

p1(σ) = |σ| p2(Σ) =

{
Σ if |Σ| ≤ A1

A1
|Σ|Σ if |Σ| > A1

p3(u) =

{
u if |u| ≤ ε1

A1
|u|u if |u| > A1

The original Atchadé algorithm uses other p1 function but the absolute value shows also good
results.

1|Γ| is the norm of a matrix Γ defined by |Γ| =
{∑

ij

∣∣Γij2
∣∣}1/2
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Given that all four steps on (i+ 1)’th iteration have been made, it means that the (i+ 1)’th

draw from the posterior distribution is known (xi+1 =
{{
θi+1
k

}
k∈K ,Φ

i+1
}

), and the values of

(uiφ, σiφ,Γiφ) and {(uiθk , σiθk ,Γiθk)}k∈K of the previous iteration i.

The three steps of the adaptive procedure follow next:

1. Update (uiφ, σiφ,Γiφ)
ui+1,φ = p3

(
uiφ + γi

(
Φi+1 − uiφ

))
Γi+1,φ = p2

(
Γiφ + γi

(
(Φi+1 − uiφ)(Φi+1 − uiφ)T − Γiφ

))
σi+1,φ = |σiφ + γi (αiΦ − σiφ)|

where αiΦ = min
{

1, αΦ

(
Φi,Φc

)}
is the probability of accepting candidate Φc on the

Metropolis-Hastings step for Φ.

2. For each k ∈ K: Update (uiθk , σiθk ,Γiθk)

ui+1,θk = p3

(
uiθk + γi

(
θi+1
k − uiθk

))
Γi+1,θk = p2

(
Γiθk + γi

(
(θi+1
k − uiθk)(θi+1

k − uiθk)T − Γiθk
))

σi+1,θk = |σiθk + γi (αiθk − σiθk)|

where αiθk = min
{

1, αθk
(
θik, θ

c
k

)}
is the probability of accepting candidate θck on the

Metropolis-Hastings step for θk.

3. Set Λi+1,φ = Γi+1,φ + ε2In and Λi+1,θk = Γi+1,θk + ε2In(n−1) for each k.

In practice, this procedure is only computed from iteration i > 100 and for i ≤ 100 σiθk = 0.05,
σiφ = 0.01, Γiθk = In(n−1), Γiφ = In (recall that n is the number of states, meaning that n(n− 1) is
the dimension of θk and n the dimension of Φ).
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Appendix E

Parameter estimates Monte Carlo
simulations

E.1 Experiment 1: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

2.91
1.82
0.85
1.85
0.38
1.67

[
[
[
[
[
[

2.71
1.59
0.57
1.60
0.19
1.49

3.12
2.04
1.12
2.09
0.53
1.83

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.21
0.78
0.78

-2.19
0.79
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.1: Experiment 1.1: Parameter estimates
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E.2 Experiment 2.x: Parameter estimates

E.2.1 Experiment 2.1: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

2.91
1.82
0.85
1.85
0.38
1.67

[
[
[
[
[
[

2.71
1.59
0.57
1.60
0.19
1.49

3.12
2.04
1.12
2.09
0.53
1.83

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.21
0.78
0.78

-2.19
0.79
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.2: Experiment 2.1: Parameter estimates
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E.2.2 Experiment 2.2: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

3.28
2.23
1.72
2.67
0.07
1.12

[
[
[
[
[
[

3.06
1.99
1.40
2.36

-0.13
0.90

3.51
2.47
2.03
2.96
0.28
1.35

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.21
0.78
0.78

-2.19
0.79
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.3: Experiment 2.2: Parameter estimates
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E.2.3 Experiment 2.3: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

3.51
2.49
2.17
3.08
0.00
0.82

[
[
[
[
[
[

3.27
2.23
1.81
2.75

-0.24
0.59

3.75
2.74
2.50
3.39
0.20
1.02

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.21
0.78
0.77

-2.19
0.79
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.4: Experiment 2.3: Parameter estimates
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E.2.4 Experiment 2.4: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

3.93
2.96
2.80
3.67

-0.42
0.46

[
[
[
[
[
[

3.72
2.72
2.47
3.36

-0.68
0.19

4.16
3.19
3.12
3.97

-0.15
0.73

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.78

[
[
[

-2.21
0.78
0.77

-2.19
0.79
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.5: Experiment 2.4: Parameter estimates
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E.2.5 Experiment 2.5: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

4.13
3.21
3.05
3.88

-0.38
0.09

[
[
[
[
[
[

3.92
2.97
2.77
3.61

-0.69
-0.20

4.31
3.41
3.35
4.15

-0.03
0.37

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.78

[
[
[

-2.21
0.78
0.75

-2.19
0.79
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.6: Experiment 2.5: Parameter estimates
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E.2.6 Experiment 2.6: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

0.15
-0.06
-0.25
0.56

-1.35
1.06

[
[
[
[
[
[

-0.18
-0.55
-0.49
0.38

-1.63
0.96

0.52
0.24
0.10
0.71

-1.05
1.16

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.21
-4.31
0.79

[
[
[

-2.23
-5.98
0.78

-2.20
-3.00
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.7: Experiment 2.6: Parameter estimates
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E.2.7 Experiment 2.7: Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

0.84
0.79

[
[
[
[
[
[

0.77
0.71

0.90
0.86

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79

[
[
[

-2.21
0.78

-2.19
0.79

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.8: Experiment 2.7: Parameter estimates
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E.3 Experiment 3.1 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.
.

0.85
.
.

1.95
0.69

-0.41
0.51
0.69
1.95

1.39
-1.05
-0.46
-0.03
-1.31
1.33

[
[
[
[
[
[

1.28
-1.35
-0.61
-0.26
-1.67
1.22

1.48
-0.74
-0.33
0.21

-0.97
1.43

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.12
0.66

[
[
[

-2.24
-0.05
0.62

-2.16
0.25
0.71

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Table E.9: Experiment 3.1: Parameter estimates
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E.4 Experiment 4.x Parameter estimates

E.4.1 Experiment 4.1 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.83
1.06

-1.05
1.42

-1.99
0.28

[
[
[
[
[
[

0.77
0.92

-1.13
1.30

-2.11
0.11

0.90
1.21

-0.96
1.54

-1.85
0.41

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.51
0.48
.

0.51
0.48
0.41

0.52
0.46
0.40

[
[
[

0.45
0.38
0.29

0.60
0.53
0.52

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.21
0.78
0.78

-2.19
0.79
0.79

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.26
0.46
.

0.26
0.46
0.63

0.26
0.46
0.62

[
[
[

0.25
0.46
0.60

0.27
0.47
0.63

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table E.10: Experiment 4.1: Parameter estimates
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E.4.2 Experiment 4.2 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.71
1.17

-1.11
1.45

-2.18
0.36

[
[
[
[
[
[

0.63
1.02

-1.21
1.32

-2.33
0.24

0.80
1.32

-1.01
1.57

-2.03
0.48

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Covariate effect on state 1 ρk1 0.51
0.48
.

0.51
0.48
0.41

0.42
0.54
0.46

[
[
[

0.29
0.39
0.26

0.54
0.67
0.65

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.22
0.78
0.78

-2.18
0.80
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.26
0.46
.

0.26
0.46
0.63

0.26
0.46
0.63

[
[
[

0.24
0.45
0.60

0.28
0.47
0.66

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table E.11: Experiment 4.2: Parameter estimates
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E.4.3 Experiment 4.3 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.94
1.03

-1.02
1.41

-1.71
0.21

[
[
[
[
[
[

0.87
0.90

-1.09
1.28

-1.94
0.09

1.00
1.16

-0.94
1.53

-1.47
0.32

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.51
0.48
.

0.51
0.48
0.41

0.53
0.52
0.38

[
[
[

0.46
0.44
0.27

0.60
0.59
0.49

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.21
0.78
0.78

-2.19
0.80
0.79

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.26
0.46
.

0.26
0.46
0.63

0.27
0.46
0.57

[
[
[

0.25
0.45
0.52

0.28
0.48
0.62

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table E.12: Experiment 4.3: Parameter estimates
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E.4.4 Experiment 4.4 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Intercept of probability 1→ 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.93
1.05

-1.03
1.40

-1.90
0.29

[
[
[
[
[
[

0.86
0.91

-1.11
1.28

-2.02
0.20

0.99
1.19

-0.95
1.52

-1.78
0.39

]
]
]
]
]
]

Intercept of probability 1→ 2 τk12

Intercept of probability 2→ 1 τk21

Intercept of probability 2→ 2 τk22

Intercept of probability 3→ 2 τk32

Intercept of probability 3→ 3 τk33

Covariate effect on state 1 ρk1 0.51
0.48
.

0.51
0.48
0.41

0.52
0.53
0.39

[
[
[

0.45
0.46
0.27

0.59
0.60
0.51

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.20
0.79
0.79

[
[
[

-2.21
0.78
0.78

-2.19
0.79
0.80

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.26
0.46
.

0.26
0.46
0.63

0.27
0.47
0.62

[
[
[

0.26
0.46
0.60

0.28
0.48
0.64

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table E.13: Experiment 4.4: Parameter estimates
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E.4.5 Experiment 4.5 Parameter estimates

Experiment 4.5.1 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.85
-0.63
-1.14
0.12

-1.53
-0.52

[
[
[
[
[
[

0.79
-0.83
-1.26
-0.06
-1.64
-0.77

0.92
-0.44
-1.01
0.30

-1.41
-0.33

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.53
0.52
.

0.53
0.52
0.61

0.55
0.55
0.60

[
[
[

0.48
0.44
0.52

0.62
0.66
0.69

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.17
0.75

-0.12

[
[
[

-2.21
0.73

-0.32

-2.13
0.77
0.06

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.53
0.63
.

0.53
0.63
0.71

0.52
0.64
0.66

[
[
[

0.51
0.62
0.65

0.53
0.65
0.67

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table E.14: Experiment 4.5.1: Parameter estimates
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Experiment 4.5.2 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.82
1.07

-1.07
1.47

-1.59
0.07

[
[
[
[
[
[

0.76
0.92

-1.16
1.35

-1.73
-0.02

0.87
1.21

-0.99
1.60

-1.44
0.15

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.50
0.80
.

0.50
0.80
0.10

0.46
0.93
0.12

[
[
[

0.39
0.85
0.01

0.53
1.02
0.24

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.21
0.80
0.78

[
[
[

-2.23
0.78
0.74

-2.18
0.81
0.83

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.50
0.80
.

0.50
0.80
0.10

0.50
0.80
0.09

[
[
[

0.49
0.79
0.08

0.51
0.81
0.11

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table E.15: Experiment 4.5.2: Parameter estimates

95



E.4.6 Experiment 4.6 Parameter estimates

Parameter Simulated Posterior Mean 95% CI
K2 K3

Transition Matrix Parameters

Low transition threshold state 1 τk11 0.85
.

-0.85
.
.
.

0.85
0.30

-1.39
0.80

-2.20
0.30

0.82
-0.39
-0.70
0.30

-1.50
-0.22

[
[
[
[
[
[

0.77
-0.51
-0.81
0.18

-1.59
-0.31

0.87
-0.27
-0.59
0.40

-1.41
-0.12

]
]
]
]
]
]

High transition threshold state 1 τk12

Low transition threshold state 2 τk21

High transition threshold state 2 τk22

Low transition threshold state 3 τk31

High transition threshold state 3 τk32

Covariate effect on state 1 ρk1 0.50
0.00
.

0.50
0.00
0.80

0.46
-0.04
0.37

[
[
[

0.41
-0.10
0.29

0.51
0.02
0.45

]
]
]

Covariate effect on state 2 ρk2

Covariate effect on state 3 ρk3

Conditional Probabilities Parameters

Intercept of state 1 α0
1 -2.20

0.79
.

-2.20
0.79
0.79

-2.17
0.75

-0.49

[
[
[

-2.19
0.73

-0.68

-2.14
0.77

-0.32

]
]
]

Intercept of state 2 α0
2

Intercept of state 3 α0
3

Covariate effect on state 1 α1 0.50
0.10
.

0.50
0.10
0.10

0.49
0.11
0.09

[
[
[

0.47
0.08
0.08

0.51
0.13
0.11

]
]
]

Covariate effect on state 2 α2

Covariate effect on state 3 α3

Table E.16: Experiment 4.6: Parameter estimates
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Appendix F

Transition matrix and conditional
probabilities posterior mean and 95%
CI

F.1 Experiment 1.1 and 2.1

Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.72]

0.31
[0.29 0.33]

0.16
[0.13 0.21]

0.29
[0.27 0.31]

0.67
[0.65 0.69]

0.16
[0.12 0.20]

0.01
[0.01 0.01]

0.01
[0.01 0.02]

0.68
[0.61 0.74]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.68 0.72]

0.18
[0.16 0.20]

0.11
[0.10 0.13]

0.21
[0.19 0.23]

0.55
[0.52 0.58]

0.21
[0.19 0.22]

0.08
[0.07 0.10]

0.27
[0.24 0.30]

0.68
[0.66 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.72
[0.70 0.73]

0.24
[0.22 0.26]

0.13
[0.12 0.15]

0.24
[0.23 0.26]

0.65
[0.63 0.68]

0.19
[0.16 0.21]

0.04
[0.03 0.05]

0.10
[0.08 0.13]

0.68
[0.65 0.71]

K 2 NA

3

Table F.1: Experiment 1.1 transition matrix posterior mean and 95% CI
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Posterior Mean Simulated
1 2 3 1 2 3

K 0.10 0.50 0.90 0.10 0.50 0.90
[0.10 0.10] [0.50 0.50] [0.90 0.90]

Table F.2: Experiment 1.1 conditional probabilities posterior mean and 95% CI
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F.2 Experiments 2.x

F.2.1 Experiment 2.2

Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.71]

0.31
[0.29 0.32]

0.33
[0.26 0.45]

0.29
[0.28 0.31]

0.69
[0.67 0.70]

0.18
[0.13 0.22]

0.01
[0.00 0.01]

0.01
[0.00 0.01]

0.49
[0.37 0.57]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.67 0.73]

0.19
[0.16 0.21]

0.11
[0.10 0.13]

0.21
[0.19 0.23]

0.55
[0.52 0.59]

0.22
[0.20 0.25]

0.09
[0.08 0.11]

0.26
[0.23 0.29]

0.66
[0.64 0.69]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.72
[0.70 0.74]

0.27
[0.24 0.29]

0.19
[0.17 0.24]

0.25
[0.23 0.27]

0.69
[0.66 0.71]

0.21
[0.18 0.24]

0.03
[0.02 0.03]

0.05
[0.04 0.06]

0.60
[0.53 0.63]

K 2 NA

3

Table F.3: Experiment 2.2 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table F.4: Experiment 2.2 conditional probabilities posterior mean and 95% CI
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F.2.2 Experiment 2.3

Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.69 0.71]

0.31
[0.29 0.32]

0.40
[0.33 0.47]

0.29
[0.28 0.31]

0.69
[0.67 0.70]

0.22
[0.16 0.26]

0.01
[0.00 0.01]

0.00
[0.00 0.01]

0.38
[0.32 0.47]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.66 0.73]

0.20
[0.17 0.23]

0.11
[0.09 0.13]

0.21
[0.18 0.24]

0.55
[0.51 0.59]

0.22
[0.19 0.25]

0.09
[0.08 0.11]

0.25
[0.21 0.30]

0.67
[0.64 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.72
[0.70 0.74]

0.28
[0.26 0.30]

0.23
[0.20 0.27]

0.26
[0.24 0.28]

0.69
[0.67 0.71]

0.23
[0.19 0.26]

0.02
[0.02 0.03]

0.03
[0.02 0.04]

0.53
[0.49 0.58]

K 2 NA

3

Table F.5: Experiment 2.3 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table F.6: Experiment 2.3 conditional probabilities posterior mean and 95% CI
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F.2.3 Experiment 2.4

Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.71]

0.31
[0.29 0.32]

0.46
[0.39 0.56]

0.29
[0.28 0.31]

0.69
[0.67 0.70]

0.17
[0.14 0.21]

0.01
[0.01 0.01]

0.01
[0.00 0.01]

0.37
[0.28 0.45]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.73
[0.68 0.77]

0.20
[0.16 0.24]

0.09
[0.07 0.12]

0.21
[0.18 0.26]

0.57
[0.51 0.62]

0.23
[0.19 0.27]

0.06
[0.04 0.08]

0.23
[0.18 0.29]

0.68
[0.62 0.72]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.72
[0.70 0.73]

0.29
[0.27 0.31]

0.31
[0.27 0.38]

0.27
[0.25 0.29]

0.69
[0.67 0.71]

0.20
[0.17 0.24]

0.01
[0.01 0.02]

0.02
[0.01 0.02]

0.49
[0.41 0.54]

K 2 NA

3

Table F.7: Experiment 2.4 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table F.8: Experiment 2.4 conditional probabilities posterior mean and 95% CI
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F.2.4 Experiment 2.5

Posterior Mean Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.71]

0.31
[0.29 0.32]

0.46
[0.36 0.51]

0.30
[0.28 0.31]

0.69
[0.67 0.70]

0.23
[0.18 0.32]

0.01
[0.01 0.01]

0.01
[0.01 0.01]

0.32
[0.24 0.41]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.74
[0.68 0.79]

0.22
[0.18 0.29]

0.08
[0.05 0.12]

0.21
[0.17 0.27]

0.55
[0.47 0.61]

0.23
[0.18 0.29]

0.05
[0.03 0.08]

0.23
[0.16 0.31]

0.69
[0.62 0.75]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.71
[0.69 0.72]

0.30
[0.28 0.32]

0.36
[0.29 0.41]

0.28
[0.26 0.30]

0.69
[0.66 0.70]

0.25
[0.20 0.33]

0.01
[0.01 0.01]

0.01
[0.01 0.02]

0.39
[0.32 0.47]

K 2 NA

3

Table F.9: Experiment 2.5 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.89 0.90]

0.10 0.50 0.90

Table F.10: Experiment 2.5 conditional probabilities posterior mean and 95% CI
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F.2.5 Experiment 2.6

Posterior Mean Simulated
1 2 3 1 2 3

1 0.38
[0.29 0.56]

0.22
[0.18 0.30]

0.24
[0.22 0.27]

0.30
[0.14 0.39]

0.50
[0.40 0.55]

0.06
[0.04 0.08]

0.32
[0.29 0.34]

0.28
[0.26 0.32]

0.70
[0.68 0.71]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.38
[0.28 0.57]

0.22
[0.16 0.31]

0.22
[0.20 0.26]

0.30
[0.14 0.40]

0.49
[0.39 0.57]

0.06
[0.04 0.07]

0.32
[0.28 0.35]

0.29
[0.25 0.33]

0.72
[0.69 0.75]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.38
[0.29 0.56]

0.22
[0.18 0.30]

0.24
[0.22 0.27]

0.30
[0.14 0.39]

0.50
[0.40 0.55]

0.06
[0.04 0.08]

0.32
[0.29 0.34]

0.28
[0.26 0.32]

0.70
[0.68 0.71]

K 2 NA

3

Table F.11: Experiment 2.6 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.10 0.50 0.90

Table F.12: Experiment 2.6 conditional probabilities posterior mean and 95% CI
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F.2.6 Experiment 2.7

Posterior Mean Simulated
1 2 1 2

1 0.70
[0.68 0.71]

0.31
[0.30 0.33]

0.30
[0.29 0.32]

0.69
[0.67 0.70]

0.70 0.30

K2 2 0.30 0.70

1 0.70
[0.68 0.71]

0.31
[0.30 0.33]

0.30
[0.29 0.32]

0.69
[0.67 0.70]

0.70 0.30

K 2 0.30 0.70

Table F.13: Experiment 2.7 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.10 0.50 0.90

Table F.14: Experiment 2.7 conditional probabilities posterior mean and 95% CI
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F.3 Experiment 3.1

Posterior Mean Simulated
1 2 3 1 2 3

1 0.71
[0.69 0.73]

0.27
[0.20 0.33]

0.30
[0.28 0.32]

0.02
[0.01 0.03]

0.24
[0.18 0.32]

0.01
[0.01 0.02]

0.27
[0.26 0.29]

0.49
[0.42 0.54]

0.69
[0.67 0.71]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.68 0.72]

0.20
[0.18 0.23]

0.12
[0.10 0.13]

0.18
[0.17 0.20]

0.51
[0.49 0.54]

0.18
[0.17 0.20]

0.12
[0.10 0.13]

0.28
[0.26 0.31]

0.70
[0.68 0.72]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.75
[0.72 0.76]

0.24
[0.21 0.27]

0.20
[0.18 0.22]

0.07
[0.05 0.09]

0.37
[0.32 0.43]

0.05
[0.04 0.07]

0.19
[0.17 0.20]

0.38
[0.34 0.42]

0.75
[0.73 0.77]

K 2 NA

3

Table F.15: Experiment 3.1 transition matrix posterior mean and 95% CI

Posterior Mean Simulated
1 2 3 1 2 3

K2 0.10
[0.10 0.10]

0.16
[0.15 0.18]

0.51
[0.51 0.51]

0.10 0.50 NA

K3 0.10
[0.10 0.10]

0.49
[0.49 0.49]

0.90
[0.90 0.90]

0.10 0.50 0.90

K 0.10
[0.10 0.10]

0.26
[0.22 0.29]

0.71
[0.68 0.74]

NA

Table F.16: Experiment 3.1 conditional probabilities posterior mean and 95% CI

105



F.4 Experiments 4.x

F.4.1 Experiment 4.1

Posterior Meana Simulated
1 2 3 1 2 3

1 0.69
[0.67 0.70]

0.30
[0.28 0.31]

0.13
[0.11 0.16]

0.31
[0.29 0.33]

0.70
[0.69 0.72]

0.24
[0.17 0.33]

0.00
[0.00 0.00]

0.00
[0.00 0.00]

0.63
[0.52 0.70]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.71
[0.69 0.73]

0.23
[0.21 0.25]

0.11
[0.10 0.12]

0.21
[0.19 0.22]

0.49
[0.46 0.53]

0.20
[0.18 0.22]

0.09
[0.08 0.10]

0.28
[0.24 0.31]

0.69
[0.67 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.70
[0.68 0.71]

0.26
[0.24 0.28]

0.12
[0.11 0.14]

0.28
[0.26 0.30]

0.70
[0.67 0.72]

0.22
[0.18 0.26]

0.02
[0.01 0.03]

0.04
[0.03 0.07]

0.66
[0.61 0.70]

K 2 NA

3

Table F.17: Experiment 4.1 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table F.18: Experiment 4.1 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.
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F.4.2 Experiment 4.2

Posterior Meana Simulated
1 2 3 1 2 3

1 0.67
[0.64 0.69]

0.30
[0.28 0.32]

0.10
[0.08 0.13]

0.33
[0.31 0.36]

0.70
[0.68 0.72]

0.25
[0.19 0.37]

0.00
[0.00 0.00]

0.00
[0.00 0.00]

0.65
[0.52 0.73]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.68
[0.65 0.70]

0.21
[0.19 0.23]

0.10
[0.09 0.11]

0.23
[0.21 0.25]

0.45
[0.42 0.49]

0.19
[0.18 0.21]

0.10
[0.08 0.11]

0.34
[0.30 0.38]

0.71
[0.68 0.73]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.67
[0.65 0.69]

0.25
[0.23 0.27]

0.10
[0.09 0.12]

0.31
[0.29 0.33]

0.71
[0.68 0.73]

0.22
[0.19 0.27]

0.02
[0.01 0.03]

0.04
[0.02 0.07]

0.68
[0.62 0.72]

K 2 NA

3

Table F.19: Experiment 4.2 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table F.20: Experiment 4.2 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.
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F.4.3 Experiment 4.3

Posterior Meana Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.72]

0.31
[0.29 0.32]

0.23
[0.17 0.36]

0.30
[0.28 0.31]

0.69
[0.68 0.71]

0.25
[0.20 0.29]

0.00
[0.00 0.00]

0.00
[0.00 0.00]

0.52
[0.38 0.58]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.74
[0.72 0.75]

0.23
[0.21 0.25]

0.10
[0.09 0.11]

0.18
[0.17 0.20]

0.45
[0.42 0.48]

0.20
[0.19 0.22]

0.08
[0.07 0.10]

0.32
[0.29 0.35]

0.70
[0.67 0.72]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.72
[0.71 0.73]

0.27
[0.25 0.28]

0.15
[0.13 0.20]

0.26
[0.24 0.27]

0.69
[0.67 0.71]

0.23
[0.21 0.27]

0.02
[0.02 0.03]

0.04
[0.03 0.07]

0.62
[0.54 0.65]

K 2 NA

3

Table F.21: Experiment 4.3 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table F.22: Experiment 4.3 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.
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F.4.4 Experiment 4.4

Posterior Meana Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.72]

0.30
[0.29 0.32]

0.17
[0.14 0.19]

0.30
[0.28 0.32]

0.69
[0.68 0.71]

0.26
[0.20 0.32]

0.00
[0.00 0.00]

0.00
[0.00 0.00]

0.58
[0.50 0.63]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.73
[0.71 0.75]

0.23
[0.21 0.25]

0.10
[0.09 0.11]

0.18
[0.17 0.20]

0.46
[0.43 0.49]

0.21
[0.19 0.23]

0.09
[0.07 0.10]

0.31
[0.28 0.34]

0.69
[0.67 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.72
[0.70 0.73]

0.26
[0.25 0.28]

0.13
[0.12 0.14]

0.26
[0.24 0.28]

0.69
[0.67 0.71]

0.23
[0.20 0.27]

0.02
[0.01 0.03]

0.05
[0.03 0.07]

0.64
[0.60 0.67]

K 2 NA

3

Table F.23: Experiment 4.4 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K 0.10
[0.10 0.10]

0.50
[0.50 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

Table F.24: Experiment 4.4 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

109



F.4.5 Experiment 4.5.1

Posterior Meana Simulated
1 2 3 1 2 3

1 0.70
[0.68 0.71]

0.27
[0.24 0.36]

0.25
[0.23 0.27]

0.04
[0.04 0.07]

0.12
[0.10 0.16]

0.06
[0.04 0.10]

0.26
[0.23 0.28]

0.61
[0.50 0.65]

0.69
[0.65 0.71]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.69 0.72]

0.22
[0.21 0.25]

0.13
[0.12 0.14]

0.19
[0.17 0.20]

0.48
[0.45 0.51]

0.19
[0.17 0.21]

0.11
[0.10 0.12]

0.30
[0.26 0.32]

0.69
[0.66 0.70]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.70
[0.69 0.71]

0.24
[0.22 0.30]

0.18
[0.16 0.20]

0.10
[0.09 0.13]

0.26
[0.21 0.30]

0.10
[0.09 0.14]

0.20
[0.17 0.22]

0.50
[0.43 0.54]

0.72
[0.68 0.73]

K 2 NA

3

Table F.25: Experiment 4.5.1 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K2 0.10
[0.10 0.10]

0.46
[0.45 0.47]

0.54
[0.54 0.56]

0.10 0.50 NA

K3 0.11
[0.10 0.11]

0.51
[0.51 0.52]

0.89
[0.88 0.90]

0.10 0.50 0.90

K 0.10
[0.10 0.11]

0.49
[0.47 0.50]

0.70
[0.66 0.73]

NA

Table F.26: Experiment 4.5.1 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.
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F.4.6 Experiment 4.5.2

Posterior Meana Simulated
1 2 3 1 2 3

1 0.69
[0.68 0.71]

0.29
[0.28 0.31]

0.24
[0.21 0.36]

0.31
[0.29 0.32]

0.70
[0.69 0.72]

0.20
[0.18 0.26]

0.00
[0.00 0.00]

0.00
[0.00 0.00]

0.55
[0.41 0.60]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.69
[0.68 0.71]

0.22
[0.20 0.24]

0.11
[0.10 0.13]

0.20
[0.19 0.22]

0.50
[0.46 0.53]

0.19
[0.18 0.22]

0.10
[0.09 0.12]

0.28
[0.25 0.32]

0.69
[0.66 0.71]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.69
[0.68 0.70]

0.26
[0.24 0.27]

0.17
[0.15 0.22]

0.28
[0.27 0.30]

0.71
[0.69 0.73]

0.20
[0.18 0.25]

0.02
[0.02 0.04]

0.04
[0.02 0.06]

0.63
[0.54 0.65]

K 2 NA

3

Table F.27: Experiment 4.5.2 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K2 0.10
[0.10 0.10]

0.51
[0.51 0.52]

0.90
[0.88 0.92]

0.10 0.50 NA

K3 0.10
[0.10 0.10]

0.49
[0.49 0.50]

0.90
[0.90 0.90]

0.10 0.50 0.90

K 0.10
[0.10 0.10]

0.50
[0.49 0.51]

0.90
[0.89 0.91]

NA

Table F.28: Experiment 4.5.2 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.
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F.4.7 Experiment 4.6

Posterior Meana Simulated
1 2 3 1 2 3

1 0.69
[0.68 0.70]

0.47
[0.44 0.50]

0.26
[0.25 0.28]

0.07
[0.06 0.08]

0.19
[0.16 0.22]

0.11
[0.10 0.12]

0.24
[0.23 0.25]

0.34
[0.30 0.36]

0.62
[0.61 0.64]

0.70

0.30

NA

0.30

0.70

NA

NA

NA

NA

K2 2

3

1 0.70
[0.68 0.71]

0.22
[0.20 0.25]

0.12
[0.11 0.15]

0.20
[0.19 0.22]

0.52
[0.50 0.55]

0.21
[0.19 0.22]

0.10
[0.09 0.11]

0.26
[0.23 0.28]

0.67
[0.65 0.69]

0.70

0.20

0.10

0.20

0.50

0.20

0.10

0.30

0.70

K3 2

3

1 0.69
[0.68 0.70]

0.33
[0.31 0.36]

0.18
[0.17 0.20]

0.12
[0.11 0.14]

0.33
[0.30 0.36]

0.15
[0.14 0.16]

0.18
[0.17 0.20]

0.34
[0.30 0.37]

0.67
[0.65 0.68]

K 2 NA

3

Table F.29: Experiment 4.6 transition matrix posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.

Posterior Meana Simulated
1 2 3 1 2 3

K2 0.10
[0.10 0.10]

0.47
[0.47 0.48]

0.51
[0.51 0.52]

0.10 0.50 NA

K3 0.10
[0.10 0.10]

0.50
[0.50 0.51]

0.90
[0.90 0.91]

0.10 0.50 0.90

K 0.10
[0.10 0.11]

0.49
[0.48 0.50]

0.64
[0.61 0.67]

NA

Table F.30: Experiment 4.6 conditional probabilities posterior mean and 95% CI

aTo report these values, we use only intercept, i.e., we assume that covariates Xkt = 0.
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Appendix G

Mixture of Gaussians as a Prior
Model

G.1 Full Conditional Distributions

Given the prior structure described in Section 5.1.1 and following Koop [2003], we describe full
conditionals distribution of parameters θk, Φ, µmθ , Σm

θ and πm.

P (θk|µθ,Σθ,Φ, {Ykt}t∈T ) ∝ exp

(
−1

2
(θk − µθ)TΣ−1

θ (θk − µθ)
)
Lk
(
θk,Φ| {Ykt}t∈T

)
(G.1)

P (Φ|µθ,Σθ, {θk}k∈K , Y ) ∝ exp

(
−1

2
(Φ− µΦ)TΣ−1

Φ (Φ− µΦ)

)
L ({θk}k∈K ,Φ|Y ) (G.2)

µθ ∼ N (µn, Vn) (G.3)

Σ−1
θ ∼W (df1, S1) (G.4)

where:

Vn =
(
V −1

0 +KΣ−1
θ

)−1
(G.5)

µn = Vn
(
µ0V

−1
0 +Kθ̄Σ−1

θ

)
(G.6)

S1 =

(
S−1

0 +
K∑
k=1

(θk − µθ)(θk − µθ)T
)−1

(G.7)

θ̄ =
1

K

K∑
k=1

θk (G.8)

MCMC procedure generates draws from these distribution using a Gaussian random-walk Metropolis
Hastings algorithm with an adaptive step, described in Appendix C, with an acceptance ratio of
approximately 20% (see Appendix D).
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We set uninformative prior hyperparameters as follows:

µ0 =
[
0.69 0.33 −0.69 0.33 −0.69 0.33 0 . . . 0

]
V0 =

1

5
Inθ

df0 = K + 5

S0 = (df0 −K − 1)Inθ
µΦ =

[
0 −4 −4 0 . . . 0

]
ΣΦ = InΦ
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G.2 Number of Components

For running a MOGP model the number of components M of the Mixture of Gaussians prior must
be set. The correct way of selecting the number of components is to run the model with different
values of M and choose the one that performs better (in terms of criteria such as LDM, DIC and
MSC); but it is too expensive in terms of computer time and number of models that have to be run.

An alternative option is to use the results of the model with fixed number of states but
a single Gaussian as the prior. Using the posterior of θk, the number of components M is set
fitting Mixture of Gaussians with different values of M and choosing the one that fits better to the
posterior distribution of the individual-level parameters. The following tables show which number
of components fit best for the 2-state HMM and for the 3-state HMM.

Number of Components BIC ∆BIC
1 -373.37 –
2 -378.30 -4.93
3 -355.07 23.22
4 -367.91 -12.84
5 -311.20 56.71

Table G.1: Number of Components Selection for 2-State HMM

Number of Components BIC ∆BIC
1 -4588.7 –
2 -6291.9 -1703.2
3 -6243.1 48.8
4 -6170.7 72.4
5 -6070.3 100.4

Table G.2: Number of Components Selection for 3-State HMM

Table G.1 shows that a Mixture of Gaussians with 2 components is what best fits the individual
level parameter posterior distribution estimated by the 2-state HMM and Table G.2 shows that a
Mixture of Gaussians with 2 components is what best fits the individual level parameter posterior
distribution estimated by the 3-state HMM, both according to the Bayesian Information Criterion
(BIC1).

1BIC = Np ln (k)− 2 · LL, where Np is the number of parameters of the distribution, k is the number of
observations, and LL is the log-likelihood function.
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G.3 Number of States Selection

Table G.3 shows LDM, DIC and MSC for Mixture of Gaussians as a Prior Model with 2 and 3
states. The best model was the 3-state model.

Model LMD DIC MSC
2 states -71274.45 142634.49 152205.05
3 states -30317.22 60671.90 70311.26

Table G.3: Model Comparison
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Appendix H

Markov chain Monte Carlo algorithm
for Latent Class HMM

The Bayesian approach used to estimate the parameters is a hierarchical Bayesian Markov chain
Monte Carlo (MCMC) based on the algorithm described in Appendix C. The main difference in
this algorithm is the update of parameters Φm per class in parallel.

Each iteration of the algorithm consists in updating the parameters value to obtain draws
from the posterior distribution, in four major steps:

1. Update Φm (Metropolis-Hastings acceptance criterion)

2. Update Σθ (Gibbs move from full conditionals)

3. Update µθ (Gibbs move from full conditionals)

4. Update θk = {θmk }
M
m=1 for each k separately (Metropolis-Hastings acceptance criterion)

Given that Φm is a parameter across customers, the draws of Φm have to be made separately to
ensure that every model is improving their parameters. In this model is important because a HMM
with more states than other is not only a different model but also is a more general model so the
draws could be accepting the moves only if the parameters of the model that is converging faster is
improving, and letting the other models behind.

This is not done for θk because the movements are made at the individual level are more
flexible to adapt to each customer.1

A more detailed explanation of each of the steps of the algorithm follows next.

Consider the (i + 1)’th iteration, and the parameters obtained in the i’th iteration

(
{

(θmk )i
}
, (Φm)i , (µθ)

i , (Σθ)
i , (α)i).

1A future improvement of this algorithm could be to draw θk separately for model
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For the following equations, recall that θmk is a nθ(m) = nm (nm − 1)× 1 vector (where nm is

the fixed number of states of model m) so µk is NΘ =
M∑
m=1

nθ(m) vector, Φm is a nm× 1 vector and

Σθ is a NΘ ×NΘ matrix.

1. Update Φm (Metropolis-Hastings acceptance criterion) Let xi =
{{

(θk)
i
}
k∈K

, (Φ)i
}

the

point where the MCMC is, before updating Φ.

Let
(

Φm′
)new

=
(

Φm′
)i
∀m′ = 1 . . .M (i.e. Φnew = Φi).

For each model m the algorithm computes the following:

The proposed candidate ΦC is computed using a random walk as following:

(
Φm′

)C
=


(

Φm′
)new

if m′ 6= m(
Φm′

)new
+ σmiφ · z if m′ = m

with z ∼ N
(

0,Λmiφ

)
Note that the movement is only on the parameters of model m,

so Φnew and ΦC only differs on those components. The choices of σmiφ and Λmiφ are
made by the algorithm using the adaptive part described in Appendix D, but using
this time every model m is adapted separately.

Then the acceptance probability is αimΦ = min
{

1, αΦ

(
Φnew,ΦC

)}
where:

αΦ

(
Φnew,ΦC

)
=
L
({
θik
}
k∈K ,Φ

C |Y
)
e

1
2(ΦC−µΦ)

T
Σ−1

Φ (ΦC−µΦ)

L
(
{θik}k∈K ,Φi|Y

)
e

1
2 (Φnew−µΦ)

T
Σ−1

Φ (Φnew−µΦ)

The likelihood function is the described in Equation 5.3. Let u ∼ U (0, 1). If
u < αimΦ then the candidate is accepted, i.e., Φnew = ΦC , otherwise is rejected, i.e.,
Φnew = Φnew.

Finally when the movements of all models m are either accpeted or rejected the new value of

Φ is stored Φi+1 = Φnew. Also xinew =
{{
θik
}
k∈K ,Φ

i+1
}

.xinew is not the (i + 1)’th draw of

the MCMC given that the movements on θk still have to be considered.

2. Update Σθ (Gibbs move from full conditionals)

Let:
f1 = f0 + nk

S1 =
∑
k∈K

(
θik − µiθ

) (
θik − µiθ

)T
+ S0

−1

Then the algorithm just draw from a Wishart distribution with parameters
(
f1, S1

−1
)
:(

Σi+1
θ

)−1 ∼W
(
f1, S1

−1
)

(i.e., Σi+1
θ ∼ IW (f1, S1)).
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3. Update µθ (Gibbs move from full conditionals)

Let:

θ̄ =
1

nk

∑
k∈K

θik

V1 =
[
V −1

0 + nk ·
(
Σi+1
θ

)−1
]−1

µ1 = V1

[
V −1

0 · µ0 + nk ·
(
Σi+1
θ

)−1 · θ̄
]

Then the algorithm just draw from a Multivariate Normal distribution with parameters
(µ1, V1):

µi+1
θ ∼ N (µ1, V1)

4. Update θk for each k separately (Metropolis-Hastings acceptance criterion)

For each k ∈ K the algorithm does the following:

Propose a candidate using a random walk aproach:

θck = θik + σiθk · z

with z ∼ N (0,Λiθk)

The choices of σiθk and Λiθk are made by the algorithm using the adaptive part described in
Atchadé 2006.

Then the acceptance probability is αiθk = min
{

1, αθk
(
θik, θ

c
k

)}
where:

αθk
(
θik, θ

c
k

}
=
Lk
(
θck,Φ

i+1| {Ykt}t∈T
)
e

1
2(θck−µ

i+1
θ )

T
(Σi+1

θ )
−1

(θck−µi+1
θ )

Lk
(
θik,Φ

i+1| {Ykt}t∈T
)
e

1
2(θik−µ

i+1
θ )

T
(Σi+1

θ )
−1

(θik−µ
i+1
θ )

The individual level likelihood function is the described in Equation 5.2. Let u ∼ U (0, 1). If
u < αiθk then the candidate is accepted, i.e., θi+1

k = θck, otherwise is rejected, i.e., θi+1
k = θik.

Finally, when the movements for each k are made, accepted or rejected, the algorithm gener-

ated the (i + 1)’th draw of the posterior distribution: xi+1 =
{{
θi+1
k

}
k∈K ,Φ

i+1
}

, µi+1
θ and

Σi+1
θ .
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