

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE GEOLOGÍA

OCURRENCIA Y DISTRIBUCIÓN DE MOLIBDENITA, ESFALERITA Y GALENA EN EL SISTEMA PÓRFIDO CUPRÍFERO DEL YACIMIENTO MINA MINISTRO HALES

MEMORIA PARA OPTAR AL TÍTULO DE GEÓLOGA

VIVIANA ALEJANDRA ZÚÑIGA BILBAO

PROFESOR GUÍA VICTOR MAKSAEV JURCHUC

MIEMBROS DE LA COMISIÓN

BRIAN TOWNLEY CALLEJAS RICARDO BORIC PELLERANO

> SANTIAGO DE CHILE MAYO 2012

El yacimiento Mina Ministro Hales (MMH) es un depósito tipo pórfido cuprífero con mineralización de Cu y Mo. En la porción superior desarrolló un sistema de alta sulfidización con la formación de brechas hidrotermales vetiformes con mineralización de Cu, Ag e impurezas de As. Este es un sistema en el cual está preservado el techo de alteración fílica a argílica avanzada que continúa en profundidad a un ambiente de núcleo potásico con superposición clorita-sericita. Este yacimiento está ubicado al norte de la ciudad de Calama en la II Región de Antofagasta, bajo una cubierta de gravas aluviales miocenas. Se encuentra en el lado occidental de la Falla Oeste que forma parte del Sistema de Falla Domeyko. MMH pertenece a la División Ministro Hales (DMH) de Codelco Norte.

La mineralización principal y de mayor valor económico se encuentra en la parte central de MMH. El plan de explotación actual comprende la extracción de mineral de la porción superior de MMH Central mediante rajo abierto. Este trabajo se enfoca en la parte inferior de MMH Central, para un posterior plan de extracción más profundo, dejando fuera de este estudio el sistema de alta sulfidización y brechización comprendido en la porción superior.

La determinación de la ocurrencia y distribución espacial de molibdenita, esfalerita y galena se realizo mediante análisis mineralógico calcográfico y de leyes de molibdeno, zinc y plomo. Para el estudio de distribución de leyes se incluyen análisis estadísticos y un modelamiento espacial para cada elemento en secciones de control.

La integración de los estudios mineralógicos y distribución y modelo de leyes indica que la mineralización de Zn y Pb fue introducida en las etapas tempranas de evolución del yacimiento, depositándose esfalerita y galena en y muy cerca del núcleo potásico, esto bordeando externamente la mineralización de molibdenita. Esto es contrario a lo que ocurre en otros yacimientos, donde la mineralización de Zn y Pb tiende a depositarse en zonas más periféricas y alejadas del núcleo potásico.

En la evolución temprana del yacimiento existen evidencias de eventos de alteración y mineralización asociados con varios pulsos, esto de acuerdo a dataciones en molibdenita. Según el estudio mineralógico realizado se lograron distinguir al menos dos eventos, uno sobreimpuesto al otro, bajo distintos ambientes de sulfidización. Estos pulsos se asociaron a la intrusión de distintos pórfidos que han sido mapeados y descritos previamente en el yacimiento.

La determinación de diferentes eventos de mineralización de Mo, con asociaciones de ganga distintos, tiene dos potenciales implicancias, uno genético y otro geometalúrgico. En una perspectiva genética y de exploraciones, se sugiere el sistema pudiera representar un nivel telescopeado, con potencial para exploraciones en profundidad. En una perspectiva geometalúrgica se sugieren dos tipos de mineralización de molibdenita distintos, con asociaciones minerales de ganga diferentes. Esto puede tener implicancias en la recuperación de molibdeno en planta. Estas hipótesis requieren estudios de mayor detalle para su evaluación.

i

AGRADECIMIENTOS

Agradezco enormemente a mi familia, por el apoyo y cariño que siempre me han dado. A René, quien ha sido el pilar fundamental en este periodo, le agradezco el apoyo, los consejos y por sobretodo su paciencia, cariño y compañía. A mi papá, Jaime, por esforzarse siempre para darme lo que necesité y por su cariño incondicional. A mi hermana y prima, Patricia y Katyann, que me ayudaban a relajarme en momentos tensos. A mi mamá, Patricia, que pese a la distancia siempre sentí su apoyo. Y a mi abuelo, Óscar, que fue quien me ayudo económicamente gran parte de la carrera.

A mis amigas del colegio: Maca, Dani y Pame, por su amistad y con quienes siempre es bueno recordar. A pesar del tiempo que estuvimos alejadas siempre las sentí cerca.

Agradecer a mis amigos de Geología, entre ellos: Pauli, Jepa, Irene, Javi, Alida, Cami, Chapita, Nacho, Rafa, Crispi, Juanaca, Nati, Dixie, Diego, Tincola, Rodri, Galle... y muchos otros, con quienes viví los mejores momentos de la carrera, incluyendo los terrenos en los que lográbamos unirnos cada vez más. A los profesores del departamento de geología, por enseñarme geología. A María Rosa y a Blanca por la orientación que me dieron y la paciencia que tuvieron.

A mis profesores guías, a Maksaev, por la preocupación y buena disposición que tuvo mientras estuve haciendo la memoria y a Brian por el tiempo que dedicó a mi trabajo y por las últimas correcciones, que fueron el punto final de la memoria.

Finalmente quiero agradecer a CODELCO que fue la empresa que financió casi totalmente este trabajo. A los Geólogos: Ricardo Boric, que fue mi tutor en este proceso; Jaime Díaz por haber tenido buena disposición a ayudarme cuando lo necesité; y Rafael González que fue mi apoyo en un comienzo.

ÍNDICE DE CONTENIDOS

1.	INTR	ODUCCIÓN	1
1.1.	Овл	ETIVOS	2
1	L.1.1.	GENERAL	2
1	L.1.2.	ESPECÍFICOS	2
1.2.	Uвю	CACIÓN	2
1.3.	Μετ	rodología	4
1.4.	TRA	BAJOS ANTERIORES	5
	11		E
1	4.1.	CAMPAÑAS DE SONDAIE	5
1		CAIVIT ANAS DE SONDAJE	
2.	GEOL	LOGÍA	8
2.1.	ΜΑ		8
) 1 1		0
2			
2.2.	ΜΑ	RCO GEOLÓGICO LOCAL	14
2	2.2.1.	LITOLOGÍA	15
2	2.2.2.	ESTRUCTURAS	21
2	2.2.3.	ALTERACIÓN Y MINERALIZACIÓN	23
2	ΔΝΤΕ	ECEDENTES TEÓRICOS	27
э.			
3.1.	Mo	LIBDENO	27
3.2.	ZINC	с у Рьомо	28
4.	RESU	ILTADOS	30
4.1.	Aná	ÁLISIS A CORTES PULIDOS	
4	1.1.1.	MOUBDENITA	
4	l.1.2.	ESFALERITA	
4	l.1.3.	GALENA	39
1.1.	Aná	ÁLISIS ESTADÍSTICOS	40
4	1.1.4.	Análisis por sección	40
4	l.1.5.	BLOQUE OESTE MMH CENTRAL	48
4.2.	Mo	DELOS DE DISTRIBUCIÓN ESPACIAL BASADOS EN LEYES	54

	4.2.1.	MOLIBDENO	55	
	4.2.2.	ZINC	65	
	4.2.3.	Plomo	75	
5.	DISC	USIONES		
5.1	. Alt	ERACIÓN Y MINERALIZACIÓN EN BASE A ESTUDIOS PETRO Y CALCOGRÁFICOS	85	
	Sección	24800	86	
	Sección	₹25400		
	Sección	ا 26200	88	
5.2	. Мо	DELOS	91	
5.3	. Eve	NTOS DE MINERALIZACIÓN	91	
6.	CON	CLUSIONES Y RECOMENDACIONES	94	
REFERENCIAS				
AN	EXOS		101	
ΔΝΙ	ΓΧΟ Δ			
,				
AN	EXO B	GRÁFICOS	117	
A			1 7 1	
AN		I ADLAS DE GRAFICOS		

ÍNDICE DE FIGURAS

FIGURA 1. UBICACIÓN DEL YACIMIENTO MMH RESPECTO A LA CIUDAD DE CALAMA Y OTROS YACIMIENTOS CERCANOS. MMH NORTE, CENTRAL Y SUR ENCERRADOS CON BLANCO
Figura 2. Ubicación de los sondajes de cada campaña hecha después del 2000 y de las secciones de control para este trabajo en MMH Central
FIGURA 3. MAPA DE LA GEOLOGÍA DISTRITAL (MODIFICADO DE EM S.A., 2008)
FIGURA 4. LITOLOGÍA DE MMH CENTRAL (DÍAZ, 2010)15
FIGURA 5. FALLAS IMPORTANTES EN MMH CENTRAL. ESQUEMA EN SUPERFICIE
FIGURA 6. MINERALIZACIÓN DE MMH CENTRAL. VISTA EN PLANTA DEL NIVEL 2200 Y VISTA EN SECCIÓN TIPO 25400 (DÍAZ, 2010)
FIGURA 7. UBICACIÓN DE LOS CORTES PULIDOS CERCANOS A LA SECCIÓN 24800. LOS SONDAJES DD5245 Y DD8564 SE UBICAN EN LA SECCIÓN 25000 Y EL SONDAJE DD8551 SE UBICA EN LA SECCIÓN 24600
FIGURA 8. UBICACIÓN DE CORTES PULIDOS DESCRITOS CERCANOS A LA SECCIÓN 25400 (MARCADOS CON ROJO). LOS SONDAJES DD3171, DD3266, DD4890, DD5100 Y DD8552 SE UBICAN EN LA SECCIÓN 25400 Y EL SONDAJE DD3170 SE UBICA EN LA SECCIÓN 25600
FIGURA 9. UBICACIÓN DE CORTES PULIDOS DESCRITOS CERCANOS A SECCIÓN 26200 (MARCADOS CON ROJO). LOS SONDAJES DD3167, DD3336 Y DD8556 SE UBICAN EN LA SECCIÓN 26200 Y LOS SONDAJES DD3173, DD3203 Y DD4976 SE UBICAN EN LA SECCIÓN 25800
FIGURA 10. ASOCIACIÓN CALCOPIRITA-MOLIBDENITA, NÍCOLES PARALELOS. SONDAJE DD4976, MUESTRA 864,934
FIGURA 11. VETILLA DE CALCOPIRITA CON BORDES DE MOLIBDENITA DONDE LA ESFALERITA ESTÁ REMPLAZANDO A LA CALCOPIRITA. NÍCOLES PARALELOS. SONDAJE DD4890, MUESTRA 747,7
FIGURA 12. ASOCIACIÓN CALCOPIRITA-MOLIBDENITA. SONDAJE DD4890, MUESTRA 747,735
FIGURA 13. VETILLA DE PIRITA CON BORDE DE MOLIBDENITA-CALCOPIRITA DONDE LA CALCOPIRITA RELLENA ESPACIOS EN PIRITA, POR LO QUE LA CALCOPIRITA-MOLIBDENITA DEBERÍA SER POSTERIOR. NÍCOLES PARALELOS. SONDAJE DD5100, MUESTRA 465,8
FIGURA 14. ASOCIACIÓN ESFALERITA-BORNITA-GALENA. NÍCOLES PARALELOS. SONDAJE DD3173, MUESTRA 910,436
FIGURA 15. ASOCIACIÓN ESFALERITA-PIRITA JUNTO A BORNITA-CALCOPIRITA. NÍCOLES PARALELOS. SONDAJE DD3171, MUESTRA 293

FIGURA 19. ASOCIACIÓN ESFALERITA-GALENA, DONDE LA CALCOPIRITA ESTÁ REMPLAZANDO A ESFALERITA, ADEMÁS LA ESFALERITA TIENE UNA INCLUSIÓN DE CALCOPIRITA. NÍCOLES PARALELOS. SONDAJE DD3171, MUESTRA 293,5......38

- FIGURA 22. MODELO DE LA DISTRIBUCIÓN DEL MOLIBDENO PARA LEYES SOBRE LOS 80 PPM. SECCIÓN 24800.56

- FIGURA 31. MODELO DE LA DISTRIBUCIÓN DEL ZINC PARA LEYES SOBRE LOS 200 PPM. SECCIÓN 24800......66

FIGURA 33. MODELO DE LA DISTRIBUCIÓN DE ZINC PARA LEYES SOBRE LOS 200 PPM. ADEMÁS SE MUESTRAN LAS ALTERACIONES Y ESTRUCTURAS. SECCIÓN 24800
FIGURA 34. MODELO DE LA DISTRIBUCIÓN DEL ZINC PARA LEYES SOBRE LOS 200 PPM. SECCIÓN 2540069
FIGURA 35. MODELO DE LA DISTRIBUCIÓN DEL ZINC PARA LEYES SOBRE LOS 200 PPM. ADEMÁS SE MUESTRAN LAS ESTRUCTURAS Y LITOLOGÍA. SECCIÓN 25400
FIGURA 36. MODELO DE LA DISTRIBUCIÓN DE ZINC PARA LEYES SOBRE LOS 200 PPM. ADEMÁS SE MUESTRAN LAS ALTERACIONES Y ESTRUCTURAS. SECCIÓN 25400
FIGURA 37. MODELO DE LA DISTRIBUCIÓN DEL ZINC PARA LEYES SOBRE LOS 200 PPM. SECCIÓN 2480072
FIGURA 38. MODELO DE LA DISTRIBUCIÓN DEL ZINC PARA LEYES SOBRE LOS 200 PPM. ADEMÁS SE MUESTRAN LAS ESTRUCTURAS Y LITOLOGÍA. SECCIÓN 2620073
FIGURA 39. MODELO DE LA DISTRIBUCIÓN DE ZINC PARA LEYES SOBRE LOS 200 PPM. ADEMÁS SE MUESTRAN LAS ALTERACIONES Y ESTRUCTURAS. SECCIÓN 26200
FIGURA 40. MODELO DE LA DISTRIBUCIÓN DEL PLOMO PARA LEYES SOBRE LOS 150 PPM. SECCIÓN 2480076
FIGURA 41. MODELO DE LA DISTRIBUCIÓN DEL PLOMO PARA LEYES SOBRE LOS 150 PPM. ADEMÁS SE MUESTRAN LAS ESTRUCTURAS Y LITOLOGÍA. SECCIÓN 24800
FIGURA 42. MODELO DE LA DISTRIBUCIÓN DE PLOMO PARA LEYES SOBRE LOS 150 PPM. ADEMÁS SE MUESTRAN LAS ALTERACIONES Y ESTRUCTURAS. SECCIÓN 24800
FIGURA 43. MODELO DE LA DISTRIBUCIÓN DEL PLOMO PARA LEYES SOBRE LOS 150 PPM. SECCIÓN 2540079
FIGURA 44. MODELO DE LA DISTRIBUCIÓN DEL PLOMO PARA LEYES SOBRE LOS 150 PPM. ADEMÁS SE MUESTRAN LAS ESTRUCTURAS Y LITOLOGÍA. SECCIÓN 2540080
FIGURA 45. MODELO DE LA DISTRIBUCIÓN DE PLOMO PARA LEYES SOBRE LOS 150 PPM. ADEMÁS SE MUESTRAN LAS ALTERACIONES Y ESTRUCTURAS. SECCIÓN 25400
FIGURA 46. MODELO DE LA DISTRIBUCIÓN DEL PLOMO PARA LEYES SOBRE LOS 150 PPM. SECCIÓN 2620082
FIGURA 47. MODELO DE LA DISTRIBUCIÓN DEL PLOMO PARA LEYES SOBRE LOS 150 PPM. ADEMÁS SE MUESTRAN LAS ESTRUCTURAS Y LITOLOGÍA. SECCIÓN 2620083
FIGURA 48. MODELO DE LA DISTRIBUCIÓN DE PLOMO PARA LEYES SOBRE LOS 150 PPM. ADEMÁS SE MUESTRAN LAS ALTERACIONES Y ESTRUCTURAS. SECCIÓN 26200
FIGURA 49. LOS CAMPOS DEFINIDOS Y ESCRITOS CON NÚMEROS ROMANOS POR MEYER Y HEMLEY SON: I. COVELINA,

FIGURA 49. LOS CAMPOS DEFINIDOS Y ESCRITOS CON NUMEROS ROMANOS POR MIEYER Y HEMLEY SON: I. COVELINA, DIGENITA, CALCOSINA, Y PIRITA CON ALTERACIÓN ARGÍLICA AVANZADA O SERICÍTICA; II. CALCOCINA, BORNITA, PIRITA, O CALCOPIRITA, BORNITA, PIRITA CON ALTERACIÓN SERICÍTICA ZONADA Y ARGÍLICA INTERMEDIA; III. CALCOPIRITA-

FIGURA 50. DELIMITACIÓN DE ZONAS EN LA PARTE PROFUNDA DEL YACIMIENTO, DE ACUERDO A LAS ASOCIACIONES VISTAS				
en los cortes pulidos. Figura basada en Figura 787				
FIGURA 51. DELIMITACIÓN DE ZONAS EN LA PARTE PROFUNDA DEL YACIMIENTO, DE ACUERDO A LAS ASOCIACIONES VISTAS				
en los cortes pulidos. Figura basada en Figura 888				
FIGURA 52. DELIMITACIÓN DE ZONAS EN LA PARTE PROFUNDA DEL YACIMIENTO, DE ACUERDO A LAS ASOCIACIONES VISTAS				
en los cortes pulidos. Figura basada en Figura 989				
FIGURA 53. DIAGRAMA QUE RELACIONA DISTINTOS TIPOS DE SISTEMAS HIDROTERMALES Y ASOCIACIONES DE MINERALES				
con el estado de sulfidización (Einaudi <i>et al</i> . 2003)90				
FIGURA 54. ZONACIÓN GENERALIZADA DE ALTERACIÓN-MINERALIZACIÓN (SILLITOE, 2010)				

ÍNDICE DE GRÁFICOS

GRÁFICO 1. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE MO, PB Y ZN VS ALTITUD. SECCIÓN 2480041
Gráfico 2. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn vs coordenadas este. Sección 24800
GRÁFICO 3. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE MO, PB Y ZN VS ALTITUD. SECCIÓN 2540043
Gráfico 4. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn vs coordenadas este. Sección 25400
GRÁFICO 5. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE MO, PB Y ZN VS ALTITUD. SECCIÓN 2620045
Gráfico 6. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn vs coordenadas este. Sección 26200
GRÁFICO 7. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE MO, PB Y ZN VS COORDENADAS NORTE47
 GRÁFICO 8. LEYES MEDIAS DE MO, PB Y ZN VS LITOLOGÍA. VC: VOLCANITAS, AND: ANDESITAS, GND: GRANODIORITA MM, POF: PÓRFIDO FELDESPÁTICO, DPD: DIQUES PÓRFIDO DACÍTICOS, POC: PÓRFIDO CUARCÍFERO, PM: PÓRFIDO MM, BH: BRECHAS HIDROTERMALES, ROC: ROCA CIZALLADA. LA TABLA 9 DEL ANEXO C ES LA UTILIZADA PARA EL GRÁFICO
GRÁFICO 9. LEYES MEDIAS DE MO, PB Y ZN VS ALTERACIONES. LA TABLA 10 DEL ANEXO C ES LA UTILIZADA PARA EL GRÁFICO
GRÁFICO 10. LEYES MEDIAS DE MO, PB Y ZN VS ASOCIACIONES DE SULFUROS. BO: BORNITA, CP: CALCOPIRITA, CC: CALCOSINA, PY: PIRITA, EN: ENARGITA, DG: DIGENITA, CV: COVELINA. LA TABLA 11 DEL ANEXO C ES LA UTILIZADA PARA EL GRÁFICO
GRÁFICO 11. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE MO, PB Y ZN EN FUNCIÓN DE RANGOS DE AS. LA TABLA 12 DEL ANEXO C ES LA UTILIZADA PARA EL GRÁFICO
GRÁFICO 12. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE MO Y AS VS ALTITUD. SECCIÓN 25400. LA TABLA 13 DEL ANEXO C ES LA UTILIZADA PARA EL GRÁFICO
GRÁFICO 13. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE AS, PB Y ZN VS ALTITUD. SECCIÓN 24800. LA TABLA 14 DEL ANEXO C ES LA UTILIZADA PARA EL GRÁFICO
GRÁFICO 14. MEDIA ARITMÉTICA Y DESVIACIÓN ESTÁNDAR DE LEYES DE MO, PB Y ZN EN FUNCIÓN DE RANGOS DE CUT. LA TABLA 15 DEL ANEXO C ES LA UTILIZADA PARA EL GRÁFICO

- GRÁFICO 19. GRÁFICO LOG-PROBABILÍSTICO DE LEYES DE PB. LAS LÍNEAS ROJAS CONTINUAS MUESTRAN POBLACIONES DE DATOS Y LA INTERSECCIÓN DE ESTAS LÍNEAS DEFINE UN QUIEBRE EN LA LEY DE PB. LOS QUIEBRES SON APROXIMADAMENTE 150 Y 900 PPM, DONDE HAY APROXIMADAMENTE UN 40% DE DATOS CON LEY BAJO 150 PPM, UN 50% DE LOS DATOS CON LEYES ENTRE 150 Y 900 PPM Y UN 10% DE LOS DATOS CON LEYES SOBRE 900 PPM DE PB. BLOQUE OESTE.
- GRÁFICO 20. GRÁFICO LOG-PROBABILÍSTICO DE LEYES DE ZN. LAS LÍNEAS ROJAS CONTINUAS MUESTRAN POBLACIONES DE DATOS Y LA INTERSECCIÓN DE ESTAS LÍNEAS DEFINE UN QUIEBRE EN LA LEY DE PB. LOS QUIEBRES SON APROXIMADAMENTE 200 Y 2000 PPM, DONDE HAY APROXIMADAMENTE UN 40% DE DATOS CON LEYES ENTRE 200 Y 2000 PPM Y UN 20% DE LOS DATOS CON LEYES SOBRE 2000 PPM DE ZN. BLOQUE OESTE.

1. INTRODUCCIÓN

El yacimiento Mina Ministro Hales (MMH) anteriormente conocido como Mansa Mina (MM) se ubica debajo de una cubierta de gravas aluviales miocenas 7 km al norte de la ciudad de Calama. Fue descubierto en 1967 por la Chile Exploration Company, que era la subsidiaria en Chile de la Minera Anaconda, dueña en ese entonces del vacimiento Chuquicamata. El descubrimiento resultó de una de las perforaciones de un programa de condenación diseñado para localizar los botaderos de Mina Sur (en ese entonces Mina Exótica), la que intersectó mineralización de sulfuros en el extremo norte del depósito MMH. Trabajos posteriores de Codelco en 1978 incluyeron un levantamiento geofísico de polarización inducida y perforaciones poco profundas. Las perforaciones definieron un cuerpo vetiforme y elongado en el lado occidental de la Falla Oeste, con mineralización de cobre del orden de 1 millón de toneladas con 2% Cu (Alvarez y Miranda, 1991). En 1990-1992 se realizó un extenso programa de sondajes profundos (~35.000 m) para definir el cuerpo mineralizado de MMH más al sur de la zona inicialmente perforada. En 1993-1994 se excavó un pique vertical de 315 m y 2.250 m de túneles en dos niveles en la zona principal de mineralización, lo que permitió mapeo y muestreo de detalle subterráneo, además de muestreo para propósitos metalúrgicos. Se completaron 116.206 m de sondajes y 2.374 m de galerías y piques para 1997.

MMH pertenece a la División Ministro Hales (DMH) de Codelco Norte y es un yacimiento tipo pórfido cuprífero con mineralización de cobre y molibdeno, que en la porción superior desarrolló un sistema de alta sulfidización con la formación de brechas hidrotermales vetiformes con mineralización de cobre, plata e impurezas de arsénico. Este yacimiento forma parte de un grupo de depósitos alineados en sentido norte-sur controlados por el Sistema de Falla Domeyko. Se divide en MMH Norte, Central y Sur, con la mineralización principal y de mayor valor económico ubicada en MMH Central. Este trabajo se enfoca en la porción inferior de MMH central, es decir en el sistema pórfido cuprífero con alteración-mineralización temprana. Se deja fuera de los alcances de este estudio el sistema de alta sulfidización y brechización.

El plan de explotación comprende la extracción de mineral mediante rajo. Los recursos calculados en el 2009, alcanzan a 1.059 Mt con 0,945% Cu, a una ley de corte de 0,2%, 13 g/t de Ag, 73 ppm Mo y 451 ppm As.

1.1. Objetivos

1.1.1. General

Determinar la ocurrencia e inferir la distribución espacial de molibdenita, esfalerita y galena de la porción profunda de MMH Central a través del estudio de cortes pulidos, análisis estadísticos y modelamiento de la distribución espacial de las leyes de molibdeno, zinc y plomo.

1.1.2. Específicos

- A partir de la descripción de cortes pulidos, definir las asociaciones paragenéticas con las que están relacionadas la molibdenita, esfalerita y galena en la parte profunda del yacimiento.
- Establecer gráficamente la distribución de las leyes de molibdeno, plomo y zinc en función de las coordenadas del yacimiento.
- Hacer modelos de distribución espacial de las mayores concentraciones (en base a leyes) de Mo, Zn y Pb para inferir la distribución y presencia de molibdenita, esfalerita y galena, respectivamente.
- Integrar dichos modelos de distribución con la litología, alteración y estructuras del yacimiento, para definir los factores que controlan la presencia de molibdenita, esfalerita y galena.
- Definir las condiciones de formación de estos minerales y la temporalidad de eventos involucrados en su formación.

1.2. Ubicación

MMH está ubicada 7 km al sur de Chuquicamata y 7 km al norte de Calama bajo depósitos aluviales. Se encuentra entre las coordenadas UTM 7.530.000 - 7.523.000 N y 507.000 - 510.000 E (Figura 1). El límite oriental del yacimiento es la Falla Oeste, siendo esta falla el principal rasgo estructural del depósito, que forma parte del Sistema de Falla Domeyko. El yacimiento se extiende en sentido norte – sur con una longitud de 7 km, en sentido este – oeste con un ancho de 200 a 320 m y en profundidad alcanza los 1200 m.s.n.m. aproximadamente.

El enfoque de este trabajo es la parte inferior del bloque oeste de MMH Central. El bloque oeste es la parte occidental del yacimiento, limitado al oriente por la Falla Oeste. MMH Central está limitado por las coordenadas UTM 7.524.400 al sur y 7.526.450 al norte.

Figura 1. Ubicación del yacimiento MMH respecto a la ciudad de Calama y otros yacimientos cercanos. MMH Norte, Central y Sur encerrados con blanco.

1.3. Metodología

La primera fase del trabajo consistió en buscar y recopilar información útil de MMH y del distrito, esto para realizar el marco geológico del lugar, utilizando principalmente trabajos anteriores del yacimiento realizados por Codelco.

Luego se realizó una investigación de los elementos de interés y los sulfuros asociados con la finalidad de reconocer las condiciones de formación, las asociaciones minerales más comunes y la ocurrencia típica. Esto con el objetivo de poder establecer relaciones y asociaciones con los eventos de mineralización y alteración de este yacimiento.

La etapa fundamental del trabajo corresponde a la descripción de la ocurrencia de molibdenita, esfalerita y galena, y a la elaboración de modelos de leyes que se desarrollarán en tres secciones representativas del yacimiento. Estas secciones de control se eligieron en función de su ubicación y de la cantidad de datos que llevan asociados en profundidad. Las secciones elegidas son la 24800, 25400 y 26200 (Figura 2).

La descripción de la ocurrencia de molibdenita, esfalerita y galena se hizo mediante el análisis de cortes pulidos obtenidos de testigos de sondaje. Las muestras se escogieron de la parte profunda del yacimiento principalmente y cercanos a las secciones de control, la ubicación de estas se detalla en el capítulo de resultados.

También se realizó un análisis de datos utilizando principalmente las leyes de los testigos de sondajes, esto con la finalidad de ver y demostrar la relación de Mo, Zn y Pb con otros elementos presentes y para demostrar también la abundancia de estos elementos en ciertas litologías, alteraciones y asociaciones. Este análisis quedará representado por gráficos hechos con el software Statistica 7.1.

Los modelos se desarrollaron en base a los análisis de leyes hechos a testigos de sondajes de las secciones elegidas. Se utilizó el software Gemcom GEMS 6.1.4 para el procesamiento de los datos y para la elaboración de los modelos mencionados.

Finalmente, con los resultados obtenidos, se determinó la ocurrencia, la temporalidad de eventos de mineralización de la etapa temprana de intrusión de pórfidos, y también se determinó a qué eventos está asociada la formación de la molibdenita, esfalerita y galena. Además se entregan conclusiones y discusiones de los resultados obtenidos en este trabajo.

1.4. Trabajos anteriores

1.4.1. Antecedentes de modelos geológicos y de estimación

La Superintendencia de Geología de la División Chuquicamata llevó a cabo en 1993 el primer modelo geológico y de estimación. El plan minero realizado durante la estimación de 1993 por la Subgerencia de Recursos Lixiviables de Chuquicamata, contemplaba explotar mediante rajo abierto 2,2 Mt de cobre fino aproximadamente (Lowell, D., 1993).

En diciembre de 1995, Sergio Rivera realizó un nuevo modelo geológico a escala 1:1000 en un total de 28 secciones este – oeste (Rivera, S., 1995). Con este modelo geológico como base, se efectuaron entre 1996 y 1998, varias estimaciones por métodos geoestadísticos, los que indicaron un potencial de recursos variables entre 475 Mt y 584 Mt (Muller y Quiroga, 2000).

En junio de 2000, Muller con la asesoría de Quiroga, entregó un modelo geológico actualizado del yacimiento, basado en la interpretación geológica detallada, escala 1:500, de 6 secciones de control. Además en este mismo año, gracias a los registros geológicos de la mineralización, se definieron unidades geológicas de estimación (UGE) que permitieron una nueva estimación geoestadística de recursos para MMH Central. Esta estimación indicó recursos de 511 Mt con 1,04 % CuT, 776 ppm As y 18 g/t Ag (para una ley de corte de 0,25 % Cu) (Muller y Quiroga, 2000).

En 2003 se actualizó el modelo geológico con la creación de 88 secciones este – oeste, con interpretación de litología, estructuras, alteración, UGEs y pisos de óxidos, mixtos y alto arsénico. Se realizó también una nueva estimación de recursos para MMH Central que indicó 875 Mt con 1,04 % CuT a una ley de corte de 0,25 % Cu.

En 2006 y 2009 se realizaron los últimos informes de modelos geológicos, "Modelo Geológico Julio 2006" e "Informe Modelo Geológico MMH Central Junio 2009" (Díaz, J., 2009), este último incluye la última estimación de recursos, realizada en 2009.

1.4.2. Campañas de sondaje

Para este trabajo se cuenta con la información de 955 sondajes que suman 243.577,53 metros (Tabla 1 y Figura 2). Actualmente se está realizando una nueva campaña de sondajes que no será incluida en este trabajo.

	SONDAJES PERFORADOS EN MMH CENTRAL	
CAMPANA Y TIPO DE SONDAJE	METROS PERFORADOS	POZOS
C 2000	57.547,86	206
AIRE REVERSO GEOLÓGICO (AR)	1.018,5	7
DIAMANTINA GEOLÓGICO (DD)	56.529,36	199
C 2001	47.966,82	174
AIRE REVERSO GEOTÉCNICO (AG)	1.123,4	7
DIAMANTINA GEOLÓGICO (DD)	44.759,92	159
DIAMANTINA GEOTÉCNICO (DG)	2.083,5	8
C2003	32.985,75	98
DIAMANTINA GEOLÓGICO (DD)	21.039,55	61
DIAMANTINA GEOTÉCNICO (DG)	10.218,5	33
DIAMANTINA METALÚRGICO (DM)	1.727,7	4
C 2004	3.174,15	14
DIAMANTINA GEOLÓGICO (DD)	3.174,15	14
C 2005	28.379,55	130
AIRE REVERSO GEOLÓGICO (AR)	3.540	32
DIAMANTINA GEOLÓGICO (DD)	16.334,9	60
DIAMANTINA GEOTÉCNICO (DG)	8.504,65	38
C2008	8.242	37
DIAMANTINA GEOTÉCNICO (DG)	8.242	37
C2009	65.281,4	296
AIRE REVERSO GEOLÓGICO (AR)	1.056	20
DIAMANTINA GEOLÓGICO (DD)	50.905,3	220
DIAMANTINA GEOTÉCNICO (DG)	13.320,1	56
TOTAL	243.577,53	955

Tabla 1. Información de campañas de sondaje en MMH Central.

Figura 2. Ubicación de los sondajes de cada campaña hecha después del 2000 y de las secciones de control para este trabajo en MMH Central.

2. GEOLOGÍA

A escala regional el área estudiada consta de tres zonas longitudinales con características geológicas y estructurales distintivas (Tomlinson *et al.*, 2001):

- La porción oriental, que corresponde a parte del Cordón Volcánico del Terciario Superior-Cuaternario (Zona Volcánica Central de Los Andes) constituida por estratovolcanes e ignimbritas, con escasa o nula deformación tectónica, ubicada en el sector limítrofe entre Chile y Bolivia.
- 2) La porción central (Sierra del Medio) constituida por rocas del Carbonífero Superior-Pérmico, tanto volcánicas (andesitas-riolitas) como intrusivas de dimensiones batolíticas. Este núcleo de basamento paleozoico, presenta fallas transcurrentes de rumbo noroeste y norte-sur y hospeda a los pórfidos cupríferos mayores de la región. El límite occidental lo constituye el Sistema de la Falla Oeste.
- 3) La porción occidental que incluye una variedad de rocas paleozoicas (y posiblemente prepaleozoicas) mesozoicas y cenozoicas, se caracteriza por presentar fallas inversas de rumbo cercano a los meridianos, las cuales elevan bloques de rocas paleozoicas sobre secuencias mesozoicas y cenozoicas.

2.1. Marco geológico distrital

En el distrito de Chuquicamata se explotan mediante rajo abierto los mega-yacimientos del tipo pórfido cuprífero Chuquicamata, Radomiro Tomic (RT) y también el depósito de cobre exótico Expansión Norte Mina Sur (ENMS). Estos tres yacimientos se encuentran al oriente de la Falla Oeste. Además hay otros yacimientos del tipo pórfido cuprífero en el distrito, estos son Mina Ministro Hales (MMH) y los depósitos del cluster Toki: Toki, Genoveva, Quetena, Miranda y Opache, que están ubicados al poniente de la Falla Oeste.

De estos yacimientos, Chuquicamata, RT y MMH están alineados en una franja de orientación paralela a la Falla Oeste (N 10 – 15° E). Esta falla es el rasgo estructural principal en el depósito que divide dos ambientes geológicos. La intrusión de pórfidos ocurrió en el Eoceno Medio a Oligoceno Inferior. Los depósitos más antiguos son los que del Cluster Toki y MMH que se deben a intrusiones entre los 39 a 38 Ma (Eoceno Medio), en cambio los más jóvenes son

Chuquicamata y RT asociados al emplazamiento del Complejo Intrusivo Chuquicamata a los 35 a 33 Ma (Eoceno Superior a Oligoceno Inferior).

2.1.1. Litología

En esta sección se describe la litología y estructuras que rodean al sector de MMH, considerando los afloramientos del cuadrángulo comprendido entre los $22^{\circ}30' - 22^{\circ}15'$ S (7.512.000 – 7.539.000 N) y los $69^{\circ}00' - 68^{\circ}45'$ (500.000 – 525.000 E) (Figura 3).

En esta zona se distinguen dos ambientes, uno oriental y otro occidental, separados por el Sistema de la Falla Oeste. En la parte oriental predominan rocas volcánicas e intrusivas estériles (Granodiorita Este, Granodiorita Elena, Estratos de Cerros de Chuquicamata, Complejo Metaplutónico de Cerros de Chuquicamata), en cambio, en la parte occidental predominan rocas intrusivas del Eoceno (Complejo Diorítico los Picos y Complejo Granodiorítico Fortuna) y afloramientos menores de rocas volcano-sedimentarias del Triásico al Paleoceno (Formación Collahuasi, Estratos de Quetena, Grupo Caracoles, Formación Quebrada Mala e Icanche). Los depósitos cuaternarios presentes en la zona son: depósitos aluviales antiguos y activos, depósitos fluviales y de ciénagas antiguos y activos, depósitos de derrumbe, y suelos.

Complejo Metamórfico Limón Verde (sensu Hervé et al., 1985)

Esquistos de muscovita, compuestos principalmente de muscovita y cuarzo, con porfiroblastos redondeados de granate alterado. Afloran en la ladera norte del cañón del río San Salvador, este complejo no aflora en el sector (no está en la Figura 3). El metamorfismo se produjo en el Pérmico (Lucassen *et al.*, 1999a).

Complejo Metaplutónico de Cerros de Chuquicamata (Carbonífero Superior – Pérmico) (Marinovic y Lahsen, 1984, enmend. Tomlinson *et al.*, 2010)

Este complejo presenta tres unidades en la zona: la primera está constituida principalmente por dioritas y dioritas cuarcíferas de hornblenda y biotita, localmente gneisicas, y esquistos de hornblenda y biotita migmatíticas, está intruida por los Granitoides del Triásico; la segunda unidad está compuesta por tonalitas de biotita, leucocráticas, inequigranulares, de grano medio a grueso, corresponde a la Tonalita Cere; la tercera unidad son monzogranitos y metagranitos leucocráticos de microclina y biotita, de grano medio a grueso, generalmente con leve fábrica gnéisica (Figura 3). Corresponde al Granito Mesa, *ca.* 297 Ma, está intruida por la primera unidad.

Figura 3. Mapa de la geología distrital (modificado de EM S.A., 2008).

Rocas intrusivas

Pórfidos hipabisales del Carbonífero Superior – Pérmico (Tomlinson et al., 2010)

Filones y stocks pequeños de pórfidos andesíticos y microdioríticos de piroxeno, de grano medio y textura seriada e intergranular. Afloran en el sector este del cerro Quetena e intruyen a la Formación Collahuasi (por escala no aparece en Figura 3).

Granitoides del Triásico

Hay tres unidades diferenciables que en trabajos anteriores a la Carta de Calama (2010) se dividían en más. Estas 3 unidades se describen a continuación:

La primera está constituida por diques y cuerpos irregulares de pórfido micromonzodiorítico de hornblenda, con variaciones desde microdiorita y diorita cuarcífera, de grano medio a fino, con fenocristales de plagioclasa y hornblenda, y en algunos cuerpos escaso cuarzo. Intruye a la Granodiorita Este y al Complejo Metaplutónico de Cerros de Chuquicamata; la segunda son diques y cuerpos irregulares de pórfidos granodioríticos de hornblenda y biotita, de grano medio. Presenta ojos de cuarzo e intruye a la Granodiorita Este y al Complejo Metaplutónico de Cerros de Chuquicamata; la tercera está constituida por granodioritas de biotita y hornblenda, generalmente equigranulares de grano medio. Corresponde a la Granodiorita Este, ca. 229 Ma, situada al este de la Falla Mesabi, a la Granodiorita Elena, ca. 232 Ma, al oeste de dicha falla, y a la Granodiorita MM 224 – 229 Ma, ubicada en la subsuperficie de los yacimientos MMH y Miranda (Figura 3).

Pórfidos Hipabisales del Cretácico Superior

Presenta dos unidades diferenciables: la primera unidad es un stock de pórfido microgranodiorítico - dacítico de hornblenda, con abundantes fenocristales de plagioclasa, hornblenda y ojos de cuarzo, en masa fundamental microfelsítica o aplítica; la segunda unidad corresponde a stocks pequeños de pórfidos andesíticos y microdioríticos de hornblenda y piroxeno subordinado, de grano medio a fino, *ca*. 68 Ma, afloran en el sector de Cerro Quetena e intruyen a calizas del Grupo Caracoles.

<u>Complejo Monzonítico-monzodiorítico Los Picos</u> (45 – 42 Ma) (Thomas, 1978, enmend. Tomlinson y Blanco, 2008)

Extenso complejo intrusivo que se dispone en la parte occidental del cuadrángulo descrito en este trabajo. Está compuesto por numerosos plutones cuya composición varía de dioritas a monzodioritas cuarcíferas y monzonitas cuarcíferas, con augita y biotita como máficos principales. Tiene dos unidades: Monzodiorita Cuarcífera Aralar (43 – 42 Ma) (Tomlinson y Blanco, 2008) y Monzonita Cuarcífera Genoveva (45 – 43 Ma) (Tomlinson y Blanco, 2008). Ambas tienen variaciones en la textura que va de equigranular a porfídica (Figura 3).

<u>Complejo Granodiorítico Fortuna</u> (Eoceno Medio, 40-37 Ma) (Ambrus, 1979, enmend. Dilles *et al.*, 1997; Tomlinson *et al.*, 2001)

Complejo intrusivo comagmático, principalmente granodiorítico, relacionado a la génesis de mineralización y alteración hidrotermal (Figura 3). Las unidades de este complejo desde la más joven a la más antigua son: Pórfidos Granodioríticos San Lorenzo (38 – 37 Ma) (Marinovic y Lahsen, 1984, enmend. Dilles *et al.*, 1997; Tomlinson *et al.*, 2001), Aplitas y Pórfidos Aplíticos Tetera (39 – 37 Ma) (Dilles *et al.*, 1997; Tomlinson *et al.*, 2001), Granodiorita Fiesta (39 – 37 Ma) (Ambrus, 1979, enmend. Dilles *et al.*, 1997; Tomlinson *et al.*, 2001), Granodiorita Antena (40 – 39 Ma) (Ambrus, 1979).

<u>Complejo Intrusivo Chuquicamata</u> (Eoceno Superior – Oligoceno Inferior, 36 – 31 Ma) (Ambrus, 1979; enmend. Ossandon *et al.*, 2001)

Complejo intrusivo comagmático, granodiorítico y granítico relacionado a la génesis de la mineralización y alteración hidrotermal del yacimiento Chuquicamata. Presenta cinco unidades diferenciables: Rocas cuarzo sericíticas brechizadas, en las que el protolito se encuentra obliterado; el **Pórfido Blanco** (*ca.* 34 – 33 Ma) que corresponde a cuerpos filoneanos de pórfidos monzograníticos; un **pórfido de 'textura fina'**, que es un pórfido granítico fino, de textura hipidiomórfica granular; el **Pórfido Oeste** (*ca.* 34 – 33 Ma) que es un pórfido monzogranítico de grano medio con fenocristales de plagioclasa, feldespato potásico, ojos de cuarzo y biotita, en masa fundamental aplítica fina de cuarzo y feldespato potásico; el **Pórfido Este** (*ca.* 36 – 35 Ma) que es una granodiorita de grano medio y textura granítica – inequigranular a porfídica saturada, con abundantes fenocristales de plagioclasa, cuarzo deformado, biotita, escasa anfíbola y megacristales de feldespato potásico y biotita (Figura 3).

Rocas volcánicas y sedimentarias

<u>Formación Collahuasi</u> (Carbonífero Superior – Pérmico) (Vergara, 1978, enmend. Vergara y Thomas, 1984)

Secuencia principalmente volcánica, de aspecto macizo, mal estratificada. Compuesta por lavas y brechas andesíticas de piroxeno y hornblenda, lavas riolíticas de biotita, con ojos de cuarzo y bandeamiento de flujo. La secuencia también presenta rocas sedimentarias, principalmente areniscas, limolitas laminadas, fangolitas negras, y localmente conglomerados finos y litarenitas gruesas (Figura 3).

Estratos de Quetena (Triásico Medio) (Lira, 1989; enmend. Carta Calama 2010)

Secuencia sedimentaria continental, mal estratificada de conglomerados y areniscas gruesas compuestos de clastos de esquistos de muscovita, cuarzo y muscovita detrítica (Figura 3).

Estratos de Cerros de Chuquicamata (Triásico Medio - Triásico Superior)

Secuencia volcánica y sedimentaria continental, conformada por lavas y brechas andesíticas, y subordinadamente, dacitas, riolitas y niveles de conglomerados y areniscas volcanoclásticas (Figura 3).

<u>Grupo Caracoles</u> (Jurásico) (García, 1967; ampliado Ramirez y Gardeweg, 1982; Marinovic y Lahsen, 1984)

Constituido por calizas, calcilutitas, lutitas, areniscas calcáreas, y calcarenitas con fósiles marinos (Figura 3).

Formación Cerritos Bayos (Jurásico Superior - Cretácico Inferior) (García, 1967)

Compuesta por areniscas, limolitas y fangolitas, principalmente de origen continental fluvial (Figura 3).

Formación Quebrada Mala (Cretácico Superior – Paleoceno Inferior) (Montaño, 1976)

Secuencia volcánica y sedimentaria de origen continental. Corresponde a la Formación Cerro Empexa (Figura 3).

Formación Icanche (Eoceno Inferior – Eoceno Medio, 53 – 43 Ma) (Maksaev, 1976)

Meta-andesitas expuestas como 'roof pendants' en el Complejo Fortuna (Figura 3).

<u>Formación Calama</u> (Eoceno – Oligoceno Inferior, 52 – 31 Ma) (Naranjo y Paskof, 1981, enmend. Blanco *et al.*, 2003; Blanco, 2008)

Esta secuencia se ha separado en dos unidades diferenciables: el **Miembro Topater** que es una secuencia granodecreciente de ortoconglomerados de bloques de color gris verdoso. En los niveles basales se intercalan al menos tres flujos de lavas andesíticos. Su base no aflora y su techo lo constituye el Miembro Chorrillos. El **Miembro Chorrillos** es una sucesión de conglomerados gruesos, de color marrón anaranjado claro (mitad inferior) y gris verdoso claro (mitad superior), medianamente consolidados, expuestos inmediatamente al sur de la localidad homónima (Figura 3).

<u>Gravas Aluviales Antiguas</u> (Mioceno Inferior – Mioceno Superior) (Carta Calama 2010)

Gravas y ripios polimícticos, arenas y limos de mala selección y baja consolidación, localmente cementados por oxidados de cobre de origen exótico (unidad informal que no aparece en Figura 3).

<u>Grupo El Loa</u> (Oligoceno – Plioceno Superior) (May, 1997; May *et al.*, 2005, enmend. Tomlinson y Blanco, 2008)

Secuencia sedimentaria clástica y química, bien estratificada, con fuertes cambios laterales y verticales de facies, depositada en la antigua Cuenca Calama (Figura 3). Incluye a las formaciones Yalqui, El Yeso, Opache, Chiquinaputo, Lasana y Jalquinche.

Ignimbrita Artola (Mioceno Superior, ca. 10 Ma) (Ramírez, 1979)

Depósito de flujo piroclástico de composición riolítica y rico en cristales de plagioclasa, cuarzo y biotita.

Depósitos Piedemonte (Mioceno Superior - Plioceno Superior) (Tomlinson, et al., 2010)

Gravas y ripios polimícticos, arenas y limos de mala selección y pobre consolidación, con intercalaciones de tobas de ceniza (10 - 3 Ma). En el sector de Quetena, afloran como depósitos de derrumbe y coluvio, compuestos por acumulación caótica de bloques, gravas y arenas.

2.2. Marco geológico local

El rasgo geológico más destacable en MMH corresponde a la Falla Oeste, sistema de fallas que trunca la geología en el yacimiento. En la parte oriental de la falla (bloque este) predominan rocas volcánicas e intrusivas estériles de un basamento Paleozoico – Triásico, mientras que en la parte occidental (bloque oeste) predominan rocas intrusivas del Eoceno con afloramientos menores de rocas volcano-sedimentarias del Triásico al Paleoceno. Las intrusiones en eocenas son responsables de la alteración y la mineralización primaria. Ambos ambientes están cubiertos por extensas llanuras de gravas aluviales del Mioceno al Cuaternario. Con el posterior alzamiento y erosión parcial se vieron favorecidos los procesos de mineralización supérgena que ocurrieron en el Mioceno. Es importante mencionar que el clima árido que ha existido en la región desde el Mioceno Superior al Reciente, han permitido la preservación de estos yacimientos.

La geología de MMH, que se detallará a continuación, está acotada a MMH Central que es la región de interés para este trabajo. La información es aportada por testigos de sondajes, labores subterráneas de exploración y también datos de geocronología obtenidos de trabajos anteriores.

2.2.1. Litología

Las unidades reconocidas en el sector central de MMH (Figura 4), se describen a continuación:

Figura 4. Litología de MMH Central (Díaz, 2010).

Rocas Volcánicas

Formación Collahuasi

Es una secuencia de rocas volcánicas que en el bloque oeste es intruida por la Granodiorita MM, mientras que en el bloque este sobreyace a rocas del basamento ígneo-metamórfico y constituye parcialmente la base donde se depositó la Formación Calama. La secuencia es maciza, pobremente estratificada y está constituida por lavas y brechas andesíticas con intercalaciones de rocas sedimentarias, tobas y dacitas. En el bloque oeste predominan flujos andesíticos y dacitas levemente porfídicas, mientras que en el bloque este predominan las brechas andesíticas. Las rocas andesíticas junto con la Granodiorita MM son la roca caja de la mineralización (Figura 4).

Dataciones radiométricas U/Pb LAM-ICPMS en circones, dieron como resultado cuatro poblaciones de edades, 450, 300, 250 y 230 Ma. Estas edades no son concluyentes, pero sugieren una edad triásica o más antigua. Por correlación con las rocas expuestas en el sector del Cluster Toki se asigna esta unidad a la Formación Collahuasi de edad Carbonífero Superior a Triásico (Tomlinson y Blanco, 2008).

Formación Cerro Empexa

Esta unidad se ha reconocido parcialmente en el borde occidental de MMH mediante sondajes de exploración. Es una secuencia de rocas volcánicas andesíticas con intercalaciones de conglomerados, areniscas sedimentarias y algunos niveles de tobas. Aunque esta secuencia tiene poca expresión en MMH, se extiende hacia el oeste, aflorante en Cerro Negro (Figura 4). Es asignada como Miembro Superior de la Formación Cerro Empexa. Esta unidad sobreyace en discordancia angular a las rocas de la Formación Collahuasi y fuera del área de MMH es intruida por el Complejo Intrusivo Diorítico Los Picos de edad Eoceno Medio. Los estudios regionales le asignan una edad de Cretácico Superior a Paleoceno Inferior (Tomlinson y Blanco, 2008).

Complejo Ígneo-Metamórfico de Cerros de Chuquicamata

En el bloque este de MMH se dispone un basamento ígneo y metamórfico constituido mayoritariamente por granitos que son asignados al Granito Mesa y por esquistos anfibolíticos. En el área del proyecto esta unidad constituye el basamento de las rocas volcánicas de la Formación Collahuasi y rocas sedimentarias de la Formación Calama (Basamento en Figura 4).

Este Complejo está expuesto en los Cerros de Chuquicamata donde consiste principalmente de granitos, dioritas y metadioritas migmatíticas, y subordinadamente granodioritas, dioritas cuarcíferas, tonalitas y sus equivalentes metamórficos (Tomlinson y Blanco 2008).

La información de una datación en el Granito Mesa U/Pb en circón por el método ID-TIMS determina una edad de 296,9 \pm 2,1 Ma. Se interpreta la edad U/Pb como la edad de cristalización del granito (Tomlinson *et al.*, 2001).

Rocas intrusivas

En MMH la actividad intrusiva comenzó con el emplazamiento de un cuerpo de composición granodiorítica (Granodiorita MM), seguido casi contemporáneamente por la intrusión de numerosos diques dacíticos y pórfidos feldespáticos. Estas unidades intruyen a la Formación Collahuasi. Se emplazaron a fines del Triásico y tienen dirección norte – sur paralela a la Falla Oeste.

La actividad continuó con la intrusión de un complejo granodiorítico porfídico constituido por las unidades Pórfido MM y Pórfido Cuarcífero. Este complejo intruyó en el Eoceno a las unidades descritas anteriormente. El término de la actividad intrusiva en MMH fue marcado por la formación de cuerpos tabulares de brechas magmáticas-hidrotermales a comienzos del Oligoceno.

Granodiorita MM

Esta granodiorita es un cuerpo intrusivo que está adosado a la Falla Oeste. En planta tiene forma elongada con rumbo general norte-sur, paralelo a la Falla Oeste y las dimensiones son 7 km de largo y 0,3 a 1 km de ancho. Esta unidad intruye a las rocas volcánicas de la Formación Collahuasi, es intruída por un enjambre de diques dacíticos y el Pórfido MM, y alberga a las brechas hidrotermales (Figura 4). Macroscópicamente es una roca de textura equigranular constituida por cristales de feldespato, cuarzo y relictos de máficos.

Dataciones con el método U/Pb LAM – ICPMS en circones indican edades de 233,6 \pm 1,5 y 224 \pm 5 Ma, lo que corresponde al Triásico Tardío. En el distrito se reconocen granodioritas de similar composición y edad al oriente del yacimiento Chuquicamata (Granodiorita Este) y en el sector de Toki.

Filones Dacíticos

Estos se emplazan canalizados e influenciados en su mayor parte por las fallas mayores de rumbo norte-sur. Estos filones intruyen a la Formación Collahuasi y a la Granodiorita MM, su

relación con el Pórfido MM aún no ha sido evidenciada. Las brechas hidrotermales los atraviesan puesto que incorporan fragmentos de estos filones en su composición. Macroscópicamente son rocas de textura afánitica y porfídica con cristales de anfíbolas, plagioclasas y ocasionalmente cuarzo.

Dataciones a dos muestras de dacita mediante el método U/Pb LAM – ICPMS en circones, arrojaron edades de 237,6 \pm 1,4 y 222 \pm 4,9 Ma, ubicándolos en el Triásico Tardío, en un rango similar a la Granodiorita MM.

Pórfido MM

Cuerpo intrusivo subvertical y elongado en sentido norte-sur, que en la parte alta y oriental se reconoce como un cuerpo apófisis que está adosado a la Falla Oeste. Su morfología y disposición implican que su emplazamiento estuvo controlado por el sistema estructural paralelo a la Falla Oeste. En la parte alta se ve afectado por la introducción de *pebble dikes* y por una fuerte alteración fílica y argílica que obliteran sus rasgos texturales distintivos, confundiéndose con las rocas granodioríticas fuertemente alteradas y mineralizadas. Este pórfido se ha reconocido sólo parcialmente en las partes profundas del yacimiento. En la parte sur de MMH Central el pórfido se abre alejándose de la Falla Oeste y además, se encuentra a una cota más baja, a unos 700 m del techo de roca (Figura 4).

En profundidad el cuerpo exhibe textura porfídica con intensa alteración potásica representada por vetillas tempranas de biotita cortadas por venillas de cuarzo tipo "A", abundante feldespato potásico en el borde de fenocristales de plagioclasas (como reemplazo) y en vetillas. La mineralización que se reconoce es de bornita-calcopirita-(digenita) contenida en vetillas EDM (*early dark micaceous*) y SGV (sericita gris verde). La ocurrencia de molibdenita se reconoce en el relleno de fracturas y en vetillas de cuarzo. El núcleo central de la mineralización-alteración de este pórfido aún no ha sido bien reconocido.

La edad del Pórfido MM ha sido obtenida mediante el método U/Pb LAM – ICPMS en circones, lo que determina una edad de $38,9 \pm 0,4$ Ma correspondiente al Eoceno Medio (Rojas, 2005)

Pórfido Cuarcífero

Localmente se identificó y caracterizo como unidad porfídica que por su abundancia en ojos de cuarzo fue denominada como tal. Este pórfido no ha sido bien reconocido, su emplazamiento es profundo y aparentemente intruye la parte central y baja del Pórfido MM. Macroscópicamente tiene textura porfídica, y está constituido por ojos y fenocristales de cuarzo insertos en una masa fundamental obliterada por intensa alteración potásica. Esta alteración es representada

por sericita gris verdosa y en menor grado por feldespato potásico y anhidrita. La mineralización consiste en calcopirita y bornita diseminada en vetillas tipo SGV y en menor intensidad en vetillas tempranas de cuarzo.

La datación realizada mediante el método U/Pb LAM-ICPMS en circones, reporta una edad de $35,53 \pm 0,58$ Ma correspondiente al Eoceno Tardío.

Brechas hidrotermales

En la parte alta del depósito se desarrolló un sistema de brechas hidrotermales distribuidas en cuerpos tabulares subverticales, que siguen la orientación de la Falla Oeste y de las fallas mayores que tienen rumbo casi norte-sur en la zona central y rumbo sur-este en la parte sur por inflexión de la Falla Oeste. En MMH Central conforman una franja mineralizada de 2 km de largo, 100 m de ancho y 400 m de profundidad. El mayor desarrollo se presenta entre las coordenadas UTM 7.525.900 a 7.525.300 N. Las brechas se reconocen relacionadas espacialmente a la parte superior y externa del Pórfido MM, atraviesan a rocas de la Granodiorita MM, a los Diques Dacíticos y al Pórfido MM (Figura 4). Las brechas se originaron a partir de fluidos hidrotermales que ascendieron por las estructuras mayores y por los bordes de contacto con los Diques Dacíticos, incorporando parte de estos como fragmentos insertos en una matriz hidrotermal.

La brecha consiste de fragmentos que están total o parcialmente aislados por una matriz hidrotermal formada por sulfuros acompañados de minerales característicos de la alteración argílica avanzada tales como: sílice, alunita, pirofilita, sericita y dickita, lo que indica que las brechas se generaron por un evento hidrotermal de alta sulfidización. La mineralización es masiva en los conductos de las brechas y grada externamente como stokworks conformando un halo que disminuye en intensidad al alejarse de las brechas. Las especies mineralógicas presentes ocurren en dos principales asociaciones, pirita-calcopirita-bornita-digenita en las partes inferiores, y pirita-calcosina-enargita-tenantita-argentita-proustita-covelina hacia las partes media y superior, estas asociaciones son características de sistemas de alta sulfidización y presentan altas leyes de cobre, arsénico y plata.

Los cuerpos de brechas magmáticas-hidrotermales de MMH han sido agrupados en cuatro unidades: Brecha Central que es la principal y de mayor valor económico, Brecha Myriam, Brecha Sur y Brecha Oeste.

La formación de los cuerpos de brecha en MMH habría ocurrido en el Oligoceno Inferior de acuerdo a dataciones Ar/Ar en alunita y Re/Os en molibdenita.

Brechas Fluidizadas y "Pebble dikes"

Son estructuras post-mineralización que se distribuyen en varios cuerpos, dispuestos en su mayoría, adosados a la Falla Oeste y siguiendo la misma tendencia estructural. Se emplazan atravesando todas las rocas y cortando la mineralización del sistema porfídico y de las brechas hidrotermales. Están constituidos por abundantes guijarros redondeados insertos en una matriz clástica sericitizada. Entre los guijarros se incluyen fragmentos mineralizados de Granodiorita MM y en menor cantidad de brechas hidrotermales.

Rocas sedimentarias

Conglomerados Brechosos

Se encuentran en el bloque este. Son una secuencia de conglomerados estratificados dispuestos como relleno de una cuenca desarrollada sobre volcanitas permotriásicas y sobre el basamento ígneo-metamórfico del Paleozoico. En planta la cuenca tiene forma alargada de 1,7 km como mínimo aproximado en sentido norte-sur y 600 m de ancho aproximado en sentido este-oeste. En perfil la cuenca muestra una profundización gradual desde el norte hacia el sur, en la parte central-norte (25.650 N), alcanzando 650 m.

Estudios petrográficos hacen clasificar estas rocas como conglomerados brechosos polimícticos (andesitas, tobas, granodioritas, areniscas, dacitas, pórfidos feldespáticos, anfibolitas, granitoides y brechas volcánicas), clasto-soportado o matriz-soportada, pobremente consolidados y disgregables, los clastos son subredondeados a subangulosos, la matriz tiene un grado de madurez bajo a medio y está formada por clastos polimícticos de tamaño arena muy gruesa, arena fina y limo. Según el contenido dominante de tipo de cemento, la unidad Conglomerado Brechoso (CB) se divide en: **CB Rojos** con dominio de hematita, caracterizado por tener sobre 60 % cemento de hematita; **CB MM** con dominio de jarosita y goethita, caracterizado por tener sobre el 30 % cemento de goethita. **CB Exóticos** con dominio de oxidados de cobre, análisis de leyes entregan valores sobre 0,1 % CUT, se han observado mayoritariamente crisocola y copper wad, y malaquita, azurita y arcillas con cobre subordinados; **CB Negros** con dominio de óxidos de manganeso.

Una datación ³⁹Ar/⁴⁰Ar de un clasto de diorita cuarcífera, dio 44,9 \pm 0,4 Ma, lo que indica una edad máxima eocena para estas rocas. Por todas las características expuestas, los Conglomerados Brechosos han sido correlacionados con el Miembro Chorrillos de la Formación Calama del Eoceno.

Gravas Modernas

Depósitos aluviales que se distribuyen a ambos lados de la Falla oeste, cubren a los Conglomerados Brechosos y a las distintas litologías de MMH Central. Se distinguen dos subunidades (Figura 4): **Grava Parda** que es una unidad monomíctica de carácter aluvial, compuesta mayoritariamente por fragmentos angulosos a subangulosos de andesitas insertos en una matriz arenosa cementados por carbonatos y sales, esta unidad se distribuye a ambos lados de la Falla Oeste con un espesor que varía entre 20 y 40 m y se dispone sobre los CB y las rocas superiores de MMH. Se correlaciona con la Formación Sichal del Mioceno; **Grava Superior** que está compuesta por sedimentos recientes de origen aluvial, polimícticos y con baja madurez composicional y textural, se dispone subhorizontalmente sobre la Grava Parda a ambos lados de la Falla Oeste, su potencia alcanza 20 a 30 m en MMH Central.

2.2.2. Estructuras

El emplazamiento y la forma del yacimiento MMH están relacionados y controlados por un sistema estructural orientado en la dirección norte-sur donde destaca la Falla Oeste, este sistema estructural forma parte del Sistema de Falla Domeyko. En el área del depósito, la Falla Oeste tiene rumbo norte-sur a N15°W, manteo de 75 a 80° al oeste y presenta salbanda grisroja cuyo espesor es de un metro.

Otras estructuras mayores identificadas que pertenecen al sistema estructural en MMH, son las fallas Negra (Central Este), Central Oeste y Myriam, todas tienen rumbo cercano al norte-sur y se ubican al oeste de la Falla Oeste (Figura 5). Entre la Falla Oeste y la Falla Negra se generó una zona de cizalle que favoreció el ascenso de diques de Pórfido MM y la generación de *"pebble dikes"* y de brechas de fricción.

Las fallas secundarias más importantes en el yacimiento son los sistemas Irene y Cecilia, de rumbos NW y NE respectivamente (Figura 5), el primero aparentemente produce una flexura en el rumbo de las brechas mineralizadas al sur de la coordenada 7.524.400N mientras que el segundo ejerce un fuerte control en gran parte de la mineralización supérgena.

Figura 5. Fallas importantes en MMH Central. Esquema en superficie.

2.2.3. Alteración y mineralización

MMH es un depósito de tipo pórfido cuprífero con mineralización de Cu-Mo, que evolucionó a un sistema de alta sulfidización con la formación de brechas hidrotermales con mineralización de Cu, Ag y As (Figura 6). La mineralización se asocia a la intrusión del Pórfido MM y Pórfido Cuarcífero, los que se emplazan en la Granodiorita MM y las rocas volcánicas del basamento. Las relaciones de contacto y texturales indican que el yacimiento se formó en sucesivas etapas de alteración-mineralización que se describen a continuación:

Alteración – Mineralización Temprana

Evento reconocido parcialmente en las partes más profundas del vacimiento, está ligado al núcleo del pórfido MM en donde se reconoce alteración potásica caracterizada por asociaciones de feldespato potásico, anhidrita, sericita y biotita secundaria subordinada. Exhibe además desarrollo de vetillas A, vetillas SGV que tienen un tipo especial de sericita gris verodosa y vetillas EDM (early dark micaceous) similares a las descritas por Rusk et al., (2008). La zonación de sulfuros tempranos reconocidos muestra un núcleo de bornita con proporciones variables de calcopirita, pirita, idaíta, digenita, calcosina primaria y magnetita asociada con los óxidos primarios hematita y rutilo. También se ha documentado la presencia de películas de molibdenita en fracturas discontinuas (smears) y asociada a un tipo de vetillas de cuarzo aparentemente más tardías que las vetillas tipo A. Una edad Re/Os en molibdenita dio 37,3 ± 0,1 Ma (Tobey, 2005) lo que confirma que esta etapa se inició en el Eoceno, posterior al emplazamiento del Pórfido MM, datado por U/Pb en 38,9 ± 0,4 Ma. Cabe destacar que otras dataciones Re/Os en molibdenita y ³⁹Ar/⁴⁰Ar en biotita y Feldespato-K, dan valores más jóvenes, en el rango 35,5 a 32 Ma, lo que podría explicarse por un rejuvenecimiento de las edades como resultado de la intrusión del Pórfido Cuarcífero datado por U/Pb en 35,53 ± 0,58 Ma, aunque no se descarta un pulso de alteración – mineralización ligado a este Pórfido Cuarcífero.

Figura 6. Mineralización de MMH Central. Vista en planta del nivel 2200 y vista en sección tipo 25400 (Díaz, 2010)

Alteración – Mineralización Hidrotermal (Fílica)

Esta etapa se generó cuando el sistema porfídico se vio afectado por enfriamiento y reacción de los fluidos hidrotermales, los que se canalizaron favorecidos por las estructuras mayores desarrolladas paralelas a la Falla Oeste, en estas condiciones se produjo la destrucción, reemplazo y removilización de los minerales originados durante la etapa temprana. Esta etapa se caracterizó por la introducción de abundante pirita principalmente en vetas y vetillas tipo D acompañada de una fuerte alteración hidrolítica destructora de feldespato potásico y de biotita, esta alteración está representada por sericita. En las rocas granodioríticas, puede observarse que la sericita se encuentra mayoritariamente reemplazando a cristales de plagioclasa y también obliterando totalmente a la biotita. Esta etapa ha sido datada en 32,5 Ma por el método ³⁹Ar/⁴⁰Ar, lo que concuerda con las relaciones de contacto observadas.

Alteración – Mineralización Hidrotermal Tardía (Alta Sulfidización)

Esta etapa es la que dio origen a la mineralización económicamente más importante del yacimiento, Se produjo por el enfriamiento del sistema junto con la evolución de su estado de sulfidización, este estado está evidenciado por las asociaciones pirita-bornita-digenita y piritacovelina que representan altos y muy altos estados de sulfidización respectivamente. Esta fase tardía se caracteriza porque los fluidos generaron la formación de brechas hidrotermales con la introducción de cuantiosos contenidos adicionales de los elementos: S, Cu, Fe, As, Ag, Zn (Sb, Au). La deposición de sulfuros pirita-bornita-digenita, pirita-enargita-tenantita-digenita y piritacovelina fue acompañada por una fuerte actividad hidrolítica generando abundante alunita, sílice, pirofilita y caolinita definiendo una alteración argílica avanzada. El desarrollo de la alteración argílica avanzada, que se localiza preferentemente en las partes centrales altas del depósito, ha sido datada por el método Ar/Ar en alunitas hipógenas en 31,41 y 31,8 Ma.

Mineralización Supérgena

En etapas posteriores procesos supérgenos dieron origen al enriquecimiento secundario, caracterizado por la presencia de sulfuros, y a la mineralización oxidada de cobre, los minerales oxidados coexisten parcialmente con las especies de sulfuros conformando zonas de menas mixtas. También se ha reconocido un manto de oxidados de cobre de tipo exótico en el sector este del depósito al oriente de la Falla Oeste.
Sulfuros secundarios

El evento supérgeno está caracterizado por la presencia de sulfuros secundarios, de estos la calcosina es el principal mineral de mena y ocurre reemplazando minerales hipógenos primarios, también hay covelina subordinada. Los sulfuros son acompañados en forma subordinada por oxidados de cobre, hierro y arcillas secundarias principalmente caolín. Los volúmenes de enriquecimiento más significativos se concentran en la zona de cizalle argilizada adosada a la Falla Oeste y en los flancos de la Brecha Central. Los procesos hidroquímicos superficiales de baja temperatura se habrían iniciado en el Mioceno temprano, esto fue datado en alunita supérgena por el método ³⁹Ar/⁴⁰Ar arrojando una edad de 23,16 ± 1,85 Ma.

Zona de minerales oxidados

Esta zona se dispone en la parte más alta del yacimiento y está caracterizada por la presencia de especies oxidadas de cobre las que coexisten con hematita y goethita. Las especies mineralógicas dominantes son crisocola, malaquita y conicalcita. Localmente, en el sector norte, ocurre Cu nativo y cuprita entorno al techo de la zona de enriquecimiento. Su morfología está controlada por las estructuras mayores y alcanza un espesor máximo del orden de 150 metros.

Mineralización exótica

Se reconoce en el bloque este de MMH dispuesta como un manto con espesores de 10 a 50 m. Está localizada mayoritariamente en la parte superior de la unidad Conglomerado Brechoso e inmediatamente debajo de la Grava Parda (Figura 6). Los minerales encontrados en orden de abundancia son: crisocola, *copper wad* (criptomelano), malaquita, azurita, conicalcita y esmectitas con Cu. Los "oxidados verdes" predominantes son crisocola y malaquita y los "oxidos negros" corresponden a *copper wad* que se reconocen predominando en la parte central y sur del manto.

3. ANTECEDENTES TEÓRICOS

En los pórfidos cupríferos formados a profundidades menores a 4 km aproximados, la mineralización es introducida por dos fases fluidas constituidas por una pequeña fracción de líquido hipersalino y un volumen mucho mayor de vapor de baja densidad (Fournier, 1999). La coexistencia de estas fases ha sido demostrada en estudios a inclusiones fluidas (Roedder, 1984).

Los estudios experimentales y de microanálisis de inclusiones fluidas, revelan que durante la separación de fases, elementos específicos se fraccionan selectivamente entre el vapor y el líquido hipersalino. En muchos casos el vapor puede contener cantidades apreciables de Cu, Au, Ag y S, además de As, Sb, Te y B, mientras que el Fe, Zn, Pb, Mn, y posiblemente el Mo, están preferencialmente contenidos en el líquido hipersalino (Heinrich *et al.*, 1999; Heinrich, 2005; Pokrovsky *et al.*, 2005, 2008, 2009; Williams-Jones and Heinrinch, 2005; Simon *et al.*, 2007; Audetat *et al.*, 2008; Nagaseki y Hayashi, 2008; Wilkinson *et al.*, 2008; Pudack *et al.*, 2009; Seo *et al.*, 2009).

3.1. Molibdeno

El mineral de mena asociado al molibdeno es la molibdenita (MoS₂), que es un sulfuro primario, de altas temperaturas (~300° - 500°C), asociado a intrusiones félsicas y común en la etapa de alteración-mineralización temprana de pórfidos cupríferos.

Gran parte de la molibdenita en varios depósitos de Cu-Mo ocurre en las vetillas B, pero las vetillas D contienen apreciables cantidades de este sulfuro (Sillitoe, 2010).

La molibdenita en el yacimiento MMH ocurre en vetillas de molibdenita (blue veins), en vetillas de cuarzo tipo B y rellenando fracturas (*smears*) sin sulfuros asociados. Las vetillas de cuarzo tipo B cortan a las vetillas tempranas de biotita, feldespato potásico y cuarzo tipo A. Los smears ocurren en el contacto del Pórfido MM con la Granodiorita MM y exhiben las mayores leyes de molibdeno. También hay altos valores de Mo en brechas, pero estos corresponden a Mo removilizado dentro de las brechas (fragmentos de vetillas de cuarzo y smears) por lo que son de carácter errático y presentan escasa continuidad.

El amplio rango de edades Re/Os obtenido de muestras de molibdenita (37,2 a 32,7 Ma) implica que la mineralización de molibdeno ocurrió en múltiples pulsos asociados a los eventos de mineralización cupríferos (Tobey 2005).

Las leyes de molibdeno en el depósito varían desde menos de 30 ppm a más de 0,02 % Mo. La ley media estimada en el Modelo Junio 2009 para la totalidad de los recursos es de 73 ppm.

3.2. Zinc y Plomo

Altos contenidos de Zn y Pb han quedado registrados en inclusiones de líquido hipersalino en vetillas de cuarzo formadas durante la alteración potásica (Bodnar, 1995; Heinrich *et al.*, 1999; Ulrich *et al.*, 1999; Wilkinson *et al.*, 2008), pero esos metales permanecen en solución porque no están apreciablemente concentrados en los sulfuros presentes en la etapa de mineralización principal de los pórfidos cupríferos. El enfriamiento de este líquido en contacto con rocas externas y la dilución con agua meteórica en halos propilíticos puede ser la principal causa de la precipitación de Zn y Pb (Hemley y Hunt, 1992), es decir, la deposición de esfalerita y galena, que son los sulfuros de zinc y plomo respectivamente, ocurre por una disminución de la temperatura en los fluidos que transportan Zn y Pb (Corbett y Leach. 1995). Estos sulfuros son estables a temperaturas inferiores a 350°C.

Los minerales de mena asociados a estos elementos son la esfalerita o blenda (ZnS) y la galena (PbS). La esfalerita es poco común en los eventos de mineralización que se asocian a un bajo estado de sulfidización y su deposición es más tardía respecto a los sulfuros de cobre en este mismo estado, en cambio en alta sulfidización, la esfalerita es un mineral común que se deposita tempranamente y que es reemplazado por sulfuros de cobre (Einaudi, 1982).

El núcleo mineralizado de Cu-Mo típicamente tiene halos a escala de kilómetros marcados por anomalías de Zn y Pb, valores que reflejan temperaturas más bajas en las condiciones hidrotermales (e.g. Mineral Park, Arizona; Eidel *et al.*, 1968; Lang y Eastoe, 1988). En algunos depósitos de pórfido cuprífero, este halo de metales, ocurre como vetillas en una etapa tardía que se sobreimpone al núcleo de Cu, más periféricamente (e.g. Chuquicamata; Ossandón *et al.*, 2001).

En MMH, la esfalerita (ZnS) y la galena (PbS) se depositaron durante toda la historia de mineralización de cobre en el depósito, por lo que es posible encontrarlas coexistiendo con calcopirita en vetillas de cuarzo tempranas tipo A, incluida en vetillas de pirita tipo D de la alteración cuarzo – sericita y como vetillas polidireccionales. La esfalerita en la mineralización

28

tardía de alta sulfuración se presenta junto a tenantita y en las brechas hidrotermales junto a galena argentífera.

4. **RESULTADOS**

Los resultados provienen esencialmente de dos fuentes, la observación y descripción de los sulfuros en cortes pulidos y del procesamiento de antecedentes obtenidos de la base de datos de MMH, esta última incluye análisis químicos y mapeos hechos a testigos de sondajes.

La observación de cortes pulidos a través del microscopio, se enfoca en la ocurrencia y asociaciones a las que están asociadas la molibdenita, esfalerita y galena. Los cortes pulidos analizados son principalmente de la porción profunda del yacimiento.

En el procesamiento de datos están incluidos dos apartados: uno está apoyado directamente en la base de datos y orientado a establecer, mediante análisis estadísticos, las relaciones existentes entre las leyes de los elementos Mo, Pb y Zn y las características del yacimiento (litología, alteración, asociaciones de sulfuros, etc); y el otro apartado expone los modelos de leyes en 2D de Mo, Pb y Zn hechos para tres secciones dentro de MMH Central (24800, 25400 y 26200).

4.1. Análisis a cortes pulidos

Los cortes pulidos descritos son de la parte profunda del yacimiento, aunque fueron incluidos algunos de la porción superior pero que están dentro o cerca del Pórfido MM (Figura 7, Figura 8 y Figura 9). La descripción de los cortes pulidos se encuentra en el Anexo A.

Figura 7. Ubicación de los cortes pulidos cercanos a la sección 24800. Los sondajes DD5245 y DD8564 se ubican en la sección 25000 y el sondaje DD8551 se ubica en la sección 24600.

Figura 8. Ubicación de cortes pulidos descritos cercanos a la sección 25400 (marcados con rojo). Los sondajes DD3171, DD3266, DD4890, DD5100 y DD8552 se ubican en la sección 25400 y el sondaje DD3170 se ubica en la sección 25600.

Figura 9. Ubicación de cortes pulidos descritos cercanos a sección 26200 (marcados con rojo). Los sondajes DD3167, DD3336 y DD8556 se ubican en la sección 26200 y los sondajes DD3173, DD3203 y DD4976 se ubican en la sección 25800.

4.1.1. Molibdenita

La molibdenita se observa de color blanco con pulido difícil, tiene estructura hojosa, a veces se producen deslizamientos entre las hojas lo que da un aspecto de maclas que en ocasiones está acompañado de deformación o curvatura de las láminas, presenta fuerte anisotropía de color blanco con tono azul violáceo y extinción recta que en los cristales deformados es ondulosa y marcada por las supuestas maclas (Figura 10).

Figura 10. Asociación calcopirita-molibdenita, nícoles paralelos. Sondaje DD4976, muestra 864,9.

Las asociaciones paragenéticas en las que la molibdenita está presente son: calcopiritamolibdenita (cpy-mo) (Figura 11 y Figura 12), calcopirita-pirita-molibdenita (cpy-py-mo) y piritamolibdenita (py-mo), estas asociaciones suelen estar acompañadas por pirita-calcopirita (pycpy). La asociación cpy-mo, en algunos casos también está junto a calcopirita-bornita (cpy-bn) y a py-mo.

Figura 11. Vetilla de calcopirita con bordes de molibdenita donde la esfalerita está remplazando a la calcopirita. Nícoles paralelos. Sondaje DD4890, muestra 747,7.

Figura 12. Asociación calcopirita-molibdenita. Sondaje DD4890, muestra 747,7.

La molibdenita se presenta en vetillas de molibdenita, en vetillas de cuarzo rectas y rellenando fracturas. La asociación cpy-mo se presenta en vetillas de cuarzo, en vetillas de cuarzo con py-cpy, en vetillas de cpy-(mo) y también diseminada. Las asociaciones cpy-py-mo y py-mo se encuentran en bordes de vetillas de pirita, donde a veces la calcopirita crece intergranular, es decir rellenando espacios (Figura 13), y en vetillas de cuarzo.

Figura 13. Vetilla de pirita con borde de molibdenita-calcopirita donde la calcopirita rellena espacios en pirita, por lo que la calcopirita-molibdenita debería ser posterior. Nícoles paralelos. Sondaje DD5100, muestra 465,8.

4.1.2. Esfalerita

Al microscopio se ve de color gris oscuro, no presenta reflejos internos en todos los casos, cuando no los presenta es porque es rica en Fe.

Las asociaciones paragenéticas en las que se presenta la esfalerita son: esfalerita-bornita-(galena) (Figura 14), esfalerita-calcopirita, esfalerita-pirita (Figura 15), esfalerita-galena-(calcopirita) (Figura 16).

Figura 14. Asociación esfalerita-bornita-galena. Nícoles paralelos. Sondaje DD3173, muestra 910,4.

Figura 15. Asociación esfalerita-pirita junto a bornita-calcopirita. Nícoles paralelos. Sondaje DD3171, muestra 293.

Figura 16. Asociación esfalerita-galena donde la esfalerita presenta reflejos internos. De izquierda a derecha nícoles paralelos y cruzados. Sondaje DD3170, muestra 655,7.

Estas asociaciones se presentan en su mayoría junto a pirita-calcopirita, calcopirita-bornita y pirita-bornita. La mineralización se da principalmente diseminada y en vetillas.

La asociación esfalerita-bornita (sph-bn) se presenta en vetillas de cuarzo y en vetillas de sphbn. En el corte pulido 867,01 del sondaje DD8552 una vetilla de sph-bn corta a una vetilla de pirita. La calcosina suele remplazar a la bornita (Figura 17).

Figura 17. Asociación esfalerita-bornita donde la calcosina reemplaza a la bornita. Nícoles paralelos. Sondaje DD3173, muestra 910,4.

En la asociación esfalerita-calcopirita (sph-cpy) la esfalerita generalmente tiene inclusiones de calcopirita. Esta asociación se presenta en vetillas de cuarzo, en vetillas de cuarzo-feldespato, en vetillas de sph-cpy (Figura 18) y en vetillas junto a otros sulfuros. En el corte pulido 747,7 del sondaje DD4890 hay una vetilla de sph-cpy y otra vetilla de cpy-(mo) en que la cpy es remplazada por sph (Figura 11). En otro corte (757,3 del sondaje DD4890) hay una vetilla de cuarzo con sph-cpy, cpy-(mo), py-cpy y cpy-ga que es cortada por una vetilla de feldespato con sph-ga.

La asociación esfalerita-pirita (sph-py) se encuentra en vetillas de sph-py (Figura 18) y en vetillas de cuarzo-feldespato, en algunos casos la esfalerita presenta inclusiones de calcopirita y/o exolución de pirita, también la pirita puede tener inclusiones de calcopirita y esfalerita, la esfalerita a veces es remplazada por enargita.

Figura 18. Vetilla de esfalerita-pirita (izquierda) y vetilla de esfalerita-calcopirita (derecha), en ambas vetillas se ven inclusiones de calcopirita en esfalerita. Sondaje 4890, muestra 747,7 (izquierda). Sondaje 3173, muestra 293,5 (derecha).

La asociación esfalerita-galena se encuentra en vetillas de feldespato y de cuarzo-feldespato, en el corte 293,5 del sondaje DD3171 la galena y esfalerita son remplazadas por enargita, a veces la esfalerita presenta inclusiones de calcopirita y en algunos casos la calcopirita reemplaza a la esfalerita (Figura 19).

Figura 19. Asociación esfalerita-galena, donde la calcopirita está remplazando a esfalerita, además la esfalerita tiene una inclusión de calcopirita. Nícoles paralelos. Sondaje DD3171, muestra 293,5.

En el corte 283 del sondaje DD3171 hay vetillas de esfalerita-tenantita-calcosina y vetillas de sph-py donde la calcosina reemplaza a la esfalerita (Figura 20).

Figura 20. Vetilla de esfalerita-pirita donde la calcosina está remplazando a esfalerita. Nícoles paralelos. Sondaje DD3171, muestra 283.

4.1.3. Galena

Se observa de color blanco o amarillo muy pálido, como tiene tres direcciones de clivaje se producen saltaduras durante el pulido de forma triangular que son características de la galena (Figura 21), el clivaje es casi siempre visible.

Figura 21. Galena con típicas saltaduras triangulares en la asociación galena-esfalerita-calcopirita. Sondaje DD3171, muestra 293,5.

La presencia de galena se da comúnmente en la asociación esfalerita-galena-(calcopirita) (Figura 21) que en el apartado anterior está detallada, también en las asociaciones galenabornita-(esfalerita) y galena-calcopirita.

Estas asociaciones se encuentran junto a la asociación py-cpy, cabe destacar que la presencia de galena esta muy ligada a la presencia de esfalerita.

La mineralización se da tanto en vetillas de cuarzo, de cuarzo-feldespato, de feldespato y diseminada. En el corte 910,4 del sondaje DD3173 aparece la asociación galena-bornita-(esfalerita) donde la calcosina remplaza a la bornita.

4.2. Análisis estadísticos

La base de datos utilizada para estos análisis incluye los datos de 955 sondajes diamantinos y de aire reverso que suman 243.577,53 m perforados. La resolución del soporte muestral de los sondajes es a 1,5 m. El análisis químico realizado para la obtención de leyes, es digestión por 4 ácidos para roca total. Los sondajes incluidos en la base de datos se distribuyen en todo MMH, por lo que fue acotada al bloque oeste de MMH Central, que es donde apunta este trabajo. Las relaciones incluidas en este capítulo se hicieron con las medias aritméticas simples de las leyes de Mo, Pb y Zn, las que fueron graficadas con la respectiva desviación estándar.

4.2.1. Análisis por sección

Se hizo un análisis de las medias aritméticas de las leyes de Mo, Pb y Zn obtenidas en función de las coordenadas este-oeste y de la altitud para cada sección de control (24800, 25400 y 26200). El objetivo es observar la distribución espacial de la cantidad de Mo, Pb y Zn en el depósito.

Parte principal de este análisis es la confección de gráficos en los que se utilizó un modelo que divide al bloque oeste en paneles horizontales para el caso del análisis en función de la altitud, y en paneles verticales para el análisis de las coordenadas E-W. En ambos casos los paneles se consideran centrados en cada sección de control y abarcan 100 m en la N-S. Esto se detalla de mejor manera en cada gráfico.

Sección 24800

En el Gráfico 1 se ve un claro descenso de las leyes de los tres elementos entre las cotas 1560 y 1680 msnm aproximadamente, lo que podría estar relacionado al comienzo de la aparición de las brechas. Hay otro descenso relativo de Zn y Pb entre las cotas 1980 y 2040 msnm, este descenso podría estar asociado al fin del Pórfido MM (la litología de esta sección se puede ver en la Figura 7).

Gráfico 1. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn en volúmenes prismáticos dispuestos a lo alto del bloque oeste (altitud). Cada volumen tiene las siguientes dimensiones: vertical de 30 m, horizontal E-W equivalente a dimensión E-W del bloque oeste, horizontal N-S de 100 m centrados en la sección 24800. La descripción de las brechas y del Pórfido MM está en el capítulo de litología local. La tabla 2 del Anexo C es la utilizada para el gráfico.

En el Gráfico 2 se ve un aumento de Mo en el centro, sector que involucra parte del Pórfido MM y no incluye al sistema de brechización.

Gráfico 2. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn para volúmenes prismáticos dispuestos a lo largo de la dimensión E-W del bloque oeste (coordenadas este). Cada volumen tiene las siguientes dimensiones: vertical equivalente a la altura del bloque oeste, horizontal E-W de 20 m, horizontal N-S de 100 m centrados en la sección 24800. La descripción de las brechas y del Pórfido MM está en el capítulo de litología local. La Tabla 3 del Anexo C es la utilizada para el gráfico.

Sección 25400

Ocurre algo similar a lo de la sección 24800, acá (Gráfico 3) se ve un descenso no tan claro de las leyes medias de Mo, Pb y Zn entre las cotas 1580 y 1680 msnm que también coincide con el inicio de la brechización (la litología de esta sección se puede ver en la Figura 8).

Aunque las leyes de Mo aumentan en profundidad el descenso hacia la superficie no es tan marcado como el caso anterior, al comparar ambas secciones el Pórfido MM en la sección 25400 llega mucho más arriba adelgazándose hacia la superficie, lo que podría tener relación con este no tan marcado descenso (Gráfico 3).

Gráfico 3. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn para volúmenes prismáticos dispuestos a lo alto del bloque oeste (altitud). Cada volumen tiene las siguientes dimensiones: vertical de 30 m, horizontal E-W equivalente a dimensión E-W del bloque oeste, horizontal N-S de 100 m centrados en la sección 25400. La descripción de las brechas y del Pórfido MM está en el capítulo de litología local. La tabla 4 del Anexo C es la utilizada para el gráfico.

En el Gráfico 4, hay un notorio aumento de Mo y Pb hacia la derecha.

Gráfico 4. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn para volúmenes prismáticos dispuestos a lo largo de la dimensión E-W del bloque oeste (coordenadas este). Cada volumen tiene las siguientes dimensiones: vertical equivalente a la altura del bloque oeste, horizontal E-W de 20 m, horizontal N-S de 100 m centrados en la sección 25400. La descripción de las brechas y del Pórfido MM está en el capítulo de litología local. La tabla 5 del Anexo C es la utilizada para el gráfico.

Sección 26200

En esta sección el sistema de brechas comienza a los 1710 msnm (la litología de esta sección puede verse en la Figura 9), por lo que el descenso de Mo, Zn y Pb en esta cota debe tener relación con el comienzo de las brechas al igual que en las secciones anteriores, el descenso de Pb no es tan notorio. Las leyes de Mo, como en todas las secciones, aumentan en profundidad (Gráfico 5).

Gráfico 5. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn para volúmenes prismáticos dispuestos a lo alto del bloque oeste (altitud). Cada volumen tiene las siguientes dimensiones: vertical de 30 m, horizontal E-W equivalente a dimensión E-W del bloque oeste, horizontal N-S de 100 m centrados en la sección 26200. La descripción de las brechas y del Pórfido MM está en el capítulo de litología local. La tabla 6 del Anexo C es la utilizada para el gráfico.

En el Gráfico 6 la ley de Mo empieza a aumentar desde la coordenada 8860E lo que coincide con la presencia del Pórfido MM, las brechas de oeste a este (izquierda a derecha) aparecen en la coordenada 8960E y se intensifican entre las cotas 9100E y 9200E, esta intensificación coincide con la disminución relativa en la ley media de Zn.

Gráfico 6. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn para volúmenes prismáticos dispuestos a lo largo de la dimensión E-W del bloque oeste (coordenadas este). Cada volumen tiene las siguientes dimensiones: vertical equivalente a la altura del bloque oeste, horizontal E-W de 20 m, horizontal N-S de 100 m centrados en la sección 26200. La tabla 7 del Anexo C es la utilizada para el gráfico.

Con los gráficos hechos para cada sección, se obtiene una visión E-W y en profundidad, la distribución N-S se logra ver para todo MMH Central en el Gráfico 7, en donde las leyes medias de Pb y Zn aumentan notoriamente hacia el sur y las de Mo aumentan levemente hacia el norte.

Gráfico 7. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn para volúmenes prismáticos dispuestos a lo largo de la dimensión N-S del bloque oeste (coordenadas norte). Cada volumen tiene dimensiones: vertical equivalente a la altura del bloque oeste; horizontal E-W, equivalente a la dimensión E-W del bloque oeste; horizontal N-S de 30 m. La tabla 8 del Anexo C es la utilizada para el gráfico.

Considerando las tres secciones, se puede decir que hay un aumento de las leyes medias de Mo en profundidad, en cambio el leve aumento de las de Pb se produce hacia la superficie. Las leyes medias de Zn son altas en casi todas las alturas.

En general las leyes de plomo son menores a las de zinc pero tienen una distribución similar, aunque difieren en profundidad puesto que el Zn es relativamente alto en profundidad, en cambio el Pb no lo es tanto.

4.2.2. Bloque Oeste MMH Central

El procesamiento de datos de esta zona se hace con el objetivo de determinar estadísticamente la relación de Mo, Pb y Zn con las características del yacimiento (litología, alteración y asociación de sulfuros).

Litología

El Mo tiene las leyes medias más altas, y por lo tanto la mayor concentración de molibdenita que es el único mineral hipógeno de molibdeno en el depósito, en el Pórfido MM y Pórfido Cuarcífero, se descartan las Brechas Hidrotermales y la Roca cizallada porque no son del evento de alteración-mineralización temprana (Diaz, 2010). El Zn tiene las más altas leyes medias, en las volcanitas y el Pórfido Cuarcífero. El Pb no tiene variaciones tan notorias como el Mo y el Zn, aunque sus mayores leyes medias están en las volcanitas y en los diques pórfido dacíticos (Gráfico 8).

Gráfico 8. Leyes medias de Mo, Pb y Zn vs litología. VC: volcanitas, AND: andesitas, GND: Granodiorita MM, POF: Pórfido Feldespático, DPD: Diques Pórfido Dacíticos, POC: Pórfido Cuarcífero, PM: Pórfido MM, BH: Brechas Hidrotermales, ROC: Roca Cizallada. La tabla 9 del Anexo C es la utilizada para el gráfico.

Es importante mencionar que existen más tipos de litología en el bloque oeste, pero se decidió descartar algunas de ellas debido a que la cantidad de datos era muy baja para considerarlos representativos. Las litologías descartadas fueron: anfibolita (ANF), vetas de cuarzo (VQ), stock

y diques máficos (MF), aplita (APL), brecha hidrotermal lixiviada (BHL) y vetas de pirita (VP). La mayor media de Mo ocurre en VQ, esta es 554 ppm. Además fueron agrupadas las Brechas Hidrotermales debido a que hay varios tipos que dependen del sulfuro que presentan.

Alteración

El Mo tiene la ley media más alta, y por lo tanto la mayor concentración de molibdenita, en la zona de alteración potásica que está asociada al evento de alteración-mineralización temprana (Díaz, 2010). El Zn tiene la ley media más alta, y por lo tanto la mayor presencia de esfalerita que es el único mineral hidrotermal de zinc en el depósito, en la alteración potásica. El Pb tiene la mayor ley media en la alteración argílica avanzada, aunque no tiene mucha variación entre las distintas alteraciones (Gráfico 9).

Gráfico 9. Leyes medias de Mo, Pb y Zn vs alteraciones. La tabla 10 del Anexo C es la utilizada para el gráfico.

Asociaciones de sulfuros

El primer alcance que cabe hacer es que estas asociaciones hacen referencia a un grupo de minerales presentes en una zona, que no necesariamente están en contacto entre sí, la escritura de los minerales de cada asociación está ordenada de mayor a menor concentración, de izquierda a derecha. El segundo alcance es que fueron descartadas ciertas asociaciones debido a que tenían muy pocos datos para ser considerados representativos (calcosina-covelina-pirita-calcopirita y calcosina-covelina-calcopirita).

Gráfico 10. Leyes medias de Mo, Pb y Zn vs asociaciones de sulfuros. BO: bornita, CP: calcopirita, CC: calcosina, PY: pirita, EN: enargita, DG: digenita, CV: covelina. La tabla 11 del Anexo C es la utilizada para el gráfico.

Relación con arsénico

La ley media de As aumenta hacia la superficie del yacimiento. Se definieron quiebres de ley para el As según el Gráfico 15 del Anexo B, estos quiebres de ley son 100, 400, y 700 ppm de As. En base a esto se realizó el Gráfico 11, donde las leyes medias de Zn disminuyen a medida que aumentan las leyes de As y La ley media más alta de Mo se da en el rango de menor ley de As.

Gráfico 11. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn en función de rangos de As. La tabla 12 del Anexo C es la utilizada para el gráfico.

La relación de las leyes medias de As con las de Mo en función de la altitud se observa en el Gráfico 12, donde se ve que al contrario del Mo, el As aumenta hacia la superficie. El As comienza a aumentar cerca de la cota 1650, este comienzo esta ligado a la aparición de las brechas, que como ya fue dicho está entre las cotas 1580 y 1650 msnm para esta sección. El Pórfido MM también podría tener una influencia en el pick del As, ya que el Pórfido MM termina a los 2200 msnm en la sección 25400, y sobre los 2200 msnm hay un excesivo aumento de As. Para la relación de As con Mo, Sólo se expone el gráfico de la sección 25400, las otras secciones no fueron mostradas puesto que siguen el mismo patrón.

Gráfico 12. Media aritmética y desviación estándar de leyes de Mo y As para volúmenes prismáticos dispuestos a lo alto del bloque oeste. Cada volumen tiene las siguientes dimensiones: vertical de 30 m, horizontal E-W equivalente a dimensión E-W del bloque oeste, horizontal N-S de 100 m centrados en la sección 25400. La tabla13**Tabla 13** del Anexo C es la utilizada para el gráfico.

Para la sección 24800 el comienzo del sistema de brechas va desde los 1700 hasta los 1900 msnm, que es donde el As comienza un aumento sostenido (1800 msnm) (Gráfico 13). El As sobre los 1800 msnm se relaciona inversamente con el Zn y el Pb, si hay altas leyes medias de Zn y Pb hay bajas de As y viceversa, esto debe tener relación con las brechas por la altitud a la que estas comienzan (Gráfico 13). Para la relación de As con Pb y Zn, Sólo se expone el gráfico de la sección 24800, las otras secciones no fueron mostradas puesto que siguen un patrón similar.

Gráfico 13. Media aritmética y desviación estándar de leyes de As, Pb y Zn para volúmenes prismáticos dispuestos a lo alto del bloque oeste. Cada volumen tiene las siguientes dimensiones: vertical de 30 m, horizontal E-W equivalente a dimensión E-W del bloque oeste, horizontal N-S de 100 m centrados en la sección 24800. La tabla 14 del Anexo C es la utilizada para el gráfico.

Relación con cobre

El Cu está en todo el yacimiento con distribución parecida al Zn, exceptuando la dirección nortesur, ya que el Cu aumenta hacia el norte igual que el As y el Mo, en cambio el Pb y el Zn aumentan hacia el sur. El Cu esta muy ligado al As en la parte alta del yacimiento.

Con las leyes de Cu pasa lo mismo que con las de As, cuando hay un alto en las medias de la leyes de Zn y Pb hay un bajo en la ley media de Cu y viceversa, para el para el Pb esto último es menos notorio (Gráfico 17 en Anexo B). La diferencia que tiene con la ley media de As es que para el Cu esta oposición ocurre a toda altitud.

Previamente, en trabajos anteriores, se hizo una división para las leyes de CUT, en este trabajo se utilizó esta división para ver la relación entre el Mo, Pb y Zn. En el Gráfico 14 se observa que mientras mayores son las leyes de Cu, menores son las leyes medias de Pb y Zn. El Mo tiene el mayor promedio de ley en el rango entre 0,5 y 2,5 % CUT.

Cabe mencionar que el promedio de la ley de As aumenta a medida que aumentan los rangos de CUT (Gráfico 16 en Anexo C).

Gráfico 14. Media aritmética y desviación estándar de leyes de Mo, Pb y Zn en función de rangos de CUT. La tabla 15 del Anexo C es la utilizada para el gráfico.

4.3. Modelos de distribución espacial basados en leyes

Se hicieron modelos basados en las leyes de Mo, Pb y Zn para cada sección de control (24800, 25400 y 26200). Como ya se mencionó, las leyes son obtenidas mediante digestión por 4 ácidos en roca total y la resolución del soporte muestral de los sondajes es a 1,5 m.

Estos modelos se hicieron con infuencia de 100 m para los sondajes profundos, es decir con 50 m hacia el norte y 50 m hacia el sur de la sección de control, y con influencia de 50 m para los otros sondajes, 25 m hacia el norte y 25 m hacia el sur de la sección de control. Esta diferencia en la influencia se hizo por la menor cantidad de datos que hay en profundidad.

Para establecer las relaciones que hay entre la distribución de Mo, Pb y Zn con la litología, estructuras y alteración del yacimiento, se sobrepusieron los modelos de distribución hechos sobre los modelos litológicos, estructurales y de alteración que se obtuvieron de modelos anteriores disponibles en MMH, estos se están actualizando constantemente.

Para realizar estos modelos se definieron quiebres de ley a partir de gráficos log-probabilísticos (gGráfico 18, Gráfico 19 y Gráfico 20 del anexo B). Los quiebres se utilizaron para dibujar curvas, en donde el área encerrada por la curva hecha para un quiebre, tiene valores de leyes mayores o iguales a la ley de dicho quiebre.

4.3.1. Molibdeno

Los quiebres de ley definidos para el molibdeno son 80 y 100 ppm de Mo, con este dato se dibujaron las curvas para las secciones 24800, 25400 y 26200, con lo que se obtiene un modelo de distribución para el molibdeno en cada sección de control, estos se muestran en la Figura 22, Figura 25 y Figura 28.

Estos modelos fueron sobrepuestos a la litología y estructuras (Figura 23, Figura 26, Figura 29), como también se sobrepusieron a las alteraciones (Figura 24, Figura 27 y Figura 30) todo esto para las secciones ya mencionadas.

Sección 24800

En la Figura 23, se ve claramente que la Falla Oeste, la Falla Negra y el Pórfido MM, tienen un rol fundamental en la distribución del molibdeno. La Falla Oeste marca como se ha visto en todo aspecto un límite duro. La Falla Negra marca la forma que toma la mineralización de Mo en la parte superior.

La deposición de molibdeno está asociada principalmente a la alteración potásica, y en las partes más externas a la alteración fílica (Figura 24).

Figura 22. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Sección 24800.

Figura 23. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Además se muestran las estructuras y litología. Sección 24800.

Figura 24. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Además se muestran las alteraciones y estructuras. Sección 24800.

Sección 25400

En la Figura 26 se ve que la Falla Irene (verde) corta la mineralización de molibdeno y la Falla Negra marca el límite occidental y superior de la mineralización de Mo.

En esta sección el molibdeno también está asociado principalmente a la alteración potásica y fílica (Figura 27).

Figura 25. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Sección 25400.

Figura 26. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Además se muestran las estructuras y litología. Sección 25400.

Figura 27. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Además se muestran las alteraciones y estructuras. Sección 25400.
Sección 26200

Para esta sección también se ven los claros controles estructurales y litológicos vistos en las secciones anteriores (Figura 29). Además el molibdeno también está asociado a la alteración potásica y fílica (Figura 30).

Figura 28. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Sección 26200.

Figura 29. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Además se muestran las estructuras y litología. Sección 26200.

Figura 30. Modelo de la distribución del molibdeno para leyes sobre los 80 ppm. Además se muestran las alteraciones y estructuras. Sección 25400.

4.3.2. Zinc

Para el caso del zinc los quiebres de ley definidos son 200 y 2000 ppm de Zn, los que a su vez definen las curvas dibujadas para cada sección de control, dichas curvas se muestran en la Figura 31, Figura 34 y Figura 37.

Al igual que para los modelos de molibdeno, los modelos de distribución de zinc fueron sobrepuestos a la litología y estructuras (Figura 32, Figura 35 y Figura 38), como también se sobrepusieron a las alteraciones (Figura 33, Figura 36 y Figura 39) todo esto para las tres secciones de control.

Sección 24800

Se ve un control estructural, provocado principalmente por la Falla Oeste y la Falla Negra (Figura 32), también se ve ausencia de mineralización de zinc donde pasa la Falla Central Oeste. La deposición también se ve influenciada por la litología puesto que se ve que en las andesitas de la Formación Collahuasi, sobre el límite con la Granodiorita MM hay un aumento en la ley de Zinc (Figura 32). Además, lo que se ha visto en todas las secciones, que hay un aumento en la ley de zinc bordeando el Pórfido MM.

Figura 31. Modelo de la distribución del zinc para leyes sobre los 200 ppm. Sección 24800.

Figura 32. Modelo de la distribución del zinc para leyes sobre los 200 ppm. Además se muestran las estructuras y litología. Sección 24800.

Figura 33. Modelo de la distribución de zinc para leyes sobre los 200 ppm. Además se muestran las alteraciones y estructuras. Sección 24800.

Sección 25400

En esta sección al igual que la anterior se ve un marcado control estructural y litológico en la deposición de zinc (Figura 35).

Figura 34. Modelo de la distribución del zinc para leyes sobre los 200 ppm. Sección 25400.

Figura 35. Modelo de la distribución del zinc para leyes sobre los 200 ppm. Además se muestran las estructuras y litología. Sección 25400.

Figura 36. Modelo de la distribución de zinc para leyes sobre los 200 ppm. Además se muestran las alteraciones y estructuras. Sección 25400.

Sección 26200

La Falla Cecilia y Negra encierran un sector donde hay muy bajas leyes de zinc, marcan límites en la mineralización (Figura 38).

Figura 37. Modelo de la distribución del zinc para leyes sobre los 200 ppm. Sección 24800.

Figura 38. Modelo de la distribución del zinc para leyes sobre los 200 ppm. Además se muestran las estructuras y litología. Sección 26200.

Figura 39. Modelo de la distribución de zinc para leyes sobre los 200 ppm. Además se muestran las alteraciones y estructuras. Sección 26200.

4.3.3. Plomo

Finalmente para el plomo los quiebres de ley definidos son 150 y 900 ppm de Pb, con estos quiebres se dibujaron curvas para cada sección de control, los modelos se muestran en la Figura 40, Figura 43 y Figura 46.

Al igual que para el molibdeno y el zinc, los modelos de distribución de plomo fueron sobrepuestos a la litología y estructuras (Figura 41, Figura 44 y Figura 47), y también se sobrepusieron a las alteraciones (Figura 42, Figura 45 y Figura 48), todo esto para las tres secciones de control. De estás tres últimas figuras, se deduce que las principales alteraciones a las que está ligada la mineralización de plomo, es la alteración argílica avanzada y fílica, este patrón es similar para las tres secciones.

Sección 24800

El plomo tiene una distribución muy parecida al zinc en las tres secciones, por lo que en esta sección también se ve un marcado control estructural y litólogico (Figura 41). Habiendo mayores leyes de plomo en las andesitas sobre el límite con la Granodiorita MM. Estructuralmente la Falla Central Oeste marca una zona donde hay muy baja ley de plomo. Además la mineralización de plomo sigue la forma de la Falla Negra.

Figura 40. Modelo de la distribución del plomo para leyes sobre los 150 ppm. Sección 24800.

Figura 41. Modelo de la distribución del plomo para leyes sobre los 150 ppm. Además se muestran las estructuras y litología. Sección 24800.

Figura 42. Modelo de la distribución de plomo para leyes sobre los 150 ppm. Además se muestran las alteraciones y estructuras. Sección 24800.

Sección 25400

El control estructural es claro, la Falla Irene (verde) marca una disminución en las leyes de plomo cerca del lugar donde pasa esta falla y la mineralización de plomo tiende a seguir la dirección las fallas presentes.

Figura 43. Modelo de la distribución del plomo para leyes sobre los 150 ppm. Sección 25400.

Figura 44. Modelo de la distribución del plomo para leyes sobre los 150 ppm. Además se muestran las estructuras y litología. Sección 25400.

Figura 45. Modelo de la distribución de plomo para leyes sobre los 150 ppm. Además se muestran las alteraciones y estructuras. Sección 25400.

Sección 26200

El control estructural se repite. Al igual que en el caso del zinc, entre la Falla Negra y la Falla Cecilia hay un sector que tiene muy bajas leyes de plomo. La mineralización de plomo tiende a seguir la dirección de las fallas presentes.

Figura 46. Modelo de la distribución del plomo para leyes sobre los 150 ppm. Sección 26200.

Figura 47. Modelo de la distribución del plomo para leyes sobre los 150 ppm. Además se muestran las estructuras y litología. Sección 26200.

Figura 48. Modelo de la distribución de plomo para leyes sobre los 150 ppm. Además se muestran las alteraciones y estructuras. Sección 26200.

5. DISCUSIONES

5.1. Alteración y mineralización en base a estudios petro y calcográficos

A partir de los datos obtenidos de la observación de cortes pulidos y de la ubicación de estos, es posible delimitar zonas basadas en asociaciones paragenéticas en cada sección de control. En algunos casos estas asociaciones son indicadoras de estados de sulfidización. Es importante resaltar que este estudio se concentró en el sistema pórfido cuprífero, por lo que se deja fuera la brechización y la mineralización secundaria en el techo del sistema.

A modo general, las observaciones concuerdan con el estilo de un pórfido con mineralización de Cu-Mo, que en la parte profunda contiene Bn-Cpy-(Dg) acompañada por alteración potásica. Esta alteración tiene sobreimpuesta y está rodeada por asociaciones de feldespato-K-sericita con calcopirita>pirita, las que a su vez están rodeadas por una zona de sericita con pirita>calcopirita (Müller y Quiroga, 2003).

En el ambiente de pórfido, que se acotó a lo definido en el párrafo anterior, la esfalerita y la galena se encuentran mayoritariamente junto con la asociación Py-Cpy, asociación que es estable en un rango superior de la sulfidización intermedia. En cambio la molibdenita se encuentra junto con las asociaciones Bn-Cpy y Cpy-Py que son estables desde un bajo a intermedio estado de sulfidización (Einaudi *et al.* 2003) (Figura 49).

Figura 49. Los campos definidos y escritos con números romanos por Meyer y Hemley son: **I.** Covelina, digenita, calcosina, y pirita con alteración argílica avanzada o sericítica; **II.** Calcocina, bornita, pirita, o calcopirita, bornita, pirita con alteración sericítica zonada y argílica intermedia; **III.** Calcopirita-pirita con alteración sericítica zonada (relictos de feldespato-K) y argílica intermedia; y **IV.** Calcopirita-magnetita, o bornita-magnetita con alteración potásica (Einaudi *et al.* 2003).

Las zonas delimitadas para cada sección de control se detallan a continuación:

Sección 24800

En esta sección se muestran zonas bien delimitadas, un núcleo con las asociaciones Cpy-Bn y Bn-Cc y una zona más externa con Py-Cpy (Figura 50).

La esfalerita y galena se encuentran fuera de un núcleo de Bn-Cpy y Bn-Cc, a la vez, también están dentro de un ambiente de sulfidización intermedia (Py-Cpy), donde mientras más cerca se está del Pórfido MM mayor es la cantidad de calcopirita respecto a la de pirita. La molibdenita no fue observada en los cortes cercanos a esta sección.

Figura 50. Delimitación de zonas en la parte profunda del yacimiento, de acuerdo a las asociaciones vistas en los cortes pulidos. Figura basada en Figura 7.

Sección 25400

La esfalerita y galena están junto a Cpy-Py-Bn y sólo esfalerita junto a Py-Bn-Cc, que son límites entre sulfidización intermedia y alta (Figura 51), y también en sectores de Py-Cpy. La molibdenita se presenta en la zona de Cpy-Bn-Cc-(Cv) y Py-Cpy, lo que implica un ambiente de sulfidización baja a intermedia.

En esta sección también se delimitan zonas similares a las de la sección anterior, pero además se interpreta una sobreimposición de eventos que no está esquematizada: un evento de pórfido temprano, con las asociaciones Cpy-Bn, Cpy-Mo y Bn-Cc, y Cpy-Py más externa; y un evento de sulfidización intermedia sobreimpuesto que se infiere por la relación de corte de vetillas y por

remplazos: vetillas de feldespato-K con Sph-Ga que cortan vetillas de cuarzo con Mo-Cpy y Py-Cpy; vetillas de cuarzo con Sph-Cpy posteriores a Py-Cpy; y la asociación Cpy-Mo en que la Cpy es remplazada por Sph.

Además, también se puede separar la sulfidización intermedia de la alta por asociación de minerales (Figura 51).

SECCIÓN 25400

Figura 51. Delimitación de zonas en la parte profunda del yacimiento, de acuerdo a las asociaciones vistas en los cortes pulidos. Figura basada en Figura 8.

Sección 26200

En esta sección la esfalerita y galena, aunque están en baja cantidad, están junto a Bn-Cc-(Cpy) y Py-Cpy, cerca del núcleo y en ambiente de sulfidización intermedia respectivamente. La molibdenita se presenta en la zona de Cpy-Py (Figura 52). En esta sección existen dos sectores donde ocurre la asociación Py-Bn-Cc que marca el límite entre sulfidización intermedia y alta. Este límite fue marcado en la Figura 52.

No es claro el núcleo de Cpy-Bn-(Dg), ya que esa asociación fue vista una vez junto a Py-Cpy, por lo que lo más probable es que se haya sobreimpuesto un evento con sulfidización intermedia sobre dicho núcleo.

SECCIÓN 26200

Figura 52. Delimitación de zonas en la parte profunda del yacimiento, de acuerdo a las asociaciones vistas en los cortes pulidos. Figura basada en Figura 9.

La relación entre las zonas definidas de acuerdo a las asociaciones presentes en la parte profunda del yacimiento y la presencia de molibdenita, esfalerita y galena, para cada sección de control, se puede comparar a lo determinado en el Gráfico 10, donde las mayores leyes medias de Mo están relacionadas con Cpy-Bn, Cpy y Cpy-Py, y las mayores leyes de Zn están entre la Bn-Cpy, Cpy-Py y Py-Cpy, lo que es concordante con la relación antes mencionada.

De acuerdo a Einaudi *et al.* (2003), los sistemas de pórfido cuprífero de Cu-Au-Mo pueden seguir varios caminos evolutivos, uno de ellos la evolución a un sistema de vetillas de metales base (Figura 53). Este sistema presenta tenantita asociada a minerales de (Cu)-Pb-Zn además de asociaciones con enargita. En este estudio se alcanzan a ver estas asociaciones en las secciones donde se marcó el límite inferior de la alta sulfidización (muestra 283 y 293,5 del sondaje DD3171). Como un comentario anexo al enfoque de este trabajo, MMH podría seguir este camino y presentar una evolución a este sistema de vetillas de metales base bordeando la etapa primaria de mineralización.

Figura 53. Diagrama que relaciona distintos tipos de sistemas hidrotermales y asociaciones de minerales con el estado de sulfidización (Einaudi *et al.* 2003).

5.2. Modelos

De acuerdo a los modelos de leyes realizados, el molibdeno está muy ligado a la alteraciónmineralización temprana asociada al Pórfido MM, las mayores leyes están distribuidas en el contacto entre el Pórfido MM y la Granodiorita MM. El zinc y el plomo, en cambio se presentan en todo el yacimiento y en sectores bastante externos de este lo que indica que estos elementos están presentes en todas las etapas de mineralización y son elementos estables en un amplio rango de temperatura.

La distribución de la mineralización presenta una relación espacial muy cercana con las estructuras en el yacimiento, por lo que se interpreta que las estructuras serían las que facilitaron el acenso de fluidos mineralizadores.

Se puede decir que las leyes medias del Mo, Pb y Zn están directamente relacionadas con los sulfuros molibdenita, esfalerita y galena respectivamente, esto porque hay una relación entre los gráficos (Gráficos 1 al 7), los modelos (leyes) y la interpretación y descripción de cortes pulidos (sulfuros). Por ejemplo, en los modelos y gráficos (Gráficos del 1 al 7, especialmente Gráfico 7) se ve un claro aumento de Pb y Zn hacia el sur y la ocurrencia de esfalerita y galena, también aumenta hacia el sur. En cambio el Mo aumenta levemente hacia el norte, lo que también se ve reflejado en la ocurrencia de molibdenita en las secciones.

5.3. Eventos de mineralización

De las interpretaciones anteriores, cabe destacar que ocurre mineralización de esfalerita y galena en la etapa temprana de mineralización hidrotermal, posterior a la molibdenita, en un estado de sulfidización intermedia. Esta etapa es previa a la brechización o alteración hidrotermal tardía. Esto es un rasgo característico de MMH, ya que en otros yacimientos tipo pórfido no se documenta mineralización de esfalerita o galena en la etapa temprana, por ejemplo en Chuquicamata, donde la esfalerita ocurre en una etapa más tardía (Ossandón *et al.*, 2001). Lo mismo ocurre en El Salvador (Gustafson y Hunt, 1975). Estos yacimientos, además de Butte (Sales y Meyer, 1949; Meyer *et al.*, 1968; Proffet, 1979), tienen sobreimpuesto al sistema porfídico temprano un sistema de vetillas de metales base en donde ocurre la esfalerita y galena con asociaciones de alta sulfidización (Einaudi *et al.*, 2003).

También ocurre mineralización de Zn y Pb en un evento de sulfidización intermedia sobreimpuesto a la etapa temprana. Como este evento es posterior pero sobreimpuesto a la zona de mineralización primaria podría estar asociado a la intrusión del Pórfido Cuarcífero.

91

Las dataciones Re/Os en molibdenita, reportan tres grupos de edades desde los 37,2 a los 32,7 Ma (Tobey, 2005), resultados que confirman que hubo más de un pulso de mineralización en la parte profunda de MMH Central.

La distribución de Zn y Pb en pórfidos cupríferos suelen ocurrir hacia ambientes periféricos, en zonación externa a la zona de mineralización de Cu. Estos conceptos, en función de la distribución de Zn y Pb en el yacimiento, pueden ser empleados para vectorización de blancos de exploraciones. Para mejorar las anomalías de contraste se recomienda emplear las variables (Zn+Pb)/Cu, (Zn/Cu) y (Pb/Cu).

La distribución de Mo en la zona de contacto de roca y brecha, en zonación a un techo de minerales de temperaturas más bajas, puede sugerir un ambiente de techo de pórfido cuprífero, abriendo perspectivas para exploraciones profundas del yacimiento.

La distribución de Zn y Pb hacia el oeste indica una amplia zona de techo, donde las distribuciones sugieren controles estructurales bajo estas, sobretodo hacia el oeste. Esto también podría abrir potencialidad de exploración en profundidad.

En Codelco el molibdeno se recupera como parte del proceso del cobre, y las leyes medias de interés para Radomiro Tomic y Chuquicamata son del orden de 200 a 300 ppm, por lo que en profundidad este elemento es importante económicamente en MMH Central. En cambio el Zn y el Pb no están asociados a las especies minerales de cobre, y tienen leyes muy bajas para ser importantes, esto considerando que en los yacimientos que se dedican a estos elementos las leyes medias de Zn están sobre el 3% (30.000 ppm).

La determinación de la mineralogía de ganga asociada con Mo puede ser un aporte para modelos geometalúrgicos y para la planta, esto si existen distintas formas en las que se presente la molibdenita para distintos ambientes, y en función de las asociaciones de minerales de ganga que acompañan la mineralización de mena.

De acuerdo a la Figura 54 y a las características de MMH, la zona estudiada se podría interpretar como un apófisis de pórfido o la parte superior de un ambiente potásico, es decir, MMH podría ser solo una pequeña parte de un núcleo potásico telescopeado, de mucho mayor volumen en profundidad.

Figura 54. Zonación generalizada de alteración-mineralización (Sillitoe, 2010).

6. CONCLUSIONES Y RECOMENDACIONES

La distribución de molibdenita, esfalerita y galena en el yacimiento se infiere de la distribución de Mo, Zn y Pb de los modelos de leyes.

En general, la molibdenita aumenta hacia el norte y en profundidad, en cambio la esfalerita aumenta, independientemente de la cota, hacia el sur. Finalmente la galena aumenta hacia la superficie y hacia el sur. El aumento hacia el sur de la esfalerita y galena siguen un patrón similar.

Las observaciones concuerdan con el estilo de un pórfido con mineralización de Cu-Mo, que en la parte profunda contiene Bn-Cpy-(Dg) rodeada por Cpy>Py, que a su vez está rodeada por Py>Cpy.

En el yacimiento existe una sobreimposición de un evento de sulfidización intermedia sobre uno de baja a intermedia. Este evento sobreimpuesto podría estar asociado al Pórfido Cuarcífero, ya que este es posterior al Pórfido MM, este último responsable del evento de mineralización primaria. El Pórfido Cuarcífero podría estar asociado a un evento de sulfidización intermedia. También esta sobreimposición se podría asociar a cualquier pulso de mineralización posterior.

El molibdeno se distribuye principalmente en las zonas de contacto entre el Pórfido MM y la Granodiorita MM y entre el Pórfido MM y las brechas. En los límites entre la alteración potásica y fílica.

En términos evolutivos, pudieron haberse dado dos situaciones respecto a la temporalidad de mineralización:

- 1) La mineralización de Zn y Pb podría haber sido introducida dentro de la evolución temprana del sistema porfídico, siendo casi contemporáneo con la molibdenita, lo que es una característica particular de MMH Central, ya que en otros yacimientos tipo pórfido cuprífero la ocurrencia de esfalerita y en menor medida de galena se produce en eventos más tardíos, como en Chuquicamata y en El Salvador. La esfalerita y galena también se introdujeron en el evento sobreimpuesto de sulfidización intermedia.
- 2) La mineralización de Mo podría ser un telescopeo hacia el techo influenciado por estructuras, siendo introducido en la zona de Zn y Pb.

Las leyes de Mo son económicamente importantes en la parte profunda de MMH Central, en cambio las de Zn y Pb son bajas para tal efecto.

Si existiera geoquímica multielemento, se podría modelar geoquímicamente la mineralogía de ganga, lo que serviría para:

- La determinación de los tipos de molibdenita y predicción del comportamiento geominero metalúrgico en planta.
- Optimizar la planificación minera.
- Generar modelos integrales de zonación, alteración y mineralización.
- Aportar en caracterización mineral de rocas y potencial para generación de modelos predictivos en planificación mina.

De acuerdo al concepto de que la distribución de Zn y Pb se presenta en halos externos se podría realizar vectorización para exploraciones.

Con la distribución de Zn y Pb se podrían determinar ambientes hidrotermales de impacto negativo en la producción de Cu, debido a que es mineralogía de ganga en este yacimiento.

REFERENCIAS

- Audétat, A., Pettke, T., Heinrich, C. A. and Bodnar, R. J. 2008. The composition of magmatichydrothermal fluids in barren and mineralized intrusions: Economic Geology, v. 103, p. 877–908.
- Barnes, H. 1997. Geochemistry of Hydrothermal Ore Deposits. Tercera edición.
- Barra, F., Ruiz, J., Mathur, R., Titley, S. 2003. A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA. Mineralium Deposita 2003, 38: 585-596.
- Beane, R. 1994. A graphic view of hydrothermal mineral stabilities. Alteration Processes Associated with Ore-Forming Systems: Geological Association of Canada, Short Course Notes, V.11, p. 1-30.
- Becerra, H., Díaz, J., Herrera, R. 2009. Patrones estructurales asociados al pórfido cuprifero MMH. Codelco Norte. XII Congreso Geológico Chileno, 2009.
- **Bodnar, R. J. 1995.** Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits. Mineralogical Association of Canada Short Course Series, v. 23, p. 139–152.
- **Boric, R., Díaz, F., Maksaev, V. 1990.** Geología y yacimientos metalíferos de la Región de Antofagasta. Boletín N°40, Servicio nacional de Geología y Minería. 247p.
- Boric, R., Díaz, J., Becerra, H., Zentilli, M. 2009. Geology of the Ministro Hales Mine (MMH), Chuquicamata District, Chile. Codelco Norte. XII Congreso Geológico Chileno, 2009.
- **Camus, F. 2003.** Geología de los Sistemas Porfíricos en los Andes de Chile. Servicio Nacional de Geología y Minería. 267 p. Santiago.
- Díaz, J. 2010. Actualización de la Geología del Depósito Mina Ministro Hales (MMH). Informe interno, Dirección Geología Distrital y Desarrollo, Codelco Norte.
- Díaz, J. 2009. Informe Modelo Geológico MMH Central Junio 2009. Informe interno, GRMD, Codelco Norte.
- Eidel, J. J., Frost, J. E., Clippinger, D. M. 1968. Copper-molybdenum mineralization at Mineral Park, Mohave County, Arizona, *in* Ridge, J.D., ed., Ore deposits of the United States,

1933–67. New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, v. 2, p. 1258–1281.

- **Einaudi, M. 1982.** Description of skarns associated with porphyry copper plutons, southwestern North America, *in* Titley, S.R., ed., Advances in geology of the porphyry copper deposits, southwestern North America. Tucson, University of Arizona Press, p. 139–183.
- **Einaudi, M., Hedenquist, J., Inan, E. 2003.** Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Society of Economic Geologists, Special Publication 10, p. 285-313.
- Fournier, R. O. 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology v. 94, p. 1193–1211.
- **Gustafson, L. B. 1963.** Phase equilibria in the system Cu-Fe-As-S. Economic Geology, Vol. 58, p. 667-701.
- **Gustafson, L. B., Hunt, J. P. 1975.** The porphyry copper deposit at El Salvador, Chile. Economic Geology 70, p. 857-912.
- **Heinrich, C. A. 2005.** The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition. A thermodynamic study. Mineralium Deposita, v. 39, p. 864–889.
- Heinrich, C. A., Günther, D., Audétat, A., Ulrich, T. and Frischknecht, R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, v. 27, p. 755–758.
- Hemley, J. J., Hunt, J. P. 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems. II. Some general geologic applications. Economic Geology, v. 87, p. 23–43.
- Lang, J. R., Eastoe, C. J. 1988. Relationships between a porphyry Cu-Modeposit, base and precious metal veins, and Laramide intrusions, Mineral Park, Arizona. Economic Geology, v. 83, p. 551–567.
- Lowell, D. 1993. Mansa Mina. Lowell Mineral Exploration. Nota Interna a Superintendente de Geología. Informe Interno MM (MM-GLGL-1392).
- Marinovic, N., Lashen, A. 1984. Hoja Calama, Región de Antofagasta. Sernageomin, Carta Geológica de Chile N°58, mapa escala 1:250.000. Santiago.
- Meyer, C., Shea, E. P., Goddard, C. C., et al. 1968. Ore deposits at Butte, Montana, in Ridge, J.D., ed., Ore deposits of the United States, 1933-67, v. 2: New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, p. 1373-1416.
- Mpodozis, C., Cembrano, J., Mora, R. 2009. Deformación Compresiva-Oblicua Polifásica y Pórfidos Cupríferos Eocenos en el Sistema de Fallas de Domeyko: La Región de Esperanza-Caracoles (Distrito Centinela). XII Congreso Geológico Chileno, Santiago 22-26 Noviembre, 2009.
- Muller, G., Quiroga, J. 2000. Evaluación Geológica y Estimación de Recursos. Proyecto MM. Sector Central y Norte. Codelco Chile.
- Muller, G., Quiroga, J. 2003. Geology of the MM Copper Deposit, Chuquicamata District An Update. Codelco Chile. X Congreso Geológico Chileno 2003, Universidad de Concepción.
- Nagaseki, H. and Hayashi, K. 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology, v. 36, p. 27–30.
- Ossandón, G., Fréraut, R., Gustafson, L. B., Lindsay, D. D., Zentilli, M. 2001. Geology of the Chuquicamata mine: A progress report: Economic Geology, Vol. 96, p. 249-270.
- Palacios, C., Ramirez, L.E., *et al.* 2007. The role of the Antofagasta-Calama lineament in ore deposit deformation in the Andes of northern Chile. Mineralium Deposita 42(3): 301-308.
- **Pokrovski, G. S., Roux, J. and Harrichoury, J. C. 2005.** Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology, v. 33, p. 657–660.
- **Pokrovski, G. S., Borisova, A. Y. and Harrichoury, J. C. 2008.** The effect of sulfur on vapourliquid fractionation of metals in hydrothermal systems. Earth and Planetary Science Letters, v. 266, p. 345–362.
- Pokrovski, G. S., Tagirov, B. R., Schott, J., Hazemann, J. L. and Proux, A. 2009. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling. Geochimica et Cosmochimica Acta, v. 73, p. 5406–5427.

Proffett, J. 2008. Geologic review of the MM Deposit, Chuquicamata District, Chile.

- **Proffett, J. 2009.** High Cu grades in porphyry Cu deposits and their relationship to emplacement depth of magmatic sources. Geology 37(8): 675-678.
- Pudack, C., Halter, W. E., Heinrich, C. A., Pettke, T. 2009. Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, northwest Argentina. Economic Geology, v. 104, p. 449–477.
- Rivera, S. 1995. Proyecto MM: Programa de Revaluación Geológica. Informe Final. Codelco.
- Roedder, E. 1984. Fluid inclusions. Reviews in Mineralogy, v. 12, p. 644.
- Rusk, B., Reed, M., Dilles, J. 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, Vol. 103, pp. 307-334.
- Seo, J. H., Guillong, M., Heinrich, C. A. 2009. The role of sulfur in the formation of magmatichydrothermal copper-gold deposits. Earth and Planetary Science Letters, v. 282, p. 323–328.
- Sillitoe, R. 2010. Porphyry Copper Systems. Economic Geology. V. 105, pp. 3 41.
- Sillitoe, R., Hedenquist, J. 2003. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Society of Economic Geologists, Special Publication N°10, p. 315-343.
- Sillitoe, R., Marquardt, J., Ramírez, F., Becerra, H., Gómez, M. 1996. Geology of the Concealed MM Porphyry Copper Deposit, Chuquicamata District, Northern Chile. Society of Economic Geologists, Special Publication N°5, p. 59-70.
- Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. and Heinrich, C. A. 2007. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochimica et Cosmochimica Acta, v. 71, p. 1764–1782.
- **Tobey, E. 2005.** Interim Report on Mineralogy and Geochemistry at Mansa Mina. Informe Interno, Codelco Norte.
- Tomlinson, A. J., Blanco, N., Maksaev, V., Dilles, J., Grunder, A., Ladino, M. 2001. Geología de la Precordillera Andina de Quebrada Blanca – Chuquicamata, Regiones I y II [20°30' – 22°30'S]. Sernageomin, Informe Registrado (IR-01-20), 20 mapas, Santiago.

- Tomlinson, A. J., Blanco, N. 2008. Geología de la Franja El Abra Chuquicamata, Il Región (21°45' – 22°30' S). Sernageomin, Informe Registrado (IR-08-35), 196 p., 5 mapas escala 1:50.000, Santiago.
- Tomlinson, A. J., Blanco, N., Dilles, J. H. 2010. Carta Calama, Región Antofagasta. Sernageomin, Carta Geológica de Chile, Serie Preliminar 8: 3anexos, 1 mapa escala 1:50.000. Santiago.
- Ulrich, T., Günther, D., Heinrich, C. A. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, v. 399, p. 676–679.
- Wilkinson, J. J., Wilkinson, C. C., Vry, V. H., Rusk, B. G., Séguel, J., Zentilli, M. and Jeffries, T. E. 2008. Ore fluid chemistry in super-giant porphyry copper deposits [ext. abs.] Pacrim Congress 2008, Gold Coast, Queensland, 2008, Extended Abstracts: Melbourne, Australasian Institute of Mining and Metallurgy, p. 295–299.
- Williams-Jones, A. E. and Heinrich, C. A. 2005. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, v. 100, p. 1287–1312.

ANEXOS

Anexo A Descripción cortes pulidos

Sondaje 3167 Sección 26200

Muestra	454											
Sulfuros:	15%								_	_		
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%		10		70			20				tr	
Asociaciones	Paragen	éticas										
Pv-Cc	rurugen	<u>etteus</u>										
, Cc-Bn												
Py-Bn												
Comentarios												
Vetillas de Py-	-Cc, inclu	isiones c	le Cc en	Py. Mine	eralizacio	ón en ve	tillas y d	isemina	da.			
Muestra	552											
Sulfuros:	1%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	5	40			15	20	20		tr			
Asociaciones	Paragen	<u>éticas</u>										
Cc-Sph-Ga												
Cc-Bn-Ga												
Bn-Cc												
Sph-Bn-Cc												
Bn-Cpy-Cc												
<u>Comentarios</u>												
l Mineralizació	n disemi	nada v e	n vetilla	s poco c	laras							

<u>Sondaje 3170</u> Sección 25600

Muestra	629,8											
Sulfuros:	3%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	10		5	80		5						
<u>Asociaciones</u> Py-Cpy Sph-Cpy	s Parager	<u>néticas</u>										
Comentarios	5											
Sph con inclu	usiones d	е Сру										
Py-(Cpy) en r	natriz											
Cpy-Sph en v	etillas de	e Qz pos	teriores									
Muestra	655,7											
Sulfuros:	1%	P.o.	Ma	Dir	60	Cab	60	<u></u>	Da	E m	Te	Tat
	Сру	DI	IVIO	РУ	Ga	Spn 4E		CV	Dg	En	In	Tet
70					55	45						
<u>Asociaciones P</u> Sph-Ga <u>Comentarios</u>	aragenéti	<u>cas</u>										

Vetillas de Qz y Feld con Ga-(Sph) La mineralización de sulfuros está en vetillas y diseminada en todo el corte

Sondaje 3171 Sección 25400

Muestra	283											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	tr	tr		35		25	25			5	10	
Asociaciones Py-Cc-Tn Sph-Tn-Cc Dg-En	<u>Paragen</u>	<u>éticas</u>										
Comentarios	Cc Tn v	Sob To (Calcon r	ninoralo	c contor	nnoráno	oc)					
Inclusiones de	Bn y Cn	Spii-iii-v		linerale	sconter	прогапе	05)					
Cc reemplaza	a Sph	успру										

Muestra	293,5										
Sulfuros:	10%										
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn
%	10	5		25	10	35				10	5
Asociaciones	Paragen	<u>éticas</u>									
Sph-Py (comú	n)										
Ga-Cpy-Sph											
Bn-Sph-Py											
Ру-Сру											
Sph-Ga											
Sph-Py-Cpy											
Comentario											
La mineralizad	ión de sι	ulfuros o	curre er	n vetillas	y disemi	inada					
Vetillas de Py-	Sph, Sph	con inc	lusiones	de Cpy.	Sph reer	nplazada	por Cpy,	Сру сото	o exolució	n en Sph	
Sph y Ga reem	nplazadas	s por En									

Muestra	353,3											
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	60			40								
<u>Asociaciones</u> Py-Cpy Cpy-Bn	Paragene	<u>éticas</u>										
Comentarios												
Mineralizació	n de sulfu	uros dise	eminada									

Muestra	479,9											
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	60	35	4								1	
<mark>Asociaciones</mark> Cpy-Bn Cpy-Mo	<u>Paragen</u>	<u>éticas</u>										
Comentarios												
Mineralizació	n de sulf	uros dis	eminada									

Sondaje 3173 Sección 25800

Muestra	910,4											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%		15			15	65	5		tr			
<u>Asociaciones</u> Ga-Bn Sph-Ga Bn-Ga-Sph Bn-Sph	<u>Paragen</u>	<u>éticas</u>										
Comentarios												
Bn con Cc en	Solución	(Color v	ioláceo)									
Cc reemplaza	a Bn											

Sondaje 3203 Sección 25800

Muestra	775											
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%		50	8	20			20				2	
<u>Asociaciones</u> Py-Bn Bn-Cc Bn-Tn	<u>Paragen</u>	<u>éticas</u>										
Comentarios												
Vetillas de Py,	, Bn <i>,</i> Tn,	Сс										
mineralizació	n disemiı	nada y e	n vetilla:	S								

Sondaje 3266 Sección 25400

Muestra	620 5											
macona	020,0											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%		30		50		5	15				tr	
Asociaciones	Paragen	<u>éticas</u>										
Py-Bn												
Py-Bn-Cc												
Bn-Cc												
Py-Sph												
Sph-Bn												
Comentarios												
Vetilla de Py-	3n-Cc											
Py-Sph y Sph-	Bn en ve	tillas										
Bn reemplaza	da por C	с										
inclusiones de	Bn y Cc	en Py										

Muestra	750,7											
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	60	2	8	30		tr					tr	
<u>Asociaciones</u> Py-Cpy Mo-Cpy	Paragen	<u>éticas</u>										
<u>Comentarios</u> Vetilla con Cp Mineralizació	y-Py n de sulfi	uros en	disemina	ación y e	en vetilla	S						

Sondaje 3336 Sección 26200

Muestra:	184,9											
Sulfuros:	20%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%				45		5				50		
	•	•	•		•	•				•	•	
Asociaciones	Parager	néticas										
Py-En												
, Py-Sph												
7 - 1-												
Comentarios												
Mineralizació	n en ma	triz (ma	siva v dis	seminad	a)							
					/							
Muestra:	209.3											
macona.	200,0											
Sulfuros	80%											
Mys spaces	C mv	Dm	Ma	Dv	<u> </u>	Cab	6.	0.	Da	Γ	Ta	Tat
ivixs opacos	сру	вn	IVIO	гу	Ga	spn	ιc	UV UV	υg	EN	in	ret
%				40						60		

Asociaciones Paragenéticas

Py-En

Sondaje 4890 Sección 25400

Muestra	662,4											
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	45		20	35		tr						
<u>Asociaciones</u> Py-Cpy Mo-Cpy	Paragen	<u>éticas</u>										
<u>Comentarios</u> Vetillas de cua La mineralizad	arzo con ción de si	Py-Cpy ulfuros e	y Mo-Cp está en v	y en los etillas (I	bordes Py-Cpy, (y en el ce Cpy-Mo)	entro en y disem	menor o inada (P	cantidad y-Cpy)			

Muestra	747,7											
Sulfuros:	15%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	45		5	5		45						
Asociaciones Cpy-Mo Sph-Cpy Py-Cpy	<u>Paragen</u>	<u>éticas</u>										
Comentarios												
Vetilla de Cpy	con Cpy	-(Mo), v	etilla Cp	у-Мо со	n Cpy re	emplaza	ida por S	Sph, Veti	lla Sph-O	Сру		
Inclusión de C	Cpy en Sp	h										
Mineralizació	n princip	almente	en vetil	las, tam	bién dise	eminada	y en vet	tillas de	Qz			

Muestra	757,3											
Sulfuros:	8%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	20		3	10	6	60			tr		1	
Asociaciones Sph-Cpy Py-Cpy Cpy-Ga Sph-Ga Mo-Cpy	Paragen	<u>éticas</u>										
Comentarios												

Sondaje 4976 Sección 25800

Muestra	814											
Sulfuros:	1%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%			100									
Comentarios												
Vetilla Qz-Mo												

Muestra	864,9											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	40		30	25							5	
<u>Asociaciones</u> Сру-Ру Сру-Мо	<u>Paragen</u>	<u>éticas</u>										
<u>Comentarios</u> Vetilla de Qz o Mineralizació	con Py-C n disemi	py y Mo nada v e	-Cpy en vetilla	s (Mo só	ólo en ve	tilla)						

<u>Fotos</u>

Sondaje 5100 Sección 25400

Muestra	170											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	40	tr	3	55		2						
<u>Asociaciones</u> Py-Cpy	Paragen	<u>éticas</u>										
<u>Comentarios</u> Py-Cpy en vet mineralizació	illa de Q n disemi	z y diser nada	ninada									

Muestra	371,2											
Sulfuros:	2%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	80			20						tr	tr	
<u>Asociaciones</u> Py-Cpy	Paragen	<u>éticas</u>										
<u>Comentarios</u> Mineralizació	n disemi	nada										

Muestra	371,2											
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	90		tr	10						tr	tr	
<u>Asociaciones</u> Py-Cpy	Paragen	<u>éticas</u>										
<u>Comentarios</u> Mineralizació	n princip	almente	e en vetil	las, tam	bién dis	eminada						

Muestra	465,8											
Sulfuros:												
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	15		5	80		tr						
<u>Asociaciones</u> Ру-Сру Ру-Сру-Мо	<u>Paragen</u>	<u>éticas</u>										
Comentarios												
Vetilla de Py o Mo ocurre en	on Cpy r los bord	ellenano es de la	do fractu vetilla d	iras (Cpy e Py	v posteri	or a Py)						

<u>Fotos</u>

Sondaje 5245 Sección 25000

Muestra	937,7											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	15	tr		80		5						
Asociaciones Py-Cpy Py-Sph Cpy-Bn	<u>Paragen</u>	<u>éticas</u>										
Comentarios	Sob on	Dv										

Muestra	947,5											
Sulfuros:	3%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	30	2		50	8	10						
Asociaciones	Paragen	<u>éticas</u>										
Py-Sph-Ga												
Py-Cpy-Sph												
Cpy-Ga												
Sph-Ga												
Ру-Сру												
Cpy-Bn												
Comentarios												
Vetillas de Qz-	-Feld cor	п Ру-Сру	en el ce	ntro (las	s vetillas	están cl	oritizada	as)				
En sectores C	by rellen	a espaci	os en Py									

Muestra	948,89											
Sulfuros:	3%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	30			65		5						
<u>Asociaciones</u> Py-Cpy Cpy-Sph	Paragenétic	<u>cas</u>										
<u>Comentarios</u> Vetilla de Qz-F Mineralización	Feld con vet n de sulfuro	illa en el s disemi	l centro nada en	de Py-Cr vetilla y	oy princi en todo	palment el corte	e					

Muestra	961,63											
Sulfuros:	2%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%				90		10				tr		
<u>Asociaciones</u> Py-Sph	Paragené	eticas										
Comentarios												
Vetillas Qz-Fe	ld											
Py con exoluc	ión de Sp	h										
Mineralizació	n de sulfu	ros dise	minada	y en veti	llas							

Muestra	967,17											
Sulfuros:	8%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	70	tr		25		5					tr	
Asociaciones	Paragené	<u>ticas</u>										
Сру-Ру												
Cpy-Sph												
Py-Sph												
Bn-Cpy												
Comentarios												
Vetillas Qz												
Mineralizació	n de sulfu	ros en v	etillas y	disemina	ada							

Muestra	993,63											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	50	5		45		tr						
Asociaciones Py-Cpy Bn-Cpy Py-Sph PY-Bn	Paragené	<u>eticas</u>										
Comentarios Vetilla de Qz Inclusiones de Tn con RI roic	con Py-Cp e Cpy y Sp os	y h en Py										

Sondaje 8551 Sección 24600

Muestra	659,27											
Sulfuros:	10%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%				92		8						
<u>Asociaciones</u> Py-Sph	Paragené	<u>ticas</u>										
Comentarios												
Vetillas de Oz	con Pv											
Mineralizació	n en vetill	as y dis	eminad	а								
		,										
Muestra	950,58											
	·											
Sulfuros:	2%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	100	tr				tr	tr	tr	tr	tr		
<u>Comentarios</u> Vet de Qz con Bn, Cc, Dg y C	Cpy v en ojos	de Qz										
Muestra	1032,52	2										
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	30			65		5						
Asociaciones Bn-Cc Bn-Cpy	Paragené	<u>ticas</u>										

Sondaje 8552 Sección 25400

Muestra	867,01											
Sulfuros:	40%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	7	30		40		15	8					
Asociaciones	Paragené	ticas										
Bn-Py												
Sph-Bn												
Sph-Py												
Bn-Cc												
Bn-Cpy												
Comentarios												
Vetilla de Py d	cortada po	or vetilla	de Bn-S	ph								

Muestra	1011,35												
Sulfuros:	2%												
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet	
%		40					60						
Asociaciones Paragenéticas Cc-Bn													
Comentarios													
Vetilleo de Qz	1												
Mineralizació	n de sulfu	ros en	vetilla y	disemin	ada								

Sondaje 8556 Sección 26200

Muestra	980,11												
Sulfuros:	5%												
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet	
%	15			85									
Asociaciones Paragenéticas Py-Cpy													
<u>Comentarios</u> Mineralizació	n en vetill	a de Qz-	-Feld										

Muestra	1070,73	3										
Sulfuros:	5%											
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet
%	10	8		80		tr		2				
Asociaciones Py-Cpy Bn-Cpy Cpy-Bn-Cv Py-Sph	Paragené	<u>ticas</u>										
<u>Comentarios</u> Inclusiones de Vetilla de Qz o Mineralizació	e Sph en P con sulfur n de sulfu	'y os (Py j ros en l	orincipal vetilla v	mente) disemin	ada							

Sondaje 8564 Sección 25000

Muestra	813,7												
Sulfuros:	2%												
Mxs opacos	Сру	Bn	Мо	Ру	Ga	Sph	Cc	Cv	Dg	En	Tn	Tet	
%	5	50				tr	45						
<u>Asociaciones</u> Bn-Cc Cpy-Bn Bn-Sph	<u>Paragen</u>	<u>éticas</u>											
<u>Comentarios</u> Mineralizació	<u>Comentarios</u> Vineralización en vetilla de Qz y diseminada												

Anexo B Gráficos

Gráfico 15. Media aritmética y desviación estándar de la ley de As para volúmenes prismáticos dispuestos a lo alto del bloque oeste. Cada volumen tiene las siguientes dimensiones: vertical de 30 m, horizontal E-W equivalente a dimensión E-W del bloque oeste, horizontal N-S equivalente a la dimensión N-S del bloque oeste. Las líneas azules segmentadas marcan los quiebres de las leyes medias de As (100, 400 y 700 ppm). La Tabla 16 del Anexo C es la utilizada para el gráfico.

Gráfico 16. Media aritmética y desviación estándar de leyes de As vs rangos de CUT. La Tabla 17 del Anexo C es la utilizada para el gráfico.

Gráfico 17. Media aritmética y desviación estándar de leyes de Cu, Pb y Zn para volúmenes prismáticos dispuestos a lo alto del bloque oeste. Cada volumen tiene las siguientes dimensiones: vertical de 30 m, horizontal E-W equivalente a dimensión E-W del bloque oeste, horizontal N-S de 100 m centrados en la sección 24800. La tabla 18 del Anexo C es la utilizada para el gráfico.

Gráfico 18. Gráfico log-probabilístico de leyes de Mo. Las líneas rojas continuas muestran poblaciones de datos y la intersección de estas líneas define un quiebre en la ley de Mo. Los quiebres son 80 y 200 ppm, donde hay aproximadamente un 45% de datos con ley bajo 80 ppm, un 40% de los datos con leyes entre 80 y 200 ppm y un 15% de los datos con leyes sobre 200 ppm de Mo. Bloque oeste.

Gráfico 19. Gráfico log-probabilístico de leyes de Pb. Las líneas rojas continuas muestran poblaciones de datos y la intersección de estas líneas define un quiebre en la ley de Pb. Los quiebres son aproximadamente 150 y 900 ppm, donde hay aproximadamente un 40% de datos con ley bajo 150 ppm, un 50% de los datos con leyes entre 150 y 900 ppm y un 10% de los datos con leyes sobre 900 ppm de Pb. Bloque oeste.

Gráfico 20. Gráfico log-probabilístico de leyes de Zn. Las líneas rojas continuas muestran poblaciones de datos y la intersección de estas líneas define un quiebre en la ley de Pb. Los quiebres son aproximadamente 200 y 2000 ppm, donde hay aproximadamente un 40% de datos con ley bajo 200 ppm, un 40% de los datos con leyes entre 200 y 2000 ppm y un 20% de los datos con leyes sobre 2000 ppm de Zn. Bloque oeste.

Anexo C Tablas de gráficos

Tabla 2. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para cada altitud, los datos de altitud son la media de un rango de 30 m. Sección 24800. Tabla para el Gráfico 1.

ALTITUD 24800	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
30 m influencia	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
1260	20,0000	6	0,000	21,6667	6	2,582	301,667	6	305,821
1290	20,4545	22	2,132	30,3636	22	14,275	232,318	22	433,466
1320	25,4091	22	15,927	117,4091	22	204,589	1115,909	22	1291,677
1350	73,7895	19	179,228	140,0000	19	191,672	2902,105	19	1812,907
1380	174,6500	40	274,393	345,4500	40	377,584	2832,350	40	2415,056
1410	537,7727	44	1272,950	214,3409	44	669,377	883,545	44	1688,489
1440	117,4048	42	152,399	58,9286	42	78,355	662,762	42	1116,897
1470	92,3636	44	171,397	112,6818	44	216,114	940,409	44	1298,891
1500	188,8810	42	525,381	173,7857	42	339,087	813,095	42	1352,370
1530	231,1395	43	382,615	502,2326	43	734,389	1908,442	43	2854,934
1560	91,5000	44	262,331	172,8182	44	274,323	395,250	44	810,973
1590	100,9286	42	303,115	48,4524	42	51,396	163,238	42	329,481
1620	57,9318	44	98,045	88,8409	44	90,444	271,136	44	552,565
1650	27,2558	43	15,882	27,2326	43	14,920	124,488	43	340,059
1680	65,5000	58	101,162	152,7069	58	286,469	343,948	58	701,436
1710	37,7564	78	37,821	206,7179	78	382,830	895,667	78	2205,561
1740	56,6321	106	84,386	182,2925	106	217,899	919,160	106	1152,641
1770	69,6504	123	93,436	84,5041	123	114,791	624,325	123	813,575
1800	114,3876	129	210,080	189,9147	129	295,983	1055,667	129	1211,830
1830	63,7961	152	67,808	201,1447	152	304,165	1004,316	152	2327,570
1860	45,3409	176	68,402	570,0568	176	871,583	2343,653	176	3482,047
1890	59,0402	199	105,977	710,4774	199	870,403	2469,990	199	2656,518
1920	39,6373	204	51,479	775,1225	204	2629,006	1973,887	204	2028,040
1950	33,8783	189	58,899	779,5344	189	972,428	2451,079	189	2242,598
1980	18,9256	215	35,190	411,0651	215	344,098	1526,293	215	1774,401
2010	16,1783	230	24,305	533,5870	230	568,624	1578,765	230	2045,246
2040	17,4542	240	36,346	457,5417	240	336,294	1501,742	240	1919,680
2070	11,1459	233	11,452	677,0043	233	573,403	3079,790	233	3963,253
2100	13,8889	243	23,162	731,0782	243	480,656	3083,597	243	3536,392
2130	11,6616	263	12,065	614,1521	263	480,300	2637,616	263	3107,724
2160	11,1571	261	14,429	646,1379	261	560,676	2226,973	261	2474,443
2190	10,3534	283	12,050	750,4064	283	593,442	2819,633	283	3533,623
2220	11,3630	292	18,893	844,3733	292	563,675	2437,623	292	2879,687
2250	13,1031	262	21,225	812,9313	262	782,443	1958,389	262	2334,821
2280	25,4138	174	34,600	870,4080	174	731,899	1022,603	174	1392,457
2310	14,5676	74	31,450	901,1081	74	766,425	520,459	74	413,545
MEDIA TOTAL	40,8306	4681	168,204	558,3839	4681	822,515	1884,503	4681	2623,873

Tabla 3. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn en coordenadas este, los datos de las coordenadas son la media de un rango de 20 m. Sección 24800. Tabla para el Gráfico 2.

COORDENADAS ESTE	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
20 m influencia	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
24800									
8560	20,0000	30	0,0000	943,4333	30	454,038	1940,533	30	1891,873
8580	20,0000	35	0,0000	697,1143	35	650,407	5022,714	35	7462,045
8600	20,4000	35	2,3664	444,0857	35	507,809	1702,686	35	2263,116
8620	21,9714	35	9,2434	895,0000	35	359,543	2868,571	35	4423,721
8640	20,4286	35	2,5355	750,3143	35	544,354	3752,086	35	3624,220
8660	30,4286	35	25,8381	829,6571	35	422,524	3225,343	35	1903,275
8680	20,0000	41	0,0000	661,8537	41	1054,504	2024,756	41	2309,653
8700	20,0000	74	0,0000	791,4595	74	747,688	1981,554	74	1273,401
8720	20,7534	73	3,9679	525,0548	73	615,821	994,315	73	1035,788
8740	21,7867	75	9,9909	389,9867	75	587,253	2304,320	75	3530,014
8760	38,0000	74	57,1942	504,7973	74	648,905	1136,203	74	1485,341
8780	26,3243	74	26,2476	225,6622	74	312,086	746,689	74	861,306
8800	20,0667	75	0,5774	563,6800	75	916,787	2125,027	75	2992,996
8820	23,5155	97	25,4514	481,9897	97	795,493	1407,247	97	1909,034
8840	21,6273	110	7,9907	173,0909	110	208,979	748,364	110	907,949
8860	36,1982	111	77,6747	340,2793	111	533,094	1244,414	111	1811,849
8880	68,2500	108	132,0453	289,0833	108	453,459	1110,870	108	2258,145
8900	238,2430	107	853,6613	220,4206	107	467,381	843,262	107	1612,620
8920	78,2188	128	216,7619	259,1641	128	352,123	1531,227	128	1864,222
8940	58,4429	140	199,1033	243,6571	140	369,430	1335,700	140	1556,406
8960	125,3361	119	376,3877	560,2941	119	773,303	2272,983	119	2724,257
8980	24,8411	107	37,0922	108,7383	107	122,146	981,598	107	1192,267
9000	48,6242	149	119,0706	511,3289	149	700,843	1226,577	149	1594,976
9020	26,5455	121	62,3663	642,6116	121	699,717	2928,860	121	3788,474
9040	36,3099	142	74,7726	463,4225	142	448,668	2188,120	142	2755,668
9060	14,3987	316	30,5115	754,8703	316	808,335	2654,101	316	3338,960
9080	8,5210	238	17,7929	619,9538	238	505,135	2773,441	238	4099,214
9100	24,5199	277	52,9836	732,9350	277	602,350	2246,599	277	2261,253
9120	48,8021	283	108,9024	508,7774	283	686,494	1300,212	283	1248,008
9140	70,3580	324	143,8355	360,2809	324	372,990	1178,293	324	1553,542
9160	19,2740	292	33,5897	545,8048	292	488,900	1481,894	292	1782,271
9180	43,5081	248	67,3668	857,6492	248	2404,415	2216,738	248	2500,911
9200	48,5912	181	61,6531	702,3425	181	444,117	2538,044	181	3484,564
9220	8,7241	116	17,6293	876,6724	116	543,199	1969,681	116	1972,629
9240	29,0857	140	40,0878	965,6643	140	688,733	2652,314	140	3584,034
9260	12,5042	119	20,8826	758,5378	119	768,352	2363,067	119	1979,337
9280	9,8824	17	12,7175	554,3529	17	358,071	2480,588	17	1835,819
MEDIA TOTAL	40 8306	4681	168 2037	558 3839	4681	822 515	1884 503	4681	2623 873

Tabla 4. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para cada altitud, los datos de altitud son la media de un rango de 30 m. Sección 25400. Tabla para el Gráfico 3.

ALTITUD 25400	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
30 m influencia	Means	N	Std.Dev .	Means	N	Std.Dev.	Means	N	Std.Dev.
1380	21,1905	21	3,8421	174,8095	21	135,6686	1071,714	21	1129,152
1410	268,0952	21	527,9621	84,2381	21	73,5268	2692,571	21	2061,733
1440	26,5455	22	16,4801	88,5000	22	70,2870	1150,909	22	788,061
1470	104,5238	21	156,1722	28,0952	21	18,0607	60,190	21	58,119
1500	99,9524	21	185,0201	766,1429	21	859,3005	3864,571	21	3573,685
1530	99,1429	21	145,9223	280,3810	21	667,1390	1725,619	21	2614,192
1560	133,2121	33	202,4186	69,1818	33	66,2922	364,455	33	1258,234
1590	50,6905	42	82,7958	77,7619	42	81,4781	393,452	42	543,541
1620	43,0444	45	47,2690	46,6222	45	56,5188	417,933	45	911,801
1650	108,5273	55	244,5075	103,0545	55	246,1214	416,273	55	715,152
1680	86,6933	75	141,2913	324,6533	75	637,2623	963,173	75	1513,194
1710	70,2078	77	149,1104	102,8442	77	156,0602	477,260	77	813,818
1740	81,1707	82	161,2918	95,0000	82	123,6242	317,402	82	703,277
1770	54,9200	100	152,7733	173,4100	100	241,3643	1162,170	100	2087,843
1800	70,9474	114	110,1233	128,9825	114	156,0058	741,088	114	1050,469
1830	33,3333	117	70,1572	228,0171	117	252,9846	1398,188	117	2837,649
1860	32,0081	123	63,5640	373,9593	123	573,0706	1762,260	123	2885,800
1890	22,9896	96	33,8724	269,3958	96	308,6719	1143,156	96	1194,065
1920	40,4060	133	70,1312	243,5564	133	330,5090	1009,383	133	1411,135
1950	29,6338	142	55,3664	193,8732	142	208,8109	1014,894	142	1774,863
1980	59,4928	138	206,8410	169,5725	138	198,2973	488,971	138	634,407
2010	23,6174	149	75,8354	195,6711	149	213,3256	1140,940	149	1600,589
2040	25,9325	163	60,7502	185,8650	163	181,8423	1272,092	163	1945,552
2070	23,8171	175	49,2101	299,8571	175	282,3484	1673,886	175	2110,425
2100	26,6268	611	40,0257	367,5123	611	370,9744	1601,583	611	3923,827
2130	35,3606	269	62,6939	401,0260	269	462,7321	1654,041	269	2286,880
2160	47,8866	238	101,2162	499,7605	238	563,4931	1759,298	238	3032,035
2190	34,1689	586	60,9032	402,9590	586	467,0186	876,512	586	1525,737
2220	44,0350	314	82,2784	353,7293	314	341,0685	1194,904	314	1434,982
2250	57,5727	344	171,9961	417,0785	344	405,9824	941,744	344	1372,979
2280	51,3799	229	68,5651	517,3450	229	517,5928	407,624	229	793,909
2310	28,2000	125	55,3116	492,2720	125	578,9398	411,288	125	395,330
2340	1,1765	17	4,8507	46,1176	17	33,3408	266,471	17	228,498
MEDIA TOTAL	43 5482	4719	107 2618	324 6446	4719	410 9273	1131 491	4719	2209 231

Tabla 5. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn en coordenadas este, los datos de las coordenadas son la media de un rango de 20 m. Sección 25400. Tabla para el Gráfico 4.

COORDENADAS ESTE	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
20 m influencia	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
25400									
8780	21,4286	35	5,6323	413,029	35	731,7821	871,686	35	1184,028
8800	16,4000	50	7,7618	160,020	50	205,2717	666,260	50	821,425
8820	10,2581	93	13,5172	49,118	93	30,5211	174,645	93	156,020
8840	7,1642	134	10,6631	130,299	134	189,8920	283,082	134	358,525
8860	12,3661	254	17,7818	280,937	254	589,8105	1385,004	254	3472,035
8880	24,4545	187	88,7682	314,471	187	544,4796	1534,364	187	2420,598
8900	29,1508	199	95,6796	331,462	199	578,1808	1339,171	199	1973,453
8920	34,1276	243	166,7894	113,189	243	132,0403	972,136	243	1288,391
8940	54,7075	318	146,3071	184,915	318	179,9618	1680,623	318	5090,539
8960	22,5061	490	66,0992	284,539	490	394,9653	1015,227	490	1364,872
8980	30,7857	336	98,1624	319,881	336	360,9719	944,539	336	1754,665
9000	28,0625	320	78,1158	228,256	320	234,5263	1023,006	320	1281,581
9020	38,2791	387	134,3337	296,478	387	374,3144	704,982	387	1077,569
9040	39,3705	386	80,2008	414,080	386	326,0240	870,508	386	1449,356
9060	57,5366	492	68,5245	491,884	492	354,6574	1244,736	492	1987,344
9080	93,6078	334	99,4019	416,422	334	517,5846	1785,108	334	2475,287
9100	101,5581	172	104,5414	544,047	172	420,2968	942,529	172	1248,536
9120	63,4778	90	75,4501	416,300	90	487,2054	1565,067	90	1524,054
9140	70,9670	91	70,2492	502,582	91	514,8158	1139,681	91	1455,041
9160	133,9028	72	347,6204	390,708	72	316,4567	1662,292	72	1822,352
9180	99,8485	33	71,4161	626,182	33	467,8492	1786,061	33	1916,660
9200	101,3333	3	102,8899	1299,000	3	947,7869	219,000	3	121,766
MEDIA TOTAL	43,5482	4719	107.2618	324.645	4719	410.9273	1131.491	4719	2209.231

Tabla 6. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para cada altitud, los datos de altitud son la media de un rango de 30 m. Sección 26200. Tabla para el Gráfico 5.

ALTITUD 26200	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
30 m influencia	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
1350	45,3000	10	62,9886	70,8000	10	40,395	743,600	10	393,749
1380	323,5909	22	609,8559	75,4091	22	55,054	1171,955	22	1326,186
1410	96,8571	21	101,5088	513,9524	21	1150,805	1901,571	21	2189,837
1440	251,8095	21	405,9604	221,4762	21	508,588	634,333	21	1019,915
1470	231,1905	21	638,8453	62,4762	21	37,596	284,762	21	267,148
1500	333,5238	21	465,6040	78,4762	21	61,845	38,286	21	41,433
1530	134,3333	36	202,4736	72,1667	36	58,684	1324,333	36	2301,131
1560	77,3333	42	133,0572	151,9048	42	205,244	1292,238	42	2744,228
1590	63,3810	42	73,4983	67,6667	42	177,899	700,500	42	1006,419
1620	274,1667	42	468,8467	161,1190	42	596,617	297,095	42	378,932
1650	90,2619	42	246,6625	50,5952	42	56,261	428,381	42	667,172
1680	35,0476	42	60,3057	80,2143	42	66,917	252,238	42	382,663
1710	20,9524	42	6,1721	111,7143	42	152,634	746,548	42	956,591
1740	20,0000	43	0,0000	52,8605	43	54,985	492,651	43	579,390
1770	30,5323	62	47,8645	120,9839	62	83,194	508,339	62	766,488
1800	147,7590	83	600,1489	195,6386	83	376,191	1780,807	83	3368,495
1830	75,0286	70	118,8304	133,7857	70	199,075	1012,043	70	1441,085
1860	26,1887	53	40,3857	206,0377	53	396,269	771,943	53	852,238
1890	93,2903	62	182,7119	101,7742	62	101,806	693,161	62	1236,982
1920	56,4091	66	159,9790	195,3939	66	176,626	1010,955	66	2883,999
1950	13,8621	58	24,3861	226,5345	58	169,310	338,690	58	444,026
1980	7,9483	58	10,0933	247,4138	58	464,906	880,138	58	1045,836
2010	24,1515	66	71,9654	147,2424	66	153,549	753,848	66	811,382
2040	39,3472	72	60,6860	112,9444	72	108,959	617,611	72	1504,769
2070	14,5814	86	28,0392	189,2907	86	126,207	597,640	86	540,743
2100	73,6791	134	127,0255	265,5373	134	434,985	987,612	134	1440,168
2130	32,0676	148	64,1137	418,6216	148	482,149	1301,081	148	1558,238
2160	39,0234	171	78,6455	353,3216	171	521,995	1490,351	171	1819,932
2190	39,4479	259	58,5611	341,9305	259	477,065	1211,788	259	1496,119
2220	19,4570	256	24,8240	330,0117	256	321,541	958,695	256	1431,847
2250	25,5882	272	60,1172	298,9706	272	284,924	823,904	272	1318,694
2280	43,0330	273	60,1136	285,3810	273	315,660	387,480	273	622,698
2310	23,4261	230	31,1610	281,8565	230	271,021	278,017	230	348,412
2340	13,2273	22	16,1715	469,8636	22	281,388	53,273	22	48,247
MEDIA TOTAL	52.2877	2948	174,4178	251,7154	2948	360,733	837.636	2948	1457,500

Tabla 7. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn en coordenadas este, los datos de las coordenadas son la media de un rango de 20 m. Sección 26200. Tabla para el Gráfico 6.

COORDENADAS ESTE	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
20 m influencia	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
26200									
8780	20,0000	30	0,0000	56,7333	30	34,6380	370,900	30	282,853
8800	20,0000	42	0,0000	65,4286	42	44,3776	384,381	42	362,129
8820	20,0000	42	0,0000	147,7143	42	144,1824	926,405	42	886,563
8840	25,2093	43	14,0315	171,3256	43	589,0824	276,186	43	427,151
8860	65,6545	55	118,7991	86,0364	55	123,4864	369,564	55	739,503
8880	109,3053	95	258,2276	158,1053	95	303,7409	584,168	95	953,438
8900	84,3212	137	310,5828	138,6204	137	310,5172	567,825	137	840,325
8920	76,0296	135	267,9894	159,8148	135	450,1989	978,081	135	1229,868
8940	21,3366	101	48,3577	305,7921	101	525,3852	951,158	101	1513,281
8960	73,2885	208	258,7479	239,6394	208	533,0489	898,231	208	2053,975
8980	29,8146	178	62,8449	179,0787	178	310,6362	962,494	178	1579,574
9000	20,5610	82	116,2612	176,1220	82	163,9174	729,561	82	1567,326
9020	11,7333	75	35,7307	165,0267	75	303,3210	452,627	75	702,237
9040	89,9238	302	338,0079	212,6026	302	299,9596	1245,772	302	2228,643
9060	38,6995	213	80,7259	220,2723	213	274,6134	1167,502	213	1414,428
9080	7,1765	170	12,9278	358,2882	170	436,2700	1163,565	170	1263,079
9100	25,2970	202	54,7374	323,6386	202	336,4083	1183,767	202	1238,904
9120	38,3301	209	68,8842	284,4306	209	287,2482	733,498	209	1083,623
9140	63,8333	282	91,9309	385,2447	282	360,6978	497,748	282	972,353
9160	52,8736	182	56,6143	380,2802	182	325,2793	638,352	182	1512,221
9180	72,6077	130	90,7521	293,9923	130	207,2223	264,500	130	842,730
9200	84,1818	33	76,8352	310,0303	33	428,1520	1560,485	33	2568,784
9220	57,5000	2	17,6777	569,5000	2	340,1184	45,000	2	14,142
MEDIA TOTAL	52,2877	2948	174,4178	251,7154	2948	360,7333	837,636	2948	1457,500

Tabla 8. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para las coordenadas norte, los datos de coordenadas son la media de un rango de 30 m. Tabla para el Gráfico 7.

COORDENADAS NORTE	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
influencia 30 m	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
24390	62,1593	766	212,4052	627,883	766	570,210	2632,230	766	2380,965
24420	8,0000	1	0,0000	210,000	1	0,000	1980,000	1	0,000
24450	13,2163	541	39,2807	732,532	541	567,389	3597,043	541	3063,762
24480	3,0348	402	15,3348	591,642	402	633,526	3071,045	402	3546,132
24510	4,7995	748	20,4327	1516,243	748	983,823	4532,246	748	4403,326
24540	15,4286	280	34,7726	1394,250	280	1078,998	4665,393	280	3971,582
24570	44,3098	255	62,1173	805,294	255	937,193	4587,804	255	3523,374
24600	31,3282	1167	72,4293	727,244	1167	731,734	2916,953	1167	2981,902
24630	20,8709	860	53,5304	1164,685	860	930,586	3409,548	860	3970,861
24660	18,1307	742	22,4822	862,053	742	832,142	3528,071	742	4224,136
24690	14,4603	1019	47,0703	984,954	1019	702,437	3305,623	1019	3328,840
24720	28,6405	306	43,5663	676,520	306	721,581	3016,408	306	3021,015
24750	23,5947	1167	62,3500	728,350	1167	697,375	2513,940	1167	3174,163
24780	39,5319	720	105,6730	483,103	720	503,678	1983,506	720	2695,624
24810	36,5316	2229	120,5482	575,153	2229	677,777	1944,907	2229	2605,095
24840	46,4241	1422	252,4277	558,025	1422	1177,620	1635,354	1422	2460,604
24870	47,7409	193	88,6891	968,839	193	1400,343	2842,368	193	3693,383
24900	42,5562	1325	306,6098	533,712	1325	596,493	1844,897	1325	2377,136
24930	28,4524	871	63,9856	398,181	871	409,275	1682,933	871	1941,183
24960	98,7267	1720	624,7208	348,063	1720	517,739	1349,419	1720	2108,783

24990	73,3053	3217	199,7922	452,103	3217	756,736	1535,011	3217	2598,584
25020	26,6825	463	79,0023	565,134	463	527,506	1908,542	463	2347,614
25050	37,1928	2127	218,9623	353,937	2127	774,585	1188,218	2127	2008,859
25080	20,5376	1118	38,4002	342,969	1118	501,569	1332,135	1118	2495,064
25110	42,5510	1871	141,0809	376,201	1871	707,369	1389,519	1871	1889,449
25140	36,0060	1325	79,0970	334,667	1325	480,579	1250,426	1325	2348,384
25170	34,6415	1205	72,3648	299,941	1205	502,662	1428,588	1205	2617,916
25200	30,1399	2094	58,0518	362,382	2094	548,342	1418,613	2094	2251,162
25230	44,3352	701	62,7138	404,111	701	615,393	1466,479	701	2241,737
25260	50,2441	1766	130,9653	351,196	1766	542,226	1145,825	1766	1806,614
25290	27,7989	1586	65,9171	345,588	1586	485,221	1371,970	1586	2166,390
25320	34,0335	836	75,6933	342,045	836	452,447	1333,421	836	2246,183
25350	28,0728	1579	57,9840	295,917	1579	342,660	931,828	1579	1781,662
25380	47,6624	1093	111,4476	319,064	1093	413,547	948,114	1093	1626,531
25410	44,6682	2535	102,9402	314,791	2535	432,250	1200,353	2535	2616,939
25440	38,7863	936	122,8191	308,690	936	350,551	1026,037	936	1608,190
25470	26,7864	1077	82,1650	329,650	1077	315,718	1121,368	1077	2148,821
25500	38,9738	2445	120,9404	339,314	2445	409,256	872,090	2445	1546,823
25530	21,9343	654	46,6785	287,060	654	596,910	690,668	654	1409,675
25560	35,7524	2088	80,7478	294,839	2088	287,687	707,568	2088	1345,889
25590	62,3384	1853	169,5061	281,071	1853	321,090	805,938	1853	1466,504
25620	35,2937	756	48,1664	255,134	756	275,414	578,496	756	953,357
25650	50,8891	1542	152,9417	276,744	1542	278,513	715,167	1542	2059,919
25680	64,6428	907	108,3871	306,750	907	338,500	597,269	907	1139,520
25710	47,7108	2054	128,3342	258,569	2054	409,630	554,519	2054	1112,230
25740	29,1464	1441	73,5243	230,227	1441	257,676	641,759	1441	1292,547
25770	31,6514	1612	117,8143	231,910	1612	488,228	776,781	1612	1943,554
25800	78,5823	2753	373,3988	173,787	2753	309,342	545,260	2753	1481,643
25830	46,9889	989	116,6665	248,575	989	362,315	719,233	989	1535,144
25860	31,8401	1313	89,4596	240,289	1313	358,010	790,262	1313	2048,970
25890	33,4439	1818	103,0295	303,436	1818	384,268	777,898	1818	1274,934
25920	62,1038	636	195,8021	430,470	636	813,946	1554,002	636	2653,228
25950	39,6615	898	116,1166	319,901	898	517,395	823,469	898	1931,439
25980	127,6959	707	818,4792	279,775	707	371,454	742,380	707	1560,657
26010	44,5206	1823	134,4647	227,694	1823	322,978	775,276	1823	1478,165
26040	54,2690	1078	265,8851	295,567	1078	428,247	891,811	1078	2162,483
26070	55,3051	390	104,3302	302,885	390	382,645	949,149	390	1339,632
26100	37,6601	868	92,1867	249,494	868	344,277	1053,713	868	1893,974
26130	48,8321	411	71,0445	316,010	411	410,541	1010,779	411	1841,307
26160	32,5876	696	216,4497	259,132	696	399,164	851,473	696	1561,782
26190	50,5832	1533	128,0301	245,306	1533	343,829	918,834	1533	1501,787
26220	95,5000	440	261,0916	209,934	440	391,403	576,598	440	1077,335
26250	31,7511	679	59,0508	342,925	679	361,740	770,943	679	1305,019
26280	37,3073	397	59,4077	334,977	397	308,690	779,091	397	1718,746
26310	31,3320	497	105,3463	283,310	497	368,771	607,726	497	956,821
26340	15,3409	616	50,4583	396,468	616	1410,603	1065,825	616	2597,092
26370	82,0467	150	144,0128	238,340	150	224,759	1080,387	150	1238,524
26400	46,6868	530	204,3798	285,855	530	477,379	783,564	530	1178,958
26430	79,5357	28	83,0468	704,643	28	528,089	439,286	28	1137,779
26460	23,1350	363	40,5482	429,273	363	766,557	1374,394	363	1766,713
26490	94,0000	10	91,6915	270,600	10	239,955	885,000	10	1095,980
26520	10,6707	167	22,4503	403,323	167	399,254	1402,910	167	1441,637
MEDIA TOTAL	43.0634	77405	190.8951	393,303	77405	599.064	1321.406	77405	2319.042

Tabla 9. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para cada tipo de litología. Tabla para el Gráfico 8.

LITOLOGÍA	Mo[ppm] Means	Mo[ppm] N	Mo[ppm] Std.Dev.	Pb[ppm] Means	Pb[ppm] N	Pb[ppm] Std.Dev.	Zn[ppm] Means	Zn[ppm] N	Zn[ppm] Std.Dev.
VC	31,9906	2240	62,4184	584,7504	2240	788,3420	2366,004	2240	3168,781
AND	16,1524	4437	45,5737	364,9903	4437	599,2227	1561,780	4437	2709,995
GND	35,6676	38938	153,3103	349,3830	38938	507,0492	1144,773	38938	1950,626
POF	11,3965	5173	40,2392	476,3311	5173	678,6506	1435,281	5173	2169,270
DPD	27,4327	5814	87,9752	591,4219	5814	844,7678	1671,972	5814	2532,651
POC	44,5950	563	280,1290	496,8135	563	570,8738	2222,067	563	2656,306
PM	118,9879	6552	345,2446	329,2350	6552	629,7007	1394,116	6552	2202,384
BH	58,3997	5822	333,9002	400,2559	5822	643,0409	1178,008	5822	3228,842
ROC	68,0968	1839	193,0140	555,2202	1839	777,4442	2381,898	1839	3521,782
MEDIA TOTAL	42,3176	71378	190,1710	395,4210	71378	607,3579	1338,986	71378	2341,749

Tabla 10. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para cada tipo de alteración. Tabla para el Gráfico 9.

ALTERACIÓN	Mo[ppm] Means	Mo[ppm] N	Mo[ppm] Std.Dev.	Pb[ppm] Means	Pb[ppm] N	Pb[ppm] Std.Dev.	Zn[ppm] Means	Zn[ppm] N	Zn[ppm] Std.Dev.
POTASICA	179,7137	531	839,2808	340,7062	531	682,5084	1895,697	531	2280,350
FILICA	49,0856	26620	181,9419	382,4386	26620	636,7108	1486,261	26620	2305,342
PROPILITICA	8,7709	6893	29,7902	212,3564	6893	422,2772	989,763	6893	1635,729
ARGILICA	54,5439	13245	170,9413	447,9783	13245	644,7859	1497,705	13245	2315,899
A.AVANZADA	30,3735	18861	186,5615	458,5316	18861	612,3635	1190,109	18861	2536,901
SILICIFICACION	55,6520	2598	137,3857	426,4249	2598	524,1643	938,410	2598	2826,309
MEDIA TOTAL	42,2185	68748	185,9537	400,2282	68748	613,9000	1339,894	68748	2346,654

Tabla 11. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para cada asociación de sulfuros. Tabla para el Gráfico 10.

ASOCIACIONES	Mo	Mo	Мо	Pb	Pb	Pb	Zn	Zn	Zn
	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
BO	52,6364	44	89,4095	187,0000	44	176,013	1357,545	44	1932,412
BO-CP	105,0870	897	206,4807	414,4705	897	629,876	2086,637	897	2963,513
CP-BO	160,3523	687	332,7388	296,8443	687	420,746	1681,980	687	2705,532
СР	143,5342	1784	241,9687	232,0533	1784	369,521	1373,415	1784	2234,858
CP-CC-BO	110,4539	271	194,6575	275,8598	271	437,371	1624,214	271	5257,663
CP-PY	124,6170	2060	291,1598	384,4592	2060	713,618	2026,691	2060	3171,350
PY-CC-BO	42,2665	5318	89,0969	381,9043	5318	626,609	975,864	5318	2152,598
PY-CP	53,5840	9188	226,2902	443,1897	9188	709,883	1686,485	9188	2713,161
PY	13,7814	23905	58,7409	450,8421	23905	650,738	1626,940	23905	2363,350
CP-EN	27,9091	869	55,1833	321,7054	869	305,910	1035,412	869	2426,742
PY-EN	25,6539	809	55,4630	395,4153	809	566,262	1419,344	809	2526,785
CC	77,0333	120	164,3929	546,4167	120	783,257	770,067	120	1876,912
BO-DG-CC	69,2308	52	54,9979	585,2885	52	1618,243	1477,250	52	5024,349
CC-CV	58,8200	50	74,4259	568,2200	50	926,620	626,460	50	1243,228
CC-CV-PY	41,7958	191	67,4304	435,6806	191	421,673	769,649	191	1532,313
MEDIA TOTAL	40,3238	46245	152,5437	422,7944	46245	647,980	1559,626	46245	2511,719

Tabla 12. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo, Pb y Zn para cada rango de As. Bloque oeste. Tabla para el Gráfico 11.

RANGOS DE AS [ppm]	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
Bloque oeste	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
[0-100[50,66100	18720	225,9748	345,0024	18720	540,1759	1502,688	18720	2244,965
[100-400[34,48599	9389	92,7223	443,7192	9389	708,7487	1326,192	9389	2405,594
[400-700[32,69148	3332	114,5354	474,5681	3332	603,8999	1054,450	3332	2304,611
>700	37,61173	9192	94,9868	400,2910	9192	545,9522	948,533	9192	2224,679
MEDIA TOTAL	42,49792	40633	169,3719	390,9448	40633	591,6227	1299,788	40633	2294,734

Tabla 13. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Mo y As para cada altitud, los datos de altitud son la media de un rango de 30 m. Sección 25400. Tabla para el Gráfico 12.

ALTITUD [msnm]	Mo[ppm]	Mo[ppm]	Mo[ppm]	As[ppm]	As[ppm]	As[ppm]
influencia 30 metros	Means	N	Std.Dev.	Means	N	Std.Dev.
1380	21,19048	21	3,842122	30	21	0
1410	268,0952	21	527,9621	30,19048	21	0,872872
1440	26,54545	22	16,48008	30	22	0
1470	104,5238	21	156,1722	30	21	0
1500	99,95238	21	185,0201	36,80952	21	24,06578
1530	99,14286	21	145,9223	88,28571	21	114,5225
1560	130,2857	21	214,3227	50,85714	21	52,50075
1590	24,71429	21	9,628826	74,61905	21	93,84587
1620	24,31818	22	11,8819	118,9091	22	162,4215
1650	22,14286	21	5,140873	320,2857	21	532,6036
1680	29,46154	26	23,3927	47,03846	26	48,36319
1710	24,52381	21	11,50052	113,4286	21	160,5433
1740	75,69565	23	237,1362	41,69565	23	46,04685
1770	30,05714	35	38,37351	298,7143	35	388,6016
1800	19,28846	52	19,22859	151,9808	52	394,8481
1830	15,46269	67	17,66209	105,194	67	234,1864
1860	13,33784	74	16,76941	368,973	74	654,0015
1890	32,58621	58	36,41334	483,2241	58	466,9704
1920	45,1954	87	78,51956	249,6322	87	473,1118
1950	34,54206	107	60,7159	235,271	107	567,5149
1980	67,80612	98	241,0912	475,9286	98	781,8765
2010	31,15789	95	90,26348	764	95	1421,388
2040	34,8	90	73,06365	1306,567	90	2309,241
2070	29,25234	107	57,95266	869,3271	107	2913,954
2100	26,36449	321	45,23627	668,4393	321	1896,855
2130	24,84659	176	50,07782	1347,352	176	4259,684
2160	63,05333	150	119,5185	1221,453	150	3102,181
2190	44,17699	339	55,49469	1061,301	339	3023,547
2220	61,92268	194	94,77434	631,2577	194	1572,542
2250	73,67778	180	226,3833	582,8722	180	1090,604
2280	70,03008	133	80,06805	1979,429	133	5682,631
2310	79,23256	43	69,97579	5010,047	43	12145,03
2340	2,5	8	7,071068	215,25	8	100,1652
MEDIA TOTAL	46,38761	2696	116,0298	809,2292	2696	2930,313

Tabla 14. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de As, Pb y Zn para cada altitud, los datos de altitud son la media de un rango de 30 m. Sección 24800. Tabla para el Gráfico 13.

ALTITUD [msnm] 30 metros influencia	As[ppm] Means	As[ppm] N	As[ppm] Std.Dev.	Pb[ppm] Means	Pb[ppm] N	Pb[ppm] Std.Dev.	Zn[ppm] Means	Zn[ppm] N	Zn[ppm] Std.Dev.
1260	30.000	6	0.000	21.667	6	2.582	301.667	6	305.821
1290	30.000	22	0.000	30,364	22	14.275	232.318	22	433,466
1320	30,000	22	0,000	117,409	22	204,589	1115,909	22	1291,677
1350	30,474	19	2,065	140,000	19	191,672	2902,105	19	1812,907
1380	31,225	40	7,748	345,450	40	377,584	2832,350	40	2415,056
1410	31,318	44	5,941	214,341	44	669,377	883,545	44	1688,489
1440	49,714	42	64,969	58,929	42	78,355	662,762	42	1116,897
1470	147,068	44	324,619	112,682	44	216,114	940,409	44	1298,891
1500	849,595	42	2124,626	173,786	42	339,087	813,095	42	1352,370
1530	535,767	43	1606,187	502,233	43	734,389	1908,442	43	2854,934
1560	693,795	44	2124,843	172,818	44	274,323	395,250	44	810,973
1590	46,952	42	33,243	48,452	42	51,396	163,238	42	329,481
1620	562,091	44	1237,915	88,841	44	90,444	271,136	44	552,565
1650	70,209	43	80,163	27,233	43	14,920	124,488	43	340,059
1680	432,897	58	1564,658	152,707	58	286,469	343,948	58	701,436
1710	139,551	69	480,588	180,638	69	357,978	506,261	69	1198,315
1740	542,329	85	1629,969	172,388	85	229,283	940,247	85	1274,277
1770	162,970	100	503,364	72,440	100	97,767	604,220	100	853,270
1800	117,923	104	180,164	223,548	104	316,809	1218,567	104	1274,355
1830	205,133	128	491,016	183,195	128	243,314	1072,703	128	2498,056
1860	693,273	139	1953,335	456,691	139	800,278	1899,662	139	3522,571
1890	848,371	159	2359,590	524,440	159	564,073	2025,447	159	2196,372
1920	440,807	171	1315,900	878,965	171	2857,970	2201,655	171	2116,252
1950	934,608	166	4026,415	834,337	166	1021,381	2378,096	166	2200,343
1980	1215,720	193	3424,249	420,358	193	351,002	1494,679	193	1609,003
2010	2024,409	208	4022,418	563,389	208	589,097	1603,058	208	2091,506
2040	2504,429	217	6273,652	461,336	217	345,141	1482,525	217	1965,551
2070	991,360	203	1890,529	644,266	203	518,171	3133,837	203	4024,371
2100	1001,128	188	2533,584	722,596	188	477,385	3288,032	188	3871,828
2130	517,526	211	1172,028	629,943	211	484,986	2704,204	211	3242,328
2160	425,005	211	1698,377	672,773	211	568,118	2174,569	211	2311,168
2190	312,481	189	981,104	706,556	189	546,183	3003,228	189	4009,246
2220	348,123	171	985,756	887,901	171	612,461	2440,158	171	2980,369
2250	323,968	155	664,334	884,955	155	828,777	2296,394	155	2707,899
2280	658,088	68	965,694	1092,588	68	922,449	1017,691	68	1759,823
2310	395,292	48	493,264	1019,875	48	776,738	384,146	48	210,551
MEDIA TOTAL	735,607	3738	2550,771	532,809	3738	854,555	1856,116	3738	2677,367

Tabla 15. Medias aritméticas, desviación estándar y número de datos (N) de la ley de Mo, Pb y Zn para cada rango de CUT. Bloque oeste. Tabla para el Gráfico 14.

Rangos CUT [%]	Mo[ppm]	Mo[ppm]	Mo[ppm]	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
Bloque oeste	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
[0-0,1[16,84182	10678	36,5525	434,0925	10678	613,8639	1460,279	10678	2165,387
[0,1-0,5[28,67489	11959	121,4441	423,2558	11959	670,1216	1435,463	11959	2402,949
[0,5-2,5[71,03201	14650	250,5098	344,9199	14650	504,0711	1108,463	14650	2238,409
>2,5	48,84608	3346	101,2591	339,2791	3346	556,0252	1140,387	3346	2465,574
MEDIA TOTAL	42,49792	40633	169,3719	390,9448	40633	591,6227	1299,788	40633	2294,734

ALTITUD	As[ppm]	As[ppm]	As[ppm]	ALTITUD	As[ppm]	As[ppm]	As[ppm]
30 metros influencia	Means	N	Std.Dev.	30 metros influencia	Means	N	Std.Dev.
1140	60,000	11	0,000	1800	326,697	1546	974,808
1170	60,000	21	0,000	1830	262,549	1651	659,229
1200	61,290	31	4,995	1860	420,080	1748	1101,354
1230	58,393	56	17,350	1890	539,901	1893	1785,658
1260	53,626	91	18,289	1920	458,550	2179	1675,851
1290	66,228	114	65,302	1950	578,791	2519	1915,141
1320	59,437	142	41,783	1980	758,842	2784	2989,534
1350	55,175	154	31,811	2010	773,035	3174	2640,748
1380	53,300	210	35,319	2040	812,549	3822	2755,250
1410	46,817	213	39,476	2070	813,384	4352	2865,701
1440	51,866	246	42,031	2100	842,478	6549	2498,654
1470	75,696	273	185,885	2130	759,102	5398	2485,057
1500	175,259	286	855,429	2160	879,213	7304	3083,794
1530	130,324	352	581,605	2190	1055,165	10014	3366,197
1560	167,947	397	747,217	2220	1086,648	7450	3537,324
1590	136,106	472	336,453	2250	987,993	6898	2850,361
1620	314,424	523	1337,606	2280	1163,503	6023	2784,068
1650	280,483	605	1337,224	2310	1112,646	4056	2744,929
1680	223,811	735	901,927	2340	1782,929	1217	3742,230
1710	240,325	881	703,021	2370	942,062	97	1660,000
1740	216,705	1117	991,964	2400	60,000	1	0,000
1770	265,380	1364	983,461	MEDIA TOTAL	823,791	88969	2709,076

Tabla 16. Medias aritméticas, desviación estándar y número de datos (N) de la ley de As para cada altitud, los datos de altitud son la media de un rango de 30 m. Bloque oeste. Tabla para el Gráfico 15.

Tabla 17. Medias aritméticas, desviación estándar y número de datos (N) de la ley de As para cada rango de CUT. Bloque oeste. Tabla para el Gráfico 16.

RANGOS CUT [%]	As[ppm] Means	As[ppm] N	As[ppm] Std.Dev.
[0-0,1[142,437	10678	437,287
[0,1-0,5[313,930	11959	615,593
[0,5-2,5[840,894	14650	1425,342
>2,5	5835,380	3346	8061,204
MEDIA TOTAL	913,531	40633	2915,947

Tabla 18. Medias aritméticas, desviación estándar y número de datos (N) de las leyes de Cu, Pb y Zn para cada altitud, los datos de altitud son la media de un rango de 30 m. Sección 24800. Tabla para el Gráfico 17.

ALTITUD [msnm]	CUT	CUT	CUT	Pb[ppm]	Pb[ppm]	Pb[ppm]	Zn[ppm]	Zn[ppm]	Zn[ppm]
influencia 30 metros	Means	N	Std.Dev.	Means	N	Std.Dev.	Means	N	Std.Dev.
1260	0,968667	6	0,277879	21,667	6	2,582	301,667	6	305,821
1290	1,193091	22	0,696229	30,364	22	14,275	232,318	22	433,466
1320	1,117500	22	0,379288	117,409	22	204,589	1115,909	22	1291,677
1350	1,239000	19	0,390971	140,000	19	191,672	2902,105	19	1812,907
1380	0,619100	40	0,567689	345,450	40	377,584	2832,350	40	2415,056
1410	1,084591	44	0,864787	214,341	44	669,377	883,545	44	1688,489
1440	1,488738	42	0,777698	58,929	42	78,355	662,762	42	1116,897
1470	1,746432	44	1,378041	112,682	44	216,114	940,409	44	1298,891
1500	0,927571	42	0,593188	173,786	42	339,087	813,095	42	1352,370
1530	0,574930	43	0,673231	502,233	43	734,389	1908,442	43	2854,934
1560	1,049636	44	0,897273	172,818	44	274,323	395,250	44	810,973
1590	0,564929	42	0,380656	48,452	42	51,396	163,238	42	329,481
1620	0,565477	44	0,466729	88,841	44	90,444	271,136	44	552,565
1650	0,407163	43	0,352038	27,233	43	14,920	124,488	43	340,059
1680	0,629103	58	0,890477	152,707	58	286,469	343,948	58	701,436
1710	0,389812	69	0,411596	180,638	69	357,978	506,261	69	1198,315
1740	0,764824	85	0,840423	172,388	85	229,283	940,247	85	1274,277
1770	0,603870	100	0,938147	72,440	100	97,767	604,220	100	853,270
1800	0,548798	104	0,577895	223,548	104	316,809	1218,567	104	1274,355
1830	0,856641	128	0,839524	183,195	128	243,314	1072,703	128	2498,056
1860	1,202065	139	1,618586	456,691	139	800,278	1899,662	139	3522,571
1890	0,794642	159	1,116073	524,440	159	564,073	2025,447	159	2196,372
1920	0,462503	171	0,672384	878,965	171	2857,970	2201,655	171	2116,252
1950	0,661982	166	1,547166	834,337	166	1021,381	2378,096	166	2200,343
1980	0,752301	193	1,458977	420,358	193	351,002	1494,679	193	1609,003
2010	1,044663	208	1,774780	563,389	208	589,097	1603,058	208	2091,506
2040	1,014811	217	2,018286	461,336	217	345,141	1482,525	217	1965,551
2070	0,520305	203	1,017148	644,266	203	518,171	3133,837	203	4024,371
2100	0,543649	188	1,424738	722,596	188	477,385	3288,032	188	3871,828
2130	0,209545	211	0,447865	629,943	211	484,986	2704,204	211	3242,328
2160	0,189502	211	0,582594	672,773	211	568,118	2174,569	211	2311,168
2190	0,156757	189	0,534351	706,556	189	546,183	3003,228	189	4009,246
2220	0,213643	171	0,600051	887,901	171	612,461	2440,158	171	2980,369
2250	0,330742	155	0,646931	884,955	155	828,777	2296,394	155	2707,899
2280	0,181618	68	0,486884	1092,588	68	922,449	1017,691	68	1759,823
2310	0,074375	48	0,089393	1019,875	48	776,738	384,146	48	210,551
MEDIA TOTAL	0.619051	3738	1.146816	532,809	3738	854,555	1856.116	3738	2677.367