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AN IMPROVED PROGNOSIS STRATEGY WITH TEMPERATURE DEPENDENT
STATE-SPACE MODEL FOR THE ANALYSIS OF THE STATE-OF-HEALTH AND

STATE-OF-CHARGE IN LITHIUM-ION BATTERIES.

Actualmente existe una gran cantidad de equipos y dispositivos que utilizan baterías como
su fuente primaria o secundaria de energía. Para estos sistemas es crítico contar con informa-
ción del desempeño de sus baterías, dado que este conocimiento puede ayudar a tomar deci-
siones apropiadas y asegurar autonomía en el tiempo. Dos importantes variables que deben
ser monitoreadas son el �Estado-de-Salud� (SOH, del inglés State-of-Health) y el �Estado-de-
Carga� (SOC, del inglés State-of-Charge). Este trabajo se enfoca en generar esquemas de
pronóstico para ambas variables, donde se tome en cuenta la temperatura de operación.

Con este propósito, se diseñaron y realizaron un conjunto de pruebas de laboratorio con
celdas de Ion-Litio donde se caracterizó el impacto de la temperatura en factores tales como
la energía entregada en un ciclo, la impedancia interna, o tendencia de degradación. A partir
de estos datos, y esquemas existentes en la literatura, se proponen modelos empíricos para
la degradación y para la descarga de una batería mediante una representación de espacio-
estados, de�niendo directamente un estado como el SOH y el SOC respectivamente. Las
estimaciones y predicciones a largo plazo se efectúan bajo un enfoque Bayesiano, basado en
el �ltro de partículas. Además, se propone la implementación de lazos de control externos
para corregir condiciones iniciales erróneas de los estados, y un módulo de detección de out-
liers para trabajar con datos perdidos o inválidos.

La validación de estos esquemas se realiza con datos generados en laboratorio, además
de datos de degradación publicados por NASA Ames Prognostic Center of Excellence. El
esquema propuesto para el SOH es capaz de incorporar explícitamente el efecto de la tem-
peratura de operación (bajo el concepto de �Capacidad Usable�), y estimar y pronosticar el
SOH a una temperatura de referencia. Por otro lado, el esquema para el SOC fue validado in-
cluyendo una mejor representación de la fenomenología del proceso de descarga comparada a
la existente, y se deja una propuesta de cómo incluir el efecto de la temperatura en el modelo.

La implementación de estos esquemas de pronóstico permite la incorporación de la tempe-
ratura de operación, que a pesar de su gran in�uencia en el comportamiento de las baterías es
considerada constante en muchos casos presentes en la literatura; además de incluir algunas
mejoras prácticas en los algoritmos de estimación. Las propuestas de este trabajo dejan las
bases para avanzar en la incorporación de otros fenómenos importantes como la profundidad
de descarga, o la magnitud de la corriente de descarga.

iii



iv



Summary

Batteries can be found as primary or secondary energy sources in numerous pieces of equip-
ment and devices. For these systems it is critical to gather information about the battery
performance, since this knowledge could help to take appropriate actions and ensure auton-
omy throughout time. Two important variables that must be monitored are the �State-of-
Health� and the �State-of-Charge�. This work focuses on formulating prognosis schemes for
both variables, explicitly including the temperature of operation within the structure of the
predictive model.

A set of laboratory experiments with Lithium-Ion cells were designed and carried out,
where the temperature impact on factors such as the energy delivered in a cycle, the internal
impedance or the degradation trends was characterized. Considering the collected data sets
and the schemes available in the literature, a state-space representation of empirical models
for degradation and the discharge process of a battery is proposed; de�ning directly one state
as the SOH and SOC respectively. The estimates and long-term predictions are generated
using Bayesian approaches, speci�cally a particle �lter algorithm. Furthermore, the imple-
mentation of outer-feedback correction loops to correct erroneous state initializations and a
detection module to isolate artifacts created by lost data or outliers is proposed.

The validation of these schemes is made with laboratory-generated data, and public degra-
dation data provided by NASA Ames Prognostic Center of Excellence. The proposed SOH
model is able to incorporate explicitly the impact of the temperature of operation (with the
concept of �Usable Capacity�), and estimate and predict the SOH at a reference tempera-
ture. The SOC prognosis scheme is validated including an improved representation of the
phenomenology of the discharge process compared to those found in the literature. Finally,
a proposal to include the e�ect of the internal temperature in the model is discussed.

The implementation of these prognosis schemes allows the incorporation of the temper-
ature of operation, a variable that has been considered constant in some previous works
despite of its impact in the performance of the battery; in addition to the inclusion of prac-
tical improvements to the algorithms. The propositions introduced in this work set the basis
to advance in the incorporation of other important phenomena as the depth of discharge, or
the magnitude of the discharge current.
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Chapter 1

Introduction

Energy Storage Devices (ESD), and in particular rechargeable batteries, can be found in a
diverse amount of communication, mobile or transport equipments, being either the princi-
pal or secondary energy source. Smartphones, tablets, personal computers, digital cameras,
satellite phones, hybrid and electric vehicles, satellites, intermittent generators (wind tur-
bines, photovoltaic cells) or micro-grids are examples of applications where batteries are of
paramount importance. As a consequence, ESD are a fundamental part of the system de-
sign, and may represent a constrain in their operation due to non-satis�ed power or energy
requirements. This rises the necessity to gather information about the actual state of the
ESD, and to make long-term predictions of their performance.

ESD monitoring acquires a great importance for the adequate performance of the devices,
being covered by the �Battery Management Systems� (BMS). These systems are mainly aimed
at tasks such as: (i) providing real-time information, (ii) reducing battery charging times,
(iii) maximizing the amount of operating cycles, (iv) maximizing the usage time associated
to the discharge cycle, (v) maintaining the operation of all cells within their rated limits,
and (vi) compensating for cell imbalance, among others [1]. To accomplish these tasks, BMS
have to consider information about the �State-of-Health� (SOH) and the �State-of-Charge�
(SOC). In broad terms, the SOH provides information about how much the ESD has aged
over time and by usage conditions, while the SOC provides information of how much energy
can be delivered by the ESD before it has to be charged. Both variables cannot be measured
or obtained directly from other measurements, and both depend on operational and ambient
factors. They have to be estimated from other observed variables as the voltage in terminals,
current drained from the ESD, or its temperature.

Battery performance is strongly determined by characteristics such as the current dis-
charge rate, depth of discharge, or the internal temperature. These characteristics are also
important for the aging process that a�ects the battery, and for operational and safety con-
ditions. Given the complexity of the monitoring problem, the estimation of the SOH and
SOC has been studied using diverse approaches (neural networks, fuzzy logic, Bayesian �lter)
and models (electrochemical, circuit-based, empirical). Bayesian tools have been studied to
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estimate and generate long-term predictions of both variables, but with some simpli�cations
such as the consideration of constant operating temperature. This operational factor a�ects
directly the chemical reaction rate and the internal impedance of the battery [2], [3], resulting
in a modi�cation of the amount of energy that it can store and deliver in a cycle, and the
aging process that a�ects the battery. By this reason, it is important to include it in any
SOH/SOC estimation and prognosis scheme.

The general objective of this work is to study and explicitly characterize the impact
caused by the operating temperature pro�le on the performance and operation of SOH/SOC
estimation and prognosis schemes, with special emphasis on changes in capacity, internal
impedance, and degradation of Lithium-Ion batteries.

The speci�c objectives are:

• Generate a methodology and a set of experiments to collect data of temperature-
dependent capacity, internal impedance, and battery degradation; and generate ad-
equate experiments to study the evolution in time of Li-Ion battery SOC.

• Include explicitly the temperature as an input variable on a SOH prognosis scheme.

• Improve an energy-oriented SOC prognosis scheme, and make a proposal to include the
internal temperature.
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Chapter 2

Theoretical Framework

The importance of the information provided by the �State-of-Charge� (SOC) and �State-of-
Health� (SOH) has been previously mentioned. Although a more precise de�nition of these
parameters require a throughout understanding of electro-chemical aspects in Lithium-Ion
(Li-Ion) battery cells, it su�ccess to say that they provide information about the autonomy
of the system in use and the remaining useful life of the battery, respectively. To study
the problem of estimation and prognosis of battery SOC and SOH, it is �rst necessary to
study a brief introduction to the Li-Ion batteries, their operation and behavior, in addition
to concepts related to battery monitoring. It is also needed to introduce the mathematical
methods that are used in this work to implement the SOC and SOH prognosis frameworks.

In this regard, the structure of this chapter is as follows. Section 2.1 presents the basic
concepts about batteries, their aging mechanisms and some de�nitions for battery monitor-
ing. Section 2.2 shows a state-of-the-art of the problem of SOC and SOH estimation and
prognosis. Section 2.3 focuses on the Bayesian inference problem and sequential Monte Carlo
methods for estimation and long-term predictions.

2.1 Lithium-Ion Batteries: Basic Concepts

A battery is an Energy Storage Device (ESD) that transforms chemical energy stored in the
active material into electrical energy through redox reaction. A cell is the basic electrochem-
ical unit with a �xed voltage depending on its chemistry, while a battery is a group of cells
connected in series, parallel, or a combination of them [4]. Cells, and also batteries, can be
separated between primary and secondary type. Primary type are those that are designed to
be discharged only once, and secondary type are those that can be charged and discharged
many times by their capability of being electrically recharged after a discharge process. Sec-
ondary or rechargeable batteries are also called accumulators.
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The principal components of batteries are the anode (negative electrode), the cathode
(positive electrode), the electrolyte and the separator. In the course of a discharge process,
the anode provides electrons to the external circuit being oxidized during the electrochemical
reaction. On the other side, the cathode accepts electrons from the external circuit during
the discharge, being reduced. The electrolyte is the medium that allows the transport of
ions between the anode and cathode, and is typically a liquid or solid with dissolved salts to
impart ionic conductivity [4]. The separator is a porous membrane placed between electrodes
of opposite polarity, permeable to ionic �ow. It protects the battery for short-circuiting and
thermal runaway (positive feedback of self heating due to high temperature of operation) [5].

There are di�erent types of batteries including Lead-Acid, Niquel-Metal and lithium-based
batteries. Secondary Lithium-Ion (Li-Ion) cells have high voltage (4[V ]), high speci�c capac-
ity (3, 86[Ah ·g−1]) and high energy density (150[Wh ·kg−1]), present no memory e�ect, have
a low self-discharge rate, and permit many charge discharge cycles [6], [7], [8]. Figure 2.1
compares speci�c power and speci�c energy for di�erent eletrochemical batteries.
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Figure 2.1: Ragone diagram of the main electrochemical devices (adapted from [9]).

In [10] it is exposed that in the most common structure of Li-Ion batteries, the cathode is
formed by a lithium metal oxide (e.g., LiMO2), the anode is a graphit anode (e.g., mesocarbon
or microbeads), and the electrotyle consists of a solution of a lithium salt (e.g., LiPF6) in
a mixed organic solvent embedded in a separator felt. Figure 2.2.a represents the described
con�guration. An example of the reversible processes involving the extraction and insertion
of lithium ions between the electrodes is given in Equation (2.1) for the positive electrode and
Equation (2.2) for the negative electrode [7]. Reactions from left to right of the equations
corresponds to discharge process and from right to left to charge process.

Li1−xMO2 + x · Li+ + x · e−
discharge−−−−−⇀↽−−−−−
charge

LiMO2 (2.1)

LixC6

discharge−−−−−⇀↽−−−−−
charge

C6 + x · Li+ + x · e− (2.2)
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Figure 2.2: Illustriation of a Li-Ion battery, (a) electrochemical scheme of the discharge process
[10], and (b) components and con�guration of a cylindrical Li-Ion battery [11].

2.1.1 Battery Aging

The concept of aging is related to the �nite life of a battery, typically associated with the
reduction of energy delivered by the ESD or the growth of its internal impedance. Aging
is usually divided from two origins: calendar aging, that is related to the e�ects of the
battery storage; and cycle aging, corresponding to the impact of battery usage over charge
and discharge processes.

Many researchers have studied the aging mechanisms in Li-Ion batteries from an electro-
chemical point of view, separating the aging e�ects on the anode from aging e�ects on the
cathode, because both electrodes presents di�erent degradation mechanisms. Throughout
the remainder of this section, corresponding to the aging mechanisms in the electrodes, the
information is obtained from the extensive work done by Vetter et al. [12] and Barre et
al. [13] of aging mechanisms, and for further study is highly recommended to study their
publications and their references for each topic.

Anode:

The principal aging factor on a typical graphite anode corresponds to changes at the electrode-
electrolyte interface, where a solid interface is developed throughout time. The latter interface
is called Solid Electrolyte Interface (SEI). SEI is naturally created at the �rst charge, and
keeps growing during cycling and storage inducing loss of continuous lithium ions and elec-
trolyte decomposition. This interface protects the anode from possible corrosions and the
electrolyte from reductions, which provides a guarantee of security. However, the SEI is not
stable as Li-Ion battery operates outside the tension stability range of the electrolyte.

The aforementioned SEI layer is permeable to charged elements including lithium ions, or
neutral elements (solvent). The solvent interacts with the graphite exfoliation and creates
gas that can crack the SEI and therefore allow its expansion. Researchers exposed that the
gas formation is low and seems to happen only during storage periods and with high voltages.
Figure 2.3 illustrates the evolution of the SEI.
There is a loss of active surface over time with leads to an increase in the electrode impedance,
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produced by either storage and utilization of the battery. A high potential di�erence between
electrode interfaces and electrolyte may accelerate these phenomena. In addition, there are
other factors that can accelerate the aging process, being temperature one of paramount
importance. On the one hand, if the cell undergoes high temperatures the SEI may dissolve
and create lithium salts less permeable to the lithium ions, increasing the anode impedance.
On the other hand, low temperatures lead to a decrease of the di�usion of lithium within the
SEI and graphite, which can overlay the electrode with lithium plating.

The formation and growth of the SEI leads to gradual contact loss within the composite
anode, and thus, increases the impedance at the anode. In parallel to SEI growth, corrosion
of lithium in the active carbon takes place, leading to self-discharge and capacity fade due
to loss of mobile lithium.

Figure 2.3: Changes at the anode/electrolyte interface [12].

Cathode:

The principal consequences on an aged cathode are electrolyte degradation, electrolyte oxida-
tion, SEI formation, and interaction between the positive electrode element dissolved within
the electrolyte and the negative electrode [13]. These e�ects are not independent and interac-
tions di�ers with the electrode material. Observations show that there are no changes in the
cathode morphology for di�erent types of battery utilization. This leads to the primordial
importance of the anode in battery aging.

Consequences of Battery aging:

The performance loss associated with battery aging can be originated from mechanical or
chemical mechanisms. The principal consequences related to lithium-ion batteries aging are
[13]:

6



• Loss of cyclable lithium that increases cell imbalance, at either the anode or cathode.

• Loss of electrode active material.

• Increase of cell impedance.

Loss of both cyclable lithium and active material leads to capacity fade. Increase of
impedance implies loss of autonomy and maximum power available.

Aging e�ects associated to the storage time, as self-discharge or impedance rise, will a�ect
the calendar life of the battery, whereas the cycle life is a�ected by them and also aging
e�ects that occur during usage, as mechanical degradation or lithium metal plating [26].

2.1.2 Important Concepts Related to Battery Monitoring

This section provides some de�nitions for important concepts related to battery monitoring.

a) Depth-of-Discharge (DOD): The DOD represents, in percentage, how much a battery
was discharged compared to the fully charged state (100%). For the case of Li-Ion batteries,
the aging mechanisms depends on the DOD value, presenting an exponential relation between
lifetime cycles and DOD. Deeper discharges reduce the number of cycles yielded by a battery
[14], as can be seen in Figure 2.4.

Figure 2.4: Lithium-ion cycle life dependence on DOD (Adapted from [14]).

b) C-rate: The charge or discharge current I[A] of an ESD can be expressed in terms of
its rated capacity C[Ah]†. The C-rate corresponds to a multiplier of the rated capacity that
satis�es I = m · C. This parameter is usually expressed as a factor multiplied by C and is
dimensionless. For example, consider a battery with C = 1, 5[Ah] and a discharge current
I = 0, 5[A], then the C-rate is C/3, but if the discharge current were I = 3[A], the C-rate
would be 2C.

c) Capacity and Power Fade: These concepts corresponds to gradual loss of maximum
capacity and power of a second type battery respectively.

d) Self-Discharge: Is the phenomenon of reduction of stored energy of an ESD due to
internal chemical action.
† 1[Ah] = 1 Ampere-hour = 3600[A · sec]
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e) State-of-Charge (SOC): The SOC provides an indicator of the system autonomy that
directly depends on the remaining energy of a battery in relation to its energy when fully
charged. Some approaches considers the SOC as a function of the remaining capacity instead
of energy.

For the same temperature, variations on the SOC a�ects the calendar aging of a battery in
a distinct form. For elevated SOC levels, batteries presents higher degradations during stor-
age that can be explained by the great potential disequilibrium on the electrode/electrolyte
interface [13].

f) State-of-Health (SOH): The SOH is a manner to relate how much a battery has de-
graded in comparison to its nominal values, corresponding to an indicator of battery aging.
It is typically characterized by one or more of the following: available capacity, internal re-
sistance/impedance, capacity fade, power fade or self-discharge rate. Also, SOH has been
studied from charging processes considering the evolution of constant current charge time
(CCCT) and constant voltage charge time (CVCT) [15]. Capacity and power fading are
originated from various processes and their interaction, which cannot be studied indepen-
dently and occur at similar timescales.

g) End-of-Discharge (EOD): Corresponds to the time instant when the battery is dis-
charged. Tipically, a battery is considered discharged when it reaches a lower threshold
voltage.

h) Charging Constant Current-Constant Voltage (CC-CV) Protocol: In the CC-
CV charging protocol [16], a battery is charged with a constant current until the voltage
reaches a pre-determined value, followed by a constant voltage until the current drops to a
lower limit.

2.1.3 Temperature Impact on Lithium-Ion Batteries Performance

There are many important factors that a�ect the behavior and performance of Li-Ion cells.
These include the DOD, discharge C-rate, charging regimen, and cell temperature, among
others [6], [17]. Temperature not only has a strong in�uence at the performance of charging
and discharging processes, but also on cell aging, as discussed in Section 2.1.1. For example,
a high temperature will a�ect the charge and discharge e�ciency; however, this high tem-
perature may imply a decrement of the battery lifetime [18].

Li-Ion batteries present an ideal working temperature range in which the operation of the
cell is guaranteed. Figure 2.5 shows the e�ect of ambient temperature on the cycle life of the
Li-Ion battery. Outside of the optimal range, the capacity decay is di�erent for high and low
temperature, as the aging mechanisms are distinct.

As high rate discharges produces a signi�cant temperature rise, cooling the battery may
be necessary to avoid an accelerated aging. Figure 2.6 shows the di�erence of the cell surface
temperature at various discharge rates comparing a normal convection with a forced con-
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Figure 2.5: E�ect of ambient temperature on the cycle life of the Li-Ion battery [14].

vection corresponding to an air�ow of 35 m/s [2]. The importance of temperature impact
on the performance of lithium-based batteries has been taken in count in the industry. For
example, in the commercial electrical vehicle Nissan LeafTM the temperature of the battery
pack is controlled by adjustment of the battery's internal resistance [19], to keep the pack
working between some desirable operation range.

Figure 2.6: Surface temperature pro�les under di�erent convection conditions (Adapted From [2]).

Operation temperature a�ects the performance and the degradation mechanism of a bat-
tery. The reaction rate of a battery is described by the Arrhenius equation (2.3) where Φ
corresponds to the battery chemical reaction rate; Ea(Φ) is the activation energy and its
magnitude determines the sensitivity of Φ to temperature; R is the gas constant and T the
temperature. The subscript ref indicates the values at a reference temperature:

Φ = Φrefexp

(
Ea(Φ)

R

(
1

Tref
− 1

T

))
. (2.3)

High temperatures decrease the activation energy for the chemical reaction and more in-
tercalation and deintercalation can take place in the cell; also, the cell voltage is higher and
lithium ions can di�use faster. These e�ects increase the power capability and the cell can
be discharged deeper and deliver more energy [20]. On the other hand, at low temperatures
the intercalation and deintercalation at the electrodes require more energy, resulting in less
lithium ions involved in the active cell process and also in a lower cell voltage. The lithium
ion di�usion will be slower. These e�ects leads to a temporary loss of both capacity and
power [20]. These concepts can be seen in the discharge temperature characteristics curves
that can be found in batteries datasheet, as the presented in Figure 2.7.
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Excluding the aging associated to battery cycling, the e�ects recently mentioned are tem-
porary. When the battery is used at nominal temperature after being used at high or low
temperature, the capacity and power are restored.

Figure 2.7: SANYO Lithium-Ion UR18650F Cell discharge curves in function of temperature [21].

Due to the variations at the cells produced by di�erent operation temperatures, the in-
ternal impedance also presents changes. Figure 2.8 shows a Nyquist plot of the Electro
Impedance Spectrogram test made at di�erent temperatures with a SOC of 50%. As can be
seen, the impedance is reduced when the temperature is increased, and can be explained by
the relation of the chemical reaction rate dependence on temperature.

Figure 2.8: Nyquist plots for a Lithium-Ion battery at di�erent temperatures. Each parallel line
shows 0[Ω] of Z" at each temperature [3].
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2.1.4 Li-Ion Battery Degradation Trends for Di�erent Conditions

of Operation

The cycle life of a battery is a�ected by operating conditions during charge and discharge
procedures. In [22], authors studied the e�ect of various cycling regimes on the aging of 900
[mAh] prismatic Li-Ion cells at ambient temperature. On the one hand, Figure 2.9.a shows
the e�ects of variations at the CV value for a CC-CV charging, with CC of 1C. On the other
hand, Figure 2.9.b shows the e�ects of the variations at the CC value, with CV of 4.2[V ].
For both test, cells where discharged at 1C until a cut-o� voltage of 2.75[V ].

a) b)

Figure 2.9: (a) E�ect of CV charge voltage on cycle performance. (b) E�ect of charge rate on
cycle performance. (Adapted from [22]).

The e�ect of the discharge C-rate is presented in Figure 2.10.a, where the battery is
charged with CC of 1C, CV of 4.2[V ], current cut-o� limit of 90[mA], and discharged until
the minimum voltage of 2.75[V ]. Another test was implemented to examine the e�ect of
the DOD and is shown in Figure 2.10.b, where the discharge was cut-o� at various voltages
within 2.75[V ] and 3.55[V ], after fully charging the cell at 1C rate.

a) b)

Figure 2.10: (a) E�ect of CV charge voltage on cycle performance. (b) E�ect of charge rate on
cycle performance. (Adapted from [22]).

Their results show the importance of the battery charge procedures that are implemented,
on its life-cycle, in addition to a strong dependence on the current discharge rate at ambient
temperature. For the studied cut-o� voltage range, the degradation trends were similar; how-
ever, the impact of cut-o� voltages under 2.75[V ] (related to high DOD) were not examined.

Temperature has an important role at battery aging, particularly if the operating range
is above 55oC as can be seen in the Figure 2.11, that presents the capacity fade of Sony
18650 cells (1800[mAh], 3.7[V ]) cycled at: room temperature (RT), 45oC, 50oC and 55oC.
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Batteries were discharged with a constant current of 1[A] until a cut-o� voltage of 2[V ]. The
cells presented a similar variation in capacity loss for the �rst cycles, but then the cells cycled
at 50oC and 55oC degraded faster than the other two.

Figure 2.11: Discharge capacity of Sony 18650 cells cycled at di�erent high temperatures [23].

Even though a set of similar cells are cycled with the same conditions, they can degrade
in a di�erent manner. Figure 2.12 [24] presents the degradation of 20 cells cycled 800 times
with the same conditions. It is clear that below 80% of capacity loss, some cells started to
degrade faster than others.
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Figure 2.12: Degradation of 20 similar cells under the same operational conditions [24].

Providing this evidence, the internal temperature of a battery a�ects its aging and also
its performance in every cycle. This work focuses on the development of SOH and SOC
estimation and prognosis frameworks considering models for battery degradation and battery
discharge that includes the impact of the temperature of operation.
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2.2 State-of-Charge and State-of-Health Estimation and

Prognosis for Energy Storage Devices

An important function of a Battery Management System (BMS) is to provide information
about the State of Charge, State of Health and Remaining Useful Life, besides other impor-
tant tasks such as keeping the balance between cells or compensating for any imbalances in
cell parameters within the battery pack [1]. On the one hand, the SOC is used to quantify
the autonomy of the system under assumptions of future battery usage. On the other hand,
knowledge about the SOH is necessary to determine what kind of degradation process is
a�ecting the ESD and how many cycles can be supported by it before is degraded. Such
information could help to decide when to replace a cell or battery pack.

Various methods have been developed to estimate both the SOC and SOH, using di�erent
kind of models; including analytical, empirical, electrochemical or probabilistic. The follow-
ing sections will describe the state-of-the-art for the problems of SOC/SOH estimation and
prognosis separately.

2.2.1 State-of-Charge Estimation and Prognosis

The estimation of the SOC of an ESD is not an easy task, mainly because this quantity can-
not be measured directly and must be inferred from the observation of other variables as the
battery terminals voltage, current, temperature, SOH or self-discharge phenomena [1], [25].
Usually, simple models neglect the dependence of temperature on the battery performance
assuming an invariant temperature value (tipically 23oC). It is important to consider this
dependence for the implementation of SOC estimators in any device that requires an accu-
rate characterization of this parameter in real-time. Changes on the battery's temperature or
ambient temperature imply changes of important model parameters like the battery energy
in a fully charged state, or the internal impedance.

The most popular techniques used to estimate the SOC are Coulomb counting and the re-
lation between open circuit voltage (OCV) and SOC. The Coulomb counting method approx-
imates the charge inside a battery by integrating the current of a charge/discharge process.
This method presents the advantage of an easy implementation and can be used for on-line
applications. However, it requires accurate current measurements, is a�ected by parasitic
currents, is susceptible to systematic errors, does not take into account current loss by inter-
nal resistance, among others [1], [26]. The advantage of the OCV method is that it presents
a direct relation between the OCV measurements and SOC, but requires rest periods of the
battery, limiting its use for on-line applications [1], [26], [27].

The utilization of complex electrochemical models for the battery has been only suitable
for o�-line studies, mainly because they require extremely accurate measurements, count
with many variables in the model, and have to be adjusted carefully when a di�erent battery
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is studied [1], [26]. However, these models are highly accurate as they include dependence of
parameters on diverse variables based on the electrochemical behavior of the battery, consid-
ering, for example, the operation temperature or the magnitude of the current �owing throw
the battery.

In order to achieve the task of SOC estimation and prognosis, current research e�orts have
focused on approaches that are mostly based on empirical models that incorporate only crit-
ical phenomenological aspects of the process, as the relationship between currents, voltages
and temperatures of Li-Ion cells. Among these methods, it is worth to mention those that
are based on fuzzy logic, neural networks, or Bayesian approaches.
A widely used option for the empirical models is to consider an electrical equivalent circuit
for the battery, to represent the chemical behavior of the ESD. The most common topology
for Li-Ion battery equivalent circuit consist of a resistance (representing the electrolyte resis-
tance) in series with one or more RC branch to include a proper characterization of transient
phenomena (dual layer capacitance, charge transfer resistance or concentration polarization
e�ect) [28]. Some of these equivalent circuits include explicitly the temperature e�ect on the
value of the parameters [29], [30], but other neglect that dependence [1], [28], [31]. However,
some models based on equivalent circuit with invariant parameters consider a correction po-
tential to compensate variations of equilibrium potential induced by the temperature [28],
[31].

Fuzzy logic models have been used for the SOC estimation by the identi�cation of equiv-
alent circuit for the battery from Electrochemical Impedance Spectroscopy (EIS) test data
or directly from measurements as voltage, current or temperature [32]. The EIS is a non-
invasive method that characterizes the impedance through a wide frequency spectrum with
the limitation that measurements are noisy, and requires expensive equipment usually found
only in laboratories, restricting its application in practice [28], [33]. The second case of
fuzzy logic methods represents a reasonable way for online SOC estimation and uncertainty
characterization, but even so the SOC prediction is still unresolved and mainly treated as a
curve regression problem which is insu�cient for purposes of risk characterization. Neural
Networks has also been used to estimate the SOC of a battery by nonlinear empirical models
created as a relation between the measurements and the SOC. Train and validation data are
required to generate and adjust the model, that can be used for estimation or prognostic
purposes. However, these models can present overadjustment to the training and validation
data, and the results may correspond to local optima [1], [26], [28].

In recent years there has been a growing interest in the use of stochastic �ltering techniques
as the extended Kalman �lter (EKF) [34] to estimate the SOC and/or parameter degrada-
tion of a Li-Ion battery under a randomly varying loading conditions. The EKF is based
on a non-linear battery model, like an equivalent circuit, and approximates the covariance
error matrix associated to the state estimation using both the non-linear and linearization of
the dynamic systems that represents the battery discharge process. During the estimation
process the EKF adjust the parameters and model states as new measurement are available,
but for prognostics for n-step ahead linearization errors are overly important to be neglected
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[1], [26], [32], [33]. Although, SOC prognostics is still a research �eld with many unanswered
questions.

Sequential Monte Carlo methods (SMC) (also known as particle �lters (PF)) has shown a
good performance in estimation and prediction processes with non-linear and non-necessary
Gaussian noises [35]. In particular, SMC have been applied to the SOC estimation and pre-
diction problem [28], [33], [36], [37]. These methods also provide a concrete characterization
of uncertainty sources both in the �ltering and the prediction stage, a piece of information
that is required for the generation of a risk measure associated to SOC prognosis. Bayesian
estimators require a state-space model for the dynamic system, and prognostic modules based
on a state-space formulation for the dynamic system are very sensitive to the initial condition
of the state vector. For this reason, the implementation of accurate online SOC estimators
is absolutely relevant for the development of real-time predictors capable of quantifying the
feasibility (as well as the cost) of a particular vehicle trajectory.

2.2.2 State-of-Health Estimation and Prognosis

As mentioned in Section 2.1.2, the SOH is usually characterized by the internal impedance,
capacity fade, power fade and/or self discharge time, in either charge or discharge processes.
When battery aging was discussed, it was exposed that aging is a�ected by various related
factors that take place at similar timescales. This complexity and the fact that the SOH can-
not be measured, implies that it has to be inferred from other observed and inferred values.

Most of the common solutions for the SOH estimation problem are limited to measure the
battery terminal's voltage, or using methods as Coulomb counting and EIS measurements for
each operation cycle. On the one hand, Coulomb counting requires an absolute knowledge
about the future current provided by the ESD to predict the evolution of the SOH in an
exact manner and to calibrate the measurement with respect to a reference point. On the
other hand, changes in the internal impedance measurements can be used to estimate the
degradation of the SOH, but the internal impedance has shown to be noisy and depends
directly on the temperature, making it di�cult to estimate reliably the SOH and generate
long-term predictions about it. Besides, the EIS test is di�cult to implement in practical
applications (as seen on Section 2.2.1).

Research on SOH estimation has also focused on modeling the electro-chemical behavior of
the accumulators [1], [38], building equivalent circuits, or studying the relationship between
ESD degradation and a set of speci�c features (SOC, DOD, or the accumulator age). How-
ever, the analysis of the degradation processes also requires the incorporation of predictive
models for the implementation of a scheme capable of performing simultaneously �ltering
(analysis of current state) and prognostic (analysis of future behavior) of the SOH. These
predictive models need to incorporate the capability of parameter adaptation to minimize
the e�ect of measurement inaccuracies on erroneous SOH estimates, as well as incorporating
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changes in environmental and operating conditions within long-term predictions [39], [37],
[40].

Fuzzy models and neural networks have also been used to estimate the SOH of Li-Ion
batteries [41], although both approaches present inaccuracies originated from uncertainty
sources that are present in nonlinear systems. Suboptimal Bayesian estimation techniques
such as the extended Kalman �lter (EKF) may be implemented for SOH prognosis when
Coulomb counting methods are used to estimate the ESD SOH (providing adequate initial
conditions for predictive models). The problem arises when trying to propagate this estimate
in time in n-step ahead predictions: approximation errors are too signi�cant to be neglected
[35]. In [42], the concept of Bayesian estimation in combination with Monte Carlo methods
is used to update the parameters of an empirical model, thus representing the prediction of
the degradation process via PDF's.

Sequential Monte Carlo methods represent a concrete opportunity for algorithm improve-
ment, since they have proved to be useful when trying to represent uncertainty in the prog-
nosis of other nonlinear degradation processes [35], [37]. Some ESD (e.g., Li-ion batteries)
however, su�er sudden a regeneration (or self-recharge) phenomena [37], [39], that directly
a�ects the precision and accuracy of that type of algorithms. This is a fact that has only
been brie�y mentioned and studied in the current state-of-the-art. The statistical character-
ization of those phenomena has been incorporated within non-linear stochastic state-space
models for SOH prognostic frameworks based on sequential Monte Carlo methods in [43],
but neglecting the e�ect of an important variable, the operation temperature of the ESD.

Despite of the existence of Li-Ion battery degradation models that includes the opera-
tion temperature as an input [44], most of the described techniques consider an invariant
temperature of approximately 23oC. Fluctuations on the ambient or battery's temperature
a�ects directly the capacity delivered by the ESD during a cycle, and can lead to erroneous
estimations and predictions of the SOH. Lam et al. [45] uses the concept of usable Capac-
ity to model the battery behavior, making a transformation of the battery's capacity at any
temperature to a battery's capacity at a reference temperature. Hence, if the battery delivers
much less energy due to an operation in low temperature environment, the model will not
consider the battery degraded. In this sense, it is necessary to count with a scheme that
allows the estimations and prognosis stages with the considerations previously explained, in
addition to the incorporation of the e�ect of the temperature.

2.3 Bayesian Inference and Monte Carlo Methods

Errors associated to the SOC estimates are not so relevant for some devices as smartphones
or laptops, because a SOC miscalculation may not lead to a harmful result. However, there
are some critical applications where a poor SOC estimation can cause a catastrophic event.
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Consider the example of an Unmanned Aerial Vehicle (UAV); an erroneous estimation of the
SOC may cause the destruction of the device due to a crash landing, when forcing the UAV
to �ight when the battery may not provide the required power. This concept also applies
for the SOH, and a good examples are the electrical and hybrid vehicles. The SOH gives
information about the moment when the pack has to be replaced, or as an extra parameter
during the purchase or sell of these cars.

The SOC and the SOH cannot be directly measured from the ESD, and do not present
a direct relation with other variables that can be measured during the battery operation (at
least for Li-Ion technology). As a consequence, it is necessary to make statistical inferences
about them from other sensed signals or inferred values, as well as battery terminal voltages,
current provided by the ESD, surface temperature for each cell, ambient temperature, depth
of discharge, degradation of the ESD, time elapsed between cycles, among others. These
reasons leads to the usage of Bayesian inference.

2.3.1 Bayesian Inference

The concept of Bayesian inference corresponds basically to the process of making statistical
inferences of some variables using Bayes' Theorem. The conditional distribution of these
variables given observations can be obtained from probability distributions for all relevant
variables and the observations [46].

In the most common case, with the random variables A and B, the Bayes Rule is as
follows:

P (A|B) =
P (B|A)P (A)

P (B)
. (2.4)

The probability P (A), or prior distribution, summarizes a set of beliefs or state of knowl-
edge in hand before any observations are taken. The term P (B|A), or likelihood function,
characterizes the information carried by the observations [46]. In some applications, where
P (B) is �xed, then Bayes rule leads to a proportion between P (A|B) and P (B|A)P (A).

P (A|B) ∝ P (B|A)P (A). (2.5)

Many problems can be described in terms of a state space form, as shown in Equation (2.6),
including electrical systems or time series analysis. The transition equation (2.6a) describes
the prior distribution of a hidden Markov process and the observation (2.6b) describes the
likelihood. Given a set of trajectories x0:k , {x0, x1, ..., xk} ; k ∈ N and a set of observations
y0:k , {y0, y1, ..., yk} ; k ∈ N, in a Bayesian framework the information about x0:k can be
obtained from the posterior distribution p(x0:k|y0:k).

xk+1 = f(xk, ωk) (2.6a)

yk = h(xk, vk). (2.6b)
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It can also be of interest to estimate recursively in time relations as the posterior marginal
(called �ltering distribution p(xk|y0:k)), a prediction distribution p(xk+j|y0:k) for j > k, and
expectations of the form of (2.7)

I(fn) =

∫
fn(x0:n)p(x0:n|y0:n)dx0:n, (2.7)

for any function fn : R(n+1)×nx → R integrable with respect to p(x0:n|y0:n). These integral
allows to represent the moments of the process x0:n depending on the functions fn.

The Bayesian relation given in (2.4) can be applied to the system previously described,
resulting in the relation for the distributions

p(x0:k|y0:k) =
p(y0:k|x0:k)p(x0:k)

p(y0:k)
. (2.8)

Considering a system as (2.6), a recursive relation for p(xk|y0:k) can be derived from (2.8)
[47].

p(xk|y0:k) =
p(y0:k|xk)p(xk)

p(y0:k)
(2.9)

p(xk|y0:k) =
p(yk, y0:k−1|xk)p(xk)

p(yk, y0:k−1)
(2.10)

p(xk|y0:k) =
p(yk|y0:k−1, xk)p(y0:k−1|xk)p(xk)

p(yk|y0:k−1)p(y0:k−1)
(2.11)

p(xk|y0:k) =
p(yk|y0:k−1, xk)p(xk|y0:k−1)p(y0:k−1)p(xk)

p(yk|y0:k−1)p(y0:k−1)p(xk)
(2.12)

p(xk|y0:k) =
p(yk|xk)p(xk|y0:k−1)

p(yk|y0:k−1)
. (2.13)

Then, the recursive relation is given by (2.14):

posterior︷ ︸︸ ︷
p(xk|y0:k) =

likelihood︷ ︸︸ ︷
p(yk|xk) ·

prior︷ ︸︸ ︷
p(xk|y0:k−1)

p(yk|y0:k−1)︸ ︷︷ ︸
Evidence

. (2.14)

Using the Chapman-Kolmogorov equation, the denominator p(yk|y0:k−1) can be expressed
as

p(yk|y0:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk, (2.15)

and a theoretical solution exists for the Bayesian estimation, but it cannot be assured that
the integrals have analytical solution.
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If the relations that de�nes the dynamic model given by the state equations of the form
(2.6b) and (2.6a) are linear and a�ected by Gaussian noises, then its possible to obtain an
optimum analytical expression for the evolution of the a posteriori distribution (in the sense
of the mean squared error). This expressions correspond to the Kalman �lter [48]. How-
ever, when the processes are non-linear with non-necessarily Gaussian noises, and with a
high dimensionality, the sequence of a posteriori density are multidimensional integrals with
non-linear arguments that do not present explicit solution for the general case. In this case,
it is possible to implement approximated methods as the extended Kalman �lter, unscented
Kalman �lter, or numeric methods as the sequential Monte Carlo (Particle �lter) [34], [35].

2.3.2 Sequential Monte Carlo Methods: Particle Filters

Monte Carlo methods solves the problem of Bayesian estimation replacing complex ana-
lytic or unknown probability distributions with sample-based representations [49]. Given
a generic probability density πk(x0:k), and N independent random variables sampled from
x

(i)
0:k ∼ πk(x0:k) for i = 1, ..., N , the Monte Carlo method approximates πk(x0:k) by the em-

pirical measure in the equation (2.16), where δ(·) is the Dirac delta function [50].

π̂k(x0:k) =
1

N

N∑
i=1

δ(x0:k − x(i)
0:k) (2.16)

Sequential Monte Carlo methods or Particle Filter (PF) is a technique to implement
Bayesian estimations by Monte Carlo simulations, using the Importance Sampling method.
Given a state-state representation with the states x0:k and the observations y0:k, the principal
idea of the PF is to represent the posterior distribution p(x0:k|y0:k) by a set of Np weighted

particles
{
w

(i)
k , x

(i)
0:k

}
or point masses, where the particles are random samples of the unknown

states, and the weights are probability masses estimated using the Bayes recursion [49]. The
equation (2.17) shows the empirical distribution that approximates the analytical posterior
distribution.

p(x0:k|y0:k) ≈
Np∑
i=1

w
(i)
k δ(x0:k − x(i)

0:k) (2.17)

This approximations can be used to estimate the expectations of any function of interest
fn(x) integrable with respect to p(x0:k|y0:k), as the presented in Equation (2.7).

Importance Sampling (IS)

This section and the following considers the particular case of state-space models used for
Bayesian estimation purposes.
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A problem that Monte Carlo methods present is that if the target distribution πk(x0:k)
is a complex high-dimensional probability distribution, or is unknown, then samples can
not be obtained from it. The Importance Sampling method allows computations of expec-
tations with respect to one target distribution using random samples drawn from another
distribution, qk(x0:k) [49], [50]. The distribution qk(x0:k) is referred as importance sampling
distribution as it samples πk(x0:k) non uniformly giving di�erent �importance� to some values
of πk(x0:k) than others. A necessary condition for importance sampling is that

πk(x0:k) > 0⇒ qk(x0:k) > 0. (2.18)

Consider the case of estimate the expectation of a function φ(x) for x ∼ π(x). This integral
can be treated as

E{φ(x)} =

∫
X

φ(x)π(x)dx (2.19)

=

∫
X

φ(x)

(
π(x)

q(x)

)
q(x)dx for

∫
q(x)dx = 1. (2.20)

An importance sample estimator is obtained sampling x(i), i = 1, ..., N from the importance
distribution q(x) and computing the sample mean. Approximating q(x) as q̂(x) ≈

∑N
i=1 δ(x−

x(i)), then the expectation of the equation (2.20) can be expressed as

E{φ(x)} ≈ 1

N

N∑
i=1

φ(x(i))

(
π(x(i))

q(x(i))

)
. (2.21)

The idea is to choose the importance distribution as similar as possible to the target distri-
bution π(x). This concept of importance sampling can be used to the Bayesian estimation
problem in cases when it is not possible to obtain samples directly from the posterior dis-
tribution. Choosing an importance sampling q(x0:k|y0:k), expectations of functions φ of x0:k

can be expressed as

E{φ(x)} =

∫
X

φ(x0:k)p(x0:k|y0:k)dx (2.22)

=

∫
X

φ(x0:k)

(
p(x0:k|y0:k)

q(x0:k|y0:k)

)
q(x0:k|y0:k)dx0:k. (2.23)

De�ning weights as the reason w̄0:k ≡ p(·)/q(·), and applying Bayes' rule, then

w̄0:k =
p(x0:k|y0:k)

q(x0:k|y0:k)
=
p(y0:k|x0:k)p(x0:k)

p(y0:k)q(x0:k|y0:k)
. (2.24)

When p(y0:k) =
∫
p(y0:k|x0:k)p(x0:k)dx0:k is not available, a new weight can be de�ned

w0:k =
p(y0:k|x0:k)p(x0:k)

q(x0:k|y0:k)
∝ w̄0:k. (2.25)
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Replacing the weights' equation (2.25) into equation (2.23), the expectation is E{w0:kφ(x0:k)}
scaled by a normalizing constant

Eq{φ(x)} =
1

p(y0:k)

∫
X

φ(x0:k)

(
p(y0:k|x0:k)p(x0:k)

q(x0:k|y0:k)

)
q(x0:k|y0:k)dx0:k (2.26)

=
1

p(y0:k)

∫
X

φ(x0:k)w0:kq(x0:k|y0:k)dx0:k (2.27)

=
E{w0:kφ(x0:k)}

p(y0:k)
. (2.28)

From the equation (2.25) a relation for the observation probability can be obtained mul-
tiplying the weights by the importance distribution and integrating with respect to x0:k

∫
w0:kq(x0:k|y0:k)dx0:k =

∫
p(y0:k|x0:k)p(x0:k)dx0:k (2.29)

= p(y0:k), (2.30)

and the expectation of φ(x0:k) is

E{φ(x)} =
Eq{w0:kφ(x0:k)}∫
w0:kq(x0:k|y0:k)dx0:k

(2.31)

=
Eq{w0:kφ(x0:k)}

Eq{w0:k}
. (2.32)

Sampling from x0:k ∼ q(x0:k|y0:k) and using the sampling distribution, q̂(x0:k|y0:k) ≈
1
N

∑N
i=1 δ(x0:k − x

(i)
0:k), and de�ning the normalized weights ω̃(i)

0:k =
w

(i)
0:k∑N

i=1 w
(i)
0:k

, then the �nal

estimate of the expectation is

E{φ(x)} ≈
N∑

i=1

ω̃
(i)
0:kφ(x

(i)
0:k). (2.33)

This estimator is biased because is the result of the division of two estimators, but under
weak assumptions, the strong law of the large number applies, converging asymptotically
to the true statistic [51]. As the number N of samples increase, an asymptotically optimal
estimate of the posterior is

p̂(x0:k|y0:k) ≈
N∑

i=1

ω̃
(i)
0:kδ(x0:k − x(i)

0:k). (2.34)

Sequential Importance Sampling and Resampling

The Importance Sampling algorithm solves the problem when it is not possible to sample from
a high-dimensional probability distribution. However, even if it is possible to sample exactly
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from pk(x0:k|y0:k), the computational complexity of such a sampling scheme is tipically at least
linear in the number of variables k. With a sampling algorithm that samples sequentially for
each k, then the computational complexity increase at least linearly with k [50].

A recursive algorithm can be derived to avoid the necessity of high computational resources
in the estimation of the posterior density p(x0:k|y0:k), where at each instant k the previous
state samples x(i)

0:k−1, and the samples of the state x(i)
k are obtained only from the observation

yk and the previous estimation of the �lter density p(x0:k−1|y0:k−1).

This solution involves selecting an importance distribution q(x0:k|y0:k) that admits the
importance distribution of the previous instant q(x0:k−1|y0:k−1) as the marginal distribution,
as presented in equation (2.36).

q(x0:k|y0:k) = q(x0:k−1|y0:k−1)q(xk|x0:k−1, y0:k) (2.35)

q(x0:k|y0:k) = q(x0|y0)
n∏
j=1

q(xj|x0:j−1, y0:j). (2.36)

With the selected importance sampling distribution, it is possible to obtain a sample x(i)
0:k

without modifying the previous sample x(i)
0:k−1, it means:

x
(i)
k ∼ q(xk|x(i)

0:k−1). (2.37)

The equations (2.25) and (2.36) leads to a recursive expression for the importance weight
(2.38).

ω̃
(i)
k ∝ ω̃

(i)
k−1

p(yk|x(i)
k )p(xk|xk−1)

q(xk|x0:k−1, y0:k)
(2.38)

The approach of the SIS algorithm solves the IS problem recursively in a more e�cient
form. However, the variance of the importance weights can only increase for importance
sampling distributions that satis�es (2.36) [52]. This leads in a few iterations to a scenario
where only a singular particle presents a non-zero weight value. This problem is called
degeneracy. A strategy to limit the algorithm degeneracy is to consider the importance
distribution that minimizes the variance of the importance weights conditional upon the
simulated trajectory x(i)

0:k−1 and the observations y0:k [52].

Two propositions are presented in [52] that are related to the degeneracy of the algorithm:

• Proposition 1: �The unconditional variance of the importance weights, i.e. with the
observations y0:k being interpreted as random variables, increases over time.�

• Proposition 2: �q(xk|x(i)
0:k−1, y0:k) = p(xk|x(i)

k−1, yk) is the importance function which

minimizes the variance of the importance weight ω
∗(i)
k conditional upon x

(i)
0:k−1 and y0:k.�
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The choice of the importance distribution is critical for the performance of the particle �l-
ter scheme, and has to be considered as a design parameter of the �lter. A simple choice uses
the prior distribution of the hidden Markov model as importance function, it means select
q(x0:k|y0:k) = p(xk|xk−1), and a recursion for the weights of the form ω̃

∗(i)
0:k ∝ ω̃

∗(i)
0:k−1p(yk|x

(i)
0:k).

Resampling

Both IS and SIS algorithms provide estimates with increasing variance over time. Resampling
techniques solve this problem partially, eliminating the trajectories with small normalized
weights (low likelihood) and concentrating upon those with large weights. A measure of the
degeneracy of the algorithm is the e�ective sample size Neff (2.39), and because it cannot
be evaluated directly, an estimate is used N̂eff (2.41) [52].

Neff =
N

1 + varq(·|y0:k)(ω̃(x0:k))
(2.39)

=
N

Eq(·|y0:k) [((ω̃(x0:k)))2]
≤ N (2.40)

N̂eff =
1∑N

i=1(ω̃
(i)
k )2

(2.41)

The resampling procedure is used when the estimate of the e�ective numbre of particles
N̂eff is lower than a �xed threshold. The three most popular resampling algorithms are the
�systematic resampling�, �residual resampling�, and �multinomial resampling�. It is important
to mention that in this resampling scheme, the new weights have all the same value 1/N ,
where N is the number of particles.

Despite of the resampling procedure decrease algorithmically the degeneracy of the parti-
cles, it also introduces some theoretical and practical problems. Theoretically, this resampling
routine removes the statistical independence of the samples, and the simple convergence of
the MC scheme is lost. From a practical point of view, the resampling method combines all
the particles limiting the chance to parallelize [52]. An importance advantage of resampling
is that it allows to remove the particles with low weight with high probability, allowing to
focus the computational e�orts on the regions with high probability mass in a sequential
scheme [50].
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2.3.3 A Particle-�ltering-based Prognosis Scheme for non-linear Dy-

namic Systems

Prognosis schemes can be understood basically as the result of long-term predictions describ-
ing the evolution of a fault indicator, with the purpose of estimate the Remaining Useful Life
(RUL) of a component or system, from the initial conditions given by the estimation step.

The prediction of critical events require the existence of at least one critical component
that provides the severity of the studied condition. It is always possible to combine di�erent
characteristics to obtain one unique signal. Then, it is possible to describe the evolution in
time of the dimension of the fault, which is associated to the observed degradation variable
of the component, through non-linear state equations.

For the generation of long-term predictions, consider the m-step prediction for the condi-
tional state PDF p̂(x

(i)
k+τ |x̂

(i)
k+τ−1) which describes the state distribution at the future instant

k+τ, (τ = 1, ...,m) when the particle x̂(i)
k+τ−1 is used as initial condition. With the assumption

that the current weights
{
ω̃

(i)
k

}
i=1,...,N

are a good representation of the state PDF at time k,

then it is possible to approximate the predicted state PDF at time k + τ , by using the law
of total probabilities and the particle weights at time t+ τ − 1, as shown in (2.42).

p̂(xk+τ |x̂1:k+τ−1) ≈
N∑

i=1

ω̃
(i)
k+τ−1 · p̂(x

(i)
k+τ |x̂

(i)
k+τ−1); τ = 1, ...,m. (2.42)

Considering the prediction problem, the weight update cannot depend on the acquisitions
of new measurements. This consideration has to be taken account to evaluate (2.42), where
the weight of every particle should be modi�ed at each prediction step to include the fact
that noise and process non-linearities could change the shape of the PDF at time pases. Part
of the prediction problem is to search reliable approximations where the prediction scheme
does not depend on new data.

To overcome most of these di�culties, this subsection presents two approaches that has
been developed and evaluated in [35]. The �rst approach uses the value of the particles
obtained from the �ltering step as the initial condition to generate m-step predictions of
the expected value of the states PDF. The second approach considers a resampling of the
predicted state PDF (2.42).

First Approach for m-step ahead long-term predictions

For this approach, the prediction of the evolution in time of each particle is made by suc-
cessively taking the expectation of the model update equation (2.6a) for each future time
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instant, considering the state value associated to that particle as initial condition, as shown
in

x̂
(i)
k+τ = E

[
fk+τ (x̂

(i)
k+τ−1, ω̃k+τ )

]
(2.43)

Although the advantage of being the simplest implementation in terms of computational
e�orts, this method present problems related to the assumption that (2.43) is su�cient to ex-
tend the trajectories x̂(i)

0:k+τ while the current particle weights are propagated in time without
changes. Moreover, it does not take into account the existence of other uncertainty sources
involved in practical applications, as model inaccuracies or even wrong hypothesis.

Second Approach for m-step ahead long-term predictions

The second approach presented is a prognosis scheme based on the regularized particle �lter
[51], in which instead of recalculating the weights of the particles, it proposes a representation
of the future uncertainty by resampling the predicted state PDF. This approach is especially
useful if the prediction horizon is large.

Consider the discrete approximation (2.44) for the predicted state PDF (2.42) where K(·)
is a kernel density function, which may correspond to the process noise PDF, a Gaussian
kernel or a rescaled version of the Epanechnikov kernel (2.45), with the bandwidth hopt (2.46),
and the rescaled regularisation kernel (2.47). cnx corresponds to the volume of the unit sphere
in Rnx [35].

p̂(xk+τ |x̂1:k+τ−1) ≈
N∑

i=1

ω
(i)
k+τ−1Kh

(
x̂k+τ − E

[
x̂

(i)
k+τ − x̂

(i)
k+τ−1

])
, (2.44)

K(x) =


nx+2
2cnx

(1− ||x||2) if ||x|| < 1

0 otherwise

(2.45)

hopt = A ·N−
1

nx+4 ; A =
(
8c−1
nx · (nx + 4) · (2

√
π)nx

) 1
nx+4 (2.46)

Kh =
1

hnx
K
(x
h

)
, (2.47)

This method proposes a computationally a�ordable solution based on the assumption of
uncorrelated process noise and the use of kernel transitions to describe the state PDF before
the resampling step. To complete this task, a new population of equally weighted parti-
cles is generated for the instant k = 1, ...,m, performing an inverse transform resampling
procedure for the particle population. Hence, the information about the distribution of the
state is given by the position of the particles instead of their weight value. It is important
to mention that the assumption of uncorrelated process noise is included for the sake of
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reducing the computational e�ort of the resampling procedure, and there are no theoretical
restrictions for the application of this methodology in the presence of correlated process noise.

An additional step is considered to avoid loss of diversity among particles. It is assumed
that the state covariance matrix Ŝk+τ is equal to the empirical covariance matrix of x̂k+τ and
that a set of equally weighted samples for x̂k+τ−1 is available.

With all the aforementioned considerations, the regularization algorithm is as follows [35]:

Long-term predictions: second approach

• Apply modi�ed inverse transform resampling procedure. For i = 1, ..., N , ω̃
(i)
k+τ = N−1.

• Calculate Ŝk+τ , the empirical covariance matrix of
{
E
[
x̂

(i)
k+τ | x̂

(i)
k+τ−1, ω̃

(i)
k+τ

]}
i=1,...,N

• Compute D̂k+τ such that D̂k+τ D̂
T
k+τ = Ŝk+τ

• For i = 1, ..., N , draw εi ∼ K, the Epanechnikov kernel and assign x̂
(i)∗
k+τ = x̂

(i)
k+τ +

hoptk+τ D̂k+τε
i, where hopth+τ is computed as in (2.45).

Estimation and Statistical Characterization of the Remaining Useful Life

The resulting predicted state PDF contains critical information about the evolution of the
fault dimension over time. One way to represent that information is through the computation
of statistics as expectations or 95% con�dence intervals, for either the End-of-Life (EOL) or
the Remaining Useful Life (RUL) of the faulty system. The EOL PDF depends on both
long-term predictions and empirical knowledge about critical conditions for the system. This
empirical knowledge is usually incorporated in the form of thresholds for main fault indicators.
Therefore, the probability of failure at any future time instant k = eol (namely the EOL PDF)
is given by:

P (EOL = eol) =
N∑

i=1

P
(
Failure|X = x

(i)∗
eol

)
· w(i)

eol (2.48)

The conditional probability of failure in (2.48) may be de�ned via the determination of
hazard zones [35], either using historical data or knowledge from process operators. The sim-
plest case is where the concept of failure implies the moment when the fault feature crosses
a given threshold fth. In that case the probability of failure, conditional to the state, is equal
to one if the state is exactly on the manifold that de�nes the threshold value.

Two measures of the performance of prognostics algorithms are the expected EOL (2.49),
which corresponds to the instant k when the expectation of the corresponding state reaches a
failure condition, and the Just-in-Time Point JITPγ% (2.50) value [53]. The latter measure
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incorporates the concept of �risk�, specifying the time instant where the probability of failure
reaches a speci�ed threshold γ. Figure 2.13 illustrate the concept of Just-in-Time point,
showing the JITP5% and JITP15% for a PDF.

ˆEOL , E {k|E {x(k)} = fth} (2.49)

JITPγ% = argmin
eol

(P {EOL ≤ eol} > γ%) (2.50)
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Figure 2.13: Just-in-Time Point (JITP) of 5% and 15% for a failure probability.

The de�nition of the EOL or the RUL depends on the speci�c case under supervision.
When considering predictions about the SOC of an ESD, the EOL is associated to the end-of-
discharge (EOD) value, usually characterized by the time instant when the battery voltage
reach a speci�ed threshold voltage. For the SOH prediction problem, it is considered by
the cycle number when the battery capacity drops to a percentage of its nominal capacity
(generally 80% or 85% of its nominal value).
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Chapter 3

Laboratory Implementation and Data

Acquisition

It is crucial to count with diverse ESD discharge and degradation data in order to generate
estimates and long-term predictions for the evolution in time of the battery SOC and SOH,
specially if the e�ect of the temperature is included. This reason motivates the generation of a
data set of battery degradation under di�erent temperatures of operation. In addition, other
tests are necessary to characterize the behavior of the batteries in function of the ambient
temperature.

In this work all the conducted tests were performed with individual Li-Ion cells. The
laboratory equipment used to operate the batteries consists of two battery chargers iCharger
208B, and a programmable electronic load BK8500. To charge and discharge the cells at
di�erent temperatures, an adapted commercial thermoelectric cooler (TEC) based on the
Peltier e�ect is used. The principal idea of this cooler is depicted in Figure 3.1. The tem-
perature di�erence ∆T (i(t)) between the two sides of the Peltier module depends on the
magnitude and sign of the current i(t) �owing through it. Then, if one side of the module is
kept at room temperature (with a heat sink with a cooling fan), the other side can be over or
below that temperature depending on the sign of the current. To operate the cells at room
temperature, they are placed inside a PMMA box with temperature sensors.

Heat Sink

≈ Room Temperature

Room 

≈ Temperature 

 ± ∆T(i(t))

Peltier
Module

Thermal Isolated Box

Expanded Polystyrene

Figure 3.1: Illustration of the thermoelectric cooling system operation.
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The temperature is sensed with NTC thermistors connected to a c©inex board providing
a linear relation between the voltage measurements and the actual temperature in the range
of −20oC to 85oC. The sensor placed at the battery is located near the negative pole of the
cell where the maximum cell surface temperature is found [2]. The room temperature sensor
is located at approximately 14[cm] over the battery.

Figure 3.2 shows the previously mentioned equipment, corresponding to the iCharger (A),
Electronic Load (B), thermoelectric cooler (C), and PMMA box (B). The location of the
thermistor on the battery case is shown in Figure 3.3. Figure 3.4 presents the interior of
TEC, with the location of the battery case and the thermistor used to sense the ambient
temperature.

Figure 3.2: Photography of the equipment used to operate the Li-Ion cells.

Figure 3.3: Photography of the battery case,
showing with an orange circle the location of
the sensor near to the negative pole.

Figure 3.4: Photography of the inside of the
TEC, with the battery case and the tempera-
ture sensors.
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3.1 Accelerated Degradation Data

Due to the limitation of time and the lack of an autonomous battery cycling equipment, in
addition to fact that there is only one electronic load, only a limited amount of tests can be
actually implemented during the time span associated with this work. In this way, it was
de�ned that three di�erent cells were going to be degraded under di�erent temperatures of
operation but similar conditions of accelerated degradation data set, so a high mean current
and high DOD were considered.

The cells were obtained from an alternative laptop battery pack that consisted of six Li-
Ion 18650 rechargeable cells of 3.7[V ] and 2400[mAh]. The temperatures of operation are:
room, low (≈ 3[oC]) and high (≈ 40[oC]) temperature. The load cycle is adapted from an
electric vehicle test and is explained in the following section.
The charging protocol is the typical CC-CV (See Section 2.1.2). In this case, batteries are
charged with a CC of 2[A] and CV of 4.1[V ], with a lower limit of 0.2[A] for the current in
the CV stage. Moreover, the battery chargers are set with a cut-o� time limit of 2 hours for
security reasons.

3.1.1 Load Cycle Selection

Di�erent load pro�les may be carried out to study batteries, as there are many factors implied
in the degradation mechanisms. Some of the most important e�ects on battery aging are
the current levels, variations of the current over time, depth of discharge and temperature of
operation.

In order to establish a load cycle test to study batteries degradation, an adaptation of
the FUDS†-based battery power-time pro�le [54] speci�ed by the United States Advanced
Battery Consortium (USABC) was implemented. The purpose of the FUDS-based battery
power pro�le is to test the battery under a variable power discharge regime that represents
an actual power requirement from an electric vehicle. It considers discharge and charge pro-
cesses with high power peaks. Figure 3.5 shows the FUDS-based test, where negative values
corresponds to discharge and positive values to charge process.

As the goal is to generate and study accelerated degradation data with high currents and
high DOD, then the FUDS has to be modi�ed, with the changes listed as follows.

1. Charge power is replaced with a 0% value and discharge power multiplied by -1.

2. Power of 0% is considered as low current level and 100% as high current level.

3. Discharge power is quantized into eleven equally spaced levels, assigning the power
† Federal Urban Driving Schedule
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Figure 3.5: FUDS-based battery power-time test cycle.

value to the nearest level.

4. As an accelerated degradation is desired, low current is selected to be 2.6[A] and high
current 3[A], because these values o�er a range where the cells are operated over nomi-
nal values but under safe conditions. Then, current levels di�er by 0.04[A]. The average
current under these conditions is 2.66[A]. These changes can be seen in Figure 3.6. In
addition, the cut-o� voltage for discharge is considered to be 0.5[V ] to achieve a deep
discharge.
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Figure 3.6: Scaled version of the FUDS-based battery power test cycle.

5. The FUDS is speci�ed for 1372 seconds and the cell discharges are expected to last
longer than that value. Hence, the load cycle is repeated until the battery is discharged.

6. Finally, a squared wave with period of 20 seconds is placed at the beginning of the load
cycle. It is scaled to have a minimum value of 0.3[A] and maximum value of 1.5[A].
In addition, this signal lasts for 60 seconds as Figure 3.7 illustrates. These pulses are
intended to study the evolution of the voltage drop due to internal impedance over
battery cycling, without the necessity of extra equipment.

7. The described load cycle is used with low and high operation temperatures as shown
in Figure 3.8.
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8. For room temperature, some rest period were added, where the electronic load does not
take energy from the battery. These disconnection periods last for 10 seconds and are
separated by 500 seconds. Figure 3.9 exhibits the load cycle with these modi�cations.
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Figure 3.7: Square waves considered to estimate the internal impedance.
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Figure 3.8: Load cycle for low and high temperature batteries.
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Figure 3.9: Load cycle for room temperature battery.

The principal idea of these load pro�les is to operate the cells at a variable discharge
current, attempting to assimilate the usage of the battery on a real application. Further-
more, some modi�cations were made in order to add useful information for the study of the
behavior of the cell. For future degradation tests, it is proposed to generate data with tem-
peratures outside the optimal range (see Figure 2.5), and degrade cells combining di�erent
temperatures of operation for each cycle. Also, combining these test proposal with variations
on the DOD and current rates would be recommendable.
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3.1.2 Generated Accelerated Degradation Data

The conditions of operation for the three cycled batteries is listed as follows:

• Battery #4:

� Charged at ≈ 3oC.

� Discharged at ≈ 3oC with the load cycle shown in Figure 3.8.

• Battery #5:

� Charged at ≈ 23oC.

� Discharged ≈ 23oC with the load cycle shown in Figure 3.9.

• Battery #6:

� Charged at ≈ 23oC.

� Discharged at ≈ 40oC with the load cycle shown in Figure 3.8.

The results for the generation of accelerated degradation data are shown in Figures 3.10,
3.11 and 3.12 for Batteries #4, #5 and #6, respectively. Each �gure presents the capacity of
both charge and discharge process. For every twenty cycles of operation, there is a compar-
ative cycle where the batteries are charged and discharged at room temperature, in order to
establish a comparison point between them in terms of their degradation. They correspond
to the 21st, 41st, 61st, 81st and 101st cycles.

It is worth to mention that the average temperature of operation is not the same for each
cycle, and is a�ected in a great form by the season and ambient temperature of each day.
Figure 3.13 shows the charge mean temperature for each battery as a function of the cycle
number.
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Figure 3.10: Degradation data obtained cycling Battery #4 at low temperature.
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Figure 3.11: Degradation data obtained cycling Battery #5 at room temperature.
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Figure 3.12: Degradation data obtained discharging Battery #6 at high temperature.
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Figure 3.13: Average temperature of the charge process for each cycle of the degradation data.

3.2 Battery Temperature Dependence Results

In addition to the degradation data, some test are conducted to study the behavior of the
cells at di�erent temperatures. The objective is to establish a relation between the capacity
of the battery and the ambient temperature, and an expression for the approximated internal
impedance as a function of the battery's temperature.
The Battery #3 was used to realize the experiments of this section. This battery was ob-
tained from the same pack than the batteries used for the degradation tests.
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3.2.1 Battery Capacity as a Function of the Temperature

To obtain the battery capacity dependence on the temperature, the battery is fully charged
with the same protocol as the presented for the accelerated degradation data set, and then
discharged until a cut-o� voltage of 0.5[V ], using the load pro�le shown in Figure 3.14. This
pro�le corresponds to a constant current at nominal values (2.4[A]), in addition to a pair of
two pulses placed inside a range of SOC of 80% and 20%. For this range of SOC values,
the internal impedance remains approximately constant [55]. Using the information of the
charging process, the time location of the pulses can be readjusted to ensure that they are
placed inside the desired SOC range.
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Figure 3.14: Load pro�le consisting of a constant current of 2.4[A], and pulses of ∆I = 1[A].

The cell's delivered capacity is obtained by integrating the current over time for each cycle
independently. Figure 3.15 shows the charge capacity as a function of the ambient tempera-
ture of the charge process.
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Figure 3.15: Charge capacity dependence on temperature for Battery #3. Each diamond corre-
sponds to a cycle result.

3.2.2 Temperature Dependence of Internal Impedance

In order to obtain an estimation of the internal impedance, given by |∆V
∆I
|, it is necessary

to compensate the voltage drop associated to the battery discharge ∆VSOC . Figure 3.16(a)
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illustrates the battery voltage and ∆VSOC for a current pro�le presented in Figure 3.16(b),
where the di�erence between current levels is ∆I. The internal impedance estimate is ex-
pressed in Equation (3.1).
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Figure 3.16: (a) Illustration of the changes on the battery voltage due to current changes between
two values. (b) Discharge current consisting of a constant current and two pulses.

|Zint| ≈

∣∣∣∣∣VH1 − VL2 − ∆VSOC
2

∆I

∣∣∣∣∣ (3.1)

≈
∣∣∣∣VH1 − VL2 − 1

4
(VL1 − VL2 + VH1 − VH2)

∆I

∣∣∣∣ (3.2)

This approximation represents the information of the battery's internal impedance on the
linear zone for the frequencies contained in the pulses and not the complete frequency spec-
trum, as the results obtained using the EIS test. However, this method can be used on-line,
and approximation errors can be neglected depending on the applications.

The cell's impedance depends on the temperature, and for each temperature value, a dif-
ferent estimation of |Zint| is calculated.

To obtain the approximation expressed in (3.1), the Battery #3 was discharged to a high
DOD value, and then fully charged. After that, the cell was discharged until the integration
of the current obtained from the battery was approximately a 25% of the charge capacity
(obtained integrating the charge current). Then, for �ve di�erent values of the ambient
temperature, two current pulses between 2.4[A] and 1.4[A] were applied to the battery (see
Figure 3.16.b). After these pulses, the battery was charged trying to mantain the SOC
around a 75%, charging the same capacity value as the drained from the battery during the
two pulses discharge. The result for the estimation of the internal impedance as a function
of the temperature is shown in the Figure 3.17. This experiment shows a clearly dependence
of the absolute value of the internal impedance on the battery temperature, with a lower
impedance for higher temperatures. The results are consistent with the Nyquist plots of the
internal impedance of the Figure 2.8
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Figure 3.17: Approximation of the cell internal impedance for di�erent temperatures.

3.3 Data Available at Public Databases

Apart from the generated data, there is also available accelerated degradation data of 36
Li-Ion cells provided by the Prognostics Center of Excellence at NASA Ames [56]. Fig-
ure 3.18.a) presents the degradation results of a cell cycled at an ambient temperature of
296.15[K], using a constant discharge current of 2[A]. The results showed in Figure 3.18.b)
correspond to the degradation of a cell operated with the same conditions of the �rst one,
but with an ambient temperature of 277.15[K]. Both cells have a nominal capacity of 2[Ah].

0 50 100 150
1.4

1.5

1.6

1.7

1.8

NASA Battery #7 degraded at 23°C

C
ap

ac
ity

 [A
h]

Cycle Number
0 20 40 60 80 100

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

NASA Battery #54 degraded at 4°C

C
ap

ac
ity

 [A
h]

Cycle Number

a) b)

Figure 3.18: Example of accelerated degradation data provided by NASA Ames Prognostics Center
of Excellence.
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Chapter 4

Particle-Filtering-based Scheme for

State-of-Health Prognosis at a Reference

Temperature

This chapter presents the proposed solution for the SOH estimation and RUL predictions
of Li-Ion batteries within a particle-�ltering-based framework. The main topics include the
proposed state-space model for battery degradation with the inclusion of the temperature
of operation, the issues related to the implementation of the particle �lter algorithm, and
the results of the SOH prognosis. This framework is validated using the degradation data
depicted in Chapter 3, in addition to an arti�cial data set generated to test the performance
of the proposed scheme.

4.1 Model Proposal for a SOH Prognosis Scheme at a

Reference Temperature

Modeling the degradation of an ESD is a complex task, since the amount of variables involved
on battery aging and their interaction (see Section 2.1.1). An electrochemical approach may
result in a better model than other simpli�ed options, but increasing the computational com-
plexity of the �nal algorithm and the e�orts to obtain the value of the model parameters (see
Section 2.2.2). This di�culty is given mainly by the existence of parameters that depends
on (i) operational conditions as the magnitude of the current drained from the battery or
the ambient temperature, and (ii) the chemistry of the electrodes and the electrolyte. As a
consequence, this work proposes a model to describe the evolution of the degradation of a
Li-Ion battery with an empirical state-space non-linear model, based on the work of Olivares
et al. in [43], [57], instead of an electrochemical approach. That base model was developed
and tested within a Bayesian-�ltering scheme with satisfactory results, but an important
factor is assumed constant: The temperature.
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The purpose and contribution of this work is to estimate and predict the SOH of a Li-Ion
battery, considering its temperature of operation. The explicit inclusion of that variable in
the model is needed due to its importance on the energy that a battery can store and deliver
(see Section 2.1.3). The neglection of this input variable may lead to wrong decisions if these
are based solely on the observed capacity for the current cycle.

Equations (4.2) - (4.5) show the proposed state-space dynamic model to achieve the SOH
estimation and prognosis. The inputs of the model corresponds to the average temperature
T [K] during the charge process on the cycle k (assuming the same average temperature for
the charge and discharge processes), and the output of a self-regeneration phenomena detec-
tion module U(k). The model output is the measured capacity of the battery during the kth

cycle at the temperature of operation T (k). η is an e�ciency parameter that explains how
much energy is expected for a cycle given the delivered in the previous one.

The state x1(k) is associated to the SOH (or degradation) of the battery at the reference
temperature Tref . State x2(k) is an unknown parameter required to explain di�erences be-
tween the actual degradation trend with respect to the expected for x1, under the concept
of arti�cial evolution [35]. The state x3(k) is associated with the additional available energy
due to regeneration phenomena and allows the inclusion of that extra capacity only in the
observation equation and not in x1. Function δ(·) corresponds to the Kronecker delta,

δ(U) =

{
0, if U 6= 0

1, if U = 0.
(4.1)

Process noises ω1 and ω2, and observation noise v are zero-mean Gaussian noise terms; ω31 is
a log-normal noise used to characterize the typical amount of SOH that is added in the event
of successive regeneration phenomena; ω32 is used to characterize the typical damping ratio
of self-recharge phenomena and distributes as a Uniform over the range [0.75, 0.85]. Both
ω31(k) and ω32(k) were determined statistically in [43] studying the accelerated degradation
data provided by NASA Ames Porgnostic Center of Excellence.

State-of-Health Dynamic Model

State transition equations:

x1(k + 1) = x1(k)(η + x2(k)) + ω1(k) · φ(T (k)) (4.2)

x2(k + 1) = x2(k) + ω2(k) (4.3)

x3(k + 1) = δ(U(k))ω31(k) + δ(1− U(k))(x3(k)ω32(k)) + ... (4.4)

...+ δ(2− U(k))(x3(k) + ω31(k))

Measurement equation:

y(k) = Cuse(x1(k), T (k)) + (δ(1− U(k)) + δ(2− U(k))) · x3(k) + v(k) (4.5)

For the purposes of this work, the battery capacity C(k) in the cycle k is approximated
by the Coulomb counting method, using the current data ik(t) of the discharge process in the
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kth cycle. That is to say, C(k) =
∫

ik(t)dt ≈
∑

j ik(j)∆t, being ∆t the sample time of the
sensors for the discharge process. Furthermore, the state x1(k) does not correspond directly
to the SOH, but to a capacity measure (in [Ah]) in order to easily establish the observation
equation. To obtain a true value of the SOH (by the common de�nition in percentage) it is
necessary to divide the state x1 by the nominal capacity of the battery, or in the absence of
this value by the capacity delivered at the �rst cycle of operation (assuming in a valid �rst
measurement).

4.1.1 Inclusion of the Temperature of Operation of the Battery

One of the goals of the proposed degradation model is to provide a state x1(k) that can be
related directly to the battery SOH, at a reference temperature. Measurement equation (4.5)
represents the measured capacity y(k) by the sum of a function of the state x1(k), a term
that depends on the state x3(k), and the observation noise v(k). In this regard, this section
focuses on the explanation of the term Cuse(x1(k), T (k)). This function of x1(k) intends to
include the temperature of operation by the concept of Usable Capacity, corresponding to
the expected amount of capacity that the battery can deliver or store in the kth cycle at a
given SOH and average temperature T (k). The evolution of the state associated to the SOH
should be described by

Cuse(x1(k + 1), T (k)) = Cuse(x1(k), T (k)) · (η(T (k)) + x2(k)) + ω1(k), (4.6)

with Cuse a function that lets one to establish a comparison of the actual SOH at di�erent
values of T . Under the assumption that the battery is working within a temperature range
where the operation temperature does not change the tendency of degradation in just a few
cycles, η(T (k)) can be considered as a constant η (the uncertainty induced by the latter is
included in x2 due to its arti�cial evolution). Figure 2.5 shows an �ideal working temperature
range� where the batteries EOL are similar, providing a prior knowledge about the tempera-
ture values that satis�es this assumption. Furthermore, the laboratory generated data, shown
in Section 3.1.2, presents similar degradation trends for the three cells. Their comparative
cycles at room temperature (21st, 41st, 61st, 81st and 101st cycles) show a similar degradation.

The relation between the delivered capacity and the average temperature in a cycle can
be established with the equation (4.7) of Vogel-Tammann-Fulcher (VTF) suggested in [45].
In that relation CSOH

Tref
is the capacity that the ESD delivers in its actual SOH at a reference

temperature Tref , and α and β are parameters that have to be �tted to capacity versus tem-
perature data. If the state x1 is de�ned as CSOH

Tref
, then (4.7) becomes (4.8). This function

was �tted to the data presented in Section 3.2.1, and is shown in Figure 4.1. The results are
α = −5.1593 and β = 260.9565, with a mean-squared error of 2.1721× 10−4.

Cuse(C
SOH
Tref

, T ) = CSOH
Tref
· e

α

(
1

T−β−
1

Tref−β

)
(4.7)

Cuse(x1, T ) = x1 · e
α

(
1

T−β−
1

Tref−β

)
(4.8)
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Using (4.8) in (4.6), and dividing by the exponential term,

x1(k + 1) = x1(k)(η + x2(k)) + ω1(k) ·

φ(T (k))︷ ︸︸ ︷
e
−α
(

1
T (k)−β−

1
Tref−β

)
, (4.9)

an equation that describes the evolution of the state x1 at a �xed reference temperature Tref
is found, being the same as (4.2).

An important assumption made for this work is that this adjustment is invariant with
cycling and time, but as the internal impedance increase with a lower SOH, it may be
expected that the values of α and β change when the battery has degraded. In this regard,
a complete study of the batteries should include characterization of this relation for several
di�erent states of degradation.
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Figure 4.1: VTF curve adjustment to data of capacity delivered by a cell in a complete cycle at
di�erent temperatures.

4.1.2 Regeneration Phenomena Detection Module

One of the inputs of the system described by the equations (4.2)-(4.5), U(k), is de�ned as
the output of an online PF-based detection module developed in [43]. This module performs
a hypothesis test with a 1% of false alarm rate for the measurement y(k), considering the
a priori prediction of the system output as the pdf that characterizes the null hypothesis
(self-recharge phenomena either do not exist or are fading in time). To achieve this task, the
detection module determines a time-varying threshold that depends on the position of the
particles associated to the empirical a priori state distribution. The possible values for U(k)
are presented in (4.10).

U(k) =



0 if self-recharge does not exist,

1 if either self-recharge is detected at cycle k
or self-recharge phenomenon is fading,

2 if additional self-recharge phenomena are
detected before the latest one fades.

(4.10)

41



Figure 4.2 illustrates the PF-based detection framework for self-recharge phenomena for
�ve regeneration events, where Figure 4.2.a shows degradation data, Figure 4.2.b the output
of the PF-based detection module (detection signal), and Figure 4.2.c the external input
U(k) generated according to (4.10).
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Figure 4.2: Illustration of the PF-based detection framework for self-recharge phenomena.

This module was developed to operate with the measured capacity and the state x1.
However, it cannot be directly applied to temperature-varying data. The development of a
model that has a state x1 that represents the SOH at a reference temperature allows the use
of this detection module if the comparisons are made between x1 and the transformation of
the measured capacity y(k) to a reference temperature y

Tref
(k), by using (4.7).

y
Tref

(k) = y(k) · e
−α
(

1
T−β−

1
Tref−β

)
(4.11)

4.1.3 Outer Feedback Correction Loop for Erroneous State

Initialization

From the perspective of the implementation of the SOH prognosis scheme in a real applica-
tion, the algorithm needs to be robust and work outside ideal conditions. The initial state
value of an ESD (in particular x1(k = 0)) may be unknown, or even it may be erroneous if a
nominal value is used for a low quality or cheap battery. In those cases, the scheme must be
able to correct an erroneous initialization of the state x1 and converge rapidly to a reasonable
value. An easy approach to solve this issue is to use the observation data of the �rst cycle
and initialize the state x1 with that value, but nothing assures that it is not an erroneous
value or an outlier. In this regard, an outer-loop correction is proposed to deal with this
problem.
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The core idea of this outer feedback correction loop is to modify the process noise ω1

in order to explore a wider range of values with the particles x(i)
1 during the �rst iterations

of the PF algorithm. To achieve this task, the implementation of this procedure considers
starting the PF algorithm with a boolean variable errorCI initialized with the value 1. While
errorCI is equal to 1, the output of the regeneration detection module is U = 0 and the
process noise ω1 depends on the di�erence between the measurement and Cuse(x1, T ). Once
the aforementioned di�erence is less than a threshold (that could be a percentage of the
nominal capacity of the ESD), errorCI becomes 0 and the regeneration detection module
starts to work. It is worth to mention that this outer-loop is only active during the beginning
of the �ltering stage, and once errorCI changes from 1 to 0 it will never be active again. A
summary of the explained procedure is presented as a pseudo-code.

Pseudo-algorithm of erroneous initial condition outer feedback correction
loop.

1: procedure Estimation(·)
2: errorCI ← 1
3: while k < kprognosis do
4: e← Ctruth(k)− y(k)
5: if (∼ errorCI) then . Working Detection Module
6: U(k) ← Regeneration_Detection_Module(·)
7: else(errorCI) . Process noise of x1 is modi�ed
8: U(k) = 0
9: σω1 = 0, 0042 + 1, 05 · 〈w(i)

k , | e |〉
10: if 〈w(i)

k , | e |〉 < eth then
11: errorCI ← 0
12: σω1 = 0, 0042
13: end if
14: end if
15: PF_Filtering( ) . One iteration of the �ltering stage
16: end while
17: end procedure

In this pseudo-code, k corresponds to the kth cycle of operation of the ESD, kprognosis rep-
resents the cycle where the prognosis procedure starts, Ctruth(k) is the measurement capacity
of the battery, y(k) is the output of the dynamic degradation model, and w(i)

k the weights of
the PF algorithm.
The presented pseudo-algorithm shows stages of the PF algorithm and the regeneration de-
tection module. Nevertheless, this procedure only modi�es the value of the process noise ω1

of the state-space model.
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4.2 Issues Related to the Implementation of the SOH

Prognosis Scheme

As discussed in Section 2.2.2, particle �ltering algorithms are a suitable option to work
with non-linear and non-necessarily Gaussian models, and to represent the uncertainty of
the system in the prognosis stage. In this regard, the SOH prognosis is achieved with a
particle-�ltering-based scheme using the model of the equations (4.2) - (4.5). The Sequential
Importance Sampling algorithm (see section 2.3.2) is used for the estimation stage, and the
prognosis algorithm corresponds to the approach based on the regularized particle �lter (see
Section 2.3.3), applying the regularization to the states x1 and x2. The following sections are
concerned to the PF algorithm implementation.

4.2.1 Con�guration of the Particle Filter Algorithm

The formulation of PF-based prognostic approaches has been widely covered in literature
[28], [35], [33]. However, there are speci�c issues associated to the implementation of these
schemes that depend, in a strong manner, on the number of states of the dynamic system
and the type of non-linearities exhibited by them. In order to determine the value of those
parameters for the SOH prognosis scheme with the proposed model of the equations (4.2) -
(4.5), it is required to compare the performance of this suboptimal scheme with respect to
an analytic solution; a complex task given the non-linearities of the considered model. For
this reason, a reasonable method to set the �lter parameters is the one adopted by Olivares
et al. in [43], where a simpli�ed scenario is used to determine an adequate con�guration
of the PF algorithm by using a linear Gaussian dynamic system. With this methodology
the performance of the proposed PF-based SOH prognosis framework is compared versus
the optimal solution given by the a priori prediction equations of the Kalman �lter. As the
model proposed in this work is generated from the one used in [43], it is considered that those
results are appropriate for this work. The con�guration is: (i) 50 particles, (ii) 40 realizations
of the non-linear �lter, and (iii) 50 realizations of the long-term predictions. The value of 50
particles is the lower amount that presents a similar result as the analytic solution. Thus,
an increment in the number of particles does not a�ect the performance of the scheme. To
facilitate the calculation of con�dence intervals of 95% and integer percentage values of a
resulting a posteriori distribution (e.g. 99%), the number of particles is duplicated to 100.
With that number, the execution of the SOH estimation and prognosis procedures takes less
than 1.5[sec] using the MATLABr environment and a Intelr Core(TM) i7 CPU (3.07GHz)
and 16GB of RAM.

4.2.2 Dealing with Outliers and Loss Data

Observing the generated degradation data presented in Section 3.1.2 it is easy to see outliers
in the measured capacity data (with an abrupt capacity loss for just one cycle) that may
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a�ect the performance of the �ltering stage and result in a wrong assumption of a degraded
battery. Moreover, there are some cycles where capacity or temperature data is not available.
The approach used to operate with this type of data is to execute the prognosis stage while
data is missing or is considered as an outlier; by using the previous cycle number as the
prediction time and the corresponding value of the state vector to begin the prediction. At
the time instant when new data is valid and available (measured capacity and temperature
of operation of the cycle), the �ltering stage restarts with the state value of the last predic-
tion time instant. A more appropriate method should consider an imputation algorithm [58]
within the PF to incorporate the available knowledge for the required cycle.

Figure 4.3 illustrates this procedure for an example with the state-space equations:

xk+1 = η · xk + w, (4.12)

yk = xk + ν, (4.13)

where data is not available from cycles τ to τ + 5 (η < 1). The estimator x̂k can be obtained
for k = 0, ..., τ − 1, and the prognosis stage starts at k = τ , obtaining the prediction x̂∗k.
When a new measurement is valid, for k = τ + 6, the estimation of xτ+6 uses the predicted
value for τ + 5 and its weight vector, that is x̂τ+5 = x̂∗τ+5 and ω

(i)
τ+5 = N−1.
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Figure 4.3: Illustration of the procedure to estimate a state x in presence of missing data. Thin
green line is the measurement y(k), dark bold line corresponds to the estimator x̂k, dash-dotted line
is the prediction x̂∗k, and gray dashed lines are the prediction con�dence interval.

To determine whether a new measurement is an outlier or not, a hypothesis test is applied
to compare the a priori observation equation with respect to the measured capacity, both
transformed to a value at a reference temperature according to (4.7). The null hypothe-
sis H0, corresponding to a new measurement that is valid, is characterized by the a priori
one-step-ahead prediction of the system output PDF. The false alarm probability (pfa) is
set to 1%. This test uses a time-varying threshold Θth(k) that depends on the position
of the state particles, de�ned as the di�erence between a scalar Θy(k) and a constant Kth

(a 12% of the nominal capacity). The scalar is obtained from the particles that satis�es
Σω(i)(k) > pfa and h(x(i)(k)) > Θy(k) (being h(x) the measurement equation (4.5)), result-
ing in Θth(k) = Θy(k)−Kth. That is, the null hypothesis is rejected if the measurements are
a �xed amount below most of the particles' position. This test is illustrated in Figure 4.4 for
a continuous PDF and pfa of α%.
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Figure 4.4: Illustration of the PF-based hypothesis test for outlier detection.

4.2.3 Validation Data

Data presented in Section 3 show the degradation of Li-Ion cells, being each cell operated
approximately at the same temperature for every cycle (excluding the comparative cycles
added in the laboratory generated data). That data is, however, not enough to completely
validate the proposed SOH prognosis scheme. It is necessary to count with degradation data
where a battery has di�erent temperatures of operation for di�erent cycles. To evaluate the
capability of the scheme to work in these conditions, an arti�cial data set was made from
the degradation data of a battery available at NASA Ames repository [56]. The use of the
arti�cially generated data is to test the performance of the scheme, and does not imply a
proof of the assumption of similar degradation trends for a given temperature range.

The SOH estimation and prognosis scheme requires, for each cycle, the average temper-
ature of operation, the measured capacity, and the parameters α and β that satis�es (4.7).
With those values, a capacity at a reference temperature Tref can be obtained. To generate
an arti�cial data set, the process is reversed using the values of α and β obtained for the cells
tested in the laboratory. Then, creating an arbitrary temperature set with values �uctuating
between 275[K] and 298[K], a capacity measurement is made using the transformation (4.7)
over capacity data at 298[K]. A random noise is added to the new capacity measurements
to include uncertainty associated to the characterization of (4.7). Accelerated degradation
data presented in Figure 3.18.a (provided by NASA Ames Prognosis Center of Excellence)
is selected to generate the arti�cial data set. Figure 4.5.a shows the resulting generated
capacity measurement at the temperature shown in Figure 4.5.b.

Four degradation data sets are considered for the scheme validation, and are referred to
as DS #1, #2, #3, and #4. They correspond to:

• DS #1: NASA Ames accelerated degradation data at 23[oC]. Capacity data is inten-
tionally deleted for cycles 19 to 23 and replaced by 1.3[Ah] for cycles 60 to 62 to test
the outlier detection module.

• DS #2: Degradation results for Battery #4 (≈ 23[oC]).

• DS #3: Degradation results for Battery #5 (≈ 3[oC]).

• DS #3: Arti�cially generated degradation at di�erent temperatures of operation.
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Figure 4.5: Arti�cially generated degradation data.

4.3 Validation of the SOH Prognosis Module

The principal purpose of the state-space model presented in (4.2)-(4.5) is working the degra-
dation data at a reference temperature (Tref ). Therefore, the long-term predictions of the
state vector are conducted at Tref using the results of the �ltering stage as the initial condi-
tion. Then, equation (2.49) can be used to obtain a probabilistic characterization of the EOL
of the battery, by �nding the time instants where each particle trajectory (at Tref ) reaches a
given percentage of capacity loss. Figures presented in this chapter illustrate the performance
of the SOH PF-based prognosis scheme for one realization of the non-linear �lter, and one
realization of the long-term prediction.

Figures 4.6, 4.7 and 4.8 present the results of one realization of the prognosis scheme for
DS#1. The initial condition of the particles of x1 are set around 1[Ah] (half the nominal
capacity), and some cycles were deleted while others were changed for a lower value to test
the outlier detection module. Figure 4.6 shows the validation data (bold black line), state
x1 estimation (orange line), the observation of the model (dashed green line), and long-term
predictions (dashed bold blue line). All of them are presented at a reference temperature of
23[oC]. In addition, red circles show the cycles where the detection signal of the regeneration
phenomena detection module is non-null. Gray lines correspond to predictions of the particles
of the state x1, and segmented magenta lines represent the con�dence interval of 95%. This
result illustrates how the outer feedback correction loop allows x1 to converge to a reasonable
value given the observations, and allows the scheme to work properly even with an erroneous
initialization of x1. The prediction instant is the 107th cycle (dark vertical segmented line),
but some predictions can be seen between cycles 19 to 23 and 60 to 62 due to the outlier
detection module. The latter is important when working with non-ideal data. The evolution
of x2 is presented in Figure 4.7, exhibiting predictions of the state vector during the �ltering
stage (as in Figure 4.6). Figure 4.8 shows the evolution of x3 (x3(k) = 0; k > kpredict), that
explains the di�erence between the observation equation and x1 during the �ltering stage; in
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addition to the detection signal (represented by red circles in Figure 4.6). In this experiment
in particular, the failure threshold was diminished to a 65% of the nominal capacity to illus-
trate in a better manner the proposed scheme (to include an erroneous initialization, more
regeneration phenomena, and lost data). With this consideration, the ground truth EOL is
143, and the expected EOL is 147 for a 40-cycle prediction window. However, this example
is just one illustrative realization of the SOH prognosis scheme.

An evaluation of the inclusion of the regularization approach for the SOH prognosis was
made using the results presented in Figure 4.6. The higher uncertainty introduced by the
regularization algorithm (see Figure 4.9) reduces the accuracy of the prognosis, even result-
ing in particles that do not cross the hazard zone. However, it helps to include the future
uncertainty involved in battery degradation.
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Figure 4.6: SOH prognosis for DS#1 using the proposed PF-based framework. Degradation data
(bold black line), estimated x1 (orange line), model observation y (segmented green line), predicted
x1 (bold blue dashed line), and 95% con�dence interval for x1 prediction (thin segmented magenta
line); all at a reference temperature of 23[oC].
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Figure 4.9: In�uence of the regularization algorithm in the prognosis stage for DS#1. Degradation
data (bold black line), estimated x1 (orange line), model observation y (segmented green line),
predicted x1 (bold blue dashed line), prediction instant (black dot-dashed line), 95% con�dence
interval for x1 prediction with regularization for x1 and x2 (thin segmented magenta line), 95%
con�dence interval for x1 prediction with regularization for only x1 (thin dot-dashed black line),
and 95% con�dence interval for x1 prediction without regularization (thin dot-dashed green line).

Figures 4.10 and 4.11 show the evolution of x1, the observation, and the measurement data
(analogous to the Figure 4.6) for the laboratory generated degradation DS#2 and DS#3 re-
spectively. For those noisy sets, the self-regeneration detection module not only works with
its original purpose, but also for high capacity peaks that last one or two cycles, making the
SOH evolve smoothly as it would be expected. From the perspective of a risk-based decision,
it is not critical to have the regeneration detection module working in that manner, because
it may result in an underestimation of the SOH most of the time. The noisy behavior of
these data set makes di�cult to establish the time instant of the ground truth EOL, but for
DS#2 the predictions can be compared with data post cycle 85. To evaluate the long-term
predictions of x1 the ground truth EOL value can be set at 1.598[Ah] at cycle 95. The ex-
pectation of x̂∗1 crosses the EOL threshold at the 104th cycle.
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The results of the long-term predictions of x1 for the arti�cial degradation set DS#3 are
presented Figure 4.12. This data set is used to evaluate the operation of the proposed scheme
with a time varying temperature of operation. However, an experimental degradation data
set -with di�erent temperatures- is required to validate the scheme. As one may observe, the
scheme produces both the estimations and predictions of the state x1 at a reference tempera-
ture, allowing the application of the outer-feedback correction loop and the self-regeneration
detection module over temperature varying degradation data.
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Figure 4.10: SOH prognosis for DS#2 using the proposed PF-based framework. Degradation data
(bold black line), estimated x1 (orange line), model observation y (segmented green line), predicted
x1 (bold blue dashed line), and 95% con�dence interval for x1 prediction (thin segmented magenta
line); all at a reference temperature of 23[oC].
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Figure 4.11: SOH prognosis for DS#3 using the proposed PF-based framework. Degradation data
(bold black line), estimated x1 (orange line), model observation y (segmented green line), predicted
x1 (bold blue dashed line), and 95% con�dence interval for x1 prediction (thin segmented magenta
line); all at a reference temperature of 23[oC].

50



0 20 40 60 80 100 120 140 160
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

C
ap

ac
ity

 [A
h]

Cycle Number

SOH Estimation and Prognosis Results @ 23°C

 

 
C

eq
 Data @23°C

State x
1
(k)

Obs
eq

 y(k) @23°C

Figure 4.12: SOH prognosis for DS#4 using the proposed PF-based framework. Degradation data
(bold black line), estimated x1 (orange line), model observation y (segmented green line), predicted
x1 (bold blue dashed line), and 95% con�dence interval for x1 prediction (thin segmented magenta
line); all at a reference temperature of 23[oC].

4.4 Final Remarks of This Section

This work proposes a detailed method to include the temperature of operation of the batteries
within a probabilistic SOH prognosis scheme, in contrast with previously developed schemes
that considers a constant temperature. The incorporation of the �Usable Capacity� allows
the inclusion of the impact of the temperature, and may be a suitable option to include the
e�ect of DOD. Both variables must be considered for any battery degradation monitoring
system in real applications. However, additional battery degradation data is required to
validate and also to improve this scheme.

A side result of this work is the understanding of the type of degradation tests that are
required for the sintonization and implementation of temperature-dependent models. This
point is important for the generation of degradation data, given the time that takes to obtain
them. A Li-Ion battery is generally rated for a high number of cycles of operation at nominal
values before is degraded (e.g. 2000 cycles), resulting in a slow procedure even with automatic
battery cycling devices.
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Chapter 5

Particle-Filternig-based Scheme for

State-of-Charge Prognosis

The present chapter covers the implementation and validation of a SOC prognosis PF-based
framework, and a proposal to include the battery internal temperature in it. It is organized
as follows; First, it is introduced the proposed state-space model for the battery discharge, a
methodology to obtain the model parameters, and the validation data. Then, the PF-based
prognosis scheme is presented, including implementation issues and results. Finally, a man-
ner to include the internal temperature of the battery in the scheme is proposed.

5.1 Model Proposal for a SOC Prognosis Scheme

This work proposes a SOC estimation and prognosis scheme, using an empirical state-space
model inspired on electric equivalent circuits for the battery cell. Previous research e�orts
have also used a state-space representation to describe the SOC evolution in time. In [59]
the proposed state-space model uses the traditional de�nition for the SOC (based on the
battery capacity) and assumes a known look-up table to characterize the OCV. In contrast,
an energy-based de�nition for the SOC is used in [60], although the parameterization that is
proposed for the OCV curve is not appropriate to describe the real discharge evolution of a
battery. Neither of them include the temperature of operation in the discharge model.

An electrochemical characterization is not considered, since they need to estimate nu-
merous parameters (a�ecting the observability of the state vector), require extremely precise
measurements for on-line implementation, and represent a high computational cost. In this
regard, this work proposes an improved version of the energy-based approach presented in
[60], emphasizing the e�orts in a better state-space model to describe the battery discharge.
In the proposed approach the SOC represents a percentage of the maximum amount of en-
ergy that can be stored in the battery.
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This new model provides an adequate representation of the dynamics associated to the
measured battery discharge voltage, in contrast to the previous representation that assumed
a constant value for the open-circuit voltage for a wide range of SOC values. A discrete
time characterization is assumed for the battery dynamics and the availability (real-time)
of voltage and discharge current measurements. The structure of the proposed state-space
model, presented in equations (5.1)-(5.3) o�ers a modi�cation to the observation equation
that incorporates most of the nonlinearities found in Li-Ion open-voltage discharge curves,
while simultaneously enabling the implementation of reliable o�-line estimation procedures
for the estimation of all of its parameters. The concept of arti�cial evolution [35] has been
applied to estimate the instantaneous absolute value of the battery internal impedance. This
is implemented by extending the dimension of the state vector, and associating its �rst com-
ponent x1 with the value of this time-varying parameter.

State-of-Charge Dynamic Model

State transition equations:

x1(k + 1) = x1(k) + ω1(k) (5.1)

x2(k + 1) = x2(k)− v(k) · i(k) ·∆t · E−1
crit + ω2(k) (5.2)

Measurement equation:

v(k) = vL + (v0 − vL) · eγ(x2(k)−1) + α · vL · (x2(k)− 1) + ... (5.3)

...+ (1− α) · vL ·
(

e−β − e−β
√
x2(k)

)
− i(k) · x1(k) + η(k)

In the proposed model the discharge current i(k)[A] and the sample time ∆t[sec] are in-
put variables, and the battery voltage v(k)[V ] is the system output. The quantities v0, vL
α, β, and γ are model parameters to be estimated o�ine. The states are de�ned as x1(k)
(unknown model parameter) and x2(k) (SOC, remnant battery energy normalized by the pa-
rameter Ecrit), Ecrit is the expected total energy delivered by the ESD (that could be inferred
from the nominal capacity or discharge curves included in datasheets). Process (ω1 and ω2)
and measurement (η) noises are assumed Gaussian. It is important to mention that process
noise ω2 is correlated with η, the measurement noise, since the evolution in time of state x2

depends on voltage measurements.

In the beginning of the �ltering stage, most of the time there is no knowledge about the
amount of energy stored in the battery. This implies that there is no information about
the SOC and the initial condition of its associated state. To ensure its convergence to
the real value during this stage, it is important to correct errors associated to incorrect
initial conditions. This fact is a critical issue to guarantee an adequate initialization of the
prognosis stage, which is based on the results of the �ltering stage. This approach considers
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an adaptive learning strategy [61] that increases the uncertainty associate with the state x2

in (5.2) (through the manipulation of the variance of the process noise ω2), based on the
fact that changes on the internal battery impedance (and thus, the value associated to the
state x1) are negligible during a given discharge cycle [55]. Although this procedure helps
to adjust the prior knowledge on the initial condition of the state vector, it may incorporate
arti�cial sources of uncertainty within the Bayesian processor if kept invariant [61]. For this
reason, and after a few battery voltage/current measurements are acquired, the variance is
exponentially reduced, converging to a pre-de�ned lower bound (which is part of the PF
implementation design parameters). This procedure, which can be considered as an outer
feedback correction loop [61] in a failure prognostic routine, is critical to ensure a reasonable
initial condition for the state vector.

5.1.1 Methodology for Measurement Equation Parameter Identi�-

cation

In addition to the model itself, a methodology to obtain the parameters of the measurement
equation (5.3) is proposed. It allows obtaining these parameters using only information from
a single, prior, discharge test. This test (training data) is mainly used for o�ine estimation
of parameters v0, vL α, β, and γ in (5.3), as well as the characterization of the prior distri-
bution for x1(0). Equation (5.3) considers that the OCV curve has three di�erent zones that
require proper characterization, as shown in Figure 5.1. In the �rst zone, the OCV curve
experiments an exponential decay as the SOC diminishes from a fully-charged condition to
approximately 70%. In the second zone, the OCV basically presents an a�ne relationship
with respect to the SOC (SOC between 70% and 25%). The third zone is characterized by an
abrupt voltage drop with respect to small decrements in the SOC value. As the OCV curve
is basically approximated as the sum of the voltage measured at battery terminals and a
voltage drop caused by the battery internal impedance, the state-space model would become
unobservable if all discharge tests were to consider constant currents. For this reason, we
characterize the OCV curve using data from tests where at least two pulses are added to the
battery discharge current. These pulses can be implemented at arbitrary time instants, as
long as they take place inside Zone 2 (see Figure 5.1).

This experimental procedure can be easily implemented by approximating the Ecrit pa-
rameter as the nominal battery energy. The purpose of these pulses is to estimate the
absolute value of the internal impedance from the expression |Zp| = |∆V/∆I|, assuming in
voc(k) = v(k) + i(k) · |Zp|, where v(k) is the voltage measured at the terminals of the battery
at time k, Zp is the internal battery impedance and voc(k) the open-circuit voltage at time
k. Once voc(k) and the internal impedance approximation for |Zp| are obtained using the
aforementioned procedure, it is possible to estimate (o�-line) the parameters that de�ne the
structure of measurement equation (5.3). To do this, the voltage discharge curve in Zone 2
is �rst modeled as vL + α · vL · (SOC − 1), where α · vL is the curve slope and vL is the
y−intercept of the curve when considering a reverse SOC axis (see Figure 5.1).
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Figure 5.1: Li-Ion cell discharge open circuit voltage (dark black line) and linear zone projection
(thin segmented magenta line) as a function of SOC (reversed x-axis).

Although this a�ne representation is su�cient to characterize Zone 2, a complete rep-
resentation of the OCV discharge curve for the whole SOC range requires to incorporate
additional terms to characterize Zones 1 and 3. Thus, for SOC values close to 1, the OCV
curve includes the term (v0 − vL) · eγ·(SOC−1), where v0 is the OCV when the battery is fully
charged (value that can be easily measured before performing the test) and the parameter γ
may be obtained by minimizing the mean squared error (MSE) with respect to the measured
OCV curve in Zone 2. Finally, to represent the abrupt voltage drop that occurs at low SOC

values, it is necessary to add the term (1 − α) · vL ·
(

e−β − e−β
√
x2(k)

)
, where β minimizes

the mean squared error (MSE) in Zone 3 with respect to the voltage measured in the battery
terminals during discharge.

5.1.2 Validation Data

Three di�erent Li-Ion batteries were used to validate the e�cacy of the model and the
proposed o�-line parameter estimation methodology. Training data were collected by imple-
menting the discharge pro�le at nominal constant current that is illustrated in Figure 5.2.
Cells used on these experiments were discharged until the voltage dropped to 0.5[V ], although
the manufacturer recommends to operate them with a safety lower voltage of 2.8[V ]. In real
applications, either for safety reasons or constant-power load requirements, the high voltage
drop that occurs at low SOC values may not be reached. However, for identical reasons,
model errors for that speci�c operating zone may not be relevant.

Validation data set #1 (see Figure 5.3) consist of a Li-Ion 18650 cell (Battery #7; 3.7[V ],
2.4[Ah]) discharged with a pro�le that emulates the operation of a four-wheel ground robot
[62], where the maximum and minimum current values were de�ned as 2.809[A] and 1.619[A],
respectively. Validation data set #2 (see Figure 5.4) corresponds to a discharge test for a
Li-Ion 18650 cell (Battery #8; 3.7[V ], 3[Ah]), where the battery current discharge pro-
�le is computed as a realization of a two-state Markov chain with transition probabilities
p11 = p21 = 0.55, p12 = p22 = 0.45, and where the states are de�ned in terms of the value of
the discharge current (state #1: 1[A], state #2: 3[A]). Validation data set #3 (Figure 5.5)
uses a Li-Ion/LiNiCoMn 26650 cell (Battery #9; 3.7[V ], 4[Ah]), which is discharged with a
current usage pro�le that emulates and adapts the FUDS test. This test is adapted with
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Figure 5.2: Model identi�cation data for Battery #7: (a) measured voltage discharge and (b)
measured current discharge data.

the same procedure as the explained until the �fth step in Section 3.1.1 (see Figure 3.6), but
with a lower discharge current of 2.5[A] and a maximum current value of 7[A] for a 100%
discharge power. As can be seen in Figure 5.5.b, the proposed discharge pro�le covers a wide
range of current values. Table 5.1 shows the parameters obtained for each battery using the
methodology proposed.
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Figure 5.3: Validation data set for Battery #7: (a) measured voltage discharge and (b) measured
current discharge
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Figure 5.4: Validation data set for Battery #8: (a) measured voltage discharge and (b) measured
current discharge.
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Figure 5.5: Validation data set for Battery #9: (a) measured voltage discharge and (b) measured
current discharge

Table 5.1: Model Parameters for Batteries #1, #2 and #3.

Battery α β γ v0 vL Ecrit |Zp|
#1 0.08 16 19.65 4.12 3.987 20127 0.30
#2 0.15 12 6.61 4.00 3.813 19865 0.20
#3 0.15 17 10.50 4.14 3.997 46858 0.12

5.2 Issues Related to the Implementation of the SOC

Prognosis Scheme

In practical applications the future discharge pro�le (i(k); k > kpredict) is unknown, and thus
there is at least one additional source of uncertainty that needs to be characterized. To
solve this problem, an statistical characterization of the usage pro�le introduced in [60] is
implemented. With their approach, the future usage pro�le is modeled as the realization of
a two-states Markov chain (MC). The states values and transition probabilities of the MC
are obtained studying the current consumption during the �ltering stage, using an adaptive
scheme to give more importance to the last measurements. The generation of these future
usage pro�les is implemented without any other modi�cation to the presented in [60]. Every
realization of the MC implies a di�erent future current consumption pro�le, and for each
�ltering result several di�erent predictions can be made. To achieve the SOC prognosis,
then for one realization of the �ltering stage a given number of realizations of the MC are
considered. The prognosis result can be obtained combining these predictions by the law of
total probabilities.

As similar as in the case of the SOH prognosis scheme (see Section 4.2.1), it is important
to determine the best algorithm parameters that should be used in SOC prognostic applica-
tions. More speci�cally, to focus on (i) the number of particles that need to be considered to
represent the state PDF in each realization of the stochastic predictive model, (ii) the num-
ber of realizations of the �ltering algorithm that are required to ensure standards in terms
of accuracy of the predicted EOD PDF, and (iii) the number of realization of the Markov
chain (MC) necessary for an adequate characterization of the di�erent future discharge pro-
�les at which the ESD could be operated, where each realization of the MC corresponds
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to a possible future usage of the ESD through a sequence of the current states. A similar
procedure as the discussed in Section 4.2.1, that compares the suboptimal solution with re-
spect to an analytic solution for a simpli�ed model was implemented in [60] (with a similar
approach for the battery discharge model (5.1)-(5.3)). That determines that 25 realizations
of the implemented MC are adequate, conditional to the fact that the implementation of the
PF-based prognostic algorithm uses 40 particles and 25 realizations of the Bayesian �lter to
characterize the uncertainty associated to the state.

5.3 Validation of the SOC Prognosis Module

Validation of the proposed approach has been performed using the data from three di�er-
ent Lithium-Ion cells (as described in Section 5.1.2), and using performance measures (2.49)
and (2.50), de�ning the End-of-Discharge as the End-of-Life (EOD = EOL) and a failure
threshold fth = 0.05 (SOC = 5%). The ground truth EOD occurred at 2738[sec], 3381[sec]
and 4283[sec] of operation for batteries #7, #8 and #9 respectively. Initial condition for the
state x2 is arbitrarily generated as a uniform random variable [0.80, 0.90], even when it was
known that in all experiments the batteries were always fully charged. The latter intended to
demonstrate how well the estimation algorithm responds to erroneous initial conditions. Pro-
vided that PF-based EOD estimates are random variables, the validation analysis included
several realization of the �lter for each data set. Figures will only illustrate results for one
particular realization, whereas Tables 5.2, 5.3 and 5.4 intend to aggregate information from
all computed realizations.

Figure 5.6 and Figure 5.7 show the results of the prognostic algorithm using a (random)
single realization of the PF-estimation algorithm and one of the 25 realizations of the Markov
chain that characterizes the future battery use pro�le. EOD prognosis is computed at the
1800th [sec] of operation for Battery #7 and #8, and at the 2947th[sec] for Battery #9. In
these three cases, the proposed method and model structure allow to quickly overcome the
problem of erroneous initial conditions for the state x2, obtaining reliable estimates of the
SOC in terms of the conditional expectation of the PF-based PDF estimate. Furthermore,
the predicted output voltage for Battery #7 (see Figure 5.6.c) correctly includes a characteri-
zation of the voltage drop that occurs when the SOC reaches less than 10% (even considering
that this event occurs at late stages within the prediction routine). However, Figure 5.7.c)
shows an early voltage drop for the output voltage of the Battery #9 at a SOC of 6%, due to
a higher uncertainty associated to the usage pro�le (with respect to Batteries #7 and #8).
The resulting EOD PDF estimate allows building 95% con�dence intervals for the discharge
event; assuming that the statistical characterization of the system input (discharge pro�le)
is invariant. Although this graphical information is useful to illustrate the system autonomy,
it is incomplete because it is �rst necessary to evaluate the response of the �lter to various
realizations of the innovation process. Tables 5.2, 5.3 and 5.4 present the results obtained
when running at least 5 di�erent instances of the proposed approach, considering that each
instance implies a single realization of the PF algorithm to estimate the state PDF at the
1800th[sec] of operation in the case of Battery #7 and #8, or 2947th[sec] of operation in the
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case of Battery #9, and 25 realizations of the Markov chain that characterizes the future
battery use pro�le. These results show that the proposed method can be used to statistically
quantify the e�ect that random changes in the battery discharge current have on the ESD
SOC.
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Figure 5.6: SOC prognosis for Battery #7 using the proposed PF-based framework. (a) Estimated
SOC (bold orange line), predicted SOC (bold blue dashed line), and 95% con�dence interval for SOC
prediction (thin segmented magenta line), EOD threshold is de�ned as 5% SOC (red stem). (b)
Evolution of the state x1, as a function of SOC, during the estimation (solid red line), prediction
(blue dashed line) stages and 95% con�dence interval for x1 prediction (thin segmented magenta
line). (c) Measured voltage (thin black line), estimated voltage (orange line), and predicted voltage
drop (dashed bold blue line), as a function of SOC.

EOD estimates presented in Table 5.2 show that the EOD expectation is, indeed, a ran-
dom variable. Furthermore, it may happen that some realizations of this random variable
underestimate (or overestimate) the ground truth EOD. Nevertheless, the obtained estimates
(for both batteries) are su�ciently accurate. More importantly, they tend to underestimate
the EOD; thus minimizing the probability of unexpected failure (conservative approach). In
fact, the values obtained for the JITPγ% in Table 5.2 are always smaller than the ground
truth EOD, thus ensuring a safety utilization of the ESD. The maximum overestimation error
in the conditional expectation is only of 23[sec], over a 938[sec] prediction window. The EOD
conditional expectation estimates for Battery #8 and #9 are presented in Table 5.3 and 5.4
respectively, following a similar procedure as in the case of Battery #7. In those cases, all
prognosis results provide EOD conditional expectations that underestimate the EOD ground
truth. The proposed method obtained a maximum error of 116[sec] and 222[sec] for Battery
#8 and #9; while the prediction horizon was 1581[sec] and 1336[sec], respectively. As the
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characterization of the future usage pro�le for Battery #8 is made with realizations of a two
state Markov chain, the prognosis stage leads to better results compared with Battery #9.
This di�erence produces a higher underestimation of the EOD expectation for Battery #9.
Underestimation of the EOD is not critical when compared to its overestimation, since the
latter would lead to make wrong decisions in terms of systems autonomy. Figure 5.8 shows
an illustration of the EOD PDF estimate, including the expectation and 95% con�dence
interval limits (ground truth EOD: 4283[sec]).
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Figure 5.7: SOC prognosis for Battery #9 using the proposed PF-based framework. (a) Estimated
SOC (bold orange line), predicted SOC (bold blue dashed line), and 95% con�dence interval for SOC
prediction (thin segmented magenta line), EOD threshold is de�ned as 5% SOC (red stem). (b)
Evolution of the state x1, as a function of SOC, during the estimation (solid red line), prediction
(blue dashed line) stages and 95% con�dence interval for x1 prediction (thin segmented magenta
line). (c) Measured voltage (thin black line), estimated voltage (orange line), and predicted voltage
drop (dashed bold blue line), as a function of SOC.

Considering the length of the long-term prediction windows, the maximum error between
the ground truth and the expected EOD correspond to only 2.45%, 7.3% and 16.6% for
Battery #7, Battery #8, and Battery #9, respectively. Also, the corresponding maximum
lengths for the obtained con�dence intervals are 30.6%, 9.4%, and 11.8% of the prediction
window. These results show that the proposed prognosis SOC framework presents a trade-o�
between the accuracy and precision of EOD estimates. In terms of Just in Time Point esti-
mates, the maximum di�erence between the ground truth EOD and the JITP5% & JITP15%
values are 184 and 142[sec] respectively (19.6% and 15.1% of the prediction window) for Bat-
tery #7. In the case of Battery #8, that di�erence is 195 and 160[sec], respectively (12.3%
and 10.1% of the prediction window). For Battery #9, the di�erence is 309 and 280[sec],
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respectively (23.1% and 20.9% of the prediction window). All these results provide reliable
information for decision making process associated to the ESD autonomy.
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Figure 5.8: EOD PDF estimate (normalized) for Battery #9. Vertical dashed lines show the PDF
expectation and the limits of the 95% con�dence interval. Ground truth EOD is 4283[sec].

Table 5.2: Results for Different Realizations of the Proposed PF-Based SOC Prog-
nosis Module (Battery #7). Ground Truth EOD: 2738 [sec].

No E{ ˆEOD}[sec] 95% Confidence Interval [sec] JIT5% [sec] JIT15% [sec]

1 2643 [2552 ; 2741] 2572 2594
2 2751 [2612 ; 2892] 2632 2669
3 2634 [2600 ; 2669] 2600 2612
4 2670 [2533 ; 2820] 2554 2596
5 2761 [2653 ; 2876] 2675 2700

Table 5.3: Results for Different Realizations of the Proposed PF-Based SOC Prog-
nosis Module (Battery #8). Ground Truth EOD: 3381 [sec].

No E{ ˆEOD}[sec] 95% Confidence Interval [sec] JIT5% [sec] JIT15% [sec]

1 3317 [3244 ; 3390] 3237 3266
2 3324 [3249 ; 3398] 3240 3272
3 3265 [3215 ; 3314] 3174 3226
4 3287 [3215 ; 3359] 3203 3237
5 3303 [3255 ; 3350] 3246 3267
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Table 5.4: Results for Different Realizations of the Proposed PF-Based SOC Prog-
nosis Module (Battery #9). Ground Truth EOD: 4283 [sec].

No E{ ˆEOD}[sec] 95% Confidence Interval [sec] JIT5% [sec] JIT15% [sec]

1 4118 [4050 ; 4187] 4025 4059
2 4115 [4044 ; 4186] 3997 4034
3 4073 [4010 ; 4136] 3974 4005
4 4061 [4013 ; 4109] 3981 4003
5 4101 [4023 ; 4180] 4002 4038

5.4 Proposal for Temperature Inclusion on the SOC

Prognosis Scheme

Model parameters and validation data of the SOC PF-based prognosis scheme were obtained
at an ambient temperature of 23[oC]. The current pro�le described in the methodology for
parameter identi�cation (see Figure 5.2) has similar characteristics than the used to generate
the data of delivered capacity in a cycle as a function of the temperature (see Figure 3.14).
This implies that for each temperature of operation, a model parameter set v0, vL α, β,
and γ can be calculated. Furthermore, Ecrit can be established with the concept of �Usable
Energy�, similar to the �Usable Capacity� presented in Chapter 4, with the energy instead of
the capacity. The initial condition of the state x1 can be set using the results of approximated
internal impedance at di�erent temperatures presented in Section 3.2.2 (see Figure 3.17).

Figures 5.9.a and 5.9.b show the approximated OCV evolution of the discharges corre-
sponding to Figure 3.14 as a function of the SOC and the time, respectively. The proposed
model for the discharge evolution lies on the predominant linear relation between the OCV
and the SOC. In this regard, the model cannot be applied for temperatures lower than 10[oC].
Table 5.5 presents the results of the proposed methodology in Section 5.1.1 on the data pre-
sented in Section 3.2.1.
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Figure 5.9: Temperature-depentendt voltage discharge data with respect to (a) time, and (b) SOC.
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Table 5.5: Model Parameters at Different Temperatures of Operation.

T emperature [K] α β γ v0 vL Ecrit |Zp|
286.37 0.0490 11.5 50.00 4.04 3.88 19042.87 0.24
293.48 0.0689 14.5 22.52 4.10 3.95 20272.61 0.21
299.76 0.0687 15.0 34.95 4.04 3.92 21055.36 0.23
303.15 0.0682 15.6 16.15 4.22 4.04 20859.13 0.22
323.22 0.0852 15.0 16.18 4.15 3.98 22311.44 0.22

Considering a similar procedure to be applied to batteries over 10[◦C], with improved
operational conditions (adequate temperature chamber; better connections), a fuzzy model
[63] could be implemented to include the temperature e�ect on the parameters of the model
(5.1)-(5.3). Furthermore, a fuzzy approach should not only be suitable to include the in-
ternal temperature in the model, but also the C-rate. Both variables are two of the most
important operational conditions to consider within a SOC estimation and prognosis scheme.

5.5 Final Remarks of This Section

This work proposes a new SOC state-space model to characterize discharge processes in
Li-Ion batteries using a reduced number of parameters within the measurement equation.
A methodology is also proposed to estimate those parameters using data from just one
complete discharge test. The prognosis scheme was validated for Li-Ion cells operating at
room temperature. Additional research activities are still required to generate an adequate
temperature-dependent SOC model that could be used for prognosis purposes. In this regard,
a way to incorporate the temperature in the state-space model is hereby suggested; but not
validated. being crucial for this purpose to generate battery discharge data with di�erent
current pro�les at multiple temperatures of operation.
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Chapter 6

Conclusion

This work presents improved prognosis strategies for the SOH and SOC in Li-Ion batteries.
Although both problems were covered separately, the e�orts to achieve improvements to one
of them can be used for the other one (study of the phenomenology of the batteries; labora-
tory experiments; modi�cations to the estimation algorithm). The principal objectives are
to include the impact of the temperature on SOH/SOC PF-based estimation and prognosis
schemes, in addition to improvements to the estimation stage. These were achieved from
the results of a set of experimental tests with Li-Ion cells to understand the impact of the
temperature on their performance, and the usage of existent public data bases.

The SOH prognosis problem is treated with a new empirical state-space model to describe
the battery degradation evolution. An outer-feedback correction loop is implemented to allow
the state x1 to converge around its real value in presence of erroneous initial conditions (by
varying the process noise ω1). To work with outliers or lost data an hypothesis-test-based
module is included in the estimation stage. When a new measurement is considered invalid,
then the algorithm is able to generate predictions about the state vector, restarting the �l-
tering stage when a new available measurement is valid. The proposed model includes an
important factor of the batteries phenomenology: the temperature of operation. The concept
of �Usable Capacity� make it possible to include the average temperature of operation during
a cycle as an external input to the degradation model. As a consequence, the SOH estimation
and prognosis are conducted at a reference temperature. This result is important because
it allows to handle temperature-varying degradation data, and make long-term predictions
at a nominal temperature. This scheme is validated using public available and laboratory-
generated degradation data, but some extra test are required for a complete validation. As
the generation of battery degradation data at di�erent temperatures is a slow procedure
(even more with the absence of an automatic cycling equipment and a temperature cham-
ber), an arti�cially generated data set is introduced to test the performance of the scheme.
This scheme allows to prognosticate the SOH of a battery at a reference temperature, gen-
erating a conditional PDF of x1 for each future cycle. The latter allows to obtain indicators
as con�dence intervals, expectations or JITP points.

64



A particle-�ltering-based SOC/EOD prognostic approach has been proposed, tested, and
validated. An empirical state-space model, inspired on the battery phenomenology, was also
hereby introduced and validated. The model allows the implementation of Bayesian �ltering
methods that e�ciently (and e�ectively) estimated SOC in real-time. Furthermore, the im-
plementation of an outer correction loop during the �ltering stage (to modify the variance
of the process noise ω2) provided quick adaptation for erroneous initial conditions. This re-
duced dramatically the associated impact on the EOD estimate bias. SOC/EOD prognosis is
implemented using a PF-based method that considers a statistical characterization of future
discharge pro�les. Experimental results prove that the proposed framework allows to success-
fully prognosticate the discharge time in terms of conditional expectations, 95% con�dence
intervals, and JITPγ% points. This o�ers conservative (but accurate) EOD estimates that
help to minimize the probability of unexpected failure and ensuring a safe utilization of the
ESD. Finally, a proposal to include the internal temperature of the battery in the discharge
model was introduced.

Despite of the advances in both schemes, there is still work needed to be able to imple-
ment them in a real system like an electric vehicle or a micro-grid. With the inclusion of the
temperature this thesis establishes a good basis to keep working with the objective of a fully
functional SOH/SOC prognosis scheme under a stochastic approach.

Future work:

Further work is required for the SOH and SOC prognosis given the amount of operational
conditions that determines the behavior and aging of batteries. The incorporation of vari-
ables as the Depth of Discharge (DOD) or the discharge rate (C-rate) are necessary for both
SOH and SOC models. By this reason a set of experimental tests are needed to isolate the
in�uence of each one, in addition to experiments where the DOD, C-rate and temperature
are combined. The SOH model should also incorporate the time elapsed between each cycle
as an extra input. Thinking in the implementation of both schemes in a BMS, their mutual
dependence has to be considered. On the one hand the estimator of the SOC can be used
to estimate the DOD, being an input for the SOH model. On the other hand, battery aging
needs to be included in the SOC model (because a�ects the amount of energy that the bat-
tery can store), and SOH becomes and input.

From an experimental point of view, it is also interesting to study and evaluate these
prognosis schemes in battery packs instead of cells. In some cases battery packs does not
count with an array of sensors to monitor every individual cell, and a bounded number of
sensors are used for the whole pack. Battery imbalance and temperature distribution inside
the pack are factors that may result in cells aging di�erently, and would be worthy to include
them in the schemes.

Algorithmic improvement could be achieved by studying variations to the classic particle
�lters, to the arti�cial evolution, or the parameter estimation. The SOH prognosis algorithm
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could be improved including phenomenology of the battery, by generating a set of adequate
degradation data in various operational conditions.
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