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ABSTRACT

We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H ii regions and
star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint
and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input
photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits.
The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied
to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically
calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe
our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample
of nearby extragalactic H ii regions, we assess the performance of commonly used SEL abundance diagnostics.
We also use a sample of 22 local H ii regions having both direct and recombination line (RL) oxygen abundance
measurements in the literature to study discrepancies in the abundance scale between different methods. We find
that oxygen abundances derived through Bayesian inference using currently available photoionization models in
the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly
better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower
than both RL and photoionization-model-based abundances.
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1. INTRODUCTION

The ability to measure chemical abundances in the interstellar
medium (ISM) of galaxies is of fundamental importance in as-
trophysics. We rely on these measurements to constrain models
of stellar evolution, galaxy evolution, and the cosmological evo-
lution of the universe as a whole. The abundance of different
elements in the ISM is modulated by the processes driving stellar
evolution (nucleosynthesis, convection, winds, stellar rotation,
mass ejection, supernova explosions, etc.), as well as by the
way in which star formation proceeds both spatially and tem-
porally in the ISM of galaxies. Factors such as the accretion
and recycling of gas from the intergalactic medium (IGM) and
circumgalactic medium, the star formation efficiency and star
formation history (SFH), the initial mass function (IMF), and
the impact of feedback-driven gaseous outflows all shape the
overall chemical structure of galaxies. The universe therefore
has a dynamical chemical history in which the abundance of
heavy elements increases as a function of cosmic time in a way
that traces the efficiency with which gas is turned into stars
within galaxies and the way in which these systems interact
with the IGM by accreting, enriching, recycling, and ejecting
gas (e.g., Larson 1974; Tremonti et al. 2004; Dalcanton et al.
2004; Dalcanton 2007; Brooks et al. 2007; Köppen et al. 2007;
Finlator & Davé 2008; Mannucci et al. 2010; Lara-López et al.
2010, 2013; Lilly et al. 2013; Zahid et al. 2014).

This article focuses on the measurement of chemical abun-
dances in nebulae ionized by recent star formation (i.e., H ii
regions). Ionized gas has been widely used in the literature
to trace the chemical composition of the ISM. This is thanks
to the fact that transitions from several common elements are
observable in emission at UV, optical, and IR wavelengths and

that the low densities (10–103 cm−3) typical of H ii regions
translate into an optically thin medium for most of these tran-
sitions and a low level of collisional de-excitation. These two
conditions greatly simplify the modeling of the emission spectra
and allow a relatively straightforward measurement of chemi-
cal abundances. There are three main methods used to measure
the metallicity or metal abundance5 in ionized gas, which we
describe here briefly. For a review see Stasińska (2004).

The Direct Method. The emissivity of collisionally excited
lines (CELs) depends strongly on the electron temperature (Te).
In this method direct measurements of Te and the electron den-
sity (ne) are used to calculate the emissivity of CELs of particular
ions (e.g., [O ii] λλ3726, 3729 or [O iii] λλ4959, 5007 in the
case of singly or doubly ionized oxygen). Ionic abundances
can then be inferred from comparing the intensity of these
lines to that of hydrogen recombination lines (RLs, typically
Balmer lines in the optical). Assuming an ionization correction
to account for the abundance of unobserved ions allows one
to estimate the total elemental abundance. Auroral to nebular
CEL temperature-sensitive ratios are used to measure Te (e.g.,
[O iii] λ4363/[O iii] λ5007) while ne is typically computed from
the relative component intensity of density-sensitive doublets
like [O ii] λλ3726, 3729 and [S ii] λλ6717, 6731. The two main
limitations of this method are first that temperature-sensitive
auroral lines are too faint to be observed directly in very distant
and very high metallicity (i.e., low Te) sources (∼101–102 times

5 While the ideas exposed in this paper are in principle applicable to the
chemical abundances of different elements, in this work we focus on the
oxygen abundance (12+log(O/H)), which we assume traces the metallicity (Z).
Section 2 provides a discussion on the relative abundance patterns used in this
work.
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fainter than Hβ), and second that the method is sensitive to
temperature fluctuations in nebulae that can translate into un-
derestimates of the abundance if a correction is not applied (e.g.,
Aller 1954; Peimbert 1967; Peimbert & Costero 1969). Further-
more, the existence of Te gradients in H ii regions implies that
the direct method saturates for abundances higher than solar
(Stasińska 2002).

The Recombination Line (RL) Method. Unlike CELs, the
emissivities of RLs of ions show a very mild dependence on
Te and ne, and their brightnesses relative to hydrogen RLs
scale almost directly with the ionic abundance. An ionization
correction for unobserved ions is still necessary to obtain
total elemental abundances using this method. The RL method
does not suffer from the biases associated with temperature
fluctuations that affect the direct method and is thought to
be more robust (although it might suffer from its own set of
systematic uncertainties; c.f. Stasińska 2004). On the other hand,
this same direct scaling with abundance translates into extremely
faint lines for elements heavier than He (∼10−4 fainter than Hβ
for O and C). Therefore, RL abundance measurements require
extremely high S/N , high-resolution spectra and have only been
made for He, C, O and Ne in a few dozen bright H ii regions
in the Milky Way (MW) and the Local Group (e.g., Peimbert
2003; Peimbert et al. 2005; Tsamis et al. 2003; Esteban et al.
2004, 2009; Garcı́a-Rojas & Esteban 2007; López-Sánchez et al.
2007; Bresolin et al. 2009).

The Strong Emission Line (SEL) Method. In order to be able
to measure abundances in faint, distant, and high-metallicity
nebulae, several authors have calibrated line ratios combining
bright CELs and Balmer lines (together called SELs) as abun-
dance diagnostics. While the brightness of SELs of different
elements is strongly affected by other parameters beyond the
metal abundance, these calibrations take advantage of the fact
that in real H ii regions correlations exist between some of these
parameters (e.g., Te, the N/O abundance ratio, the ionization
parameter) and the metallicity. By exploiting these “secondary”
correlations, useful abundance diagnostic ratios can be con-
structed out of SELs.

Two different approaches have been taken in the literature
to calibrate SEL abundance diagnostics. The first approach
is to calibrate SEL ratios against direct method abundances
using local samples of H ii regions. These are typically referred
to as “empirical calibrations.” The second approach consists
of calibrating SEL ratios as a function of abundance using
theoretical photoionization models of H ii regions. These are
typically referred to as “theoretical calibrations.”

Examples of empirical calibrations include those of the
R23 = ([O ii] λλ3726, 3729 + [O iii] λλ4959, 5007)/Hβ ratio
(Pagel et al. 1979; Pilyugin & Thuan 2005), the O3N2 =
[O iii] λ5007/[N ii] λ6583 ratio (Alloin et al. 1979; Pettini &
Pagel 2004), the N2 = [N ii] λ6583/Hα ratio (Denicoló et al.
2002; Pettini & Pagel 2004), the S23 = ([S ii] λλ6717, 6731 +
[S iii] λλ9069, 9532)/Hβ ratio (Vilchez & Esteban 1996; Dı́az
& Pérez-Montero 2000), and more sophisticated calibrations
using combinations of multiple line ratios like those presented
in Pilyugin & Mattsson (2011) and Pilyugin et al. (2012).

Theoretical calibrations use predictions from full radiative
transfer and excitation/ionization calculations for idealized
nebulae to calibrate the abundance dependence of different
diagnostics. Early works attempting this include those by
Shields & Searle (1978), Pagel et al. (1979), Dufour et al.

(1980), Edmunds & Pagel (1984), McCall et al. (1985) and
Dopita & Evans (1986). More recent theoretical calibrations for
individual diagnostics are given by McGaugh (1991), Kewley
& Dopita (2002) and Kobulnicky & Kewley (2004) for the
R23 ratio and by Kewley & Dopita (2002) for the O3N2, N2,
S23, and N2O2 = [N ii] λλ6548, 6583/[O ii] λλ3726, 3729
ratios. Even more recently, Dopita et al. (2013) has calibrated
several diagnostics based on pairs of abundance- and ionization-
sensitive ratios that can be used to simultaneously constrain the
metallicity and ionization parameter of ionized nebulae (see also
Kobulnicky & Kewley 2004).

The reliability of SEL methods to derive chemical abundances
is challenged by the alarming systematic differences seen
between different calibrations. These systematic biases include
offsets of 0.2–0.6 dex in the absolute abundance scale derived
using different calibrations, nonlinearities (i.e., curvature) in
the correlations between results from different diagnostics,
and dispersions of up to 0.3 dex in abundance around these
correlations. These issues have been pointed out by several
authors (Peimbert et al. 2007; Bresolin et al. 2009; López-
Sánchez & Esteban 2010; Moustakas et al. 2010), and recently
Kewley & Ellison (2008) and López-Sánchez et al. (2012)
have studied these biases in detail using a large sample of
galaxies from the Sloan Digital Sky Survey (SDSS; York
et al. 2000) and theoretical H ii region photoionization models
respectively. In these works a dominant trend arises in which
empirically calibrated SEL diagnostics yield abundances that
are systematically lower than those derived from theoretically
calibrated diagnostics.

Possible reasons behind these discrepancies have been thor-
oughly discussed in the literature, and López-Sánchez et al.
(2012) provide an excellent account. A problem with some SEL
diagnostics is that they ignore the dependence of the emission-
line ratios on the ionization state of the gas. This is done by
simply marginalizing over the ionization parameter q, when
calibrating a diagnostic using photoionization models, inducing
a large scatter and nontrivial nonlinearities in the method, or in
the case of methods calibrated against samples of H ii regions
with direct Te abundances by not considering the dispersion and
range in ionization parameter of the calibration sample. A good
example of the latter case is the N2 and O3N2 calibrations of
Pettini & Pagel (2004), which are widely used for high-redshift
galaxies where the density, temperature, and ionization condi-
tions are most likely different from those in the H ii regions used
to calibrate the method (e.g., Brinchmann et al. 2008; Kewley
et al. 2013a, 2013b; Steidel et al. 2014).

Some authors have proposed SEL diagnostics that constrain
the ionization state of the gas at the same time as the chemical
abundance. These methods typically use recursive techniques
or other line ratios to compute either the ionization parameter q
(McGaugh 1991; Kewley & Dopita 2002; Kobulnicky & Kewley
2004; Dopita et al. 2013) or the empirically derived excitation
parameter P (Pilyugin & Thuan 2005; Pilyugin & Mattsson
2011). Even when the ionization and excitation states of the
gas are considered, large systematic differences are still seen
between theoretically and empirically calibrated methods.

Another possible source of discrepancy is the potential un-
derestimation of the chemical abundance by the direct method
in the presence of density and temperature fluctuations and tem-
perature gradients in ionized nebulae (Peimbert 1967; Stasińska
1978, 2002). H ii regions do not have homogeneous density
distributions; on the contrary, pockets, filaments, and shells
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showing enhanced electron temperatures are ubiquitously ob-
served in these objects (Stasińska 2004 and references within).
In regions where Te is enhanced the emissivity of the
temperature-sensitive auroral lines is disproportionally en-
hanced over that of the stronger nebular lines. This translates
into an overestimation of the average Te and an underestima-
tion of the abundance when integrating the line ratios over the
whole nebula. While photoionization models assume a uniform
density distribution, they do include gradients in the tempera-
ture distribution that somewhat alleviate this problem. A related
bias in the measurement of Te can also arise in the presence of
non-Maxwellian electron energy distributions (e.g., the κ distri-
bution introduced by Nicholls et al. 2012, 2013).

Photoionization models, on the other hand, suffer from a se-
ries of systematic uncertainties that are not well understood.
For starters, they typically use libraries of synthetic stellar pop-
ulation models to generate the input ionizing spectra for stel-
lar populations of particular metallicities, ages, and SFHs (see
Section 2). These models are plagued by large uncertainties as-
sociated with the effects of stellar rotation, stellar winds, and
binarity, especially at the high-mass end of the IMF, which
is the most relevant for the ionization of H ii regions (e.g.,
Meynet & Maeder 2007; Eldridge & Stanway 2009; Levesque
et al. 2010; Steidel et al. 2014). Furthermore, photoionization
models like the ones used in this work typically assume a
single-valued function describing the nitrogen-to-oxygen abun-
dance (N/O) as a function of 12+ log O/H. This is a reason-
able assumption attempting to capture the primary+secondary
nature of nitrogen production, but the observed relation shows
a large scatter, and there is still disagreement regarding its
actual shape. Furthermore, the relation might change system-
atically depending on the star formation, accretion, and gas
ejection history of galaxies. These assumptions regarding the
N/O ratio can have significant effects on diagnostics involv-
ing nitrogen lines (Pérez-Montero & Contini 2009; Pérez-
Montero 2014; Steidel et al. 2014; Belfiore et al. 2014). Fi-
nally, assumptions regarding the ionization-bounded nature of
the nebulae and their geometry can also influence the predicted
line fluxes.

Given all these systematic uncertainties associated with
current SEL diagnostics, a more robust method that does not
suffer from these biases is pressingly needed. In this work
we propose a technique to estimate the chemical abundance
and ionization parameter of H ii regions that circumvents some,
but not all, of the problems discussed above by removing the
need of “calibrating” a particular SEL diagnostic, while instead
doing a direct statistical comparison between a theoretical
photoionization model and all the emission-line data available
to the observer. Our method uses the formalism of Bayesian
inference to derive the joint and marginalized probability density
functions (PDFs) of the parameters Z and q given the observed
line fluxes and errors (the “data”), a grid of emission-line ratios
predicted by a theoretical photoionization model (the “model”),
and any “prior” information on Z and q. We also provide and
describe a publicly available user-friendly IDL implementation
of our method called IZI6 (inferring metallicities (Z) and
ionization parameters).

A similar approach to the one presented here was adopted by
Brinchmann et al. (2004) and Tremonti et al. (2004) to measure
the physical properties of star-forming galaxies in the SDSS.
More recently, Pérez-Montero (2014) also presented a method

6 http://users.obs.carnegiescience.edu/gblancm/izi

based on χ2 minimization that uses information from multi-
ple emission lines to constrain the metallicity and ionization
parameter. Also worth mentioning is the pioneering work of
Garnett & Shields (1987) on a sample of H ii regions in M81.
This work was among the first to explore the simultaneous use
of multiple emission-line ratios from different elements to con-
strain the properties of H ii regions by comparing to photoion-
ization model grids.

After presenting our new method (Section 2) and the way
in which it is implemented in IZI (Section 3), we apply it
to a sample of 186 extragalactic H ii regions from van Zee
et al. (1998b) (Section 4). We use this sample of H ii regions to
validate our method against the results from the interpolation
method based on pairs of emission-line diagnostics recently
presented in Dopita et al. (2013).

The Bayesian formalism provides us with a tool to evaluate
how much information regarding the metallicity and the ioniza-
tion parameter is carried by different subsets of the data (i.e.,
by different emission lines). This provides an opportunity to
evaluate the intrinsic performance of different diagnostics in
terms of constraining these two parameters. By intrinsic per-
formance we mean the baseline amount of information carried
by a particular line ratio, independent of any biases in its cali-
bration. We evaluate the performance of a series of commonly
used SEL diagnostics in the literature and present these results
in Section 5.

We also apply IZI to a sample of local H ii regions having
both direct method and RL abundance measurements in order
to explore the abundance scale discrepancies discussed above.
Our method allows us to perform this comparison using several
input photoionization models available in the literature. The
RL abundances provide an important reference point from
which to obtain insight regarding the discrepancy between
direct method and empirical SEL abundances and those derived
from photoionization models. We present the results of this
comparison in Section 6. Finally, we summarize our work and
provide our conclusions in Section 7.

2. THE METHOD: BAYESIAN INFERENCE OF Z AND q

In this section we describe the statistical method used to derive
the parameters Z and q from a set of observed SEL fluxes. In the
context of Bayesian statistics this is a “parameter estimation”
problem in which we want to estimate the joint and marginalized
PDF for the parameters θ = {log(Z), log(q)} given the data
D = { f , e} (where f = {f1 . . . fn} are the observed extinction-
corrected line fluxes and e = {e1 . . . en} their associated
measurement errors), the model M given by a photoionization
model grid of line fluxes f ′(θ) = {f ′

1(θ ) . . . f ′
n(θ)}, and any

prior information I regarding the parameter values. We follow
the notation of Gregory (2005).

From Bayes’s theorem it can be shown that the joint posterior
PDF of θ is given by

p(θ |D,M, I ) = p(θ |M, I ) p(D |M, θ , I )

p(D |M, I )
. (1)

For simplicity, following the notation of Gregory (2005) we
omit I in the following equations, although it is understood
that all conditional probabilities are calculated given the prior
information on the parameter values. We can then rewrite
Equation (1) as

p(θ |D,M) = p(θ |M) p(D |M, θ )

p(D |M)
. (2)
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The first term in the numerator of the right-hand side reflects
the prior probability on the parameters θ given the model M and
all available prior information on the parameters. The second
term in the numerator of the right-hand side of Equation (2)
is the “likelihood” of the data given the model evaluated for
parameters θ . Assuming Gaussian errors in the flux, this term is
given by

p(D |M, θ ) = 2π

n∏
1

exp

(
− (fi−f ′

i (θ))2

2
(
e2
i +ε2f ′

i (θ)2
)
)

√(
e2
i + ε2f ′

i (θ)2
) , (3)

where n is the number of observed emission lines and ε is a
term that takes into account the systematic fractional error in
the flux predicted by the photoionization model. As a zeroth-
order approximation we assume that this systematic error is
Gaussian and is the same for all modeled emission lines. For
the results presented in this paper we adopt a fractional error
of 0.1 dex (Kewley & Ellison 2008; Dopita et al. 2013). In
principle, ε could be turned into an extra “nuisance” parameter in
the calculation. For the sake of computing speed and simplicity,
we do not adopt this approach, although we expect to experiment
with this in the future. The denominator in the right-hand side of
Equation (2) is the “global likelihood” of the data for model M.
This is equivalent to a normalization factor and can be calculated
by demanding the integral of p(θ |D,M) to be unity.

Once the joint posterior PDF for θ is known, we can compute
the marginalized posterior PDF for log(Z) and log(q) by
integrating the joint posterior PDF over the other parameter,
respectively, so

p( log(Z) |D,M) =
∫ ∞

−∞
p(θ |D,M) d log(q), (4)

p( log(q) |D,M) =
∫ ∞

−∞
p(θ |D,M) d log(Z). (5)

The joint and marginalized posterior PDFs can be used to
derive “best-fit” values and confidence limits for Z and q by
either searching for the maximum in the distributions (equivalent
to a maximum likelihood approach in the case of uniform priors)
or computing the moments of the distributions. In some cases
the shape of the PDF will be such that a best-fit value will not
be a well-defined quantity. This can happen when the data only
provide upper or lower limits on a parameter, in which case
the PDF is only bounded on one side, or in cases in which the
PDF shows a complex topology with multiple probability peaks
reflecting multiple solutions.7 In the next section we describe
how the method outlined above is implemented in IZI and how
we deal with these sorts of complications.

This Bayesian approach has six major advantages over
classical SEL methods to derive chemical abundances and
ionization parameters in ionized nebulae:

1. This method removes the arbitrary choice of a particular
SEL diagnostic and therefore does not suffer from many of
the systematic uncertainties associated with the calibration
of these diagnostics.

7 A common example of this situation occurs when using the lines that
compose the R23 diagnostic, which is known to be double valued in
metallicity.

2. The method can make use of all the information available
to the observer, as an arbitrary set of emission lines can
be used as long as they have been modeled as part of the
photoionization grid.

3. The method allows for the inclusion of upper limits in
emission-line fluxes as the Bayesian approach allows us
to include censored data in the likelihood calculation in a
straightforward manner. This is particularly useful when
studying the properties of high-redshift galaxies where
upper limits in the line fluxes are common.

4. IZI is implemented in a flexible fashion that allows the use
of user-provided photoionization model grids. Therefore,
unlike SEL theoretical calibrations in the literature, the
method is not “married” to a particular set of models.
This implies that IZI can be run using different input
photoionization models in order to test how the results
change as a function of the underlying assumptions in the
models.

5. In certain cases the PDFs of Z and q can have complicated
topologies, showing multiple local maxima and asymmetric
probability tails that reflect non-Gaussian uncertainties in
the derived values. Since the method does a full calculation
of the joint and marginalized PDFs, it naturally yields
information about the asymmetry in the error bars of
the derived parameters, about the existence of multiple
degenerate solutions, and on whether a parameter is being
constrained or only a limit can be set on it.

6. IZI is fast, is easy to use and to incorporate as a subroutine
into larger pieces of code, and is publicly available for use
by the astronomical community.

In the following sections we describe how this method is
implemented and applied to different samples of H ii regions.

3. IZI: A USER-FRIENDLY IDL IMPLEMENTATION

We have implemented the method described in Section 2 as an
IDL function called IZI. Here we provide a detailed description
of how this function computes the chemical abundance and
ionization parameter from a set of input emission-line fluxes
and a photoionization model grid.

3.1. Input SEL Fluxes

Input fluxes and errors are assumed to be corrected for dust
extinction. All fluxes are normalized to the flux of the Hβ line or,
if the flux of this line is not provided, to the flux of the brightest
line for which a measurement is available. Upper limits on the
fluxes of particular lines can be provided, and the algorithm
deals with them by integrating the argument of the product
in Equation (3) below these limits. Besides the measured line
fluxes and errors, the user must also provide an array identifying
the name of each line. These IDs are also stored in the input
photoionization model grids and are used to properly match the
data and the models. IZI allows the user to define sets of lines
for which the flux must be co-added before fitting to allow for
low spectral resolution measurements that do not separate the
flux of neighboring transitions.

3.2. Input Model Grids

Our method is flexible in the sense that it can use an arbitrary
model grid as long as the observed emission lines have been
modeled. This is an advantage of IZI as, unlike theoretically
calibrated SEL diagnostics, the method is not married to a
particular set of photoionization models. We stress that any

4



The Astrophysical Journal, 798:99 (21pp), 2015 January 10 Blanc et al.

arbitrary model can be provided as input to IZI as long as
it is stored in the appropriate format. In principle, this is not
restricted to photoionization models but could also include
empirically based grids of emission-line fluxes as a function
of abundance and ionization/excitation parameter, similar to
the approach used in the C-method of Pilyugin et al. (2012).
Although we have not experimented with this possibility, this
would be an interesting application for IZI. Here we briefly
describe the photoionization models used throughout this paper.
We refer the reader to the original references for a more detailed
description.

3.2.1. Kewley et al. (2001) Models

Kewley et al. (2001) present a suite of photoionization models
aimed at reproducing the emission-line properties of a sam-
ple of starburst galaxies in the local universe. The authors
use the MAPPINGS-III photoionization code (Sutherland &
Dopita 1993) to compute the nebular emission spectra of ide-
alized H ii regions ionized by synthetic stellar populations.
Kewley et al. (2001) use both the PEGASE v2.0 (Fioc &
Rocca-Volmerange 1997) and STARBURST 99 (Leitherer et al.
1999) stellar population synthesis codes to compute the input
ionizing spectra. Here we only adopt the STARBURST 99 mod-
els, which use the plane-parallel stellar atmosphere models of
Lejeune et al. (1997) plus the extended model atmospheres of
Schmutz et al. (1992) for stars with strong winds in combi-
nation with the Geneva stellar evolution tracks (Schaller et al.
1992). The input spectra are computed assuming a constant
SFH, a Salpeter IMF (Salpeter 1955) with a lower-mass cutoff
of 0.1 M� and an upper-mass cutoff of 120 M�, and a stellar pop-
ulation age of 8 Myr, which allows for the stellar birth and death
rate to balance for stellar masses >20 M� and for Wolf–Rayet
star emission to develop and contribute to the ionizing spectrum.

The synthetic spectra ionize MAPPINGS-III isobaric plane-
parallel photoionization models with electron densities of ne =
10 cm−3 and 350 cm−3. In these models the ionization param-
eter8 is defined at the inner boundary of the nebular models by
the following expression:

q = QH 0

nH

, (6)

where QH 0 is the flux of ionizing photons above the Lyman
limit and nH is the particle density. For all elements except
He and N the MAPPINGS-III calculations adopt an undepleted
solar abundance pattern from Anders & Grevesse (1989) with
12 + log O/H� = 8.93 and assume primary production. For
He a primordial nucleosynthesis component is added and the
N abundance follows a broken power law as a function of
metallicity in an attempt to account for secondary N production
above 0.23 Z�. The MAPPINGS-III code includes the effects
of dust absorption, dust photoelectric heating, and element
depletion as described in Dopita et al. (2000).

3.2.2. Levesque et al. (2010) and Richardson et al. (2013) Models

Levesque et al. (2010) presents new MAPPINGS-III
photoionization models aimed at reproducing the nebular spec-
tra of large samples of galaxies in the local universe. This new
version of the MAPPINGS-III models is similar in nature to the
Kewley et al. (2001) models described above but includes a

8 Sometimes reported in the literature in its dimensionless form U = q/c,
with c the speed of light.

series of upgrades with respect to the older models. Levesque
et al. (2010) adopt an updated version of the STARBURST
99 population synthesis code (Vázquez & Leitherer 2005) that
uses the Pauldrach/Hillier stellar atmosphere models (Pauldrach
et al. 2001; Hillier & Miller 1998). These models, unlike the
Lejeune/Schmutz models used in Kewley et al. (2001), include a
detailed non-LTE modeling of metal line blanketing, which sig-
nificantly affects the shape of the ionizing spectrum, making it
harder in the 1–4 Ry region. Levesque et al. (2010) used two up-
dated versions of the Geneva tracks with “standard” and “high”
mass-loss rates (Meynet et al. 1994). Here we adopt the models
calculated using the “high” mass-loss tracks, a constant SFH, a
Salpeter IMF with a 100 M� upper cutoff, and an age of 6 Myr.

These synthetic spectra are used to ionize an updated version
of the MAPPINGS-III photoionization models that includes a
more rigorous treatment of dust that includes the effects of ra-
diation pressure on grains (Groves et al. 2004). Levesque et al.
(2010) also adopt isobaric plane-parallel models but with elec-
tron densities of ne = 10 cm−3 and 100 cm−3. The ioniza-
tion parameter is defined in the same way as in the Kewley
et al. (2001) models. The solar abundance pattern is updated
to the revised abundance set of Grevesse et al. (2010) with
12 + log O/H� = 8.69. Richardson et al. (2013) presents an
extension of these models that samples very high values for
the ionization parameter. These models, which are aimed at
reproducing the emission-line properties of high-redshift Lyα
emitters, are computed following the same prescriptions as in
Levesque et al. (2010) and therefore can be merged with these
grids in a straightforward manner.

3.2.3. Dopita et al. (2013) Models

Recently, Dopita et al. (2013) presented photoionization
model grids computed with a significantly upgraded version
of MAPPINGS. The MAPPINGS-IV code has been updated
to include the latest atomic data, an increased number of ionic
species treated as full non-LTE multilevel atoms, and the ability
to use electron energy distributions that differ from a simple
Maxwell–Boltzmann (M-B) distribution. Dopita et al. (2013)
adopt a κ electron energy distribution that shows a power-
law-shaped high-energy tail. This distribution is inspired by
observations of plasmas in the solar system, and its inclusion
is found to solve many discrepancies in the measurement of
the electron temperatures in planetary nebulae and H ii regions
(Nicholls et al. 2012, 2013). The grids used here are calculated
by adopting a κ electron energy distribution with values of
κ = 20 and κ = ∞ (the latter being equivalent to an M-B
distribution). The new version of the code also uses the revised
solar abundance set from Grevesse et al. (2010) and new smooth
functions to parameterize the abundance of both N and C as a
function of O abundance to account for secondary production
of these two elements.

The input ionizing spectrum is computed using the
STARBURST 99 population synthesis code adopting the
Lejeune/Schmutz extended stellar atmosphere models (as in
Kewley et al. 2001), a constant SFH, a Salpeter IMF with
a lower-mass cutoff of 0.1 M� and an upper-mass cutoff of
120 M�, and an age of 4 Myr. Unlike the Kewley et al. (2001)
and Levesque et al. (2010) models, Dopita et al. (2013) com-
putes isobaric photoionization models with an electron density
ne � 10 cm−3 and a spherical geometry for which the radial di-
vergence of the radiation field must be taken into account when
computing the ionization parameter. For these spherical models
the ionization parameter is defined at the inner boundary of the
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nebulae by

q = QH 0

4πR2
s nH

∝ (QH 0 nH )1/3, (7)

where Rs is the Strömgren radius of the spherical H ii region
(Strömgren 1939).

3.3. Priors and Limits on log(Z) and log(q)

By default we assume a maximum ignorance situation and
use a uniform PDF to compute the first term in the numerator of
the right-hand side of Equation (2). Notice that since we use the
logarithm of Z and q as the model parameters, this is equivalent
to using a Jeffreys prior on both parameters, implying that we
assume uniform probability per decade in the parameters Z and q
(Gregory 2005). We do this instead of adopting a uniform prior
in linear space since the latter assigns an unreasonably high
probability to high abundance and high ionization parameter
solutions. IZI also allows the user to provide an arbitrary prior
PDF for each parameter independently. For example, one could
introduce a prior for Z based on the stellar mass of a star-
forming galaxy and the observed scatter in the M−Z relation.
We assume that the parameters live within a range Zmin, Zmax
and qmin, qmax, which by default are taken as the minimum and
maximum values modeled in the input photoionization grid, but
that can also be set by the user. The prior probability is set to
zero outside this range. The implications of this last assumption
for the calculation of upper and lower limits in Z and q are
discussed in Section 3.5.

3.4. Grid Interpolation and Calculation of the PDFs

We conduct a full calculation of the joint posterior PDF over
a finely spaced grid in both log(Z) and log(q). Since the input
photoionization grids typically sample a coarse set of values for
these parameters, before computing the PDF we use either a
bi-linear or a quintic surface interpolation to resample the line
flux values in the input model onto a finely spaced grid. By
default the grid has 2500 = 50 × 50 equally spaced elements
in the log(Z)–log(q) plane, within the Zmin, Zmax and qmin, qmax
ranges. IZI allows for the number of elements to be set by the
user, but computing time is strongly affected by this choice.

Once the input model has been interpolated, we use
Equations (2) and (3) to calculate the joint posterior PDF at
each element of the parameter grid. The marginalized posterior
PDF for each parameter is calculated then using Equations (4)
and (5).

3.5. Calculations of Best-fit Values and Confidence Intervals

Choosing how to define a “best-fit” value for a parameter is
nontrivial when its PDF is non-Gaussian. Strong asymmetries
and the presence of multiple peaks (i.e., multiple likely solu-
tions) in the PDF can deviate the mean of the PDF from the
most likely value (mode), making the mean not representative
of a likely solution for the parameter in question. This is, of
course, alleviated by computing the full PDF, which in principle
removes the need to calculate a best-fit value in the first place.
In practice, however, for many applications it is not straight-
forward to propagate the full PDF of each parameter through
all subsequent calculations in the analysis, and having a best-fit
value complemented by a confidence interval is desirable. Here
we describe how we calculate the best-fit values for Z and q,
although we remind the reader that a proper analysis should
make use of the full PDFs (e.g., Brinchmann et al. 2004).

We calculate three different best-fit values for log(Z) and
log(q), respectively. The first is the “marginalized mean,”
given by

〈log(Z)〉 =
∫ Zmax

Zmin

p(log(Z) |D,M) log(Z) d log(Z), (8)

〈log(q)〉 =
∫ qmax

qmin

p(log(q) |D,M) log(q) d log(q). (9)

The other two are the modes of the joint posterior PDF and of the
marginalized posterior PDFs, that is, the values of log(Z) and
log(q) that maximize either the joint PDF or the marginalized
PDF of each parameter independently. We refer to these from
here on as the “joint mode” and “marginalized mode.”

We calculate a single confidence interval for each parameter
by defining the high-probability region in the log(Z)–log(q)
plane that encloses 68.3% of the integrated joint posterior
probability density. The parameter values that bound this region
are taken as our 1σ uncertainty on the best-fit values. Using this
definition, we find that the confidence interval always bounds
the three “best-fit” values defined above.

3.6. Identifying Problematic PDFs

IZI automatically analyzes the shape of the marginalized
PDFs in order to flag PDFs that are not “well behaved” in
the sense that the best-fit values discussed above might not
be representative of the actual parameter values. We use the
first and second derivatives of the marginalized PDFs to search
for maxima, and we characterize the number of peaks in
the distributions, flagging objects that show multiple possible
solutions in Z and q. In these cases the marginalized mean is
not ensured to fall close to a region of high probability, and
the joint and marginalized modes might not sample the highest
probability solution as a wider, lower-amplitude peak in the PDF
might be actually more likely than a narrower, higher-amplitude
peak (i.e., the mode) once the probability density is integrated
over them.

We also study the PDFs to check whether the solutions are
bounded or only provide upper or lower limits or no limits at
all on Z and q. A solution is considered bound if the probabil-
ity density at the ends of the parameter range (Zmin, Zmax, and
qmin, qmax) is lower than 50% of the marginalized mode. Oth-
erwise, the object is flagged as showing an upper limit, lower
limit, or no limit at all on the corresponding parameter.

4. APPLICATION TO REAL SOURCES AND
VALIDATION OF THE METHOD

In this section we apply the method described in the last two
sections to a sample of 186 extragalactic H ii regions observed
and catalogued by (van Zee et al. 1998b, hereafter V98). We
also compare the results of IZI against measurements of the
metallicity and ionization parameter for these same objects using
the methods described in Dopita et al. (2013). The goal of this
section is to test the performance of IZI on real data and validate
our method.

4.1. Application to Observed Local H ii Regions

We use the data of V98, who uniformly obtained low-
resolution (Δλ = 7.8 Å) spectra for 186 extragalactic H ii
regions in a sample of 13 nearby spiral galaxies using the Double
Spectrograph on the 5 m Palomar telescope. Their data cover
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the 3500–7600 Å range and therefore include the [O ii] λλ3726,
3729, Hβ, [O iii] λ5007, Hα, [N ii] λ6583, and [S ii] λλ6717,
6731 lines that we use here.9 The publicly available catalog
reports reddening-corrected emission-line fluxes (normalized
to Hβ) and errors for all the above transitions. This sample was
also used by Dopita et al. (2013) to evaluate the performance
of their newly proposed metallicity and excitation diagnostics,
so it provides a good reference for comparing the results of
IZI to that work. In order to allow for this comparison in this
section, we use the κ = 20 photoionization models of Dopita
et al. (2013) as input to IZI.

The top panels of Figure 1 present the joint and marginal-
ized PDFs calculated by IZI using all of the above SELs for
a single H ii region in the V98 sample (NGC 925 +087−031).
For this particular object both Z and q are well constrained and
show positive covariance. The marginalized PDF for log (Z) is
roughly Gaussian, while the log (q) PDF shows some asymme-
try toward large values. The three “best-fit” values for the two
parameters in the model are shown by the red (joint mode), blue
(marginalized mode), and green (marginalized mean) solid lines
in the two rightmost panels. The confidence intervals described
in Section 3.5 are shown by the cyan curve in the joint PDF and
the dotted red lines in the marginalized PDFs. For the metallic-
ity it is seen that all three estimations agree well within the 1σ
confidence limits. The joint mode is 12+ log O/H = 8.70+0.22

−0.15,
close to the solar value. For the ionization parameter the joint
mode is log q = 7.19+0.37

−0.16, and the marginalized mean is offset
to a slightly higher value because of the asymmetry in the PDF,
although all three estimations fall well within the 1σ confidence
limits.

To exemplify the behavior of the PDF as a function of the
available input information, the second row of panels in Figure 1
shows the joint and marginalized PDFs now calculated using
only the [O ii] λλ3726, 3729, Hβ, and [O iii] λ5007 transitions.
This is similar to using the R23 diagnostic. The double-valued
nature of R23 as a metallicity diagnostic is caused by the
strengthening of the oxygen lines with respect to Hβ as the
abundance increases, followed by a weakening of these lines
toward higher abundances (12+ log O/H � 8.5) as a higher
metal cooling rate causes the temperature, and therefore the rate
of collisional excitations to the upper levels of these oxygen
transitions, to decrease. This degeneracy has been extensively
documented in the literature (e.g., Pagel et al. 1979; Kobulnicky
& Kewley 2004; Kewley & Ellison 2008) and arises naturally
when using our method as two high-probability peaks seen in
the joint PDF.

In this case, since IZI uses the individual line fluxes for
the input transitions and not the sum of the singly and doubly
ionized oxygen lines (as in the R23 diagnostic), it also constrains
the ionization parameter although it shows a broader and more
asymmetric PDF than when all transitions are used. In this
sense, using IZI with these transitions as input is somewhat
similar to the R23 method of Kobulnicky & Kewley (2004), in
which the ratio of [O iii] to [O ii] is used in combination with
R23 to constrain the ionization parameter and the metallicity
simultaneously using a recursive method.

The third row of panels in Figure 1 shows the PDFs calculated
by IZI when using only the [O ii] λλ3726, 3729 and [N ii]
λ6583 lines (i.e., equivalent to the N2O2 diagnostic). The

9 While V98 reports the summed intensity of the [O iii] and [N ii] doublets,
here we assume the theoretical line ratio to compute the flux of [O iii] λ5007
and [N ii] λ6583. This is done for consistency with Dopita et al. (2013) in
order to allow the comparison presented in Section 4.2.

similar ionization potentials of N+ and O+ translate into this
line ratio being very insensitive to the ionization parameter, as
can be seen in Figure 1, where q is absolutely unconstrained.
On the other hand, both the secondary nature of N production
and the fact that the energy of the upper level of the [N ii]
doublet is lower than that of the upper level for the [O ii]
doublet (making its line flux less sensitive to a drop in Te
toward higher abundances) translate into this line ratio being
very sensitive to metallicity (Dopita et al. 2000; Kewley &
Dopita 2002). This can be seen in the PDFs shown in Figure 1,
where the metallicity is well constrained while the ionization
parameter is completely unconstrained. It is worth mentioning
that N2O2 is very sensitive to the N/O abundance ratio
(Pérez-Montero & Contini 2009; Pérez-Montero 2014) and that
its good performance as a metallicity diagnostic relies heavily
on the assumption of a correlation between N/O and O/H in the
photoionization models being used here. We discuss this further
in Section 5.

Finally, the bottom row of panels in Figure 1 shows the
resultant PDFs if only the [N ii] λ6583 and Hα lines are fed
to IZI as input (i.e., equivalent to the N2 diagnostic). In this
case the ionization parameter is completely unconstrained, and
the abundance shows solutions for two branches (see Figure 2
and discussion in Section 5.2). The topology of the joint PDF
translates into three peaks in the marginalized PDF for the
abundance. In each of these branches the best-fit abundance is
highly correlated with the ionization parameter. It is interesting
to note that if the ionization parameter is constrained to the
value derived when using all available lines, the correct value
for the abundance is recovered in the low-abundance branch.
This reflects the fact that the performance of N2 as an abundance
diagnostic relies heavily on the fact that the ionization parameter
of local H ii regions is limited to a fairly narrow range and that a
large majority of them are in the low-abundance branch of N2.
We discuss this further in Section 5.2.

In order to visualize where the constraining information on
the parameters Z and q is coming from, Figure 2 presents
eight line ratios commonly used in the literature as metallicity
and excitation diagnostics, as a function of oxygen abundance
and ionization parameter. The solid gray lines show the input
photoionization grids for different values of q in the top eight
panels and different values of Z in the bottom eight panels. The
best-fit solution (joint mode) for NGC 0925 +087−031 (using
all available lines) is shown by the solid red line and the black
error bars, and the families of allowed photoionization models
within the 1σ confidence limits are bounded by the dashed red
lines. All panels showing dependence against Z (q) sample a
common range of 3 dex (4 dex) in the line ratios and therefore
provide a fair picture of how sensitive these ratios are to these
parameters.

Many insightful conclusions can be drawn from Figure 2.
First, the R23, N2O2, N2, and N2S2 diagnostics are better
metallicity indicators than the O3N2, O3O2, R3, and S2
ratios. The former show less dependence on the ionization
parameter, which translates into a small scatter as a function
of metallicity. The R23, N2, and N2S2 diagnostics show mild
dependences with q in different regions of the abundance range,
which translates into larger scatter for these diagnostics in these
regions. The N2 diagnostic also shows a flattening toward the
high-abundance end that is caused by the same process that
flattens and inverts the behavior of R23 (i.e., a drop in Te
toward high abundances), so this diagnostic is also double valued
(see discussion in Section 5.2). The N2O2 diagnostic, on the
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Figure 1. First row: joint (left) and marginalized (center, right) PDFs for log Z and log q calculated by IZI for the H ii region NGC 0925 +087−031 using all
emission-line measurements reported in V98 (i.e., [O ii] λλ3726, 3729, Hβ, [O iii] λ5007, Hα, [N ii] λ6583, and [S ii] λλ6717, 6731). The orange circle and cyan
line in the left panel show the mode of the joint PDF and the 1σ confidence level. The dashed orange (black) lines in the left (middle) panel mark the adopted solar
abundance and 1/10 of its value. On the middle and right panels the joint mode, marginalized mode, marginalized mean, and 1σ confidence interval are shown by
solid red, blue, green, and dashed red vertical lines, respectively. Second row: same as above, but only using the [O ii] λλ3726, 3729, Hβ, and [O iii] λ5007 lines (i.e.,
equivalent to R23). Third row: same as above, but only using the [O ii] λλ3726, 3729 and [N ii] λ6583 lines (i.e., equivalent to N2O2). Bottom row: same as above,
but only using the Hα and [N ii] λ6583 lines (i.e., equivalent to N2).
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Figure 2. Eight line ratios commonly used in the literature as metallicity and excitation diagnostics (R23 = ([O ii] λλ3726, 3729+[O iii] λ5007)/Hβ; N2O2 = [N ii]
λ6583/[O ii] λλ3726, 3729; N2 = [N ii] λ6583/Hα; O3N2 = [O iii] λ5007/[N ii] λ6583; O3O2 = [O iii] λ5007/[O ii] λλ3726, 3729; R3 = [O iii] λ5007/Hβ;
N2S2 = [N ii] λ6583/[S ii] λλ6717, 6731; and S2 = [S ii] λλ6717, 6731/Hα), as a function of oxygen abundance (top eight panels) and ionization parameter (bottom
eight panels). The solid gray lines show the input photoionization model grids (Dopita et al. 2013) for different values of q in the top eight panels and different values
of Z in the bottom six panels. The best-fit solution (joint mode) for NGC 0925 +087−031 is shown by the solid red line and the black error bars, and the families of
allowed photoionization models within the 1σ confidence limits are bounded by the dashed red lines.

other hand, is monotonic over the whole abundance range and
shows the least dependence on q and therefore the smallest
scatter as a function of metallicity. These two factors make it a
good abundance diagnostic, modulo variations in the N/O ratio,
which can be significant.

The O3N2, O3O2, R3, and S2 line ratios show a strong
dependence on the ionization parameter. In fact, O3O2 has
long been recognized as a good excitation diagnostic (e.g.,
McGaugh 1991; Lilly et al. 2003; Nakajima et al. 2013), and
out of all the line ratios shown in Figure 2, it shows the smallest
dependence on the metallicity. Nevertheless, these line ratios
are sometimes used in the literature as metallicity diagnostics,

empirically calibrated against local samples of H ii regions (e.g.,
Nagao et al. 2006; Maiolino et al. 2008; Mannucci et al. 2009;
Cullen et al. 2014). The reason why these empirical calibrations
appear to trace metallicity with a reasonably moderate scatter is
that the local samples against which they are calibrated only
span a restricted range in ionization parameters. Therefore,
extrapolating the use of these calibrations to other objects
that might have different excitation conditions (e.g., high-
redshift galaxies) can introduce significant biases in the derived
abundances (Kewley et al. 2013a; Steidel et al. 2014). This is a
possible reason behind the discrepancies seen among different
authors studying the behavior of the mass–metallicity–SFR
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relation as a function of redshift (e.g., Mannucci et al. 2010;
Troncoso et al. 2014; Cullen et al. 2014).

Figure 2 also exemplifies how IZI allows the information
from all available emission lines (and upper limits if available)
to be used in order to constrain the values of Z and q. This is
a major improvement over classical metallicity and excitation
diagnostics, which are typically limited to either a single SEL
ratio or a pair of SEL ratios.

4.2. Comparison to pyqz

In order to validate the output of IZI, we compare our results
for the full V98 sample against those produced by the publicly
available Python module pyqz10 presented in Dopita et al.
(2013). The pyqz code uses pairs of abundance- and excitation-
sensitive line ratios to define a plane in which the metallicity
and ionization parameter can be determined by interpolating the
photoionization model grid to match the observed line ratios.

Dopita et al. (2013) shows that parameter estimations using
their new updated photoionization model grids and pyqz on
four different pairs of line ratios based on combinations of the
[N ii]/[O ii] and [N ii/S ii] abundance-sensitive ratios and the
[O iii]/[O ii], [O iii]/[S ii], and [O iii]/Hβ excitation-sensitive
ratios yield self-consistent results. Figures 3 and 4 present a
comparison between the results of IZI for the full V98 H ii
region sample and the average of eight pyqz metallicity and
ionization parameter estimations based on the following pairs
of line ratios:

1. [N ii]/[O ii] versus [O iii]/[O ii]
2. [N ii]/[O ii] versus [O iii]/[S ii]
3. [N ii]/[S ii] versus [O iii]/Hβ

4. [N ii]/[S ii] versus [O iii]/[S ii]
5. [N ii]/[O ii] versus [O iii]/Hβ

6. [N ii]/[S ii] versus [O iii]/[O ii]
7. [N ii]/Hα versus [O iii]/Hβ

8. [N ii]/Hα versus [O iii]/[O ii]

The IZI values are calculated using all the emission-line
fluxes reported in V98 and the Dopita et al. (2013) model
grids for κ = 20. The exact same information is used in the
pyqz calculations, so any differences between the two methods
arise from the different approach taken to estimate the Z and q
parameters, that is, the difference between the average of eight
different interpolations using different pairs of abundance- and
excitation-sensitive ratios, and a full posterior PDF calculation
followed by a best-fit parameter estimation.

Figure 3 shows good agreement between the “joint mode”
best-fit abundance (top panel) as calculated by IZI and the av-
erage of the eight pyqz estimations. The measurements agree
well within the IZI 1σ confidence limits, with a median offset
of −0.03 and a scatter of 0.08 dex. Note that the median er-
ror bar reported in Figures 3 and 4 for the pyqz measurements
corresponds to the standard deviation between the eight mea-
surements and does not include either measurement errors or
systematic uncertainties, so they are surely underestimated.

The marginalized mode (second panel of Figure 3) shows
similar agreement with the average pyqz values, but significant
systematic deviations at the 0.2 dex level can be seen when
using the marginalized mean (bottom panel), particularly at the
low-abundance end (12+ log O/H < 8.7). This is caused by

10 pyqz was developed at ANU by Fredéric Vogt and is publicly available at
http://dx.doi.org/10.4225/13/516366F6F24ED.

Figure 3. Comparison between the joint mode (top), marginalized mode
(middle), and marginalized mean (bottom) best-fit values for the metallicity
estimated with IZI for the V98 sample using all available emission-line fluxes,
and the average of eight pyqz estimations using different diagnostic pairs of
SELs (see text). Objects shown in red have “well-behaved” posterior PDFs
for the metallicity, meaning that they are not flagged by IZI as having either
upper or lower limits in Z, nor multiple peaks in the PDF. Squares show objects
with multiple peaks in the marginalized metallicity PDF, while circles show
single-peak objects. Median error bars for the full sample are shown.
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Figure 4. Same as Figure 3, but for the ionization parameter q.

asymmetries in the marginalized PDF that shift the mean away
from the highest probability value.

The ionization parameter also shows good agreement between
the two methods within the 1σ confidence limits, as can
be seen in Figure 4. In this case we do not see significant

differences between our three best-fit estimates of q. Overall,
the consistency with the Dopita et al. (2013) methods as
implemented in pyqz is excellent. This is reassuring and implies
that our Bayesian inference method is able to recover the
metallicity and ionization parameter of local H ii regions as
well as, if not better than, the state-of-the-art methods currently
available in the literature, while also providing all the advantages
listed in Section 2.

Hereafter we adopt the joint mode as the best estimate of the
Z and q parameters. This is because it incorporates information
regarding the covariance between the two parameters (unlike
the marginalized mode) and because it is not dependent on how
asymmetric the PDF is (unlike the marginalized mean).

5. EVALUATING THE PERFORMANCE OF
INDIVIDUAL SEL DIAGNOSTICS

In Figures 1 and 2 we exemplified how the resulting PDFs
depend on the information carried by different subsets of
emission lines for a single H ii region in the V98 catalog. Here we
extend this analysis to the full V98 sample in order to statistically
evaluate the performance of different SEL diagnostics that have
been proposed in the literature and discuss the reasons behind
the systematic differences observed. Having access to the actual
shape of the metallicity and ionization parameter PDFs proves to
be revealing in terms of understanding the sources of systematic
biases associated with different diagnostics.

By adopting the best-fit abundances derived using the full
set of emission lines available for the V98 sample as fiducial
“true” values and comparing them to estimates of the abundance
done using subsets of these lines (i.e., emulating different SEL
diagnostics), we can study the origin of the scatter associated
with different methods, as well as the causes behind any
systematic deviations from the “true” values.

In this section we use IZI to evaluate the performance of
the four diagnostics recently proposed by Dopita et al. (2013),
as well as a set of six classic diagnostics commonly used in
the literature: R23, N2O2, N2, O3N2, O3O2, and R3. These
line ratios are commonly used to estimate the metallicity of
H ii regions and star-forming galaxies in the local universe,
as well as at high redshift. All these diagnostics have been
calibrated against local samples of H ii regions, theoretical
photoionization models, or in some cases combinations of the
two (e.g., Maiolino et al. 2008). Here we are not interested in
studying the differences between these calibrations, but rather
we want to understand how sensitive different diagnostics are
to the ionized gas metallicity, and what are the intrinsic biases
and expected scatter associated with them. To this effect we
do not use the original calibrations proposed in the literature
and instead run IZI using only the subset of SELs associated
with each diagnostic and the Dopita et al. (2013) grids as the
input model. The comparison between these results and the
fiducial metallicities computed using all available SELs allows
us to evaluate the intrinsic performance of these diagnostics
in terms of how much information they carry regarding the
metal abundance independently of the way in which they are
calibrated. In Section 6 we revisit the subject of abundance
discrepancies caused by different types of calibrations.

5.1. Dopita et al. (2013) Diagnostics

Dopita et al. (2013) propose a set of new diagnostics con-
sisting of four pairs of SEL ratios able to simultaneously con-
strain the abundance and ionization parameter of nebulae. These
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Figure 5. Comparison of IZI-derived abundances using all lines available in the V98 catalog (x-axis) vs. abundances calculated using subsets of these lines (y-axis).
Each plot reports the subset of lines being used to compute the abundance in the y-axis, the median offset and the standard deviation of the datapoints, and the median
error bars for all points. Circles show objects with single-peaked marginalized abundance PDFs, while squares show objects with multiple peaks in the PDF. Upper
and lower limits are marked by arrows and indicate objects in which the PDF is not bounded on one side. Objects satisfying both criteria (i.e., single-peaked and
bounded PDF) are shown in red.

correspond to the first four methods listed in Section 4.2. Fig-
ure 5 presents a comparison between the fiducial metallicities
derived with IZI and the results of using only the lines asso-
ciated with these four diagnostics. Below we comment on the
performance of each:

[N ii]/[O ii] versus [O iii]/[O ii]. This diagnostic (top left
panel of Figure 5) performs well over the whole range of
sampled metallicities with a median offset of −0.04 dex and a
scatter of 0.07 dex. At the high-abundance end (12+ log O/H >
9.2) IZI only provides lower limits on the metallicity when
using this restricted set of lines. This is because the posterior
PDF becomes wider when only using a subset of the lines and its
high-abundance end starts to overlap with the Zmax value (i.e.,
the highest abundance modeled in the input photoionization
model grids). The limits are therefore associated with the limits
of the input model grids and do not reflect any physical process
taking place at these metallicities.

[N ii]/[O ii] versus [O iii]/[S ii]. This diagnostic (top right
panel of Figure 5) also performs well with a median offset

of −0.04 dex and a scatter of 0.08 dex. It shows the same
issue regarding the lower limits in the metallicity at the high-
abundance end as the previous diagnostic. Besides objects
having lower limits in Z, one H ii region (NGC 4395 +099−029)
at 12+ log O/H � 8.7 is flagged as having multiple peaks in the
marginalized abundance PDF. Close inspection shows that this
object presents a particularly elevated [S ii] flux, which is in
tension with the best-fit model preferred by the [O ii], [O iii],
and [N ii] lines. This gives rise to a secondary low-abundance
(i.e., low [N ii]/[S ii] ratio) peak in the PDF, although IZI
still chooses the correct higher probability peak as the best-
fit solution for this object. Similarly, the object at the low-
abundance end (IC2458 −028−007) showing an upper limit in Z
also shows tension between its [S ii] flux and the other emission
lines. In this case the low- and high-abundance solutions in the
PDF are merged into a single broad peak whose low-metallicity
end hits the Zmin value modeled in the input grids, resulting in
an upper limit that is still consistent with the “true” metallicity.

These conflicts raise an important point that we further discuss
in Section 7. The results obtained when using this method will
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only be reliable as long as the objects being studied are properly
described by the input model grids. That is, if tension exists
between the data and the models, then the best-fit values and
particularly the confidence limits on them can be biased. This
is of great importance to keep in mind when trying to measure
the properties of ionized gas in high-redshift galaxies using
photoionization model grids aimed at reproducing the observed
spectrum of local galaxies and H ii regions where the physical
conditions in the gas and the shape of the ionizing spectrum are
not ensured to be similar (e.g., Kewley et al. 2013b; Steidel et al.
2014).

[N ii]/[S ii] versus [O iii]/Hβ. The bottom left panel of
Figure 5 shows the comparison between this diagnostic and
the fiducial IZI metallicities. The agreement is good overall
with zero median offset and a scatter of 0.1 dex. When using
this subset of lines most H ii regions show a secondary low-
probability peak in the joint PDF toward high metallicities
and low ionization parameters. Sometimes the high-abundance
end of this peak overlaps with the Zmax value, giving rise
to the few reported lower limits. This secondary peak also
introduces a high level of asymmetry in the 1σ confidence
limits, as can be seen in the median error bars in Figure 5.
Only in one case (NGC 2903 +171+236) is this high-abundance
solution chosen instead of the “true” value, and this object
stands out as an obvious outlier. Otherwise, the deviations
observed are consistent with the 1σ uncertainty. The origin of
the secondary high-abundance solutions is related to the absence
of the [O ii] doublet in this diagnostic. Leaving out this line
translates into a significantly looser constraint on the ionization
parameter, therefore opening a region of parameter space that
would have been largely penalized had the [O ii] doublet been
included. Since the secondary peak typically has a much lower
probability, we consider [N ii]/[S ii] versus [O iii]/Hβ to be a
good abundance diagnostic.

[N ii]/[S ii] versus [O iii]/[S ii]. Of the four diagnostics
proposed by Dopita et al. (2013), this pair of line ratios (bottom
right panel of Figure 5) show the highest systematic offset
(−0.08 dex) with respect to the fiducial IZI metallicities,
although this deviation is still within the 1σ scatter of 0.12 dex
and well within the 1σ confidence limits in the metallicity PDF.
At high abundances many objects have PDFs that overlap with
the Zmax value in the models resulting in several upper limits.
Similarly, two objects have PDFs that overlap with Zmin at the
low-abundance limit. Overall, the behavior of this diagnostic is
satisfactory.

5.2. Classic Literature Diagnostics

In this section we evaluate the performance of the six SEL
diagnostics most widely used in the literature: R23, N2O2, N2,
O3N2, O3O2, and R3. The top six panels of Figure 6 present
these comparisons. We will find that the performance of some
of these diagnostics is extremely poor unless prior information
is given regarding the excitation and ionization state of the gas.
Figure 7 presents a histogram of the ionization parameter as
derived by IZI for the V98 sample using the full set of available
SELs. Only objects for which log q is well constrained by the
PDF (93% of the sample) are included. The distribution is well
fit by a Gaussian distribution with mean μ = 〈log q〉 = 7.29
and σ = 0.23 dex. This implies that 71% (93%) of the objects
in this sample of local H ii regions have ionization parameters
that populate a fairly restricted 0.5 dex (1.0 dex) range around
the mean value.

Many of the diagnostics discussed below have been calibrated
against local samples of H ii regions that, like the V98 sample,
only span a very limited dynamic range in ionization and ex-
citation. We are interested in studying how the performance
of different methods depends on this fact, since this will have
important consequences regarding the use of these diagnostics
on objects that are not ensured to have the same ionization/
excitation properties as the calibrators (e.g., very low metallicity
and high redshift galaxies). To obtain insight on this problem,
we repeat the comparisons described above using the best-fit
Gaussian distribution shown in Figure 7 as a prior probability
distribution on log q when computing the joint and marginalized
posterior PDFs with IZI. The fiducial values are kept unmod-
ified during this analysis (i.e., calculated without any priors on
log q). The result of this experiment is shown in the bottom six
panels of Figure 6. We now proceed to discuss the performance
of each diagnostic individually:

R23. The double-valued nature of the R23 diagnostic already
discussed in Section 4.1 typically results in a PDF for the
abundance with two probability peaks corresponding to the
so-called lower branch and upper branch solutions. Most of
the H ii regions in the V98 sample are in the upper branch
metallicity range of the R23 diagnostic. Figure 6 shows that
when only the [O ii], [O iii], and Hβ fluxes are known and no
prior information is available regarding the expected metallicity
and ionization state of the gas in these objects, it is not possible
to discriminate between the correct upper branch solution and
the incorrect lower branch solution for about half of the objects
at 12+ log O/H > 8.7. Below this value the R23 dependence
with metallicity flattens out (see Figure 2), the two probability
peaks in the PDF merge into a single broad peak, and the scatter
increases substantially (�0.2 dex at 8.3 < 12+ log O/H < 8.7).
A few objects at the low-abundance end of the sample suffer
from the opposite problem with the upper branch solution being
chosen as the best-fit value instead of the correct lower branch
solution. Furthermore, even when the two peaks are merged
together, sometimes the PDF is skewed in a way that the mode
is shifted toward higher values, translating into a 0.07 dex offset
from the fiducial values in the 8.3 < 12+ log O/H < 8.7
range. We do not attempt to calculate an offset and a scatter
at 12+ log O/H > 8.7.

Introducing a Gaussian prior on log (q) somewhat alleviates
the above problems, as can be seen in Figure 6. Typically
when inspecting the joint posterior PDF, one sees that the
upper branch solution lies at log q values that are higher than
those corresponding to the lower branch solution. At the high-
abundance end, these values are closer to the mean of the
log q distribution presented in Figure 7. The second row of
panels in Figure 1 provides a good example of this behavior.
Therefore, using the Gaussian prior on log q tends to decrease
the probability of the lower branch solution for objects in the
high-metallicity end of the sample, bringing the R23 abundance
of many objects into agreement with the “true” abundance.
The opposite effect happens at the low-abundance end, where the
ionization parameters associated with the lower branch solution
are typically closer to the mean of the log q distribution, so
objects for which the R23 diagnostic was choosing the wrong
upper branch solution when no prior on log q was used also
come into better agreement with the fiducial values. This lowers
the systematic offset in the 8.3 < 12+ log O/H < 8.7 range
from 0.07 dex to −0.03 dex but is accompanied by an increase
in the scatter in this region from 0.18 dex to 0.24 dex. Regardless
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Figure 6. Top six panels: same as in Figure 5, but for subsets of lines emulating the R23, N2O2, N2, O3N2, O3O2, and R3 diagnostics. Maximum ignorance priors
on Z and q are assumed in these calculations. Bottom six panels: same as above, but this time using the Gaussian prior on the ionization parameter shown in Figure 7.
For R23 the median offset and scatter are calculated only in the 8.3 < 12+ log O/H < 8.7 range.
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Figure 7. Black histogram presents the normalized distribution of best-fit
ionization parameters for the V98 sample using all available SELs. Only sources
where the marginalized PDF is single peaked and bounded on both sides are
included (93% of the sample). The best-fit Gaussian PDF adopted as a prior
on log (q) in the bottom six panels of Figure 6 and the bottom three panels
of Figure 8 is shown in red. Also reported are the best-fit parameters of this
Gaussian PDF.

of these improvements, the wrong solution is still preferred for
a significant fraction of the objects.

In line with what is common usage in the literature (e.g.,
Pilyugin & Thuan 2005; Kewley & Ellison 2008; Moustakas
et al. 2010), we conclude that R23 can only be used as
a metallicity diagnostic if prior information regarding the
expected metallicity range (i.e., the branch) is available. In order
to provide a fair evaluation of the performance of this diagnostic,
we include an extra prior on the metallicity that assigns all
objects in the V98 sample to the upper branch. This prior is a
step function with uniform probability per decade in Z above
12+ log O/H = 8.3 and zero probability below this value. The
results of using this branch prior and of using both the branch
and Gaussian ionization parameter priors together are shown in
the top left and bottom left panels of Figure 8, respectively. After
including prior information on the expected metallicity range,
the performance of the R23 diagnostic is excellent at the high-
abundance end (12+ log O/H > 8.8) but degrades dramatically
below this value, where the ratio becomes highly insensitive to
the metallicity. The scatter in the 8.3 < 12+ log O/H < 8.7
range remains high at 0.24 dex, and we measure a global scatter
of 0.2 dex over the full metallicity range of the V98 sample.
Introduction of the prior information on the branch removes any
systematic offset with respect to the fiducial abundances.

N2O2. As can be seen in Figure 6, this diagnostic performs
extremely well over the full metallicity range analyzed here. It
shows a median offset of −0.04 dex and a scatter of 0.09 dex
with respect to the fiducial values. For a few objects at the high-
abundance end the PDF overlaps with the Zmax limit of the input
grids, resulting in a few lower limits. In Section 4.1 we discussed
how part of the power of N2O2 as a metallicity diagnostic
comes from the fact that this line ratio is very insensitive to
the ionization parameter. This is evident from the fact that the
results remain almost unchanged when using a Gaussian prior
on the log (q) distribution.

At first sight our results seem to imply that reliable abun-
dances can be obtained from this line ratio without any prior
knowledge of the expected metallicity range or the ionization
and excitation conditions in the gas. This statement is subject
to a very important caveat already mentioned in Section 4.1. As
shown in Pérez-Montero (2014), the N2O2 diagnostic traces
the N/O abundance almost linearly. The photoionization mod-
els used here assume a monotonic single-valued function be-
tween N/O and O/H with no scatter, and the ability of N2O2
to trace the oxygen abundance relies heavily on this assumption.
In reality, the observed correlation between these two quantities
shows a scatter of 0.15–0.25 dex, and the N/O ratio appears
to increase systematically as a function of galaxy total stellar
mass (e.g., van Zee et al. 1998a; Andrews & Martini 2013;
Pérez-Montero 2014, Belfiore et al. 2014). In the absence of
systematic trends like the latter one, we could simply incorpo-
rate the scatter in the N/O versus O/H relation to the error bars
on the abundance calculated by IZI. Since both are of a similar
magnitude, we do not expect the issue of the scatter to be of
great significance. The most worrisome problem is the presence
of systematic trends in the N/O-versus-O/H relation as a func-
tion of global and local galactic properties and the increased
scatter in N/O toward the low-abundance regime. The proper
way to deal with these systematics is to leave N/O as a free
parameter in the fits, as done by Pérez-Montero (2014). In the
future we plan to extend the capabilities of IZI to deal with ex-
tra parameters beyond Z and q in order to deal with these types
of problems.

N2. Figure 6 shows a large number of objects with lower
limits and double-peaked PDFs in metallicity when using the
N2 diagnostic. The reason behind this behavior is the double-
valued nature of this diagnostic (see Figure 2 and the bottom
panels of Figure 1), which is rarely appreciated in the literature
(although see Kewley & Dopita 2002) because the flattening
and inversion of the metallicity dependence of N2 take place at
relatively high abundances (12+ log O/H � 9.2). In the sample
used by Pettini & Pagel (2004) to calibrate this method there are
only a couple of objects at 12+ log O/H � 9.2, so the “upper
branch” of N2 has not been exposed observationally. A closer
inspection of Figure 1 in Pettini & Pagel (2004) actually shows
evidence for this plateau in N2 at the high-abundance end. The
Dopita et al. (2013) photoionization models sample the oxygen
abundance past the region where this inversion happens (upper
right panel of our Figure 2).

With this in mind we can better understand the results
presented in Figure 6. For objects showing single-valued PDFs
(red circles) the entirety of the high-abundance peak (i.e., the
upper branch solution) is past the Zmax value in the models.
Most objects at lower abundances show two peaks in the PDF
corresponding to the lower and upper branch solutions for N2.
For the V98 sample the low-abundance peak is typically the
“correct” solution, but without any prior information available
on either the abundance or the ionization parameter, many times
the wrong high-abundance solution is preferred. This happens
most often in the 8.7 < 12+ log O/H < 9.1 range. Toward
lower abundances upper limits become common as the two
peaks become more widely separated and the upper branch
solution overlaps with the Zmax value. Overall, ignoring lower
limits this diagnostic shows zero systematic deviation from the
fiducial values and a large scatter of 0.21 dex.

Including a Gaussian prior on the ionization parameter cen-
sors regions of parameter space where the ionization parame-
ter is high, and this reduces the number of objects for which
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Figure 8. Same as in Figure 6 for R23, R3, and N2, but now using a branch prior in the top three panels and both a branch prior and a Gaussian ionization parameter
prior in the bottom three panels. For R23 we now report the offset and scatter in both the 8.3 < 12+ log O/H < 8.7 range (Δ∗, σ ∗

Δ ) and the full range of the data
(Δ, σΔ).

the high-abundance solution is preferred. This is because the
two parameters are correlated with high-abundance solutions
typically showing higher values of q. The scatter in this case
is significantly reduced to 0.13 dex, but the median offset
increases to −0.08 dex. In any case, the number of objects
for which we can only provide lower limits in the metallicity
remains high.

The double-valued nature of N2 implies the need to choose a
branch, just as is typically done when using the R23 diagnostic
(see discussion above). In the case of the V98 sample all objects
populate the lower branch. In the top right panel of Figure 8
we show the effects of imposing a prior on the metallicity in
order to emulate this preference for the lower branch solutions.
We use a flat prior with equal probability per decade in Z
at 12+ log O/H < 9.3 and zero probability above this value.
This decreases the median offset, but the scatter remains large
(0.2 dex) because of the covariance between the abundance and
the ionization parameter. We find that only after introducing
prior information on both the metallicity range (i.e., the branch)
and the ionization parameter of the gas does N2 become a
well-behaved abundance diagnostic with a median offset of
−0.04 dex and scatter of 0.11 dex. Finally, just as N2O2, N2
is also affected by the assumed behavior of the N abundance
discussed above (Pérez-Montero 2014).

O3N2. This diagnostic, first proposed by Alloin et al. (1979)
and later recalibrated by Pettini & Pagel (2004), shows a very
poor performance with a median offset of −0.08 dex with
respect to the fiducial metallicities and a large scatter of 0.4 dex.
This is not surprising after inspection of Figure 2, which shows

that O3N2 is as sensitive to the ionization parameter as it is to
the metallicity.

A scatter of 0.4 dex is significantly higher than the 0.25 dex
scatter reported by Pettini & Pagel (2004) in their calibration.
The cause behind this discrepancy is the limited dynamic range
in ionization parameter spanned by the calibrators. To show this,
Figure 6 also presents the results of using the Gaussian prior in
log q discussed above in our calculations. This dramatically
improves the performance of the O3N2 diagnostic by lowering
the median offset to −0.04 dex and the scatter to 0.16 dex, in
much better agreement with Pettini & Pagel (2004). This implies
that O3N2 can only be used as a reliable abundance estimator
if prior information regarding the ionization and excitation state
of the gas is available. This diagnostic is also strongly affected
by the N abundance (Pérez-Montero 2014).

O3O2 and R3. Figure 6 shows that these two ratios perform
very poorly as abundance diagnostics with median offsets of
−0.08 dex and −0.33 dex and scatters of 0.59 dex and 0.52 dex
(i.e., factors of three) for O3O2 and R3, respectively. This is
not surprising in light of the strong dependence on the ionization
parameter seen in Figure 2 for these diagnostics. In fact, both
line ratios have been typically used as ionization parameter
diagnostics in the literature (e.g., McGaugh 1991; Kewley &
Dopita 2002; Lilly et al. 2003; Nakajima et al. 2013). Maiolino
et al. (2008) combined a sample of low-metallicity galaxies with
direct Te abundances with a sample of high-metallicity star-
forming galaxies from SDSS-DR4 with metallicities measured
using the Kewley & Dopita (2002) photoionization model
prescriptions, to calibrate a series of SEL diagnostics over a
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broad dynamic range in metallicity. In particular, they find
relatively tight correlations with metallicity for O3O2 and R3
with typical scatter of ∼0.1–0.3 dex, so the authors adopt them
as part of their suite of abundance diagnostics.

The apparent contradiction between the observed correlation
of these line ratios with metallicity in Maiolino et al. (2008)
and the poor performance seen in Figure 6 can again be
explained by the limited dynamic range in ionization and
excitation conditions in the calibration sample. Similar to
what we observed for O3N2, the performance of these two
diagnostics improves significantly when using our Gaussian
prior on log (q). The bottom panels of Figure 6 show that this
reduces the median offsets to zero and −0.16 dex and the scatter
to 0.26 and 0.39 dex for O3O2 and R3, respectively, closer to
the scatters seen in the Maiolino et al. (2008) calibrations. Even
after these improvements, the performance of O3O2 and R3 as
abundance diagnostics is still poor.

In the case of R3, Figure 2 shows that it follows a double-
valued behavior similar to that of R23 (although with a much
stronger dependence on the ionization parameter), so proper
usage of this diagnostic also requires choosing between a lower
and upper branch. The middle panels of Figure 8 present the
results of using a branch prior on the metallicity with uniform
probability per decade in Z above 12+ log O/H = 8.3 and zero
probability below this value, as well as a combination of a
branch prior and a Gaussian prior on log (q). The branch prior
marginally improves the performance of this diagnostic, and it is
only after including priors on both q and Z that its performance
becomes acceptable at the high-abundance end but degrades
rapidly at 12+ log O/H < 8.9 as the ratio becomes insensitive
to the metallicity.

Overall, we do not consider O3O2 to be a reliable abundance
indicator, and we recommend against using R3 without previous
knowledge of the ionization conditions and expected metallicity
range of the objects under study.

5.2.1. Classic SEL Diagnostics Performance Summary

In summary, out of the six SEL diagnostics examined above,
only N2O2 seems to provide reasonably good results without
requiring prior knowledge of the ionization and excitation con-
ditions in the gas and/or the expected range in metallicity of the
objects. This diagnostic also presents the lowest scatter among
the six methods, but it is subject to systematic uncertainties as-
sociated with the assumed behavior of the N/O abundance as
a function of metallicity. Furthermore, these two lines are well
separated in wavelength, and using them requires an accurate
correction for dust attenuation and enough spectral resolution
to separate [N ii] λ6583 from Hα.

Our analysis shows that reliable results, although with an
increased level of scatter, can also be obtained from N2 and
O3N2 if prior information is available regarding the ionization
conditions in the gas. Furthermore, the performance of the N2
diagnostic can become comparable to that of N2O2 if, on
top of having prior information on q, we know in advance in
which branch objects will fall. This is typically the case with
most samples of galaxies and H ii regions since the separation
between the lower and upper branches of N2 happens at a very
high abundance. The separation between the lower and upper
branches of the R23 diagnostic, on the other hand, occurs at
a much lower abundance, so R23 can only be used reliably if
the branch is known a priori, and even in that case the scatter
becomes uncomfortably large at intermediate values where the

ratios are insensitive to the metallicity (see also López-Sánchez
et al. 2012).

Finally, we find that the O3O2 and R3 ratios are always fairly
poor abundance diagnostics. The results go from catastrophic
to poor when prior information on the ionization parameter is
included. For R3 the results become marginally acceptable if
further information regarding the branch in which the objects
fall is available.

The analysis presented above is conducted in the context of
the photoionization models adopted as input for IZI. While
these models surely do not provide perfect representations of
real star-forming galaxies and H ii regions, general trends of
relative SEL intensity as a function of metallicity and ionization
parameter like those presented in Figure 2 are thought to be
robust, at least in a qualitative sense. Therefore, while the
quantitative details of the analysis might change as a function
of the input model adopted, the conclusions presented in
this section should not be significantly affected, at least in a
qualitative way.

We emphasize here that the above analysis is aimed at eval-
uating the intrinsic performance of these diagnostics in terms
of how much information useful to constrain the metallicity
is encoded in these line ratios. So far we have not evalu-
ated any systematics associated with the calibration of these
diagnostics against either direct method abundances or pho-
toionization models. This is the subject of the next section.

6. COMPARING PHOTOIONIZATION MODEL, DIRECT
METHOD, AND RECOMBINATION LINE ABUNDANCES

In this section we explore the discrepancies in the abundance
scale known to exist between the different families of methods
used to measure chemical abundances in ionized gas. In partic-
ular, we compare oxygen abundances measured with IZI using
different photoionization models in the literature with those
obtained by applying the direct method, a set of empirically
calibrated SEL methods (i.e., calibrated against direct method
abundances), and abundances derived from the direct observa-
tion of oxygen RLs.

Unlike CELs and temperature-sensitive auroral lines, the
emissivity of RLs has a very mild dependence on Te and
therefore on the presence of temperature fluctuations within
nebulae. This method does not suffer from the systematic
uncertainties that affect the direct and SEL methods, although it
is subject to its own set of systematic uncertainties chiefly having
to do with the accurate calculation of recombination coefficients
to high quantum level states (Liu et al. 2000; Stasińska 2004).
Furthermore, RL abundances have been shown to agree very
well with the stellar abundances of OB stars in star-forming
regions (e.g., Peimbert et al. 2005; Simón-Dı́az & Stasińska
2011). The above makes them a good reference point to evaluate
the performance of other methods.

Comparisons of this type have been performed before by
Garcı́a-Rojas & Esteban (2007) and López-Sánchez et al. (2012)
for a handful of local H ii regions with RL measurements.
These studies find that in H ii regions the direct method
consistently yields abundances that are ∼0.2 dex lower than
the RL method. Garcı́a-Rojas & Esteban (2007) conclude that
this offset is best explained by the presence of temperature
fluctuations inside H ii regions, which tend to bias the direct
Te measurements toward higher values and the abundances
toward lower values, although other authors disagree (c.f.
Simón-Dı́az & Stasińska 2011). López-Sánchez et al. (2012)
compare the average abundances from several empirically
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calibrated and theoretically calibrated SEL diagnostics to RL
abundances and conclude that SEL methods calibrated against
photoionization models yield abundances that are consistently
∼0.3 dex higher than the direct method and ∼0.1 dex higher
than the RL method. This is a similar difference to the one seen
between empirical and theoretical SEL diagnostics by Kewley
& Ellison (2008) using a large sample of emission-line galaxies
from SDSS.
IZI allows us to calculate the oxygen abundance of H ii

regions using an arbitrary photoionization model and without
having to restrict the analysis to the choice of a particular
set of SEL diagnostics. This offers the opportunity to extend
the above comparisons to test how the results from different
photoionization models compare to direct and RL abundances,
independently from the systematics associated with a particular
calibration of a particular diagnostic.

As mentioned in Section 1, the RLs of elements heavier than
He are typically 103–104 times fainter than SELs, so measuring
them in local H ii regions typically requires several hours of
exposure time using high-resolution spectrographs in 10 m class
telescopes. Because of this, RL abundances have only been
measured for He, C, O, and Ne in a few dozen bright H ii
regions in the MW and the Local Group (e.g., Peimbert 2003;
Peimbert et al. 2005; Tsamis et al. 2003; Esteban et al. 2004,
2009; Garcı́a-Rojas & Esteban 2007; López-Sánchez et al. 2007;
Bresolin et al. 2009). For this comparison we use the compilation
of 22 local H ii regions with measured RL oxygen abundances
presented in Table 611 of López-Sánchez et al. (2012). Although
hundreds of emission lines are typically detected in the high-
quality spectra used to measure RL abundances in these regions,
we run IZI using only the [O ii] λλ3726, 3729, Hβ, [O iii]
λ5007, Hα, [N ii] λ6583, and [S ii] λλ6717, 6731 line fluxes
in order to emulate the information that would typically be
available from a low-S/N, low-resolution spectrum.

Figure 9 presents the results of the comparison. The first
row of panels compares the RL abundances of the 22 re-
gions against the direct method abundances (left) computed
using the same high-S/N, high-resolution spectra used to de-
rive the RL abundances, and against the average of three em-
pirically calibrated SEL methods from Pilyugin (2001), Pilyu-
gin & Thuan (2005), and Pilyugin et al. (2010) (dubbed the
P-method). The data presented in these two panels are taken
from López-Sánchez et al. (2012). As already stated in that
work, both direct method abundances and empirically calibrated
SEL abundances consistently underpredict the RL abundances
by 0.24 dex and 0.23 dex, respectively. After removing the off-
set direct method abundances show a scatter of 0.06 dex with
respect to RL abundances. This is consistent with the errors in
the direct and RL abundance determinations, which have a me-
dian value of 0.04 dex and 0.06 dex, respectively. On the other
hand, the empirically calibrated SEL abundances show a scatter
of 0.12 dex against the RL abundances. This is significantly
larger than the reported scatter of 0.075 dex for the Pilyugin
et al. (2010) calibrations.

The rest of the panels in Figure 9 compare abundances de-
rived with IZI using different photoionization models against
RL abundances. We present results for a subset of the photoion-
ization models presented in Kewley et al. (2001), Levesque et al.
(2010), Richardson et al. (2013), and Dopita et al. (2013). The

11 Because of an error during the creation of this table, the line ratios reported
in López-Sánchez et al. (2012) are incorrect (Angel R. Lopez-Sanchez 2014,
private communication). We used the line fluxes and errors as reported in the
original reference for each object.

Figure 9. Oxygen RL abundances vs. those derived using different methods.
RL abundances are plotted in the x-axis and, together with Te method and P
method abundances (first row), are taken from Table 6 of López-Sánchez et al.
(2012). The y-axis in the rest of the panels shows abundances computed with
IZI using the [O ii] λλ3726, 3729, Hβ, [O iii] λ5007, Hα, [N ii] λ6583, and
[S ii] λλ6717, 6731 line fluxes from the original references in Table 6 of López-
Sánchez et al. (2012) and different photoionization model grids. The second
row corresponds to the Dopita et al. (2013) models for κ = 20 and κ = ∞ (i.e.,
Maxwell–Boltzmann Te distribution). The third row corresponds to the Kewley
et al. (2001) models with n = 10 and n = 350. The bottom row shows results
for the Levesque et al. (2010) models on the left and the combined Levesque
et al. (2010) and Richardson et al. (2013) models with extended sampling toward
high values of q on the right. Dotted lines at ±0.1 dex offsets are shown for
reference.

models have been described in Section 3.2. The Dopita et al.
(2013) models systematically overpredict the RL abundances
by 0.32 dex and 0.24 dex for electron energy kappa probability
distributions with κ = 20 and κ = ∞ (i.e., a M-B distribution),
respectively. The scatter seen for these two models is 0.19 dex
and 0.23 dex, respectively. Similarly to the case of the P-method
above, the observed scatter is significantly larger than what is
expected from the median of the uncertainty calculated by IZI,
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which corresponds to 0.1 dex.12 Although the dynamic range in
abundance of the H i region sample with RL line measurements
is limited and the number of regions is small, there appears to
be a trend of an increasing overestimation toward higher abun-
dances.

Results for the Kewley et al. (2001) models are presented
in the third row of Figure 9 assuming two different values for
the electron density (ne = 10 cm−3 and ne = 350 cm−3).
Abundances derived using these models are higher than RL
abundances with offsets of 0.16 dex and 0.19 dex and scatters of
0.17 dex and 0.18 dex for the ne = 10 cm−3 and ne = 350 cm−3

models, respectively. No significant difference is seen between
the two electron density regimes considered. The observed
scatter is slightly larger than the 0.13 median uncertainty
reported by IZI. This offset is similar to the offset measured
by López-Sánchez et al. (2012) when comparing the average
of a few theoretically calibrated SEL diagnostics based on
the Kewley et al. (2001) models with RL measurements. The
observed offset is similar in magnitude to the offset measured for
direct-abundance-based methods but in the opposite direction.
A similar trend to that observed for the Dopita et al. (2013)
models is seen in which the difference in the values becomes
larger toward the high-abundance end.

Results from the Levesque et al. (2010) models both with
and without including their extension toward high values of q
by Richardson et al. (2013) are presented in the two bottom
panels of Figure 9. The inclusion of the Richardson et al. (2013)
models leaves results practically unchanged since none of the
H ii regions in this sample present extremely large ionization
parameters. Abundances derived using the Levesque et al.
(2010) models present the best agreement with RL abundances
among all the photoionization models considered here. This
model shows a systematic offset of −0.07 dex and a scatter of
0.12, which is in excellent agreement with the median error of
0.11 dex reported by IZI. This is the best performance in terms
of both the median offsets and the magnitude of intrinsic scatter
beyond the measurement errors among all the SEL methods
studied here.

This comparison highlights an interesting fact. Abundances
derived using IZI in combination with different photoionization
models show different offsets with respect to abundances
measured using the direct and RL methods. A large range in
median offsets is seen among different photoionization models,
although this is driven mainly by the Dopita et al. (2013)
models, which predict abundances typically ∼0.1 dex higher
than the Kewley et al. (2001) models and ∼0.3 dex higher
than the Levesque et al. (2010) models. The MAPPINGS
photoionization code used to compute all these models suffered
a major revision between the latter two works and the former.
These upgrades are thoroughly discussed in Dopita et al. (2013)
and include, among other things, the inclusion of a kappa
function to describe the electron energy distribution instead of
the classically used M-B distribution (Nicholls et al. 2012).
Our results suggest that this is not the main cause behind the
observed discrepancies, as adopting a M-B distribution (κ = ∞)
only decreases the offset by less than 0.1 dex. Other factors such
as the assumed nebular geometry, the updated atomic data and
abundance set, and the different parameterization of the N/O-
versus-O/H relation must contribute to the observed offsets.
This also implies that our results do not contradict the fact that

12 This median uncertainty corresponds to the median between the upper and
lower error bars for both versions of the models presented.

a κ electron energy distribution can help reconcile direct and
RL abundances as proposed by Nicholls et al. (2013), as the
systematic offsets observed in this work are most likely not
associated with the adoption of the κ distribution. In the future
we expect to explore in more detail the effects on the derived
abundances caused by different assumptions in photoionization
models.

From this analysis we can conclude that Bayesian inference
using photoionization models can be successful at reproducing
the results of the RL method. We do not find a significant dis-
crepancy between RL abundances and the abundances computed
using IZI with the Levesque et al. (2010) models. The large off-
set seen against the Dopita et al. (2013) models highlights the
presence of poorly understood systematic uncertainties affecting
photoionization models.

7. SUMMARY AND CONCLUSIONS

We have presented a new method to measure the metal
abundance and ionization parameter of H ii regions and star-
forming galaxies using SELs. The method is based on the
application of Bayesian inference to calculate the joint and
marginalized PDFs for these two parameters given an arbitrary
set of emission-line flux measurements or upper limits and a
model for how the brightness of these lines depends on Z and q.
We also present an implementation of the method called IZI that
computes these PDFs using theoretical photoionization models,
and we make the code public.

Using IZI, we have tested the performance of a series of
popular SEL diagnostics in the literature to evaluate how much
information regarding the metal abundance is carried by these
line ratios. For this we have used a sample of 186 extragalactic
H ii regions from V98 and have run IZI using subsets of
emission lines that emulate the information contained in a
particular diagnostic. We have evaluated the R23, N2O2, N2,
O3N2, O3O2, and R3 line ratios, as well as the four pairs of
line ratio diagnostics proposed by Dopita et al. (2013).

We have also used a sample of bright local H ii regions with
direct method and RL abundance measurements to study the
discrepancies in the abundance scale between these two methods
and those based on the use of theoretical photoionization
models. For this comparison we include results based on using
IZI in combination with several photoionization models in the
literature, including those presented in Kewley et al. (2001),
Levesque et al. (2010), Richardson et al. (2013), and Dopita
et al. (2013).

From the experiments presented above we conclude the
following:

1. Bayesian inference provides an optimal tool to measure
the physical conditions of ionized gas in nebulae. Our
method has many advantages over the classic approach
of calibrating a single line ratio or a pair of line ratios
as an abundance diagnostic. These advantages are listed
in Section 2. Here we highlight the fact that IZI uses
all the available spectroscopic information simultaneously,
circumvents the need to calibrate a particular diagnostic
against a particular set of models, and allows one to
naturally identify multiple peaks, asymmetries, and upper
or lower limits in the PDF, which translates into realistic
error estimates.

2. When evaluating the performance of different SEL abun-
dance diagnostics in the literature, we find a large diver-
sity in terms of how accurately the diagnostics trace the
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abundance of H ii regions. Some diagnostics only perform
well when prior information is available regarding the abun-
dance range (i.e., the branch) in which the sources are ex-
pected to fall, or the ionization and excitation conditions in
the gas. The N2O2 diagnostic seems to be robust against
the lack of prior information, but its dependence on the N/O
ratio makes it subject to significant systematic uncertainties.
In light of their poor performance, we recommend strongly
against the use of R3 and O3O2 as abundance diagnostics.
Other diagnostics such as R23 and N2 can only perform
well if prior information regarding the correct branch is
available. Finally, O3N2 only performs reasonably well if
prior information regarding q is available. The four pairs of
SEL ratios proposed by Dopita et al. (2013) carry enough
information to constrain Z and q simultaneously in most
cases.

3. The different limitations of individual diagnostics high-
light the advantage of using all spectroscopic information
available from transitions of different elements and differ-
ent ions when computing abundances, since this minimizes
systematics and helps constrain both the abundance and the
ionization parameter in a much better way than individual
diagnostics.

4. Abundances derived through Bayesian inference using
photoionization models can agree very well with RL abun-
dances, but the agreement depends on which models are
used. Out of all the models tested here, the Levesque et al.
(2010) grids produce abundances that agree with RL mea-
surements remarkably well (to within 30%). The models of
Kewley et al. (2001) show a 0.15–0.2 dex systematic offset
toward higher abundances, but this offset is still within the
observed scatter. The Dopita et al. (2013) models signifi-
cantly overpredict RL abundances by 0.2–0.3 dex for this
small sample of local H ii regions, although the discrep-
ancy is not associated with the use of a κ electron energy
distribution. The scatter seen between different photoion-
ization models highlights the systematic uncertainties that
affect them, including the assumptions regarding the in-
put ionizing flux from synthetic stellar population models,
the assumed behavior of relative elemental abundances like
N/O versus O/H, and the assumed physical structure of the
nebulae.

5. Direct method abundances are found to be systematically
lower than both RL and photoionization model abundances.
This is in agreement with previous claims in the literature
and is most likely caused by the unaccounted effect of
temperature fluctuations within ionized nebulae.

Finally, we would like to stress two important points regarding
the use of IZI. The first is the fact that the results produced
by IZI will only be reliable if the input model being used
corresponds to a proper characterization of the sources being
analyzed. If the shape of the input ionizing spectrum and the
assumed pattern of relative elemental abundances in the models
are significantly different from what they really are in the objects
under study, then even if a correct statistical analysis is used
to compare the data to these models, results will be subject
to systematic uncertainties. Second, as briefly mentioned in
Section 3.2, this method is flexible and not limited to being
used with theoretical photoionization models. In principle, the
user can adopt any model that traces the behavior of the lines of
interest as a function of Z and q, even one based on empirical
grids of direct method abundances for real objects. In the future
we expect to explore these possibilities and also to expand IZI

to deal with extra parameters such as the N/O abundance, the
electron density, and the age or effective temperature of the
ionizing stellar population.
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Lara-López, M. A., Cepa, J., Bongiovanni, A., et al. 2010, A&A,

521, L53
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