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ABSTRACT

We study the functional form of the star-formation lawusing the Vaschy–Buckingham Pi theorem. We find that it should
have theformS µ S

˙ G

L gas
3 2, where L is a characteristic length that is related to an integration scale. With a reasonable

estimatefor L, we find that galaxies of different types and redshifts, including low-surface-brightness galaxiesand
individual star-forming regions in our Galaxy, obey this single star-formation law. We also find that, depending on the
assumption for L, this star-formation law adopts different formulations of S˙ scalingthat are widely studied in the
literature:S S St t, ,gas

3 2
gas orb gas ff andS vgas

2
turb. We also study secondary controlling parameters of the star-formation

lawbased on the current evidence from numerical simulations, and we find that for galaxiesthe star-formation efficiency
should be controlled, at least, by the turbulent Toomre parameter andthe sonic and Alfvénic Mach numbers.
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1. INTRODUCTION

Galaxies are building blocks of the universe, and the galaxies
themselves are constituted by stars.Therefore, understanding
the rate at which galaxies formtheir stars is a fundamental part
of understanding how the universe evolves. For that reason,
there has beenconsiderable effort to understand the rate at
which galaxies fillthe cosmos with stars.

Observations of normal spiral galaxies by Schmidt (1959)
originally suggested that their star-formation rates (SFRs) scale
with their gas content. This was extended to galaxies with
higher SFR by Kennicutt (1998), leading to an empirical law
for star formation called the Kennicutt–Schmidt (KS) law:
S = S˙ ,star SF gas

1.4 where Sgas and Ṡstar are the gas surface
density and SFR per unit area. However, Bigiel et al. (2008),
Leroy et al. (2008), Wyder et al. (2009), and Shi et al. (2011)
found deviations from the ∼1.4 slope at lower surface densities.
In addition, Daddi & Elbaz et al. (2010b) and Genzel et al.
(2010) studied this relation for high-redshift galaxies, Shi et al.
(2014)the effects of metallicity on the SFR, and Guillard et al.
(2014) the role of radio jets, all finding possible departures
from a single law. Also, for major mergers, Xu et al. (2014)
and Hodge et al. (2015) found higher SFRs for spatially
resolved individual regions.

On the theoretical side, considerable literature has focused
on analytic calculations with a considerable level of assump-
tions and free parameters, thus, it is hard to test their validity
against the observed data (Krumholz & McKee 2005;
Krumholz et al. 2012; Hopkins 2013, just to mention a few
attempts). Moreover, several galactic-scale numerical simula-
tions (Li et al. 2005; Stinson et al. 2006; Tasker & Bryan 2006;
Tasker & Tan 2009; Becerra & Escala 2014), using completely
different thermal physics, accuracy of hydrodynamic method,
star formation/feedback prescriptions, and so on, are all able to
find an SFR in agreement with the KS law, regardless of the
different physics implemented.

In this paper we propose a different approach:using the
Vaschy–Buckingham theorem to guide an analysis of the
current observational and numerical evidence on the subjectto
see what we can learn from them and if it is possibleto infer
functional forms and controlling parameters of the universal
star-formation law. Our goal is to summarize the current

evidence into a unique physical equation valid at all scales, in
which variations of its physical variablesexplain the variations
of the observed SFRs,from individual clouds in the Milky
Wayto galaxies in the early universe.
This work is organized as follows. We start with a

dimensional analysis of the star-formation lawin order to find
a physical relation in agreement with the current observational
and numerical evidence in Section 2. Section 3 continues with a
discussion on the characteristic length introduced in Section 2,
and tests candidates against the SFRs in galaxies of different
types and redshifts. In Section 4 we study the physics that
determines this characteristic length, deriving several formula-
tions for the star-formation law that appears in the literature.
Finally, in Section 5we discuss the results of this work.

2. DIMENSIONAL ANALYSIS OF THE STAR-
FORMATION LAW

The Vaschy–Buckingham Pi theorem defines the rules to be
fulfilled by any meaningful physical relation, and it is a
formalization of Rayleigh’s method of dimensional analysis.
The theorem states that if there is a physically meaningful
equation involving a certain number, n, of physical variable-
sand k is the number of relevant dimensions, then the original
expression is equivalent to an equation involving a set of
= -p n k dimensionless parameters constructed from the

original variables. Mathematically speaking, if we have the
physical equation

¼ =F A A A( , , , ) 0, (1)n1 2

where the Ai are the n physical variables that are expressed in
terms of k independent physical units, Equation (1) can be
written as

P P ¼ P =-f ( , , , ) 0, (2)n k1 2

where the Pi are dimensionless parameters constructed from
the Aiby = -p n k dimensionless equations of the form
P = A A Ai 1

m
2
m

n
m1 2 n. We will use this theorem to design a

physically meaningful equation for the universal star-forma-
tion law.
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In the process of finding the functional form of any physical
equation throughdimensional analysis, it is critical to choose
the relevant physical variables. We will perform this iteratively
for the universal star-formation law. Because this problem has a
minimum of three relevant dimensions, mass [M], length [L],
and time [T], we need at least four physical variables in order to
have one dimensionless parameter P1. Motivated by the KS
law,S˙ andSgas must be the firsttwo physical variables. There
is little doubt that gravity plays a critical role in the star-
formation problem, ever since the early analytical results by
Jeans (1902), Bonnor (1956), and Ebert (1955)and the
numerical work by Larson (1969) and Penston (1969).
Therefore, G should appear somewhere in any star-formation
law and is our third choice. For our final fourth physical
variable, either a characteristic time or length could work;-
however, to avoid the trivial dependence proportional to tSgas

(e.g., Silk 1997, Elmegreen 1997), we choose to use a
characteristic length that we callL.

Finding the first dimensionless parameter is straightforward
by looking at integer exponents such asP = S SG L ˙a b c

1 gas
1 1 1

haveno dimensions. This is equivalent to force - + -L[ ] ,a b c3 2 21 1 1

- + +M[ ] a b 11 1 , - -T[ ] a2 11 beingdimensionless, which has the
unique solutionsa1 = −1/2, b1 = −3/2, and c1 = 1/2. This
implies that the dimensionless parameter is
P = S S- -

G L ˙ ,1
1 2

gas
3 2 1 2 and if the star-formation law depends

only on thesefour physical variables, the Vaschy–Buckingham
Pi theorem states that it should be a function f such that

P = S S =- -
f G L( ˙ ) 01

1 2
gas

3 2 1 2 . Additionally, if f has a zero
that we call , such that f ( )= 0, this implies that

S = S
G

L
˙ , (3)gas

3 2

which has a dependence on surface density quite similar to the
standard formulation for the star-formation law, but it has an
extra term L. If such characteristic length is constant, we
recover the KS law with almost the observed slope (n∼ 1.4;
Kennicutt 1998). In summary, the Vaschy–Buckingham Pi
theorem is telling us that the standard formulation of the star-
formation law needs to be at least corrected by a characteristic
lengthin order to have the proper dimensions.

In addition to this length correction, other physical variables
should have a role in controlling the rate at which galaxies
formtheir stars in the universe. We will explore a few
possibilities subsequently.

2.1. Role of Turbulence

At intermediate, giant molecular cloud (GMC) scales, it is
commonly believed that turbulence governs the GMCdy-
namics, with typical thermal Mach numbers = v C( )s turb S
of the order 10–20 (Mac Low & Klessen 2004). Moreover, it
has been suggested by Larson (1979, 1981) and others (see for
example Ballesteros-Paredes et al. 2007 and references there-
in)that the structure and dynamics of the interstellar matter
(ISM) on these intermediate scales is roughly self-similar and
described by power laws, as in a turbulent cascade.

In order to explore if the three-dimensional rms velocity of
turbulent motions, vturb, is a fifth physical variable in the star-
formation law, a P2 should be constructed because theVaschy–
Buckingham Pi theorem nowallows 5 – 3 = 2 dimensionless
parameters. The parameter P = Sv G La b c

2 turb gas
2 2 2 has no

dimensions for a unique solution of = -a 1 22 , = -b 1 2,2 and
= -c 1 22 , implying a second dimensionless parameter

S- - -v G Lturb
1 2

gas
1 2 1 2. In this case, the Pi theorem states that

there is an equation P P =f ( , ) 0,1 2 and if f is regular and
differentiable, we can use the implicit function theorem to advocate
for the existence of a functionP = P ( )1 2 . This implies that if the
turbulent rms velocity is an additional physical variable in the star-
formation law, Equation (3) shouldbe replaced by

S =
é

ë

ê
ê
ê S

ù

û

ú
ú
ú

S
v

G L

G

L
˙ , (4)turb

gas
gas
3 2

where  is now a function of S
-

( )v G Lturb gas

1 2
, a parameter

that quantifies the relative strength of turbulence and gravity.
The dependence of  on the second dimensionless parameter

P2can be directly compared against numerical experiments
that studyfragmentation in turbulent GMCs. Padoan et al.
(2012) found that the SFR per free-fall time,  ff , strongly
depends on the free-fall time per turbulent crossing time. The
turbulent crossing time is defined by Padoan et al. (2012) as

=t L v2dyn turb and the free-fall time as r= ( )t π G3 32ff 0
1 2

,
where r0 is the mean density. For r = S L0 gas , it is
straightforward to find that their Equation (1) is equivalent to
our Equation (4), in particularthat  ff has the same
dimensionless dependence as P ( )2 within geometrical factors

( = S
-

( )t t π v G L(3 8)ff dyn
1 2

turb gas

1 2
).

Using the Pi theorem, we also found the main dependence
suggested by state-of-the-art simulations of turbulent fragmen-
tationbecause this dimensionless parameter P2is also equiva-
lent to the virial parameter, a = T W2virial , used in previous
works (Padoan & Nordlund 2011). Padoan et al. (2012)
quantified this strong dependence by the fitting formula

µ - t texp ( 1.6 )ff ff dyn , which is equivalent to

µ - S
-

 ( )v G Lexp ( 1.74 )ff turb gas

1 2
.

2.2. Small-scale Physics: Role of Thermal Pressure and
Magnetic Fields

There is little doubtthat the final barrier that the self-gravity
of interstellar gas shouldovercometo form a staris thermal
pressure. In addition, magnetic fields are often advocated as a
relevant source of support (Mouschovias 1974, Shu 1997). We
will start by analyzing the role of thermal pressurebecause
thisis what eventually stops the collapse at stellar densities.
To include the thermal sound speed,CS, as the sixth physical

variable in the star-formation law, a P3 should be constructed.
The parameter P = SC G L va b c d

3 S gas turb
3 3 3 3 has no dimensions for

two possible solutions: (1) = = =a b c 03 3 3 , = -d 13  and
(2) = = = -a b c 1 23 3 3 , =d 03 . We will focus on case (1),
P = C v3 S turb, because there is numerical work that studies the
role of the sonic Mach number = v Cs turb S.
Using MHD simulations, covering a substantial range of

observed cloud parameters with Mach numbers
= = - v C 5 50s turb S , Federrath (2013) found that the

observed scatter in the star-formation lawcan be primarily
explained by physical variations in the turbulent Mach number
s. This work also found that magnetic fields reduce the star-
formation efficiency,  , but only very marginally.
To include magnetic fields in our analysis, it is easier to

usethe Alfvénic velocity, va, in order to compare their

2
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strengthrelative to thermal pressure. AP = Sv G L va
a b c d

4 gas turb
4 4 4 4

should be constructedthat has again no dimensions for two
possible solutions: (1) = = =a b c 04 4 4 , = -d 14 and (2)

= = = -a b c 1 24 4 4 , =d 04 . For the first case,
P = = -v va a4 turb

1is the inverse of the Alfvénic Mach
number.

Padoan et al. (2012) found that the star-formation efficiency,
 , has a complex but weak dependence on a, varying by less
than a factor of two for characteristic values of a. However,
this work found that  is insensitive to variations of s. This
disagreement with Federrath (2013)might be due to the
dynamical range studied: = - 10 20s in Padoan et al.
(2012), compared to = - 5 50s in Federrath (2013). The
range = - 10 20s might be justified for local GMCs, but
for extragalactic sources such as starbursts or high-z galaxies, a
range like the one in Federrath (2013) is better justified.

Including thermal pressure and magnetic fields, the Pi theorem
states that there is an equation P P P P =f ( , , , ) 0,1 2 3 4 and if f
is regular and differentiable, the implicit function theorem
guarantees the existence of a function P = P P P ( , , )1 2 3 4 .
The latter is equivalent to a star-formation law of the form

S =
é

ë

ê
ê
ê S

ù

û

ú
ú
ú

S 
v

G L

G

L
˙ , , . (5)a

turb

gas
s gas

3 2

The options (2) forP3 andP4 are respectively S
-

( )C G LS gas

1 2

and S
-

( )v G La gas

1 2
. These options are equivalent to

P = P 3 2 s and P = P a4 2 , a combination of the previous
dimensionless parameters.

We can continue with this iterative process of searching for
physical variablesby including other controlling parameters
suggested in the literature, such as the molecular mass fraction
fH2

(Krumholz & McKee 2005) or the metallicity (Dib
et al. 2011; Shi et al. 2014). However, we prefer to focus in
this paper on the dynamical variables just mentioned, which are
motivated by both observational and numerical studies.

3. ON THE CHARACTERISTIC LENGTH L

We have been able to find a star-formation law that, in
addition to being dimensionally correct, has several dependen-
cies in agreement with both the KS law (for a constant
characteristic length L) and numerical experiments that
studystar formation within GMCs. However, thus far the
characteristic length L is a free parameter without any physical
interpretation.

We will start with the simplest possible choice for
characteristic length L,the region total radius R, which is a
natural scale of galaxies and star-forming regions, and later
evolve to more sophisticated choices. Because the goal is to
find a universal law valid at all scales, we include data from
individual star-forming clouds, up to extended galaxies like
low-surface-brightness (LSB) galaxies (five orders of magni-
tude variations in R). We also include normal spiral, local
starburst, and high-redshift galaxies.

In the large dynamical range studied, which needs to be
displayed on a log–log plot, the relation is dominated by order
of magnitude variations of the primary dependencies. For that
reason, P1 will dominate over the other dependencies, so for
simplicity we will assume that P P P = ( , , )2 3 4 isconstant
in this section (Equation (3)).

Figure 1 shows the SFR per unit areaagainst S -Rgas
1 3,

withR the radius of each galaxy or star-forming region. The
gas surface densitySgas and SFR per unit areaS˙ for each data
point were taken for LSB galaxies (Wyder et al. 2009), normal
spirals orlocal starbursts (Kennicutt 1998), high-redshift disks
(Daddi et al. 2010a; Tacconi et al. 2010), high-redshift
starbursts (Genzel et al. 2010), and galactic GMCs (Lada
et al. 2010; Heiderman et al. 2010). In addition to the previous
references, for the radius R, data was taken from Young et al.
(1995) for normal spirals, Smith & Harvey (1996), Downes &
Solomon (1998), Kenney et al. (1992), Wild et al. (1992), and
Telesco et al. (1993) for local starbursts, Genzel et al. (2010)
for high-redshift disks, and Krumholz et al. (2012) for
galactic GMCs.
All galaxy types displayed in Figure 1, including local and

high-z galactic disks, starbursts at different redshifts, and even
LSB galaxies, are described by a single relation with a slope
consistent with 1.5, the one expected from Equation (3). The
black curve in Figure 1is the best fit to the sample of different
galaxy populations (not including individual star-forming
clouds), which corresponds to a slope of 1.43. Surprisingly,
even individual star-forming clouds followa similar trend,
asexpected from Equation (3), but shifted toward lower values
of SFR per unit area. These results suggest that we are on the
right track, but there is a fundamental difference in L between
galaxies and star-forming clouds.
Is important to notice, aside from that the galactic radius R is

not (a priori) a particularly meaningful scale in the star-
formation problem, that the -R 1 2 term in Equation (3) is
already able to erase the difference in star-formation efficiency
between spirals and LSB galaxies, on which there has
beenconsiderable literature written(Bigiel et al. 2008, 2010;
Wyder et al. 2009; Shi et al. 2011). Because LSBs are typically
more extended than normal spirals, byalmost a factor of 10 in
the more extreme cases of Malin 1 or LSBC F568-06, the
decrease due to the factor -R 1 2 explains their lower SFR per

Figure 1. SFR density as a function of the gas surface density, divided by the
one-third power of the radius. The symbols are as follows: blue triangles are
galactic GMCs taken from Lada et al. (2010) and Heiderman et al.
(2010);green and red triangles are local spiral galaxies and ultra-luminous
infra-red galaxies (ULIRGs) from Kennicutt (1998);purple stars and cyan
filled circles are high-z disks (Daddi et al. 2010a; Tacconi et al. 2010) and
starburst galaxies (Genzel et al. 2010); and pink crosses are LSB galaxies from
Wyder et al. (2009).
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unit area for a fixedSgas. Therefore, a term that scales similar to
R will be a good candidate for characteristic length L.

Star formation is inherently a three-dimensional (3D)pro-
blem, and the star-formation lawis expressed in terms of some
two-dimensional quantities: S˙ and Sgas. The length-scale
responsible for such a transition in dimensionality, an
integration, is a natural candidate for being the characteristic
length L. From an observational point of view, this integration
scale will be in the observer’s line of sight (LOS). In 3D
numerical simulations, this will be the one chosen by the
theorist, which is in most cases the vertical scale length. The
difference between the cases is a projection factor, unless we
are dealing with an edge-on disk, which we will neglect in this
section and leave it inthe scatter.Therefore, we will focus on
estimations of the vertical scale length. We will come back to
this point in Section 3.2

We will now estimate the characteristic length L to be equal
to the vertical scale length, h=H R, and to avoid adhocfine-
tuning, we will distinguish only between galaxy or region
types. For typical disk galaxies, H R is typically a few percent,
soη = 0.02 is a good choice for LSB galaxies and normal
spirals. Nuclear disks of starburst galaxies are more turbulent
and thicker (Downes & Solomon 1998), and η = 0.1 will be
our choice in this case. Similar cases are high-z disks and
starbursts, againjustifying thechoiceη = 0.1. Finally, because
galactic GMCs are roughly spherical, in this case η = 2.

Figure 2 shows the SFR per unit areaagainst hS -
R( )gas

1 3,
showing that, with this simple and more meaningful estimation
for L, all of the star-forming regions, from local GMCs to high
redshift galaxies, belongto a single relation of slope 1.5. The
blue solid line corresponds to

= - -

= - -

hS S

S

- - -

-

 



 ( )log log log 4.1

log log 4.1, (6)

M M

R

M

H

˙

kpc yr

3

2 pc

1

3 kpc

3

2 pc

1

2 kpc

2 1

gas

2

gas

2

which has the same functional form as Equation (3) with
= -Glog ( ) 4.1 and has a scatter of 0.43 dexwith respect

to the data points. We have chosen to fit the data points with a

fixed 3/2 slope, instead of using the best-fit one, which has a
slope of 1.56 and a scatter of 0.429 dex, in order to preserve the
correct dimensionality inferred from the Pi theorem. Deviations
from the functional form with the correct dimensionality-
should be associated with new physical parameters, like the
ones introduced in Section 2.1 and Section 2.2, or with
variations in intrinsic observational biases.
We found that, thanks to the -H 1 2 term from Equation (3),

the data points in Figure 2 are consistent with a single star-
formation law, with a scatter comparable to the one found by
Daddi & Elbaz et al. (2010b) forS µ S t˙

gas orb. However, the
relation fitted by Daddi is not consistent with galactic GMCs
(Krumholz et al. 2012), as it is for our Equation (3), which in
additionis consistent with LSB galaxies. Also, Shi et al.
(2011) previously brought the LSB galaxies to the spiral trend
by introducing a Sstar

1 2 term, which for a stellar-dominated disk
potential, with a given stellar velocity dispersion, is equivalent
to an -H 1 2 term (van der Kruit 1988). It is important to
emphasizethat we choose h to be in agreement with the
observed differences in thickness between the galaxies
andstar-forming regions displayed in Figure 2, and it is not
an adhoc extra, free parameter introduced to decrease the
scatter in the relation.
The relatively higher scatter seen in individual star-forming

regionsshould be expected because at those smaller scales
other issues appear, such as time sampling in subgalactic
regions, that are not included in Equation (3). For example,
galaxies homogeneously sample the time line of star formation,
whereas individual star-forming regions are at a specific point
of such time line (Kruijssen & Longmore 2014). Formulations
including P2 (Equation (4)), which can be expressed as the
virial parameter, might take into account some of the
differences in the evolutionary sequence: initial collapsing
condensations (low avirial), steady-state configurations
(a ~ 1virial ), and the final evaporation (a  1virial ) . However,
for time sampling on even shorter timescales, new parameters
should be added.
If the scatter in the relation for individual clouds is

considerably reduced by including avirial or other physical
parameters, we could expect those regions to depart from the
same single relation of galactic systems. This is because the
observed variables in star-formation laws are always averages
at galactic scales, of quantities that vary strongly on the small
length scales of individual clouds. Therefore, filling factors of
gaseous clouds are very different compared to the averaged
ones at galactic scales, and this has an effect on the
normalization of the relation. In Section 3.2, we see an
example of how the gas surface density and SFR are diluted by
averaging over larger scales (kiloparsec).
The simplest possible interpretation for the relation shownin

Figure 2 (Equation (6))is in terms of the average free-fall time
(tff) at the characteristic length, which is now h=H R.
Assuming a linear relation between total quantities,

= M M t˙ gas ff , dividing it by the total system area =A R ,2

and noticing that r= = St G G H1 1ff gas , it is straight-

forward to get S = S G H˙
gas
3 2. However, it is important to

realize that the agreement between our dimensional analysis
and the observed datais only telling us that such free-fall time
is a characteristic timescale of the problem, but this doesn’t
mean that this simple picture, a monolithic free-fall collapse
from the characteristic length, is how it happens in nature.

Figure 2. Same as Figure 1, but with the gas surface densities divided by the
one-third power of the vertical scale length ( h=H R). The blue line shows the
fitting relation given in Equation (6), which has a scatter of 0.43 dex.
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The star-formation problem is controlled by nonlinear
physics coming from gravity, turbulence, feedback from stars,
and so on, which is far more complex than the simple free-fall
interpretation in terms of averaged quantities. Only by
performing detailed numerical experiments, which includethe
relevant physics, can light beshed on the exact reasons why
this timescale is important. This is analogous to the case of P2,
which we were able to findas a relevant parameter using
dimensional analysis, but its exponential functional form and
the reasons for itarisefrom numerical experiments.

Figure 2 also shows that the possible changes in slope in the
KS law at lower surface densities (Bigiel et al. 2008; Wyder
et al. 2009)are most probably due to variations of the
integration scale L, instead of variations of the molecular gas
fraction, as proposed by Bigiel et al. (2008). Moreover, Bigiel
et al. (2010) found that the star-formation efficiency
(S SSFR gas)increases with Sgas (dominated by HI in their
sample) and decreases with galactocentric radius R. In fact,
Equation (3) and h= =L H R implya star-formation effi-
ciency with the same trend, proportional to S R .gas

3.1. High-redshift Galaxies

The high redshift galaxies (filled circles and stars in
Figure 2)as individual galaxy populations show slopes clearly
departing from ∼3/2. This raises the question if new physical
parameters are responsible for this change in slope, as was
probably the case in the KS law at low surface densities (the
extra L term).

Figure 3 shows the same data points as Figure 2, but with the
individual slopes of the high-z disks (purple line) and starbursts
(cyan line). Both populations have a slope considerably
smaller, but surprisinglyquite similar (∼0.7 for disks and
∼0.8 for starbursts). Because they are high-redshift systems,
biases and resolution issues are always a possibility, but
variations of other physical parameters might also produce
noticeable changes in the efficiency  .

In Section 4.1, we will explore the possibility of having the
Toomre Q parameter (Toomre 1964)as a physical parameter
controlling the efficiency µ - e( )Q

SF . This allows us to

interpret the weaker slope at high zas a sign of changes in the
efficiency. One possible scenariois that the high-z galaxies
richer in gas are undergoing a more extreme starburst episode,
which generates enough energy to be in a state of larger Q,
producing a significant decrease in the efficiency that
compensates for their relatively higher surface densities.

3.2. The Central Molecular Zone

So far, we have not distinguished between L being the
observer’s LOS or the vertical thickness H, leaving the
difference between both cases inthe scatter. This difference
is only a projection factor, square rooted, unless we are dealing
with an edge-on system, in which caseL should be related to
the disk size. For that reason, a good starting point at which to
study this effect is the central molecular zone (CMZ)because
it is the nearest edge-on system and has anSFR lower than
expected from the KS law (Kruijssen et al. 2014 and references
therein).
In Figure 4 we study the location of three regions of the

CMZ in the same star-formation plot shownin Figure 2
(displayed as filled black circles). The regions studied are the
central 100 pc ring (stars), the 1.°3 complex (triangles), and the
230 pc zone (circles) that includes the two previous regions,
with data taken from Kruijssen et al. (2014). The yellow
symbols in Figure 4 indicate the location of the three CMZ
regions, using L equalto the vertical thickness H, and the red
ones arethe same regions but using L equal to the disk size.
We find that in all cases thatthe red circles (L = disk size)

are closer to the law given by Equation (6) (black line), as
expected for a edge-on system like the CMZ. In the particular
case of the central 100 pc ring, which was a clear outlier in the
previous estimation (yellow star), the more meaningful choice
for integration scale (L = disk size) is able to bring this region
into the relation (within the scatter). This suggests that a
systematic study is neededto quantify how much of the scatter
seen in the relation is due to projection effects in the estimation
of L, but this study is beyond the scope of this paper.
Finally, we wish to point out that the integrated 230 pc zone

is clearly the closest to the relation given by Equation (6)

Figure 3. Same as Figure 2. The purple line shows a slope of ∼0.7 for the
individual population of the high-z disks (Daddi et al. 2010a; Tacconi
et al. 2010). The cyan line shows the slope (∼0.8) for the population of high-z
starburst galaxies (Genzel et al. 2010).

Figure 4. SFR density as a function of the gas surface density, divided by the
one-third power of the integration scale length L. The yellow symbols indicate
the location of the three CMZ regions, using L equalto the vertical thickness,
and the red ones arethe same regions but using L equal to the disk size. The
black circles are the same galaxies andregions displayed in Figure 2.
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(black line). This is evidence that filling factors should play a
role in the normalization of the lawbecause its location is far
from the average of the other two individual regions,
suggesting that dilution is playing an important role. This
region with size ∼0.5 kpcstarts to be representative of the
typical filling factors at galactic scales and reflectsthe
differences from filling factors in “individual” star-forming
regions orclouds and its effect on the relation.

Alternatively, if the differences between the integrated
region and the two individual ones gobeyond differences in
filling factors, new physical parameters that affectthe SF
efficiency may explain the departures of the central 100 pc ring
and the 1.°3 complex from the relation given by Equation (6)
(black line), as we will discuss in the following section.

4. ON THE PHYSICS CONTROLLING THE
CHARACTERISTIC LENGTH

The functional dependence found in Figure 2 (Equation (6))
relies on the integration scale L. For that reason, it is relevant to
search for the galactic properties that determinesuch an
integration scale. Discarding projection effects and avoiding
edge-on systems, it is basically a question of what determines
the vertical thickness of such a star-forming galaxy orregion,
and we will focus the discussion on such a case.

4.1. The Largest Scale Not Stabilized by Rotation

In disk galaxies, the vertical thickness is of the order of the
largest scale not stabilized by rotation (Spitzer 1978),
l kµ SGrot gas

2, where k is the epicyclic frequency (see
Binney & Tremaine 2008). The lrot lengthis the only scale
intermediate between stars and galaxies that has a clear
physical basis and determines the most massive clumps that
are able to collapse (Escala & Larson 2008). This scale is also
relevant for starburst galaxiesbecause the bulk of the star
formation comes from a massive nuclear disk (Downes &
Solomon 1998). Moreover, even for systems without a large-
scale ordered motion, like noncoplanar orbiting streams in a
merger remnant, this scale can be generalized and is
responsible for the width of individual star-forming streams
(Escala et al. 2013). Therefore, the largest scale not stabilized
by rotation is a natural candidate for controlling the
characteristic integration length for galaxies.

Replacing L by lrot in Equation (3) and noticing that k is
aproximately equalto Ω, within a factorof two (Binney &
Tremaine 2008), the star-formation law has the following
expression:

S = S =
S

 
t

˙ Ω , (7)gas
gas

orb

which is one of the formulations studied in Kennicutt (1998) and
is consistent with a single star-formation law for galaxies up to
high z (Daddi & Elbaz et al. 2010b). For edge-on systems, the
same scaling is expected, but with a different normalization, since
rotational support implies Rασgas /ω

2fgas, where Fgas=Mgas/Mtot

is the gas mass fraction.
The second dimensionless parameter depends also on L, and

when replaced by lrot, it is kP = Sv G2 turb gas, which is
easilyrecognizable as the “turbulent” version of the Toomre
parameter (Qturb; Toomre 1964). Under this scenario, to be in
agreement with the exponential dependence of P ( )2 seen by

Padoan et al. (2012), the star-formation law should be
S = S- e˙ ΩQ q

gas
turb , havingq geometrical factors. The star-

formation timescale, t = S S˙
SF gas , should also be propor-

tional to Q q texp ( )turb orb. In fact, this exponential dependence
in tSF has been observed in numerical experiments of star
formation in galactic disks, finding t µ Qexp ( 0.61)SF turb (Li
et al. 2005). This numerical simulation does not find the
t µ tSF orb dependence, simply because the orbital time is not
varied between simulations (see their Table 1). Moreover,

lP ( )2 rot shows the equivalence between results in galactic-
scale simulations (Li et al. 2005) and MHD simulations of
GMCs (Padoan et al. 2012).
Finally, because it is observed that ~Q 1turb for most

galaxies, this reconciles the apparent conflict between the
strong exponential dependence onQturb and star-formation laws
like KS, which aside from being independent of Qturbare
consistent with observations. Nevertheless, as discussed in the
previous section, high-z galaxies as subpopulations tendto
show a weaker slope than 3/2 (Figure 3). One possible
scenariois that this weaker slope is a sign of changes in the
efficiency ϵdue to significant variations of Qturb in theseex-
treme systems. For example, galaxies undergoing a extreme
starburst episode that generates enough turbulence to be in a
state of >Q 1turb will produce a significant decrease of the
efficiency ϵ.

4.2. The Turbulent Jeans Scale

Besides the several positive implications of identifying lrot
as the characteristic length L, it isstill worthwhileto explore
alternatives. As discussed, from gravitational instability, it is
clear that lrot (Escala & Larson 2008) is the characteristic
length of collapsing clumps, and for unstable disks, such a
scale is similar to the vertical thickness because this is when
rotation starts to stabilize (and support) the system. However, it
is more often found in the literature that the characteristic
length of collapsing clumps is determined by the turbulent
Jeans scale (e.g., Elmegreen 2002; Kim & Ostriker 2002). It is
important to notethat the condition ~Q 1turb is equivalent to
havingl l~rot jeans (Escala & Larson 2008), and therefore
itis hard to distinguish between the scales in most galaxies.
If we instead replace L by the two-dimensional “turbulent”

Jeans scale, l µ Sv Gjeans turb
2

gas, Equation (3) can be rewritten

asS = S - G v˙
gas
2

turb
1 . This is the same star-formation law found

in a scenario where turbulence from a starburst regulates the
vertical height (Equation (21) in Ostriker & Shetty 2011). The
second dimensionless parameter in such a case, P =2

lS
-

( )v Gturb gas jeans

1 2
, is equalto one, meaning that Qturb

becomes irrelevant and that this scenario is only valid in the
particular case of ~Q 1turb . This also supports the scenarioin
which the vertical height is controlled by the large-scale
galactic potential (lrot) and is the self-regulation loop of
Goldreich & Lynden-Bell (1965), which pushes l jeans toward
lrot ( ~Q 1turb ), as discussed in Escala (2011).

4.3. Individual Star-forming Clouds

For individual star-forming clouds with sizes smaller than
the galactic vertical thickness, their characteristic length L is
their diameter R2 . In order to include the possibility ofout-of-
equilibrium configurations, as in Section 4.1, itis convenient to
express it in terms of the virial parameter a º T W2virial .
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Within geometrical factors, the virial parameter is on the order
of Rv GMturb

2
c, being = SM Rc gas

2, the cloud’s total gas mass,

or equivalently, a= SR v Gturb
2

gas virial.
Identifiying R as the characteristic length in the

second dimensionless parameter, it becomes aP =2 virial.
Motivated by the fitted star-formation efficiency

µ - S
-

 ( )v G Lexp ( 1.74 )ff turb gas

1 2
of Padoan et al. (2012),

for individual clouds Equation (5) can be rewritten as

S = S a-  [ ] G

R
e˙ ,

2
. (8)as gas

3 2 1.23 virial

5. DISCUSSION

In this paper, we have explored an alternative approach to
studying the universal star-formation law. Instead of using
idealized analytical models to study this inherently complex
and multiparametric problem, like most in modern astronomy,
we used the Pi theorem of dimensional analysis to search for
the relevant physical variables. In addition, this approach
avoids the temptation of overinterpreting simple “spherical
cow” models.

Using the Vaschy–Buckingham Pi theorem, we find that the
star-formation law should have a form S = S

˙ G

L gas
3 2, where

L is a characteristic length. We argued that L should be related
to the integration scale, whichtransforms relevant 3D quan-
tities in the star-formation problem into 2D ones, like S˙ and
Sgas. Using simple estimations for L, we find that galaxies of
different types and redshifts, including LSB Galaxiesand
individual star-forming regions in our Galaxy, obey this single
star-formation law.

The only free parameter introduced in our analysis is h, in
h= =L H R, which is in principlea possible caveat of the

present analysis. However, we choose observed values that
varyfrom 0.02 for spirals orLSB galaxies to 2 for individual
clouds, a range at most a factor of 10 in h . For local starbursts
and high-z disks, we choose a larger value of 0.1, which is in
agreement with the measured values in starbursts (Downes &
Solomon 1998) and with the larger thickness predicted
(Kroupa 2002) and estimated (Elmegreen & Elmegreen 2005)
for gas-rich, high-z disks. The only debatable value is the
choice of h = 0.1 for high-z starbursts (Genzel et al. 2010).
However, a choice of h = 0.4will only increase the scatter in
Figure 2 to 0.45 dexand h = 1to 0.47 dex. We decide to not
vary the parameter h at this levelbecausethese are variations
comparable to other possible sources of error, such as the CO
conversion factors assumed in Genzel et al. (2010).

We also find that, depending on the assumption chosen for
the vertical scale length H, this star-formation law adopts the
different formulations previously studied in the literature. For a
constant H, we recover the standard KS law. For l=H rot, we
recover S µ S t˙

gas orb, and for l=H Jeans, we find

S µ S v˙
gas
2

turb.
As a vertical scale length, we favor l=H rotbecause this is

the characteristic length of the most massive collapsing clumps,
and for unstable disks, such a scale is comparable to the vertical
thickness, because this is when rotation starts to stabilize and
globally support the system. In such a case, P2 can be
identified as the Toomre parameter Qturb, allowing us to include
systems out of equilibrium ( ¹Q 1turb ). This case suggests that

for galaxiesa universal star-formation law has the form

l
S = S-  [ ] e

G˙ , , (9)a

Q
qs

rot
gas
3 2turb

which is expressed in terms of physical variables related to
local and global properties. Using l kµ SGrot gas

2, this
equation is equivalent to

kS = S-  [ ] e˙ , , (10)a

Q
qs gas
turb

where k is approximately equalto Ω, within factors of two.
This can be generalized to systems without large-scale ordered
motion (mergers), by replacing k by the modulus of the orbital
frequency vector Ω0 (Escala et al. 2013), which alsodepends
on the center of rotation 0. The exponential decay on the
efficiency in Equation (10) is so far only supported by
numerical experiments, so it would be interesting to test such
dependence with observations, more specificallyif this can
take into account part of the observed scatter in the star-
formation law.
In summary, we have shown the advantages ofusing

theVaschy–Buckingham Pi theoremto guide the analysis of
the results coming from numerical simulations and observa-
tions. Future observations of star formation under more
extreme environments, complemented with new numerical
experiments that include more physicsand a larger dynamical
range, could shed light in finding new physical variables and
their functional dependence in the star-formation law.
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