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IVÁN RAPAPORT ZIMERMANN
GONZALO RUZ HEREDIA

Este trabajo ha sido parcialmente financiado por
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Resumen

Una red Booleana es un modelo de redes en el cual, cada nodo o elemento de la red tiene
asociado una función Booleana que determina el estado del nodo respectivo, y de esta forma
la evolución de la red en el tiempo. Los puntos fijos de una red Booleana, esto es, estados
particulares de la red que permanecen constantes en el tiempo, han ganado importancia,
por ejemplo, en el contexto de redes de regulación génica, donde los puntos fijos tienen un
correlato biológico. Para cada red finita y estado inicial posible, dentro de una cantidad finita
de actualizaciones de la red, los estados de la red alcanzarán un punto fijo o un ciclo ĺımite,
la cual es una secuencia de estados de la red que se repiten a lo largo del tiempo. Puntos
fijos y ciclos ĺımites son denominados atractores de la red.

En este trabajo nos concentramos en estudiar ciertos aspectos de los atractores de redes
Booleanas, incluyendo aspectos computacionales, caracterizaciones, entre otros, utilizando la
noción de “filtro” de una red. Un filtro es un procedimiento consistente en aplicar de forma
iterativa transformaciones a una red, cada una de las cuales simula con dinámica paralela
cierto modo de actualización, produciendo una nueva red cuyas propiedades y dinámica
pueden ser relacionadas con la red inicial. Se ha mostrado que estos filtros pueden ser muy
útiles, dado que filtros asociados a actualizaciones secuenciales pueden entregar información
eficientemente sobre los puntos fijos de una red (Goles y Salinas 2010).

Nuestro análisis se restringe a redes Booleanas disyuntivas, lo cual permite concentrarse
solo en la topoloǵıa de la red. Nos concentramos además en esquemas de actualización
bloque-secuencial, los cuales son una generalización de los esquemas paralelo y secuencial.
Los principales resultados de este trabajo establecen cotas polinomiales para la complejidad
de tiempo de un filtro, aśı como condiciones sobre la red y esquema de entrada que aseguran
ciertas propiedades en la red de salida, incluyendo la remoción de ciclos ĺımites. Los resultados
obtenidos hacen uso de teoŕıa de matrices positivas, y fueron formulados con la ayuda de
simulaciones computacionales ejecutadas con una aplicación desarrollada para este fin.
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Abstract

A Boolean network is a network model in which every node or element of the network has an
associated Boolean function that determines the respective node state, and thus the evolution
of the network over time. Fixed points of Boolean networks, that is, particular states of the
network that remain constants over time, have gained importance, for example, in the context
of gene regulatory networks, where fixed points have a biological correlate. For every finite
network and every possible initial state, in a finite number of updates of the network the
state of the network will reach either a fixed point or a limit cycle, which is a sequence of
network states that repeats over time. Fixed points and limit cycles are called attractors of
the network.

In this work we concentrate on studying certain aspects of attractors of Boolean networks,
including computational aspects, characterizations, and so on, using the notion of a “filter”
for a network. A filter is a procedure consisting in iteratively applying transformations to
the network, each of which simulates certain manner to update the network with parallel
dynamics, producing a new network whose properties and dynamics can be related to the
initial network. It has been shown that these filters can be very useful as filters associated
to sequential updates deliver information efficiently about its fixed points (Goles and Salinas
2010).

We restrict our analysis to disjunctive Boolean networks, allowing us to concentrate only
in the topology of the network. We focus also in block-sequential update schedules, which
are a generalization of the parallel and sequential update schedules. The main results of this
work establish polynomial bounds for the time complexity of a filter, and conditions over the
input network and schedule ensuring some properties in the output network including the
removal of limit cycles. The results obtained make use of positive matrix theory, and were
formulated with the aid of computational simulations performed with a computer application
developed to that effect.
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Introduction

A Boolean network is a mathematical model proposed by Kauffman in the late 60’s, initially
to address the problem of spontaneous generation of order in complex systems [54], [55]. A
Boolean network consists of a finite set of Boolean functions, and is referred as a “network”
since it can be represented as a digraph, where every node has a Boolean state that is the
output of the respective Boolean function. The value returned by this function depends on
the states of the neighbor nodes, and determines in turn, the evolution of the configuration
of the network states over time.

These models have acquired importance in last years as a tool to simulate the dynamics of
gene regulatory networks, since the article published in 1998 by Mendoza & Alvarez-Buylla
[71], which studies floral morphogenesis of Arabidopsis thaliana. Unlike other models based
on differential equations, which exploit reaction kinetics in terms of rates and concentrations,
Boolean networks do not require a large number of biochemical parameters difficult to esti-
mate [87]. Although these networks are a simplification of the observed phenomenon -since
they do not consider spatial aspects or continuous nature of gene and protein levels-, there are
arguments to discretize the involved magnitudes: the functions that map the regulatory input
signal (for example, stimulating protein level) to the response (for example, enzyme activity)
can be approximated by functions similar to Heaviside step functions; several mechanisms
[78], [29] that would make this approximation valid have been suggested.

In our setting, each function from the Boolean network is updated according to a deter-
ministic ordering. For example, in the sequential case, functions are updated one after other
one in some established order. In the parallel case, all network functions are updated at the
same time. Or it can be a mixture of previous modes, which is called the block-sequential
schedule, where some node groups are updated in parallel, and others in sequential way. Since
the total number of network configurations is finite and the update mode is deterministic,
the network states configuration converges, in a finite number of updates of the network
from every possible initial state, to equilibrium points or attractors, where depending on the
period length two behaviors are distinguished: fixed points, particular states of the network
that remain constants over time, and limit cycles, sequences of network states that repeat
over time.

Several papers published in the last years have shown that fixed points of these networks
may correspond, in many contexts, with observable biological states [28], [2], [7]. For exam-
ple, the networks for the fission yeast cell cycle (the species Saccharomyces cerevisiae [65]
and Schizosaccharomyces Pombe [19]), whose dominant attractors correspond with observed
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stationary state G1. Or also in the network for the development of Arabidopsis thaliana [71],
the authors achieve to identify 4 of its 6 fixed points to the four specific tissues of the flower
(sepals, petals, carpels and stamens). In the other hand, limit cycles do not have a clear
biological meaning.

In this work we concentrate on studying certain aspects of attractors of Boolean networks,
including computational aspects, characterizations, and so on, using the notion of “filter”.
A filter is a procedure consisting in iteratively applying transformations to a given network,
each of these transformations simulates a certain way of updating a network under parallel
dynamics. This produces finally a new network whose properties and dynamics can be related
to the initial network. It has been shown that these filters can be very useful, as they deliver
information efficiently about the fixed points of the input network (Goles and Salinas 2010
[39]).

In particular, the authors proved that the filtering procedure, under certain conditions
over the initial network, outputs a Boolean network that preserves some attractors of the
original network, the fixed points, and removes or filters out the limit cycles. By this reason,
this procedure is named as “Filter”, and it can be used to compute fixed points in polynomial
time. This is a non-trivial property, since it is known that the general problem of existence
of fixed points for Boolean networks is NP-Complete [90]. Thereby, the filters associated to
sequential updates can be seen as part of a large set of algorithms developed in recent years
to find Boolean network attractors: reduced order binary decision diagrams [30], [93], scalar
equation method [43], [27], based in power law [48], out-degree based gene ordering [91], SAT-
based [24], constraint programming [21]. In general, existing algorithms were proposed for
networks updated synchronously (in parallel), or asynchronously, where one node, selected
randomly, is updated at each time.

We restrict our analysis to disjunctive Boolean networks, allowing us to concentrate only
in the topology of the network (see Section 2). These are networks whose Boolean functions
only have disjunctions of variables. It is a good start point to restrict the goal of study in
this sense, given the difficulties that may arise when functions defining the network become
slightly more expressive. Potential complex or intractable behaviors in disjunctive networks
may be evidence suggesting these difficulties.

There are theorical works that have studied the phenomenon of distinct update schedules
producing different dynamics in the same network [38]. The lack of empirical knowledge about
the order in which genetic regulations occur in biological networks, there makes no arguments
to support the election of a more realistic iteration mode. However, community of biologists
tend to agree that it is unlikely that genes involved in the same physiological function evolve
in parallel [49]. Other paper [59] affirms that a large fraction of attractors are an artifact
produced by the parallel update, in the sense they are unstable to small perturbations or
shifts of update events. By these reasons, it is of interest the study of Boolean network
dynamics under more realistic and general update schedules than the parallel update. For
this reason, we focus also in block-sequential update schedules (see Subsection 1.3), which
are a generalization of the parallel and sequential update schedules. These schedules have
been shown consistent with empirical data. In fact, in the seminal work by Mendoza &
Alvarez-Buylla [71], a specific block-sequential update schedule was used in agreement to
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available experimental data regarding the activation order of gene groups.

The main results of this work establish polynomial bounds for the time complexity of
a filter (Sections 3 and 4), and conditions over the input network and schedule ensuring
some properties in the output network including the removal of limit cycles (Sections 5 and
6). The polynomial time for computing a filter (Theorem 7.1) is a critical issue if the filter
is thought of as an algorithm to find Boolean network attractors. This bound is derived
from a general bound for the converge time to attractors in disjunctive Boolean networks
(Theorem 3.9). However, there are some cases in which the time for computing a filter could
grow even super-polynomially; this situation is adressed in Theorem 4.6. This intractable
behavior appears when the filtering procedure converges to a set called the filter attractor
that results to have a super-polynomial size. This behavior can be avoided, for example,
when the filter attractor is a structural fixed point, that is, the filter attractor is a set formed
by only one network. Theorem 6.2 establishes a condition on the input network that ensures
that the filter attractor is a structural fixed point. In the other hand, Theorem 5.5 establishes
a condition on the input network that ensures that the networks in the filter attractor do
not have limit cycles when updated with the parallel schedule. The results obtained make
use of positive matrix theory (see Subsection 3.1), and were formulated with the aid of
computational simulations performed with the purpose of testing the working hypothesis,
thanks to a computer application (Appendix B) developed to that effect.
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Chapter 1

Definitions and theoretical framework

1.1 Preliminaries

A digraph (or directed graph) D = (V,A) consists of a finite set V of elements called nodes
(or vertices) and a prescribed set A of ordered pairs of (not necessarily distinct) vertices of
V . Every ordered pair α = (a, b) of vertices a and b in A is called an arc (or directed edge)
of the digraph D. For the arc α = (a, b), the vertices a and b are called the endpoints of α,
a is called the initial vertex and b is called the terminal vertex ; also, it is said that vertex a
is incident to vertex b. The vertex set of D is referred to as V (D), and its arc set as A(D).

A subdigraph of D is a digraph D′ = (V ′, A′) where V ′ ⊆ V and A′ ⊆ (V ′ × V ′) ∩ A. We
write D′ ⊆ D. For a digraph D = (V,A) and a set V ′ ⊆ V , we define the subdigraph induced
in D by V ′, which we denote as D(V ′), as the digraph whose vertex set is V ′, and its arc
set is (V ′ × V ′) ∩ A.

For a digraph D = (V,A), it is defined the transpose (or reverse) of D, which we will
denote as DT , as the digraph having the same vertex set V , and whose arcs are reversed with
respect to the corresponding arcs of A, that is, DT = (V,AT ), where AT = {(u, v)|(v, u) ∈ A}.

For a digraph D = (V,A), it is defined the in-neighborhood N−
D (i) of a node i ∈ V , as the

set of incident vertices to i: N−
D (i) = {j ∈ V |(j, i) ∈ A}. The in-degree of i is the cardinal

of this set, denoted as deg−D(i) (deg
−
D(i) = |N−

D (i)|). The out-neighborhood N+
D (i) of a node

i ∈ V , is defined as the set of vertices at which i is incident: N+
D (i) = {j ∈ V |(i, j) ∈ A}.

The out-degree of i is the cardinal of this set, denoted as deg+D(i) (deg
+
D(i) = |N+

D (i)|).

A directed walk from vertex v0 to vertex vm in a digraph D is a sequence of vertices
v0, v1, . . . , vm of V (D) such that (vk, vk+1) ∈ A(D) for all k = 0, . . . ,m − 1. We say that a
walk v0, v1, . . . , vm has length equal to m. A directed path (or directed chain) v0, v1, . . . , vm
is a directed walk with no repeated vertices, except perhaps v0 and vm. A closed walk or
circuit is a directed walk v0, v1, . . . , vm where v0 = vm. A closed path, simple circuit or cycle
is a directed path v0, v1, . . . , vm where v0 = vm. A loop is a cycle of length equal to 1.
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Two vertices a and b are called strongly connected provided there are directed walks from a
to b and from b to a. A vertex is regarded as trivially strongly connected to itself. Defined in
this way, strong connectivity is an equivalence relation: reflexive, symmetric and transitive.
Hence strong connectivity yields a partition (Vi)

C
i=1 of the vertex set of digraph D. The

subdigraphs D(V1), D(V2), . . . , D(VC) induced in D by each equivalence class are called the
strongly connected components (s.c.c.’s) of D. A digraph D is strongly connected if it has
exactly one strongly connected component.

Let D be a digraph, and let D(V1), D(V2), . . . , D(VC) the strongly connected components
of D. Let D∗ be the digraph whose vertices are the sets V1, V2, . . . , VC in which there is an
arc from Vi to Vj if and only if i 6= j and there is an arc in D from some vertex in Vi to
some vertex in Vj. The digraph D∗ is the condensation digraph of D. It is not difficult to
prove that D∗ does not have loops or closed directed walks (Lemma 3.2.2 in [13]), therefore
D∗ is a directed acyclic graph (DAG) -that is, a directed graph with no directed cycles- and
consequently admits a topological sort, which is an ordering of its vertices such that for every
arc, the initial vertex comes before the terminal vertex in the ordering.

A graph (or undirected graph) G = (V,E) consists of a finite set V of elements called
nodes (or vertices) and a prescribed set E of 2-element subsets of V called edges or lines.
For undirected graphs we can define walks, paths, circuits and cycles similarly to what was
done for digraphs. We say an undirected graph G = (V,E) is connected if there is a path in
G between every pair of vertices in V .

For a directed graph D = (V,A) we can define the underlying graph of D as the undirected
graph GD = (V,ED), where ED = {{v, w}|(v, w) ∈ A ∨ (w, v) ∈ A}. We say that a digraph
D is weakly connected if its underlying graph is connected.

Finally, we will refer to some of the basic operations of Boolean algebra as follows: the
conjunction (AND) of variables x and y is denoted as x ∧ y, and it satisfies x ∧ y = 1 if and
only if x = y = 1. The disjunction (OR) of x and y, denoted as x ∨ y, meets that x ∨ y = 0
if and only if x = y = 0. The negation (NOT), denoted as ¬x, is defined as follows: ¬x = 1
if and only if x = 0.

1.2 Boolean networks

This section follows conceptualizations presented in [37] and [39]. A Boolean network NF

of size n is defined by a global transition function F : {0, 1}n → {0, 1}n, where F (~x) =
(f1(~x), · · · , fn(~x)), and for each i ∈ {1, . . . , n}, fi : {0, 1}

n → {0, 1} is called the i−th local
transition function. The vector ~x ∈ {0, 1}n taken as argument by these functions is called
vector of network configurations or states. The intuition behind is, if current configuration of
the network is ~x, after updating node i its new state is given by fi(~x). The graph associated
to NF is the directed graph GF = (V,A), where:

• V = {1, · · · , n}

• (i, j) ∈ A iff there exists some ~x ∈ {0, 1}n such that
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fj(x1, · · · , xi−1, 0, xi+1, · · · , xn) 6=

fj(x1, · · · , xi−1, 1, xi+1, · · · , xn).

The intuition from the last definition is given by the fact that each node represents one
component from the network state vector. So, there is an arc (i, j) starting from node i
and ending on j, if function fj (or in other words, the component j of network state vector
after updating its value) depends on component i from the current configuration vector. As
a consequence of this, the nodes without incident arcs are those corresponding to variables
having a constant value, that is, those nodes j such that

fj(~x) = 1 ∀~x ∈ {0, 1}n or fj(~x) = 0 ∀~x ∈ {0, 1}n

Notice that a variable having a dependency on itself is represented in the graph as a loop: a
cycle of length equal to one, connecting a node to itself. Observe that the graph associated
to some Boolean network displays only dependencies existing between nodes, but without
additional information the global transition function cannot be recovered from the associated
graph.

Example 1 A Boolean network NF with its respective associated digraph is the following:

NF :

f1(~x) =x4

f2(~x) =x1 ∨ ¬x4

f3(~x) =x2 ∧ x3

f4(~x) =x3 ∧ x5

f5(~x) =¬x2

2

5

1 4

3

1.3 Update schedules

In order to see Boolean networks as dynamical systems, an updating procedure of the network
must be specified. Let NF be a Boolean network with global transition function F : {0, 1}n →
{0, 1}n, and GF = (V,A) be the associated digraph, where we will use the next convention:
V = {1, . . . , n}. We define a general update schedule S by an update function sS : V →
P({0, . . . , n− 1}), such that for each i ∈ V , sS(i) corresponds to the set of instants at which
node i is updated during one update sequence. A schedule S is represented either by an
update sequence given by the sequence of sets BS

0 , B
S
1 , . . . , B

S
m−1, such that m is the number

of update instants of the sequence, and for each j ∈ {0, . . . ,m − 1}, BS
j ⊆ V refers to the

set of nodes updated at instant j of the update sequence. From now on BS
j will be referred

as the j−th block of the schedule. Notice that the update function and the update sequence
of a schedule are indeed equivalent representations, since it holds that:

BS
j = {k ∈ V |sS(k) = j} = s−1

S ({j})

7



Given this equivalence between these two representations, we will refer to a update sched-
ule as a function or as a sequence of blocks interchangeably. When there is no confusion
about what schedule is referred, we will simply write Bj instead of BS

j , and s instead of sS.
A notation frequently used is to write the nodes belonging to one update block enclosed by
a pair of parentheses, as can be seen in the next example.

Example 2 Let V = {1, 2, 3, 4} be the set of nodes of the digraph G associated to a Boolean
network NF , and let s : V → P({0, 1, 2, 3}) the following update function: s(1) = φ, s(2) =
{0}, s(3) = {0, 2}, s(4) = {1}. A more convenient notation for this schedule is to write its
update sequence (2, 3)(4)(3), where nodes updated at the same time belong to some update
block and are written in brackets; also the blocks are displayed in increasing order according
the update instant.

Notice that, in an arbitrary update schedule with update function s, some nodes could
never be updated (a node j verifying |s(j)| = 0), while others could be updated more than
once during one update sequence (a node j verifying |s(j)| > 1). In this work, an important
definition will be that of block-sequential update schedules: these are schedules where each
node is updated exactly once during one update sequence, that is, for every i ∈ V , it holds
that |s(i)| = 1. For a block-sequential update schedule, since for each node i ∈ V the set s(i)
results to be a singleton, we can compare update instants with the usual order in N: we say
the node i is updated after node j if s(j) < s(i). Also, for a block-sequential update schedule
S, the update function results to be s : V → {0, . . . , n− 1} (the update function in general
is defined as s : V → P({0, . . . , n − 1}), since a node could be updated several times), the
number of update instants verifies m ≤ n = |V |, and the set of blocks (Bj)

m−1
j=0 is a partition

of the set of nodes V .

Two important block-sequential update schedules are the following:

• The parallel schedule, usually denoted as π, is a schedule in which all the nodes of the
network are updated at the same time. Therefore, in the parallel schedule there is just
one block Bπ

0 = V .

• A sequential schedule S ′ is that in which one node is updated at every instant, that is,
for every t < m, |BS′

t | = 1, where m is the number of blocks of S ′. Necessarily for these
schedules, if n is the number of nodes of the network, then m = n. It can be assumed,
without loss of generality (via a graph isomorphism), that the sequential schedule S ′

corresponds to the fixed permutation (1)(2) · · · (n).

1.4 Dynamics of Boolean networks

Given a Boolean network NF of size n with global transition function F and local transition
functions (fi)

n
i=1 (that is, for each ~x ∈ {0, 1}n, it holds that F (~x) = (f1(~x), · · · , fn(~x))), and

some update schedule S with blocks (Bℓ)
m−1
ℓ=0 , we want to formalize the notion of network

dynamics. For this, it is defined the State Transition Graph STG(F, S) = (V,A), where
V = {0, 1}n and (~x, ~y) ∈ A if and only if ~y = F[Bm−1] ◦ · · · ◦ F[B1] ◦ F[B0](~x), where
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F[Bℓ](~x)i =

{
fi(~x) i ∈ Bℓ,
xi otherwise

F[Bℓ](·) is called the transition function with respect to the block Bℓ ⊆ V of nodes updated in
parallel. The intuition of STG(F, S) is that arcs represent configuration or state transitions,
from any possible state to the state obtained after a complete update sequence, where the
first nodes to be updated are those in the first block B0, then the nodes in B1, and so on up
to the last block Bm−1.

Now we can define the global transition function of a network with update schedule S, as
the function FS : {0, 1}n → {0, 1}n that outputs the new network configuration after a whole
update sequence:

FS(·) = F[Bm−1] ◦ · · · ◦ F[B1] ◦ F[B0](·)

Example 3 Let NF be the Boolean network of size 4 and global transition function F , given
by transition functions f1(~x) = x4, f2(~x) = x1 ∨ x4, f3(~x) = x1 ∧ x2 and f4(~x) = x3,
and let S be the block-sequential schedule given by blocks B0 = {2, 3}, B1 = {1, 4}. If we
start from state vector ~y = (0, 1, 0, 1), to get the transition obtained after a complete update
sequence with S, we first compute the vector F[B0](~y) = (0, 0 ∨ 1, 0 ∧ 1, 1) = (0, 1, 0, 1), and
then the vector F[B1](F[B0](~y)) = F[B1](0, 1, 0, 1) = (1, 1, 0, 0). If we now start from state
vector ~z = (1, 1, 0, 0), to get the transition obtained after a complete update sequence with
S, we first compute the vector F[B0](~z) = (1, 1 ∨ 0, 1 ∧ 1, 0) = (1, 1, 1, 0), and then the vector
F[B1](F[B0](~z)) = F[B1](1, 1, 1, 0) = (0, 1, 1, 1).

Now, if we work with the same schedule showed in Example 2, where V = {1, 2, 3, 4},
S = (2, 3)(4)(3), and we have a initial state vector ~x ∈ {0, 1}4, to compute the network
configuration after one complete update sequence, we must compute the vector FS(~x), therefore
we need to compute the following values

F[{2,3}](~x) = (x1, f2(~x), f3(~x), x4)

F[{4}](F[{2,3}](~x)) = (x1, f2(~x), f3(~x), f4(F[{2,3}](~x)))

F[{3}](F[{4}](F[{2,3}](~x))) = (x1, f2(~x), f3(F[{4}](F[{2,3}](~x))), f4(F[{2,3}](~x))) = FS(~x)

In this example, F[{2,3}](~x), F[{4}](F[{2,3}](~x)), F[{3}](F[{4}](F[{2,3}](~x))) are the consecutive net-
work configurations when the network is updated according to the sequence given by the sched-
ule S starting from state vector ~x. The final configuration obtained F[{3}](F[{4}](F[{2,3}](~x)))
corresponds to the vector FS(~x), the configuration of the network after a whole update se-
quence.

For a Boolean network NF with global transition function F (~x) = (f1(~x), · · · , fn(~x)),
updated with a block-sequential update schedule S (and respective update function s) it is
defined, for a node i ∈ V , the local transition function fS

i relative to S as the i−th component
function of FS, that is

FS(~x) = (fS
1 (~x), · · · , f

S
n (~x))
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The function f s
i (·) corresponds to the state that node i has once it has been updated during

one update sequence and its update in the next update sequence. Recall that for block-
sequential update schedules, each node is updated only once during one update sequence.
Defined as above, the functions fS

i can be characterized as follows (the proof of this can be
found in Lemma A.1 of the appendix):

∀~x ∈ {0, 1}n, fS
i (~x) = fi(x

i
1(~x), . . . , x

i
n(~x)) where x

i
j(~x) =

{
xj s(i) ≤ s(j),

fS
j (~x) s(i) > s(j)

1.5 Attractors: fixed points and limit cycles

We are interested in studying the limit behavior of the system given by the state updating
of a Boolean network. First, we need some notation. For some update schedule S, we will
employ the iterated composition of function FS, notated as F t

S:

F t
S(·) ≡ FS ◦ · · · ◦ FS(·)︸ ︷︷ ︸

t times

For an initial configuration ~x ∈ {0, 1}n, the following notation will be used hereinafter:
~x(0) ≡ ~x and ~x(t) ≡ F t

S(~x) (that is, ~x(t) is the network configuration after applying t times
the global transition function with schedule S, FS). Now, since the set of possible state
configurations of a network is finite (with cardinal equal to 2n if the size of the network is
n), and the updating procedure is deterministic, every possible trajectory ~x(t) (starting from
any initial state ~x(0)) necessarily ends up looping or reaching some previous configuration.
That is, for all ~x(0) ∈ {0, 1}n, there exist t, p ∈ N, such that ~x(t+ p) = ~x(t). For any initial
condition ~x(0) ∈ {0, 1}n, we define the transient length of ~x(0), and the period length of ~x(0),
denoted respectively by tran(~x(0)) and per(~x(0)), as the smallest positive integers t and p
satisfying the last equality, for a trajectory ~x(t), t ∈ N, starting from ~x(0). If there is no
confusion about the initial condition, we will refer to the transient and the period simply as
t and p.

Two limit behaviors are usually characterized. When p = 1, or in other words, ~x(t+1) =
~x(t), the configuration ~x(t) is said to be a fixed point. The other case, when p > 1 and

~x(t+ p) = ~x(t)

~x(t+ i) 6= ~x(t+ j) i 6= j, and i, j ∈ {0, . . . , p− 1}

then the set of configurations {~x(t + i)|i = 0, . . . , p− 1} is called a limit cycle. Fixed points
and limit cycles are denominated attractors of the network. Fixed points are characterized
equivalently as those configurations ~x(t) meeting that FS(~x(t)) = ~x(t), ie, configuration
vectors that are fixed points for function FS(·), given that:

~x(t+ 1) = F t+1
S (~x(0)) = FS(F

t
S(~x(0))) = FS(~x(t)) = ~x(t)
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Example 4 If we compute all the possible state transitions of a network with some update
schedule, we can plot the state transition graph defined previously. Here we make this with
network NF and schedule S from Example 3, thus the image below is a picture which shows
STG(NF , S):
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With this representation it is easy to visualize the attractors in the network dynamics as
cycles in this graph (since (~x, ~y) is a transition in this graph if and only if ~y = FS(~x)); thus,
the loops in this graph, (0, 0, 0, 0) and (1, 1, 1, 1), are fixed points, and the cycle of length 2
formed by state vectors (1, 1, 0, 0) and (0, 1, 1, 1) is a limit cycle with period length equal to 2.

1.6 Gauss-Seidel Operator

In one of the first theoretical studies about update schedules in the context of automata
networks [81], F. Robert proved that Boolean networks without circuits have a unique fixed
point. He also proposed a procedure, namely the Gauss-Seidel operator, which maps a
network with asynchronous update (in our context, a sequential update schedule) into a
synchronous model (ie, a parallel schedule). Specifically, for the sequential schedule S =
(1)(2) . . . (n), and a Boolean networkNF of size n and global transition function F , the output
of Gauss-Seidel operator is given by NF ′ , where the function F ′(x) = (f ′

1(x), · · · , f
′
n(x)) is

defined as follows:

f ′
1(x) = f1(x)

f ′
i (x) = fi(f

′
1(x), · · · , f

′
i−1(x), xi, · · · , xn), ∀i = 2, · · · , n

Robert proved that the iterative aplication of this operator on Boolean networks without
circuits becomes stationary and the resulting network has the same fixed point than the
original one ([81]). The synchronous simulation of sequential update done by this operator
has proven useful in itself in other fields (see for example, Chapter 6 in [64]).

Let Nn = {NF | F : {0, 1}n → {0, 1}n} be the set of all Boolean networks of size n, and let
Sn be the set of all block-sequential update schedules for Boolean networks of size n. In this
work, we will use a generalization of the cited operator: the operator GS : Nn × Sn → Nn,
which will be also referred as Gauss-Seidel operator, is defined as follows

GS : Nn × Sn → Nn

(F, S) 7→ FS

11



that is, for a global transition function F and a block-sequential update schedule S, GS(F, S)
returns FS, the global transition function of network F with update schedule S, which com-
plies that

STG(F, S) = STG(FS, π)

Last equality means that Gauss-Seidel operator returns the global transition function of
a network that simulates in parallel the dynamics of STG(F, S), that is, one update of FS in
parallel, produces the same output of one update of network F with schedule S.

1.7 Filters

From the contribution of Robert of having applied the Gauss-Seidel operator in iterative
manner, a line of investigation has initiated concerning the properties of this procedure. We
need to introduce some notation necessary for the study and discussions conducted on this
section and the rest of the entire work. For a Boolean network N and a block-sequential
update schedule S, we define the Filter associated to N and S as the following system

N0 ≡ N

N i+1 ≡ GS(N i, S), i ≥ 0
(1.1)

The Gauss-Seidel operator receives as input a Boolean network of size n (|V | = n) and
returns a Boolean network of the same order. The space of the Boolean networks of size n
is finite (there are n local transition functions, and the number of possible non-equivalent
Boolean functions of n variables is bounded by the number of different truth tables of n
variables, then the total is at most (22

n

)n), then necessarily the iterated application of Gauss-
Seidel operator ends in a loop of networks. Formally, there exist t̄, p̄ ∈ N such that

N j 6= N j+1, j ∈ {t̄, . . . , t̄+ p̄− 1} (1.2)

N t̄+p̄ = N t̄ (1.3)

We define the filter attractor of network N and schedule S, A(N,S), as the set of Boolean
networks of size n which satisfy

A(N,S) = {N l | l = t̄, . . . , t̄+ p̄− 1}

We see that |A(N,S)| = p; in the special case that p = 1, the filter attractor is said to be
a structural fixed point, while if p > 1, the attractor is named a structural cycle. Analogously
to the context of dynamical attractors of a Boolean network seen in Subsection 1.5, we can
talk here of the transient length of a network N , t(N), and the period length of a network N ,
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p(N), as the smallest positive integers verifying the relation (1.3). If there is no confusion
about the initial network, we will refer to the transient and the period simply as t and p.

It is not difficult to see that fixed points of final network are the same as the original input
network, since it is known that fixed points of a network are the same for all block-sequential
schedules. Indeed, it suffices to prove the following:

Lemma 1.1 Let F (·) = (f1(·), · · · , fn(·)) be the global transition function of some Boolean
network of size n and S be a block-sequential update schedule. It holds that ~z ∈ {0, 1}n is a
fixed point of F (·) if and only if ~z is a fixed point of FS(·).

Proof. Let (Bl)
m−1
l=0 be the block set and s the update function of schedule S.

If ~z is a fixed point of F , each component function outputs fi(~z) = zi for all i ∈ {1, . . . , n}.
Thus, F[B0](~z) = ~z, and F[B1](F[B0](~z)) = F[B1](~z) = ~z, and so on it is concluded that
FS(~z) = ~z.

Now, if FS(~z) = ~z, then, for every i ∈ {1, . . . , n}, the i−th component function of FS

verifies fS
i (~z) = zi. Then, for every i, j ∈ {1, . . . , n}, the quantity xij(~z) given by character-

ization in Lemma A.1 (valid for block-sequential schedules) holds that xij(~z) = zj, then by
the same characterization fS

i (~z) = fi(x
i
1(~z), . . . , x

i
n(~z)) = fi(z1, . . . , zn) = fi(~z), which implies

F (~z) = ~z.

Since the schedule S in the statement of last result is any block-sequential schedule, it
holds that fixed points of a network are the same for all block-sequential schedules. Now,
in the system (1.1), by definition of Gauss-Seidel operator, for all i ≥ 0, N i+1 has the same
fixed points that network N i. Hence, fixed points of networks in the filter attractor are the
same as the original input network.

Other interesting property shown by this procedure is the fact that, the parallel simulation
of a network, in some manner reduces the comunication paths between nodes, which would
result in a shortening of attractor periods, and finally a remotion of some limit cycles (if not
all). In the work by Goles & Salinas (2010, [39]), it is proved that, under some conditions
(in Section 5.4 we formalize this condition and the result, see Theorem 5.8), the application
of Gauss-Seidel operator associated to the sequential operator (1)(2) . . . (n) onto a Boolean
network of size n, outputs after n−1 iterations, a network whose only attractors, with parallel
update, are fixed points. This can be seen in the following example:

Example 5 In this example, extracted from [39], we have the network N of size 4 with local
transition functions given by f1(x) = x2, f2(x) = ¬x3, f3(x) = ¬x4 and f4(x) = x1. We will
write, N0 = N , and for i ≥ 1, N i = S(N i−1) the network obtained after i applications onto
N of operator S, which corresponds to operator S(·) = GS(·, (1)(2)(3)(4)) (S is the notation
employed in [39]).
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It can be seen that iterated composition of operator S on network N of size 4 stabilizes
at network N3 = S ◦ S ◦ S(N), that is, N4 = N3. The only attractors of N3 -updating N3

with parallel schedule- are fixed points, which necessarily match with fixed points from initial
network N .

The result cited above motivated the authors of [39], to name the iterative application
or composition of Gauss-Seidel operator as filter, given that this procedure finally outputs,
at least under some conditions met by the input network, a new network where the cyclic
attractors are “filtered” out or removed, therefore its only attractors are fixed points.

Another important feature, specially for practical applications, is the size of the transient
and period length, if this magnitude can be polynomially bounded in terms of the size of
the network. In more colloquial terms, how many iterations of Gauss-Seidel are necessary
for the filter to stabilize or to reach some network in the filter attractor. Theorem 5.8 also
assures that, for sequential schedules, the transient length for some kind of Boolean networks
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is always linear, and the filter attractor is a structural fixed point. It is not known if this
remains true in other or more general settings; investigate these issues is the goal of this
work.

1.8 Outlook

In this work, we will study the filtering procedure with block-sequential update schedules,
which are a generalization of sequential schedules studied in the paper by Goles & Salinas
(2010). It was argumented in Section that the framework of block-sequential schedules ap-
pears to provide a more realistic simulation of network dynamics, and it has been shown
consistent with empirical data [71]. Block-sequential update schedules are a generalization
also of the synchronous or parallel simulation, a well studied topic from a theoretical stand-
point.

In this work, we are interested on the information that can be extracted from the topology
of the digraph associated to a network. It is a good start point to restrict the goal of study to
this aspect, given the difficulties that may arise when functions defining the network become
slightly more expressive. By this reason, we concentrate on disjunctive Boolean networks,
which are introduced in Section 2. Section 3 explains some of the advantages and properties
when considering this kind of networks. Section 4 addresses the issue of the time required
by the filtering procedure. Section 5 investigates the condition over the initial network to
ensure the remotion of limit cycles in the final network. Finally, Section 6 studies when the
filter attractor results to be a structural fixed point.

The methodology in this work included the development of software intended for comput-
ing the network outputted by the filtering procedure and network dynamics. This software
was critical during the research that produced several of other results in this work, since it
allowed to acquire intuition about some study objects and to test working hypothesis. De-
tails about this software can be reviewed on Appendix B. The results whose proofs are not
displayed in the body of the sections can be reviewed on Appendix A.
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Chapter 2

Disjunctive Boolean networks

The main work tool in this thesis is the digraph associated with the network returned by
the Gauss-Seidel operator: many conclusions can be drawn by studying only this network
representation. The assumption taken on these networks is that only one logical operation
appears in transition functions definition, so disjunctive Boolean networks -which only have
the ∨ connector- provide a suitable setting meeting this condition. This choice is given by
the fact that the digraph associated with these networks is an equivalent representation of
the network, in the sense that the definition of the transition functions of the network can
be recovered from the digraph. This allows working with the digraph associated with the
network, and so do the algorithms presented in this work, as they are defined in terms of
a digraph that is received as input, and return an output digraph that represents a new
network. Hereinafter in this work, we refer interchangeably to Boolean networks as digraphs.

Recall that for a digraph D = (V,A), it is defined the in-neighborhood N−
D (i) of a node

i ∈ V , as the set of incident nodes to i: N−
D (i) = {j ∈ V |(j, i) ∈ A}. The in-degree

of i is the cardinal of this set, denoted as deg−D(i) (deg−D(i) = |N−
D (i)|). The disjunctive

networks use exclusively the OR logic connective (usually written as ∨) to connect variables
in their transition functions. Then, for a disjunctive network, the local transition function fi
associated to node i ∈ V is given by:

fi : {0, 1}
n −→ {0, 1}

~x 7→
∨

j∈N−

D
(i)

xj

Unless otherwise stated, we suppose hereinafter in this work that all digraphs have non-
null in-degrees: for all i ∈ V , deg−D(i) > 0. Nodes with a constant state equals 0, have
no effect on the states of other nodes in the graph, thus they can be removed safely in a
pre-processing of the original digraph that takes in polynomial time. Nodes with a constant
state equals 1 are not considered: informally, a node k propagates its fixed state equal to 1
to every node j reachable from k and leaving out the dependency of j on other variables,
producing a dynamic different from the goal of study. This is explained with more detail in
Remark 1.
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2.1 Comparison with conjunctive networks

The next result shows that the election of disjunctive networks instead of conjunctive net-
works (ie, networks which only have the ∧ connector) is arbitrary, since for each conjunctive
network NG, we can study its dynamics through a disjunctive network NF which presents
“dual” dynamics relative to that of NG, in the sense specified by the next lemma (whose
proof is on the appendix).

Lemma 2.1 Let NG be a conjunctive Boolean network defined by the local transition func-
tions gi (G(~x) =
(g1(~x), · · · , gn(~x))), and let S be a block-sequential update schedule for this network. Then
there exists a disjunctive Boolean network NF defined by local transition functions fi (F (~x) =
(f1(~x), · · · , fn(~x))) such that

fS
i (~x) = ¬gSi (¬~x), ∀i = 1, . . . , n, ∀~x ∈ {0, 1}n

Example 6 Let us see an example of what affirms the last result. Let NG be a conjunctive
Boolean network given by the following local transition functions: g1(~x) = 1, g2(~x) = x1∧x4,
g3(~x) = x2 and g4(~x) = x3. The “dual” disjunctive network NF relative to NG (built accord-
ing the procedure employed in the proof of 2.1) has the following local transition functions:
f1(~x) = 0, f2(~x) = x1 ∨x4, f3(~x) = x2 and f4(~x) = x3. Both networks have the same digraph
associated, depicted below.

1

2 3

4

Updated with the schedule S = (12)(34), the network NG has the dynamics that is illustrated
in the image below.
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In this second image we see the state transitions experimented by network NF and the same
schedule S. The last lemma explains what happens here, where (~x, FS(~x)) is a state transition
of NF updated with S if and only if (¬~x,¬GS(¬~x)) is a state transition of NG updated with
S, for all ~x ∈ {0, 1}4.
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2.2 Characterization of Gauss-Seidel network

In this subsection it is presented some of the fundamental tools employed in this work, given
by the framework of disjunctive networks. For a network D = (V,A) with global transition
function F , and some update schedule S, it was already noticed in Section 1 that the network
returned by Gauss-Seidel operator, which we name as DS = (V,AS), is the network whose
global transition function corresponds to FS. If the component function of FS associated to
node i ∈ V is fS

i , then the set of arcs AS of the network DS corresponds (since it is the
digraph associated to the network with global transition function FS) to the following:

AS = {(j, i)| fS
i (~x) depends on xj}

The following lemma is a characterization of this set AS, that will be very useful for
subsequent arguments, since it relates the arcs of network DS to arcs from the input network
D. The proof of this result is the one provided on [37], and it is exposed here by the
importance of this characterization throughout this entire work.

Lemma 2.2 ([37]) Let D = (V,A) be a Boolean disjunctive network, and let S be a block-
sequential update schedule, with update function s. The set of arcs AS of the network DS

returned by Gauss-Seidel on (D,S) is characterised by

AS = {(j, i)| there exists in D a path (v0, v1, . . . , vl) from j = v0

to i = vl such that s(v0) ≥ s(v1) ∧ ∀1 ≤ k < l, s(vk) < s(vk+1)}

Proof. First, let us suppose that there exists such a path from node j to node i in D. Let ~x =
~x(t) be an arbitrary configuration of network states (on a certain time t). The configuration
of the next time step, ~x(t+ 1) = FS(~x), satisfies, for each k ∈ V , x(t+ 1)k = fS

k (~x). Thanks
to Lemma A.1 and the hypothesis met by the path in D, it also holds that ∀1 ≤ k < l,
x(t + 1)ik+1

depends on fS
ik
(~x) = x(t + 1)ik . Using this, with an induction on k this leads to

∀1 ≤ k < l, x(t + 1)ik+1
depends on x(t + 1)i1 . By Lemma A.1 again, x(t + 1)i1 , in turn,

depends on xi0 = xj. As a consequence, ∀1 ≤ k < l, x(t + 1)ik+1
depends on xj, and in

particular, x(t+ 1)il = x(t+ 1)i = fS
i (~x) depends on xj, and so (j, i) ∈ AS.

Now, to prove the converse let us suppose that (j, i) ∈ AS, or equivalently that fS
i (~x)

depends on xj, and we proceed by induction on s(i). First suppose that s(i) = 0, it can only
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be that s(i) ≤ s(j), then xij(~x) from Lemma A.1 holds that xij(~x) = xj for j = 1, . . . , n, so
fS
i (~x) = fi(~x) depends on xj, or in other words, (j, i) ∈ A (ie, (j, i) is an arc from input
network D). Next, suppose that s(i) > 0, and that the inductive hypothesis holds for each
k ∈ {0, . . . , s(i) − 1}, that is, there is a path in D from j to k meeting the required. If
s(i) ≤ s(j), by the same previous reasoning it holds (j, i) ∈ A, and there is a path in D from
j to i with the required property. If s(i) > s(j), by the first hypothesis and Lemma A.1 there
is k̄ ∈ N−

D (i) such that s(k̄) < s(i), x(t + 1)i depends on x(t + 1)k̄ and x(t + 1)k̄ depends on
xj. Now by induction hypothesis there exists a path with the desired properties from j to
k̄ and, using the arc (k̄, i), this path can be extended to a path with the desired properties
from j to i.

Remark 1 We shall see the last characterization is optimal for disjunctive networks, in the
sense that it fails when considering any additional connective than ∨ in transition functions
of the network. The proof of the last lemma employs the hypothesis that the network is dis-
junctive in applying the following property:

Let NF be a Boolean network defined by the local transition functions fi (F (~x) = (f1(~x), · · · ,
fn(~x))), and let S be a block-sequential update schedule for this network (with function s).
Suppose fi(·) depends on variable xj, s(i) > s(j) and fS

j (·) depends on variable xk. Then
fS
i (·) depends on variable xk.

The property above is trivially true if the network is disjunctive, because every function
that uses only disjunction as connective depends on every variable appearing in its definition
(except when there are nodes with constant state equal to 1). This property is not true for
functions where the negation connective appears, as shows the following example. Let N be
a Boolean network whose local transition functions are given by f1(~x) = x2 ∨ x3, f2(~x) = x1
and f3(~x) = ¬x2, and the associated digraph D is bottom left. With the schedule of two
blocks S = (3)(1, 2), Gauss-Seidel outputs the network NS defined by the functions fS

1 (~x) =
x2 ∨ ¬x2 = 1, fS

2 (~x) = x1 and fS
3 (~x) = ¬x2, and the associated digraph DS is bottom right.

1 2

3

D

1 2

3

DS

According to the characterization, due to the fact that D has the arcs (2, 3) and (3, 1),
with s(2) ≥ s(3) and s(3) < s(1), the network DS should have the arc (2, 1); however, this
does not occur (in fact, the node labeled 1 has no incident arcs in DS as it has a constant
state equal to 1).
The property neither holds for networks without negations: let N be a Boolean network whose
local transition functions are given by f1(~x) = x2 ∨x3, f2(~x) = (x1 ∧x3)∨x2 and f3(~x) = x3,
and the associated digraph D is bottom center. With the schedule of two blocks S = (2)(1, 3),
Gauss-Seidel outputs the network NS defined by the functions fS

1 (~x) = x3 ∨ fS
2 (~x) = x3 ∨
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(x1 ∧ x3)∨ x2, f
S
2 (~x) = (x1 ∧ x3)∨ x2 and fS

3 (~x) = x3, and the associated digraph DS (which
results in this example to be equal to D) is bottom center.

3

21

D = DS

According to the characterization, due to the fact that D has the arcs (1, 2) and (2, 1), with
s(1) > s(2), the network DS should have the arc (1, 1); however, this does not occur: although
in this example f1(·) depends on variable x2, s(1) > s(2) and fS

2 (·) depends on variable x1,
fS
1 (·) does not depend on variable x1 (in the sense that does not exist a vector ~y ∈ {0, 1}3

such that fS
1 (0, y2, y3) 6= fS

1 (1, y2, y3)).

These two examples show that Lemma 2.2, which allows to study the network NS returned
by Gauss-Seidel through its digraph of dependencies DS, has a well-defined range of validity
established by the hypothesis.
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Chapter 3

Matrix representation

In this section we will review some elements of theory of positive matrices that will be critical
for some of the main results of this work. The results of this section have a broader application
range of that given by Boolean networks, and are important in itself: it is interesting that
algebraic properties of matrices have impact in the evolution of dynamic linear systems.
However this section may result a bit technical and independent from the previous discussion,
so that the reader who only looks for the main part of this section is referred to Theorem
3.9. For details of the theory of positive matrices the reader is referred to [13], [72], and [88].

3.1 Theory of positive matrices

Let M = (Mij)
n
i,j=1 be a matrix of order n with real coefficients. A matrix is said to be

nonnegative if, for all i, j = 1, . . . , n, it holds that Mij ≥ 0, and is positive if this inequality
is strict. To each matrix M there corresponds a digraph D = D(M) of order n as follows:
the vertex set is the set V = {1, . . . , n}, and there is an arc (i, j) from vertex i to vertex
j if and only if Mij 6= 0 (for all i, j = 1, . . . , n, we say that M is the adjacency matrix of
digraph D(M)). In the case that M is nonnegative, we may think of Mij ≥ 0 as being the
multiplicity m(i, j), ie, the number of arcs of the form (i, j). We will not work with general
digraphs, which allow multiple arcs in a same pair of vertices, so we will put our attention
in (0, 1)−matrices. The link between matrices and digraphs permits to assert statements as
the next lemma:

Lemma 3.1 ([13]) Let M be the adjacency matrix of a digraph D(M). There is a directed
walk of length m from vertex i to vertex j if and only if the element in position (i, j) of Mm

is positive.

A matrix M of order n is called reducible if by simultaneous permutations of its lines it
can be obtained a matrix of the form

(
M1 012
M21 M2

)
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where M1 and M2 are square matrices of order n1, n2, respectively (where n1, n2 ≥ 1), M21

is a matrix of size n2 ×n1, and 012 is the null matrix (ie, each of its coefficients is equal to 0)
of size n1 × n2. If M is not reducible, then M is irreducible. Notice that a matrix of order 1
is irreducible. Irreducibility has a precise meaning if we again see the matrices as adjacency
matrices of digraphs.

Theorem 3.2 ([13]) Let M be a matrix of order n. Then M is irreducible if and only if its
digraph D(M) is strongly connected.

Primitivity

Let D be a strongly connected digraph of order n. Let k(D) the greatest common divisor
of the lengths of the closed directed walks of D. If n = 1 and D does not contain a loop,
k(D) is undefined. The integer k(D) is called the index of imprimitivity of D. The digraph
is said to be primitive if k(D) = 1, and imprimitive if k(D) > 1. Notice that the length of a
closed directed walk is the sum of the lengths of one or more directed cycles, hence the index
of imprimitivity of D can also be defined as the greatest common divisor of the lengths of
the directed cycles of D. Defined in this way, the integer k(D) does not exceed the length
of any directed cycle of D. Using the same relation as before, one can speak of primitive
and imprimitive matrices. The following is a characterization and one of the most important
properties of primitive matrices.

Theorem 3.3 ([13]) Let M be a nonnegative matrix of order n. It holds that M is primitive
if and only if there exists a positive integer N such that Mn is a positive matrix for each
integer n ≥ N .

The next lemma can be found at [13], and describes a partition of the set of nodes of a
strongly connected digraph D and several facts related to the index of imprimitivity k(D).

Lemma 3.4 ([13]) Let D be a strongly connected digraph of order n with index of imprimi-
tivity equal to k. The following statements hold:
(i) For each vertex a of D, k equals the greatest common divisor of the lengths of the closed
directed walks containing a.
(ii) For each pair of vertices a and b, the lengths of the directed walks from a to b are con-
gruent modulo k.
(iii) The set V of vertices of D can be partitioned into k nonempty sets V1, V2, . . . , Vk with
Vk+1 = V1, where for each arc (a, b) of D there is some i ∈ {1, . . . , k} such that a ∈ Vi and
b ∈ Vi+1.
(iv) For xi ∈ Vi and xj ∈ Vj, the length of a directed walk from xi to xj is congruent to j − i
modulo k, (1 ≤ i, j ≤ k).

We refer to the vertex partition given by previous lemma as the imprimitivity sets. Let
a ∈ V (D) be any arbitrary fixed node of digraph D. We can define the i−th imprimitivity
set as follows [13].
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Vi = {xi ∈ V | there is a directed walk from a to xi with length ≡k(D) i} (3.1)

The exponent

The smallest positive integer N that verifies the property of Theorem 3.3, that is, the smallest
N such that Mn is a positive matrix for all n ≥ N , is called the exponent of M , and is
denoted by exp(M). The exponent of M depends only on the digraph D(M) (and not on
the magnitude of the elements of matrix M), so in studying the exponent there is no loss
in generality in considering only (0, 1)−matrices. To conclude this introduction to positive
matrices theory, we present the following theorem that states a quadratic upper bound for
the exponent of a primitive matrix.

Theorem 3.5 ([45]) Let M be a primitive (0, 1)−matrix of order n ≥ 2. Then

exp(M) ≤ (n− 1)2 + 1

The last is a general bound for primitive matrices, but for some matrices it is possible to
find tighter bounds, as the exponent can be evaluated in terms of other more basic quantities.
Let exp(M : i) be the smallest positive integer p such that all the elements in row i of Mp

are nonzero (1 ≤ i ≤ n), or in other words, exp(M : i) equals the smallest positive integer
p such that there are directed walks of length p from vertex i to each vertex of D(M). The
following equality can be established [13].

Lemma 3.6 ([13]) exp(M) = maxi∈{1,...,n} exp(M : i)

Lemma 3.6 is useful since it allows to obtain upper bounds for the exponent of a primitive
matrix M . If l1, . . . , ln are n integers such that there are directed walks of length li from
node i to every node of D(M) (i = 1, . . . , n), then exp(M) ≤ max{l1, . . . , ln}. The previous
lemma can be used to prove the following result.

Theorem 3.7 ([45]) LetM be an irreducible matrix of order n having p ≥ 1 nonzero elements
on its main diagonal (or equivalently, p nodes with loop in its associated digraph D(M)).
Then M is a primitive matrix and exp(M) ≤ 2n− p− 1.

Now, the next theorem makes use of Lemma 3.6 to find an upper bound for the exponent
of matrices having a subdigraph that is complete. A complete digraph (V,A) of order d, is a
directed graph where |V | = d, and each pair of different nodes i and j are connected by the
arcs (i, j), (j, i) ∈ A. A complete digraph does not have nodes with loops.

Theorem 3.8 LetM be an irreducible (0, 1)−matrix of order n ≥ 3 such that D(M) = (V,A)
is a (strongly connected) digraph having a complete subdigraph of order d with d ≥ 3. Then
M is primitive and exp(M) ≤ 2(n− d + 1).

Proof. Since d ≥ 3, the complete subdigraph has at least a cycle of length 2 and other of
length 3, then M is primitive. Let W ⊆ V be the set of nodes of the complete subdigraph:

23



|W | = d, and let i and j be any two nodes of V . Since D(M) is strongly connected, there is a
directed path Pi,k1 from i to some k1 ∈ W , without other node in W than k1, whose length is
at most n−d (simply find a path from i to any node in W , and take k1 as the first node from
W reached with this path). Similarly, there exists a directed path Pk2,j from some k2 ∈ W
to j, without other node in W than k2, whose length is at most n−d. Now, since W induces
a complete digraph in D(M), there is a walk Wk1,k2 from k1 to k2 of length at most 2 (when
k1 = k2; in general, when k1 6= k2, k2 is reachable from k1 in one step). Joining these three
walks, Pi,k1 , Wk1,k2 and Pk2,j, gives us a directed walk from i to j of length at most equal
to 2(n − d + 1). If we had that the sum of the two path lengths is equal to 2(n − d) − r,
where r = 0, . . . , 2(n− d), since any node in W is reachable from any node in W with walks
of length greater or equal than 2, we can take a walk Wk1,k2 of length r + 2 (whatever nodes
k1, k2 ∈ W ) and obtain a directed walk from i to j whose length is exactly 2(n− d + 1).

3.2 Relation with disjunctive networks

In the context of this work, we are going to restrict to (0, 1)−matrices when representing
adjacency matrices of digraphs. Then these matrices belong to M({0, 1})n×n, for n ∈ N,
space equipped with the logical sum (or the usual disjunction ∨) and the logical product
(or the usual conjunction ∧). It was already said that the main results from the theory of
positive matrices remain valid with this restriction, and there is no loss of generality for our
purposes.

Example 7 In the figure below it can be appreciated a digraph D with its respective adjacency
matrix M(D):

1

2

3

4

D




1 1 1 0
0 0 0 1
1 0 0 0
0 0 0 0




M(D)

If we get the logical product of M(D) with itself, M(D)2, by Lemma 3.1 this matrix
corresponds to the digraph whose arcs represent the walks of length 2 in D. We call this
digraph as D2.

1

2

3

4

D2




1 1 1 1
0 0 0 0
1 1 1 0
0 0 0 0




M(D)2 =M(D) ·M(D)

24



Note 1 The relation between disjunctive Boolean networks and the theory of positive ma-
trices is established through the adjacency matrix, and it will be clearer with the following
observation. Disjunctive Boolean networks verify the following property ([37]): if M(D) is
the adjacency matrix of the disjunctive network D = (V,A) where |V | = n, ie, the n × n
(0, 1)−matrix meeting that M(D)ij = 1 iff (i, j) ∈ A, then if D is updated with parallel
schedule, it holds that for all ~x(t) ∈ {0, 1}n, and for all k ∈ N, ~x(t + k) = ~x(t) · (M(D))k.
It is not difficult to see the veracity of last property: for all i ∈ {1, . . . , n}, x(t + 1)i = 1
if and only if there exists some k ∈ V such that x(t)k = 1 and the arc (k, i) ∈ A, since
local transition functions are OR functions. The latter is equivalent to the existence of some
k ∈ V such that x(t)k = M(D)ki = 1, and this is equivalent to the fact that the sum∑

k∈V x(t)k ·M(D)ki = (~x(t) ·M(D))i is equal to 1.

With this observation, we can state the main theorem of this section, which claims a
polynomial bound of the transient length of a disjunctive network:

Theorem 3.9 Let NF be a Boolean disjunctive network of size n, with global transition
function F : {0, 1}n → {0, 1}n, and S be a block-sequential update schedule for NF , such
that the digraph associated to FS, the global transition function with schedule S, is weakly
connected. Then, from any initial condition, in at most O(n2) updates of NF according to S,
the state vector gets to an attractor, which can be a fixed point or a limit cycle.

The hypothesis of being weakly connected is not restrictive, since the network dynamics
of different weakly connected components on any given digraph are completely independent
(there is no incidence between them), then these different components can be studied sepa-
rately. Notice that in the particular case when S is the parallel schedule, and the digraph
associated with NF (whose transition function is F ) is strongly connected and primitive, the
result is direct from Note 1 and Theorem 3.5; if the initial condition is any non-null vector,
since after a quadratic number of updates the matrix of adjacency of the network obtained
is positive, the state vector results to be positive and it stays positive in ulterior iterations,
which is a fixed point. Indeed we can restrict the analysis to the parallel schedule thanks to
the fact that updates with S are simulatable in parallel with the transition function relative
to schedule S, FS.

By the above, the necessary work to prove Theorem 3.9 is to study the case when the
digraph associated is neither primitive nor strongly connected. In fact, it is possible to say
something when the adjacency matrix of the network is irreducible and imprimitive. For this
purpose, the following observation will be useful.

Lemma 3.10 Let M = M(D) be an imprimitive irreducible matrix (or in other words, the
digraph D = (V,A) associated to M is strongly connected, where the index of imprimitivity of
D, k(D), verifies that k(D) > 1), and let ℓ be the length of the shortest circuit in D. Then the
strongly connected components of the digraph associated with the matrix M ℓ are primitive. In
fact, these strongly connected components correspond exactly to the sets (Vi)

k(D)
i=1 from Lemma

3.4.

Example 8 Let us see an example of what is stated in the last lemma. Let D be the digraph
below:
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2 3
7

14
13

12

11

89

10

6 5

4

It can be seen that D has a circuit of length equal to 6, and another of length 9, then k(D) = 3.
The length of the shortest circuit is 6. On the other hand, if M is the adjacency matrix of
D, then the digraph associated to M6, which we will call as D6 (by Lemma 3.1, this digraph
has an arc (i, j) if and only if there is a walk in D of length 6 that starts on i and ends on
j), has 3 s.c.c.:

2

7

13

5

10

4 1

12

9

3

8
14

6

11

The lemma guarantees that these 3 sets of nodes correspond to the equivalence classes
induced by the relation between two nodes given by the existence of a walk of length congruent
to zero modulo k(D) = 3, ie, these 3 sets correspond to the sets Vi (i = 1, 2, 3) as described
in Lemma 3.4. This is indeed what happens in this example.

Note 2 Observe that, using the same assumptions as in Lemma 3.10, it holds that, in the
digraph associated with matrix M ℓ, which we will refer to as Dℓ, there are no arcs connecting
nodes in different strongly connected components: suppose there is an arc starting on xi ∈ Vi
(Vi is a strongly connected component of Dℓ by Lemma 3.10), and ending on xj ∈ Vj, with
1 ≤ j 6= i ≤ k(D) (Vj is another s.c.c. of Dℓ different than Vi, by Lemma 3.10). The above
implies that there exists a walk in D connecting xi and xj of length ℓ, call this walk as Wxi,xj

.
Since ℓ is multiple of k(D), |Wxi,xj

| ≡k(D) 0, but this contradicts (iv) from Lemma 3.4, which
states that |Wxi,xj

| ≡k(D) j − i 6= 0.

Note 3 Observe that, using the same assumptions as in Lemma 3.10, and referring to the
shortest circuit of D as Cℓ, it holds that |Cℓ ∩ Vi| =

ℓ
k(D)

for i = 1, · · · , k(D). Observe this

quotient is, by definition of k(D), a positive integer. Notice that as every arc in D starts
from a node in Vi and ends on a node in Vi+1, for some i, 1 ≤ i ≤ k(D) (condition (iii) in
Lemma 3.4), and as there are k(D) sets Vi and ℓ nodes in Cℓ, where k(D) ≤ ℓ, necessarily for
each i ∈ {1, . . . , k(D)} there is at least one node in Cℓ ∩ Vi. A simple method to enumerate
the set of nodes in Cℓ ∩Vi is to take any node in this set (recall we already saw this set is not
null), and moving within circuit Cℓ by thrusting forward k(D) nodes each time. Since in Cℓ

there are ℓ different nodes, with this procedure we will find ℓ
k(D)

different nodes, which belong
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to Cℓ ∩ Vi by (iii) in Lemma 3.4. By (iv) in Lemma 3.4, every node in Cℓ ∩ Vi is found with
this procedure and the claim holds.

As said before, the last observation allows to analyze the subcase of Theorem 3.9 when the
digraph of network is strongly connected and imprimitive, which leads us to next proposition.

Proposition 3.11 Let M = M(D) be an irreducible imprimitive (0, 1)−matrix of order n
(D = (V,A) is a strongly connected digraph, where k(D) > 1), ℓ the length of the shortest
circuit in D, and ~x(0) ∈ {0, 1}n any configuration vector. If we consider the linear system

~x(h) = ~x(0) ·Mh, h ∈ N

then, there exist t ∈ O(n), p ∈ O(ℓ), such that ~x(t + p) = ~x(t). Also it holds that p = 1 if

and only if for every set Vi, there exists ji ∈ Vi such that x(0)ji = 1, where (Vi)
k(D)
i=1 is the

vertex partition given by Lemma 3.4.

Proof. Assume the vector ~x(0) is not null (otherwise the statement holds trivially) and
consider the following system.

~y(h) = ~y(0) · Bh, h ∈ N

~y(0) = ~x(0)
(3.2)

where ~y(h) ∈ {0, 1}n, for all h ∈ N, and B = M ℓ. As before, we refer to the digraph
associated with matrix B as Dℓ (Dℓ is the digraph resulting in considering the walks of

length ℓ in D). Consider the partition (Vi)
k(D)
i=1 of the set of nodes V given by Lemma 3.4. We

are able to study the system (3.2) restricting the analysis to each of the strongly connected
components of Dℓ (since the behavior of these subsystems are independent, by Note 2),

which correspond by Lemma 3.10 to the sets (Vi)
k(D)
i=1 . Therefore consider the i-th subsystem

associated to the set Vi (i = 1, · · · , k(D)):

~yi(h) = ~yi(0) · Bh
i , h ∈ N

~yi(0) = ~xi(0)

whereBi ∈ M|Vi|×|Vi|({0, 1}) is the matrix formed by the rows and columns ofB corresponding
to nodes belonging to the set Vi, and ~yi(0), ~xi(0) ∈ {0, 1}|Vi| are the vectors resulting in
restricting ~y(0), ~x(0) respectively to the vector componentes associated to nodes belonging
to Vi. Since for i = 1, · · · , k(D), Vi induces in D

ℓ a primitive subdigraph (Lemma 3.10), each
matrix Bi is primitive and then there exist exp(Bi) ∈ N for i = 1, · · · , k(D). We can obtain
now an estimation of these magnitudes. We will refer to the shortest circuit in D as Cℓ. By
realizing that every node in Cℓ has a loop in digraph Dℓ, thanks to Note 3 we conclude that
each digraph Dℓ(Vi) has at least ℓ

k(D)
nodes with loop, then by Theorem 3.7 it holds that

exp(Bi) ≤ 2 · |Vi| −
ℓ

k(D)
− 1. This bound implies that

Bh
i is positive for all h ≥ max

1≤j≤k(D)
2 · |Vj| −

ℓ

k(D)
− 1, for all i = 1, · · · , k(D) (3.3)
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We prove first the left direction of the equivalence. We assume that ~x(0) has at least
one positive component for every set Vi, which implies by previous definitions that for each
i = 1, · · · , k(D), the vector ~yi(0) is not null. By (3.3), we obtain that each vector ~yi(h) is
positive for all h ≥ 2 · n − ℓ

k(D)
− 1 (since for all i = 1, · · · , k(D), |Vi| ≤ n), and from this,

that

~y(h) is positive for all h ≥ 2 · n−
ℓ

k(D)
− 1

From the last assertion and definition of system (3.2), we deduce that ~x(m) is positive for
m = ℓ · [2 · n − ℓ

k(D)
− 1]. But this implies directly that ~x(m + 1) = ~x(m) ·M is positive (if

not, there is in M a zero column, say row j, meaning that node j has out-degree equal to
zero, but this is not possible since D is strongly connected), and inductively that

~x(m) is positive for all m ≥ ℓ · [2 · n−
ℓ

k(D)
− 1]

which shows that there exist t ∈ O(n), p = 1, such that ~x(t+ p) = ~x(t).

To prove the converse, suppose now there are 1 ≤ r < k(D) sets (Vi)i∈R, where |R| = r,
such that ~xi(0) is null for every i ∈ R and ~xi(0) is not null for every i ∈ {1, . . . , k(D)}\R.
Again by (3.3) and previous definitions, it is obtained that

~yi(h) is positive, for all h ≥ 2 · n−
ℓ

k(D)
− 1, for all i ∈ {1, . . . , k(D)}\R

~yi(h) is null, for all h ∈ N, for all i ∈ R

which means -by previous definitions- that

~x((t+ 1) · ℓ) = ~x(t · ℓ) for t = 2 · n−
ℓ

k(D)
− 1

ie, in at most t ∈ O(n) iterations the linear system gets to a state vector verifying what is
stated by the lemma, where p ≤ ℓ. Suppose that p = 1, then ~x(t · ℓ+1) = ~x(t · ℓ). According
to the values that ~yi(h) takes, ~xi(t · ℓ) is null for i ∈ R and ~xi(t · ℓ) is positive for i /∈ R, so if
~x(t · ℓ+ 1) = ~x(t · ℓ) ·M is equal to ~x(t · ℓ), this means that

(~x(t · ℓ) ·M)w = 0, ∀w ∈ Vi, ∀i ∈ R

By the above necessarily, Mb,w = 0 for all w ∈ Vi, i ∈ R, b ∈ Vq and q /∈ R. On the other
hand, as 1 ≤ r < k(D) necessarily there is g ∈ {1, . . . , k(D)} such that g /∈ R and g + 1 ∈ R
(g could be k(D) and in this case we take g + 1 as 1), and by (iii) in Lemma 3.4, there are
b ∈ Vg and w ∈ Vg+1 such that (b, w) ∈ A, which is absurd. This shows that p > 1, which
concludes the proof.
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Example 9 Let D = (V,A) be the following disjunctive Boolean network of size 5, which
is strongly connected, and imprimitive since k(D) = 2. The length of the shortest circuit is
ℓ = 2. We can also see the digraph D2 formed by the walks of length 2 in D, where each
strongly connected component of D2 has ℓ

k(D)
= 2

2
= 1 node with loop.

1 2

34

5

D

1 2

3

45

D2

If we update network D in parallel, the transient and period lengths for every initial con-
dition have a linear size by Proposition 3.11. Indeed, from the proof (see (3.3)) of this result
we know the longest transient length is upper bounded by

ℓ ·

(
max

1≤j≤k(D)
2 · |Vj| −

ℓ

k(D)
− 1

)

where Vj correspond to the strongly connected components of Dℓ (this bound arise from the
bound of the exponent of these components). In our example, |V1| = 3 and |V2| = 2, therefore
the last bound is equal to 2 · max{4, 2} = 8. The longest transient length for network D
updated in parallel is equal to 5, achieved with the initial condition (1, 0, 0, 0, 0) that gets to
a limit cycle of length 2, and the initial conditions (1, 0, 0, 1, 0), (1, 1, 0, 1, 0) and (1, 1, 0, 0, 0)
that get to a fixed point.

At this point we have all the ingredients to prove the Theorem 3.9:

Proof of Theorem 3.9. Let F be the transition function of NF and ~x(0) ∈ {0, 1}n be a
non-null state vector. Without loss of generality we can assume the schedule S = π is the
parallel schedule, since a complete update sequence with any block-sequential schedule S
is simulatable with one update of function FS in parallel, where FS is also a disjunctive
network (thanks to the fact F is disjunctive and the definition of FS). Now, thanks to Note
1, studying the trajectory ~x(t) of network states is equivalent to study the linear system

~x(h) = ~x(0) ·Mh, h ∈ N

where M ∈ Mn×n({0, 1}) is the adjacency matrix of the digraph D associated to FS. The
hypothesis that D is weakly connected leaves us two main cases to analyze: D is strongly
connected or the condensation digraph of D is a weakly connected DAG. If D is a trivial
strongly connected component, that is, it is formed by just one node without loop, n = 1 and
M1,1 = 0 and the statement holds trivially. If D is a non-trivial s.c.c., it is either primitive
or imprimitive. In the first case, M is irreducible and primitive, then by Theorem 3.5 the
statement of the theorem holds, and the attractor is a fixed point consisting in a positive
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vector. In the second case, Proposition 3.11 gives the (linear, in particular quadratic) rate of
convergence, and the attractor can be a fixed point or a limit cycle.

Assume now the other case, in which there is a weakly connected DAG (the condensation
digraphD∗) where each node is a s.c.c. fromD. This DAG admits a topological sort; consider
first a non-trivial s.c.c. C ′ such that ~x(0) restricted to C ′ is non-null and there is no other
non-trivial s.c.c. C̄ verifying this property, that reachs C ′ by some walk (necessarily C̄ comes
first than C ′ according to the sort), that is, ~x(0) restricted to C̄ is null. From Lemma 3.1 we
deduce that

x(h)i = 1 iff there is a node j ∈ D such that x(0)j = 1 and there is in D

a walk of length h from j to i
(3.4)

By the above, if we let the system evolve, for every s.c.c. C̄ that reachs C ′ by some walk,
it holds that, for all h ∈ N, ~x(h) restricted to C̄ is null. And by Theorem 3.5 and Proposition
3.11 in at most h ∈ O(|C ′|2), ~x(h) restricted to C ′ converges to some attractor of period
1 ≤ p′ ≤ ℓ, where ℓ is the length of the shortest circuit of C ′ (Proposition 3.11). Whether
there exists some non-trivial s.c.c. C reachable from C ′ by a walk (for simplicity, without
other non-trivial s.c.c.’s), it holds by (3.4) that a number 1 (a positive component of the
state vector) is diffused from C ′ to C after a number of iterations linear on the length of the
walk, with a certain periodicity at most p′. So we will focus now the analysis on component
C. We assume, for simplicity, that component C receives a forced input on vertex v ∈ C
from time h = 0 onwards of periodicity p ≥ 1, where by the above p ∈ O(n). In other words

x(h)v = 1 for all h = z · p, where z = 0, 1, 2, . . . (3.5)

Fix the positive integer f1. The property (3.5) holds for any h equal to some multiple of
p, in particular for hr = (f1 − r) · p where 0 ≤ r ≤ f1. Let u ∈ V (D) be a vertex such that
there exists a walk (in D) of length r · p from v to u. Then, by the equivalence (3.4) we have
that

∀u ∈ V (D) s.t. there exists a walk (in D) of length r · p from v to u, where 0 ≤ r ≤ f1,

then x(hr + r · p)u = x(f1 · p)u = 1

(3.6)

Last property says us that in the state vectors obtained at times multiple of p, there are
positive components for vertices at distance from v equal to every lesser multiple of p. This
fact determines how the positive components are diffused in the s.c.c. C. Let k(C) be the

index of imprimitivity of C, and (Vi)
k(C)
i=1 the imprimitivity sets (of C, Lemma 3.4). Which

of these sets have positive components in vectors ~x(f1 · p) with this setting? Recalling the
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definition (3.1), where we take v as the arbitrary fixed node, the sets Vi that have positive
components are those where i ∈ {1, . . . , k(C)} and the walks Wv,xi

from v to nodes xi ∈ Vi
meet the following

|Wv,xi
| ≡p 0 ≡k(C) i =⇒ i = x · p+ y · k(C), (x, y ∈ Z)

By Lemma A.2, necessarily it holds that i is a multiple of gcd(p, k(C)), and then the number
of distinct imprimitivity sets having positive components in vectors ~x(f1 ·p), for f1 sufficiently
large, is k(C)/ gcd(p, k(C)). How large f1 needs to be? We claim that after f1 · p updates,
where f1 = k(C)/ gcd(p, k(C)), no new imprimitivity sets are reached. Indeed, let f2 ≥ f1
be a positive integer, we can write it (by euclidean division) as

f2 = q · f1 + r, where q ∈ N, 0 ≤ r < f1

With this equality, we can write the following

f2 · p = q · f1 · p+ r · p =
q · k(C) · p

gcd(p, k(C))
+ r · p

= q · lcm(p, k(C)) + r · p (Theorem 52 [40])

≡k(C) r · p

Which shows, by definition (3.1) of imprimitivity sets and (3.6), that in state vectors
obtained at times h = f2 · p multiple of p with f2 ≥ f1, no new imprimitivity sets are
reached by positive components. Assume for now that gcd(p, k(C)) > 1 (then p, k(C) > 1).
Therefore, if we let the linear system evolve (without considering the forced input) with initial
condition given by ~x(f1 ·p), by Proposition 3.11 in at most O(|C|) iterations from the alluded
initial condition the state vector converges to an attractor consisting in a limit cycle. In the
particular case that gcd(p, k(C)) = 1 and k(C) > 1, the number of distinct imprimitivity
sets reachable by positive components is k(C)/1 = k(C), ie, all the imprimitivity sets are
reachable with the forced input, and by Proposition 3.11 in at most O(|C|) iterations from
the alluded initial condition the state vector converges to a fixed point. When k(C) = 1, by
Theorem 3.5 in at most O(|C|2) iterations from any initial condition (particularly if there
is a forced input) the state vector converges to a fixed point. When p = 1, (3.6) allows to
say that in at most O(|C|) the state vector converges to a fixed point. The bottleneck in
the general case is given by the number of iterations f1 · p necessary to reach all the distinct
imprimitivity sets reachable by the forced input; this number can be bounded as follows

f1 · p =
k(C) · p

gcd(p, k(C))
= lcm(p, k(C)) ≤ p · k(C) ∈ O(n2)

The previous analysis is valid for only one forced input. Assume now that component C
receives, from time h = 0 onwards, a forced input on vertex v1 ∈ C of periodicity p1 ≥ 1,
and another forced input on vertex v2 ∈ C with periodicity p2 ≥ 1, where p1, p2 ∈ O(n).
The effect on dynamics of component C due to the presence of a forced input on vertex
vi with periodicity pi, can be described as an initial condition ~yvi,pi ∈ {0, 1}|C|, where the
vector component associated to vertex vi is positive, and equal to zero otherwise. This initial
condition is added to the state vector each pi time steps, starting from h = 0, and diffuses
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according to the network connectivity in succesive iterations, that is, for h ≥ 0, if we refer to
~xvi,pi(h) ∈ {0, 1}|C| as the contribution of the i−th forced input, this vector corresponds to

~xvi,pi(h) = ~yvi,pi ·M(C)h + ~yvi,pi ·M(C)h−pi + . . .

= ~yvi,pi ·

ξi∑

j=0

M(C)h−j·pi
(3.7)

where ξi is such that h − ξi · pi < pi, that is, ξi is the quotient of the division of h by pi,
and M(C) is the adjacency matrix of component C. Thus, we can see the dynamics of the
two forced inputs as a linear superposition of the contributions of each forced input, that is,
for h ≥ 0,

~xC(h) = ~xv1,p1(h) + ~xv2,p2(h) (3.8)

where ~xC(h) ∈ {0, 1}|C| is the state vector ~x(h) restricted to the strongly connected
component C. By the above, if we call ti to the number of iterations, starting from h =
0, necessary for the i−th forced input to reach an attractor, it holds that after tmax =
max{t1, t2}, each vector ~xvi,pi(tmax) has reached its attractor, and then ~xC(tmax) has reached
an attractor state configuration. Since each ti ∈ O(n2) (by the analysis for only one forced
input), and we have a finite amount of forced inputs, it holds that tmax ∈ O(n2). It is
apparent that this analysis remains valid for any finite number of forced inputs (not only
two).

Now, in the general case, a node v ∈ C receives, with some periodicity 1 ≤ p ∈ O(n),
a (0, 1)−word w = c1c2 · · · cp, where each ci ∈ {0, 1} and p = |w|. The characters ci of
w that are equal to 1 correspond to different forced inputs on vertex v with periodicity p
starting at different time steps, and all these forced inputs associated to word w share the
same bound tw ∈ O(n2) of number of iterations needed to reach an attractor, then in at most
O(tw + p) = O(n2) iterations, counted from the first time this word is received by vertex v,
all these forced inputs have reached an attractor state configuration, in the component C.

Finally, in order to get an estimation of the upper bound of iterations necessary, starting
from h = 0, to reach a global attractor for networkD (global in the sense that is not restricted
to some s.c.c., but for all the network), we can think in a network whose condensation
digraph consists of only a path connecting the different strongly connected components, one
after another (maybe separated by some trivial s.c.c.). This is the worst case in terms of the
number of iterations, because when the system evolves, it does not happen that the dynamics
of some s.c.c. evolves in parallel to the dynamics of some other s.c.c.: at the beginning, the
first non-trivial s.c.c. having positive components (first according to the topological sort of
the condensation digraph) gets to some attractor of length p, then it sends a word of length p,
with periodicity p, to the next non-trivial s.c.c., this component gets to some attractor, and
so on until the last non-trivial component. Summing all the iterations, both the necessary to
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reach the non-trivial s.c.c. attractors and for sending the words from one non-trivial s.c.c. to
the next, it gives a bound of O(NC ·n2+n), where NC is the number of non-trivial strongly
connected components of digraph D.

If we argue similarly to the last theorem, we can claim a bound linear on the size of the
network when the associated digraph has some of the substructures seen in the subsection
regarding theory of positive matrices.

Theorem 3.12 Let NF be a Boolean disjunctive network of size n, with global transition
function F : {0, 1}n → {0, 1}n, and S be a block-sequential update schedule for NF , such that
the digraph associated to FS is weakly connected, and every strongly connected component
has a loop or a complete subdigraph of order greater or equal than 3. Then, from any initial
condition, in at most O(n) updates of NF according to S, the state vector gets to an attractor,
which results to be a fixed point.

Proof. Let F be the transition function of NF and ~x(0) ∈ {0, 1}n be a non-null state vector.
Without loss of generality we can assume the schedule S = π is the parallel schedule, since
a complete update sequence with any block-sequential schedule S is simulatable with one
update of function FS in parallel, where FS is also a disjunctive network (thanks to the fact
F is disjunctive and the definition of FS). Now, thanks to Note 1, studying the trajectory
~x(t) of network states is equivalent to study the linear system

~x(h) = ~x(0) ·Mh, h ∈ N

where M ∈ Mn×n({0, 1}) is the adjacency matrix of the digraph D associated to FS. The
hypothesis that D is weakly connected leaves us two main cases to analyze: D is strongly
connected or the condensation digraph of D is a weakly connected DAG. If D is a trivial
strongly connected component, that is, it is formed by just one node without loop, n = 1
and M1,1 = 0 and the statement holds trivially. Since every non-trivial s.c.c. of D has a
loop or a complete subgraph of order o ≥ 3, every non-trivial s.c.c. of D is primitive. Thus,
if D is a non-trivial strongly connected component, M is irreducible and primitive, then by
Theorem 3.5 the attractor is a fixed point consisting in a positive vector. By the hypothesis,
Theorems 3.7 and 3.8 give the linear rate of convergence.

Assume now the other case, in which there is a weakly connected DAG (the condensation
digraphD∗) where each node is a s.c.c. fromD. This DAG admits a topological sort; consider
first a non-trivial s.c.c. C ′ such that ~x(0) restricted to C ′ is non-null and there is no other
non-trivial s.c.c. C̄ verifying this property, that reachs C ′ by some walk (necessarily C̄ comes
first than C ′ according to the sort), that is, ~x(0) restricted to C̄ is null. From Lemma 3.1 we
deduce that

x(h)i = 1 iff there is a node j ∈ D such that x(0)j = 1 and there is in D

a walk of length h from j to i
(3.9)
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By the above, if we let the system evolve, for every s.c.c. C̄ that reachs C ′ by some walk,
it holds that, for all h ∈ N, ~x(h) restricted to C̄ is null. And by Theorems 3.5, 3.7 and 3.8
in at most h′ ∈ O(|C ′|), ~x(h′) restricted to C ′ converges to an attractor consisting in a fixed
point: ~x(h′)k = 1, for every vertex k belonging to C ′. Since C ′ is strongly connected, the
last property is kept in ulterior executions (ie, the attractor is a fixed point). In particular,
for those vertices k′ ∈ C ′ from which there are walks starting from C ′ and carrying to other
strongly connected components, it holds that ~x(h)k′ = 1, for every h ≥ h′.

Now, for every node v ∈ V = V (D) reachable from C ′, there is a walk from C ′ to v of
length nv ≤ |V |, which implies by the equivalence (3.9) that ~x(nv+h)v = 1, for every h ≥ h′.
Finally, it holds that, after a number n̄ = h′+maxv∈V nv, which is at most O(n), it holds that
~x(n̄)v = 1, for every v ∈ V reachable from C ′ in D. Since this is valid for every non-trivial
component C verifying the same as C ′, the attractor consists in a fixed point.

Example 10 Let us see an example of what is stated in the last result. Let NF be a disjunctive
Boolean network of size 5, with global transition function F and local transition functions
f1(~x) = x2 ∨ x3, f2(~x) = x1 ∨ x3, f3(~x) = x1 ∨ x2 ∨ x5, f4(~x) = x3 and f5(~x) = x4. This
network has the next associated digraph D, depicted below.

1

2

3

5

4

It can be seen that this digraph has a complete subdigraph of order o = 3 constituted by nodes
1, 2 and 3. The longest transient length when this network is updated in parallel, is for
the initial condition (0, 0, 0, 1, 0), which gets to the fixed point (1, 1, 1, 1, 1) after 6 updates.
This transient length matches (in the case of this specific digraph D) to the upper bound of
the exponent given by Theorem 3.8, for digraphs containing a complete subdigraph of order
greater or equal than 3: 6 = 2 · (5− o+ 1) = 2 · (5− 3 + 1), which in turn is an application
of Theorem 3.12.
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Chapter 4

Filter convergence

The problem addressed in this section is the estimation of the time complexity of a filter ap-
plied onto a disjunctive Boolean network, and a block-sequential update schedule, to converge
to its filter attractor. This goal requires the estimation of time required by every application
of Gauss-Seidel operator, matter treated in Subsection 4.1, and the number of applications of
Gauss-Seidel necessary to reach the filter attractor. This latter issue is analyzed at Subsection
4.2, where the question is restricted to the case of schedules with two blocks. The solution
presented establishes that the evolution of the filter, that is, the different networks produced
in the process, can be described as the parallel dynamics of some disjunctive network, which
allows to deduce a quadratic estimation of the number of applications of Gauss-Seidel, as
a consequence of Theorem 3.9. Finally, in Subsection 4.3 it is discussed the overall cost of
applying a filter in this setting.

4.1 Computing the Gauss-Seidel operator

The following pseudo-code is the formalization of the algorithm that returns the network
DS = (V,AS) calculated by the Gauss-Seidel operator associated to a certain block-sequential
update schedule S (received as input) applied onto an input network represented as a digraph
D = (V,A). The intuition behind what makes this procedure is, when there is an arc
(u, j) ∈ A where the node u is updated before the node j, or in other words, the local j-
th function depends on the u-th states vector component which has already been updated
when j-th function is updated, then, in the expression defining the j-th function the u-th
variable is substituted by the expression defining the u-th local function. Thereby, the j-th
function, previously depending on variable u, now in AS depends on the variables which u-th
function depended in A. This makes the parallel simulation of j-th function in network DS

to incorporate dependencies acquired by the fact that, according to schedule S, there are
certain variables on which the j-th function depends that are updated before this function.
All remaining arcs in D, in particular those connecting nodes updated synchronously or in
parallel -nodes belonging to the same block of synchronous updating-, are preserved and
added to the network DS, which is the network finally returned by the algorithm. Thus, the
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following algorithm provides a procedural characterization of Gauss-Seidel operator.

Gauss-Seidel(D = (V,A), S)

1 A′ = φ, (A′ ⊆ A) // initialization
2 I = φ, (I ⊆ V )

Let B0, . . . , Bm−1 be the blocks of S, and let s be the update function
3 for i = 0 to m− 1
4 for j ∈ Bi

5 for (u, j) ∈ A // we go over every arc incident to node j
6 if s(u) ≥ s(j)
7 A′ = A′ ∪ {(u, j)}
8 else

9 for (t, u) ∈ A′

10 A′ = A′ ∪ {(t, j)}
11 I = I ∪ {j}
12 return (I, A′)

Example 11 In the figure below it can be seen the application of Gauss-Seidel algorithm
onto a network D = (V,A) and schedule S of two blocks B0 and B1. The initial network is
(V,A), and (V,A′) is the network returned by the algorithm applied onto the initial network
and the schedule S. In both networks, the nodes belonging to the first block B0 are yellow
(nodes 1, 2, 3, 4, 7), and those in the second block B1 are red (nodes 5, 6):
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4
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5

6
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(V,A)

2

4

1

5

6
3

7

(V,A′)

The black arcs ((1, 2), (2, 3), (6, 4), (3, 3) and (4, 3)) are those that are preserved by the
algorithm. The other arcs are modified by the algorithm. The respective colors show how
different arcs are modified, moving the dependencies to all prospective parent nodes. For
example, the purple arc (4, 5) becomes an internal arc (6, 5) from the second block in (V,A′)
(and it is preserved in ulterior applications of Gauss-Seidel). The green arc (3, 6) is kept in
every application of the algorithm since the node 3 has a loop, and it also produces a second
arc (2, 6) starting from node 2. The blue arc (2, 5) generates two arcs starting from nodes 1
and 4 (which are nodes incident to node 2).

The correctness proof of Gauss-Seidel algorithm -which makes use of characterization
2.2- can be revised in Lemma A.3 from appendix. A natural question when studying an
algorithm is to ask for its computational complexity. If we look at the three first for loops
in Gauss-Seidel, we realize than they are simply an ordered manner to traverse each
arc of input network (V,A), then we must multiply the cost of each internal action of the
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loop by O(|A|). The action in line 7 is O(1), but the action in line 10 is executed once
for each incident arc (t, u) to node u in digraph (V,A′). If the data-structures used for
the arc set are in-adjacency lists, it suffices to check the in-list of node u, whose size is
O(deg−(V,A′)(u)) = O(|V |). Whether the data-structure is the adjacency matrix of (V,A′), we
can know the incident arcs to u by checking the column associated to node u, whose size is
O(|V |), which shows that the total cost of else-bifurcation of the for loop at line 5 (over all
the blocks in the schedule) is at most O(|V | · |A|). If all other costs are assumed to be O(1),
we have proven the following:

Proposition 4.1 The Gauss-Seidel operator, when applied onto a disjunctive Boolean net-
work (V,A) of size n = |V | and a block-sequential update schedule, can be computed on time
at most O(|V | · |A|) = O(n3).

In subsection A.4 it is proved that, for a disjunctive Boolean network (V,A) of size n = |V |
and a block-sequential update schedule of m blocks, the network returned by Gauss-Seidel
operator can be computed through m − 1 products of square matrices of size n. Since the
product of square matrices of size n is O(n3), this procedure to compute this operator has
roughly the same cost as the procedural characterization seen at this section.

4.2 Convergence for two blocks

Now let us try to get a better understanding of what the Gauss-Seidel operator makes. The
arcs of A that are changed after an execution of the algorithm are those starting from some
block, and end up at a block updated later. These arcs are replaced in A′ by other arcs
with the same terminal vertex, but whose initial vertex is a parent of the starting vertex.
Hence it holds if (u, v) ∈ A, where the block of u is updated before the block of v, and u
has a parent in A′ ((t, u) ∈ A′), then the arc (t, v) is added to A′. If t belongs to a block
updated later than the one of v, the arc (t, v) is preserved in subsequent applications of
Gauss-Seidel. But if t belongs to a block updated before than the one of v, the arc (t, v) is
again replaced by a new application of Gauss-Seidel (with the same mechanism of shifting
dependence to parent vertices). Thus, it may be conjectured that stabilization of composing
Gauss-Seidel operator -understanding stabilization as the non-production of new networks
with this procedure- depends significantly, for some block k, on the network topology of the
previous k − 1 blocks.

Let us examine the case when there are just two blocks. Let D be a disjunctive network,
and a block-sequential update schedule S for this network with update function s and having
only two update instants or blocks -without loss of generality these instants are 0 and 1-,
that is, each node of the network belongs to the first block B0 or to the second block B1.
To model this, it is proposed the following: given the subdigraph of the network induced by
the nodes in B0, which we assume it has q nodes (|B0| = q), and some arbitrary fixed node
a ∈ B1, we define the state vector ~x(a,D) ∈ {0, 1}q representing, for each node i in B0, if
there exists an arc starting from i and ending on a:
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∀i ∈ {1, . . . , q}, x(a,D)i = 1 ⇐⇒ (i, a) ∈ A (s(i) < s(a)) (4.1)

If (u, v) is an interior arc of the first block (u, v ∈ B0), and x(a,D)v = 1, after applying
the algorithm the output network DS satisfies x(a,DS)u = 1. It is enough to have a single arc
(u, v) of all those that depart from u verifying the above, to have that x(a,DS)u = 1. This
is similar to what happens with a disjunctive Boolean network, where the transition local
functions are OR functions (disjunctions of variables): here it is enough that some parent
of node u has state equal to 1, to have that the state of u equals 1 in the next iteration. If
we consider a Boolean network D(B0)

T = (B0, E
T ), where ET is the set of arcs that results

from reversing the arcs of D(B0) (the adjacency matrix of D(B0)
T is the transpose of the

adjacency matrix of D(B0)), with local transition functions given by OR functions, we could
simulate the effect of applying Gauss-Seidel on D and S.

The idea presented in last paragraphs is established in the next lemma, whose proof is on
the appendix:

Lemma 4.2 Let D = (V,A) be a disjunctive network, and a block-sequential update schedule
S for this network, with only two blocks B0 and B1, where the block B0 has q nodes. Let
a ∈ B1 be a node in the second block. Let M ∈ Mq×q({0, 1}) be the adjacency matrix of
D(B0)

T , the subdigraph induced in D by B0 with reversed arcs, that is:

Mij = 1 ⇐⇒ (j, i) ∈ A, (i, j ∈ B0)

Then ~x(a,DS) = ~x(a,D) ·M .

By definition of vectors ~x(a,D), we have that the quantity

~x(D) =
∑

a∈B1

~x(a,D)

is the vector in {0, 1}q which in each component i equals 1 iff there exists some node
a ∈ B1 such that (i, a) ∈ A (if the sum consists in computing the logical OR). If the sum is
in Z

q, then each component i stores the number of arcs in D starting from node i to some
node in B1.

Example 12 Let us consider the network D of Example 11, where the schedule S has two
updating blocks B0 and B1, and obtain the new network D(B0)

T comprised of nodes in the
first block B0 (nodes 1, 2, 3, 4, 7, the yellow nodes in the figure), and a set of arcs that results
from inverting the arcs from the original network D. This network D(B0)

T is depicted in the
figure below. Consider the vector ~x(5, D), that is, the vector that indicates the arcs incident
to node 5 that depart from the first block B0 in D, and assuming M(D(B0)

T ) is the adjacency
matrix of D(B0)

T , obtain the vector ~x(5, D)·M(D(B0)
T ) that results from updating in parallel

the network D(B0)
T with initial condition ~x(5, D).
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2 1

4 1

10

30

70

~x(5, D)

2 0

4 1

11

30

70

~x(5, D) ·M(D(B0)
T )

The last lemma assures ~x(5, D)·M(D(B0)
T ) corresponds to ~x(5, DS), the vector indicating

the arcs starting from block B0 and ending up on node 5 in the network DS, the network
returned by Gauss-Seidel(D,S), which can be checked in the example. The same can be
said about node 6:

2 0

4 0

10

31

70

~x(6, D)

2 1

4 0

10

31

70

~x(6, D) ·M(D(B0)
T )

The previous lemma allows to study the effect of the Gauss-Seidel algorithm -through
the adjacency matrix- on the arcs whose starting node belongs to a block updated before
the block containing the terminal node, which are the arcs of the input network modified
by the algorithm (other arcs of the input are preserved in the output). As a consequence
of this fact, iterated applications of the Gauss-Seidel algorithm on an input network can
be simulated by the product of integer powers of the adjacency matrix and the input vector
~x(a,D). This provides a tool for studying the stability of the deterministic system consisting
of successively applying Gauss-Seidel, which is the stability of powers of matrices, tool
already employed on Section 3 and a well studied problem in itself.

Consider a disjunctive network D = (V,A), and a block-sequential update schedule S for
this network that has only two blocks of updating B0 and B1. Suppose that the subdigraph
D(B0)

T induced in D by the set of nodes in the first block B0 (the one updated first), with
reversed arcs, is strongly connected (we suppose that this block has q nodes: |B0| = q).
By Theorem 3.2 the adjacency matrix M of the subdigraph D(B0)

T is irreducible, and it
could be either primitive or imprimitive. If M is primitive, there exists an exponent exp(M)
for which, Mn is positive for all n ≥ exp(M), and by Theorem 3.5, Mn is positive for all
n ≥ (q−1)2+1. On the other hand, the Lemma 4.2 states that for every node a in the second
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block, the effect of applying Gauss-Seidel algorithm on a vector ~x(a,D), is obtained with
the product of M and ~x(a,D). Thus, whether ~x(a,D) is not the null vector (ie, if there is in
D an arc with initial node in the first block, and its terminal node a is in the second block),
then the product

~x(a,D) ·Mn

is positive for all n ≥ (q − 1)2 + 1. This means that the network returned after (q − 1)2 + 1
applications of Gauss-Seidel, has an arc (q, a) for each node q ∈ B0, and this is kept in the
subsequent applications of the algorithm, resulting in a structural fixed point consisting in a
saturated network full of arcs of the form (q, a). This is the proof sketch of the next lemma:

Lemma 4.3 Let D = (V,A) be a disjunctive Boolean network, and a block-sequential update
schedule S for this network which has only two update instants or blocks B0 and B1, where
the first block has q nodes, and the subgraph D(B0) induced by the first block is strongly
connected and primitive. Then, in O(q2) executions of Gauss-Seidel, the filter converges
to an attractor consisting in a structural fixed point (|A(D,S)| = 1).

Example 13 In the images below there is a disjunctive network D of seven nodes, and a
block-sequential update schedule of two blocks for this network, where nodes in the first block
B0 are orange, and in the second block are blue. We see the subdigraph induced by the first
block, D(B0), is strongly connected and primitive: it has a circuit of length 5 and other of
length 4. Moreover it is known [13] that the adjacency matrix M of D(B0) is one of the two
matrices having an exponent satisfying the relation from Theorem 3.5 with equality: hence
exp(M) = (5 − 1)2 + 1 = 17. This means that after 17 applications of Gauss-Seidel

onto network D (and not in a previous iteration, since exp(M) = 17) the filter attractor is
reached, and the last result assures this attractor is a structural fixed point. Observe that
the arc (6, 7) appears in the third application of Gauss-Seidel: these arcs appear after a
number of iterations linear on |B0| = 5.

6

7

43

2
5

1

D

7

43

2
5

1

6

D17

To study the subcase when the subdigraph induced by the first block D(B0) is strongly
connected and imprimitive, since we have used the same tools from Section 3, we can analo-
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gously employ the observation given by Proposition 3.11, and in turn Lemma 3.10, to deduce
the next result.

Lemma 4.4 Let D = (V,A) be a disjunctive Boolean network, and a block-sequential update
schedule S for this network which has only two update instants or blocks B0 and B1, where the
first block has q nodes, the subdigraph D(B0) induced by the first block is strongly connected
and imprimitive, and the shortest circuit of D(B0) has length equal to ℓ. Then, in O(q)
executions of Gauss-Seidel, the filter converges to an attractor, whose period is O(ℓ). This
attractor consists in a structural fixed point if and only if for each node a ∈ B1 such that
there is an arc (u, a) ∈ A with u ∈ B0, there is an arc (ui, a) ∈ A such that ui ∈ Vi, for every

imprimitivity set Vi from the vertex partition (Vi)
k(D(B0))
i=1 given by Lemma 3.4.

Example 14 Let us see an example of the condition established in the last lemma. Let
D = (V,A) be a disjunctive Boolean network, and a block-sequential update schedule S for
this network which has only two update blocks B0 and B1, and we assume that the digraph
below corresponds to D(B0)

T , the subdigraph of D induced by the first block of S with reversed
arcs. D(B0) is constituted by a circuit of length equal to 2, and another of length 4, then
k(D(B0)) = 2 and D(B0) is imprimitive. Suppose there is a node a ∈ B1 in the second
block, and the numbers 0 or 1 displayed beside each node are the components of the vector
indicated under each graph. We refer to the network obtained after i ∈ N applications of
Gauss-Seidel onto D and schedule S as Di. The initial condition ~x(a,D) results to be null
restricted to the components associated to the nodes 1, 3, and 5, which constitute one of the
imprimitivity sets of the vertex partition given by Lemma 3.4. The Lemma 4.4 states that
the attractor in this case is a structural cycle (~x(a,D2) = ~x(a,D4)):

10 2
1

3 040

5 0

~x(a,D)

10 2
0

3 140

5 1

~x(a,D1)

10 2
1

3 041

5 0

~x(a,D2)

11 2
0

3 140

5 1

~x(a,D3)

10 2
1

3 041

5 0

~x(a,D4)

In the other hand, the following is other initial condition (taken from other network Ḡ
such that the subdigraph induced by the first block is equal to that from D: D(B0) = D̄(B0))
that results to be not null in every imprimitivity set, then, the same lemma states that in this
case the attractor is a structural fixed point:

11 2
0

3 041

5 0

~x(a, D̄)

11 2
1

3 040

5 0

~x(a, D̄1)

10 2
1

3 140

5 1

~x(a, D̄2)

10 2
1

3 141

5 1

~x(a, D̄3)

11 2
1

3 141

5 1

~x(a, D̄4)
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Finally, if we want to check for the transient and period length bounds of the filter stated
by Lemma 4.4, we can realize that D(B0) is the same disjunctive network studied in Example
9.

The next result addresses a more general case for block sequential update schedules of
two blocks: it encompasses the subcases described by Lemmas 4.3 and 4.4. The following
result results to be a nice consequence of Theorem 3.9, since it exploits again Lemma 4.2 to
represent the evolution of the filter as the parallel dynamics of certain disjunctive network.

Proposition 4.5 Let D = (V,A) be a disjunctive Boolean network, and a block-sequential
update schedule S for this network which has only two update instants or blocks B0 and
B1, where the first block has q nodes, and such that the subdigraph induced by the first block,
D(B0), is weakly connected. Then, in O(q2) executions of Gauss-Seidel, the filter converges
to an attractor.

Proof. Let s be the update function of S. First suppose that D has no arcs (u, v) where
u ∈ B0 and v ∈ B1. Since s(u) ≥ s(v) for every arc (u, v) in G, Gauss-Seidel adds to DS

every arc of D without changes and then returns. Therefore D is a structural fixed point
reached after one execution of Gauss-Seidel.

Assume now that there is an arc (i, a) ∈ A such that s(i) < s(a), meaning that the vector
~x(a,D) is not null. LetM ∈ Mq×q({0, 1}) be the adjacency matrix of the subdigraph induced
in D by the first block, D(B0), with inverted arcs, ie:

Mij = 1 ⇐⇒ (j, i) ∈ A, j, i ∈ B0

Then, by the Lemma 4.2, for every n ∈ N, ~x(a,Dn) = ~x(a,D) ·Mn, where Dn is the digraph
obtained after n iterated executions of Gauss-Seidel over D (with schedule S). Thus, we
see the iterated application of Gauss-Seidel is equivalent (Note 1) to the parallel update of
network D(B0)

T , the subdigraph induced in D by the first block with transposed arcs, with
initial condition ~x(a,D). Since the subdigraph D(B0)

T is weakly connected, by Theorem 3.9,
there exist t ∈ O(q2), p ∈ N, such that

~x(a,Dt+p) = ~x(a,Dt) (4.2)

Arcs connecting nodes in the same block are always preserved by Gauss-Seidel. Assume
that there is an arc (j, k) ∈ A such that s(k) < s(j) -this arc (j, k) is preserved without
changes by Gauss-Seidel- and an arc (i, a) ∈ A such that s(i) < s(a). Assume there is a
directed path in D(B0) from k to i of length p ∈ O(q). By Lemma 3.1, Mp

i,k > 0, and given
that x(a,D)i > 0, from Lemma 4.2 it follows that x(a,Dp)k > 0, namely there is in Dp an arc
(k, a), where s(k) < s(a). By the definition of Gauss-Seidel algorithm, in Dp+1 is added
the arc (j, a), where s(j) = s(a) = 1, meaning that Gauss-Seidel is adding an arc that
connects nodes belonging to the second block B1. These arcs are not described by the vectors
~x(a,D) (because the components of these vectors depict nodes in the first block), but what
matters here is that these arcs are added in the iteration p + 1 ∈ O(q) of Gauss-Seidel,
and these arcs remain in the digraphs Dm, with m ≥ p+ 1.
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The foregoing paragraph and equality (4.2) show that in at most O(q2) executions of
Gauss-Seidel over D with schedule S, this iterative procedure outputs a network in the
filter attractor A(D,S).

Last results of this subsection show that the transient length of a wide range of filters of
two blocks applied to a disjunctive network can be bounded by a quadratic polynomial on
the size of the network. Unfortunately, this statement does not apply for the period length.
Although Lemma 4.4 could suggest the opposite, it happens that limit cycles of different
lengths produced by distinct strongly connected components, interact with each other by
multiplying its lengths, which quickly grows the size of the filter attractor. Next theorem
shows this effect in networks having disconnected cycles with different lengths, but it is easy
to produce this same effect even with cycles with different lengths belonging to the same
weakly connected component of the network.

Theorem 4.6 There is a family of disjunctive Boolean networks (Dn)n≥3, and a family
of block-sequential update schedules (Sn)n≥3 of two blocks, such that, the filter applied to
(Dn, Sn), for every n ∈ N, n ≥ 3 exhibits super polynomial period length.

Proof. Let n be a positive integer, π(n) be the number of primes not exceeding n, and
{p1, p2, . . . , pπ(n)} be the first π(n) primes. The network Dn = (Vn, An) has a set of |Vn| =

1 +
∑π(n)

i=1 pi vertices arranged as follows: there are π(n) cycles, each one of length pi and
connected through an arc starting on the cycle and ending on a common single vertex vc as
the figure shows. The schedule Sn has two blocks, where the first block to be updated has
cyan nodes, and the second block has one orange node (the node vc).

3

1

4 p2

vc

pπ(n)−1 + 1

pπ(n)−1 + 2
pπ(n)

2=p1

If we iterate Gauss-Seidel over network Dn and schedule Sn, the procedure does not loop by
producing some network produced before since the networks produced are all different. We
only recover the initial network after lcm{p1, p2, . . . , pπ(n)} =

∏π(n)
i=1 pi applications of Gauss-

Seidel. Or in other words, if we refer to the network obtained after k ≥ 0 applications of
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Gauss-Seidel on (Dn, Sn) as D
k
n, it holds that

D
lcm{p1,p2,...,pπ(n)}
n = D0

n = Dn, ∀n ≥ 3 (4.3)

therefore, the transient length is 0 and the period length is equal to lcm{p1, p2, . . . , pπ(n)}.
To obtain a lower bound of the period length, we follow the arguments of Montealegre &
Goles (2013) [73] and Kiwi et al (1994) [57]. We have that

|Vn| = 1 +

π(n)∑

i=1

pi ≤ 1 + π(n) · n (4.4)

From the Prime Number Theorem (Theorem 6 [40]) it is known that π(n) = Θ(n/ log(n)),
then, it holds, for some constant c, that

n ≤ c · π(n) · log(n) (4.5)

replacing (4.5) in (4.4) gives that

|Vn| ≤ 1 + c · π(n)2 · log(n) =⇒ π(n) ≥ c1 ·

√
|Vn|√

log(n)
(4.6)

for some constant c1. From π(n) ≤ n, replacing this inequality in (4.4), it holds also that

|Vn| ≤ 1 + n2 =⇒ n ≥ c2 ·
√

|Vn| (4.7)

for some constant c2. In the other hand

lcm{p1, p2, . . . , pπ(n)} =

π(n)∏

i=1

pi = exp(θ(n)) (4.8)

where θ(n) =
∑π(n)

i=1 log(pi). It is known (Theorem 420 [40]), that this magnitude meets that
θ(n) = Θ(π(n) log(n)), ie, there exists some constant c3 such that

θ(n) ≥ c3 · π(n) · log(n) (4.9)

replacing (4.9) in (4.8), and then employing (4.6) and (4.7), leads to

lcm{p1, p2, . . . , pπ(n)} ≥ exp(c1c3
√

|Vn|
√

log(n)) ≥ exp(Ω(
√

|Vn| · log |Vn|))

which shows that the period length of (Dn, Sn) is not bounded by any polynomial in |Vn|.

4.3 Complexity of computing the attractor

In this subsection we make an estimation of the total computational cost of the filtering
procedure for schedules of two blocks, which covers the calculation of the output network
on every Gauss-Seidel iteration, and an important aspect in practice related with network
comparison in order to determine the filter attractor, or when to stop the filtering procedure.
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Let us precise the latter: we already said in Subsection 1.7 that for any network N there
exist a transient t and a period p satisfying

N (t+p) = N t (4.10)

where for i ∈ N, N i denotes the network obtained after i succesive applications of Gauss-
Seidel operator starting from N . Since we do not know a priori the values of the transient
and the period, we must iterate the Gauss-Seidel algorithm until we reach some network
in the attractor, indeed, since the transient and the period are the smallest integers verifying
(4.10), we iterate until we encounter the first network verifying this equality. But again, since
we do not know the value of the period, we must compare the current network with all the
previous ones.

Thus, according to previous discussion, for a disjunctive Boolean network D = (V,A) of
size n (|V | = n), if we name GSOp(k) to the number of elementary operations executed
when computing the k−th iteration of Gauss-Seidel, CompOp(k, h) to the number of
elementary operations necessary to perform the comparison of k−th network with h−th
network, the total number of operations necessary to compute the networks in the filter
attractor of network D (and some block-sequential update schedule S) is given by

(t+p)∑

k=1

(
GSOp(k) +

k−1∑

h=0

CompOp(k, h)

)
(4.11)

The network comparisons in this situation are made over networks having the same vertex set
V (and the same vertex labellings), therefore the comparison is simply checking the equality
of the respective set of arcs, which can be approximated by a time cost of O(|A|) = O(n2). By
Proposition 4.1, GSOp(k) is approximated by O(|V | · |A|) = O(n3), then (4.11) is bounded
by

O(n3) ·

(t+p)∑

k=1

(1 + k) = O(n3) ·

(
(t+ p) +

(t+ p) · (t+ p+ 1)

2

)
(4.12)

By Proposition 4.5, we can assume that for schedules of two blocks, in general (at least
when the subdigraph induced by the first block is weakly connected) the transient length
t of a filter is O(n2). If we assume the period length is produced by the length of some
cycle belonging to one strongly connected component, or even by several cycles with the
same length, this allows to linearly bound the period length: p ∈ O(n) (Lemma 4.4). With
these assumptions, finally replacing in expression (4.12) gives a total number of elementary
operations necessary to compute the filter attractor bounded by

O(n3) · O(n4) = O(n7)

In the case that the period length is larger than the previous assumption, it can be
proposed a heuristic consisting in imposing a polynomial maximum number of networks to
compute. Since we know (Proposition 4.5) the transient length is at most quadratic on the
size of the input network, after a sufficiently large number of computed networks, we can
stop to compute additional networks. It is very likely the last networks produced belong to
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the filter attractor, although the relation (4.10) has not happened with the current computed
networks.
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Chapter 5

Filtering dynamic cycles

We already saw in last section that the iterated composition of Gauss-Saidel operator on dis-
junctive Boolean networks stabilizes or reachs a set of networks known as the filter attractor,
after a quadratic number of applications of this operator. In this section we are interested in
studying when this procedure has the intended meaning explained in Subsection 1.7, that is,
when this procedure filters out the limit cycles from the dynamics of networks in the filter
attractor. If this is the case, it holds that networks in the filter attractor have only fixed
points with parallel dynamics, which necessarily are also fixed points from the input network
(see Subsection 1.7).

An overview of this section is the following: in Subsection 5.1, we review Lemma 5.1,
which relates properties of attractors, with structural properties (specifically, the index of
imprimitivity seen in Subsection 3.1) of the considered disjunctive network. Then, we will
need to relate structural properties from the input network to structural properties of net-
works in the respective filter attractor, for which the concept of Induced Length of a cycle
with respect to a block-sequential schedule (Definition 5.2) will be useful. In terms of this
concept we formulate the Cycle-filter condition (Definition 5.4) for a pair network-schedule; if
some pair network-schedule complies this condition, Theorem 5.5 (see Subsection 5.2) assures
that networks in the filter attractor do not exhibit limit cycles with parallel dynamics. In
Subsection 5.3 it is studied the complexity of checking that a pair network-schedule meets
the Cycle-filter condition, which results to be polynomial (Theorem 5.7). To finalize with
a related matter, in Subsection 5.4 it is studied the complexity of checking the condition
required by Theorem 5.8 (introduced in [39]) valid for sequential schedules.

5.1 The Cycle-filter condition

The next result is an important tool hereinafter since it relates, for a disjunctive network
D and a block-sequential schedule S, structural properties of digraph DS with dynamics
STG(D,S). But first we need to introduce some notation. Recall that k(D) ∈ N, for a
strongly connected digraph D, is the greatest common divisor of the lengths of the directed
cycles of D. Let D be a disjunctive Boolean network updated with a block-sequential update
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schedule S, and let C be any non-trivial strongly connected component of DS. For an
attractor A ⊆ {0, 1}n of the dynamics STG(D,S), ie, A is a set of one -fixed point- or more
-limit cycle- vector states forming a cycle in the digraph STG(D,S), we define the period of
A projected to C, which we will denote as p(A,C), as the smallest positive integer verifying
yi(t) = yi(t+ p(A,C)), for every i ∈ C and ~y(t) ∈ A. It is clear that these projected periods
are upper bounded by the respective period of the attractor: p(A,C) ≤ |A|.

Example 15 In the figure we can appreciate an attractor of period 4 (ie, a limit cycle) of a
network D of size 6 and some block-sequential update schedule S. The network DS has three
non-trivial strongly connected components, C1, C2, C3, each of them with 2 nodes, and they
are associated respectively to the first 2 (red) nodes, the intermediate (black) and the last 2
(green) nodes in the states of the figure. Thus, we conclude that p(A,C1) = 1, p(A,C2) = 2
and p(A,C3) = 4.

110100

111001 110110

111011

A limit cycle of period 4 in STG(D,S)

Lemma 5.1 ([37]) Let D be a disjunctive Boolean network updated with a block-sequential
update schedule S and let C be a non-trivial strongly connected component of DS. Then,
for every attractor A in the dynamics of STG(D,S), the period p(A,C) of A projected to C
divides k(DS(C)), and there exists an attractor in which C cycles with period k(DS(C)). In
particular, k(DS(C)) = 1 if and only if the state of C is fixed in all attractors of STG(D,S).

Example 16 The following disjunctive network D has two strongly connected components,
one is comprised of nodes 1, 2 and 3, and the other consists of the nodes 4 and 5. We refer
to these components as C1 and C2, respectively. It is clear that the indexes of imprimitivity
of each component are k(D(C1)) = 3 and k(D(C2)) = 2. In order to apply Lemma 5.1,
we consider in the hypothesis S = π, the parallel schedule, so the non-trivial s.c.c. of DS

are also the s.c.c. of Dπ = D. The lemma states that for every attractor in the dynamics
of STG(D,S) -for example, the limit cycle L of period 2 deployed at the bottom right-, the
periods obtained when projecting to the components C1 or C2, divide the respective index
k(D(Ci)). For example, the period p(L, C1) is equal to 1 (the states are fixed in these nodes),
and p(L, C1)|k(D(C1)); moreover, the period p(L, C2) is equal to 2, and p(L, C2)|k(D(C2)).
The same is true for the limit cycle of period 3.

1

2 4

5
3

D

11110

11101

01100

10100 11000

Two limit cycles of D
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Lemma 5.1 allows to affirm, for example, that a disjunctive network D, updated with
parallel schedule π, does not have limit cyles if and only if every s.c.c. of D is primitive. This
fact provides means to determine if networks in the filter attractor show limit cycles. Then
we would like to find a way to relate the primitivity of s.c.c.’s in the filter attractor, to the
input network handed over to the algorithm. The next concept will be useful to achieve this
goal.

Definition 5.2 (Induced length) Let C ⊆ D = (V,A) be a cycle (or a simple directed
circuit), and let S be a block-sequential update schedule for network D with m ≥ 1 blocks
(Bj)

m−1
j=0 . Let 0 ≤ iC ≤ m − 1 be the instant such that BiC is the last block of those induced

by S having nodes from the circuit C. The induced length of C with respect to S, denoted by
IL(C, S), correspond to the quantity of nodes of C, that belong to block BiC .

Example 17 In the image below at left there is a disjunctive network D of nine nodes, and
a block-sequential update schedule S of three blocks for this network, where nodes in the first
block B0 are green (nodes 8, 4, 5), nodes in the second block B1 are blue (nodes 9, 6) and those
in the third block B2 are orange (nodes 1, 2, 3, 7). In the table below at right we can see several
cycles of G, each of them with its respective last block and induced length:

32

1

9

4

5

8 7
6

G

Cycle C Instant iC IL(C, S)
(1, 2, 3, 4, 5, 9) 2 3
(1, 2, 3, 4, 5, 8, 9) 2 3

(5, 6, 7, 8) 2 1
(5, 6, 7, 8, 9) 2 1

(1, 2, 3, 4, 5, 6, 7, 8, 9) 2 4
(8, 5) 0 2
(9, 5) 1 1
(9, 5, 8) 1 1

Notice that the case of circuit (8, 5) is the same of all those circuits connecting nodes
pertaining to the same block. Here the induced length of the circuit is equal to the usual cycle
length.

Note 4 The induced length of a cycle can be characterized in an equivalent manner which
results to be more complicated but will be useful for the proofs. Let C ⊆ D = (V,A) be a
cycle (or a simple directed circuit), and let S be a block-sequential update schedule for this
network with m ≥ 1 blocks (Bj)

m−1
j=0 . Let 0 ≤ iC ≤ m − 1 be the instant such that BiC is

the last block of those induced by S having nodes from the circuit C. The characterization is
as follows. Assume that in the subdigraph induced in D by BiC , the circuit C reduces to nC

maximal directed paths, where each j−th path connects (ℓj + 1) different nodes (1 ≤ j ≤ nC

and 0 ≤ ℓj ≤ |C| − 1). The induced length of C with respect to S correspond to

IL(C, S) =
nC∑

j=1

ℓj + nC
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The following proposition shows that the induced length, allows to predict the length of
certain circuits that are present in the networks belonging to the filter attractor.

Proposition 5.3 Let D = (V,A) be a disjunctive Boolean network, and a block-sequential
update schedule S for this network with m ≥ 1 blocks (Bj)

m−1
j=0 . If there is a simple circuit C

in D, such that IL(C, S) = L, then there is a circuit of length equal to L in every network
in A(D,S).

Proof. Let s be the update function of S and assume there is a simple circuit C such that
IL(C, S) = L. Then if C reduces to nC maximal directed paths in D(BiC ) (where BiC is
the last block having nodes from the circuit C, 0 ≤ iC ≤ m − 1), where each j−th path
connects (ℓj + 1) different nodes, it holds that L =

∑nC

j=1 ℓj + nC . If nC = 1 and the unique
maximal path connects |C| = 1+ ℓ1 different nodes, this means that all the nodes connected
by C belong to BiC , then C is preserved and it belongs to the networks in A(D,S), so
L = ℓ1 + nc = |C| − 1 + 1 = |C|, and the proposition holds in this case. Let Pj be one of
these paths, for which its ending node will be referred as ej ∈ BiC . Since Pj corresponds to a
sequence of arcs from C, there is a path in D from ej to ij+1, where ij+1 ∈ BiC is the initial
node from the next maximal path Pj+1 induced in D(BiC ) by circuit C (if nC = 1, then ij+1

is simply ij, the starting node from path Pj). Call this path as PD
ej ,ij+1

. It holds that, for

every node a ∈ V connected by PD
ej ,ij+1

with a 6= ej, ij+1, s(a) < s(ej) = s(ij+1) (if not, Pj+1

would not be the next maximal path induced by C in D(BiC )).

As before, we refer to the network obtained after i ≥ 0 applications of Gauss-Seidel

over D (and schedule S) as Di. If we take the subdigraph induced by the first (iC + 1)
blocks, D(B0 ∪ . . . ∪ BiC ), and the schedule S ′ consisting in the schedule S restricted to the
first (iC + 1) blocks, by Lemma A.5 we obtain that for every i ≥ 0, there is a path PDi

ej ,ij+1

in D(B0 ∪ . . . ∪ BiC )
i, which starts from ej to ij+1, and connects nodes belonging to the

set of nodes connected by PD
ej ,ij+1

. By Lemma A.9, this path PDi

ej ,ij+1
is also in Di. Also,

it holds that |PDi+1

ej ,ij+1
| ≤ |PDi

ej ,ij+1
|, for all i ≥ 0. Now, given that the length of any path

is positive, the previous inequality and the fact that |PD
ej ,ij+1

| ≤ |C| − |
∑

j Pj|, there is an

integer ī ≤ |C| − |
∑

j Pj| verifying

|PDī+1

ej ,ij+1
| = |PDī

ej ,ij+1
|

Consider the node incident to ij+1 in P
Dī

ej ,ij+1
, namely, the node uī meeting that (uī, ij+1) ∈

PDī

ej ,ij+1
. Necessarily, this node is one of the nodes connected by PD

ej ,ij+1
: but if uī 6= ej

(uī 6= ij+1 because C is a simple circuit), then s(uī) < s(ij+1), and by the same reasoning in

the proof of Lemma A.5, it is obtained that |PDī+1

ej ,ij+1
| < |PDī

ej ,ij+1
|. This shows that necessarily

uī = ej, or in other words, PDī

ej ,ij+1
= (ej, ij+1). Since s(ej) = s(ij+1), the arc (ej, ij+1) is

preserved in subsequent applications of Gauss-Seidel. Since this arc does not become -in
ulterior iterations- to some of the previous arcs that ended on ij+1, the networks D

i with i < ī
cannot be part of the attractor. Therefore, the attractor is reached in some iteration later
to ī, and since (ej, ij+1) is preserved at each iteration, it holds that (ej, ij+1) is part of all the
networks that constitute the attractor A(D,S). In this way, each path PD

ej ,ij+1
connecting the

maximal path Pj with maximal path Pj+1 ends up as just one arc (ej, ij+1), finally forming,
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after O(|C| − |
∑

j Pj|) iterations, a closed path which connects nodes in BiC of length equal
to

nC∑

j=1

(ℓj + 1) =

nC∑

j=1

ℓj + nC = IL(C, S) = L

Remark 2 Proposition 5.3 is not an equivalence, that is, in any network belonging the
filter attractor A(D,S) there may be a circuit of length L such that none circuit of D has
induced length equal to L. The following example shows one of such cases. Let D be the
disjunctive network defined by the digraph in the figure, and let S be the following block-
sequential update schedule of 3 blocks for the network D: B0 = {1, 2} (the red nodes in the
figure), B1 = {3} (the blue node in the figure), B2 = {4, 5} (the green nodes in the figure).
After 2 applications of Gauss-Seidel on (D,S), the network D̄ is obtained, which is a
structural fixed point for Gauss-Seidel. Every simple circuit of D has induced length equal
to 2: IL((1, 2), S) = 2, IL((2, 5, 4, 3), S) = 2, and IL((2, 1, 5, 4, 3), S) = 2. However in D̄
there are circuits C1 = (4, 5, 3), C2 = (5, 4, 3, 2) and C3 = (5, 4, 3, 2, 1) of lengths 3, 4, and 5,
respectively.

5

1

2

3

4

D

5

1

2

3

4

D̄

We can now state a condition on the input network and schedule that ensures networks
in the filter attractor do not have limit cycles. The proof of this property is on the next
subsection.

Definition 5.4 (Cycle-filter condition) Let D = (V,A) be a disjunctive Boolean network,
and consider a block-sequential update schedule S for this network. The pair (D,S) is cycle-
filter if it satisfies the following.
(i) Every non-trivial strongly connected component of digraph D contained in just one updat-
ing block induced by schedule S is primitive.
(ii) Every non-trivial strongly connected component of digraph D belonging to more than one
updating block induced by schedule S, verifies that the greatest common divisor of the induced
lengths of its simple circuits equals 1.
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5.2 Sufficiency of Cycle-filter

Theorem 5.5 Let D = (V,A) be a disjunctive Boolean network, and S a block-sequential
update schedule for this network. If (D,S) is cycle-filter then the networks in A(D,S) do
not have limit cycles when updated with the parallel schedule π.

Proof. Let (D,S) be a pair digraph-schedule which is cycle-filter and let D̄ be a network in
A(D,S), the filter attractor of the pair (D,S). By applying inductively Lemma A.8, every
non-trivial s.c.c. C of D produces at most one non-trivial s.c.c. C̄ in D̄. Whenever a non-
trivial s.c.c. C of D is studied in isolation from the rest of the digraph, the Lemma A.9 is
being used implicitly, that is, if C belongs to the first n blocks of S, we use the schedule S ′

resulting in restricting S to the first n blocks and the subdigraph D(C) of D induced by the
nodes of C. The conclusions drawn for D(C) are also valid for D thanks to Lemma A.9.

Let C be a non-trivial strongly connected component in D, and suppose first C is com-
pletely contained in just one block induced by S, implying C is preserved in every application
of Gauss-Seidel, and thus, C is a s.c.c. in D̄. We first show by contradiction that no new
circuits are added to C. On the contrary, if this were the case, the characterization 2.2 says
that a circuit C̄ in C appearing in any of the applications of Gauss-Seidel is equivalent
to the existence of a circuit C∗ in D connecting the nodes connected by C̄ and some other
nodes that are not in the block of C (as C̄ was not originally in C). This means that C
belongs to more than one block, which is absurd. Since (D,S) is cycle-filter, C is primitive,
and in this way, it holds that every s.c.c. of D contained in just one updating block ends up
in D̄ ∈ A(D,S) as a primitive s.c.c.

Now let C be a non-trivial s.c.c. of D belonging to more than one updating block induced
by S. If C consists of only one simple circuit C, as (D,S) is cycle-filter then C has induced
length with respect to S equal to 1. Then by Proposition 5.3, the s.c.c. C̄ ∈ D̄ generated
by C ∈ D has a loop and therefore C̄ is primitive. If C is comprised of several circuits,
since (D,S) is cycle-filter the greatest common divisor of its induced lengths is 1, or in other
words, the set of induced lengths of cycles in C is setwise coprime. By Proposition 5.3, the
s.c.c. C̄ ∈ D̄ generated by C ∈ D, has a circuit of length L for every circuit in C of induced
length L. Therefore, the set of lengths of cycles in C̄ is also setwise coprime, implying that
k(D̄(C̄)) = 1 and C̄ is primitive. This shows that, if (D,S) is cycle-filter, every non-trivial
s.c.c. C̄ of any network D̄ in A(D,S) is primitive, which implies by Lemma 5.1 (employing
the parallel schedule π in the hypothesis of the lemma) that the state of every s.c.c. C̄ of
D̄ is fixed in all attractors of STG(D̄, π), meaning that the dynamic of STG(D̄, π) does not
have limit cycles. This shows the condition sufficiency.

Remark 3 The condition 5.4 is not necessary in general. That is, it may happen that none
of the networks in A(D,S) exhibits limit cycles when updated with the parallel schedule π,
but the pair (D,S) is not cycle-filter. Let D and S be the same disjunctive network and
block-sequential update schedule defined in Remark 2. The pair (D,S) is not cycle-filter,
since D is strongly connected, the nodes in D belong to more than one updating block induced
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by schedule S and the induced lengths with respect to S of its circuits (IL((1, 2), S) = 2,
IL((2, 5, 4, 3), S) = 2, and IL((2, 1, 5, 4, 3), S) = 2) are even. However, the network D̄ is a
primitive strongly connected digraph, then Lemma 5.1 allows to affirm that D̄ does not have
limit cycles with parallel dynamics.

Despite the condition cycle-filter is not necessary in the general case, it is possible to find
some cases when this property is actually necessary. The following theorem shows one of
such cases.

Theorem 5.6 Let D = (V,A) be a disjunctive Boolean network, and a block-sequential up-
date schedule S for this network, such that every strongly connected component of D contained
in more than one block consists of a unique simple circuit. If the networks in A(D,S) do not
have limit cycles when updated with the parallel schedule π then (D,S) is cycle-filter.

Proof. We now show the condition is necessary with the assumption specified on the theorem
assertion. Let D̄ be a network in A(D,S), the filter attractor of the pair (D,S). Just as
it was done in the proof of Theorem 5.5, whenever a non-trivial s.c.c. C of D is studied in
isolation from the rest of the digraph, the Lemma A.9 is being used implicitly: if C belongs
to the first n blocks of S, we use the schedule S ′ resulting in restricting S to the first n blocks
and the subdigraph D(C) of D induced by the nodes of C. The conclusions drawn for D(C)
are also valid for D thanks to Lemma A.9. Also, by applying inductively Lemma A.8, every
non-trivial s.c.c. C of D produces at most one non-trivial s.c.c. C̄ in D̄. Assume (D,S) is
not cycle-filter, namely (D,S) does not satisfy (i) or (ii) from Definition 5.4.

In the first case, there is in D an imprimitive s.c.c. C contained in just one block induced
by S, implying C is preserved in every application ofGauss-Seidel, and thus, C is a s.c.c. in
D̄. No new circuits are added to C (by the same argument put in the proof of Theorem 5.5),
then the primitivity of C is not modified and there is in every D̄ ∈ A(D,S) an imprimitive
strongly connected component.

In the second case, there is a s.c.c. C ∈ D belonging to more than one updating block
induced by S such that it consists of a unique simple circuit with induced length with respect
to S equal to d > 1, implying by Proposition 5.3 that in the s.c.c. C̄ ∈ D̄ generated by C ∈ D
there is a circuit of length d > 1. If we suppose the s.c.c. C̄ ∈ D̄(C̄) has more than one
simple circuit, necessarily there is in C̄ a node with in-degree greater than one, which violates
Lemma A.6. Then the s.c.c. C̄ ∈ D̄ has only one simple circuit of length d > 1, meaning
that k(D̄(C̄)) = d > 1 and C̄ is imprimitive.

This shows that, if (D,S) is not cycle-filter, for every network D̄ in A(D,S) there exists
some imprimitive s.c.c. C̄ ∈ D̄, and finally by Lemma 5.1 there is an attractor in which C̄
cycles (updated with the parallel schedule π) with period k(D̄(C̄)) > 1.

53



5.3 Complexity of checking Cycle-filter

We address now the problem of determining the complexity of checking Definition 5.4, the
Cycle-filter condition. As first observation, given a pair (D,S), we need to calculate the
strongly connected components of the digraph D = (V,A). This is not difficult since there
are several algorithms to perform this task in linear time, for example, Kosaraju’s algorithm
[82] and Tarjan’s algorithm [84], which work in O(|V | + |A|). Once we have a s.c.c. C,
we need to know the index of imprimitivity of C. We present here an algorithm extracted
from [9], [20] that will be very useful hereafter, which calculates this index in O(|A|). This
algorithm receives as input a strongly connected digraph D, with vertex set V , and adjacency
lists (L(v))v∈V storing the set of arcs: for each vertex v ∈ V , L(v) corresponds to the set of
vertices w for which (v, w) is an arc of D. The algorithm assumes that a spanning directed
tree T of D with root r has been previously determined (for example, by means of a depth-
first search); this tree allows to get a distances vector d, such that, for each vertex a ∈ V ,
d(a) is the length of the unique directed chain in T from r to a (with d(r) = 0). In this way,
the algorithm Index returns the index of imprimitivity of D.

Index(V, (L(v))v∈V , d)

1 δ = 0
2 for a ∈ V
3 for b ∈ L(a)
4 δ = gcd{δ, d(a)− d(b) + 1}
5 return δ

The correctness proof of this algorithm can be revised in [13]. The algorithm uses the con-
vention that gcd{0, 0} = 0. By last observations, we can see that is not difficult to check the
part (i) of being cycle-filter: in linear time, we find the strongly connected components, and
then in linear time on every component, we can compute the respective index of imprimitiv-
ity. In fact, the most used algorithms to find the s.c.c.’s (including Kosaraju’s and Tarjan’s
algorithms), perform a depth-first search, which obtains a depth-first spanning directed for-
est. If we make use of, for example, the Kosaraju’s algorithm, this algorithm gets one root for
every depth-first tree of the forest (by visiting nodes in order of decreasing finishing times-
tamps), each of these trees corresponding to every strongly connected component. Having
these roots, it is easy to compute in linear time O(|A|) the distances vector d required later
by Index (by traversing the spanning tree from the root). Notice that all these algorithms,
either DFS, Kosaraju, Tarjan, and Index, represent the digraph as a collection of adjacency
lists. Finally, to determine whether a component “belongs to more than one updating block
induced by schedule S”, it is enough to do a single pass over the nodes of the component,
evaluating the update function s of schedule S on each node.
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It remains to be seen the complexity of checking part (ii) of the definition. This introduces
a decision problem in itself that we define here.

Cycle-Filter

Input: A strongly connected graph D = (V,A); a block-sequential update S for D

Question: Does D verify the set of induced lengths with respect to S of its circuits

is setwise coprime?

We show next that the above problem can be solved in polynomial time. A brute force
strategy is to find all simple circuits and compute the induced length of each one. There
is a work (Johnson, 1975 [51]) which proposed an algorithm to find all simple circuits of a
directed graph D in time bounded by O((n + a)(c + 1)), where D has n vertices, a arcs
and c simple circuits. Then the induced length of a simple circuit can be easily obtained in
linear time on the length of the circuit. The problem is that the number of simple circuits
in a directed graph can grow faster with n than exponential ([51]). The difficulty due to the
existence of certain cycles verifying its induced lengths do not have common divisors, can
be avoided by the same algorithm Index, which determines whether all the cycles have a
common divisor by means of a spanning DFS tree. The key that allows to employ the Index
algorithm, is the Proposition 5.3, which ensures that a cycle in the initial network having
an induced length L, implies the existence of a cycle in every network of the attractor with
length equal to L. Thus, if we could add the cycles existing in the filter attractor associated
to cycles of certain induced length existing in the initial network, then we could test the
primitivity of networks in the attractor by applying the Index algorithm.

This is the idea implemented by the next algorithm, called Test-Cycle-Filter, whose
pseudo-code is written below. This algorithm assumes that, for each v ∈ V , the sets
Sin(v), Sout(v) ⊆ V have been initialized as follows: Sin(v) corresponds to the set of nodes
incident to v (or in the case of Sout(v), the nodes at which v is incident), that are belonging
to blocks previous to the block of v (the same for Sout(v)). By this reason, for every node v
in the first block, Sin(v) = Sout(v) = φ. These sets are easily computed in one pass over the
arcs of D taking O(|A|) time.

Before presenting the algorithm Test-Cycle-Filter, we describe the sub-routine
Add-Edges(D, i, D̂i, S) used by the algorithm. This sub-routine receives as input the input
digraph D, the blocks (Bℓ)

m−1
ℓ=0 of schedule S, the instant 0 ≤ i ≤ m− 1 and the subdigraph

D̂i induced in D by the block Bi. The purpose of Add-Edges is to add, to the subdigraph
D(Bi), the same arcs that would be added to D if we were to execute the filter (the iterated
composition of Gauss-Seidel) over (D,S). If we refer to the subdigraph induced in D
by blocks previous to Bi as D

i
prev = D(B0 ∪ . . . ∪ Bi−1), we see from the code below that

Add-Edges(D, i, D̂i, S) adds an arc (w, v) to the subdigraph D̂i, where w, v belong to Bi,
if there exists a path P in D from w to v, such that the intermediate nodes of P belong
to blocks previous to block Bi. This path is comprised by some arc (w, y), where y is some
node in Sout(w), some path Py,x from y to x in Di

prev, where x is some node in Sin(v) and
the arc (x, v). Given that for every node v in the first block B0, S

in(v) = Sout(v) = φ, when
Add-Edges processes the first block it does nothing and returns the subdigraph D̂i without
changes.
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Add-Edges(D, i, D̂i, S)

1 if i = 0 return D̂i

2 Di
prev = D (B0 ∪ . . . ∪ Bi−1)

3 for v, w ∈ Bi

4 if (Sin(v) 6= φ ∧ Sout(w) 6= φ)
5 for x ∈ Sin(v), y ∈ Sout(w)
6 if Is there a path from y to x in Di

prev ?

7 D̂i = D̂i ∪ (w, v)

8 return D̂i

Procedure Test-Cycle-Filtermakes use of two other sub-routines that we now explain.
The first of them is Non-Trivial-Scc(D), which receives a digraph D as argument and
computes the non-trivial strongly connected components of D. For this, it uses any of the
existing algorithms that compute the strongly connected components of a digraph (Tarjan
is the most used in practice due to its efficiency) and we discard all those trivial compo-
nents consisting in only one node without loop. Finally Non-Trivial-Scc(D) returns a set
{(C1, r1), . . . , (CJ , rJ)} where each pair (Cj, rj) is formed by some non-trivial component Cj

of the input graph D, and the respective root rj of Cj (which can be any node of the set
Cj). The trivial strongly connected components are not only discarded from the output of
Non-Trivial-Scc(D), but they are also erased from input graph D, therefore, after ex-
ecuting Non-Trivial-Scc(D) the input graph D only has non-trivial strongly connected
components. The last sub-routine is named Replace-Node(D, v1, v2), which receives as
argument a digraph D and two nodes v1, v2 of D, and it replaces, in every arc of D where
the node v1 appears, the node v1 by node v2. This can be done easily in one single pass over
the arcs of D, and still more quickly if we have in and out adjacency lists for every node of
D. Finally we erase node v1 from digraph D. Given that Test-Cycle-Filter performs
Replace-Node(D̂, rj, r1) for each j = 2, . . . , J (or for each non-trivial strongly connected
component different from the first one) we have that, in line 8 of Test-Cycle-Filter, the
digraph D̂ is strongly connected.

Test-Cycle-Filter(D = (V,A), S)

Let B0, . . . , Bm−1 the blocks of schedule S
1 for i = 0, . . . ,m− 1

2 D̂i = D(Bi)

3 D̂i = Add-Edges(D, i, D̂i, S)

4 D̂ = D̂0 ∪ . . . ∪ D̂m−1

5 {(C1, r1), . . . , (CJ , rJ)} = Non-Trivial-Scc(D̂)
6 for j = 2, . . . , J

7 Replace-Node(D̂, rj, r1)

8 if Index(D̂) = 1 return true

9 else return false

Given the last algorithm which solves Cycle-Filter problem (Lemma A.7), we can
propose an upper bound of time complexity of this problem, which is done in the next result:

Theorem 5.7 Cycle-Filter problem is solvable in time O(m · |V |4), where the instance
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of the problem is (D,S) = ((V,A), S), and m is the number of blocks of S.

Proof. Let D = (V,A) be a strongly connected digraph, and S be a block-sequential update
for D. The fact that algorithm Test-Cycle-Filter(D,S) solves the instance (D,S) of
problem Cycle-Filter is proved on Lemma A.7. If we call Â∗ to the set of arcs of D̂∗, where
D̂∗ refers to the set D̂ after pre-processing with Non-Trivial-Scc, we see, by arguments
said before, that Index(D̂∗), and each execution of Replace-Node(D̂∗, rj, r1) is O(|Â∗|),

which in turn is O(|V |2). If we had in and out adjacency lists for every node of D̂∗, each
operation Replace-Node(D̂∗, rj, r1) indeed would cost O(deg−

D̂∗
(rj) + deg+

D̂∗
(rj)), then the

total (J − 2 + 1) Replace-Node(D̂∗, rj, r1) operations would cost O(|Â∗|) = O(|V |2).

If we now refer to D̂ as this set before pre-processing with Non-Trivial-Scc, and
Â corresponding to its respective arc set, we see that Non-Trivial-Scc(D̂) requires to
compute the s.c.c.’s of D̂, which can be done (for example, by Tarjan’s algorithm) in
O(|Â| + |V |) = O(|V |2 + |V |). If the total number of s.c.c.’s of D̂ is NC, then discard-
ing trivial s.c.c.’s from output set is O(NC) = O(|V |), and erasing these trivial components
from D̂ is time O(|Â|) = O(|V |2).

The tasks of computing induced subdigraphs (each one of subdigraphs D̂i and D
i
prev) takes

time O(|A|). It only remains to see the time required by Add-Edges(D, i, D̂i, S) in checking
if there is a path from y to x in Di

prev = (Vi, Ai) (where Vi = B0 ∪ . . . ∪ Bi−1 and Ai ⊆ A,
i = 0, . . . ,m−1). We need to estimate how many node pairs origin-destination (y, x) we have
to check. If we realize that (y, x) ∈ Oi × Di when it is executed Add-Edges(D, i, D̂i, S),
where

Oi =
⋃

v∈Bi

Sout(v) and Di =
⋃

v∈Bi

Sin(v)

and bounding the cardinal of these sets as follows |Oi| =
∑

v∈Bi
|Sout(v)| ≤

∑
v∈V |Sout(v)| ≤

|A| and analogously |Di| ≤ |A|, we conclude that the number of pairs to check is |Oi ×
Di| = O(|A|2) = O(|V |4). Finally, we need to know the time required to check if there is
a path in Di

prev for each pair (y, x). One alternative is to run a breadth-first-search with
root y in Di

prev = (Vi, Ai), this method tells us what nodes in Vi are reachable from y,
using an adjacency list representation of Di

prev and taking time O(|Vi|+ |Ai|). However, this
search must be performed for each distinct origin y. Another alternative is to run firstly
some all-pairs shortest paths algorithm (with weight equal to 1 for each arc) on Di

prev inside

Add-Edges(D, i, D̂i, S), in this way checking if there is a path from y to x for each pair
(y, x) takes time O(1). For example, Johnson’s algorithm (see [18]) uses the adjacency-list
representation of Di

prev and takes time O(|Vi|
2 lg |Vi|+|Vi||Ai|). The Floyd-Warshall algorithm

runs in time O(|Vi|
3) but using an adjacency matrix representation ([18]). Therefore, we

conclude the asymptotic time cost of executing Test-Cycle-Filter(D,S), when using
Johnson’s algorithm, is bounded by the number of pairs (y, x) to check, giving a total time
of O(m · |V |4), where m is the number of blocks of S.
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5.4 Complexity of checking positive circuits

We finalize this section by studying the complexity of checking the condition required by
Theorem 5 in [39]. In that paper, this issue was not addressed. The reader can safely skip
this subsection without loosing the main argument of this work. First, let us introduce the
conventions used here. A Boolean function f : {0, 1}n → {0, 1} is increasing monotonic on
input i if

∀~x ∈ {0, 1}n, f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

and decreasing monotonic on input i if

∀~x ∈ {0, 1}n, f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

A Boolean function f : {0, 1}n → {0, 1} is said to be a sign-definite function, if for each
i = 1, . . . , n, it is either increasing monotonic or decreasing monotonic on input i. Now, let
NF be a Boolean network defined by a global transition function F : {0, 1}n → {0, 1}n, where
F (~x) = (f1(~x), · · · , fn(~x)), and for each i = 1, . . . , n, fi : {0, 1}

n → {0, 1}. We say that F
is a sign-definite global function, if for all i = 1, . . . , n, the local transition function fi is a
sign-definite function.

Given a sign-definite global function F : {0, 1}n → {0, 1}n, where F (~x) = (f1(~x), · · · , fn(~x)),
we denote by I+(j) and I−(j) the set of indices where fj is increasing monotonic and de-
creasing monotonic respectively. Hence, for every Boolean network NF such that F is a
sign-definite global function, we can define a sign function wF : EF → {−1, 1} (EF is the set
of arcs of the digraph GF associated to the network NF ), where

wF (i, j) =

{
−1 i ∈ I−(j)
+1 i ∈ I+(j)

We shall say that an arc (i, j) ∈ EF is positive if wF (i, j) = 1 and negative otherwise.
We will say that a path is positive if the number of its negative arcs is even, and negative
otherwise. The same will be said about closed paths, either simple closed paths (cycles, with
intermediate nodes no repeated) or not necessarily simple closed paths (circuits). The pair
(GF , wF ) will be called graph with sign of NF . We write now the theorem mentioned before:

Theorem 5.8 ([39]) Let NF be a Boolean network in which the global transition function
F : {0, 1}n → {0, 1}n complies that all its simple circuits are positive. Let Nn−1 = S ◦ · · · ◦
S(NF ) be the network obtained from composing the operator S n− 1 times (applied on NF ),
where S is the Gauss-Seidel operator associated to the sequential schedule (1) · · · (n). Then,
Nn−1 = S(Nn−1), and the only attractors of network Nn−1 are fixed points, which are reached
in at most n updates of network Nn−1.

We see the alluded condition is that all the simple circuits in the digraph associated to
the Boolean network are positive, and this condition is posed on the graph with sign defined
before. This question can be put on any arbitrary sign function, and it is itself a decision
problem. The complement of this problem can be formulated as follows:
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Negative-Cycle

Input: A directed graph G = (V,E); a sign function w : E → {−1, 1}

Question: Does the digraph G have a negative cycle (simple circuit)?

In [58], it is demonstrated that Negative-Cycle can be solved in polynomial time. In
that work, the problem is addressed in the context of sign solvability of linear systems (the
problem is referred there as Odd-Cycle). Here we will show an alternative proof of this
fact, which makes use of results from graph databases, and that could mean a contribution in
the sense it solves a problem with results from another field. Now we present the necessary
definitions to state the next result. A database graph (or db-graph) G = (V,E, ψ,Σ, λ) is
a directed, labelled graph, where V is the set of nodes, E is the set of edges, and ψ is an
incidence function mapping E to V × V . Note that this function allows a db-graph to have
multiple edges between a given pair of nodes, and there is no problem in this framework to
represent graphs which there is only one arc connecting every pair of nodes. The labels of G
(rather E) are drawn from Σ, which is a finite set of symbols called the alphabet, and λ is an
edge labelling function mapping E to Σ.

Let G = (V,E, ψ,Σ, λ) be a db-graph and w = (v1, e1, . . . , en−1, vn), where vi ∈ V, 1 ≤ i ≤
n, and ej ∈ E, 1 ≤ j ≤ n − 1, be a walk (not necessarily a path) in G. We call the string
λ(e1) · · ·λ(en−1) the walk label of w, denoted by λ(w) ∈ Σ∗. Let R be a regular expression
over Σ. We say that the walk w satisfies R if λ(w) ∈ L(R), ie, the walk label λ(w) belongs
to the language associated with the regular expression R. The query QR on db-graph G is
defined as the set of pairs (x, y) such that there is a walk from x to y in G which satisfies R.
If (x, y) ∈ QR(G), we say that (x, y) satisfies QR.

Now if we put the following decision problem

Regular-Path

Input: A db-graph G = (V,E, ψ,Σ, λ); nodes x, y ∈ V ; a regular expression R over Σ

Question: Does G contain a directed walk w = (e1, . . . , ek) from x to y such that

w satisfies R, that is, λ(e1) · · ·λ(ek) ∈ L(R)?

it holds that Regular-Path is indeed in P [70]. The name of the decision problem corre-
sponds to the name in the original reference [70], where a “path” corresponds to a “walk” in
our terminology. We have enough elements to prove the next result:

Proposition 5.9 Negative-cycle is solvable in polynomial time

Proof. For an instance of the Negative-cycle problem G = (V,E), w : E → {−,+}, we
create an associated db-graph G′ = (V,E, ψ,Σ, w), where ψ is simply the proper incidence
function necessary to represent the connectivity of G, and Σ = {−,+} (we take the sign
function w as the labelling function). We take the regular expression R′ =“+∗ − +∗(+∗ −
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+∗ −+∗)∗”, whose associated language L(R′) consists of all strings with an odd quantity of
“−”. For any pair of nodes x, y ∈ V , the question “is there a walk from x to y in G′ which
satisfies R′?”, which we will denote as “Is (x, y) ∈ QR′(G′)?”, as mentioned before is solvable
in polynomial time. Then the following algorithm runs also in polynomial time (on the size
of G):

Negative-Circuit(G′ = (V,E, ψ,Σ, w))

1 for v ∈ V
2 if Is (v, v) ∈ QR′(G′)?
3 return true

4 return false

It is not difficult to see that Negative-Circuit returns true if and only if there is in
G′ a closed walk whose walk label has an odd quantity of “−”. The last part of the proof
consists in realizing that a signed digraph G′ has a negative closed walk if and only if it has
a negative (simple) cycle (something that is no longer true when considering, for example,
an even quantity of “−”). It is clear that a negative cycle is a negative walk. For the other
direction, let W1 = (v1, . . . , vn) be a negative walk that is not a cycle. Then, there are at
least two vertices repeated in W1. Choose i as large as possible such that vi = vk, for some
i < k ≤ n. By the election of i, W2 = (vi, vi+1, . . . , vk−1, vk) is a cycle (it has no repeated
nodes). If W2 is a negative cycle, the property holds. If W2 is not negative, since an odd
integer cannot be written as a sum of two even integers, thenW3 = (v1, . . . , vi−1, vk+1, . . . , vn)
is a negative walk smaller (in length) that W1. We can apply this reasoning again over W3,
and repeating this procedure must finish producing a negative cycle since G is finite.
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Chapter 6

Filter convergence to fixed points

In this section, we address the problem of determine what structural properties of the input
network guarantee the filter attractor is comprised of only one network, that is, when we can
assure the filter attractor is a structural fixed point. Recall that Theorem 5.8 states that,
with sequential schedules and positive circuits, the filter attractor is always a fixed point.
This section is put after all the previous ones because the arguments hereinafter employ tools
introduced on those sections.

6.1 Schedules of two blocks

Let D be a disjunctive network and s an update function of two instants or blocks (Bℓ)
1
ℓ=0.

In Section 4.2 we saw that the filter of two blocks can be analyzed through a linear system
which involves the adjacency matrix of D(B0)

T . As a first idea, we know the presence of
several networks in the attractor relates with the presence of strongly connected components
where the arcs (u, v) verifying s(u) < s(v) can cycle with some periodicity p > 1, phenomena
observed when we have imprimitive strongly connected components. Then, we could say
that, for update schedules of two blocks, a sufficient condition to obtain a structural fixed
point is that all the strongly connected components of D(B0) are primitive. Indeed, we can
establish a less demanding condition to ensure the required property, what is done by the
following result.

Proposition 6.1 Let D = (V,A) be a disjunctive network, and a block-sequential update
schedule S for this network, with only two blocks B0 and B1. Suppose that for any arc
(i, j) with i ∈ B0 and j ∈ B1, the non-trivial strongly connected components in D(B0)

T , the
subdigraph of D induced by B0 with reversed arcs, that are encountered first by walks (of
D(B0)

T ) starting from vertex i are primitive. Then, |A(D,S)| = 1, or in other words, the
filter attractor is a structural fixed point.

Proof. Let s be the update function of schedule S. First suppose that D has no arcs (u, v)
where u ∈ B0 and v ∈ B1, then the condition in the statement holds trivially in this case.
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Since s(u) ≥ s(v) for every arc in D, Gauss-Seidel adds to DS every arc of D without
changes and then returns. Therefore D is a structural fixed point reached after one execution
of Gauss-Seidel.

Assume now that there is an arc (i, a) ∈ A such that s(i) < s(a), meaning that ~x(a,D)i = 1
(~x(a,D) is defined in Subsection 4.2). Let M ∈ M|B0|×|B0|({0, 1}) be the adjacency matrix
of D(B0)

T , the subdigraph induced in D by the first block B0, with inverted arcs, ie:

Mij = 1 ⇐⇒ (j, i) ∈ A

Then, by the Lemma 4.2, for every n ∈ N, ~x(a,Dn) = ~x(a,D) ·Mn, where Dn is the graph
obtained after n iterated executions of Gauss-Seidel over D (with schedule S). From this
equality and the Lemma 3.1 we deduce that

~x(a,Dn)k = 1 iff ~x(a,D)i = 1 and there is in D(B0)
T a walk of length n from i to k (6.1)

Let (Cℓ)
r
ℓ=1 be the set of strongly connected components in D(B0)

T that are encountered
first by walks starting from i. For every Cℓ, it holds that in a number nℓ ≤ |B0| of executions
of Gauss-Seidel, ~x(a,Dnℓ)kℓ = 1, for some vertex kℓ belonging to Cℓ. By hypothesis, every
component Cℓ is primitive, then by Lemma 4.3 after a number n′

ℓ at most quadratic (on the
size of the component, |Cℓ|) of executions of Gauss-Seidel, it holds that ~x(a,Dnℓ+n′

ℓ)kℓ = 1,
for every vertex kℓ belonging to Cℓ. Since every Cℓ is strongly connected, the last property
is kept in ulterior executions. In particular, for those vertices k′ℓ ∈ Cℓ from which there are
walks starting from Cℓ and carrying to other strongly connected components, it holds that
~x(a,Dh)k′

ℓ
= 1, for every h ≥ nℓ + n′

ℓ.

Now, for every node v ∈ B0 reachable in D(B0)
T from Cℓ, there is a walk from Cℓ to v

of length nℓ
v ≤ |B0|, which implies by the equivalence (6.1) that ~x(a,Dnℓ

v+h)v = 1, for every
h ≥ nℓ + n′

ℓ and for every Cℓ. Finally, it holds that, after a number n̄ = max1≤ℓ≤r(nℓ + n′
ℓ) +

maxv∈B0,1≤ℓ≤r n
ℓ
v, which is at most O(|B0|

2), it holds that ~x(a,Dn̄)v = 1, or (v, a) ∈ A(Dn̄),
for every v ∈ B0 reachable from any Cℓ in D(B0)

T . Since this is valid for every (i, a) ∈ A
such that s(i) < s(a), the filter attractor consists in a structural fixed point.

Example 18 Let D be the disjunctive Boolean network in the figure, and the block-sequential
update schedule S (with update function s) of two blocks where the orange nodes (1 to 12)
belong to the first block B0, and nodes 13 and 14 belong to the second block B1. It can
be appreciated that the arcs (u, v) such that s(u) < s(v) are the arcs (6, 14) and (12, 13).
Both arcs verify the condition of the hypothesis: for the arc (6, 14) the first non-trivial s.c.c.
found first by walks starting from 6 in D(B0)

T is the component formed by the loop on vertex
6, which is primitive. In the other hand, the arc (12, 13) complies the condition since the
s.c.c.’s found first by walks starting from 12 in D(B0)

T are the two primitive components
formed by 9, 10, 11, and 1, 2. It does not matter for the condition if the components formed
by nodes 3, 4, 5, or 8, 7, are imprimitive. The filter on (D,S) converges after 7 iterations of
Gauss-Seidel to a structural fixed point.
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Remark 4 The condition established by Proposition 6.1 is not necessary as the following
example shows. Let D be the disjunctive Boolean network in the figure -which is very similar
to that in Example 18-, and the block-sequential update schedule S equal to the schedule of
previous example. It can be appreciated that the arcs (u, v) such that s(u) < s(v) are the arcs
(7, 14), (8, 14), (9, 13), (11, 13) and (12, 13). None of these arcs verify the condition, the arcs
incident to 14, have as the first s.c.c. encountered by walks starting from 7 or 8 in D(B0)

T

to that formed by vertices 7 and 8, which is imprimitive. In the other hand, arcs (9, 13),
(11, 13) have as their nearest s.c.c. in D(B0)

T to the imprimitive component comprised by
9, 10, 11; arc (12, 13) fails to comply the condition by the same component (although the other
component encountered first, that formed by vertices 1, 2, is primitive). However, after 4
applications of Gauss-Seidel, the filter onto (D,S) converges to a structural fixed point.
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6.2 The general case

The general case for schedules of more than two blocks does not result to be a direct gener-
alization of the case with two blocks. An example of this fact is given by the network D and
schedule S in the image below. The schedule has three blocks, the first B0 to be updated
with (orange) nodes 1, 2, 3, the second B1 to be updated with (blue) nodes 4, 5, 6, 7, 8, 9, and
the third B2 to be updated with the (gray) node 10.

1

2

3
8

4

5

6

7

9

10

D

We see there are two arcs (u, v) such that s(u) < s(v): (3, 7) and (4, 10). We see also
that the nearest non-trivial s.c.c. from node 3 in D(B0)

T is that formed by node 1, which
is primitive, and the nearest non-trivial s.c.c. from node 4 in D(B1)

T is that formed by
nodes 9, 8, which is also primitive, then a naive generalization of the condition holds in this
example. However, after 2 executions of Gauss-Seidel a new non-trivial imprimitive s.c.c.
appears consisting in the cycle joining nodes 6, 7. Thus, after 2 executions of Gauss-Seidel

the arc (4, 10) remains cycling at this new component, which finally leads to the filter applied
to (D,S), after 6 applications of Gauss-Seidel, converges to a filter attractor of size 2.

With the previous example it seems we need to know the strongly connected components
that will be appearing as Gauss-Seidel is running, or how the existing components change.
For this goal, the concept of induced length of a cycle seen in Section 5.1 turns useful again,
since by Proposition 5.3, it informs us about the existence of cycles with certain length in
the attractor networks.

Having said the above, the main result of this section is introduced, which gives a sufficient
condition ensuring the filter attractor is a structural fixed point, for schedules of two or more
blocks. This result is an inductive generalization of Proposition 6.1, and it makes use of
Lemma A.9 from Section A.6 of the Appendix for the inductive step.

Theorem 6.2 Let D = (V,A) be a disjunctive network, and a block-sequential update sched-
ule S for this network. Suppose that for any arc (i, j) with s(i) = ℓi < s(j) = ℓj, the
non-trivial strongly connected components in D(B0 ∪ B1 ∪ · · · ∪ Bℓj−1)

T , the subdigraph of
D induced by B0 ∪ B1 ∪ · · · ∪ Bℓj−1 with inverted arcs, that are encountered first by walks
(of D(B0 ∪ B1 ∪ · · · ∪ Bℓj−1)

T ) starting from vertex i, satisfy the greatest common divisor
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of induced lengths of cycles is equal to 1. Then, |A(D,S)| = 1, or in other words, the filter
attractor is a structural fixed point.

Proof. Let s be the update function of schedule S. We will refer to the network obtained
after ℓ ∈ N iterations of Gauss-Seidel over network D and schedule S as Dℓ. The proof is
by induction on the quantity m of blocks of schedule S. The base case is when m = 2: here
it happens that, since the cycles considered by the hypothesis are completely contained in
D(B0)

T , the induced length of these cycles match with their usual length, and the condition of
the hypothesis is equivalent to the non-trivial strongly connected components are primitive.
Thus, the base case is given by Proposition 6.1.

Suppose now the assertion is true for schedules of m = k blocks, and for demonstrating
that is also true for m = k+ 1. Let (Bj)

k
j=0 be the set of blocks of a block-sequential update

schedule S for network D having k + 1 update instants, which satisfies the condition of the
hypothesis. Let S ′ be the schedule consisting in the restriction of S to the first k blocks,
then the blocks of S ′ are (Bj)

k−1
j=0 , and consider the subdigraph D′ = D(V ′) induced in D by

the first k blocks of S (V ′ = B0 ∪ . . . ∪Bk−1). It holds that S
′ is a block-sequential schedule

of k blocks for network D′ which also satisfies the condition in the hypothesis, therefore, by
inductive hypothesis, |A(D′, S ′)| = 1, and assume that a ∈ N is the smallest positive integer
such that Da ∈ A(D′, S ′).

The last assertion implies, by Lemma A.9, that the filter applied onto (D,S), from the
(a+ 1)− th iteration and the following, only changes arcs starting from nodes in the first k
blocks to nodes in the (k + 1)− th block (since arcs in D(V ′) are preserved as A(D(V ′), S ′)
is a structural fixed point). This allows to study the filter applied onto (D,S), from the
(a+1)− th iteration and the following, with the same construction of Lemma 4.2, using the
schedule S̃ of two blocks (B̃j)

1
j=0: B̃0 = V ′ and B̃1 = Bk and the network Da (the network

obtained after a iterations of Gauss-Seidel onto (D,S)). This construction simulates the
evolution of the filter applied onto (D,S) from (a+ 1)− th iteration onwards.

The arcs (u, v) in Da starting from B̃0 to B̃1 do not necessarily satisfy the condition in
the hypothesis (if all of them satisfy it, the conclusion is direct from applying Proposition
6.1 to (Da, S̃)), but if this was the case -ie, there is a scc Cu whose induced lengths of cycles
are not setwise coprime, which is reachable from u through a path in D(V ′)T without other
non-trivial components-, the arc (u, v) ∈ A(Da) was diffused from an arc (w, v) ∈ A(D)
which indeed meets the requirement, that is, there is a walk in D(V ′)T from w to u, and the
first non-trivial s.c.c. Cw,u ∈ D(V ′)T traversed by this walk complies the g.c.d. of induced
lengths of its cycles is 1. This walk corresponds to a walk Wu,w from u to w in D(V ′).

If every arc (a, b) of Wu,w satisfies s(a) ≥ s(b), this walk is preserved in every application
of Gauss-Seidel, and necessarily Wu,w is also a walk in Da. Suppose there is an arc (a, b)
of Wu,w such that s(a) < s(b) = ℓb < k, by the hypothesis, the first non-trivial strongly
connected Ca of D(B0 ∪ . . . ∪Bℓb−1)

T that is reached verifies that the set of induced lengths
of cycles is setwise coprime. Then, when D(B0 ∪ . . .∪Bℓb−1)

T stabilizes as a structural fixed
point (by the inductive hypothesis), by Proposition 5.3 Ca becomes a primitive component,
and after an at most quadratic number of applications (Lemma 4.3) the procedure produces
an arc (v, b) for each vertex v ∈ Ca. This shows that in network Da(V ′) necessarily there
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is a fixed walk from u, and therefore from Cu, to w. We refer to the corresponding walk in
Da(V ′)T as W̃w,u.

In network Da, the arc (w, v) ∈ A(D) has produced some arc (x, v) ∈ A(Da), where
x is a node from the component C̄w,u ∈ Da, which is the component produced by Cw,u ∈
D(V ′)T (recall that by Lemma A.8, any strongly connected component produces at most
one strongly connected at each execution of Gauss-Seidel). By Proposition 5.3, C̄w,u is
primitive, therefore after at a number q at most quadratic of applications of Gauss-Seidel,
the procedure has produced an arc (y, v) ∈ A(Da+q) for each vertex y ∈ C̄w,u. After this fact,
in a number n̄ ≤ |V ′|, as in the proof of Proposition 6.1, it holds that ~x(v,Dn̄+a+q)z = 1,
or (z, v) ∈ A(Dn̄+a+q), for every z ∈ B̃0 reachable in Da(B̃0)

T from C̄w,u, in particular, for

z ∈ Cu, thanks to walk W̃w,u.

Since this is valid for every (u, v) ∈ A(Da) such that s(u) < s(v) (no matter if it does
or does not meet the hypothesis, as it was shown), the filter attractor A(Da, S̃) = A(D,S)
consists in a structural fixed point. This shows the statement of the theorem is valid for
block-sequential update-schedules of k + 1 blocks, which concludes the proof.

Example 19 Let D be the disjunctive network of size 10 of the figure, and S be the block-
sequential update schedule of 3 blocks (Bℓ)

2
ℓ=0 for D, where the nodes of the first block are

1, 2, 3, 4, 5 (orange nodes), those on the second block are 6, 7, 8, 9, and the third block only has
the node 10.
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((D′)3, S)

The arcs (u, v) ∈ A(D) such that s(u) < s(v) are (9, 10) and (1, 6). The first of them
satisfies the hypothesis in Theorem 6.2, since the non-trivial strongly connected component in
D(B0∪B1)

T that is encountered first by walks starting from vertex 9, is that formed by nodes
6, 7, 8, 1, 2, 3, which has the cycle (6, 7, 8) of induced length (with respect to S) 3 and the cycle
(6, 7, 3, 2, 1) of induced length 2. However, the arc (1, 6) does not meet the hypothesis, since
the non-trivial strongly connected component in D(B0)

T that is encountered first by walks
starting from vertex 1, is that formed by nodes 4, 5, which has a greatest common divisor of
induced lengths of cycles equal to 2. The filter applied onto (D,S) converges, after 7 iterations
of Gauss-Seidel, to an attractor of size 2.

If we now consider the network D′ which consists of network D plus a loop on vertex 2,
we see that (D′, S) indeed meets the hypothesis, since now the non-trivial strongly connected
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component in D(B0)
T that is encountered first by walks starting from vertex 1, is that formed

by node 2, which complies the requirement. In terms of the proof of Theorem 6.2, in the
network (D′)3 obtained after 3 iterations of Gauss-Seidel, the subdigraph (D′)3(B0 ∪ B1)
has stabilized into a structural fixed point, but for example the arc (4, 10) ∈ A((D′)3), which
was diffused from (9, 10) ∈ A(D) through the walk W4,9 = 4, 3, 2, 1, 6, 9 in D(B0 ∪ B1), does
not verify the hypothesis. That arc would finish cycling in the s.c.c. C4 (reachable from vertex
4 in (D′)3(B0∪B1)

T ) formed by nodes 4, 5; however the arc (1, 6) ∈ W4,9 meets the hypothesis,
since the first non-trivial strongly connected component C1 of D(B0)

T that is reached from 1
is that formed by node 2, which is primitive, what assures that in network (D′)3(B0 ∪ B1)

T

there is a walk W̃9,4 = 9, 6, 2, 3, 4. This walk permits to diffuse arcs that ends at 10 and starts
from the primitive component C̄9,4 ∈ (D′)3 formed by vertices 2, 3, 6, 7, 8, what ultimately
generates a fixed point in the component formed by vertices 4, 5 (and not a cycle of length 2).
The filter applied onto (D′, S) converges after 5 iterations of Gauss-Seidel to a structural
fixed point.
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Conclusion

7.1 Main theorem

We review now a result that is a summary of all the development displayed in previous
sections, and it can be considered as the main contribution of this work.

Theorem 7.1 Let NF be a Boolean disjunctive network of size n, where F : {0, 1}n → {0, 1}n

is its global transition function, D is the digraph associated to F , and S be a block-sequential
update schedule for NF . The next statements hold:
(i) If the digraph associated to FS is weakly connected, then, from any initial condition,
updating according to S, the transient length is at most O(n2).
(ii) If the digraph associated to F is weakly connected and every strongly connected component
has a loop or a complete subdigraph of order greater or equal than 3, then, for every network in
A(NF , S), updating according to the parallel schedule and starting from any initial condition,
the transient length is at most O(n).
(iii) If S has 2 blocks B0 and B1, the digraph D(B0) is weakly connected and |A(NF , S)| ∈
O(n), the filter attractor A(NF , S) can be computed in time at most O(n7).
(iv) If (NF , S) is cycle-filter, which is checkable in polynomial time, then every network in
A(NF , S), updated in parallel, only has fixed points as attractors.
(v) Suppose that for every arc (i, j) with s(i) = ℓi < s(j) = ℓj, it holds that the non-
trivial strongly connected components in D(B0 ∪ B1 ∪ · · · ∪ Bℓj−1)

T , the subdigraph of D
induced by B0 ∪ B1 ∪ · · · ∪ Bℓj−1 with reversed arcs, that are encountered first by walks (of
D(B0 ∪ B1 ∪ · · · ∪ Bℓj−1)

T ) starting from vertex i, satisfy the greatest common divisor of
induced lengths of cycles is equal to 1. Then, |A(D,S)| = 1, or in other words, the filter
attractor is a structural fixed point.

Proof. Assertion (i) corresponds to what is stated by Theorem 3.9. Assertion (iii), that
is, the time necessary for computing A(NF , S) is given by Proposition 4.5 and discussion
in Subsection 4.3. The properties about cycle-filter condition -assertion (iv)- holds from
Theorem 5.5, Theorem 5.7 and discussion in Subsection 5.3. The last assertion corresponds
to the implicance given by Theorem 6.2, so (v) holds.

To see assertion (ii), let S a schedule with block set (Bj)
m−1
j=0 , and let C be a strongly

connected component of D, the digraph associated to F , having a loop. It is apparent, by
definition of algorithm Gauss-Seidel, that the loops are preserved in every application of
this procedure, then, the s.c.c. C̄ generated by C (recall that by Lemma A.8 and Lemma
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A.9, C generates at most one s.c.c. C̄ in the networks in A(NF , S)) in every network in
A(NF , S) has the same loop of C. Suppose now C has a complete subdigraph W of order
k ≥ 3. If the nodes of W are updated at the same time according to S, W is preserved and
the s.c.c. C̄ generated by C in every network in A(NF , S) has the same complete subdigraph
W . If the nodes of W are updated at different times (or belong to different blocks), let
tl ∈ {0, . . . ,m − 2} be the smallest time at which some node of W is updated, and let
a ∈ V ∩W be any node of W that does not belong to block Btl . Since W is complete, we
know there is cycle of length 2 formed by nodes a and some node b ∈ Btl . After applying
Gauss-Seidel operator, a loop is added to node a, and this loop is preserved in ulterior
applications. Therefore, we see that if W has k′ < k nodes belonging to blocks different from
block Btl , then the s.c.c. C̄ generated by C in every network in A(NF , S) has at least k′

loops. We conclude that the initial assumption implies that every s.c.c. of the digraph of any
network in A(NF , S), has a loop or a complete subdigraph of order greater or equal than 3,
then, by Theorem 3.12, for every network in A(NF , S), starting from any initial condition, in
at most O(n) updates according to the parallel schedule, the state vector gets to some fixed
point

7.2 Applications

Theorem 7.1 enumerates a list of facts that may be very useful to propose a general filtering
algorithm, that is, given a disjunctive Boolean network N , the algorithm could find a block-
sequential update schedule σ optimal in some sense (eg, minimal number of blocks) that
guarantees networks in A(N, σ) indeed do not have limit cycles with the parallel schedule,
and such that A(N, σ) can be efficiently computed. Also it could have the nice property that
the filter attractor is a structural fixed point. Theorem 7.1 allows us to note that, when we
restrict to disjunctive networks, the complexity of computing the filter by iterating the Gauss-
Seidel operator beside related problems, remains polynomial under reasonable assumptions,
which suggests that this technology may be feasible to implement in practical applications
(and to work even with large networks). Theorem 4.6 also gives intuition of when the filter
attractor A(N, σ) acquires a size that turns impractical to manage.

Disjunctive Boolean networks do not have the negation connective in their Boolean func-
tions, then they trivially meet that all their simple circuits are positive. Then, Theorem
5.8 from the paper of Goles and Salinas (2010) ensures that, for a disjunctive network and
sequential schedule (D,S), the networks in the filter attractor A(D,S), when updated with
parallel schedule, do not have limit cycles. This fact can be seen as an application of The-
orem 5.5. Let C be a non-trivial strongly connected component of digraph D contained in
just one updating block. Since S is sequential, C is comprised of only one node with loop,
then C necessarily is primitive. Now, let C be a non-trivial strongly connected component
of digraph D belonging to more than one updating block induced by schedule S. Since S is
sequential, there is only one node in the last block of those containing component C. There-
fore, necessarily there is in C a cycle whose induced length equals 1. Hence, we see that, for
every disjunctive network D and sequential schedule S, the pair (D,S) is Cycle-filter, and
Theorem 5.5 allows to conclude that the networks in the filter attractor A(D,S), when up-
dated with parallel schedule, do not have limit cycles. In the other hand, the other statement
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of Theorem 5.8 claiming that, for a disjunctive network and sequential schedule (D,S), it
holds that |A(D,S)| = 1, can be derived analogously from Theorem 6.2.

It is interesting, from a theoretical standpoint, that these properties can be derived from
results from linear algebra and studying exclusively the topology of the associated digraph
of the network, which is a simple representation of these networks. The fact that dynamical
evolution of network states, studied in Subsection 3.2, and the stabilization of some operator
applied onto the networks, studied in Section 4, could be studied using the same theorical
results may be an indication of some kind of deeper relationship between these phenomena.

7.3 Outlook and future work

Results from this work confirm that capacity from iterated Gauss-Seidel of removing limit
cycles, remains when we extend to block-sequential schedules, at least in certain types of
networks. Disjunctive networks are an example of nested canalizing functions[53] [66], which
exhibit more robust dynamics than random networks, that is, less attractors and shorter limit
cycles, and the majority of regulatory functions in many published models of gene regulatory
and signaling networks are nested canalizing [75]. All the more, nested canalizing functions
are a subclass of canalizing functions [55] [52], in which at least one of the input variables
is able to determine the function output regardless of other values of other variables. This
concept evokes the concept of “canalization” introduced by Waddington [89] to refer to the
ability of a genotype to develop the same phenotype regardless variations on environmental
conditions. In the other hand, there is evidence that canalizing functions are common in
higher vertebrate gene regulatory systems [55], and a large-scale study of the literature on
transcriptional regulation in eukaryotes demonstrated a bias towards canalizing rules [41].

A potential application of the dynamics in disjunctive networks is to interpret it as the
dynamics of some network epidemic model [26]. The simplest epidemic model is the SI model
[10], in which there are two states a node can adopt: before the node has caught the disease, it
is susceptible, and once it has caught the disease, it becomes infectious. Infectious nodes has
some contagion probability of infecting each of its susceptible neighbors. Thus, the dynamics
of some disjunctive network can be interpreted as the dynamics of a SI epidemic model over
the same digraph (where the nodes with state equal to 0 are the susceptible ones), with
contagion probability equal to one. Attractors, particularly fixed points, of these networks
can provide information of the stationary state obtained from a given initial condition of the
network (or initial distribution of infected nodes), for diseases with high contagion probability.
Last paragraphs suggest that disjunctive networks may not only be a blackboard toy, but
also a functional modeling tool in itself, despite its conceptual simplicity.

As a conjecture for future work remains the idea of extending the statement of Theorem 3.9
for every possible disjunctive Boolean network, not only those where the associated digraph is
weakly connected. The argument is the following. If we have a digraph with several weakly
connected components (or disconnected components, if we see the underlying undirected
graph), Theorem 3.9 is valid for each of these components, therefore the transient of each
one is quadratic on the size of each respective component. As the different components
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evolve in parallel with respect to other components, the transient length of the complete
network is simply the maximum over the set of transient lengths of all the components, and
this maximum would still be quadratic on the size of the whole network. Since all the other
results requiring the hypothesis of the weakly connected digraph are based on Theorem 3.9,
whether the conjecture is true, all these other results would drop this hypothesis too.

A natural question, motivating a possible line of future research, is to ask what about more
expressive networks, if it is possible to extend the results and techniques developed in this
work to more general networks. A potential tool to realize this generalization is that of binary
decision diagrams (BDDs) [63] [1] [74], one of the most used data structure for representation
of Boolean functions. The restricted class of reduced ordered BDDs (OBDDs) obtained
extended usage because these diagrams provide a canonical representation and allow efficient
manipulation [14]. For a set of Boolean functions, an OBDD representing the functions in
this set consists in a directed acyclic graph, that offers a description for the computation of a
Boolean function. The computation of Gauss-Seidel operator may be formulated in terms of
some basic operations on Boolean functions that can be executed efficiently on OBDDs, as
Equivalence tests and Substitution [22]. It should be noted that if superpolynomial behaviors
(Theorem 4.6) are observed when the network has only the disjunctive connective, intractable
magnitudes are likely to appear with more expressive networks.

Another potential line of research is a possible interpretation of the filtering procedure in
terms of biological meaning or other considerations. Notice conditions that guarantee the re-
moval of limit cycles relate to the presence of circuits in the graph associated to the network,
meeting certain assumptions. Thomas [79] defined the regulatory circuits as simple circular
chains of oriented interactions, which can be positive or negative depending on the parity of
the number of negative interactions (analogously to definitions in Subsection 5.4), and they
would necessary to generate non-trivial dynamical behaviour. In particular, positive circuits
would be necessary to generate alternative cellular states -or multiple attractors-, while nega-
tive circuits would be necessary to generate homeostasis or oscillatory behaviour [85]. Several
efforts have been made to mathematically formalize these rules [80] [83] [25] [56]. Other idea
related to the meaning of cycles in a Boolean (or qualitative) network model derived from a
differential equation model is the Glass-Kauffman hypothesis [33] [31]. Assuming the system
modeled has a negative regulatory circuit, this principle can be summarized as follows: if
the Boolean network has no limit cycles, the differential equation system does not have limit
cycles; if the Boolean network has limit cycles, the differential equation model may or may
not have limit cycles. A mathematical formulation and proof of this hypothesis has been
given by Glass and Pasternack [34] [32] for piece-wise linear systems.

Other related topics and tools to study filters are, for example, the representation of the
problem as a query on a database. Proof of proposition 5.9 already suggested a potential
connection with database theory. The output of the filter could be seen as the result of a query
(fact inference) formulated in a logic programming language (such as Datalog, or Prolog) over
a set of facts (the initial network), where the output is computed by least fixpoint iteration:
some operator is iterated until one term is equal to its predecessor [15]. The problem of
requiring the output of the filter only has fixed points may be relaxed by imposing only a
subconfiguration of states remains fixed, regardless of the values of the other nodes, which
is known as an alliance, a concept introduced by Goles, Montalva & Ruz (2012) [36]. The
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problem of characterizing the whole family of outputs of the filter on a given network can
be addressed by employing the equivalence classes that group schedules producing the same
dynamics developed by Aracena et al [5] [6]. Finally, the relevance of the usual complexity
measures employed in computer science should be evaluated in the context of gene regulation:
due to current technology restrictions, the size of networks used in real modeling applications
does not increase asymptotically, and maybe the difficulties encountered when working with
these networks are not captured by worst case analysis.
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Appendix A

Proofs

A.1 Proofs for Section 1

Lemma A.1 Let NF be a Boolean network defined by a global transition function F :
{0, 1}n → {0, 1}n, with component functions fi (F (~x) = (f1(~x), · · · , fn(~x))), and let S be a
block-sequential update schedule for this network. Then it holds that the component functions
fS
i of FS, the global transition function of network NF with schedule S, can be characterized
as follows:

∀~x ∈ {0, 1}n, fS
i (~x) = fi(x

i
1(~x), . . . , x

i
n(~x)) where x

i
j(~x) =

{
xj s(i) ≤ s(j),

fS
j (~x) s(i) > s(j)

Proof. Let S be a block-sequential update schedule ofm blocks (Bj)
m−1
j=0 with update function

s : V → {0, . . . ,m− 1}, and define for each k ∈ {0, . . . ,m− 1}, the following vectors (whose
value depends on any vector ~x ∈ {0, 1}n):

~yk = F[Bk] ◦ · · · ◦ F[B1] ◦ F[B0](~x)

It is clear that ~ym−1 = FS(~x), and from definition of F[W ] (for a set W of nodes updated
in parallel) it holds that each j − th component of ~yk is given by

(~yk)j =

{
fj(~yk−1) j ∈ Bk,
(~yk−1)j ∼

for k ≥ 1

(~y0)j =

{
fj(~x) j ∈ B0,
~xj ∼

In a block-sequential schedule S, each node j is updated exactly once. This only date
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within an update sequence, corresponds for each node j to time tj = s(j) ∈ {0, . . . ,m− 1}.
Considering the values taken by different components (~yk)j, then it holds that

(~yk)j =

{
(~yk−1)j = · · · = (~y1)j = (~y0)j = xj 0 ≤ k < s(j),

(~yk−1)j = · · · = (~ys(j)+1)j = (~ys(j))j = fj(~ys(j)−1) s(j) ≤ k ≤ m− 1

Thus, it is obtained that FS(~x)i = (~ym−1)i = fi(~ys(i)−1), and the argument of fi(·), ~ys(i)−1,
corresponds, according to the above, to the following

(~ys(i)−1)j =

{
xj s(i)− 1 < s(j),

fj(~ys(j)−1) s(i)− 1 ≥ s(j)
=

{
xj s(i) ≤ s(j),

fj(~ys(j)−1) s(i) > s(j)

In this way, it is deduced that fi(~ys(i)−1) and (~ys(i)−1)j, correspond respectively to fS
i (~x)

and to xij(~x), which proves the assertion of the lemma.

A.2 Proofs for Section 2

Proof of Lemma 2.1. Let AG be the digraph of order n associated to the Boolean network
NG. Since NG is a conjunctive network, each i − th local transition function is given by
gi(~x) =

∧
j∈N−

AG
(i) xj, except maybe for those nodes k ∈ V whose local transition function

is constant (where N−
AG(k) = φ). Let define the functions of the disjunctive network NF so

that the digraph associated to NF is the same for NG, ie:

fi(~x) =
∨

j∈N−

AG
(i)

xj, for all i ∈ V such that N−
AG(i) 6= φ

fi(~x) = ¬gi(~x), for all i ∈ V such that N−
AG(i) = φ

With global transition function F (~x) = (f1(~x), · · · , fn(~x)) of network NF defined as above,
it suffices to prove the assertion of the lemma for parallel schedule π, since the dynamics of any
transition function F of a disjunctive network with schedule S is simulatable using transition
function FS and parallel schedule π, where FS is also disjunctive (thanks to the fact F is
disjunctive and the definition of FS). So, if i ∈ V verifies N−

AG(i) 6= φ then:

fπ
i (~x) = fi(~x) =

∨

j∈N−

AG
(i)

xj =
∨

j∈N−

AG
(i)

¬¬xj = ¬
∧

j∈N−

AG
(i)

¬xj = ¬gi(¬~x) = ¬gπi (¬~x)
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If i ∈ V is a node with constant value, or such that N−
AG(i) = φ, then fπ

i (~x) = fi(~x) =
¬gi(~x) = ¬gi(¬~x) = ¬gπi (¬~x), which concludes the proof.

A.3 Proofs for Section 3

Proof of Lemma 3.10. Let ℓ be the length of the shortest circuit Cℓ in D. In the following
we refer to the digraph associated with matrix M ℓ as Dℓ. First we show that the strongly
connected components of Dℓ correspond exactly to the imprimitivity sets (Vi)

k(D)
i=1 (Lemma

3.4). Let S be a strongly connected component of Dℓ, and let p, q ∈ S two nodes from D
(not necessarily distinct), then there is a walk Wp,q in Dℓ of length |Wp,q| = H. By Lemma
3.1, there exists a walk W̃p,q in D of length |W̃p,q| = H · ℓ, and since ℓ is multiple of k,
|W̃p,q| ≡k(D) 0. Let a ∈ V be any arbitrary fixed node of digraph D. If we examine the

definition of the imprimitivity sets (3.1), we see that, if p ∈ Vi (recall that (Vi)
k(D)
i=1 is a

partition of V ), there is a walk in D from a to p, Wa,p, of length |Wa,p| ≡k(D) i. If we add

this walk with W̃p,q, we obtain a walk in D from a to q, Wa,q, of length |Wa,q| ≡k(D) i, and
thereby, necessarily q belongs to Vi. In other words, for every strongly connected component
S from Dℓ, there exists i ∈ {1, . . . , k(D)} such that S ⊆ Vi.

We now show the other inclusion: let Vi (1 ≤ i ≤ k(D)) be a set as defined in Lemma
3.4, we claim this set is a strongly connected component of Dℓ. To prove this, we first shall
see that there is a circuit C in Dℓ that contains every node in Vi (at least once). Since D
is strongly connected, there is a closed directed walk C that contains every node in V . To
construct C, we take a node xi ∈ Vi, and move within the circuit C thrusting forward ℓ steps
each time. Each node encountered with this method belongs to Vi as each of these nodes is
at a distance from xi (in the circuit C) that is a multiple of ℓ, and hence, multiple of k(D).
Notice that with this procedure, a closed walk (starting and ending on xi) is obtained after
lcm(ℓ, |C|)/ℓ iterations (of thrusting forward ℓ steps). We claim that this closed walk contains
all the nodes in Vi. Suppose there is a node xj ∈ Vi that is not reachable from xi with the
procedure mentioned above, ergo the walk in C that starts on xi and ends on xj, Wxi,xj

, has a
length not multiple of ℓ: |Wxi,xj

| ≡ℓ N 6= 0, but by definition of congruence modulo ℓ, there
exists z ∈ Z satisfying that

|Wxi,xj
| = z · ℓ+N = z ·

ℓ

k(D)
· k(D) +N ⇐⇒ |Wxi,xj

| ≡k(D) N 6= 0

and this contradicts (iv) from Lemma 3.4. Thereby this closed walk in D contains every
node in Vi separated by ℓ steps, and this means that in Dℓ there is a circuit C containing
every node in Vi. This is equivalent to the subgraph induced in Dℓ by Vi, D

ℓ(Vi), is strongly
connected. It remains to prove that the set Vi is a maximal strongly connected component in
Dℓ: assume there is a node xr ∈ Vr(r 6= i) such that Vi∪xr is a strongly connected component
in Dℓ. This obviously contradicts the proven assertion in the previous paragraph, and thus
we have proved that Vi is a strongly connected component of Dℓ.

Finally, to conclude that every strongly connected component in Dℓ is primitive, notice
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that as every arc in D starts from a node in Vi and ends on a node in Vi+1, for some i,
1 ≤ i ≤ k(D) (according to (iii) in Lemma 3.4), and as there are k(D) sets Vi and ℓ nodes
in the shortest circuit Cℓ (k(D) ≤ ℓ), necessarily for each i ∈ {1, . . . , k(D)} there is at least
one node in Cℓ ∩ Vi. But each node belonging to the circuit Cℓ has a loop in Dℓ, then by
the above each strongly connected component in Dℓ has at least one node with a loop and
therefore is primitive.

The proof of the next result can be reviewed at Andrews (Corollary 2-2 [3]):

Lemma A.2 (Bezout’s Identity) In order that there exist integers x and y satisfying the
equation

ax+ by = c

it is necessary and sufficient that d|c, where d = gcd(a, b).

A.4 Proofs for Section 4

Lemma A.3 The algorithm Gauss-Seidel, which receives as input a disjunctive network
D and a block-sequential update schedule S, is correct, meaning that the network returned
corresponds to the network outputted by Gauss-Seidel operator associated to schedule S applied
onto D.

Proof. It is enough to prove that the set of arcs A′ returned by Gauss-Seidel is exactly
AS, the set of arcs of the network DS outputted by Gauss-Seidel operator. For this we shall
use the characterization of AS already proved in Lemma 2.2 (where s is the update function
of schedule S):

AS = {(j, i)| there is in D a path {v0, v1, . . . , vl} from j = v0

to i = vl such that s(v0) ≥ s(v1) ∧ ∀1 ≤ k < l, s(vk) < s(vk+1)}

For readability we put here the pseudo-code of Gauss-Seidel:
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Gauss-Seidel(D = (V,A), S)

1 A′ = φ, (A′ ⊆ A) // initialization
2 I = φ, (I ⊆ V )

Let B0, . . . , Bm−1 be the blocks of S, and let s be the update function
3 for i = 0 to m− 1
4 for j ∈ Bi

5 for (u, j) ∈ A // we go over every arc incident to node j
6 if s(u) ≥ s(j)
7 A′ = A′ ∪ {(u, j)}
8 else

9 for (t, u) ∈ A′

10 A′ = A′ ∪ {(t, j)}
11 I = I ∪ {j}
12 return (I, A′)

Let e = (u, v) ∈ A′ be an arc in the network returned by Gauss-Seidel. This arc was
added to A′ in line 7 or line 10 of the algorithm. Suppose it was added in line 7: in this case
e = (u, v) ∈ A and s(u) ≥ s(v), so we can take v0 = u, v1 = vl = v and hence, e = (u, v) ∈ AS.
Suppose now it was added in line 10: in this situation we know there is a node w such that,
(u, w) ∈ A′ and (w, v) ∈ A, with s(w) < s(v). The same previous reasoning can be applied
to arc (u, w): it was added to A′ in line 7 or line 10. If it was added in line 7, we deduce
that (u, w) ∈ A and s(u) ≥ s(w), therefore, we can take v0 = u, v1 = w, vl = v(l = 2), and
thus (u, v) verifies the condition to be in AS. If (u, w) was added in line 10, the previous
reasoning can be repeated (since A′ is finite the reasoning cannot be repeated indefinitely)
until obtaning a path in A from u to v meeting all the conditions such that (u, v) ∈ AS.

Now let (u, v) ∈ AS be an arc in the network DS calculated by Gauss-Seidel operator,
by characterization there is in D a path v0, v1, . . . , vl from u = v0 to v = vl such that
s(v0) ≥ s(v1) ∧ ∀1 ≤ k < l, s(vk) < s(vk+1). Recall the network D = (V,A) is the input
received by Gauss-Seidel, returning the network (V,A′). By Gauss-Seidel definition, the
arc (u, v1) is added to A′ in line 7, and the other arcs are added in line 10. All the more, we
know nodes vk where 1 ≤ k ≤ l are added to I in increasing order on k (due to the order
in which the blocks are revised by the algorithm), which in turn implies that arcs (vk−1, vk),
where 1 ≤ k ≤ l, are also added to I in increasing order on k. In this manner, the first arc
from the path that connects u with v to be added to A′ is (u, v1) in line 7. Later, every arc
(vk−1, vk), with 2 ≤ k ≤ l, is processed in line 10: the algorithm searches in A′ all arcs of the
form (t, vk−1), and adds to A′ the arc (t, vk). When k = 2, since the arc (u, v1) is already in
A′, the arc (u, v2) is added to A′. When k = 3, since (u, v2) is in A

′, the arc (u, v3) is added
to A′, and so are added iteratively to A′ the arcs (u, vk) until k = l. As vl = v, in the last
block of the schedule the arc (u, v) is added to A′: thus, (u, v) ∈ A′.

Proof of Lemma 4.2. Let s be the update function of schedule S. Suppose it is not true, that
there exists i ∈ B0 such that (~x(a,D) ·M)i = 1 and x(a,DS)i = 0. Assume the arcs in A
whose starting node is i are the following:
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{(i, j)}j∈H , H ⊆ V

Since (~x(a,D) ·M)i = 1, necessarily there exists j ∈ H ∩B0 satisfying x(a,D)j = 1. This
is because if it was that ∀k ∈ H ∩B0, x(a,D)k = 0, it would hold that

(~x(a,D) ·M)i =
∑

k∈B0

x(a,D)kMki =
∑

k∈B0∩H

x(a,D)k︸ ︷︷ ︸
=0

Mki +
∑

k∈B0/H

x(a,D)k Mki︸︷︷︸
=0

= 0

which would be absurd. Since there exists j ∈ H ∩ B0 satisfying x(a,D)j = 1, from
definition of ~x(a,D), we know (j, a) ∈ A ∧ s(j) < s(a). Observe since j ∈ H, this means
(i, j) ∈ A. When Gauss-Seidel is applied over D and S, the first block processed is B0,
implying the arc (i, j) is processed (when the node j is processed) before the arc (j, a) (which
is processed when the node a is processed). From what was said before: s(i) = s(j) < s(a),
then (i, j) is processed at line 7 from Gauss-Seidel, and (j, a) is processed at line 10: thus,
the arc (i, j) is added to A′, and since (i, j) ∈ A′ when (j, a) is processed, then the arc (i, a)
is added to A′. With this, x(a,DS)i = 1 which contradicts the initial assumption.

Suppose now there exists i ∈ B0 such that (~x(a,D) ·M)i = 0 and x(a,DS)i = 1. Since
x(a,DS)i = 1, it holds (Lemma A.3) that (i, a) ∈ A′(s(i) < s(a)). At this point we can use
the characterization proved in Lemma 2.2 to state that there is in D a path (v0, v1, . . . , vl)
from i = v0 to a = vl such that:

s(v0) ≥s(v1) (A.1)

∀1 ≤ k < l, s(vk) <s(vk+1) (A.2)

Since there are only two blocks, from first condition we see v1 ∈ B0 (and therefore, it
is different from a), and from second condition, it is deduced l = 2. With this we have
(i, v1) ∈ A, meaning that Mv1,i = 1. Now, since (v1, a) ∈ A y s(v1) < s(a), this allows to say
that x(a,D)v1 = 1. Considering the foregoing:

(~x(a,D) ·M)i =
∑

k∈B0

x(a,D)kMki ≥ x(a,D)v1Mv1,i = 1

which is absurd.

Proof of Lemma 4.3. Let s be the update function of schedule S. First suppose that D has
no arcs (u, v) where u ∈ B0 and v ∈ B1. Since s(u) ≥ s(v) for every arc in D, Gauss-Seidel

adds to DS every arc of D without changes and then returns. Therefore D is a structural
fixed point reached after one execution of Gauss-Seidel.
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Assume now that there is an arc (i, a) ∈ A such that s(i) < s(a), meaning that the
vector ~x(a,D) is not null. Let M ∈ Mq×q({0, 1}) be the adjacency matrix of D(B0)

T , the
subdigraph induced in D by the first block with reversed arcs, ie:

Mij = 1 ⇐⇒ (j, i) ∈ A

Then, by Lemma 4.2, for every n ∈ N, ~x(a,Dn) = ~x(a,D) ·Mn, where Dn is the digraph
obtained after n iterated executions ofGauss-Seidel overD (with schedule S). By Theorem
3.2, M is irreducible and primitive, and Theorem 3.5 guarantees that Mn is positive for all
n ≥ (q−1)2+1, and since ~x(a,D) is not null, ~x(a,Dn) is positive for all n ≥ (q−1)2+1. The
above argument says us that every arc (i, a) ∈ A such that s(i) < s(a), in at most n ∈ O(q2)
executions of Gauss-Seidel, generates in the digraph Dn q arcs (l, a) for every l ∈ B0, and
this is kept in Dm, with m ≥ n.

Arcs connecting nodes in the same block are always preserved by Gauss-Seidel. Assume
that there is an arc (j, k) ∈ A such that s(k) < s(j) -this arc (j, k) is preserved without
changes by Gauss-Seidel- and an arc (i, a) ∈ A such that s(i) < s(a). Since D(B0)
is strongly connected there is a directed path in D(B0) from k to i of length p ∈ O(q).
By Lemma 3.1, Mp

i,k > 0, and given that x(a,D)i > 0, from Lemma 4.2 it follows that
x(a,Dp)k > 0, namely there is in Dp an arc (k, a), where s(k) < s(a). By the definition of
Gauss-Seidel algorithm, in Dp+1 is added the arc (j, a), where s(j) = s(a) = 1, meaning
that Gauss-Seidel is adding an arc that connects nodes belonging to the second block B1.
These arcs are not described by the vectors ~x(a,D) (because the components of these vectors
depict nodes in the first block), but what matters here is that these arcs are added in the
iteration p + 1 ∈ O(q) of Gauss-Seidel, and these arcs remain in the digraphs Dm, with
m ≥ p+ 1.

The foregoing demonstrates that in at most n ∈ O(q2) executions of Gauss-Seidel over
D with schedule S, every arc of Dn is preserved and no new arcs are added, so Dn+1 =
Gauss-Seidel(Dn, S) = Dn and thus Dn is a structural fixed point.

Proof of Lemma 4.4. Let s be the update function of S. First suppose that D has no arcs
(u, v) where u ∈ B0 and v ∈ B1. Since s(u) ≥ s(v) for every arc (u, v) in D, Gauss-Seidel

adds to DS every arc of D without changes and then returns. Therefore D is a structural
fixed point reached after one execution of Gauss-Seidel. Notice that in this case, as each
vector ~x(a,D) is null, the condition holds trivially.

Assume now that there is an arc (i, a) ∈ A such that s(i) < s(a), meaning that the
vector ~x(a,D) is not null. Let M ∈ Mq×q({0, 1}) be the adjacency matrix of D(B0)

T , the
subdigraph induced in D by the first block with reversed arcs, ie:

Mij = 1 ⇐⇒ (j, i) ∈ A

Then, by Lemma 4.2, for every n ∈ N, ~x(a,Dn) = ~x(a,D) ·Mn, where Dn is the digraph
obtained after n iterated executions ofGauss-Seidel overD (with schedule S). By Theorem
3.2, M is irreducible and imprimitive, therefore if we name ℓ to the length of the shortest
circuit in D, by Proposition 3.11 there exist t ∈ O(q), p ∈ O(ℓ), such that

~x(a,Dt+p) = ~x(a,Dt) (A.3)
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Arcs connecting nodes in the same block are always preserved by Gauss-Seidel. Assume
that there is an arc (j, k) ∈ A such that s(k) < s(j) -this arc (j, k) is preserved without
changes by Gauss-Seidel- and an arc (i, a) ∈ A such that s(i) < s(a). Since D(B0)
is strongly connected there is a directed path in D(B0) from k to i of length p ∈ O(q).
By Lemma 3.1, Mp

i,k > 0, and given that x(a,D)i > 0, from Lemma 4.2 it follows that
x(a,Dp)k > 0, namely there is in Dp an arc (k, a), where s(k) < s(a). By the definition of
Gauss-Seidel algorithm, in Dp+1 is added the arc (j, a), where s(j) = s(a) = 1, meaning
that Gauss-Seidel is adding an arc that connects nodes belonging to the second block B1.
These arcs are not described by the vectors ~x(a,D) (because the components of these vectors
depict nodes in the first block), but what matters here is that these arcs are added in the
iteration p + 1 ∈ O(q) of Gauss-Seidel, and these arcs remain in the digraphs Dm, with
m ≥ p+ 1.

The foregoing paragraph and equality (A.3) show that in at most O(q) executions of
Gauss-Seidel over D with schedule S, this iterative procedure outputs a network in the
filter attractor A(D,S), and the size p of this set is O(ℓ).

Also Proposition 3.11 states that p = 1, that is, the filter attractor is a structural fixed
point if and only if for every a ∈ B1 such that ~x(a,D) is non-null, ~x(a,D) has at least
one positive component associated to a node in Vi, for every imprimitivity set Vi from node
partition (Vi)

k(D(B0))
i=1 given by Lemma 3.4. This is equivalent to, for each node a ∈ B1 such

that there is an arc (u, a) ∈ A with u ∈ B0, there is an arc (ui, a) ∈ A such that ui ∈ Vi, for

every set Vi from node partition (Vi)
k(D(B0))
i=1 .

Matrix computation of Gauss-Seidel operator

Let G = (V,E) be a Boolean disjunctive network of n nodes, and AG its adjacency matrix.
Lets denote by ĉj the j-th column of AG, that is, we have that AG = [ĉ1 ĉ2 · · · ĉn]. Let S be
an update schedule for G with B0, B1, . . . , Bk its sequence of update blocks. We define the
projection of AG over block Bℓ, denoted by AG[ℓ], as an n× n matrix defined as follows. Let
ĉ′j be the j-th column in AG[ℓ], then we have that

• ĉ′j = ĉj if j ∈ Bℓ, and

• ĉ′j = êj if j /∈ Bℓ, where êj is the j-th column of the n× n identity matrix

Notice that AG[ℓ] has a 1 in its position (i, j) if and only if

• (i, j) ∈ V and j is updated in block ℓ, or

• i = j and i is not updated in block ℓ.

Lets understand the usefulness of last definition. Let G = (V,E) be the disjunctive
Boolean network of size n given by the global transition function F : {0, 1}n → {0, 1}n and
adjacency matrix AG ∈ Mn×n({0, 1}). Let S be the block-sequential update schedule with
m blocks B0, . . . , Bm−1. For an arbitrary initial condition consisting in the row vector ~x =
(x1, . . . , xn), to compute the state vector FS(~x) obtained after a complete update sequence
we can compute first the vector F[B0](~x), then vector F[B1](F[B0](~x)) and so on. Recall that
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each of these vectors consists in the parallel update of those nodes belonging to the respective
block, while the other nodes remain unchanged. It was already said in Section 3 that the
parallel update of disjunctive functions is simulatable with the product of the adjacency
matrix, therefore, we can write the following

F[B0](~x)i =

{
fi(~x) i ∈ B0,
xi otherwise

=

{
~x · ĉi i ∈ B0,
~x · êi otherwise

= (~x · AG[0])i

In this way, since the state vector FS(~x) obtained after a complete update sequence corre-
sponds to the composition F[Bm−1]◦· · ·◦F[B1]◦F[B0](~x), using previous idea it can be computed
as FS(~x) = ~x · AG[0] · · ·AG[m−1].

We are now ready to prove the result that shows how to compute the disjunctive network
returned by Gauss-Seidel operator as a matrix product. In what follows, given two matrices
M1 and M2, we denote by M1 ·M2 the Boolean matrix product.

Lemma A.4 Let G = (V,E) be a disjunctive Boolean network and S be a block-sequential
update schedule of m ≥ 1 blocks. Let MS be the adjacency matrix of the network GS obtained
after executing Gauss-Seidel onto (G,S). Then, it holds the following equality:

MS = AG[0] · AG[1] · · ·AG[m−1]

Proof. Let s be the update function of schedule S and (Bj)
m−1
j=0 the respective set of blocks.

We will first prove the following property

The j−th column of the product AG[0] · · ·AG[i] (subject to s(j) ≥ i + 1) corresponds to the
j−th column of the identity matrix:

(AG[0] · · ·AG[i])•j = I•j, ∀j s.t. s(j) ≥ i + 1, ∀0 ≤ i ≤ m− 1

We proceed by induction on i. The base case for i = 0 is direct from definitions:

(AG[0])•j = I•j if s(j) 6= 0 ⇐⇒ s(j) ≥ 1 = 0 + 1

Now we assume the inductive hypothesis for some i ≥ 0. Let b be a node such that
s(b) ≥ i + 2, and a be any node:
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(AG[0] · · ·AG[i+1])ab =
∑

k∈V

(AG[0] · · ·AG[i])ak (AG[i+1])kb︸ ︷︷ ︸
= Ikb

(s(b) 6= i + 1)

=
∑

s(k)≥i+1

(AG[0] · · ·AG[i])ak︸ ︷︷ ︸
= Iak
(IH)

Ikb +
∑

s(k)≤i

(AG[0] · · ·AG[i])ak Ikb︸︷︷︸
= 0

(k 6= b)

=
∑

s(k)≥i+1

IakIkb

= IabIbb = Iab

which shows the case for i + 1 is true and the property holds. The second part of the
demonstration consists in proving the next property:

If we name M(Ai) ∈ M|V |×|V |({0, 1}), i = 0, . . . ,m − 1, to the adjacency matrix of the
set of arcs A after the iteration i and before the (i + 1)−th iteration of the main for loop of
Gauss-Seidel(G,S), then the j−th column of the product AG[0] · · ·AG[i] (subject to s(j) ≤ i)
corresponds to the j−th column of M(Ai):

(AG[0] · · ·AG[i])•j =M(Ai)•j, ∀j s.t. s(j) ≤ i, ∀0 ≤ i ≤ m− 1

We will prove this proposition by induction on i. When we write AG we refer to the
adjacency matrix of G. We put here the code of Gauss-Seidel for readability:

Gauss-Seidel(G = (V,E), S)

1 A = φ, (A ⊆ E) // initialization
2 I = φ, (I ⊆ V )

Let B0, . . . , Bm−1 be the blocks of S, and let s be the update function
3 for i = 0 to m− 1
4 for j ∈ Bi

5 for (u, j) ∈ E // we go over every arc incident to node j
6 if s(u) ≥ s(j)
7 A = A ∪ {(u, j)}
8 else

9 for (t, u) ∈ A
10 A = A ∪ {(t, j)}
11 I = I ∪ {j}
12 return (I, A)

Let us examine the basis when i = 0. By definition of the algorithm, we see that in the first
iteration of the main for loop, every arc (u, j) incident to some node j belonging to the first
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block B0 is processed, and since s(u) ≥ s(j) for every one of these arcs, all these arcs are
added to A. Hence M(A0)uj = 1 if and only if (u, j) ∈ E, (s(j) = 0), and this is equivalent
to (AG[0])uj = 1 if s(j) = 0 (or if s(j) ≤ i = 0), and the basis of induction holds.

Now we assume the inductive hypothesis for some i ≥ 0. Let b be a node such that
s(b) ≤ i + 1, and a be any node:

(AG[0] · · ·AG[i+1])ab =
∑

k∈V

(AG[0] · · ·AG[i])ak(AG[i+1])kb

=
∑

s(k)≥i+1

(AG[0] · · ·AG[i])ak︸ ︷︷ ︸
= Iak

(1st. prop)

(AG[i+1])kb +
∑

s(k)≤i

(AG[0] · · ·AG[i])ak︸ ︷︷ ︸
=M(Ai)ak

(IH)

(AG[i+1])kb

=





∑
s(k)≥i+1 Iak Ikb︸︷︷︸

= 0
(k 6= b)

+
∑

s(k)≤iM(Ai)akIkb s(b) < i + 1,

∑
s(k)≥i+1 Iak(AG)kb +

∑
s(k)≤iM(Ai)ak(AG)kb s(b) = i + 1

=





M(Ai)ab s(b) < i + 1,
(AG)ab +

∑
s(k)≤iM(Ai)ak(AG)kb s(b) = i + 1, s(a) ≥ i + 1∑
s(k)≤iM(Ai)ak(AG)kb s(b) = i + 1, s(a) < i + 1

Now we analyze by cases if the equality holds. If s(b) < i + 1, this means that node b
is processed in some iteration previous to the (i + 1)−th iteration, therefore the arcs in A
incident to b do not change in the (i+1)−th iteration, andM(Ai)ab =M(Ai+1)ab if s(b) < i+1,
so the property holds in this case. If we now assume M(Ai+1)ab = 1 and s(a) ≥ i + 1 = s(b),
meaning arc (a, b) was added to A in line 7 (at (i+1)-th iteration), this implies (a, b) ∈ E, or
in other words, (AG)ab = 1, hence (AG[0] · · ·AG[i+1])ab = 1. In the case when M(Ai+1)ab = 1
and s(a) < i + 1 = s(b), meaning arc (a, b) was added to A in line 10 (at (i+ 1)-th iteration),
this implies there is a node k ∈ V such that, (k, b) ∈ E, (a, k) ∈ Ai ((a, k) belongs to A when
executing (i + 1)-th iteration), then k was processed in some iteration previous to (i + 1)-th,
and s(k) < s(b) = i + 1. Thus,

∑
s(k)≤iM(Ai)ak(AG)kb = 1 = (AG[0] · · ·AG[i+1])ab. The case

when M(Ai+1)ab = 0 it is analogous to the cases shown newly.

If we take the last property when all iterations have been executed (i = m− 1), we have
(AG[0] · · ·AG[m−1])•j =M(Am−1)•j, for all j verifying s(j) ≤ m− 1, or equivalently, for all j.
SinceM(Am−1) is the adjacency matrix of the set A returned by Gauss-Seidel, and Lemma
A.3 assures this algorithm returns the adjacency matrix of network GS, it holds that:

AG[0] · AG[1] · · ·AG[m−1] =M(Am−1) =MS

Example 20 Let G = (V,E) be the disjunctive Boolean network given by the digraph in
the picture, which defines a global transition function F : {0, 1}3 → {0, 1}3. Let S be the

84



block-sequential update schedule of two blocks: B0 = {1, 2} (orange nodes) and B1 = {3}
(cyan node). For an initial condition consisting in the row vector ~x, to compute the state
vector FS(~x) we can compute first vector F[B0](~x) = ~x · AG[0], and then vector FS(~x) =
F[B1](F[B0](~x)) = ~x · AG[0] · AG[1].

1

2

3

G

1

2

3

GS

The matrix product AG[0] · AG[1] corresponds, as it should be, to the adjacency matrix of
network GS = Gauss-Seidel(G,S).

AG[0] · AG[1] =




1 1 0
0 0 0
0 0 1


 ·




1 0 0
0 1 1
0 0 0


 =




1 1 1
0 0 0
0 0 0




A.5 Proofs for Section 5

Lemma A.5 Let G = (V,E) be a disjunctive Boolean network, and a block-sequential update
schedule S for this network with m ≥ 1 blocks (Bj)

m−1
j=0 . Let a ∈ V ∩Bm−1 be a node belonging

to the last block ((m− 1)−th block). Let v ∈ V be a node such that there is in G a path PG
a,v

starting from a to v. If we consider the filter consisting in the system

G0 ≡ G

Gi+1 ≡ Gauss-Seidel(Gi, S), i ≥ 0

then, for every i ≥ 0, there exists a path PGi

a,v in Gi starting from a to v, connecting nodes

belonging to the set of nodes connected by PG
a,v. Also, it holds that |P

Gi+1

a,v | ≤ |PGi

a,v|, ∀i ≥ 0.

Proof. The proof is by induction on i ≥ 0. The base case, i = 0, is straightforward by the
hypothesis. Assume now the lemma holds for i = k, and let PGk

a,v be a path in Gk connecting
the following sequence of nodes:

a = u0, u1, . . . , ul−1, ul = v

Suppose first that

∀j ∈ {0, . . . , l − 1}, s(uj) ≥ s(uj+1)
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where s is the update function of schedule S. By the Lemma 2.2, each arc starting from
uj to uj+1 is preserved after applying the algorithm, so PGk

a,v = PGk+1

a,v (and clearly, both paths
have the same length).

Suppose now there is j′ ∈ {1, . . . , l − 1} such that s(uj′) < s(uj′+1) and s(uj′−1) ≥ s(uj′)
(necessarily j′ > 0 given that u0 = a is updated in the last block). By characterization 2.2, it
holds that (uj′−1, uj′+1) ∈ Gk+1. If we assume that for every j 6= j′, s(uj) ≥ s(uj+1), all arcs

(uj, uj+1) meeting j 6= j′ are preserved, and then there is a path PGk+1

a,v in Gk+1 starting from

a to v consisting in the arcs from PGk

a,uj′−1
, the arc (uj′−1, uj′+1), and the arcs from PGk

uj′+1,v
,

which verifies
|PGk+1

a,v | = |PGk

a,v | − 1 ≤ |PGk

a,v |

.

Suppose now there is a set of consecutive indexes J = {ĵ, ĵ + 1, . . . , j′ − 1, j′} (ĵ > 0)
satisfying that, for every j ∈ J , s(uj) < s(uj+1), and s(uĵ−1) ≥ s(uĵ). By characterization 2.2,

for every j ∈ J the arc (uĵ−1, uj) ∈ Gk+1 and also (uĵ−1, uj′+1) ∈ Gk+1. If it is further assumed

that for every j /∈ J, s(uj) ≥ s(uj+1), then (again by characterization 2.2) (uj, uj+1) ∈ Gk+1

for all j /∈ J , and thus a path in Gk+1 starting from a to v consists in the arcs from PGk

a,u
ĵ−1

,

the arc (uĵ−1, uj′+1), and the arcs from PGk

uj′+1,v
, which verifies

|PGk+1

a,v | = |PGk

a,v | − (j′ − ĵ + 1) ≤ |PGk

a,v |

The figure below illustrates this situation, where the blue arcs belong to Gk, while the red
arcs pertain to Gk+1:

ĵ − 2 ĵ − 1 ĵ j′ j′ + 1 j′ + 2

Suppose now the general case in which there are C disjoint sets of consecutive indexes:

Jd = {ld, ld + 1, . . . , ud − 1, ud} (∀d ∈ {1, . . . , C}, 0 < ld ≤ ud)

satisfying that
∀j ∈ Jd, ∀d ∈ {1, . . . , C} s(uj) < s(uj+1)

∀j ∈ {0, . . . , l}/
⋃

d∈{1,...,C}

Jd, s(uj) ≥ s(uj+1)
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It is clear that, for every Jd, it does not occur that ld − 1 ∈ Jd−1 or ud + 1 ∈ Jd+1

(this is by definition, as ld − 1 and ld are consecutive indexes, if s(uld−1) < s(uld), then
ld − 1 ∈ Jd−1 ∩ Jd = φ), so

∀d, ld − 1, ud + 1 ∈ {0, . . . , l}/
⋃

d∈{1,...,C}

Jd

By characterization 2.2, and the definition of sets Jd, it holds that for every d ∈ {1, . . . , C},
(uld−1, uud+1) ∈ Gk+1 (or in the case when d = C and uC = ul = v, it holds that (ulC−1, uuC ) ∈
Gk+1), and also it is deduced that

∀j ∈ {0, . . . , l}/
⋃

d∈{1,...,C}

Jd, (uj, uj+1) ∈ Gk+1

Notice that since u0 = a belongs to the last block, it holds that s(u0) ≥ s(u1), meaning
the first arc from PGk+1

a,v always has the node u0 = a as its starting node. And in any of the

cases s(ul−1) ≥ s(ul) or s(ul−1) < s(ul), the ending node in the last arc from PGk+1

a,v is ul = v.
Then, proceeding analogously to when there is only one set J of consecutive indexes, it is
obtained a path PGk+1

a,v in Gk+1 from a to v, satisfying that

|PGk+1

a,v | = |PGk

a,v | −
C∑

d=1

(ud − ld + 1) ≤ |PGk

a,v |

In any of the previous cases, the nodes connected by PGk+1

a,v , belong to the set of nodes

connected by PGk

a,v , since this is true for every k, the nodes connected by PGi

a,v, for every i ≥ 0,
are connected by the path PG

a,v too.

Lemma A.6 Let G = (V,E) be a disjunctive network and S be a block-sequential update
schedule of m ≥ 1 blocks. If deg−G(i) = 1, ∀i ∈ V then

deg−
Gk(i) = 1, ∀i ∈ V, ∀k ≥ 0

where Gk is the network obtained after k applications of Gauss-Seidel onto G and S.

Proof. Let s be the update function of S and (Bj)
m−1
j=0 the respective set of blocks. The proof

is by strong induction on the number 1 ≤ n ≤ m of blocks processed by the algorithm; then,
the statement to prove is the following

for each node i ∈ Bd, 0 ≤ d ≤ n− 1 it holds that deg−G1(i) = 1, ∀n ∈ {1, . . . ,m}

Let us see the base case (n = 1). When the algorithm processes a node i ∈ B0, and checks
for the unique incident arc to i in G, (j, i), it always holds that 0 = s(i) ≤ s(j), then, the
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algorithm branches to line 7, and (j, i) is added to A. There are no more actions with node i
(since there are no more incident arcs to i), so that i has in-degree in G1 equal to 1, and the
next node in B0 is processed, for which the algorithm executes the same actions. Thus the
base case holds.

Assume now the property holds for n = p, ie, the algorithm has already processed the
blocks B0, . . . , Bp−1, then the property is true in these blocks and let us prove the statement
for block Bp. Let b ∈ Bp be a node, and let (a, b) be the unique incident arc to b in G. If
s(a) ≥ s(b), the algorithm branches to line 7, the arc (a, b) is added to A, and the processing
of node b is finished. If s(a) < s(b), the algorithm goes to lines 9 and 10, and for each
arc (t, a) ∈ A, the arc (t, b) is added to A. Since a belongs to one of the first p blocks,
by inductive hypothesis there exists only one arc (t, a) ∈ A: hence (t, b) is added to A, the
processing of node b is finished and the next node in Bp is processed, for which the algorithm
executes the same actions. Thus the property is true for block Bp, and therefore it holds
that if the algorithm has processed n blocks (where n ∈ {1, . . . ,m}), then deg−G1(i) = 1 for
all i ∈ Bd, 0 ≤ d ≤ n− 1.

When the algorithm finishes its execution, all blocks have been processed, and since the
previous property holds for n = m, every node in G1 has in-degree equal to 1. When the
algorithm is applied onto G1 and S, G1 verifies that each node has in-degree equal to 1,
then by the same argument G2 verifies this too, and then every node in Gk, with k ≥ 0, has
in-degree equal to 1.

Lemma A.7 The algorithm Test-Cycle-Filter is correct, ie, it solves the decision prob-
lem Cycle-Filter on an input consisting in a strongly connected digraph D = (V,A), and
a block-sequential update S for D.

Proof. Let s the update function of schedule S, and (Bj)
m−1
j=0 the respective set of m ≥ 1

blocks. We first prove the following equivalence:

There is a simple circuit C in D such that IL(C, S) = L, where BiC is the last block having

nodes from circuit C, 0 ≤ iC ≤ m−1, if and only if, after executing Add-Edges(D, iC , D̂iC , S),

the subdigraph D̂iC has a simple circuit of length equal to L.

Let us see the sufficiency. Assume C reduces to nC maximal directed paths in BiC , where
each j−th path connects (ℓj + 1) different nodes, so it holds that L =

∑nC

j=1 ℓj + nC (Note
4). Let Pj be one of these paths, for which its ending node will be referred as ej ∈ BiC .
Since Pj correspond to a sequence of arcs from C, there is a path in D from ej to ij+1, where
ij+1 ∈ BiC is the initial node from the next maximal path Pj+1 induced in D(BiC ) by circuit
C (if nC = 1, then ij+1 is simply ij, the starting node from path Pj). Call this path as PD

ej ,ij+1
.

It holds that,

∀a ∈ V connected by PD
ej ,ij+1

such that a 6= ej, ij+1, s(a) < s(ej) = s(ij+1) (A.4)

(if not, Pj+1 would not be the next maximal path induced by C in BiC ). According to the
definitions of Test-Cycle-Filter, Sin(ij+1) 6= φ and Sout(ej) 6= φ. Therefore, by (A.4)
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there must be a path from some y ∈ Sout(ej) to some x ∈ Sin(ij+1) in D(B0 ∪ . . . ∪ BiC−1),

and the arc (ej, ij+1) is added to D̂iC . In this way, each path PD
ej ,ij+1

connecting the maximal

path Pj with maximal path Pj+1 (j = 1, . . . , nC) produces one arc (ej, ij+1) in D̂iC , finally
forming -similarly to what happens in the proof of Proposition 5.3- a closed simple path
connecting nodes in BiC of length equal to

nC∑

j=1

(ℓj + 1) =

nC∑

j=1

ℓj + nC = L

For the converse, assume the subdigraph D̂iC -after executingAdd-Edges(D, iC , D̂iC , S)- has
a circuit C∗ of length equal to L. Since Add-Edges does not erase edges from D, C∗ may
be a circuit originally from digraph D: in this case, C∗ was a circuit completely contained in
block BiC , then, its length matches with its induced length with respect to S, and the property
follows. Now, if C∗ was not part of digraph D, C∗ was added by procedure Add-Edges:
assume that L = o∗ + p∗, where o∗ is the number of arcs of C∗ that were originally part of
D, and p∗ the number of arcs added later by Add-Edges(D, iC , D̂iC , S). For each one of
the arcs (ai, bi) added later (i = 1, . . . , p∗), necessarily there is in D(B0 ∪ . . . ∪BiC−1) a path
Pi from yi to xi, for some xi ∈ Sin(bi), yi ∈ Sout(ai). Replacing in C∗ each arc (ai, bi) by the
path consisting in the arc (ai, yi), the path Pi, and the arc (xi, bi), results in a circuit C∗∗ that
necessarily belongs to D and that has induced length with respect to S equal to o∗+ p∗ = L.

We need to show also that the pre-processing of D̂ does not modify the lengths of
simple circuits. For this, we will refer to the digraph D̂ after the pre-processing with
Non-Trivial-Scc in line 5, as D̂∗, and we simply speak of D̂ to refer this digraph be-
fore the pre-processing (in line 4). Hereafter, we write r1 to mean the root of the first
non-trivial s.c.c. found by Non-Trivial-Scc (in line 5). The assertion to prove is:

There is a cycle of length L in D̂ if and only if there is a cycle of length L in D̂∗.

If there is a cycle C of length L in D̂, and this cycle connects nodes distinct than any
root rj of some non-trivial s.c.c. Cj, C is preserved (by definition, the nodes removed from

D̂ in line 5 are not connected by any circuit) and is present in D̂∗, and the required holds.
It is apparent that C cannot contain two roots of different s.c.c.’s of D̂, then, if C contains
the root r1, the arcs adjacent to r1 are not modified, and the required holds. If C contains
some root rj distinct than r1, the arcs of C adjacent to rj are replaced by arcs adjacent to r1
in procedure Replace-Node(D̂, rj, r1), without changing the length of C in D̂∗, and this

proves one of the implications. Now, if there is a cycle C of length L in D̂∗, this cycle may
or may not contain the node r1. If it does not contain the node r1, C was not created by
Replace-Node(D̂, rj, r1), and C is a cycle in D̂ too. If C does contain the node r1, C may

or may not be created by Replace-Node(D̂, rj, r1): in the first case, there was in D̂ a node
rj such that, replacing in C the arcs adjacent to r1 by arcs adjacent to rj, results in a cycle

of length L that belonged to the non-trivial s.c.c. Cj of D̂. In the second case, the cycle C

belonged to the s.c.c. C1 of D̂, which concludes the proof of the assertion.

Now, let us suppose that Test-Cycle-Filter(D,S) returns true, which is equivalent
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to the set of cycle lengths of D̂∗ (after executing Non-Trivial-Scc(D̂), where D̂∗ is strongly
connected) is setwise coprime. By the second assertion proved, this is equivalent to the set
of cycle lengths of D̂ is setwise coprime. Any circuit from D̂ is completely contained in some
D̂i (by definition of D̂), after having executed Add-Edges(D, i, D̂i, S) (again by definition
of D̂), then, by the first assertion proved, the set of cycle lengths of D̂ is setwise coprime,
is equivalent to the set of cycle induced lenghts (with respect to S) of D is setwise coprime,
which solves Cycle-Filter problem.

The proof of the next lemma can be reviewed on [37].

Lemma A.8 ([37]) Let G be a strongly connected digraph and S a block-sequential update
schedule of its nodes. Then, GS is comprised of one unique non-trivial strongly connected
component and possibly some outgoing acyclic subdigraphs.

A.6 Relation between a block and the previous

Lemma A.9 Let G = (V,E) be a disjunctive Boolean network, and a block-sequential update
schedule S for this network having m ∈ N blocks (Bi)

m−1
i=0 . Consider the set of nodes belonging

the first n ≤ m blocks, V ′ = B0∪ . . .∪Bn−1, and the digraph induced in G by this set of nodes:
G(V ′). Let S ′ be a block-sequential update for G(V ′), such that S restricted to the nodes in
V ′ is equal to S ′, ie, if s and s′ are the update functions of schedule S and S ′ respectively,
then for all v ∈ V ′, s(v) = s′(v). Then, the networks returned by Gauss-Seidel:

GS = (V,ES) = Gauss-Seidel(G,S)

G(V ′)S
′

= (V ′, ES′

) = Gauss-Seidel(G(V ′), S ′)

satisfy ES′

= ES(V ′), where ES(V ′) corresponds to the restriction of ES to those arcs meeting
their starting and ending node belong to V ′.

Proof. Let (i, j) ∈ ES(V ′) be an arc of ES, with i, j ∈ V ′ = B0∪ . . .∪Bn−1. By characteriza-
tion 2.2, this is equivalent to the existence of a path {v0, v1, . . . , vl} in G from i = v0 to j =
vl such that

s(v0) ≥s(v1)

∀1 ≤ k < l, s(vk) <s(vk+1)

From the first condition, we know v1 is in the same block or one updated before than the
block of v0 = i. From the second condition, we know every node from v1 until vl−1 belong
to blocks updated before than the block containing vl = j. Thus, all the nodes in the path
belong to the first n blocks, and by hypothesis, the above conditions are equivalent to

s′(v0) ≥s
′(v1)

∀1 ≤ k < l, s′(vk) <s
′(vk+1)

and again by the characterization 2.2, these conditions are equivalent to (i, j) ∈ ES′

.
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Example 21 The following disjunctive network G of size 8 is defined by its associated digraph
in the image below. We consider a block-sequential update schedule S of 4 blocks (Bl)

3
l=0:

(1, 2, 3)(4, 5)(6, 7)(8). The node fill colors are put to differentiate the different blocks: first
block is orange, second is green, third is cyan and fourth is blue.

4

5

6

7

81

2

3

G

If we execute GS = (V,ES) = Gauss-Seidel(G,S), we get the network GS:

4

5

1

2

3

8

6

7

GS

Now, if we take the subdigraph induced in G by the first two blocks, G′ = G(B0 ∪ B1) =
G({1, 2, 3, 4, 5}), and consider the schedule S ′ consisting in restrict S to the first two blocks,
S ′ = (1, 2, 3)(4, 5), we get the following network when executing Gauss-Seidel(G′, S ′)

4

5

1

2

3

G′S
′

It can be seen that this is the same network when we get the subdigraph of GS induced by the
node set B0 ∪ B1.

91



Appendix B

Software

In this section, we describe briefly the code written during the development of this thesis,
both the tasks it performs and interaction with the user. The software was developed in
order to acquire intuition about some study objects or to discard misleading ideas, objective
which may require a large number of examples for testing and studying. In particular, the
sofware was critical to formulate the Definition 5.4 -the cycle-filter condition-, the results
about the linear transient given some structural properties -Theorem 3.12-, the Theorem 3.9
about the quadratic bound for the transient length, the Theorem 6.2 about structural fixed
points or anything that had to do with simple visualization of dynamics of (small) networks
-for example, the figures in this work displaying state transition graphs-.

The code was written in Java language, due to the portability it grants, and it makes
use of LogicalModel, an open source library developed to improve the interoperability be-
tween logical modeling tools, motivated by the CoLoMoTo (Common Logical Modelling
Toolbox) discussion group (www.colomoto.org). The library can be used as a standalone
command line tool for model conversion, after compiling it, and the source code is available at
https://github.com/colomoto/logicalmodel. LogicalModel relies on JSBML [23] (http://sbml.
org/Software/JSBML) for SBML-qual import/export, and on a small MDD manipulation
toolkit, mddlib (https://github.com/colomoto/mddlib). Currently, it provides import and
export capabilities between the following formats:

• SBML-qual [16] (System Biology Markup Language Qualitative Models Package)
http://sbml.org/Community/Wiki/SBML Level 3 Proposals/Qualitative Models

• Raw logical functions

• boolsim

• GINML [77] http://ginsim.org/home (only export)

• GNA [12] http://ibis.inrialpes.fr/article122.html (only export)

The format we use in our applications is that of raw logical functions, because it does not
require any additional syntax the user must learn. As a example, if we want to hand over the
Boolean network from Example 1 to our application, it can be coded in a .txt file as follows
(for the following examples, we assume this file is named as examp 3.1.txt):
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x1: x4

x2: x1 | !x4

x3: x2 & x3

x4: x3 & x5

x5: !x2

Variable ID’s can be any string (a character chain without spaces), and they must be
consistent along function definition (e.g. ’a’ and ’A’ refer to distinct variables). Constant
variables are simply coded with its respective value (e.g. ’A: 0’), but it must be noted
that currently mddlib does not provide complete functionality for constant variables in raw
function format.

The codes were written, executed and tested in a machine with Java 1.7.0 25 and Ubuntu
12.04.2 LTS.

B.1 Dynamics simulation

One of the two purposes of the code written in this thesis is to build a simple tool for network
dynamics visualization. This resulted in the development of three Java classes: BlockSequen-
tialUpdater.java, Net simulator.java and TestUpdaters.java. The first of them implements
the update for a block-sequential schedule, that is, the computation of the network con-
figuration after a complete update sequence -starting from a given network configuration-.
This class inherits from AbstractUpdater.java, which implements the general behavior of
any updater of the network (in fact, AbstractUpdater.java implements the interface given by
LogicalModelUpdater.java).

The node blocks of the schedule are stored in a variable of type ArrayList, where the
j−th element of the list corresponds to an integer array storing the nodes updated at instant
j. This idea for the implementation was provided by Aurelien Naldi, one of the authors of
LogicalModel and GINSim, in a personal communication with him. This strategy produces
a performance gain in comparation with, for example, an array storing the update instant
for each node -or the update function-, which implies computing the inverse of the update
function each time we compute some transition, since we iterate over the instants (or the
blocks).

The user enters the schedule writing the secuence of update instants for each node sepa-
rated by comma, in the same order the variables -or nodes- were specified in the network def-
inition. For example, if we want to enter the schedule given by blocks sequence (1, 3)(2, 4, 5),
for the same network in Example 1, we must write ’1,2,1,2,2’. Notice that with this format,
we restrict the entry only for block-sequential schedules, since the format requires to the user
one and just one update instant for each node of the network.

The class Net simulator.java contains the main method. It generates a simple window
wrapping a CLI prompt which asks the user for the file storing the Boolean network and
the schedule, which is ingresed manually with the conventions mentioned before. This win-
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dow was generated with Console class, from HSA package (this package was available at
http://www.holtsoft.com/java/hsa package.html, but nowadays is obsolete). The image be-
low is an example of an interaction of the user with the application.

We see that this dialog requires to the user the file (including the root) storing the Boolean
network, and the block-sequential schedule, which are coded using the conventions already
explained. The application processes the entered data, and it finally outputs a .pdf file with
a picture showing the respective state transition graph. Following our example, the output
file is named examp 3.1 1,2,1,2,2.pdf and its content is the next image.
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10000 1000110010 10011 10100 1010110110 10111 11010 11011 11101 11111

The picture is generated thanks to GraphViz, an open source graph visualization software
(http://www.graphviz.org/), and Net simulator.java can use it by means of GraphViz Java
API, which can be downloaded from http://www.loria.fr/ szathmar/off/projects/java/Graph
VizAPI/index.php. Thus, Net simulator.java requires that GraphViz is installed in the ma-
chine. The code of GraphViz.java allows to select GraphViz directories depending if the code
is run on Windows or Linux (currently is set to Linux).

Finally, the class TestUpdaters.java is a existing test class from LogicalModel library,
which makes use of JUnit (http://junit.org/) to write the tests. TestUpdaters.java was
updated with method testBlockSequentialUpdater() to test for the new functionality given by
BlockSequentialUpdater class. TestUpdaters.java was written according to a set of guidelines
(shared by A. Naldi) defined by the LogicalModel crew.

The end-user application is given by the executable file simulador.jar. This file contains
all the classes and libraries necessary to run, and it requires the machine has installed JRE
-Java Runtime Environment- (http://www.java.com/es/download/).

B.2 Computing the filter

In order to implement the computation of the filter, four Java classes were written: GS.java,
Filtro.java, interfaz filtro.java and TestGS.java. The first of them serves to compute the
Gauss-Seidel operator output on some Boolean network. It has three instance variables: the
list of String’s nodes, which stores the node ID’s; the map m functions, which stores, for
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every node ID, the String coding the respective expression defining the function; and the
map GSeidel functions, which stores, for every node ID, the String coding the respective
expression defining the function in the network outputted by Gauss-Seidel. This class has
getter and setter methods for every one of the instance variables, except for GSeidel functions,
which cannot be setted externally.

The method parse() from class GS is intended to read a network from a .txt file and store
it in the attributes nodes and m functions. The method getModel() returns the LogicalModel
associated to the network stored in the attributes nodes and m functions. This methods are
based in the methods of class RawFunctionImport.java, which serves to import a Boolean
network (to an instance of LogicalModel) from a text file. The most important method
of GS.java is getGaussSeidelNet(), which computes the output of Gauss-Seidel operator,
stores it in the attribute GSeidel functions (as String’s) and returns it (as a LogicalModel)
once finalized. This method receives as arguments an ArrayList updt sched with the blocks
of the schedule delivered to Gauss-Seidel (stored with the same format explained in last
subsection), and an int array updt function, which stores the respective update function (of
the same schedule). This method passes over each node i in every block, looks for variables
j of previous blocks on which the current node depends, and substitutes, in the expression
defining variable i, the ID of variable j by the expression defining this variable (in the
network outputted by Gauss-Seidel). These substitutions on a node i must be performed
simultaneously (otherwise, spurious substitutions are produced), which is achieved by means
of class Pattern, a representation of regular expressions. Finally, when the expressions of all
Gauss-Seidel functions are computed, the LogicalModel associated to the output network is
computed and returned by this method. The reason of why the operations of Gauss-Seidel
are made on String’s (and not on MDD’s of the functions, for example), is mainly due to the
lack of knowledge about manipulating networks with mddlib.

The class TestGS.java makes use of JUnit to test the funcionality of class GS. The class
Filtro.java has two instance variables: operador of type GS, and a list of LogicalModel’s
named redes. The only method of this class is calcula Filtro, which receives the name of
the file storing input network, and the schedule (both the blocks and the update function);
the method uses object operador to compute iteratively Gauss-Seidel and stops when the
current network produced is equivalent to some network produced before. The previous
networks are stored in variable redes. The comparation of networks is performed with the fa-
cilities of LogicalModel library (in particular, the class LogicalModelComparator), which
in turn is based on mddlib. Additionally, calcula Filtro writes every network produced
in the process in a different text file, which name is coded as follows: “interationNum-
ber updateFunction inputNetworkName.txt”. Finally, the method calcula Filtro outputs a
message informing the convergence of the filter into a fixed point or a cycle, its length and the
number of iterations of Gauss-Seidel. The class interfaz filtro.java provides the main method
and a simple CLI prompt (produced in the same way seen in last subsection) which asks
the user for the file storing the Boolean network and the schedule. This class has a method
generate scheme() to internally compute the blocks of the schedule from the update function
entered by the user.

As an example, we can run the class interfaz filtro.java with the same network and schedule
from example in B.1, and get the image shown below.
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The execution of interfaz filtro (or the executable file calcula filtro.jar) produced two files:
“1 1,2,1,2,2 examp 3.1.txt” and “2 1,2,1,2,2 examp 3.1.txt”, and since the filter converged
after two iterations to a fixed point (according to the message displayed), the two files store
the same network specified by the following functions:

x1: (x4)

x2: 1

x3: (x2 & x3)

x4: (x2 & x3 & x5)

x5: (!x2)
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[56] M. Kaufman, C. Soulé, and R. Thomas. A new necessary condition on interaction graphs
for multistationarity. Journal of Theoretical Biology, 248(4):675 – 685, 2007.

[57] M.A. Kiwi, R. Ndoundam, M. Tchuente, and E. Goles. No polynomial bound for the pe-
riod of the parallel chip firing game on graphs. Theoretical Computer Science, 136(2):527
– 532, 1994.

[58] Ladner R. Klee V. and Manber R. Signsolvability revisited. Linear Algebra and its
Applications, 1984.

[59] Konstantin Klemm and Stefan Bornholdt. Stable and unstable attractors in boolean
networks. Phys. Rev. E, 72:055101, Nov 2005.

[60] C. J. Langmead, S. Jha, and E. M. Clarke. Temporal-logics as query languages for
dynamic bayesian networks: Application to d. melanogaster embryo development cmu-
cs-06-159. 2010.

[61] Andrea S. Lapaugh and Christos H. Papadimitriou. The even-path problem for graphs
and digraphs. Networks, 14(4):507–513, 1984.

[62] Dmitriy Laschov and Michael Margaliot. Controllability of boolean control networks via
the perron–frobenius theory. Automatica, 48(6):1218 – 1223, 2012.

[63] C.Y. Lee. Representation of switching circuits by binary decision diagrams. Bell Syst
Tech J, 1959.

[64] Daniel S Levine and Manuel Aparicio. Neural networks for knowledge representation and
inference / edited by Daniel S. Levine, Manuel Aparicio IV. Hillsdale, N.J. : Lawrence
Erlbaum Associates, 1994. Includes bibliographical references and indexes.

[65] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang. The yeast cell-cycle network is robustly
designed. Proceedings of the National Academy of Sciences of the United States of
America, 2004.

[66] Yuan Li, John O. Adeyeye, David Murrugarra, Boris Aguilar, and Reinhard
Laubenbacher. Boolean nested canalizing functions: a comprehensive analysis.
arXiv:1204.5203v2 [math.DS], 2013.

[67] William J.R. Longabaugh, Eric H. Davidson, and Hamid Bolouri. Computational repre-
sentation of developmental genetic regulatory networks. Developmental Biology, 283(1):1
– 16, 2005.

[68] William J.R. Longabaugh, Eric H. Davidson, and Hamid Bolouri. Visualization,
documentation, analysis, and communication of large-scale gene regulatory networks.
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1789(4):363 –
374, 2009. ¡ce:title¿System Biology – Genetic Networks¡/ce:title¿.

[69] Anna Lubiw. A note on odd/even cycles. Discrete Applied Mathematics, 22(1):87 – 92,
1988.

101



[70] Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph
databases. In VLDB [], pages 185–193.

[71] L. Mendoza and E. Alvarez-Buylla. Dynamics of the genetic regulatory network for
arabidopsis thaliana flower morphogenesis. J. of Theoretical Biology, 1998.

[72] Henryk Minc. Nonnegative matrices. John Wiley & Sons, New York,, 1988.

[73] P. Montealegre and E. Goles. Computational complexity of majority automata under
different updating schemes. In: Proceedings of the nineteenth International Workshop on
Cellular Automata and Discrete Complex Systems (AUTOMATA 2013) – Exploratory
Papers, Edited by Jarkko Kari, Martin Kutrib, Andreas Malcher, 2013.

[74] Bernard M. E. Moret. Decision trees and diagrams. ACM Comput. Surv., 14(4):593–623,
December 1982.

[75] David Murrugarra and Reinhard Laubenbacher. Regulatory patterns in molecular in-
teraction networks. Journal of Theoretical Biology, 288(0):66 – 72, 2011.

[76] Christoph Müssel, Martin Hopfensitz, and Hans A. Kestler. Boolnet—an r pack-
age for generation, reconstruction and analysis of boolean networks. Bioinformatics,
26(10):1378–1380, 2010.
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