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Resumen

El objetivo principal de esta memoria es estudiar generalizaciones del problema de em-
parejamientos en ĺınea. En un art́ıculo seminal Karp, Vazirani y Vazirani [12] estudiaron el
siguiente problema de optimización: Dado un grafo bipartito G = (L,R,E) del que el lado L
es conocido y el lado R llega en ĺınea, se busca maximizar el tamaño de un emparejamiento,
bajo la condición de que solo se puede emparejar un vértice en el momento en el que llega.
Karp, Vazirani y Vazirani encuentran un algoritmo que es una (1 − 1

e
)-aproximación para

el problema. En esta memoria se generaliza el problema al caso en el que un lado no está
fijo, o sea que vértices de ambos lados pueden llegar en ĺınea. Se estudian tres modelos: el
modelo adversarial, el modelo de orden aleatorio y el modelo fuera de ĺınea. Para el modelo
adversarial se definen algoritmos locales y se demuestra que ninguno de ellos puede ser mejor
que una 1

2
-aproximación. Para el modelo de orden aleatorio se encuentra un algoritmo cuya

competividad está en el intervalo [0.696, 0.727]. Finalmente, para el modelo fuera de ĺınea
se encuentra un algoritmo óptimo cuya competividad es desconocida, pero se demuestra que
está en el intervalo [0.526, 0.591].
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Summary

The main objective of this thesis is to study generalizations of the on-line matching prob-
lem. In a seminal paper, Karp, Vazirani and Vazirani [12] study the following optimisation
problem: We are given a bipartite graph G = (L,R,E) where the side L is known and the
side R arrives on-line. We want to find a large matching, but we are only allowed to match
vertices when they arrive. Karp, Vazirani and Vazirani find an algorithm with competitive
ratio 1− 1

e
for this problem. This thesis generalizes the problem by removing the assumption

of one side being known beforehand. We study three models: the adversarial model, the ran-
dom order model and the offline model. For the adversarial model, we define local algorithms
and prove that none of them has a competitive ratio greater than 1

2
. For the random order

model, we find an algorithm with competitivity in the interval [0.696, 0.727]. Finally, for the
offline model, we find an optimal algorithm and prove its competitive ratio is in the interval
[0.526, 0.591].
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Chapter 1

Introduction

1.1 Preliminary Definitions and Results

We begin with some graph terminology and some classical textbook results we will use.

Definition 1.1 A graph G is an ordered pair (V,E), where V is a finite set and E ⊆
(
V
2

)
=

{{u, v} | u, v ∈ V, u 6= v}.

Definition 1.2 In a graph G = (V,E), V or V (G) is called the vertex set and E or E(G)
is called the edge set. Elements of V are called vertices and elements of E are called edges.
An edge e = {u, v} will be written as e = uv.

Definition 1.3 Two edges e1 and e2 are called adjacent if |e1∩e2|=1. Similarly, two vertices
v and u are called adjacent or neighbours if there exists an edge e such that e = uv. The set
of neighbours of a vertex v will be denoted N(v).

Definition 1.4 We say an edge e is incident to a vertex v if v ∈ e. The set of edges incident
to a vertex v will be denoted δ(v).

Definition 1.5 A graph G′ = (V ′, E ′) is called a subgraph of G = (V,E) if V ′ ⊆ V and
E ⊆ E ′.

Definition 1.6 For graph G = (V,E) and a subset of vertices V ′, we call G[V ′] the induced
subgraph by V ′ defined by G[V ′] = (V ′, E ′) where E ′ = {uv ∈ E : u ∈ V ′, v ∈ V ′}. For a
vertex set {v1, v2, . . . , vn}, we will shorten G[{v1, v2, . . . , vn}] to G[v1, v2, . . . , vn].

Definition 1.7 For an edge set F ⊆ E, we define χ(F ) as a vector in [0, 1]E, where xe = 1
if e ∈ F and xe = 0 otherwise.

Definition 1.8 A graph P = (V,E) is a path if there exists n ∈ N such that V = {v0, v1, . . . , vn}
and E = {v0v1, v1v2, . . . , vn−1vn}. The length of a path is n = |E(P )|.
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Definition 1.9 A graph C = (V,E) is a cycle if there exists n ∈ N such that V = {v1, . . . , vn}
and E = {v1v2, v2v3, . . . , vn−1vn, vnv1}. The length of a cycle is n = |E(C)|.

Definition 1.10 A graph G = (V,E) is called bipartite if V can be partitioned into two sets
L and R, such that all edges are incident to both a vertex in L and a vertex in R. We write
G = (L,R,E) to denote the partitions of the vertex set when defining a bipartite graph.

Theorem 1.11 (König [1916]) [14] A graph is bipartite if and only if it contains no cycles
of odd length.

Definition 1.12 A graph G = (V,E) where V = {v1, . . . , vn} and E =
(
V
2

)
is called a

complete graph of n vertices and denoted Kn.

Definition 1.13 A bipartite graph G = (L,R,E) where L = {v1, . . . , vn}, R = {u1, . . . , um}
and E = {viuj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is called a complete bipartite graph and it is denoted
Kn,m.

Definition 1.14 A matching of a graph G = (V,E) is a subset of pairwise non-adjacent
edges.

Definition 1.15 A vertex cover of a graph G = (V,E) is a subset of vertices V ′ such that
each edge of the graph is incident to some vertex of V ′.

Definition 1.16 For a bipartite graph G = (V,E), we define a fractional matching as a
vector (xe)e∈E satisfying

xe ∈ [0, 1] ∀e ∈ E,
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V.

The size of a fractional vertex cover is
∑

e∈E xe.

Definition 1.17 For a bipartite graph G = (V,E), we define a fractional vertex cover as a
vector (xv)v∈V satisfying

xv ∈ [0, 1] ∀v ∈ V, xu + xv ≥ 1 ∀e ∈ E.

The size of a fractional vertex cover is
∑

v∈V xv.

Theorem 1.18 [14] For bipartite graphs, the linear programming ( LP) problems of finding
a maximum size fractional matching and a minimum size fractional vertex cover are integral
and duals of each other.

1.1.1 On-line Algorithms and Previous Work in Bipartite On-line
matching

In classic optimisation problems studied within computer science and operations research,
the input is given to the algorithm before it starts executing. This setting is realistic when
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full information is actually known in advance. On the other hand, in on-line optimisation
problems the input is given to the algorithm in a piece-by-piece fashion, without having the
entire input available from the start. Typically, the solution must maintain certain invariants
and this forces the algorithm to act before the full input is known.

This thesis focuses on variants of the on-line matching problem in bipartite graphs. These
are generalisations of the following problem studied by Karp, Vazirani and Vazirani [12] in
a seminal paper. Suppose you are given a bipartite graph G = (L,R,E) where only the left
side of the graph is known beforehand. The right side arrives on-line, that is, vertices in
R arrive in a preselected order, and the edges incident to a vertex in R are revealed to us
only when the vertex arrives. The task is to decide, as each vertex in R arrives, to which
vertex in L should we match it, so that the size of this matching is maximized. Decisions are
permanent: once a vertex has been matched, this decision cannot be undone.

Since the algorithm has to act before the full input is known, typically the algorithm cannot
achieve an optimal solution. Therefore, competitive analysis is the predominant framework
for evaluating the performance of on-line algorithms, explained in the following definition.

Definition 1.19 Let A be an algorithm for an on-line optimisation problem. For an input
I, let E[A(I)] be the expected size of the solution found by the algorithm and OPT(I) the size
of the optimal solution.

We say that A achieves a competitivity or competitive ratio of α if, for all input I

E[A(I)]

OPT(I)
≥ α

if the problem is a maximisation problem.

Analogously, we say that A achieves a competitivity or competitive ratio of α if, for all
input I

E[A(I)]

OPT(I)
≤ α

if the problem is a minimisation problem.

Example For the on-line matching problem, no deterministic algorithm can achieve a com-
petitive ratio better than 1

2
. To prove this, let A be a deterministic algorithm and use the

following input: Let L = {v1, v2} and a vertex u1 arriving on-line connected to both v1 and
v2. A has to match u1 (or its competitive ratio would be at most 0 on the input so far),
so let u2 arrive on-line connected to the matched vertex in L. A can not match u2, so its
competitive ratio is at most 1

2
.

There actually exists a deterministic algorithm with competitive ratio 1
2
, the Greedy

algorithm.

3



Algorithm 1 Greedy

for v arriving on-line do
if v has unmatched neighbours then

Choose any unmatched neighbour u amongst the vertices arrived so far
Add uv to the matching

end if
end for

Theorem 1.20 [13] Greedy achieves a competitive ratio of 1
2
.

This result extends to all models we will study, so we include a proof.

Proof. Let M be the matching obtained by the algorithm and M∗ a matching of maximum
size. If v is any vertex in G and v is not matched in M , then v has no unmatched neighbours,
therefore M is a maximal matching. Take any edge e in M∗. If e is not adjacent to any edge
in M , we could add e to M , contradicting maximality. Define now:

f : M∗ →M

e 7→ f(e) = e′ where e′ is any edge in M adjacent to e.

Since M∗ is a matching, any vertex is incident to at most one edge in M∗ and it follows that
|f−1{e′}| ≤ 2 for all e′ in M . Therefore,

|M∗| = |
⋃
e′∈M

f−1{e′}|

≤ 2|M |.

And thus |M |
|M∗| ≥

1
2
. This bound is tight, as seen in the previous example.

Karp, Vazirani and Vazirani find an optimal (in the sense of competitive analysis) ran-
domised algorithm called Ranking for the on-line matching problem. It achieves a competi-
tive ratio of 1− 1

e
, which they prove is the best possible competitive ratio amongst randomised

algorithms for this problem.

Since then, many generalisations of this problem have been studied, such as b-matching,
the AdWords problem and the vertex weighted version [17, 8, 1, 18]. Simpler proofs of the 1− 1

e

bound have also been found [4, 6]. Additionally, relaxations on the input have been studied,
such as the random order model and the known distribution model [7, 3, 15, 11, 16]. A newer
variant, important to this thesis, was the on-line fractional matching problem studied in an
unpublished paper by Wang and Wong [19, see also [20]], which presents a 0.526-competitive
algorithm for fractional bipartite matching in the case that the entire graph arrives on-line,
instead of a side being fixed.

Another line of research studies approximation algorithms for the matching problem in
general graphs. Algorithms studied so far are randomised variants of the Greedy algorithm
[2, 9, ?, 5].
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1.2 The Models

We study a generalisation of the on-line matching problem mentioned earlier: Instead of a
side being fixed beforehand, vertices of the entire bipartite graph arrive on-line in any order.
We study this problem in the adversarial model, the random order model and a model we call
the offline model where the algorithm knows the graph and the order in which the vertices
arrive, but we force the algorithm to maintain its competitivity in any prefix of the input,
just like any on-line algorithm. We define these models below and highlight the relationships
between them.

Definition 1.21 In the adversarial model, input consists of a bipartite graph G = (V,E)
and a permutation π of its vertices, both initially unknown to the algorithm. The graph then
arrives on-line, vertex by vertex in the order of π, starting from the empty graph. When
vertex v arrives, it reveals to us which of the previously arrived vertices are its neighbours.
The algorithm may only match the vertex to one of its previously revealed neighbours when
it arrives. Also, the algorithm may not remove edges from the matching. The goal is to build
a large matching.

Definition 1.22 In the random order model, input consists of a bipartite graph G =
(V,E). A permutation π is then sampled uniformly amongst the permutations of V . Both the
permutation and the graph are unknown to the algorithm. The graph then arrives on-line and
the algorithm has to construct a matching with the same restrictions as in the adversarial
model.

Definition 1.23 In the offline model, a randomised algorithm with competitive ratio α is
given a graph G = (V,E) and a permutation of its vertices π = v1, . . . , vn. It then has to
output a random matching M , with the restriction

E[M ∩Gk]

OPT(Gk)
≥ α ∀k = 1, . . . , n , (1.1)

where Gk = G[v1, . . . , vk] is the graph induced by the first k vertices of π.

Lemma 1.24 Let A be any algorithm in the adversarial model achieving a competitive ratio
of α. Then A achieves a competitive ratio of α in the random order model.

Proof. Let I be an input in the random order model and let A(I) be the random variable
corresponding to the size of the matching output by the algorithm. Let S(V ) be the set of
permutations of V and σ ∈ S(V ) be the random variable representing the permutation of V
in which the vertices arrive. Using the law of total probability,

E(A(I)) =
∑

π∈S(V )

E(A(I)|σ = π)
1

n!
.

Conditional to arriving in a fixed order, we can see an input in the random order model as

5



an input in the adversarial model, so

E(A(I)) ≥
n!∑
i=1

αOPT(I)
1

n!

≥ αOPT(I).

Lemma 1.25 Let A be any algorithm in the adversarial model achieving a competitive ratio
of α. Then A achieves a competitive ratio of α in the offline model.

Proof. Ignore the extra information given in the offline model and use A.

Corollary 1.26 Let α in [0, 1]. If no algorithm can achieve a competitive ratio greater than
α in the random order (resp. offline) model, then no algorithm can achieve a competitive
ratio greater than α in the adversarial model.

1.3 Our Contribution

We summarise our main results below.

• For the adversarial model, we define local algorithms, a class that contains many algo-
rithms studied in the literature. We prove that all local algorithms have competitive
ratio at most 1

2
, even when restricted to bipartite graphs.

• We show, with a counterexample, that there is no on-line rounding method that turns a
fractional matching (xe)e∈E into a random integral matching M with E[|M |] =

∑
e∈E xe.

This complements the rounding method found for bipartite on-line vertex cover by
Wang and Wong [19].

• We prove that in the random order model, the Ranking algorithm achieves exactly the
same competitive ratio as Ranking when one of the sides is fixed beforehand and the
other side arrives in a random order. This competitivity lies somewhere in the interval
[0.696, 0.727].

• An upper bound of 0.875 for the competitivity of any algorithm in the random order
model.

• We introduce the offline model, find an optimal algorithm for this model, and prove
its competitivity lies in the interval [0.526,

√
5+9
19
≈ 0.591]. The upper bound holds in

the adversarial model, as per Corollary 1.26.
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Chapter 2

On-line Matching: The Adversarial
Model

Let G = (L,R,E) be a bipartite graph and v1, v2, . . . , vn a permutation of its vertices.
The entire vertex set arrives on-line in the order v1, v2, . . . , vn. An on-line algorithm only sees
the induced subgraph of vertices that have arrived so far and, whenever a vertex arrives, it
has to choose whether to match it to one of its neighbours or leave it unmatched. Decisions
are immediate and permanent: The only time when a vertex can be matched to another is
when one of the two just arrived and once two vertices have been matched this cannot be
undone. Since the algorithm has to be competitive for any input, one can imagine the entire
input as being chosen by an adversary, hence the name of the model. This model is stricter
than the one introduced by Karp et al., where one side is already fixed beforehand: we can
simulate an instance where L is fixed beforehand by choosing an order where every vertex of
L arrives before a vertex of R.

Any deterministic algorithm for this problem achieves a competitive ratio of at most 1
2
.

This follows directly from the fact that any deterministic algorithm in the model where one
side is fixed beforehand has a competitive ratio of at most 1

2
[12], and our model generalizes

this setting. This fact helps for an easier proof in this case, consider the graph in Figure 2.1,
with vertices labelled by the order in which they arrive.

1 2

3 4

Figure 2.1: A bad example for any deterministic algorithm in the adversarial model.

Any deterministic algorithm with competitive ratio greater than 1
2

has to pick the edge
between vertices 1 and 2, because it has to be competitive in the graph consisting of a single
edge. This matching is maximal, so the algorithm cannot add any more edges.

Moreover, the Greedy algorithm again achieves a competitive ratio of 1
2

as shown in

7



Theorem 1.20, so the Greedy algorithm achieves the best possible competitive ratio for a
deterministic algorithm.

The big question which motivates most of the work presented here is if there is a ran-
domised algorithm which achieves a better competitive ratio than 1

2
for this problem.

2.1 Previous Work

The on-line bipartite matching problem was first studied by Karp et al. [12] in the case
where one side is fixed beforehand. As mentioned before, they devise an algorithm, called
Ranking, that achieves a competitive ratio of 1 − 1

e
and no randomised algorithm can

achieve a better competitive ratio than 1− 1
e
, so this algorithm is optimal. The algorithm is

surprisingly simple and works as follows.

Algorithm 2 Ranking

Pick a random permutation of the known vertices in L, thereby assigning a random priority
to each vertex in L.
for v arriving on-line do

if v has unmatched neighbours then
u← the neighbour of v with highest priority
Add uv to the matching

end if
end for

The Ranking Algorithm has since then been modified to achieve a competitive ratio of
1− 1

e
for generalisations of the previous problem, for example for the AdWords problem [17].

This thesis uses a recent result on on-line fractional matching by Wang and Wong [19, see
also [20]]. In an unpublished paper, Wang and Wong present an algorithm with a competi-
tive ratio of 0.526 for on-line fractional bipartite matching, in a model where the algorithm
may only set values to an edge when the edge appears in the induced subgraph of arrived
vertices. This is again with one side not necessarily fixed. Their algorithm is primal-dual. It
simultaneously finds a fractional matching and a fractional vertex cover that are at most a
factor of 1.901 away from each other. In particular, it achieves a competitive ratio of 0.526
for fractional on-line matching and a competitive ratio of 1.901 for fractional vertex cover.
They also provide a randomised rounding method that returns (in an on-line fashion) an
integral vertex cover with the same expected size as that of their fractional solution. Com-
bining this, one gets an algorithm for the on-line vertex cover problem in bipartite graphs
with competitive ratio better than 2. This proves a converse result to the following lemma.

Lemma 2.1 [19] In the adversarial model, any randomised algorithm A for the on-line
matching (resp. vertex cover) problem can be converted into a deterministic algorithm for the
on-line fractional matching (resp. vertex cover) problem with the same competitive ratio.
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Proof. Let A be any randomised algorithm for the on-line matching problem. Define a
deterministic algorithm which simulates A and for an edge e sets xe = P(e gets matched by
A). The same argument can be done for the on-line vertex cover problem.

2.2 Local Algorithms

In this section we generalise both the Ranking and Greedy algorithms, by defining a
family of algorithms we call local algorithms, and prove that any algorithm in the family
cannot be (1

2
+ ε)-competitive for any ε > 0. So far, the Ranking and variations of the

Greedy algorithms which randomise over some choices of the algorithm, are the most studied
algorithms for on-line matching problems. Our result shows that if we want to break the 1

2
-

barrier in the adversarial model, an algorithm needs to keep track of some global variable
and make decisions based on it.

Definition 2.2 We call an algorithm A a local algorithm if there exists a function p :
N2 → [0, 1], such that upon the arrival of a vertex v, P(v gets matched)=p(f, o), where f is
the number of free (unmatched) neighbours of v and o is the number of occupied (matched)
neighbours of v. Additionally, every time A chooses to match the arriving vertex, this event
is independent of previous choices of the algorithm.

Note that no restriction is made on the choice on which vertex to match v to. For example,
for any function p : N2 → [0, 1], the following two algorithms are local algorithms, and were
our main motivation for the definition:

Algorithm 3 Randomised Greedy

for v arriving on-line do
if v has unmatched neighbours then
f ← amount of unmatched neighbours of v
o← amount of matched neighbours of v
u← an unmatched neighbour of v, picked uniformly at random
match u to v with probability p(f, o)

end if
end for

The second example tries to emulate the Ranking algorithm: Each vertex independently
gets assigned a uniform random variable U [0, 1], simulating its priority.

9



· · ·
F1

· · ·
F2

· · ·
· · ·

· · ·
Fn

v1 v2 · · · vn

· · ·v B

· · · · · ·
Wv

· · · · · ·

Figure 2.2: Graph used to bound p(f, o).

Algorithm 4 Randomised Ranking

for v arriving on-line do
xv ← U [0, 1] (independently for each v)
if v has unmatched neighbours then
f ← amount of unmatched neighbours of v
o← amount of matched neighbours of v
u← arg min{xu : u ∈ N(v), u is unmatched}
match u to v with probability p(f, o)

end if
end for

Lemma 2.3 Suppose A is a local algorithm with competitivity 1
2

+ ε and let p : N2 → [0, 1]
be the probability function it uses to match vertices. Then p(f, o) ≥ 1

2
+ ε∀f > 0.

Proof. Note that p(1, 0) ≥ 1
2

+ ε > 0 which follows by testing A on the input consisting of
a single edge. For the first part of the proof, let (f, o) ∈ N2, ε′ > 0 and n ∈ N. Consider the
following input I to the problem: First, a set B of o vertices arrive, without any edges. For
each vertex v in B, add a set Wv of k vertices connected only to v. Since p(1, 0) > 0, we can
take k big enough so that P(∀ v ∈ B v is matched)≥ 1− ε′.

Afterwards, add n sets (Fi)
n
i=1 of f vertices each without any edges. Finally, add n vertices

vi, where each vertex vi is connected to every vertex in Fi and to every vertex in B. (See
Figure 2.2.)

For f > 0, this graph has a maximum matching of size o+n. Next we bound the expected
value of the matching output by the algorithm. Note that with probability at least 1 − ε′,
every vertex vi will have f unmatched neighbours and o matched neighbours. This helps to

10



...
...

. . .
3 4
1 2

Kn,n

...
...

Figure 2.3: Bomb graph.

bound E[M(I)]. In fact, define A as the event “all vertices in B got matched”, then:

E[|M(I)|] = E[M(I)|A]P(A) + E[M(I)|Ac]P(Ac)

≥ E[M(I)|A](1− ε′)
≥ np(f, o)(1− ε′)

Similarly,

E[|M(I)|] = E[M(I)|A]P(E) + E[M(I)|Ac]P(Ac)

≤ E[M(I)|A] + E[M(I)|Ac]ε′

≤ np(f, o) + (o+ n)ε′

By taking the limit as ε′ → 0 and n→∞, we get

lim
ε′→0

lim
n→∞

E[|M(I)|]
o+ n

= p(f, o)

Therefore, p(f, o) ≥ 1
2

+ ε if f > 0.

Theorem 2.4 The competitive ratio of any local algorithm for the on-line matching problem
is at most 1

2
.

Proof. We proceed by contradiction. Let A be a local algorithm with competitivity 1
2

+ ε
and p : N2 → [0, 1] be the probability function it uses to match vertices. For an input I let
M(I) be the random variable defined as the matching obtained by A on input I and OPT(I)
the size of the maximum matching in the graph given by I.

Consider the input In consisting of the complete bipartite graph Kn,n and add to every
single vertex of Kn,n a neighbour (this graph is sometimes called the “bomb-graph” and has
been used before to find upper bounds for matching algorithms [9]). The order of arrival will
be as follows: First, vertices from Kn,n arrive, alternating the side. Then, the rest of the
vertices arrive, in any order. Note that the graph has a perfect matching, so OPT (In) = 2n.
(See Figure 2.3.)

Our next step will be proving that for big n, A matches many vertices of the Kn,n half
of the input. To see this, we define the random variable Xi as the amount of unmatched
vertices so far amongst the first i arrived vertices of Kn,n. Therefore, i − Xi is the amount
of matched vertices amongst the first i arrived vertices, half of which are on the left side of

11



the graph with the other half on the right side. Therefore the ith vertex arriving always has
(before the algorithm matches it) i−Xi

2
matched neighbours. If i is odd, the ith vertex arrives

on the left side and has a total of b i
2
c neighbours. Otherwise, if i is even, it has a total of i

2

neigbhours. In both cases, the ith vertex has b i
2
c − i−Xi

2
unmatched neighbours.

Because of the symmetry of the graph, if a vertex gets matched it does not matter which
vertex the algoritm matches it to. Since the choice of matching each vertex is independent
of previous choices of the algorithm, the stochastic process (Xi) is a (not necessarily time-
homogeneous) Markov chain, with transition probabilities given by:

P(Xi = k + 1|Xi−1 = k) = 1− p
(⌊

i

2

⌋
− i− k

2
,
i− k

2

)
P(Xi = k − 1|Xi−1 = k) = p

(⌊
i

2

⌋
− i− k

2
,
i− k

2

)
Note that p(0, o) = 0, because if a vertex does not have unmatched neighbours, it cannot be
matched.

Now let (Ui)i∈N be i.i.d. random variables with uniform distribution U(0, 1). We define
another Markov chain X ′i by defining X ′0 = 0 and for i ≥ 1

X ′i = X ′i−1 + 1
{Ui>p(b i2 c−

i−X′
i−1
2

,
i−X′

i−1
2

)}
− 1

{Ui≤p(b i2 c−
i−X′

i−1
2

,
i−X′

i−1
2

)}

X ′i is then also a Markov chain with transition probabilities given by:

P(X ′i = k + 1|X ′i−1 = k) = 1− p
(⌊

i

2

⌋
− i− k

2
,
i− k

2

)
P(X ′i = k − 1|X ′i−1 = k) = p

(⌊
i

2

⌋
− i− k

2
,
i− k

2

)
So X ′i has the same transition probabilities as Xi and therefore both have the same distribu-
tion. Specifically, we have that E[Xi] = E[X ′i].

Define now a new random variable Y0 = 0 and for i ≥ 1, let

Yi = Yi−1 + 1{Yi−1=0} + 1{Yi−1 6=0}(1{Ui>
1
2
} − 1{Ui≤ 1

2
}).

Yi is then a time-homogeneous Markov chain. In fact, Yi is a symmetric walk in N.

By Lemma 2.3, p(f, o) ≥ 1
2

+ ε for f > 0. Using this fact we can prove by induction that
X ′i ≤ Yi. The base case is X ′0 = Y0 = 0. Suppose then that X ′i−1 ≤ Yi−1. If X ′i = X ′i−1 − 1,
then X ′i ≤ Yi because Yi can only decrease by at most 1. On the other hand, if X ′i = X ′i−1+1,

then Ui > p(b i
2
c − i−X′i

2
,
i−X′i
2

) > 1
2
, so Yi = Yi−1 + 1. Therefore X ′i ≤ Y ′i for all i.

Let (Zi)i∈N be independent Bernoulli random variables with parameter 1
2
. Then 2Zi− 1 ∈

{−1, 1} can be seen as the step of a random walk in Z. Thus, Yi has the same distribution as

12



|2
∑i

k=1 Zk− i|. By the central limit theorem,
2
∑i

k=1 Zk−i√
i

= 2
√
i(

∑i
k=1 Zk

i
− 1

2
) converges in dis-

tribution to a standard normal distribution N (0, 1). Therefore, Yi√
i

converges in distribution

to its absolute value |N (0, 1)|, so limi→∞ E[ Yi√
i
] =

√
2
π
.

Since n − Xn

2
is the amount of edges matched in Kn,n and the amount of edges matched

by the vertices arriving later can be at most Xn, we have:

E[M(In)] ≤ E
[
n− Xn

2

]
+ E[Xn]

≤ n+
E[Yn]

2

Thus,

lim
n→∞

E[M(In)]

OPT(In)
≤ 1

2
+ lim

n→∞

E[Yn]

4n

≤ 1

2
+ lim

n→∞

E[Yn]√
n
· lim
n→∞

1

4
√
n

=
1

2

Hence, infI input for A
E[M(I)]
OPT(I)

≤ 1
2
, so A cannot have competitive ratio greater than 1

2
.

2.3 Hardness Results

Our main result on the hardness of this problem is an upper bound on the competitive
ratio of any on-line algorithm:

Theorem 2.5 No on-line algorithm has a competitive ratio greater than
√
5+9
19
≈ 0.591.

Previously the best upper bound for this problem was 0.625 [19]. Both numbers are below
1 − 1

e
≈ 0.632 and both bounds carry over to the on-line fractional matching problem. To

prove the
√
5+9
19
≈ 0.591 bound, we relax the model to a model where the algorithm has full

information of the input, but still has to be competitive at the time of every vertex arrival.
This model, which we call the offline model, will be studied in chapter 4, where we also prove
the

√
5+9
19
≈ 0.591 bound.

2.3.1 Rounding

There exists an algorithm for the on-line fractional matching problem with competitive
ratio greater than 1

2
, even if one of the sides of the bipartite graph is not fixed beforehand

[19]. Therefore, a method to round such a fractional matching (xe)e∈E to a random integral
matching M with E[|M |] =

∑
e∈E xe in an on-line setting would result in an algorithm with

competitive ratio greater than 1
2

for the on-line matching problem studied in this chapter.
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In this section we show that there exists a fractional matching x = (xe)e∈E which cannot be
rounded on-line while maintaining P(e gets matched) = xe. This contrasts the method to
round vertex cover found by Wang and Wong.

Theorem 2.6 [19] For a bipartite graph G = (L,R,E), any on-line assignment of frac-
tional vertex cover values (yv)v∈V can be rounded to an integral vertex cover V ′ with E[V ′] =∑

v∈V yv.

Proof. Before the first on-line vertex arrives, sample t ∈ [0, 1] uniformly at random. For a
vertex v ∈ L arriving on-line, add it to V ′ if yv ≥ t. Otherwise, if v ∈ R, add v to V ′ if
yv ≥ 1− t. This gives a valid vertex cover, because for any edge e = uv, yu + yv ≥ 1 implies
that for any t either yu ≥ t or yv ≥ 1 − t. Finally, E[|V ′|] =

∑
v∈L P(v gets added to V ′) +∑

v∈R P(v gets added to V ′) =
∑

v∈V yv.

Note that the rounding method has to know if v ∈ L or v ∈ R in order to work. While in
practical applications this is usually available information, in theory the algorithm may not
be able to make that distinction. It is an open problem if such a rounding for vertex cover
can be done without that information. Also note that for all v ∈ V P(v ∈ V ′) = yv. Based
on that, we define a rounding method for the on-line matching problem as follows.

Definition 2.7 Suppose a graph G arrives on-line and each edge arrives with a value xe,
where (xe)e∈E is a fractional matching. Let vk be the k-th arriving vertex. A rounding method
for the on-line matching problem is an algorithm that outputs, at the arrival of each vertex
vk, a random matching Mk such that:

• For all edges e arrived so far, P(e ∈Mk) = xe.

• Mk−1 ⊆Mk.

If a rounding method for the on-line matching problem exists, we could use it to create an
algorithm with competitive ratio greater than 1

2
as follows: Simulate the fractional matching

algorithm by Wang and Wong and output the matching given by the rounding method.

But no rounding method for the on-line matching problem exists, even if the algorithm
knows the side of each arriving vertex.

Theorem 2.8 There exists an on-line assignment of fractional matching values with no
rounding method.

Proof. We proceed by contradiction and suppose such a rounding method exists. Consider
two pairs of vertices arriving on-line, where each pair is connected, so we have two edges e1
and e2. Let x be the fractional matching xe1 = xe2 = 1

2
. (See Figure 2.4.)
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1
2

1
2

e1

e2

Figure 2.4: Fractional matching on the subgraph induced by the first 4 arrived vertices.

Define M as the random set consisting of the matching output by the rounding method.
We define the matching Mi1,i2,...,ik = {ei1 , ei2 , . . . , eik}. Then we have, for each edge e,

xe =P(e ∈M)

=P(e ∈M1|M = M1)P(M = M1) + P(e ∈M2|M = M2)P(M = M2)+

P(e ∈M1,2|M1,2 = M)P(M = M1,2).

So we get that 1
2

= P(M = M1) + P(M = M1,2) = P(M = M2) + P(M = M1,2). Using this
and writing the previous identity vectorially, we obtain

x = P(M = M1)χ(M1) + P(M = M2)χ(M2) + P(M = M1,2)χ(M1,2)

= (
1

2
− P(M = M1,2))χ(M1) + (

1

2
− P(M = M1,2))χ(M2) + P(M = M1,2)χ(M1,2).

Suppose P(M = M1,2) > 0. In that case, assume a vertex arrives connected to one endpoint
of e1 and to one endpoint of e2, with the fractional matching valued 1

2
on each new edge, like

in Figure 2.5.

1
2

1
2

1
2

1
2

e1

e2

Figure 2.5: Next two vertices if P(M = M1,2) > 0.

Let f1 and f2 be the new edges adjacent to e1 and e2 respectively. Since P(f1 ∈ M) =
P(f2 ∈ M)1

2
and the events are disjoint, P(f1 ∈ M or f2 ∈ M) = 1. But none of those

edges can be added to M1,2, which has to occur with positive probability, a contradiction.
Therefore, P(M = M1,2) = 0 and

x =
1

2
P(M = M1)χ(M1) +

1

2
P(M = M2)χ(M2).

Next, suppose a new pair of connected vertices arrives. Call the new edge e3 and let
xe3 = 1

2
(see Figure 2.6).
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e1
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Figure 2.6: Fractional matching on the subgraph induced by the first 6 arrived vertices.

The rounding method would have to choose between adding e3 to either the matching M1

or M2, so P(M = M2,3) + P(M = M1,3) = 1
2

and so

x =(
1

2
− P(M = M1,3))χ(M1) + P(M = M1,3)χ(M1,3)+

(
1

2
− P(M = M2,3))χ(M2) + P(M = M2,3)χ(M2,3).

If the next vertex arrives connected to one endpoint of e1 and to one endpoint of e2, with the
fractional matching valued 1

2
on each new edge (see Figure 2.7), then again with probability

1 one of those new edges has to be in M . But because none of these edges can be added to
M2,3, necessarily P(M = M2,3) = 0.

1
2

1
2

1
2
1
2

1
2

e1

e2

e3

Figure 2.7: Fractional matching on the subgraph induced by the first 7 arrived vertices.

Repeating the previous argument but with a vertex connected to one endpoint of e1 and
one of e3 yields P(M = M1,3) = 0. But then 0 = P(M = M1,3) = 1 − P(M = M2,3) = 1, a
contradiction.

This result does not discard the approach of finding a big fractional matching and rounding
it into an integral matching. But if one wants to round a fractional matching, the resulting
integral matching might have to be smaller. This suggests there exists a gap between the
best possible competitive ratio for both models.
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Chapter 3

The Random Order Model

In the random order model, there is a bipartite graph G(V,E) which the algorithm does
not know. Vertices of this graph arrive in the order induced by a random, uniformly chosen
permutation v1, v2, . . . , vn of V . Similarly to other models introduced so far, the algorithm
learns which vertices vi are neighbours of vk for i < k when vertex vk arrives. Equivalently,
when vertex vk arrives, the induced graph G[v1, . . . , vk] is revealed to the algorithm. Upon
arrival of vk the algorithm may only add an edge vivk to the matching, for i < k. Note that,
in this whole chapter, the probability will be taken in regard to both the randomness of the
algorithm and the randomness of the input.

The algorithm does not know the size of the input either. This information could eventu-
ally help for sampling techniques used by the algorithm.

3.1 Related Work

A very similar model has been studied by Goel and Mehta [8], where one side of the
bipartite graph is fixed and the other side arrives on-line, but in a random order. In the
case when one side is fixed and with consistent tie-breaking of the fixed side, the Greedy
algorithm is equivalent to the Ranking algorithm in the adversarial model, because the order
in which the vertices arrive induces a ranking on them. Therefore the Greedy algorithm
has a competitive ratio of 1− 1

e
in the random order model with one fixed side. The model

was then further analyzed by Mahdian and Yan [15] and Karande, Mehta and Tripathy [11].
Both groups independently study the Ranking algorithm in this model. This algorithm is
the same algorithm as in the adversarial model, and since it achieves a competitivity of 1− 1

e

in the adversarial model it does at least as well in the random order model. This bound
has been improved: it is known that the competitivity of this algorithm lies in the interval
[0.696, 0.727] [15, 11].

Another line of related research studies randomised variants of the Greedy algorithm,
giving randomised approximation algorithms for the matching problem in general graphs.
In these variants the graph does not arrive on-line, and the main goal is to develop fast

17



algorithms with good approximation ratios. The following two algorithms have been studied
for general graphs:

Algorithm 5 Random-Greedy

Choose a random permutation of the vertices v1, . . . , vn
for i = 1, . . . , n do

if vi has unmatched neighbours then
Choose an unmatched neighbour u at random
Add uv to the matching

end if
end for

The Ranking algorithm, which takes its name from its variant in on-line bipartite matching:

Algorithm 6 Ranking

Choose a random permutation of the vertices v1, . . . , vn
for i = 1, . . . , n do

if vi has unmatched neighbours then
Choose the unmatched neighbour u which comes first in the permutation
Add uv to the matching

end if
end for

From now on in this chapter we always refer to this algorithm as Ranking, despite the
fact the algorithm by Karp, Vazirani and Vazirani has the same name.

Since both the Ranking and Random-Greedy algorithms output maximal matchings,
their competitivity is at least 1

2
(see the proof of Theorem 1.20). It has been shown that

both algorithms have a competitive ratio strictly greater than 1
2
, even on general graphs. We

summarize the process on the competitive ratio of these algorithms in Table3.1:

Algorithm Year Lower Bound Upper Bound
Random-Greedy 1995 [2] 1

2
+ 1

400000
–

2012 [9] 1
2

+ 1
256

2
3

Ranking 2012 [?] –1 0.75

2013 [5] 2(5−
√
7)

9
≈ 0.523 0.724 (experimental bound)

Table 3.1: Competitive ratios of algorithms for matching in general graphs.

None of these algorithms actually work in our random order model, because in both
algorithms a vertex could get matched to a vertex that has not arrived yet.

1The paper seems to have an incorrect proof of a lower bound of 0.56
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3.2 Lower Bound and the Unknown Distribution Model

An interesting motivation to introduce the random order model comes from the unknown
distribution model. In the unknown distribution model, arriving vertices are sampled from
a probability distribution unknown to the algorithm. In other words, there is a base graph
Ĝ = (V̂ , Ê) and a probability vector over V̂ , both unknown to the algorithm. Vertices are
then sampled from Ĝ and arrive on-line, adding edges to pairs that were originally connected
in Ĝ. If a vertex is sampled more than once, copies of it arrive on-line. This can be used to
model real-life on-line matching situations where some assumption can be made about the
on-line arrivals. For example, if we want to match blood donations to compatible patients,
a vertex in Ĝ would represent the blood type and if the vertex is a donor or a patient.
It is reasonable to assume that arrival times are independent and follow an exponential
distribution, which fixes the probability distribution of which vertex arrives next.

Since there is randomness in the input, this time we have to extend the definition of the
competitive ratio.

Definition 3.1 Let A be an algorithm for the on-line matching problem in the unknown
distribution model. For an input I, let E[A(I)] be the expected size of the solution found by
the algorithm and OPT(I) the size of the optimal solution. We say A achieves a competitive

ratio α if E[M(A)]
E[OPT(I)]

≥ α for all input I.

Karante et al. [11] study the case where one side of the on-line graph is already fixed and
known to the algorithm. We will assume that the graph is initially empty and vertices of any
side can arrive on-line. When one side is fixed, the random order model is more strict than
the unknown distribution model, because any algorithm in the random order model can also
be used in the unknown distribution model [11]. This holds for the model where both sides
arrive on-line as well, as shown in the following lemma.

Lemma 3.2 If an on-line algorithm A for the random order model has a competitive ratio
of α, then the same algorithm achieves a competitive ratio of at least α in the unknown
distribution model.

Proof. Consider an instance in the unknown distribution model, consisting of n vertices
sampled from a base graph Ĝ. For a vertex v in G, define v̂ as the vertex in Ĝ it was sampled
from. Let P be the set of all possible vertex sequences in the problem instance. Define the
following equivalence relation ∼ over P : v1, . . . , vn ∼ u1, . . . , un if the multisets {v̂1, . . . , v̂n}
and {û1, . . . , ûn} are equal. P/ will denote the set of equivalence classes of . Each equivalence
class can be seen as the permutations of one sequence of vertex arrivals. Therefore, members
of each equivalence class have the same probability to be sampled and the resulting graph is
the same for each sequence in the class. For a sequence of vertices v1, . . . , vn, call [v1, . . . , vn]
its equivalence class, M(v1, . . . , vn) the matching output by the algorithm with that vertex
sequence as an input and OPT ([v1, . . . , vn]) the size of the maximum matching in the graph
induced by [v1, . . . , vn] (which is well defined since the resulting graph is the same for all
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members in the equivalence class). Then

E[|M |] =
∑

(v1,...,vn)∈P

|M(v1, . . . , vn)|P(v1, . . . , vn gets sampled)

=
∑

[v1,...,vn]∈P/∼

∑
(u1,...,un)∈[v1,...,vn]

|M(u1, . . . , un)|P(u1, . . . , un gets sampled)

=
∑

[v1,...,vn]∈P/∼

P(v1, . . . , vn gets sampled)n!
∑

(u1,...,un)∈[v1,...,vn]

|M(u1, . . . , un)| 1
n!
.

We identify each equivalence class in P/ ∼ as an instance in the random order model, because
it is the set of all permutations of vertices of the graph induced by [v1, . . . , vk]. Thus the
second sum is the expected size of the matching in the random order model, which we know
is greater than αOPT ([v1, . . . , vn]) and we can bound

E[|M |] ≥
∑

[v1,...,vn]∈P/∼

P(v1, . . . , vn gets sampled)n!αOPT ([v1, . . . , vn])

≥ α
∑

v1,...,vn∈P

P(v1, . . . , vn gets sampled)OPT ([v1, . . . , vn])

≥ αE[OPT ].

Which proves the lemma.

We now try to find an algorithm with good competitivity for the random order model.
Since the Greedy algorithm achieves a competitivity of 1

2
in this model, we are interested

in finding algorithms with greater competitivity. With this in mind, we will analyse the
performance of the following algorithm for the random order model.

Algorithm 7 Shuffle

for v arriving on-line do
if v has unmatched neighbours then
u← the unmatched neighbour of v which arrived first
Add uv to the matching

end if
end for

This algorithm is a natural adaptation of the Ranking algorithm for the on-line random
order model. We cannot use Ranking in the random order model, because it needs to know
all neighbours of each vertex a priori. But Ranking and Shuffle are actually the same
algorithm, as shown by the following theorem.

Definition 3.3 For G = (V,E) a (not necessarily bipartite) graph, we define Ranking(π)
(resp. Shuffle(π)) as the matching obtained when running Ranking (resp. Shuffle) with
π as the permutation of vertices.

Theorem 3.4 Shuffle(π)=Ranking(π).
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· · · · · · · · ·
v1 vk vj vi

u
Ranking

Shuffle

Figure 3.1: Illustration with vertices shown in order.

Proof. Let vi be the ith vertex in the order induced by π and proceed by induction in
G[v1, . . . , vi], the graph Shuffle sees. Since Shuffle(π) ∩ G[v1, . . . , vi] is always a maximal
matching, it suffices to prove that Shuffle(π) ∩G[v1, . . . , vi] ⊆ Ranking(π) ∩G[v1, . . . , vi].

Suppose vi arrives and gets matched by the Shuffle algorithm to a vertex vj in G[v1, . . . , vi].
We will prove that Ranking matches vj to vi when inspecting the free neighbours of vj. For
that we have to prove two things: vi is an unmatched vertex when Ranking inspects the free
neighbours of vj and vi is the first vertex (in the order of π) with that property.

For the sake of contradiction, suppose vi has already been matched by the Ranking
algorithm when Ranking inspects the neighbours of vj. Then vi is already matched by
the Ranking algorithm to a vertex which Ranking inspected earlier than vj, say vk with
k < j. If vk were unmatched by the Shuffle algorithm in G[v1, v2, . . . , vi−1], then Shuffle
would not have matched vi to vj, so vk must be matched by Shuffle to a vertex u in
{v1, v2, . . . , vi−1}. (See Figure 3.1 for clarity.) By the induction hypothesis, the edge vku is in
both Ranking(π)∩G[v1, . . . , vi−1] and in Shuffle(π)∩G[v1, . . . , vi−1]. But then vk is matched
to both vi and to u in Shuffle(π) ∩G[v1, . . . , vi−1], a contradiction.

Now, if vi is not the first unmatched neighbour of vj when Ranking inspects the neigh-
bours of vj, then vj would get matched to a vertex in {v1, . . . , vi−1}. By the induction
hypothesis, this edge would also be in Shuffle(π) ∩G[v1, . . . , vi−1]. But then Shuffle could
not match vi to vj, contradicting our initial assumption.

Corollary 3.5 The competitive ratios of Shuffle and Ranking coincide.

Because of the previous theorem and corollary, we will no longer differentiate the Shuffle
and the Ranking algorithms, and just say the Ranking algorithm.

Next we prove that, in the random order model, the Ranking algorithm has exactly the
same competitive ratio as the Ranking algorithm in the random order model where one side
is fixed, which has already been studied [11, 15].

Lemma 3.6 Let G = (V,E) be a (not necessarily bipartite) graph and π = v1v2 . . . vn a
permutation of its vertices. Suppose that for some i one of the following holds:

• The edge vivi+1 exists and it is not contained in a triangle.

• The distance between vi and vi+1 is greater than 2.
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Then we can exchange the order of vi and vi+1 in π and still obtain the same matching when
running Ranking.

Proof. It suffices to show that both vi and vi+1 get matched the same way in both cases,
since then for the other vertices the algorithm proceeds identically. Call ρ the permutation
obtained if we exchange the order of vi and vi+1 in π. Since the algorithm always outputs
maximal matchings, it suffices to show that Ranking(π) ⊆ Ranking(ρ).

For the first case, suppose vi and vi+1 are neighbours but not contained in a triangle. We
proceed by cases:

• Suppose vi gets matched to vi+1 in Ranking(π). That means vi does not have unmatched
neighbours upon its arrival in π and the only unmatched neighbour of vi+1 upon its
arrival is vi. Therefore, if we switch their order, when vi+1 arrives it has no unmatched
neighbours, and when vi arrives its only unmatched neighbour is vi+1 and they get
matched.

• Suppose now vi gets matched to a vertex u, different to vi+1. Therefore u arrived before
vi+1 in π. The vertex u cannot be a neighbour of vi+1, otherwise vi and vi+1 would be
contained in a triangle. If we switch the order, vi+1 cannot be matched to u and u will
still be the earliest neighbour of vi upon its arrival, thus uvi is in Ranking(ρ).

• Finally, suppose vi+1 gets matched to a vertex u different to vi. This case is the same
as the previous case, but with the roles of π and ρ reversed.

Suppose now the distance between vi and vi+1 is greater than two. If vi gets matched to a
vertex u, u is not a neighbour of vi+1. So, when switching the order of vi and vi+1, u will still
be the neighbour of vi that arrived earliest, and so uvi is still in the matching. The case of
vi+1 getting matched is again the same, but with the roles of π and ρ reversed.

Corollary 3.7 If G = (L,R,E) is a bipartite graph, and π a permutation of its vertices,
define πL as the permutation induced by π on L and πR as the permutation induced by π on
R. Define Ranking(πL, πR) as the matching obtained when the permutation is πL followed by
πR. Then Ranking(π)=Ranking(πL, πR).

Proof. Suppose π = v1, . . . , vn and for some i, vi ∈ R but vi+1 ∈ L. If vi and vi+1 are
neighbours they are not in a triangle, because G is bipartite. If they are not neighbours,
their distance is at least 3, since they are in opposite sides of a bipartite graph. Thus, by
the previous lemma we can exchange the order of vi and vi+1 in π and still obtain the same
matching. We can apply this as many times as necessary so that the permutation consists
only of vertices in L before vertices in R.

We summarize the previous results in the following theorem.

Theorem 3.8 In the random order model for bipartite graphs, where the initial set of vertices
is empty, the Ranking algorithm achieves the same competitive ratio as when one of the
sides is fixed initially.
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This competitive ratio is known to lie somewhere in the interval [0.696, 0.727] [11, 15].
Hence, using Lemma 3.2 we get the following corollary for the unknown distribution model.

Corollary 3.9 Ranking is 0.696-competitive in the unknown distribution model.

3.3 Upper Bound

Our goal in this section is to find an upper bound on the competitive ratio of any algorithm
in the random order model. We prove that any algorithm can only get a matching of expected
value at most 7

4
on a path of size three. This translates into the following upper bound:

Lemma 3.10 No algorithm can achieve a competitivity greater than 0.875 in the random
order model.

Proof. Let A be an algorithm for the on-line matching problem in the random order model.
Let us test A on a path of length three with vertex set {v1, v2, v3, v4} (see Figure 3.2).

v2 v3

v1 v4

Figure 3.2: A path of length three.

Define M as the matching output by the algorithm and p = P(A adds the first edge it
sees to M | the first two arriving vertices are connected). By symmetry, we can assume that
the first vertex arriving is either v1 or v2. Then:

E[|M |] =E[|M | | v1 arrives first and v2 second]
1

6
+ E[|M | | v1 arrives first and v3 second]

1

6
+

E[|M | | v1 arrives first and v4 second]
1

6
+ E[|M | | v2 arrives first and v1 second]

1

6
+

E[|M | | v2 arrives first and v3 second]
1

6
+ E[|M | | v2 arrives first and v4 second]

1

6

Next we calculate each of those conditional expectations:

• If v1 arrives first and v2 second, then A adds that edge to the matching with probability
p. If it adds that edge, the matching cannot be larger than 2. Otherwise the matching
can only be the edge v2v3, so

E[|M | | v1 arrives first and v2 second] ≤ 2p+ (1− p) = p+ 1.

The same reasoning holds when v2 arrives first and v1 second.
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• If v1 arrives first and v3 second, there are two cases: With probability 1
2

the next vertex
arriving is v4, in which case we will bound the matching output by the algorithm by the
optimal one. Otherwise, v2 arrives next and the algorithm would see a path of length
two. Let q be the probability of choosing the edge incident to the vertex that arrived
first when the algorithm sees a path of length 2. Then

E[|M | | v1 arrives first and v3 second] ≤ 1

2
· 2 +

1

2
(2q + (1− q))

=
1

2
(3 + q)

Repeating the same reasoning when v2 arrives first and v4 second gives:

E[|M | | v2 arrives first and v4 second] ≤ 1

2
· 2 +

1

2
(q + 2(1− q))

=
1

2
(3 + (1− q))

So E[|M | | v1 arrives first and v3 second] + E[|M | | v2 arrives first and v4 second] ≤ 7
2
.

• We will bound E[|M | | v1 arrives first and v4 second] ≤ 2.

• If v2 arrives first and v3 second, the algorithm adds v2v3 to the matching with probability
p. Otherwise it might output the optimal matching, so

E[|M | | v2 arrives first and v3 second] ≤ p+ 2(1− p) = 2− p

Therefore

E[|M |] ≤ (p+ 1)
1

6
+

7

2
· 1

6
+ 2 · 1

6
+ (p+ 1)

1

6
+ (2− p) · 1

6

=
p

6
+

19

12

≤ 1

6
+

19

12

=
7

4
.

Thus, E[|M |]
2
≤ 7

8
= 0.875.

It is interesting to note that the Ranking algorithm actually outputs a matching of
average size 1.75 in this input.

3.4 General Graphs

The fact that the Ranking and Shuffle algorithms have the same competitive ratio,
implies another corollary for the on-line matching problem in the random order model, but for
general graphs. In Table 3.1 we can see the best known competitive ratio for the Ranking
algorithm in general graphs, which is greater than 1

2
, so there exists an algorithm with a

competitive ratio greater than 1
2

for the on-line matching problem in the random order model
for general graphs.
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Corollary 3.11 The Shuffle algorithm achieves a competitivity of at least 2(5−
√
7)

9
≈ 0.523

in general graphs.

The Random-Greedy algorithm, on the other hand, cannot be used for the on-line
matching problem in the random order model. A natural adaptation for this, is the following
algorithm.

Algorithm 8 Random-Past-Greedy

Choose a random permutation of the vertices v1, . . . , vn
for i = 1, . . . , n do

Let H = G[v1, . . . , vi]
if vi has unmatched neighbours in H then

Choose an unmatched neighbour u in H uniformly at random
Add uv to the matching

end if
end for

The Random-Past-Greedy algorithm always outputs a maximal matching, so it achieves
a competitivity of 1

2
(see the proof of Theorem 1.20). Its similarity to the Random-Greedy

algorithm suggests the algorithm has a greater competitivity than 1
2
. We will now analyse

the performance of the Random-Past-Greedy algorithm on a family of graphs which we
believe is a hard instance for the algorithm.

Lemma 3.12 The competitivity of the Random-Past-Greedy algorithm is at most 239
324
≈

0.738.

Proof. For a positive even integer n, consider the graph Gn obtained by taking the complete
graph Kn and adding n new vertices, each connected to a different vertex of Kn. We write
V = C ∪P , where C (clique) is the complete subgraph of n vertices and P (pendant) are the
adjacent vertices. Figure 3.3 shows G5.

This graph contains a perfect matching of size n. Intuitively speaking, the graph also
contains many small maximal matchings, and since the algorithm always outputs a maximal
matching we believe this family of graph to be a good family to search for upper bounds on
the competitivity of the algorithm. For a vertex v in the clique, we name v∗ its neighbour
in P . To induce a uniform permutation, assume each vertex v in the graph will arrive at
a certain time Tv in the interval (0, 1), each with independent uniform distribution U(0, 1).
This will help in the analysis. We will freely use that for x ∈ [0, 1] P(Tv ≤ x) = x.

Define the random variable M as the matching obtained by the Random-Past-Greedy
algorithm. Since |M | =

∑
e∈E 1{e∈M}, we have

E[|M |] =
∑
{v,u}⊆C

P(vu ∈M) +
∑
v∈C

P(vv∗ ∈M).

Due to the symmetry of the graph the probabilities in the sums are equal and can be rewritten
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Figure 3.3: G5.

by fixing v and u in C:

E[|M |] =
n(n− 1)

2
P(vu ∈M) + nP(vv∗ ∈M).

Also note that if v does not get matched to v∗, then it gets matched to one of its neighbours
in the complete graph, so we have:

1− P(vv∗ ∈M) = (n− 1)P(vu ∈M)

So we can write E[|M |] in terms of P(vv∗ ∈M) as follows:

E[|M |] =
n

2
(1 + P(vv∗ ∈M)) (3.1)

Therefore, bounds on P(vv∗ ∈M) translate to bounds in E[|M |] .

For t ∈ (0, 1), define the random variable C(t) as the amount of unmatched vertices in the
clique among the vertices arrived strictly before t. Note that, since the matching is always
maximal, C(t) ∈ {0, 1}.

We define the following events (note they are disjoint):

A1 := Tv∗ > Tv, vv
∗ ∈M.

A2 := Tv∗ < Tv, C(Tv) = 0.

A3 := Tv∗ < Tv, C(Tv) = 1.
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Then we have:

P(vv∗ ∈M) = P(A1) + P(A2) +
1

2
P(A3). (3.2)

This is because if Tv∗ < Tv and there is no unmatched vertex in the clique, then when v
arrives v gets matched to v∗. But if there is an unmatched vertex in the clique, then v gets
matched to v∗ with probability 1

2
since the algorithm chooses a random neighbour between

v∗ and the vertex already in the clique.

The event A1 is highly unlikely. In fact, we will prove that P(A1) = o(1). Remember that
Tv and Tv∗ follow an uniform distribution. Therefore, conditioning, we get

P(A1) =

∫ 1

0

∫ 1

tv

P(A1|Tv = tv, Tv∗ = tv∗)dtv∗dtv. (3.3)

Because the matching output is always maximal, v getting matched to v∗ is equivalent to
any other vertex w of the clique not getting matched to v. Therefore

A1 = Tv < Tv∗ ,∀w ∈ C \ {v} w does not get matched to v . (3.4)

Given that Tv < Tv∗ , if no vertex w ∈ C \ {v} got matched to v, then each w must fulfil one
of the following conditions:

• Tw /∈ (Tv, Tv∗).

• Tw ∈ (Tv, Tv∗), Tw∗ < Tw and the algorithm matches w to w∗ when w arrives.

Therefore,

P(A1|Tv = tv, Tv∗ = tv∗) ≤ P
( ⋂
w∈C\{v}

[
Tw /∈ (Tv, Tv∗) ∪ Tw∗ < Tw

]
|Tv = tv, Tv∗ = tv∗

)
= P

( ⋂
w∈C\{v}

[
Tw /∈ (tv, tv∗) ∪ Tw∗ < Tw

])
And since the arrival times are independent, we can write the last line as a product, by fixing
a w ∈ C \ {v}:

P(A1|Tv = tv, Tv∗ = tv∗) ≤ P
(
Tw /∈ (tv, tv∗) ∪ Tw∗ < Tw

)n−1
=
(∫ 1

0

P(Tw /∈ (tv, tv∗) ∪ Tw∗ < Tw)|Tw = tw)dtw

)n−1
=
(∫ 1

0

P(tw /∈ (tv, tv∗) ∪ Tw∗ < tw)dtw

)n−1
=
(

1− (tv∗ − tv) +

∫ tv∗

tv

P(Tw∗ < tw)dtw

)n−1
=
(

1− (tv∗ − tv) +
t2v∗ − t2v

2

)n−1
=
(

1 + (tv∗ − tv)(
tv∗ + tv

2
− 1)

)n−1
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So using this in 3.3:

P(A1) =

∫ 1

0

∫ 1

tv

(
1 + (tv∗ − tv)(

tv∗ + tv
2

− 1)
)n−1

dtv∗dtv.

Now, for tv∗ 6= 1 6= tv, 1+(tv∗− tv)( tv∗+tv2
−1) < 1. Therefore, limn→∞

(
1+(tv∗− tv)( tv∗+tv2

−

1)
)n−1

= 0 almost everywhere. Thus, by the dominated convergence theorem

P(A1) =

∫ 1

0

∫ 1

tv

(
1 + (tv∗ − tv)(

tv∗ + tv
2

− 1)
)n−1

dtv∗dtv = o(1).

We now calculate P(A2) and P(A3). Define vk as the kth vertex arriving in C. Then, by
the law of total probability:

P(A2) =
1

n

n∑
k=1

P(Tv∗ < Tv, C(Tv) = 0|vk = v).

Note that conditional to v arriving at position k the events Tv∗ < Tv and C(Tv) = 0 are
independent, since we can determine C(Tv) with the arrival times of the k− 1 vertices of the
clique that arrived before v and the arrival times of their neighbours in P . By defining

pk = P(C(Tv) = 0|v = vk)

= P(C(Tvk) = 0)

we rewrite the equation as

P(A2) =
1

n

n∑
k=1

P(Tv∗ < Tv|vk = v)pk

Because the arrival times Tv induce a uniform permutation, we can calculate P(Tv∗ < Tv|vk =
v) by sampling (Tu)u∈C first and then Tv∗ . With this reasoning, P(Tv∗ < Tv|vk = v) = P(v∗

is among the first k vertices in a permutation of n+ 1 vertices) = k
n+1

. Therefore,

P(A2) =
1

n

n∑
k=1

k

n+ 1
pk.

Repeating the previous argument for A3 we get

P(A3) =
1

n

n∑
k=1

k

n+ 1
(1− pk).

And using this in equation 3.2

P(vv∗ ∈M) =
1

n

n∑
k=1

k

n+ 1

(pk
2

+
1

2

)
+ o(1) (3.5)

=
1

4
+

1

2n(n+ 1)

n∑
k=1

kpk + o(1). (3.6)
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Using that 0 ≤ pk ≤ 1 and equation 3.1 we get 5
8
n ≤ E(M) ≤ 3

4
n + o(n). To get a better

estimate, we will try to determine better bounds for pk.

Note that p1 = 1. We now find a recurrence equation for pk, by conditioning on the events
C(Tvk−1

) = 0 and C(Tvk−1
) = 1.

pk = P
(
C(Tvk) = 0|C(Tvk−1

)
= 0)pk−1 + P

(
C(Tvk) = 0|C(Tvk−1

) = 1
)
(1− pk−1) (3.7)

Given that C(Tvk−1
) = 0, C(Tvk) = 0 is equivalent to vk−1 getting matched to v∗k−1, which

happens if and only if v∗k−1 arrives before vk.

P
(
C(Tvk) = 0|C(Tvk−1

)
= 0) = P(v∗k−1 arrives before vk)

=
k

n+ 1

On the other hand, given that there is an unmatched vertex w in the clique when vk−1 arrives,
then C(Tvk) = 0 if and only if both vk−1 and w get matched. This happens if and only if one
of the following disjoint events holds:

• v∗k−1 arrives after vk−1, so w gets matched to vk−1. The probability of this event is the
same as the probability of a fixed object not being among the first k− 1 in an uniform
permutation of n+ 1 objects. This probability is equal to 1− k−1

n+1
.

• v∗k−1 arrives before vk−1 and the algorithm matches vk−1 to w. The probability of the
algorithm matching vk−1 to w in this case is 1

2
, and is an independent choice made by

the algorithm. By the same reasoning as above, the probability of v∗k−1 arriving before
vk−1 is k−1

n+1
.

• v∗k−1 arrives before vk−1 and when vk−1 arrives the algorithm randomly matches vk−1
to v∗k−1. Then w∗ arrives between vk−1 and vk, so w gets matched to w∗. By similar
reasoning to the previous events, this event has probability k−1

n+1
· 1
n+1

= k−1
(n+1)2

.

So we have the following recurrence equation:

pk =
k

n+ 1
pk−1 +

[
1− k − 1

n+ 1
+

1

2

k − 1

n+ 1
+

k − 1

(n+ 1)2

]
(1− pk−1).

Which we can rewrite as

pk =
[ 3k − 1

2(n+ 1)
− k − 1

(n+ 1)2
− 1
]
pk−1 + 1− k − 1

2(n+ 1)
+

k − 1

(n+ 1)2
.

This recurrence equation has the following solution (which we will not use in this proof,
but is listed here for possible future use):

pk =
k∑
i=1

[ k−1∏
j=i

( 3j + 2

2(n+ 1)
− j + 1

(n+ 1)2
− 1
)](

1− i− 1

2(n+ 1)
+

i− 1

(n+ 1)2

)
Note that k ≤ 2n+3

3
if and only if 3k−1

2(n+1)
− 1 ≤ 0. Therefore, for k ≤ 2n+3

3
the first part of the
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recurrence equation is negative and we can bound pk for k ≤ 2n+3
3

:

pk =
[ 3k − 1

2(n+ 1)
− k − 1

(n+ 1)2
− 1
]
pk−1 + 1− k − 1

2(n+ 1)
+

k − 1

(n+ 1)2

≤ 1− k − 1

2(n+ 1)
+

k − 1

(n+ 1)2
(1− pk−1)

≤ 1− k − 1

2(n+ 1)
+

k − 1

(n+ 1)2
.

For k > 2n+3
3

we will simply bound pk ≤ 1. Thus,

n∑
k=1

kpk ≤
b 2n+3

3
c∑

k=1

k
(

1− k − 1

2(n+ 1)
+

k − 1

(n+ 1)2

)
+

n∑
k=b 2n+3

3
c+1

kpk

≤
b2n+3

3
c(b2n+3

3
c+ 1)

2
−
b2n+2

3
c(b2n+2

3
c+ 1)(2b2n+2

3
c+ 1)

12(n+ 1)
+

n(n+ 1)

2
−
b2n+3

3
c(b2n+3

3
c+ 1)

2
+ o(n2)

≤1

2
n2 − 4

81
n2 + o(n2).

Therefore, in the limit and using equation 3.6

lim sup
n→∞

P(vv∗ ∈M) ≤ 1

4
+

1

4
− 2

81

And with that and equation 3.1 we can find an upper bound for the competitive ratio

lim sup
n→∞

E[|M |]
n

≤ 1

2
(1 +

1

2
− 2

81
) =

239

324
≈ 0.738

We do not believe the above upper bound is tight, even for this family of graphs. In fact,
numerical results suggest the above limit to be close to 0.714.

We can use the same method used above to find a lower bound for the performance of
the algorithm in this family of graphs. For k ≥ 2n+3

3
, 3k−1

2(n+1)
− 1 ≥ 0, so we can bound pk for

k ≥ 2n+3
3

similarly to before:

pk =
[ 3k − 1

2(n+ 1)
− k − 1

(n+ 1)2
− 1
]
pk−1 + 1− k − 1

2(n+ 1)
+

k − 1

(n+ 1)2

≥ 1− k − 1

2(n+ 1)
+

k − 1

(n+ 1)2
(1− pk)

≥ 1− k − 1

2(n+ 1)
.
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And so

n∑
k=1

kpk ≥
b 2n+3

3
c∑

k=1

kpk +
n∑

k=b 2n+3
3
c+1

(
k − k2 − k

2(n+ 1)

)

≥
n∑

k=b 2n+3
3
c+1

(
k − k2

2(n+ 1)

)
≥1

2
n2 − 2

9
n2 − 1

6
n2 +

4

81
n2 + o(n2)

Taking the limit and using equation 3.6

lim inf
n→∞

P(vv∗ ∈M) ≥ 1

4
+

1

4
− 1

9
− 1

12
+

2

81
=

107

324
.

And so, using equation 3.1, we finish with

lim inf
n→∞

E[|M |]
n

≥ 1

2
(1 +

107

324
) =

431

648
≈ 0.665.

To summarize, the competitive ratio of Random-Past-Greedy when restricted to this
family of graphs lies somewhere in the interval [0.665, 0.738]. The lower bound is quite far
from 1

2
, so we believe the competitive ratio of this algorithm for any graph to be bounded

away from 1
2
. Proving this algorithm’s competitivity is 1

2
+ ε for general graphs for some

ε > 0 is left as an open problem.
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Chapter 4

The Offline Model

In this section we again relax the adversarial model. We consider the offline model, where
the algorithm knows the input beforehand (both the graph and the order of arrival of vertices),
but still needs to be competitive upon the arrival of every vertex. We present an optimal
algorithm for this model, a lower bound of 0.526 for the competitivity of this algorithm and
find an upper bound on the hardness of this problem of

√
5+9
19
≈ 0.591.

4.1 Definition

To motivate the definition, suppose we have an algorithm for the adversarial model with
competitive ratio α. Let Gi be the graph induced by the first i arrived vertices, OPT(Gi)
the maximum size of the matching in Gi, and Mi the matching constructed so far by the
algorithm. Since the algorithm does not know the size of the input, for every i we must have

E[|Mi|]
OPT(Gi)

≥ α.

In the offline model, we will require an algorithm to do exactly the same, but drop the lack
of information assumption of the algorithm: It will know every move done by the adversary.

Definition 4.1 In the offline model, a randomised algorithm with competitive ratio α is
given a graph G = (V,E) and a permutation of its vertices π = v1, . . . , vn. It then has to
output a random matching M , with the restriction

E[|M ∩Gk|]
OPT(Gk)

≥ α ∀k = 1, . . . , n , (4.1)

where Gk = G[v1, . . . , vk] is the graph induced by the first k vertices of π.

Since we know an algorithm in the adversarial model with competitive ratio 1
2
, which is

simply the Greedy algorithm, this algorithm achieves the same competitive ratio in the
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offline model. We are interested in knowing if we can do better in this model.

Example Suppose the input is the following path of length three, where the labels of the
vertices indicate the order in the permutation:

e1

e2 e3

1 2

3 4

Figure 4.1: Input example.

Again, no deterministic algorithm can achieve a competitive ratio better than 1
2

on this
input. We want to find the best answer for this input, that is, we want to maximize α subject
to E[|M∩Gk|]

OPT(Gk)
≥ α for all k. Without loss of generality, an optimal algorithm always outputs

a maximal matching, since otherwise we can add edges to the matching output without
lowering the competitivity. Let p be the probability that the algorithm chooses the matching
{e1}, then, since there are no other maximal matchings, 1 − p is the probability that the
algorithm chooses {e2, e3}.

p

1− p 1− p
1 2

3 4

Figure 4.2: Probability of choosing each edge.

We can now write E[|M∩Gk|]
OPT(Gk)

≥ α for all k:

p ≥ α

p+ (1− p) ≥ α

p+ 2(1− p) ≥ 2α

Ignore the second inequality since it is implied by the first. We write the problem as an LP:

max α
s.t. p ≥ α

2− p ≥ 2α
0 ≤ p ≤ 1

Since the linear problem has two dimensions, the optimal solution will be a vertex in the
polytope defined by two restriction equalities. Because the Greedy algorithm achieves a
competitive ratio of 1

2
, we know that p ≥ α ≥ 1

2
> 0. If p = 1, we get α = 1

2
. Finally, if

0 6= p 6= 1, α is maximized when p = α and 2 − p = 2α. Solving this, we get p = 1
3

and
α = 2

3
, which is therefore optimal.

Hence, no algorithm can have a better competitive ratio than 2
3

for the offline matching
problem. We will improve this bound later in this chapter.
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4.2 An Optimal Algorithm

Generally, any on-line randomised algorithm for matching can be used to find a fractional
matching x with

∑
e∈E xe = E[|M |], where M is the random matching output by the al-

gorithm (see Lemma 2.1). In this model, the converse is true, as shown by the following
lemma.

Lemma 4.2 In the offline model, any deterministic algorithm that finds a fractional match-
ing satisfying equation 4.1 can be turned into a randomised algorithm without changing the
competitive ratio.

Proof. Let x be the fractional matching output by the algorithm. Then x is a convex
combination of integral matchings x =

∑
λiχ(Mi). We get a randomised algorithm as

follows: Define the random variable M to be the matching Mi with probability λi, then for
any k

E[|M ∩Gk|] =
∑

λi|Mi ∩Gk| =
∑
e∈Gk

xe ≥ αOPT(Gk)

so this randomised algorithm has the same competitive ratio.

We can thus restrict ourselves to finding a fractional matching x such that
∑

e∈Gk
xe ≥

αOPT(Gk) for all k. Remember that since the graph is bipartite, the matching polytope
is given by {(xe)e∈E|xe ∈ [0, 1] ∀e ∈ E,

∑
e∈δ(v) xe ≤ 1 ∀v ∈ V }. Therefore, an optimal

algorithm for the problem is:

Algorithm 9

Compute OPT(Gk) for k = 1, . . . , n.
Solve the following LP:

max α
s.t.

∑
e∈Gk

xe ≥ OPT(Gk)α ∀k = 1, . . . , |V |∑
e∈δ(v) xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

Decompose the solution x of the previous LP as a convex combination of matchings x =∑
λiχ(Mi).

return the matching Mi with probability λi.

The correctness and optimality follow from Lemma 4.2. The above algorithm is polyno-
mial, since decomposing a fractional matching into a convex combination of integral match-
ings can be done in polynomial time [10, Theorem 6.5.11].
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Despite knowing the algorithm is optimal, we do not know its competitivity. Because the
Greedy algorithm achieves a competitive ratio of 1

2
, so does the optimal algorithm. Thanks

to an unpublished paper of Wang and Wong [19, see also [20]] , we can slightly improve this
to 0.526. Wang and Wong present an algorithm for on-line fractional matching in bipartite
graphs with a competitivity of 0.526. This result holds in an adversarial model where vertices
can arrive from either side of the graph. This model is stronger than our offline model, due
to Lemma 4.2. We use this fact in the following proof.

Corollary 4.3 The optimal algorithm achieves a competitivity of 0.526.

Proof. We can simulate the vertices arriving on-line and use Wang and Wong’s algorithm
to find a fractional matching (xe)e∈E. This fractional matching can then be rounded as in
Lemma 4.2, so this algorithm achieves a competitivity of 0.526 as well. The competitive ratio
of the optimal algorithm is greater or equal than the competitive ratio of any other, which
completes the proof.

4.3 Upper Bound

We are interested in finding a tight competitivity bound for the optimal algorithm. We
do not believe 0.526 is a tight bound. In this section we present an upper bound of

√
5+9
19

on the competitive ratio of the optimal algorithm for the offline model. For this, we define
an input and bound the solution of the LP defined previously. Before that, we prove two
lemmas which give us properties one can assume about a worst-case input.

Lemma 4.4 For the purpose of analyzing the competitive ratio of an algorithm for the offline
model, one can assume without loss of generality that the input for this problem is such that
OPT(Gk) = k

2
for even k.

Proof. Let π = v1, v2, . . . , vn be the permutation in the input and suppose π does not satisfy
the lemma. Let k be the first even number such that OPT(Gk) < k

2
. Then necessarily

OPT(Gk) = k
2
−1. We proceed inductively on k. Define i as the first index when OPT(Gi) =

k
2
. Let Mk be an optimal matching in Gk. Since OPT(Gk) < OPT(Gi), there exists an

augmenting path in Gi for Mk. Let u and v be the endpoints of this augmenting path.
Change π by inserting u and v right after vk−2. If there exists a fractional matching x which
achieves a competitivity of α on the new permutation, then x also achieves it on the old
permutation as well, so this only makes the input harder.

After repeating this enough times, one is left with a permutation π′ = v′1, v
′
2, . . . , v

′
n with

OPT(Gk) = k
2

except for the last vertices where the size of the optimum matching does

not increase. Let k′ be te last even number such that OPT(Gk′) = k′

2
. Then, for k > k′

the inequality E[|M ∩ Gk|] ≥ αOPT(Gk) =OPT(G′k) is already implied by the inequality
E[|M ∩Gk′ |] ≥ αOPT(Gk′) = k′

2
, so the algorithm can ignore the vertices after vk′ .

With the previous lemma, the following algorithm has the same competitivity as the
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optimal algorithm for the offline model.

Algorithm 10

Change the permutation of the vertices as in Lemma 4.4.
Solve the following LP:

max α
s.t.

∑
e∈Gk

xe ≥ k
2
α ∀k = 2, 4, . . . , n∑

e∈δ(v) xe ≤ 1 ∀v ∈ V
xe ≥ 0 ∀e ∈ E

Decompose the solution x of the previous LP as a convex combination of matchings x =∑
λiχ(Mi).

return the matching Mi with probability λi.

Since finding an augmenting path for a matching can be done in polynomial time, changing
the permutation as in Lemma 4.4 can be done in polynomial time, so the above algorithm
is still polynomial. While this algorithm has the same competitive ratio as the optimal
algorithm presented before, it will usually give worse solutions. This is because Lemma 4.4
changes the input for a harder input, by changing and ignoring some of it. The algorithm
only helps for theoretical analysis.

The next lemma tells us that we can take a worst-case input graph which is somewhat
sparse. In fact, the worst example we know so far, which we will present later, is a tree.

Lemma 4.5 Let e be an edge of the graph and (Mi)
n
i=1 matchings such that Mi ⊆ E(Gi)

and OPT(Gi) = |Mi|. For the purpose of analyzing the competitive ratio of an algorithm for
the offline model, one can assume without loss of generality that there exists an i such that
e ∈Mi.

Proof. If e is not in any Mi, remove e from the graph.

The previous lemmas tell us something about the structure of the worst case input for
this problem, which inspired the following upper bound for the hardness in the offline model.

Theorem 4.6 No algorithm for the offline model achieves a competitivity greater than√
5+9
19
≈ 0.591.

Proof. We will inductively build a family of inputs (Ik)k∈N. In general, the graph in Ik will
have 4k vertices. Figure ?? shows I1, I2 and I3, with vertices labelled by their arrival order.

In general, for k ≥ 3, we build Ik+1 from Ik by adding 4 new vertices. This is specified in
Figure 4.6, with vertices again labelled by the order in which they arrive:

An easy way to understand this input is noting that each graph has a perfect matching.
We then add four more edges which generate two alternating paths of size three. So this
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Figure 4.5: I3.
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Figure 4.6: Ik → Ik+1.
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graph and vertex ordering satisfies that, for even i, OPT(Gi) = i
2
, as in Lemma 4.4.

Fix k ∈ N. Let v1, v2, . . . , v4k be the vertices in their arrival order. To upper bound the
solution of the LP of the optimal algorithm for Ik, we will find a feasible solution of the dual
LP. For a vertex vi, define tvi = b i

2
c. If we imagine the vertices arriving in pairs such that

every time a pair arrives the optimal matching increases by one, tvi is exactly the time of
the pair in which vertex vi arrives. After changing variables and normalizing, the dual LP is
equivalent to

min
∑

v∈V yv
s.t. yvi + yvj ≥ wmax{tvi ,tvj } ∀e = vivj ∈ E∑2k

i=1wi ≥ 1
w1 ≥ w2 ≥ . . . ≥ w2k ≥ 0
yv ≥ 0 ∀v ∈ V.

Figure 4.7 should give a good mental picture of this problem. Vertices are labelled by
their arrival order and an edge vivj is labelled with wmax{tvi ,tvj }.

Note that any optimal solution of this LP satisfies
∑2k

i=1wi = 1, because otherwise we can

divide all variables by
∑2k

i=1wi and obtain a smaller solution. With that in mind, we first
propose a feasible solution which we will normalize later. Let fi be the ith Fibonacci number
with the usual convention f0 = 0 and f1 = 1 and take

yv4(k−i)
= yv4(k−i)−2

= fi ∀i = 0, . . . , k − 2

yv4 = yv3 = fk−1
yv1 = yv2 = fk
yvi = 0 otherwise.

And

w2(k−i) = w2(k−i)−1 = fi+2 ∀i = 0, . . . , 2k − 2
w2 = fk+1

w1 = 2fk

We show these values on the graph in Figure 4.8.

Let us see if this is feasible. The variables wi are decreasing and their sum is greater than
1, because w2k = 1. Checking the edge restrictions is easy, using that fi + fi+1 = fi+2 and
Figure 4.8, one sees that all edge restrictions are satisfied with equality.

Using that
∑n

i=0 fi = fn+2 − 1, which is a classical induction exercise, we can calculate∑
v∈V yv:

∑
v∈V

yv = 2
k∑
i=0

fi = 2fk+2 − 2.
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Figure 4.7: A visualization of the
variables of the dual LP.
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Figure 4.8: Feasible solution for the
dual LP.
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Next we normalize this feasible solution by defining S =
∑2k

i=1wi and

ŷv =
yv
S
.

ŵi =
wi
S
.

The pair (ŷ, ŵ) is still feasible, as commented above. Let us calculate S:

S =
2k∑
i=1

wi = 2fk + fk+1 +
k∑
i=2

fi = fk + fk+2 + 2(fk+2 − 2) = 3fk+2 + fk − 4.

Therefore, ∑
v∈V

ŷv =

∑
v∈V yv

S
=

2fk+2 − 2

3fk+2 + fk − 4
.

We can calculate the limit using that fk = φk−(−φ)−k
√
5

, where φ is the golden ratio:

lim
n→∞

∑
v∈V

ŷv = lim
k→∞

2fk+2 − 2

3fk+2 + fk − 4
=

φ2

φ2 + φ+ 1
=

√
5 + 9

19
.

Therefore the competitivity of the optimal algorithm can not be greater than
√
5+9
19

.

Since the on-line fractional matching model studied by Wang and Wong is stronger than
the offline model studied by us, we get the following corollaries.

Corollary 4.7 No algorithm achieves a competitivity greater than
√
5+9
19
≈ 0.591 in the on-

line fractional matching model.

The adversarial model studied by us is also stronger (see Corollary 1.26), so this upper
bound carries over to the adversarial model.

Corollary 4.8 No algorithm achieves a competitivity greater than
√
5+9
19
≈ 0.591 in the

adversarial model.

Previously the best upper bound known for both the adversarial model and the on-line
fractional matching model was 0.6252 [19]. There still is a big gap between 0.526 and 0.591.
Improving these bounds and hopefully determining tight bounds is left as an open problem.
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Conclusion

Most algorithms studied in the framework of online matching fall in the category of what
we defined as local algorithms. Discarding this family of algorithms for the adversarial model
means that we have to do something different to beat the 1

2
-barrier. From the proof itself

we can gather that no algorithm should actually perform too well on an instance. That is,
for any algorithm E[|M |]

OPT(I)
should be bounded away from 1. This suggests that the probability

of matching an arrived vertex should depend on E(|M |) and OPT(I) and that an algorithm
might have to keep track of these variables.

We had two main motivation for studying the random order model. One was its rela-
tionship with the adversarial model. In that regard, we find that the random order model
is substantially easier than even the offline model. We find that the Shuffle algorithm is at
least 0.696-competitive in this model, while our best upper bound for the adversarial model
is about 0.591. The proof links the Shuffle and both versions of the Ranking algorithms: the
one used in general graphs and the one used in online bipartite matching. This gives a new
insight to the Ranking algorithm when applied to bipartite graphs: The matching output
only depends on the order amongst the vertices of each side. Our other motivation was that
we consider the unknown distribution model a good model for applications. Our results show
that the Shuffle algorithm is at least 0.696-competitive in the unknown distribution model
as well.

We beat the 1
2
-barrier in the offline model, showing that the optimal algorithm is at least

0.526-competitive. The hardness of the offline model shows how much power the adversary
has now: Even if we have access beforehand to the adversary’s moves, our competitivity is
bounded by at least 0.591. In other words, the hardness does not come from the lack of
information of the graph and its arrival sequence, but rather from the fact that we must be
competitive at every step. This is the best upper bound for the adversarial model at the time
of writing this: The previous best upper bound was approximately 0.625 [19].

The main open problem is if an algorithm exists with competitivity greater than 1
2

for
the adversarial model. Algorithms studied so far in this subject have been local algorithms,
inspired by the Ranking and Greedy algorithms. But this paradigm needs to be broken if
we want to design an algorithm with competitivity greater than 1

2
for this model. It would

be extremely interesting if no algorithm with competitivity greater than 1
2

exists - especially
because there exists one for the fractional matching model. If this happens to be the case, it
would be interesting to pinpoint why one can be done while the other one cannot and apply
this to other problems. It is also still open if the dual problem, online vertex cover, admits
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an algorithm with competitivity smaller than 2 if the algorithm does not know to which side
of the bipartite graph each arriving vertex belongs to.

In the random order model, we believe there is much room for improvement. Sampling
techniques could be used so that the algorithm could learn about the general structure of the
graph and apply this information to future arrivals. This also holds for the random order
model with one fixed side. The random order model studied by us should be weaker, yet
the best algorithm known for both models has the same competitive ratio on both. So our
result suggests there is even more improvement available for the random order model with
one fixed side.

We conjecture that the competitive ratio of the Shuffle algorithm is greater than 1
2

for
general graphs. So far, no algorithm with competitive ratio greater than 1

2
exists for the

random order model in general graphs, so proving this conjecture would effectively prove
that one can break the 1

2
-barrier in the random order model as well.

A very interesting problem is left open for the offline model: What is the tight competitive
ratio of the optimal algorithm for the offline model? We only know it lies somewhere in the
interval [0.526, 0.591]. A good interpretation of the dual problem used in the proof of Theorem
4.6 might help, as it could help design a primal-dual algorithm.

Further models which could be studied are the known distribution model, also called the
stochastic model, which has already been studied in the case where one side is fixed [7].
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