

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MECÁNICA

ANÁLISIS Y COMPARACIÓN DE CICLOS TERMODINÁMICOS PARA LA GENERACIÓN DE POTENCIA A PARTIR DE RECURSOS GEOTERMALES DE MEDIA Y ALTA ENTALPÍA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO

JOSÉ GUSTAVO MATAMALA AVILÉS

PROFESOR GUÍA

ALVARO VALENCIA MUSALEM

MIEMBROS DE LA COMISIÓN

DIEGO MORATA CESPEDES

WILLIAMS CALDERÓN MUÑOZ

SANTIAGO DE CHILE

2014

RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO. POR: JOSÉ GUSTAVO MATAMALA AVILÉS FECHA: 22/09/2014 PROF. GUÍA: ALVARO VALENCIA MUSALEM.

ANÁLISIS Y COMPARACIÓN DE CICLOS TERMODINÁMICOS PARA LA GENERACIÓN DE POTENCIA A PARTIR DE RECURSOS GEOTERMALES DE MEDIA Y ALTA ENTALPÍA

El aumento progresivo en los costos de producción de electricidad en nuestro país, sumado al déficit que se prevé que este insumo presentará considerando el crecimiento gradual de su demanda frente a la cobertura actual de su oferta, se debe, entre otras variables, a la exigua diversificación de nuestra matriz energética frente a las alternativas de generación tradicionales; termoelectricidad e hidroelectricidad. Ante este escenario, es menester el desarrollo de nuevas tecnologías para la producción de electricidad, a partir de fuentes nacionales, con costos competitivos, de fácil acceso, y con poco impacto en el medio ambiente.

Mediante el presente Trabajo de Título, se busca dar solución a esta necesidad, brindando sustento teórico a la termodinámica implicada en la transformación energética comprendida en el uso de recursos geotermales. A partir de la programación de cuatro configuraciones de ciclo orientadas a la generación eléctrica con sistemas geotermales hidrotermales; ciclo de utilización directa, ciclo de una etapa de expansión súbita, ciclo de doble expansión súbita y ciclo binario, y utilizando diferentes temperaturas del geofluido para distintas condiciones de presión de entrada, se obtuvieron resultados que permitieron realizar un análisis completo a cada uno de los ciclos modelados, para luego comparar, mediante la fabricación de diagramas, los desempeños según potencia máxima generada y eficiencia térmica lograda, con el fin de recomendar alguna configuración para un recurso geotermal en particular. Se empleó en estas modelaciones agua pura como fluido geotérmico, una curva de producción del pozo obtenida de la bibliografía y una temperatura de condensación de 40 [°C].

Se encontró que la temperatura del yacimiento, con el nivel de potencia generado y la eficiencia térmica se relacionaban de forma directa. De manera similar, la presión de entrada determina el flujo másico de geofluido participante, y aumenta levemente el trabajo específico desarrollado en la turbina. Entre las configuraciones que presentaron mejor desempeño, se observó notoria jerarquía de las centrales de vapor seco frente a sus contendientes de alta entalpia; los ciclos de una y dos etapas de expansión súbita. En el rango de baja entalpia, predominó el isobutano como el fluido de trabajo que presentó mayores potencias, mientras que las eficiencias térmicas mayores se distribuyeron entre los cuatro fluidos en estudio. Las centrales de doble expansión súbita, obtuvieron en promedio un 26% más potencia que su símil de una etapa de expansión, mientras que en términos de eficiencia, las superaban en un 2%. En cuanto al uso de agua pura como fluido geotérmico, se determinó que el decrecimiento en la entalpia calculada era cercana al 0,8% para cada 1% de sal en el geofluido, lo que se extrapoló a los valores de potencia obtenidos.

"Happiness Is Only Real When Shared"

AGRADECIMIENTOS

Habiendo terminado mi Trabajo de Titulo, y ad portas de comenzar una etapa llena de nuevos y desconocidos desafíos, me es imposible no rememorar aquellos importantes procesos de los que he sido protagonista a lo largo de mi vida, y a aquellas personas que fueron testigos y participantes directos o indirectos en cada uno de ellos.

Eternas gracias a mis padres, Jonás y Verónica por su amor infinito, su compañía constante, su fiel e inquebrantable confianza, su aliento siempre esperanzador, y su auxilio incondicional. Especiales gracias a aquel que forma parte de mí, que me permite hoy cumplir este objetivo e ir en búsqueda de muchos más. Aquel que con su gesto de enorme amor, me enseñó a nunca bajar los brazos, me enseñó a luchar.

Gracias a mis hermanos por su compañía, su firme apoyo, por cada palabra, alegría y llanto que hemos compartido, y por todos esos besos y abrazos que me han regalado.

Gracias a los miembros de la comisión de este Trabajo por la confianza depositada en mi cuando les sugerí este tema. Al profesor Álvaro Valencia, por su siempre buena disposición, su ayuda, guía y orientación en cada momento a lo largo de la redacción de esta memoria. Al profesor Diego Morata por aceptarme como memorista siendo de otro Departamento y sin siquiera conocerme, por sus consejos, enseñanzas, y por su confianza. Al profesor Williams Calderón por sus recomendaciones y su asesoría, su apoyo y sus enseñanzas.

Gracias a mis amigos y compañeros de universidad, desde los primeros a los últimos. A los que aún conservo desde el colegio, a los de la sección dos que conocí en primer año, y a aquellos con los que me encontré en mi estadía en el departamento de Ingeniería Mecánica. Agradecimientos especiales para los 4Real, compañeros de tantas jornadas de estudio y de dispersión, aquellos con quienes era posible abstraerse por un momento de los malos ratos, y con quienes compartí muchas sonrisas.

Finalmente y de forma muy especial a Camila, por ser la más fiel de las compañeras, la mejor de mis amigas, la persona que mejor me conoce, por ser mi confidente, la principal receptora de mis risas, y la que más veces ha secado mis lágrimas. Por su enorme amor, sus regaloneos y cuidados, por siempre hacerme reír. Por ser una luchadora, y enseñarme también a serlo. Por ser una súper mujer. Porque compartir experiencias contigo es de lo que me alimento. Y porque quiero seguir dándote mi amor.

TABLA DE CONTENIDO

1. INTRODUC	CIÓN	1
1.1. Moti	vación	1
1.2. Obje	tivos	
1.2.1.	Objetivo General	2
1.2.2.	Objetivos Específicos	2
1.3. Alca	nces y Limitaciones	
2. ANTECEDE	NTES	4
2.1. Ante	cedentes Generales	4
2.1.1.	Origen del Recurso Geotérmico	4
2.1.2.	Sistemas Geotérmicos	6
2.1.3.	Estado del Arte de la Energía Geotérmica en Chile	8
2.1.4.	Costos en Energía Geotérmica	10
2.1.5.	Sistemas Termodinámicos para el Aprovechamiento de Fuentes Geotérmi	icas13
2.2. Cent	rales de Potencia de Vapor Seco	
2.2.1.	Sistema de Conversión Energética	19
2.2.2.	Termodinámica del Proceso de Conversión	20
2.2.3.	Lista de Equipos para centrales de Utilización Directa	26
2.3. Cent	rales de Expansión Súbita	
2.3.1.	Sistema de Conversión Energética	28
2.3.2.	Termodinámica del Proceso de Conversión	
2.3.3.	Lista de Equipos para centrales de Expansión Súbita	
2.4. Cent	rales de Doble Expansión Súbita	
2.4.1.	Sistema de Conversión Energética	34
2.4.2.	Termodinámica del Proceso de Conversión	36
2.4.3.	Lista de Equipos para centrales de Doble Expansión Súbita	40
2.5. Cent	rales de Ciclo Binario	41
2.5.1.	Sistemas Binarios Básicos	41

	2.5.2.	Termodinámica del Proceso de Conversión	43
	2.5.3.	Fluidos de Trabajo	47
	2.5.4.	Lista de Equipos para Centrales Binarias	48
3. AN	JALISIS EN	VERGÉTICOS DE PLANTAS GEOTÉRMICAS	. 50
	3.1. Metod	lología general de resolución mediante software EES	. 50
	3.1.1.	Ingreso de Funciones y Conformación de un Código	50
	3.1.2.	Criterios de Detención y Métodos de Optimización	51
	3.2. Centra	ales de Vapor Seco	. 52
	3.2.1.	Datos de Entrada, Supuestos y Metodología	52
	3.2.2.	Resultados	54
	3.3. Centra	ales de Expansión Súbita	59
	3.3.1.	Datos de Entrada, Supuestos y Metodología	59
	3.3.2.	Resultados	61
	3.4. Centra	ales de Doble Expansión Súbita	. 66
	3.4.1.	Datos de Entrada, Supuestos y Metodología	66
	3.4.2.	Resultados	68
	3.5. Centra	ales de Ciclo Binario	75
	3.5.1.	Datos de Entrada, Supuestos y Metodología	75
	3.5.2.	Resultados	77
4. AN	NÁLISIS Y I	DISCUSIÓN DE RESULTADOS	. 87
	4.1. Centra	ales de Vapor Seco	87
	4.2. Centra	ales de Expansión Súbita	89
	4.3. Centra	ales de Doble Expansión Súbita	. 90
	4.4. Centra	ales de Ciclo Binario	92
	4.4.1.	Comportamiento General del Ciclo	92
	4.4.2.	Influencia de los Fluidos de Trabajo	93
	4.5. Valida	ación de Resultados Obtenidos	. 94
	4.6. Influe	ncia de la selección de agua como fluido geotérmico	99

	4.6.1.	Química de Geo fluidos	99
	4.6.2.	Interacciones Químicas Importantes en el Diseño de una Central Geotérmica	.100
	4.6.3.	Sensibilidad de los Resultados Obtenidos	.101
4.	7. Influer	ncia de la Temperatura de Condensación	103
5. CONS	STRUCC	IÓN DE DIAGRAMAS GENERALES DE PERFORMANCE	105
5.	1. Supue	stos Generales	105
5.	2. Metod	ología de construcción de los diagramas	105
5.	3. Presen	tación de los Diagramas de Performance	106
6. CONC	CLUSION	NES GENERALES	110
7. BIBLI	IOGRAF	ÍA	112

ÍNDICE DE FIGURAS

FIGURA 2-1: ESQUEMATIZACIÓN DE LAS CAPAS GEOLÓGICAS DE LA TIERRA [1]	5
FIGURA 2-2: MAPA MUNDIAL CON LAS PLACAS TECTÓNICAS. DEMARCADO EN COLOR ROJO, EL	
ANILLO DE FUEGO DEL PACIFICO.[2]	6
FIGURA 2-3: SISTEMA GEOTÉRMICO ESTÁNDAR [3]	7
FIGURA 2-4: MAPA DEL POTENCIAL GEOTÉRMICO DE CHILE [6]	9
FIGURA 2-5: DESCRIPCIÓN DEL MODELO DE COSTO NIVELADO DE ENERGÍA [8]	11
FIGURA 2-6: COSTO NIVELADO DE LA ENERGIA, AÑO 2011. PRECIOS EN US\$ [8]	12
FIGURA 2-7: COSTO NIVELADO DE LA ENERGIA, AÑO 2030. PRECIOS EN US\$ [8]	12
FIGURA 2-8: SISTEMA DE CONVERSIÓN DIRECTA [9]	14
FIGURA 2-9: SISTEMA DE CONVERSIÓN POR EVAPORACIÓN SÚBITA DE UNA ETAPA [9]	14
FIGURA 2-10: SISTEMA DE EXPANSIÓN SÚBITA EN DOS ETAPAS [9]	16
FIGURA 2-11: SISTEMA BINARIO, CICLO RANKINE [9]	16
FIGURA 2-12: CICLO KALINA CON COMPOSICION VARABLE DE H2O Y NH3. [10]	18
FIGURA 2-13: SISTEMA DE CONVERSIÓN DIRECTA PARA CENTRALES DE VAPOR SECO. FUENTE:	
Elaboración Propia basada en [10]	19
FIGURA 2-14: DIAGRAMA T-S DE UNA CENTRAL DE VAPOR SECO. FUENTE: Elaboración Propia	20
FIGURA 2-15: ESQUEMA SIMPLIFICADO DE UNA TURBINA A VAPOR.	21
FIGURA 2-16: ESQUEMA SIMPLIFICADO DE UN CONDENSADOR DE SUPERFICIE	23
FIGURA 2-17: ESQUEMA SIMPLIFICADO DE UNA TORRE DE ENFRIAMIENTO DE TIRO INDUCIDO	24
FIGURA 2-18: ESQUEMA SIMPLIFICADO DE UNA BOMBA	25
FIGURA 2-19: FLUJOS ENERGÉTICOS EN UNA CENTRAL GEOTERMAL [12]	26
FIGURA 2-20: ESQUEMA SIMPLIFICADO DE UNA CENTRAL DE EXPANSIÓN SÚBITA. FUENTE:	
Elaboración Propia basada en [10]	28
FIGURA 2-21: DIAGRAMA T-S, DE UNA CENTRAL DE EXPANSIÓN SÚBITA. FUENTE: Elaboración	
Propia	29
FIGURA 2-22: ESQUEMA SIMPLIFICADO DE UN EQUIPO DE EXPANSIÓN SÚBITA CON SEPARADOR	٤
DE FASES. FUENTE: Elaboración Propia	30
FIGURA 2-23: ESQUEMA SIMPLIFICADO DE UNA CENTRAL DE DOBLE EXPANSIÓN SÚBITA. SE	
SUPRIME EL SISTEMA DE ENFRIAMIENTO POR TORRE, POR MOTIVOS DE ESPACIO. FUENTE:	
Elaboración Propia basada en [10]	35
FIGURA 2-24: DIAGRAMA T-S, DE UNA CENTRAL DE DOBLE EXPANSIÓN SÚBITA. <i>FUENTE:</i>	
Elaboración Propia	36
FIGURA 2-25: ESQUEMA SIMPLIFICADO DE UNA CENTRAL DE CICLO BINARIO. EN ROJO SE	
MUESTRA EL CICLO PRIMARIO DEL FLUIDO GEOTÉRMICO, Y EN AZUL EL SECUNDARIO DEL	
FLUIDO DE TRABAJO Y LA GENERACIÓN DE POTENCIA. FUENTE: Elaboración Propia basada en [10].	.42
FIGURA 2-26: DIAGRAMA P-H PARA UNA PLANTA BINARIA BÁSICA. FUENTE: Elaboración Propia	43
FIGURA 2-27: EVAPORADOR Y PRECALENTADOR EN UNA PLANTA DE CICLO BINARIO. EL COLO	R
ROJO REPRESENTA EL CICLO PRIMARIO DEL FLUIDO GEOTERMAL (FG) Y EL COLOR AZUL AL	
CICLO SECUNDARIO, DEL FLUIDO DE TRABAJO (FT). FUENTE: Elaboración Propia	45
FIGURA 2-28: DIAGRAMA TEMPERATURA- CALOR TRANSFERIDO PARA EL PRECALENTADOR Y I	EL
EVAPORADOR, EN UNA PLANTA DE CICLO BINARIO SIMPLE. FUENTE: Elaboración Propia basada en	l
[10]	45
FIGURA 3-1: EJEMPLO INGRESO DE FUNCIONES PARA LA OBTENCIÓN DE PROPIEDADES	
TERMODINÁMICAS EN EES. FUENTE: Elaboración Propia	50
FIGURA 3-2: CONFIGURACIÓN DE ESTUDIO, CICLO DE VAPOR SECO. FUENTE: Elaboración Propia	
basada en [10]	52
FIGURA 3-3: CURVA DE PRODUCCIÓN PARA UN POZO GEOTÉRMICO [10]	53

FIGURA 3-4: POTENCIA NETA EN CENTRALES DE VAPOR SECO 55
FIGURA 3-5: PRESIÓN DE ENTRADA AL CICLO ÓPTIMA PARA GENERAR LA POTENCIA MÁXIMA
PARA CADA TEMPERATURA EN ESTUDIO
FICURA 3.6: DIAGRAMA T S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA. CON
FIGURA 3-0. DIAGRAMIA 1-5 CORRESPONDIENTE A LA MAXIMA GENERACIÓN DE FOTENCIA, CON $T1 = 225 [^{\circ}C]$ $D1 = 9.16 [hgr]$ CUDVA DE DOODUCCIÓN m1 V $T_{0} = 40 [^{\circ}C]$ 56
I I = 525 [C], PI = 0.10 [DUI], CURVA DE FRODUCCIÓN IUI I I C = 40 [C]
FIGURA 3-7: EFICIENCIA TERMICA EN CENTRALES DE VAPOR SECO.
FIGURA 3-8: PRESIONES Y EFICIENCIAS TERMICAS MAXIMAS, PARA CADA TEMPERATURA EN
ESTUDIO EN CENTRALES DE VAPOR SECO
FIGURA 3-9: DIAGRAMA T-S CORRESPONDIENTE A LA MAXIMA GENERACION DE POTENCIA, CON
T1 = 325 [°C], P1 = 17,49 [bar], CURVA DE PRODUCCION m1 Y Tc = 40 [°C]
FIGURA 3-10: CONFIGURACIÓN DE ESTUDIO, PLANTA DE EXPANSIÓN SÚBITA. FUENTE: Elaboración
Propia basada en [10]60
FIGURA 3-11: POTENCIA NETA EN CENTRALES DE EXPANSIÓN SÚBITA
FIGURA 3-12: PRESIÓN BOCA DE POZO Y PRESIÓN DEL SEPARADOR, PARA GENERAR LA POTENCIA
MÁXIMA SEGÚN CADA TEMPERATURA EN ESTUDIO EN CENTRALES DE EXPANSIÓN SÚBITA63
FIGURA 3-13: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA, CON
T1 = 325 [°C], P1 = 120,5 [bar], Psep = 7,078[bar] CURVA DE PRODUCCIÓN m1 Y Tc = 40 [°C]
FIGURA 3-14: EFICIENCIA TÉRMICA, CENTRALES DE EXPANSIÓN SÚBITA
FIGURA 3-15: PRESIÓN DEL SEPARADOR, CENTRALES DE EXPANSIÓN SÚBITA
FIGURA 3-16: CONFIGURACIÓN DE ESTUDIO PLANTA DE DOBLE EXPANSIÓN SÚBITA <i>FUENTE</i>
Flaboración Propia hasada en [10]
EICUDA 3 17 : CONDICIONES DADA LA MAXIMIZACIÓN DE LA DOTENCIA EN MODELACIÓN DE
CICLO TEDMODINIÁMICO DE DODI E EVDANSIÓN SÚDITA
CICLO TERMODINAMICO DE DOBLE EAFANSION SUBITA.
FIGURA 3-10; POTENCIA NETA EN CENTRALES DE DODLE EAPANSION SUBITA
FIGURA 3-19: PRESION BUCA DE POZO, PRESION DEL SEPARADOR DE FASES, Y PRESION DEL
EXPANSOR, PARA GENERAR LA POTENCIA MAXIMA PARA CADA TEMPERATURA EN ESTUDIO EN
CENTRALES DE DOBLE EXPANSION SUBITA
FIGURA 3-20: DIAGRAMA T-S CORRESPONDIENTE A LA MAXIMA GENERACION DE POTENCIA, CON
T1 = 325 [°C], P1 = 120,5 [bar], Psep = 8 [bar], Pexp = 1,08 [bar], CURVA DE PRODUCCION m1 Y Tc =
40 [° <i>C</i>]
FIGURA 3-21: EFICIENCIA TÉRMICA, CENTRALES DE DOBLE EXPANSIÓN SÚBITA71
FIGURA 3-22: EFICIENCIAS TÉRMICAS MÁXIMAS, Y SUS RESPECTIVAS PRESIONES DE INFLUENCIA
EN EL CICLO, PARA CENTRALES DE DOBLE EXPANSIÓN SÚBITA,
FIGURA 3-23: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA EFICIENCIA TÉRMICA, CON T1 =
325 [°C], P1 = 120,5 [bar], Psep = 17 [bar], Pexp = 1,85 [bar], CURVA DE PRODUCCIÓN m1 Y Tc =
40 [° <i>C</i>]
FIGURA 3-24: PRESIÓN DEL SEPARADOR, CENTRALES DE DOBLE EXPANSIÓN SÚBITA
FIGURA 3-25: PRESIÓN DEL EXPANSOR, CENTRALES DE DOBLE EXPANSIÓN SÚBITA
FIGURA 3-26: CONFIGURACIÓN DE ESTUDIO PLANTA DE CICLO BINARIO <i>FUENTE: Elaboración</i>
Propia hasada en [10]
FICURA 3-27. POTENCIA NETA EN CENTRALES DE CICLO BINARIO USANDO ISOBUTANO COMO
EL LIDO DE TRARAIO
FLUIDO DE INADAJO
FIGURA 3-20; FUTENCIA NETA EN CENTRALES DE CICLO BINARIO, USANDO BUTANO COMO
FLUIDU DE IKABAJU
FIGURA 3-29: PUTENCIA NETA EN CENTRALES DE CICLU BINARIO, USANDO RTI4 COMO FLUIDO
DE IKABAJU
FIGURA 3-30: POTENCIA NETA EN CENTRALES DE CICLO BINARIO, USANDO PENTANO COMO
FLUIDO DE TRABAJO

FIGURA 3-31: PRESIÓN DE ENTRADA AL PRIMARIO Y TEMPERATURAS DEL GEOFLUIDO PARA	
GENERAR LA POTENCIA MÁXIMA EN CENTRALES DE CICLO BINARIO, CON ISOBUTANO COMO)
FLUJO DE TRABAJO	81
FIGURA 3-32: PRESIÓN DE ENTRADA AL PRIMARIO Y TEMPERATURAS DEL GEOFLUIDO PARA	
GENERAR LA POTENCIA MÁXIMA EN CENTRALES DE CICLO BINARIO, CON BUTANO COMO FLU	UJO
DE TRABAJO	81
FIGURA 3-33: PRESIÓN DE ENTRADA AL PRIMARIO Y TEMPERATURAS DEL GEOFLUIDO PARA	
GENERAR LA POTENCIA MÁXIMA EN CENTRALES DE CICLO BINARIO, CON R114 COMO FLUJO	DE
TRABAJO.	82
FIGURA 3-34: PRESIÓN DE ENTRADA AL PRIMARIO Y TEMPERATURAS DEL GEOFLUIDO PARA	
GENERAR LA POTENCIA MÁXIMA EN CENTRALES DE CICLO BINARIO, CON PENTANO COMO FI	LUJO
DE TRABAJO	82
FIGURA 3-35: DIAGRAMA P-H CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA,	CON
T1 = 150 [°C], P1 = 7,7 [bar], CURVA DE PRODUCCIÓN m1, Tc = 40 [°C], E ISOBUTANO COMO	
FLUIDO DE TRABAJO.	83
FIGURA 3-36: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA,	CON
$T1 = 150 [^{\circ}C], P1 = 7,7 [bar], CURVA DE PRODUCCIÓN m1, Tc = 40 [^{\circ}C], E ISOBUTANO COMO$	
FLUIDO DE TRABAJO	83
FIGURA 3-37: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON ISOBUTANO COM	0
FLUIDO DE TRABAJO.	84
FIGURA 3-38: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON BUTANO COMO	
FLUIDO DE TRABAJO.	84
FIGURA 3-39: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON R114 COMO FLUID	00
DE TRABAJO	85
FIGURA 3-40: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON PENTANO COMO	
FLUIDO DE TRABAJO.	85
FIGURA 4-1: TRABAJO ESPECÍFICO (IZQ.) Y FLUJO MÁSICO (DER.) DE UNA CENTRAL DE	
UTILIZACIÓN DIRECTA, PARA $T1 = 325 [°C]$	88
FIGURA 4-2: POTENCIA DE UNA CENTRAL DE UTILIZACIÓN DIRECTA, PARA T1 = 325 [°C]	88
FIGURA 4-3: VARIABLES PARA LA OBTENCIÓN DE LA PRESIÓN ÓPTIMA DEL SEPARADOR	90
FIGURA 4-4: CAMBIO EN LA ENTALPÍA DEL GEOFLUIDO PARA UNA EXPANSIÓN ISOENTRÓPICA	ΑA
0,0117 [BAR]. [21]	101
FIGURA 4-5: VARIACIÓN DE LAS CURVAS DE PRODUCCIÓN RESPECTO A LA SALINIDAD DEL	
FLUIDO GEOTERMAL.[21]	102
FIGURA 4-6: EFECTO DE LA SALINIDAD EN LA ENERGÍA DISPONIBLE EN UN POZO POR UNIDAI) DE
ÁREA. [21]	103
FIGURA 5-1: HOJA DE DATOS OBTENIDA DESPUÉS DE INGRESAR LOS DATOS OBTENIDOS EN LO	OS
BALANCES ENERGÉTICOS	107
FIGURA 5-2: HOJA DE DATOS OBTENIDA DESPUÉS DE COMPLETAR LAS CELDAS DONDE NO SE	1
POSEÍA INFORMACIÓN	107
FIGURA 5-3: DIAGRAMA COMPARATIVO DE POTENCIAS MÁXIMAS	108
FIGURA 5-4: DIAGRAMA COMPARATIVO DE EFICIENCIAS TÉRMICAS MÁXIMAS	109

INDICE DE TABLAS

TABLA 2-2: PROPIEDADES TERMODINÁMICAS DE ALGUNOS FLUIDOS DE TRABAJO USADOS EN CENTRALES BINARIAS [14]
CENTRALES BINARIAS [14]
TABLA 3-1: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE VAPOR SECO54 TABLA 3-2: PRESIONES QUE MAXIMIZAN LA POTENCIA DE LA CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO
TABLA 3-2: PRESIONES QUE MAXIMIZAN LA POTENCIA DE LA CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO .55 TABLA 3-3: PRESIONES QUE MAXIMIZAN LA EFICIENCIA TÉRMICA DEL CICLO, PARA CADA TEMPERATURA EN ESTUDIO. .58 TABLA 3-4: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE EXPANSIÓN SÚBITA. .61 TABLA 3-5: PRESIONES DE ENTRADA Y DEL SEPARADOR QUE MAXIMIZAN LA POTENCIA DE LA
TEMPERATURA EN ESTUDIO
TABLA 3-3: PRESIONES QUE MAXIMIZAN LA EFICIENCIA TÉRMICA DEL CICLO, PARA CADA TEMPERATURA EN ESTUDIO. 58 TABLA 3-4: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE EXPANSIÓN 61 SÚBITA. 61 TABLA 3-5: PRESIONES DE ENTRADA Y DEL SEPARADOR QUE MAXIMIZAN LA POTENCIA DE LA
TEMPERATURA EN ESTUDIO
TABLA 3-4: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE EXPANSIÓNSÚBITA.61TABLA 3-5: PRESIONES DE ENTRADA Y DEL SEPARADOR QUE MAXIMIZAN LA POTENCIA DE LA
SÚBITA
TABLA 3-5: PRESIONES DE ENTRADA Y DEL SEPARADOR QUE MAXIMIZAN LA POTENCIA DE LA
CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO62
TABLA 3-6: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE EXPANSIÓN
SÚBITA
TABLA 3-7: PRESIONES DE ENTRADA, DEL SEPARADOR Y DEL EXPANSOR QUE MAXIMIZAN LA
POTENCIA DE LA CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO
TABLA 3-8: PRESIONES DE ENTRADA, DEL SEPARADOR Y DEL EXPANSOR QUE MAXIMIZAN LA
EFICIENCIA TÉRMICA DE LA CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO72
TABLA 3-9: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE CICLO BINARIO.77
TABLA 3-10: PRESIONES DE ENTRADA AL CICLO, QUE MAXIMIZAN LA POTENCIA EN CENTRALES
DE CICLO BINARIO, PARA CADA FLUIDO DE TRABAJO Y PARA CADA TEMPERATURA DEL
RECURSO EN ESTUDIO
TABLA 4-1: CALOR LATENTE DE VAPORIZACIÓN Y TRABAJO ESPECÍFICO DE LOS FLUIDOS DE
TRABAJO UTILIZADOS. [14]93
TABLA 4-2: CAPACIDAD CALÓRICA DE LA FASE VAPOR Y FLUJO MÁSICO DE LOS FLUIDOS DE
TRABAJO UTILIZADOS.[14]94
TABLA 4-3: ESPECIFICACIONES TÉCNICAS CENTRALES DE VAPOR SECO [17][18][19]
TABLA 4-4: ESPECIFICACIONES TÉCNICAS CENTRALES DE EXPANSIÓN SÚBITA [17][18][19]95
TABLA 4-5: ESPECIFICACIONES TÉCNICAS CENTRALES DE DOBLE EXPANSIÓN SÚBITA [17][18][19]
TABLA 4-6 : ESPECIFICACIONES TÉCNICAS CENTRALES DE CICLO BINARIO [17][18][19] 97
TABLA 4-7: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE EXPANSIÓN
SÚBITA97
TABLA 4-8: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE EXPANSIÓN
SÚBITA
TABLA 4-9: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE DOBLE
EXPANSIÓN SÚBITA98
TABLA 4-10: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE CICLO BINARIO. 98
TABLA 4-11: COMPOSICIÓN DE AGUAS GEOTERMALES EN PPM. EL YACIMIENTO DE WAIRAKEI
PRESENTA AGUAS DE TIPO CLORURO NEUTRALES, EL DE ROTORUA DE TIPO SULFATO ÁCIDO Y EL
DE WAITOA DE TIPO CARBONATO-ALCALINO. [13]

SIMBOLOGÍA

T P

Abre	viaciones	S
AE	: Agua de Enfriamiento	'n
BAE	: Bomba de Agua de Enfriamiento	η
BC	: Bomba de Condensado	x
С	: Condensador	Ŵ
E	: Evaporador	ω
EV	: Eyector de Vapor	Ż
F	: Flasher (Expansor)	C_P
FF	: Filtro Final	Δ
FT	: Fluido de Trabajo	
Р	: Bomba de Extracción	Subín
PC	: Precalentador	1, 2
PI	: Pozo de Inyección	Т
PP	: Pozo de Producción	В
PV	: Piping de Vapor	\$
RH	: Removedor de Humedad	g
RP	: Removedor de Partículas	A
S	: Silenciador	а
SA	: Salmuera	v
SC	: Separador Ciclónico	t
SR	: Removedor de Arenas	С
T/G	: Turbina/Generador	th
ТЕ	: Torre de Enfriamiento	geo
VBP	: Válvula Boca de Pozo	rein
VC	: Válvula de Control	TAP
VRB	: Válvula de Retención de Bola	TBP
		AE
Nom	enclatura	VBP
h	: Entalpía Especifica [kJ/kg]	С

- : Entropía Especifica[kJ/kgK]
- : Flujo Másico [kg/s]
- : Rendimiento
- : Titulo de Vapor
- : Potencia [kW]
- : Humedad Especifica
- : Calor [kW]
- : Capacidad Calórica [J/kgK]
- : Diferencia

Bomba de Extracción Subí		ndices	
: Precalentador	1, 2	: Puntos de Estado	
: Pozo de Inyección	Т	: Medido en Turbina	
: Pozo de Producción	В	: Medido en Bomba.	
: Piping de Vapor	S	: Estado Isoentrópico	
: Removedor de Humedad	g	: Estado Gaseoso	
: Removedor de Partículas	A	: Agua	
: Silenciador	а	: Aire	
: Salmuera	v	: Vapor	
: Separador Ciclónico	t	: Total	
: Removedor de Arenas	С	: Estado Critico	
: Turbina/Generador	th	: Térmica	
: Torre de Enfriamiento	geo	: Fluido Geotérmico	
: Válvula Boca de Pozo	rein	: Fluido reinyectado	
: Válvula de Control	TAP	: Turbina Alta Presión	
: Válvula de Retención de Bola	TBP	: Turbina Baja Presión	
	AE	: Agua de Enfriamiento	
nclatura	VBP	: Medido en Válvula Boca Pozo	
: Entalpía Especifica [kJ/kg]	С	: Medido en Condensador	
: Temperatura [°C]	sep	: Medido en Separador Ciclónico	
: Presión [bar]	exp	: Medido en Expansor	

1. INTRODUCCIÓN

1.1. MOTIVACIÓN

La generación a partir de combustibles fósiles e hidroelectricidad son el sustento de la matriz energética de nuestro país. Cerca del 64% de la producción eléctrica proviene de centrales térmicas a carbón, a partir de gas natural u otros derivados del petróleo, y un 32% desde centrales hidroeléctricas mediante embalses o pasada. La dependencia de suministros extranjeros en el caso de la producción mediante combustibles fósiles, y la variabilidad y vulnerabilidad del suministro hídrico chileno, deja a nuestra matriz energética muy desprotegida ante cualquier contingencia que modifique las actuales condiciones en el mercado energético

Siendo esta falta de alternativas para la generación eléctrica un tema trascendente, acentuado por el aumento sostenido de la demanda energética en los últimos 20 años, y el consecuente déficit que se vislumbra producto de estos dos motivos, se vuelve imperante el estudio de nuevas opciones para la generación a partir de recursos disponibles en nuestro país. La introducción al sistema eléctrico nacional de energías de tipo renovable no convencionales, lo que se ha visto traducido con la inauguración reciente de grandes parques eólicos y fotovoltaicos, y la utilización a pequeña escala de desechos orgánicos para la producción de metano para la posterior generación eléctrica, si bien, sientan un precedente y un impulso importante hacia la diversificación de la matriz, su pequeña capacidad de generación, sus elevados costos de inversión, los pobres incentivos por parte del gobierno para su masificación, y sus bajos factores de planta relacionados principalmente con la incertidumbre e inestabilidad de sus materias primas, han frenado su crecimiento dentro del metrado eléctrico nacional.

Es en este escenario donde la geotermia se alza como una fuente de elevado potencial, limpia, de carácter renovable, con altos factores de planta y con elevada disponibilidad dentro de nuestro país, asociada principalmente a la presencia del Cinturón de Fuego del Pacifico, y de zonas de interacción de placas tectónicas.

Deseando colaborar a esta necesidad nacional, el objetivo del Trabajo de Título es brindar un sustento teórico desde el punto de vista termodinámico a la utilización de este recurso, comparando para distintas configuraciones de ciclos, y para diversos tipos de fuentes geotérmicas, el comportamiento y el rendimiento que una planta es capaz de obtener.

1.2. Objetivos

1.2.1. Objetivo General

Realizar un análisis comparativo de distintas configuraciones de ciclos termodinámicos aplicados a la generación de potencia a partir de recursos geotermales de alta y mediana entalpía.

1.2.2. Objetivos Específicos

- Investigar el estado del arte de la energía geotérmica, tanto en nuestro país como en el extranjero.
- Realizar un estudio de las tecnologías de generación de potencia utilizable a partir de recursos geotérmicos existentes, tanto de alta como de mediana entalpía.
- Elaborar programaciones computacionales para cuatro tipos de configuraciones de ciclos termodinámicos; sistemas de conversión directa, sistemas de expansión súbita de una etapa, sistemas de expansión súbita de doble etapa y sistemas de ciclo binario, para distintas condiciones de entrada del fluido geotérmico. Para el caso de los sistemas de ciclo binario, añadir como variable distintos tipos de fluidos de trabajo; Isobutano, Butano, R114 y Pentano.
- Encontrar para cada configuración de ciclo propuesta, los parámetros de entrada que maximicen la potencia neta generada y el rendimiento térmico del ciclo a partir de un balance energético según la Primera Ley de la Termodinámica. Para el caso de los ciclos binarios, además de lo anterior, determinar las propiedades termofísicas de los fluidos que influye en dicha optimización.
- Concebir un diagrama que permita determinar el ciclo termodinámico óptimo según distintos parámetros de performance (rendimientos de generación de potencia y térmico del ciclo), para alguna condición particular de presión y temperatura del fluido geotermal.

1.3. Alcances y Limitaciones

 Mediante este trabajo de título se pretende realizar un estudio de las configuraciones de ciclos de potencia a partir de recursos geotermales para yacimientos de tipo hidrotermales. Los otros tipos de yacimientos existentes, solo se repasan en la sección antecedentes a modo de contextualización, pero ni los estudios termodinámicos, ni las simulaciones computacionales los abordan.

- Esta memoria se limita a estudiar los ciclos desde el punto de vista termodinámico, mediante análisis energéticos de los mismos basados en la Primera Ley de la Termodinámica. En ningún caso se realizan análisis exergéticos, ni mucho menos estudios de diseño ingenieriles de las plantas. Descartados están también los análisis de factibilidad económica y los estudios de impacto ambiental de los ciclos propuestos.
- Las propiedades termodinámicas de los fluidos de trabajo para los distintos puntos a lo largo de los ciclos, se obtienen a partir de la biblioteca FLUIDPROP del software Engineering Equation Solver. El fluido geotermal se modelará como agua pura, de modo de generalizar el estudio, cuyas propiedades también se obtienen de la biblioteca mencionada.
- Los contextos de emplazamiento de las plantas a modelar, se obviaron de los balances energéticos considerando la cantidad de simulaciones extras a realizar. De todos modos, se añade un Anexo que explica cómo integrar el balance de la torre de enfriamiento junto con las propiedades ambientales de importancia, en el análisis realizado en el presente Trabajo de Titulo.

2. ANTECEDENTES

2.1. ANTECEDENTES GENERALES

2.1.1. Origen del Recurso Geotérmico

La Tierra, además de disponer de energía procedente del exterior, fundamentalmente del Sol, que da origen, directa o indirectamente, a diversas tipos de energías renovables (solar, eólica, etc.), también dispone de energías endógenas. Un tipo de energía endógena es la energía térmica, la cual proviene de la importante cantidad de calor que la Tierra almacena en su interior. Por su naturaleza a esta energía térmica interna de la Tierra se le denomina energía geotérmica y se la incluye dentro del grupo de energías renovables, ya que si bien no es un tipo de energía recuperable, la disipación del calor almacenado requeriría el transcurso de millones de años.

La energía interna de la Tierra proviene prioritariamente del calor acumulado en su núcleo durante el proceso de formación del planeta (hace aproximadamente 4.600 millones de años) además de la radiación emitida por la desintegración de núcleos de elementos químicos radiactivos (uranio 238, torio 232, potasio 40, etc.) presentes en el interior de la misma. Otras fuentes a considerar son la fricción entre capas internas, la cristalización del núcleo liquido de la tierra, además de algunas reacciones químicas exotérmicas, que en conjunto contribuyen también a la producción de recurso geotérmico.

El calor almacenado en el interior de la Tierra no se encuentra uniformemente distribuido en su volumen, sino que es mucho más elevado en su núcleo, en estado sólido y de elevada densidad (alrededor de 4.000°C) disminuyendo progresivamente su intensidad a medida que se aproxima a las capas más superficiales, según la distribución geológica de la Tierra (**FIGURA 2-1**). El gradiente térmico creado, es decir, la diferencia de temperaturas existente entre estas capas, origina un flujo de calor desde las zonas más calientes (interiores) hacia las más frías (superficiales). Como se mencionó, el flujo de calor en las capas internas de la Tierra es de características diversas, dependiendo fundamentalmente de las fuentes y la forma en que se realiza trasferencia de calor. Cerca de la superficie, el flujo calorífico es primordialmente por conducción, siendo dependiente luego del gradiente térmico y de la conductividad térmica del material. Se estima que la energía que llega cada segundo a la superficie terrestre, en forma de calor, por conducción, convección y radiación, es de 42 x 10^{12} J. De ese total, 8 x 10^{12} J provienen del manto, el cual representa sólo el 2% del volumen total del planeta, 32,3 x 10^{12} J provienen del manto, el cual representa el 82% del volumen total, y $1,7 \times 10^{12}$ J provienen del núcleo, que representa un 16% en volumen y no contiene isótopos radiactivos.[1]

FIGURA 2-1: ESQUEMATIZACIÓN DE LAS CAPAS GEOLÓGICAS DE LA TIERRA [1].

El gradiente de temperatura promedio cerca de la superficie, a medida que se profundiza solo por la corteza terrestre es de alrededor 30 [°C/km][1]. Valores más pequeños, de aproximadamente 10°C/km se pueden encontrar en antiguas cortezas continentales, y gradientes muy altos (400 °C/km aprox.) se localizan en general en áreas de activo volcanismo y recurrente actividad sísmica. La tectónica de placas resulta ser la responsable de la existencia de estas áreas, y por consiguiente del elevado gradiente de temperaturas que allí se puede originar; el movimiento gradual que han experimentado a lo largo de toda la vida terrestre ha creado sectores en la vecindad de ellas, con focos de material fundido de capas interiores los cuales se han confinado entre las mismas placas tectónicas, generando una fuente de material de alta temperatura y presión. Es en estos lugares donde la extracción de la energía interna de la tierra se vuelve justificable en el marco del aprovechamiento energético de gran escala. La **FIGURA 2-2** presenta un mapamundi con la distribución de las placas corticales, destacando la posición del llamado "Anillo de Fuego del Pacifico" zona circundante al Océano Pacifico que agrupa aproximadamente el 60% de los volcanes mundiales, y que justamente coincide con zonas de encuentro tectónico.

FIGURA 2-2: MAPA MUNDIAL CON LAS PLACAS TECTÓNICAS. DEMARCADO EN COLOR ROJO, EL ANILLO DE FUEGO DEL PACIFICO.[2]

2.1.2. Sistemas Geotérmicos.

La existencia de un recurso geotérmico como tal, es decir, que esté capacitado para la extracción de la energía contenida en él, no solo depende de la existencia de una zona con un gradiente de temperatura importante. Este aspecto es solo uno de los necesarios para calificar a un yacimiento geotermal como "energéticamente aprovechable" a partir de su utilización para la generación de potencia. La estructura de los sistemas geotérmicos "aprovechables" se explicita en el diagrama de la **FIGURA 2-3**. Para adquirir esta calificación, se hace necesaria la presencia de a lo menos los siguientes componentes:

- **Presencia de una fuente de calor:** Esta fuente, en general está constituida por un cuerpo de magma o material fundido situado a una profundidad razonable (mayormente en zonas ubicadas en la corteza), desde el cual se trasmite el calor a las rocas circundantes.
- **Presencia de agua:** El yacimiento debe ser susceptible de ser recorrido por una corriente de agua. Esta agua puede haberse infiltrado en el subsuelo, a través de fracturas o rocas permeables, hasta alcanzar la profundidad necesaria para ser calentada por la fuente de calor. También es posible que el agua sea inyectada por el hombre artificialmente desde la superficie.

- Presencia de un reservorio: Corresponde al volumen del yacimiento. Conformado por rocas permeables y a una profundidad razonable para la perforación y posterior extracción del recurso, almacena el agua calentada por la fuente en forma líquida, mezcla liquidovapor, o vapor seco, según las características del recurso.
- **Existencia de una cubierta impermeable:** Se hace necesaria la presencia de una cubierta impermeable que en conjunto con el depósito o reservorio sea capaz de contener el fluido geotérmico, al mismo tiempo de evitar fugas del mismo hacia el exterior del sistema.

FIGURA 2-3: SISTEMA GEOTÉRMICO ESTÁNDAR [3]

Teniendo en cuenta cuestiones relacionadas con la presencia o no de agua, el estado físico de la misma (líquido, vapor), de las condiciones de presión en que se encuentre, la forma en que el acuífero se recarga, y de la estructura geológica del yacimiento, se pueden diferenciar cinco tipos de sistemas geotérmicos: (1) Sistemas Hidrotermales, (2) Sistemas Geo presurizados, (3) Sistemas HDR (Hoy Dry Rock) de roca caliente seca, (4) Sistemas geotérmicos volcánicos y por ultimo (5) Sistemas geotérmicos sedimentarios.

(1) Sistemas Hidrotermales: Están constituidos por una fuente de calor, un fluido (líquido y/o vapor) y roca, en donde se almacena el fluido geotérmico. El fluido que existe en los sistemas hidrotermales tiene su origen como agua meteórica (agua de lluvia, hielo o de nieve). Esta agua se infiltra lentamente en la corteza terrestre, a través de poros y fracturas, penetrando varios kilómetros de profundidad en donde es acumulada y calentada por la roca, interacción que puede alcanzar en ocasiones temperaturas de hasta 500 °C. Estos sistemas pueden a su vez clasificarse en: yacimientos de vapor dominante, líquido dominante de alta entalpía y líquido dominante de baja entalpía. Estos yacimientos pueden estar asociados con sistemas volcánicos o no-volcánicos dependiendo de la temperatura de sus recursos. Cuando las temperaturas son superiores a 200 °C, los yacimientos tienen

correlación con sistemas volcánicos y la tectónica de placas, mientras que a temperaturas menores se relacionan generalmente con sistemas no-volcánicos, siendo estos últimos los más comunes. En la actualidad, los sistemas hidrotermales son los sistemas geotérmicos más convencionales y los que se explotan comercialmente, tanto para la generación de electricidad, como en usos directos para el calor.

- (2) Sistemas Geo presurizados: Contienen agua y metano disuelto a alta presión (~ 700 bar) y mediana temperatura (entre 90 y 200°C). Este tipo de recursos de alta presión pueden ofrecer energías: térmica (agua caliente), química (metano) y mecánica (energía cinética debido a que los fluidos con alta presión). Actualmente no se explotan comercialmente, pero se supone un elevado potencial energético teniendo en cuenta sus características.
- (3) Sistemas de roca caliente seca: Constan de rocas impermeables a mediana temperatura, entre 150°C y 300°C, y a diferencia de los Hidrotermales, carecen de acuífero. La impermeabilidad del sistema, su baja conductividad térmica y la falta de un fluido para la transformación energética constituyen el escollo principal para su explotación. Se estudia el uso de métodos de inyección de agua fría, y su recuperación a mayor temperatura, como un modo de aprovechamiento de este tipo de yacimientos.
- (4) Sistemas geotérmicos volcánicos: Sistemas de roca fundida asociados con aparatos volcánicos activos o detectados a gran profundidad en zonas de subsidencia tectónica. Existen algunos proyectos piloto para tratar de extraer la energía térmica de los procesos de fusión de roca. El atractivo más importante de este tipo de recursos son las altas temperaturas disponibles >800 °C. No se explotan comercialmente en la actualidad por falta de tecnología apropiada [3].
- (5) Sistemas geotérmicos sedimentarios: Se encuentran en cuencas sedimentarias, donde existen gradientes anómalos de calor (>30 °C/km), y donde es la conducción la principal forma de transmisión del calor. Estos sistemas pueden producir recursos de baja y mediana temperatura (20 a 150°C) debido a su flujo de calor y a la baja conductividad térmica de las rocas.

2.1.3. Estado del Arte de la Energía Geotérmica en Chile.

Debido a su ubicación geográfica y en especial por ser recorrido casi en su totalidad por el Cinturón de Fuego del Pacifico, Chile es una de las regiones con mayor actividad volcánica y sísmica del mundo. Como es de suponer este escenario coloca a Chile en una posición privilegiada respecto a la potencial energía geotérmica que podría explotar. La FIGURA **2-4** presenta un mapa realizado por la empresa consultora en Geotermia *Energía Andina*, donde se observa el potencial geotermal del país. Este alto potencial geotérmico, que según estudios ronda entre los 3.350 MW (Enap) hasta los 16.000 MW ([4]), podría llegar a representar un 91% de la capacidad instalada actual de la matriz energética del país. Sin embargo, la geotermia es la energía renovable no

convencional menos conocida, la más ignorada, sin instalaciones actuales, y cuyo aporte a la red es en la actualidad, nulo.

De todas formas, el déficit energético que atraviesa el país, junto con la falta de alternativas de generación, y lo rentable que significa el negocio de la generación eléctrica, ha incentivado a muchas empresas tanto nacionales como extranjeras a comenzar a desarrollar proyectos geotérmicos. Esto se ha demostrado en los últimos procesos de licitación de áreas de exploración geotérmica donde surgen nombres de empresas como *Energía Andina*, la *Sociedad Geotérmica del Norte S.A. (Enap -ENEL), Colbún,* o algunas mineras como *Doña Inés de Collahuasi* (controlada en partes iguales por *Xstrata y AngloAmerican*) y las firmas extranjeras *Magma Energy* (Canadiense) y *Hot Rock* (Australiana). Esto sumado a proyectos que ya están en etapa de explotación, sientan un referente positivo frente al fututo de la energía geotérmica en nuestro país. La **TABLA 2-1** resume las cifras de las últimas licitaciones para el desarrollo de proyectos geotérmicos.

Tipo de Concesión	Cantidad	Inversión Aprox. (MM USD)	
Concesiones de exploración vigentes.	75	380	
Concesiones de explotación vigentes.	8	1116	

TABLA 2-1: CONCESIONES VIGENTES PARA PROYECTOS GEOTÉRMICOS [5]

FIGURA 2-4: MAPA DEL POTENCIAL GEOTÉRMICO DE CHILE [6]

2.1.4. Costos en Energía Geotérmica

2.1.4.1. Costos de Instalación y Operación

Al igual que en muchos sistemas de producción de energía a partir de recursos renovables, la generación de energía geotérmica implica elevados desembolsos de capital para establecer la instalación de la planta, pero extremadamente bajos para la mantención de la operación y la adquisición de combustible. Para la instalación de una planta geotérmica se deben considerar en un inicio tres áreas de inversión; la prospección y exploración de los recursos geotérmicos, el desarrollo del yacimiento y del reservorio, y el costo de la planta de generación en sí.

Entre los factores que afectan los costos de instalación y operación de una planta geotermal, se pueden conformar cuatro categorías; economías de escala, características del pozo de producción, clima macroeconómico y opciones operativas y de desarrollo. En general, las economías de escala permiten que tanto el capital unitario de costo de instalación (en dólares por [kW] instalado) y el de operación y mantenimiento (en dólares por [kWh] generado), tiendan a bajar con el incremento de la capacidad instalada. Según [7] el capital unitario de costos de instalación fluctúa entre US\$1600/kW y US\$2500/kW, dependiendo del tamaño del proyecto y otros criterios específicos del mismo. El mismo autor propone una correlación para calcular el costo unitario de instalación c_u en [US\$/kW] respecto a la capacidad de la planta a instalar P_N , en [MW].

$$c_u = 2500 \ e^{-0.03(P_N - 5)} \tag{2-1}$$

Luego, para el caso de una planta de 50 MW, el costo de instalación unitario seria cercano a los 2184 [US\$/kW]. Similarmente, propone otra correlación para calcular el costo unitario de operación y mantenimiento c_{op} en [US\$/kWh] respecto a la capacidad instalada P_N , en [MW].

$$c_{op} = 0.02 \ e^{-0.0025(P_N - 5)} \tag{2-2}$$

Luego, para el caso de una planta de 50 MW, el costo unitario de operación y mantenimiento seria cercano a los 0,0179 [US\$/kWh].

2.1.4.2. Comparativo de Costos respecto al Costo Nivelado de Energía

Las tecnologías de generación de energía tienen distintas características de costos y de rendimiento que pueden resultar difíciles de comparar. Por ejemplo, el "combustible" para las plantas fotovoltaicas (es decir, la luz solar) es gratuito, pero, a menos que se lo combine con alguna tecnología de almacenamiento de energía, las plantas fotovoltaicas sólo pueden suministrar energía mientras haya luz solar. En contraposición, las plantas térmicas que utilizan combustible fósil pueden producir energía en todo momento mientras tengan combustible, pero suelen tener costos

de combustible volátiles, cortes de energía eléctrica impredecibles para reparaciones, altos costos de operación, y afectar el medio ambiente y la salud, lo cual no suele ocurrir con tecnologías solares u otras tecnologías de ERNC. Por lo general, las grandes centrales hidroeléctricas tienen bajos costos de combustible y de producción de energía, aunque, con frecuencia, afrontan gastos excesivos durante la construcción, incurren en altos costos de transmisión de larga distancia, dañan los ecosistemas y las comunidades locales, y son vulnerables a la escasez de agua y a los riesgos sísmicos.

El modelo financiero del "costo nivelado de energía" explica estas diferencias mediante la conversión de estas diversas características de cada tecnología (a excepción de los impactos en el medio ambiente, en la sociedad y en la salud) en una única cifra: el precio de una unidad de energía estándar conocida como megavatio-hora (MWh) sin tomar en cuenta otros ingresos potenciales. Este precio indica la cantidad de dinero que el propietario de una central eléctrica debe cobrar al comprador de esta energía para recuperar sus costos y obtener una ganancia (en este análisis, se supone que TIR=10%) [8]. La **FIGURA 2-12** muestra una descripción visual del modelo explicado.

FIGURA 2-5: DESCRIPCIÓN DEL MODELO DE COSTO NIVELADO DE ENERGÍA [8]

Un estudio realizado por el Consejo para la Defensa de los Recursos Naturales (NRDC, por sus siglas en inglés) [8], con datos de nuestro país, logró analizar comparativamente los costos de las tecnologías de generación con elevado potencial de desarrollo según el modelo nivelado de la energía, respecto al precio en que esta se comercializa. La figura muestra un comparativo de costos entre las tecnologías de generación según costos y precios de comercialización del año 2011, mientras que la figura muestra el mismo análisis utilizando costos relativos de producción de electricidad proyectados al año 2030. En ambos escenarios, en función al modelo de costos utilizados, la energía geotérmica se muestra como una tecnología competitiva respecto a nuevas

instalaciones de las principales fuentes de energía convencional de nuestro país (Térmicas e Hidroeléctricas). Incluso, para la proyección realizada al año 2030, la energía geotérmica se encuentra dentro de las tecnologías más económicas y con mayor margen de ganancias.

Nota: "Grandes hidroeléctricas" excluye proyectos en Aysén; "Pequeñas hidroeléctricas" son plantas que producen menos de 20MW. Todos los precios se expresan en dólares estadounidenses, del año 2010. "Zona competitiva" agregada por NRDC

Fuente: Bloomberg New Energy Finance, Valgesta Energía. Fuente precios de energía: CNE, elaboración de Bloomberg New Energy Finance

Nota: "Grandes hidroeléctricas" excluye proyectos en Aysén; "Pequeñas hidroeléctricas" son plantas que producen menos de 20MW. Todos los precios se expresan en dólares estadounidenses, del año 2010. "Zona competitiva" agregada por NRDC

Fuente: Bloomberg New Energy Finance, Valgesta Energía. Fuente precios de energía: Programa de Estudios e Investigaciones en Energía del Instituto de Asuntos Públicos, Universidad de Chile, elaboración de Bloomberg New Energy Finance

FIGURA 2-7: COSTO NIVELADO DE LA ENERGIA, AÑO 2030. PRECIOS EN US\$ [8]

2.1.5. Sistemas Termodinámicos para el Aprovechamiento de

Fuentes Geotérmicas.

Se reconocen distintas formas de configurar una planta de generación de potencia según el tipo de yacimiento geotérmico y según el sistema presente. La generación de potencia a partir de fuentes geotermales es principalmente importante en los yacimientos de alta entalpía, donde al ser la temperatura del fluido mayor a la de evaporación del agua y la presión en general, mayor a la atmosférica, se observan fluidos bifásicos a la salida, y por consiguiente es posible aplicar ciclos Rankine convencionales, con ciertas modificaciones según la composición del fluido geotermal y propiedades de este a la salida.

A grandes rasgos, se reconocen cuatro configuraciones para la generación de potencia, según el sistema de ciclo en uso, y según las características del fluido disponible a la salida; (1) sistemas de conversión directa, (2) sistemas de expansión súbita de una etapa, (3) sistemas de expansión súbita de doble etapa y los (4) sistemas de ciclo binario. Dentro de la definición de este último sistema, recaen los ciclos para mediana entalpía.

2.1.5.1. Sistemas de Conversión Directa

El sistema de conversión directa es el principalmente utilizado en las plantas ya existentes, dada su simplicidad de diseño, y su economía respecto al resto de los sistemas. Tal y como se muestra en la **FIGURA 2-8**, luego de extraído fluido geotermal predominantemente en estado gaseoso, existe una separación de partículas y elementos no condensables (CO2 y H2S) por su efecto corrosivo en los componentes del ciclo. Luego, el vapor sobrecalentado del pozo de extracción es dirigido directamente a la turbina de expansión que produce la potencia mecánica para la generación de electricidad. El exhausto del vapor es dirigido al condensador, donde se obtiene agua líquida saturada. Parte del agua se hace pasar por la torre de refrigeración para que sirva posteriormente de refrigerante en el propio condensador, y el resto se reinyecta en el pozo. La conversión directa es idónea para yacimientos hidrotermales donde predomina el vapor seco con temperaturas bordeando los 180 °C en adelante y presiones medianas, para facilitar la salida del fluido a superficie.

La eficiencia global en este tipo de sistemas, suele ser pequeña, debido a los consumos que posee por parte del separador de partículas, y de algún sistema de reintegración de estas partículas al agua de retorno al sumidero, para evitar efectos medio ambientales. De todas formas, dependerá de las propiedades del yacimiento en cuestión, sobre todo de la presión de salida (dado que se suponen temperaturas altas), lo que determinara el salto entálpico que aprovechara la turbina.

FIGURA 2-8: SISTEMA DE CONVERSIÓN DIRECTA [9]

FIGURA 2-9: SISTEMA DE CONVERSIÓN POR EVAPORACIÓN SÚBITA DE UNA ETAPA [9]

2.1.5.2. Sistemas de Expansión Súbita de una Etapa

En yacimientos hidrotermales con predominancia de vapor húmedo, se utilizan los sistemas de expansión súbita o *"flash"* (FIGURA 2-9). El vapor húmedo sufre una evaporación súbita al ascender a la superficie, debido a su exposición a la presión atmosférica, o bien, se puede tratar de un yacimiento en donde la presión en su interior sea similar a la atmosférica. En ambos casos, se utiliza un separador de fases previo a la entrada del flujo a la turbina, para enviar solo vapor seco a esta. Un depósito de salmuera dentro de la cámara flash, atrapa la humedad en la parte baja de la misma, a modo de enviar el vapor seco a la turbina y la salmuera de vuelta al acuífero por medio del pozo de reinyección.

El rendimiento es algo menor que en sistemas de conversión directa, debido a que la turbina trabaja a presiones y temperaturas más bajas, considerando las características del yacimiento en cuestión.

2.1.5.3. Sistemas de Expansión Súbita de dos Etapas

Con el objetivo de mejorar el rendimiento de las plantas de expansión súbita, surgen estos sistemas, donde existen dos etapas de expansión (**FIGURA 2-10**) con la consiguiente mejora en el rendimiento de la planta. La salmuera llega primero a un depósito a alta presión, donde se produce la primera evaporación súbita y se conduce el vapor a la turbina de alta presión. El líquido no evaporado se pasa a un segundo depósito, a más baja presión, donde se produce la segunda evaporación súbita: este vapor es conducido junto con el exhausto de la turbina de alta hacia la turbina de baja presión.

Este sistema aumenta el rendimiento de los sistemas de una sola etapa en casi un 30%, incrementa la producción eléctrica en un 25%, y suponen sólo un aumento del 5% en el costo de la planta.

2.1.5.4. Sistemas de Ciclo Binario

Surgen como respuesta a la explotación de yacimientos de entalpía media, más baja que la de los comúnmente utilizados para la generación eléctrica. Con temperaturas de $100 - 150^{\circ}$ C, predomina el vapor húmedo, y es necesario utilizar configuraciones con ciclos distintos y con fluidos de trabajo también distintos, con la condición necesaria de que estos fluidos posean una elevada presión de vapor. Tal y como se muestra en la **FIGURA 2-11**, constan de dos circuitos, uno primario y otro secundario, que funcionan a modo de intercambiador de calor: el primario, con el fluido geotérmico a igual presión que la del yacimiento, y el secundario, con el fluido de trabajo moviéndose por el ciclo de potencia. Se produce la transferencia de calor termodinámico entre ambos circuitos y el vapor generado del fluido de trabajo es dirigido a la turbina.

FIGURA 2-10: SISTEMA DE EXPANSIÓN SÚBITA EN DOS ETAPAS [9]

FIGURA 2-11: SISTEMA BINARIO, CICLO RANKINE [9]

Dado que utilizan fluidos de trabajo orgánicos, una configuración de ciclo Rankine pasa a denominarse ORC (Organic Rankine Cycle). Dependiendo de las características particulares de los recursos, las configuraciones de este tipo de sistemas se pueden complejizar aún más, si al mismo tiempo se quiere mejorar el rendimiento global. Desde sistemas binarios básicos, como el de la **FIGURA 2-11**, pasando por ciclos binarios de doble presión, o ciclos binarios de doble fluido, hasta llegar al uso de mezclas zeotrópicas como fluidos de trabajo como es el caso del ciclo Kalina, especialmente orientado a recursos de mediana entalpía, con temperaturas menores a los 100°C.

2.1.5.5. Ciclo Kalina

El ciclo Kalina, es básicamente un tipo de ciclo binario, cuya particularidad es el uso de una mezcla zeotrópica de amoniaco con agua como fluido de trabajo, lo que conlleva a la utilización de componentes extra, y configuraciones para el ciclo distintas a las convencionales. Fue propuesto por Alexander I. Kalina en la década de los 80', y estaba pensado en primera instancia como un ciclo para la reutilización del calor remanente en las plantas de ciclo combinado. Un diagrama representativo de una planta de ciclo Kalina se muestra en la **FIGURA 2-12**.

Las características que distinguen al Ciclo Kalina respecto a otros ciclos binarios, son:

- Fluido de trabajo binario, mezcla de H2O Y NH3, con porcentajes de cada componente variables a lo largo del ciclo. Este cambio de composición corresponde a un grado de libertad extra respecto a otro fluido de trabajo en un ciclo binario, puesto que las propiedades termodinámicas de la mezcla varían con este cambio en la cantidad de agua o amoniaco.
- La evaporación y la condensación ocurren a temperatura variable, producto de la dependencia de los procesos de cambio de fase, con las propiedades termodinámicas del fluido, las cuales como se mencionó varian respecto al porcentaje de cada componente en la mezcla.
- En cuanto a componentes; todas las clases de ciclo Kalina contienen un separador posterior al evaporador, y un recuperador de calor después de la condensación del fluido, usando el líquido obtenido en el separador.

Como consecuencia, los ciclos Kalina muestran mejoras en el comportamiento termodinámico de los intercambiadores de calor, por medio de la reducción de irreversibilidades asociadas a la trasferencia de calor en diferencias de temperatura finita

FIGURA 2-12: CICLO KALINA CON COMPOSICION VARABLE DE H2O Y NH3. [10]

La configuración de una planta de ciclo Kalina suele ser mucho más compleja que una planta de ciclo binario básico. Considerando el diagrama de planta mostrado en la figura, el separador S permite que el vapor saturado rico en amoniaco fluya hacia la turbina, la cual suele ser mucho más económica que las usualmente usadas por otros fluidos de trabajo. La solución pobre en amoniaco y rica en agua, es usada en el precalentador (PH) para luego ser expandida a la presión de salida de la turbina, para su posterior mezcla con la solución alta en amoniaco en orden de recuperar la composición inicial de la mezcla. Esta mezcla es a continuación utilización en un precalentador recuperativo (RPH) antes de ser condensada.

2.2. Centrales de Potencia de Vapor Seco

Las centrales de vapor seco fueron el primer tipo de central geotérmica de potencia en adquirir el estatus de comerciable, en términos de generación de energía eléctrica. Hace más de 100 años, en la región de la Toscana Italiana, ya se operaban pequeños motores a vapor a partir de flujos de que emergían de la tierra. Si bien, ni la forma de obtención de este, ni mucho menos la tecnología de la época permitía una generación energética de importancia, se tienen registros de centrales de hasta 15 [kW] lo que otorga un precedente del potencial de este tipo de fuentes, y que explica el motivo de su explotación en masa en el último siglo [10].

Este tipo de centrales tienden a ser más simples y mucho más económicas que las centrales que de expansión súbita que operan a partir de geo fluidos bifásicos, básicamente por la inexistencia de salmuera o agua con alta concentración de sales minerales, la cual debe ser reinyectada al yacimiento tanto por que en términos energéticos no es aprovechable, como para mantener la eficiencia y la vida útil del reservorio. Lamentablemente, solo existen dos grandes áreas en el mundo con recursos de este tipo, Landerello en la región Toscana de Italia, y The Geysers, en el

norte de California, EEUU. Hasta agosto del 2011, existían 71 unidades de este tipo en operación, lo que conforma el 12% de todas las centrales geotérmicas. En términos de potencia, la capacidad instalada de este tipo de centrales alcanza los 2893 [MWe], cerca del 27% del total mundial, siendo la potencia promedio de este tipo de centrales de 40,75 [MWe]. Para más detalles verificar el ANEXO A.

2.2.1. Sistema de Conversión Energética

El sistema de conversión directa a partir de vapor seco corresponde en términos de configuración termodinámica a un ciclo Rankine abierto, haciendo el vacimiento geotermal las funciones de vaporizador o caldera. Tal y como se muestra en la FIGURA 2-13, luego de extraído el fluido geotermal predominantemente en estado gaseoso, se expande levemente en una válvula denominada de boca de pozo(VBP), cuya función esencial es regular en primera instancia, el flujo másico y la presión del geo fluido. Posteriormente existe una etapa de separación de partículas (RP) y elementos no condensables (CO2 y H2S principalmente) por su efecto corrosivo en los componentes del ciclo, y en la eficiencia en especial de la turbina, además de una etapa de remoción de humedad (RH). En ambos casos, el vapor es guiado hacia el ciclo, mientras que el resto de los componentes son enviados al sistema de reinyección, para reingresarlos al vacimiento (PI). Luego, el este vapor es nuevamente llevado a un sistema de control para posteriormente dirigirlo directamente a la turbina de expansión (T/G), que produce la potencia mecánica para la generación de electricidad. El vapor ya expandido es enviado al condensador (C), donde el geo fluido se satura al estado líquido. Parte del fluido de trabajo se hace pasar por la torre de refrigeración (TE) para que sirva posteriormente como refrigerante en el propio condensador. Finalmente, el fluido restante, además de los componentes que fueron separados del mismo en etapas anteriores a la expansión, son reinyectados al yacimiento, mediante un pozo anexo al de producción.

FIGURA 2-13: SISTEMA DE CONVERSIÓN DIRECTA PARA CENTRALES DE VAPOR SECO. FUENTE: Elaboración Propia basada en [10].

Los cambios sufridos por el fluido de trabajo a lo largo del ciclo se representan en el diagrama T-s de la **FIGURA 2-14**. Tomando en cuenta que la fuente en cuestión genera vapor saturado (incluso vapor ligeramente sobrecalentado), el punto inicial (estado 1) se localiza en la curva de saturación gaseosa. El proceso de expansión de la turbina (1-2) genera algo menos de potencia que el ideal, representado por el proceso isoentrópico (1-2s). El fluido de trabajo es llevado a fase liquida vía un condensador con su respectivo sistema de enfriamiento (2-3). Este mismo fluido es reinyectado finalmente en el pozo, a una temperatura inferior a la que se extrajo.

2.2.2. Termodinámica del Proceso de Conversión

El análisis a continuación presentado, está basado en dos de los principios fundamentales de la termodinámica; el principio de conservación de la energía (denominado la Primera Ley de la Termodinámica [11]) y el principio de conservación de la masa. Se realiza este análisis de manera general para cada componente del ciclo termodinámico utilizado en plantas de vapor seco. Por consiguiente, es aplicable cuantas veces sea necesario dentro de una misma configuración de darse así el caso. Los equipos o procesos obviados, y que puedan aparecer en figuras o diagramas anteriores, son insignificantes desde el punto de vista del estudio según los dos principios ya mencionados.

FIGURA 2-14: DIAGRAMA T-S DE UNA CENTRAL DE VAPOR SECO. FUENTE: Elaboración Propia.

2.2.2.1. Proceso de Expansión en la Turbina

El análisis energético de una turbina para una planta geotermal, es análogo, desde el punto de vista termodinámico que para una turbina a vapor estándar (**FIGURA 2-15**). El trabajo producido por la turbina por unidad de masa de vapor (w_T) viene dado por la ecuación 1.4-1.

FIGURA 2-15: ESQUEMA SIMPLIFICADO DE UNA TURBINA A VAPOR.

Asumiendo una turbina adiabática, trabajando en régimen permanente, y despreciando los cambios en energía cinética y potencial del fluido a lo largo de su paso por la turbina. El máximo trabajo capaz de obtener la turbina ocurre si ésta opera en régimen reversible, es decir a entropía constante. La eficiencia isoentrópica de la turbina es la relación entre el trabajo realizado por la misma, y el trabajo isoentrópico, tal y como muestra la relación.

$$\eta_T = \frac{h_1 - h_2}{h_1 - h_{2,s}} \tag{2-4}$$

La potencia desarrollada por la turbina, viene dada por

$$\dot{W}_T = \dot{m}_v (h_1 - h_2) = \dot{m}_v \eta_T (h_1 - h_{2,s})$$
⁽²⁻⁵⁾

Para la realización de un análisis más exhaustivo, no se tomará un valor fijo para la eficiencia de la turbina como se supone en la mayoría de las turbinas de vapor, si no que se tratará de cuantificar este valor mediante algún otro método, sobre todo considerando lo dificultoso que resulta trabajar con vapor completamente seco cuando se trata de recursos de origen geotermal, generalmente hablando. Todo esto, ya que es conocido que el rendimiento de un proceso de expansión disminuye súbitamente cuanto mayor sea la cantidad de humedad del fluido a expandir. Una cuantificación de este efecto fue realizada a principios del siglo XX, por K. Baumann [10] quien estableció que un 1% de humedad contenida en el fluido que realiza el trabajo en la turbina, significa un decremento aproximado de 1% en la eficiencia de la misma.

Adoptando la regla de Baumann para cuantificar la degradación del rendimiento de la turbina ante la existencia de humedad, tal que η_{TH} representa el rendimiento de la turbina húmeda y η_{TD} el de una completamente seca y asumiéndola igual a 85%, se puede afirmar,

$$\eta_{TH} = \eta_{TD} \times \left[\frac{x_1 + x_2}{2}\right] \tag{2-6}$$

Las propiedades termodinámicas en el estado 2 se determinan mediante la resolución de la ecuación (2-4), usando la eficiencia de la turbina y las propiedades del fluido en el estado 2s, las que son fácilmente obtenidas utilizando la presión y la entropía ya conocidas en ese punto. Incorporando la regla de Baumann en el cálculo, la entalpia a la salida de la turbina se obtiene a partir de la ecuación a continuación:

$$h_{2} = \frac{h_{1} - A \left[x_{1} - \frac{h_{3}}{h_{g} - h_{3}} \right]}{1 + \frac{A}{h_{g} - h_{3}}}$$
(2-7)

Donde el factor A se define como

$$A \equiv 0.425(h_1 - h_{2s}) \tag{2-8}$$

Las ecuaciones obtenidas a partir de la relación de Baumann asumen que el vapor a la entrada de la turbina es saturado o comparte las fases liquida y vapor. Dicha relación no es válida para vapor sobrecalentado.

En consecuencia, la potencia de la turbina resultará del producto entre el salto entálpico en la misma después, considerando la disminución de la eficiencia según la calidad del vapor a la entrada, y el flujo másico involucrado.

$$\dot{W}_T = \dot{m}_{FT}(h_1 - h_2) \tag{2-9}$$

2.2.2.2. Proceso de Condensado

La **FIGURA 2-16** esquematiza un condensador clásico de tipo superficie. El calor transferido desde el fluido de trabajo ya expandido, y el medio de enfriamiento (agua o aire, según se especifique para cada caso en el análisis) se puede obtener a partir de la aplicación de la primera ley de la termodinámica considerando el equipo mismo como volumen de control. La relación entre el flujo másico del fluido de enfriamiento \vec{m}_{AE} , y el fluido de trabajo \vec{m}_{FT} se especifica en la ecuación (2-10.

$$\dot{m}_{AE}(h_y - h_x) = \dot{m}_{FT}(h_2 - h_3) \tag{2-10}$$

FIGURA 2-16: ESQUEMA SIMPLIFICADO DE UN CONDENSADOR DE SUPERFICIE

2.2.2.3. Proceso de Enfriamiento por Torre

Se incluye en la configuración un proceso de enfriamiento por torre de tiro inducido en orden de acomodar la perdida de calor perdida por el fluido de trabajo en el condensador, representada por la diferencia de entalpia entre los puntos x e y, en la **FIGURA 2-16**. La **FIGURA 2-17** esquematiza una torre de enfriamiento por aire de tiro inducido.

Respecto al esquema de la **FIGURA 2-17**, el vapor condensado (1) que ha sido bombeado desde el condensador y que corresponde a una mezcla del fluido de enfriamiento caliente y el fluido de trabajo saliente del condensador, es rociado dentro de la torre donde cae a través de una corriente de aire impulsada por un ventilador de tiro inducido ubicado en la parte superior de la torre. El aire ambiental (a) entra con un cierto porcentaje de vapor de agua determinado por la humedad relativa del mismo, recogiendo aún más del vapor condensado en contracorriente que se ha evaporado parcialmente, siendo enviado a la atmosfera en forma de aire húmedo (d). El fluido de enfriamiento es retornado al condensador (2) a una temperatura menor a la que ingresó, mientras que el fluido de trabajo es reingresado al reservorio (b), mediante un pozo de inyección.

FIGURA 2-17: ESQUEMA SIMPLIFICADO DE UNA TORRE DE ENFRIAMIENTO DE TIRO INDUCIDO

El proceso interno involucra el intercambio tanto de masa como de calor entre el aire atmosférico y el vapor condensado proveniente del condensador. Considerando la operación total de la torre, excluyendo el ventilador, y asumiendo flujo permanente y condiciones adiabáticas, se presenta el balance del sistema:

$$\dot{m}_1 h_1 - \dot{m}_2 h_2 = \dot{m}_d h_d - \dot{m}_a h_a + \dot{m}_b h_b \tag{2-11}$$

Además del balance según la Primera Ley de la Termodinámica, se requiere analizar los balances másicos, tanto del aire atmosférico como del agua de enfriamiento. Considerando que tanto el aire que entra a la torre como el que sale de la misma contienen agua su composición en distintos porcentajes, las ecuaciones de conservación quedan según se muestra debajo.

$$\dot{m_1} + \dot{m_{Aa}} = \dot{m_2} + \dot{m_b} + \dot{m_{Ab}} \tag{2-12}$$

$$\dot{m_{aa}} = \dot{m_{ad}} \tag{2-13}$$

Donde el subíndice A representa agua, y el subíndice a simboliza aire, de tal forma que la ecuación (2-12 corresponde a la conservación del agua considerando la torre como sistema, y la (2-13 concierne a la conservación del aire seco. Incluyendo la humedad especifica del aire (ω):

$$\dot{m}_{Aa} = \omega \dot{m}_{a} \tag{2-14}$$
$$\dot{m_{Ad}} = \omega \dot{m_d} \tag{2-15}$$

2.2.2.4. Procesos de Bombeo

La **FIGURA 2-18** muestra una bomba de forma representativa. Utilizando los mismos supuestos que para el caso de la turbina expuesto en 0, el trabajo específico realizado por la bomba w_B viene dado por la relación (2-16). La potencia mecánica necesaria para el aumento de presión del fluido \dot{W}_B , se muestra en (2-17).

FIGURA 2-18: ESQUEMA SIMPLIFICADO DE UNA BOMBA

$$w_B = h_2 - h_1 \tag{2-16}$$

$$\dot{W_B} = \dot{m_{FT}} w_B = \frac{\dot{m_{FT}}(h_{2s} - h_1)}{\eta_B}$$
(2-17)

2.2.2.5. Eficiencia de la Central

Eficiencia, se define como el radio entre una entrada y una salida; una medida que caracteriza un cierto proceso. Existen, en el ámbito energético, muchas posibilidades para definir "entrada" y "salida" siendo la eficiencia térmica de la planta, la más común en el estudio termotécnico. La **FIGURA 2-19** esquematiza los flujos energéticos en la generación a partir de recursos geotérmicos.

La eficiencia térmica de la planta se define como la razón entre la potencia generada y el calor que ingresa a la planta de potencia tal y como se muestra en la ecuación (2-18). No se considera por consiguiente el calor del recurso disponible en el yacimiento para caracterizar el ciclo ya que supone del estudio de otro tipo de variables ligadas a la geología del mismo.

$$\eta_{th} = \frac{\dot{W_{neta}}}{\dot{Q_{in}}}$$
(2-18)

FIGURA 2-19: FLUJOS ENERGÉTICOS EN UNA CENTRAL GEOTERMAL [12]

Donde la potencia neta W_{neta} , se define como la potencia generada en las turbinas, menos el calor para generación, que incluye la potencia utilizada para el accionamiento de las bombas y la potencia requerida por los ventiladores en los procesos de enfriamiento.

$$\dot{W_{neta}} = \dot{W_T} - \dot{W_B} - W_{Ventiladores}$$
(2-19)

El calor transferido desde el fluido geotermal a la central se define como el flujo másico de geo fluido, por la entalpia del mismo antes de entrar a la válvula de boca de pozo, menos el flujo másico reinyectado al sistema geotermal por su correspondiente entalpia. De esta forma, solo se considera el calor utilizado por el ciclo termodinámico, y no el total extraído del recurso.

$$\dot{Q_{in}} = m_{geo} h_{geo} - m_{rein} h_{rein}$$
⁽²⁻²⁰⁾

2.2.3. Lista de Equipos para centrales de Utilización Directa

En la siguiente sección, se presentan los componentes principales utilizados en plantas de vapor seco actualmente instaladas [10]. Corresponde a un listado de referencia, para mayor entendimiento de como el ciclo termodinámico es llevado a la práctica.

2.2.3.1. Sistema de suministro de vapor

- Válvula Boca de Pozo.
- Purificador de vapor.
- Removedor de partículas post válvula boca de pozo.
- Piping para el vapor con Sistema de aislamiento ambiental.
- Removedor de Humedad.

• Colector/Estanque de vapor.

2.2.3.2. Modulo Turbina Generador

- Turbina de vapor con accesorios.
 - Material del Rotor; Acero Inoxidable (12% Cr, 6% Ni, 1,5% Mo).
 - Material de los alabes; Acero Inoxidable (13% Cr).
 - Material del estator; Acero al carbón.
- Compresor de aire.
- Sistema de control.
- Generador de Electricidad con sistema de enfriamiento.
- Sistema de aceite de lubricación.

2.2.3.3. Módulo Condensación.

- Condensador c/bombas de condensador.
- Sistemas de remoción de gases no condensables.
 - Eyectores de vapor.
 - Bomba de Vacío.

2.2.3.4. Sistema de expulsión de calor

- Torre de Enfriamiento de Agua.
- Bombas de agua de enfriamiento c/motor.
- Tratamiento de aguas para refrigeración.

2.3. Centrales de Expansión Súbita

Las plantas geotermales de expansión súbita de una etapa, o plantas *simple flash* son actualmente el pilar de la industria de generación eléctrica a partir de recursos hidrotermales. Se alzan como la opción más económica para yacimientos bifásicos de tipo liquido dominante, los cuales son los más comúnmente observados en zonas de alto potencial geotérmico. Hacia Agosto del 2011, existían 169 unidades de este tipo en operación en 16 países alrededor del mundo, correspondiendo a un 29% aproximadamente de todas las centrales geotérmicas. En términos de potencia, las centrales de este tipo constituyen un 43% del total de la capacidad instalada, siendo esta capacidad por unidad entre los 3 a los 117 [MWe]. En promedio, una central de este tipo, produce cerca de 27 [MWe]. Para más detalles, examinar ANEXO A.

2.3.1. Sistema de Conversión Energética

Los procesos de flasheo o de expansión de forma súbita se refieren a aquellos en que existe una transición desde un líquido a alta presión hacia una mezcla de líquido y vapor, como resultado de la disminución de la presión del fluido por bajo su presión de vapor correspondiente a la temperatura en que está ocurriendo la aparición de la nueva fase.

En particular, para el caso de los geo fluidos, este tipo de procesos se presentan tanto de forma natural dentro del mismo reservorio, producto de la perdida de presión que experimenta el fluido geotermal al pasar a través de capas permeables de roca, como de forma inducida por el hombre, fruto de la perdida de carga por fricción en el pozo de producción y por contacto del fluido con la atmosfera, como también en una cámara especialmente diseñada para tal propósito, debido a la estrangulación generada en una válvula. Mientras, la posición en que se realiza la expansión puede ser importante en la operación de la planta, desde el punto de vista del entendimiento de la termodinámica del proceso de conversión energética, resulta irrelevante conocer este punto [10]. Para el análisis energético del sistema, se asume que en algún lugar del reservorio el geo fluido se encuentra en estado líquido y comprimido, que experimenta a continuación expansión y disminución de su presión en cierto punto dentro del sistema de conversión, lo que conlleva a que un porcentaje de su masa inicial se convierta en vapor, para que luego estas las dos fases presentes en la mezcla se separen vía algún mecanismo inducido, utilizando finalmente, la masa gaseosa para producir trabajo mecánico en una turbina, y reinvectando en el yacimiento la masa liquida sobrante. Un esquema simple de este proceso, al igual que los componentes involucrados, se muestra en la **FIGURA 2-20**.

FIGURA 2-20: ESQUEMA SIMPLIFICADO DE UNA CENTRAL DE EXPANSIÓN SÚBITA. FUENTE: Elaboración Propia basada en [10].

Respecto a la **FIGURA 2-20**, PP hace referencia a pozo de producción, que no es más que la salida de la perforación realizada para la extracción del recurso, junto con sus respectivos sistemas de monitoreo y control del flujo másico de geo fluido. Luego, las válvulas de boca de pozo, VBP, regulan el paso del fluido, incluso pueden ser las encargadas de realizar la expansión súbita y la consecuente formación de vapor a partir del geo fluido. Las dos fases en el fluido de trabajo son aisladas en el separador (para el caso de la **FIGURA 2-20**, un separador ciclónico SC), para que después de pasar por un sistema de válvulas y tuberías, y de retirarle la humedad aun contenida (RH), la parte gaseosa de la mezcla realice la carrera de trabajo en la turbina (T/G) y continúe con el proceso de condensación (C) gracias a la ayuda de la torre de enfriamiento (TE).- La parte liquida es reinyectada junto con el fluido de trabajo ya en estado líquido, a través de un pozo de inyección (PI).

Los cambios sufridos por el fluido de trabajo a lo largo del ciclo se representan en el diagrama T-s de la **FIGURA 2-21**. Tomando en cuenta que a la fuente en cuestión se le extrae el geo fluido en estado líquido y a elevada presión, el punto inicial (estado 1) se localiza en la curva de saturación liquida. El proceso de flasheo o de expansión súbita (curva 1-2) se realiza de forma idealmente isoentálpica, produciendo un fluido en donde conviven las fases gaseosa y liquida, lo que es representado por la posición del punto 2 dentro de la curva de saturación. Es en este punto donde se realiza la separación de fases, siendo el estado 3 representante del porcentaje másico de líquido en la mezcla, y el punto 4 el de vapor, que es el que a continuación se expande en la turbina (proceso 4-5) produciendo algo menos de potencia que el ideal, representado por el proceso isoentrópico (4-5s). El fluido de trabajo ya expandido es llevado a fase liquida vía un condensador con su respectivo sistema de enfriamiento (5-6). Este mismo fluido, junto con el porcentaje de líquido retirado en el separador, es reinyectado finalmente en el pozo de inyección, a menor temperatura a la que inicialmente fue extraído.

FIGURA 2-21: DIAGRAMA T-S, DE UNA CENTRAL DE EXPANSIÓN SÚBITA. FUENTE: Elaboración Propia.

2.3.2. Termodinámica del Proceso de Conversión

A continuación se presentan el análisis termodinámico de los procesos y los componentes de un ciclo de conversión energética de expansión súbita considerando los mismos supuestos explicitados en la sección 2.2.2.

2.3.2.1. Proceso de Expansión Súbita y Separación de Fases

La expansión súbita, esquematizada junto con el proceso de separación en la **FIGURA 2-22**, es modelada de manera tal que no se presentan perdidas de entalpia, si se presume que se trata de un proceso estacionario, espontaneo y adiabático [10], debido a que no existe trabajo externo involucrado en su ejecución. Se desprecian igualmente los cambios en la energía cinética y potencial, o perdidas por fricción dentro de las cañerías. Lo anterior se traduce en la relación mostrada en la ecuación (2-21).

$$h_1 = h_2 \tag{2-21}$$

FIGURA 2-22: ESQUEMA SIMPLIFICADO DE UN EQUIPO DE EXPANSIÓN SÚBITA CON SEPARADOR DE FASES. *FUENTE: Elaboración Propia.*

Una vez que la expansión se realiza, la mezcla debe ser separada en sus dos fases, de modo de enviar a la turbina solo la fracción seca del fluido geotermal. Este proceso se lleva a lugar en un separador de fases, y se considera, para una temperatura constante, una evolución isobárica [10], tal y como se puede observar en la **FIGURA 2-21**, representado por la recta 3-2-4 formada por los estados correspondientes del diagrama T-s.

$$T_2 = T_3 = T_4 \quad \Rightarrow \quad P_2 = P_3 = P_4 \tag{2-22}$$

La calidad o fracción seca x de la mezcla formada después del flasheo, se puede encontrar a partir del análisis de las entalpias a la entrada del separador y después de aisladas las fases, mediante el uso de la denominada regla de la palanca [11].

$$x_2 = \frac{h_2 - h_3}{h_4 - h_3} \tag{2-23}$$

Esta relación entrega la fracción másica de vapor de la mezcla, que coincide con la cantidad de vapor que ingresa a la turbina por unidad total de flujo másico en el separador.

Por otro lado, la fracción liquida de la mezcla, denominada en la literatura como salmuera del inglés "brine" [13], acarrea consigo casi la totalidad de los minerales disueltos existentes en el geo fluido en elevadas concentraciones, debido a la disminución del flujo másico producto de la extracción del vapor de la mezcla en el proceso de separación de fases. Esta salmuera debe ser reinyectada al mismo reservorio de operación, en orden de disminuir los efectos maliciosos que estos minerales pueden provocar en otras estructuras geológicas, así como aumentar la vida útil del yacimiento, recuperando algo del fluido que fue extraído en la producción y controlando la presión interna del reservorio. Para consultar detalles acerca del impacto ambiental de estos minerales, revisar ANEXO B.

2.3.2.2. Proceso de Expansión en la Turbina

Tomando las mismas presunciones que se usaron en el análisis del proceso de expansión en una turbina para una central de tipo vapor seco, explicadas en la sección 0, el trabajo producido por la turbina, así como la eficiencia isoentrópica de esta, funcionan de forma semejante, y por consiguiente las ecuaciones que rigen el proceso son iguales. Por otro lado, la potencia desarrollada por la turbina será menor, si se toma en cuenta que solo un porcentaje del fluido de trabajo es el que se expande en la turbina. La relación siguiente explicita esta variación.

$$\dot{W}_T = \dot{m}_v (h_4 - h_5) = x_2 \dot{m}_{FT} (h_4 - h_5)$$
(2-24)

Donde los subíndices corresponden a los estados representados en el diagrama T-s de la **FIGURA 2-21**.

Utilizando la regla de Baumann, y siguiendo un procedimiento análogo al mostrado en la sección Opara el caso de turbinas en centrales de utilización directa, la entalpia a la salida de la turbina, está determinada por la relación mostrada debajo.

$$h_{5} = \frac{h_{4} - A \left[1 - \frac{h_{6}}{h_{7} - h_{6}} \right]}{1 + \frac{A}{h_{7} - h_{6}}}$$
(2-25)

Dónde el factor a esta definido como

$$A \equiv 0,425(h_4 - h_{5s}) \tag{2-26}$$

2.3.2.3. Proceso de Condensado

Los supuestos y las ecuaciones de trabajo para el condensador son similares a las mostradas en el apartado 2.2.2.2. Sera reescritas en esta sección para adaptar los estados correspondientes a este proceso en un ciclo de expansión súbita.

$$\dot{m}_{AE}(h_y - h_x) = \dot{m}_{FT}(h_5 - h_6) \tag{2-27}$$

2.3.2.4. Proceso de Enfriamiento por Torre

Las ecuaciones de trabajo que describen el funcionamiento de la torre de enfriamiento en plantas de expansión súbita, son las mismas que para el caso de las plantas de vapor seco, explicitadas en la sección 2.2.2.3. No serán repetidas ya que corresponden a estados termodinámicos independientes a los mostrados en el diagrama T-s de la **FIGURA 2-21**.

2.3.2.5. Eficiencia de la Central

La eficiencia térmica de la central, tiene la misma forma a la mostrada en (2-28). Los parámetros de esa relación poseen pequeñas variantes para el caso de una central de expansión súbita. Luego, para el caso en estudio, la eficiencia térmica tiene la forma siguiente.

$$\eta_{th} = \frac{\dot{W_{neta}}}{\dot{Q_{in}}} = \frac{x_2 \dot{m_{FT}} (h_4 - h_5)}{\dot{m_{geo}} h_{geo} - \dot{m_{rein}} h_{rein}}$$
(2-28)

2.3.3. Lista de Equipos para centrales de Expansión Súbita

En la siguiente sección, se presentan los componentes principales utilizados en plantas de expansión súbita actualmente instaladas [10]. Corresponde a un listado de referencia, para mayor entendimiento de como el ciclo termodinámico es llevado a la práctica.

2.3.3.1. Sistema de suministro de vapor

- Válvula de control de boca de pozo.
- Vasijas separadoras.
 - Separador Ciclónico con tanque recolector de salmuera
- Válvula de retención de bola.
- Piping para el vapor con sistema de aislamiento ambiental.
- Removedor de Humedad.
- Colector/Estanque de vapor.
- Silenciadores para descarga atmosférica.
- Piping para salmuera con sistema de aislamiento.

2.3.3.2. Modulo Turbina Generador

Sin consideraciones extras respecto a sistemas de utilización directa, mostrado en sección 2.2.3.2.

2.3.3.3. Módulo Condensación.

Sin consideraciones extras respecto a sistemas de utilización directa, mostrado en sección 2.2.3.3.

2.3.3.4. Sistema de expulsión de calor

Sin consideraciones extras respecto a sistemas de utilización directa, expuesto en sección 2.2.3.4.

2.4. Centrales de Doble Expansión Súbita

Las plantas geotermales de expansión súbita de doble etapa corresponden a una mejora de diseño a los ciclos de etapa única, siendo capaces de producir cerca de un 15% a un 25% más de potencia mecánica para condiciones de geofluido iguales. Si bien, estas plantas son mucho más complejas en términos de diseño, más costosas, más complicadas de operar, y con un régimen de mantenimiento y gestión mucho más exhaustivo que sus antecesoras, el valor agregado del aumento de su capacidad generadora, usualmente justifica su instalación. Hacia Agosto de 2011, existían en operación 59 unidades de este tipo, distribuidas en 10 países alrededor del mundo, correspondiendo al 10% de todas las plantas geotermales. La potencia eléctrica de estas plantas es de 4,7 a 110 [MWe], siendo la potencia promedio cercana a los 30 [MWe] por unidad. Para más detalles, verificar ANEXO A.

Dado que muchos de los aspectos de las plantas de doble *flasheo* son similares a las de expansión súbita única, se hará referencia frecuentemente a la Sección 4, haciendo énfasis en cada caso de las diferencias entre ambos conceptos.

2.4.1. Sistema de Conversión Energética

Tal y como se explica en la sección 2.3.1, los procesos de flasheo o de expansión súbita conllevan a la aparición de una nueva fase dentro de un fluido, mediante la disminución de la presión del mismo por debajo de su presión de vapor. La diferencia esencial entre los sistemas de expansión súbita, y los de doble expansión súbita, es, como era de esperarse, la incorporación de una nueva etapa de separación y de una correspondiente red de vapor, ambas trabajando a menor presión que la línea principal, y utilizando el mismo líquido a alta presión que esta primera separación disgregó. La **FIGURA 2-23** muestra un diagrama esquemático de una planta de doble expansión súbita. El diseño de este tipo de centrales, difiere con el de las plantas de expansión de una etapa (**FIGURA 2-20**) en que un expansor o "flasher", denotado en **FIGURA 2-23** con la letra F, es instalado a posterior del separador ciclónico (SC) mediante una nueva línea, que envía el vapor obtenido en F hacia una segunda etapa de la turbina. La primera etapa de la turbina es alimentada desde el SC.

La turbina que se muestra en la **FIGURA 2-23** es una máquina de flujo único unidireccional, pero con dos admisiones. El vapor de baja presión, proveniente desde la segunda etapa de expansión, es admitido en el camino del vapor en el momento justo para combinarlo con el flujo parcialmente expandido de vapor a alta presión, proveniente del separador ciclónico. Son admisibles también otros diseños posibles cuando se trata de plantas de doble expansión, como por ejemplo, diferenciar dos turbinas distintas para ambos flujos, con un exhausto común a un solo condensador, o con condensadores distintos, operando a diferentes niveles de vacío.

FIGURA 2-23: ESQUEMA SIMPLIFICADO DE UNA CENTRAL DE DOBLE EXPANSIÓN SÚBITA. SE SUPRIME EL SISTEMA DE ENFRIAMIENTO POR TORRE, POR MOTIVOS DE ESPACIO. *FUENTE: Elaboración Propia basada en* [10].

Los cambios sufridos por el fluido de trabajo a lo largo del ciclo se representan en el diagrama T-s de la FIGURA 2-24. Considerando que el geo fluido se extrae en estado líquido y a elevada presión, el punto inicial (estado 1) se localiza en la curva de saturación liquida. El primer proceso de flasheo (curva 1-2) se realiza de forma isoentálpica, produciendo un fluido bifásico representado por la posición del punto 2 dentro de la curva de saturación. Desde el punto 2 se realiza la separación de fases del primer proceso de expansión, siendo el estado 3 representante del porcentaje másico de líquido en la mezcla, y el estado 4 el de vapor, que es el que se expande en la turbina HP o de alta presión (proceso 4-5) produciendo algo menos de potencia que el ideal, representado por el proceso isoentrópico (4-5s). Por otro lado, el porcentaje de líquido que no se expandió en el primer proceso de flasheo, se expande súbitamente por segunda vez, a una presión de trabajo menor a la del separador ciclónico, representado en el diagrama como el proceso isoentálpico (3-6). El nuevo vapor generado es separado del líquido remanente mediante un flasher o expansor, siendo la fracción liquida representada por el punto 7 en el diagrama T-s, y el vapor, por el estado 8. El vapor en 8 es vapor húmedo cercano a la saturación con título mayor a 0,85, hasta la saturación. El proceso (8-9) corresponde al paso del vapor anteriormente producido, por una segunda etapa de la turbina de baja presión (LP) o por otra turbina independiente a la primera. El flujo de ambas turbinas, es condensado mediante el proceso (10-11), siendo este líquido restante, junto con el obtenido en el flasher, inyectados al yacimiento desde donde se extrajo.

FIGURA 2-24: DIAGRAMA T-S, DE UNA CENTRAL DE DOBLE EXPANSIÓN SÚBITA. FUENTE: Elaboración Propia.

2.4.2. Termodinámica del Proceso de Conversión

A continuación se presentan el análisis termodinámico de los procesos y los componentes de un ciclo de conversión energética de doble expansión súbita.

2.4.2.1. Proceso de Expansión Súbita y Separación de Fases

Tomando como referencia la **FIGURA 2-24**, los dos procesos de expansión, (1-2) y (3-6), son analizados de la misma manera a la mostrada en la sección 2.3.2.1 para el proceso *flash* de una central de una única expansión súbita. Cada proceso genera una fracción de vapor dada por la calidad x de una mezcla bifásica. Prosigue, después de cada expansión, un respectivo proceso de separación, donde dicha fracción másica de vapor es diferenciada del líquido restante. Las ecuaciones que gobiernan este comportamiento, se exponen a continuación.

$$h_1 = h_2 \tag{2-29}$$

$$x_2 = \frac{h_2 - h_3}{h_4 - h_3} \tag{2-30}$$

$$h_3 = h_6$$
 (2-31)

$$x_6 = \frac{h_6 - h_7}{h_8 - h_7} \tag{2-32}$$

Las relaciones entre los flujos másicos del vapor (V) y de la salmuera (L) para las redes de alta presión (AP) y baja presión (BP) son:

$$\dot{m}_{VAP} = x_2 \dot{m}_{FT} = \dot{m}_4 = \dot{m}_5 \tag{2-33}$$

$$\dot{m}_{LAP} = (1 - x_2)\dot{m}_{FT} = \dot{m}_3 = \dot{m}_6 \tag{2-34}$$

$$\dot{m}_{VBP} = (1 - x_2) x_6 \dot{m}_{FT} = \dot{m}_8 \tag{2-35}$$

$$\dot{m}_{LBP} = (1 - x_2)(1 - x_6)\dot{m}_{FT} = \dot{m}_7 \tag{2-36}$$

Estos flujos másicos son útiles para el cálculo de la potencia generada en ambas etapas de la turbina, así como para obtener la cantidad de calor que se debe extraer en el proceso de condensación.

2.4.2.2. Proceso de Expansión en la Turbina

Usando los mismos supuestos que los considerados en la sección 2.3.2.2, se estudiará el comportamiento de la turbina de forma separada para los circuitos de alta y baja presión. Desde el punto de vista termodinámico esto no genera ninguna diferencia que si se considerase una sola turbina, de flujo único y con doble admisión de flujo, como la mostrada en el esquema general de la central de **FIGURA 2-23**. La turbina de alta presión (TAP), se rige de igual forma al caso de las centrales de una expansión única, siendo su trabajo, eficiencia, y la potencia mecánica, según las relaciones siguientes.

$$w_{TAP} = h_4 - h_5 \tag{2-37}$$

$$\eta_{TAP} = \frac{h_4 - h_5}{h_4 - h_{5,s}} \tag{2-38}$$

$$W_{TAP}^{\cdot} = m_{VAP}^{\cdot}(h_4 - h_5) = x_2 m_{FT}^{\cdot}(h_4 - h_5)$$
(2-39)

La entalpia a la salida de la turbina de alta presión, se obtiene a partir de la utilización de la regla de Baumann.

$$h_{5} = \frac{h_{4} - A \left[1 - \frac{h_{7}}{h_{8} - h_{7}} \right]}{1 + \frac{A}{h_{8} - h_{7}}}$$
(2-40)

Dónde el factor A está definido como

$$A \equiv 0.425(h_4 - h_{5s}) \tag{2-41}$$

Para el análisis de la turbina de baja presión (TBP), el flujo másico involucrado será mayor al de la etapa de alta presión, debido a que el vapor de baja presión proveniente del segundo proceso de expansión es admitido luego de superada la primera etapa de la turbina, en el camino del vapor ya expandido por esta, en el estado 5. Usando como referencia la **FIGURA 2-24**, el vapor parcialmente expandido se encuentra en el estado 5, que es mezclado con el vapor de baja presión, estando en el estado 9 preparado para ingresar a la turbina de baja presión. Es preciso aclarar que dicho punto no necesariamente está en la curva de saturación, puesto que está conformado por el vapor ya expandido en la primera etapa de la turbina, el que en general posee un título cercano a 0,85[]. Las propiedades del vapor mezclado en el estado 9, se obtienen a partir de la aplicación de la Primera Ley de la Termodinámica, y el principio de conservación de masa, tal y como se muestra a continuación.

$$\dot{m}_5 h_5 + \dot{m}_8 h_8 = (\dot{m}_5 + \dot{m}_8) h_9 \tag{2-42}$$

$$h_9 = \frac{x_2 h_5 + (1 - x_2) x_6 h_8}{x_2 + (1 - x_2) x_6}$$
⁽²⁻⁴³⁾

Ahora bien, el análisis del proceso de expansión de la turbina de alta presión, es análogo al resto de los estudios termodinámicos a turbinas ya presentados.

$$w_{TBP} = h_9 - h_{10} \tag{2-44}$$

$$\eta_{TBP} = \frac{h_9 - h_{10}}{h_9 - h_{10,s}} \tag{2-45}$$

$$\dot{W_{TBP}} = \dot{m_9}(h_9 - h_{10}) = (\dot{m_5} + \dot{m_8})(h_9 - h_{10})$$
(2-46)

La potencia generada total, corresponde a la suma de las potencias individuales, producidas en cada turbina.

$$\dot{W_{Total}} = W_{TAP} + \dot{W_{TBP}}$$
(2-47)

2.4.2.3. Proceso de Condensado

El análisis presentado en la sección 2.3.2.3 es análogo para el caso de las centrales con dos procesos de expansión súbita. Se debe tener en cuenta eso sí, que el flujo másico involucrado corresponde a la suma de ambas redes de vapor; la de alta y baja presión.

2.4.2.4. Proceso de Enfriamiento por Torre

El análisis presentado en la sección 2.3.2.4 es análogo para el caso de las centrales con dos procesos de expansión súbita.

2.4.2.5. Eficiencia de la Central

La eficiencia térmica de la central, tiene la misma forma a la mostrada en las relaciones (2-18) y (2-28), con la salvedad que la potencia neta de la central proviene del trabajo de dos turbinas independientes.

$$\eta_{th} = \frac{\dot{W_{neta}}}{\dot{Q_{in}}} = \frac{x_2 \dot{m_{FT}} (h_4 - h_5) + [x_2 \dot{m}_{FT} + (1 - x_2) x_6 \dot{m}_{FT}] (h_9 - h_{10})}{\dot{m_{geo}} h_{geo} - \dot{m_{rein}} h_{rein}}$$
(2-48)

2.4.3. Lista de Equipos para centrales de Doble Expansión

Súbita

En el siguiente capítulo, se presentan los componentes principales utilizados en plantas de doble expansión súbita actualmente instaladas [10]. Corresponde a un listado de referencia, para mayor entendimiento de como el ciclo termodinámico es llevado a la práctica.

2.4.3.1. Sistema de suministro de vapor

- Válvula de control de boca de pozo.
- Válvula de retención de bola.
- Vasijas de expansión.
- Vasijas separadoras.
 - Separador Ciclónico con tanque recolector de salmuera para línea de alta presión.
 - Flasher o expansor en línea de baja presión.
- Piping para el vapor con sistema de aislamiento ambiental.
- Removedor de Humedad para líneas de vapor de alta y baja presión.
- Colector/Estanque de vapor de alta y baja presión.
- Silenciadores para descarga atmosférica.
- Piping para salmuera con sistema de aislamiento.

2.4.3.2. Modulo Turbina Generador

- Sistema turbina generador de vapor de dos presiones
 - Cilindro único con admisión dual, o dos cilindros distintos con admisión independiente.

2.4.3.3. Módulo Condensación.

Sin consideraciones extras respecto a sistemas de utilización directa, mostrado en sección 2.2.3.3.

2.4.3.4. Sistema de expulsión de calor

Sin consideraciones extras respecto a sistemas de utilización directa, expuesto en sección 2.2.3.4.

2.5. Centrales de Ciclo Binario

Las plantas geotermales de ciclo binario son las que, desde el punto de vista del ciclo termodinámico, se acercan más a las configuraciones de las actuales plantas de generación energética a partir de combustible fósil o a las plantas nucleares. Todas estas configuraciones trabajan con un ciclo cerrado, en donde el fluido que se expande en la turbina recorre un circuito independiente al de la fuente calorífica, la cual transfiere calor hacia el fluido de trabajo mediante un intercambiador de calor. Este fluido, seleccionado por sus propiedades termodinámicas relacionadas con bajos puntos de evaporación y elevadas capacidades calóricas, recibe calor desde el geofluido, se evapora para expandirse luego en la turbina de vapor y se condensa para finalmente reingresar al intercambiador de calor, mediante una bomba de alimentación. Teóricamente, este fluido no sufre perdidas mientras cambia de estado dentro del ciclo.

Hacia Agosto de 2011, las plantas geotérmicas con ciclo binario eran las con mayor presencia en el mundo, con cerca de 235 unidades en operación, pero aportando tan solo 708 [MWe] de potencia en 15 países. Constituyen cerca del 40% en cuanto a cantidad respecto a todas las plantas geotermales en operación, pero tan solo el 6.6% respecto a la capacidad de generación que poseen, con un promedio por unidad cercano a 3 [MWe]. Un porcentaje no determinado de estas plantas corresponden a plantas de ciclo combinado con otra central de tipo flash, recuperando más potencia a partir de la salmuera geotérmica.

2.5.1. Sistemas Binarios Básicos.

Si la temperatura de una fuente geotermal es cercana a los 150 [°C] o menor (recursos de mediana entalpía) se vuelve complejo, pero no imposible, la construcción de una planta de expansión súbita que use dicho recurso de forma eficiente y económica. La complejidad se relaciona sobre todo con la decantación e incrustación de carbonato de calcio producto de la expansión rápida en los separadores ciclónicos, y los problemas para que el líquido geotermal fluya espontáneamente a la atmosfera [10]. Una forma de prevenir estos problemas, seria producir el geofluido como un líquido presurizado, mediante la acción de bombas bajo pozo, evitando de esta forma el cambio de fase subterráneo. Utilizar este fluido a alta presión en una cámara de expansión súbita directamente, no es lo más sabio termodinámicamente hablando, considerando que ya se había utilizado energía para la presurización del geofluido. Se puede, por otro lado, hacer pasar el geofluido como un líquido comprimido a través de un intercambiador de calor, para, luego de entregar energía a algún otro fluido de trabajo, reingresarlo aun en estado líquido mediante pozo de inyección. Es esta la forma más simple en que se presentan las plantas geotermales de ciclo binario, tal y como muestra la FIGURA 2-25[10], donde se ve cómo se acopla una bomba (B) en el pozo de producción (PP) para elevar la presión del geofluido y permitir que este se presente en estado líquido dominante o sub-saturado dentro de la red primaria. Un removedor de arena (RA) se hace necesario para disminuir los efectos de la corrosión del Piping y los tubos de los intercambiadores de calor. Después de entregar calor al sistema de calentamiento y generación de

vapor (E y PC), el ciclo primario finaliza reinyectando el geofluido a la fuente, previo paso por un filtro final (FF).

En general en este tipo de plantas se utilizan dos etapas en el proceso de calentamiento y generación de vapor; una previa a la ebullición, donde el fluido de trabajo después de ser condensado es calentado mediante un pre calentador (PC), y una siguiente, en donde se recoge este líquido saturado a alta temperatura, y se transforma en vapor sobrecalentado dentro del evaporador (E), gracias al intercambio de calor con el fluido geotérmico.

FIGURA 2-25: ESQUEMA SIMPLIFICADO DE UNA CENTRAL DE CICLO BINARIO. EN ROJO SE MUESTRA EL CICLO PRIMARIO DEL FLUIDO GEOTÉRMICO, Y EN AZUL EL SECUNDARIO DEL FLUIDO DE TRABAJO Y LA GENERACIÓN DE POTENCIA. *FUENTE: Elaboración Propia basada en* [10].

A continuación, el fluido de trabajo en forma de vapor sobrecalentado ingresa a la turbina donde ocurre la generación de potencia, para que luego sea llevado a fase liquida en el condensador, desde donde se bombea nuevamente al sistema de calentamiento y ebullición. Este desarrollo del fluido de trabajo, se exhibe como un proceso termodinámico en el diagrama Presión - Entalpía de la **FIGURA 2-26**.

FIGURA 2-26: DIAGRAMA P-H PARA UNA PLANTA BINARIA BÁSICA. FUENTE: Elaboración Propia.

2.5.2. Termodinámica del Proceso de Conversión

A continuación se presentan el análisis termodinámico de los procesos y los componentes de un ciclo de conversión energética binario.

2.5.2.1. Proceso de Expansión en la Turbina

El análisis para una turbina "binaria" es igual al de una turbina a vapor con pequeñas variaciones según el estudio realizado para plantas vapor directo, sección 2.2.2, relacionadas con el uso de un fluido de trabajo diferente al agua. Con los supuestos usuales de operación adiabática y mediante régimen continuo, y despreciando también los términos de energía cinética y potencial del fluido de trabajo, la potencia desarrollada por la expansión de la turbina binaria, se muestra debajo.

$$\dot{W}_t = \dot{m}_{FT}(h_1 - h_2) = \dot{m}_{FT}\eta_t (h_1 - h_{2,s})$$
⁽²⁻⁴⁹⁾

Donde los subíndices hacen referencia a los estados termodinámicos de la FIGURA 2-26, y η_t corresponde a la eficiencia isoentrópica de la turbina, la cual se asume conocida.

2.5.2.2. Proceso de Condensado

El análisis presentado en la sección 2.2.2.2 es análogo para el caso de las centrales de ciclo binario. Se debe tener en cuenta eso sí, que el fluido de trabajo en cuestión es distinto a agua, por lo cual sus propiedades termodinámicas dependerán de su selección.

2.5.2.3. Proceso de Enfriamiento por Torre

El análisis presentado en la sección 2.2.2.3 es análogo para el caso en estudio.

2.5.2.4. Proceso de Bombeo.

Usando las mismas presunciones que para el proceso de expansión, el análisis del proceso de bombeo es parecido al caso de las centrales de vapor seco, sección 3.4.5. La potencia entregada al flujo de trabajo, será:

$$\dot{W}_{b} = \dot{m}_{FT}(h_{4} - h_{3}) = \frac{\dot{m}_{FT}(h_{4,s} - h_{3})}{\eta_{t}}$$
⁽²⁻⁵⁰⁾

2.5.2.5. Procesos de Intercambio de Calor: Precalentador y Evaporador.

El análisis de intercambio de calor para un ciclo binario, donde el fluido geotermal entrega parte de su energía térmica al fluido de trabajo en el ciclo, es una aplicación más de los principios de la termodinámica y la conservación de masa. La **FIGURA 2-27** esquematiza el balance energético de los intercambiadores de calor en cuestión.

Se asume que el sistema en análisis es adiabático, es decir, que ambos intercambiadores están bien asilados del medio, y el traspaso de calor ocurre solo desde el fluido geotermal al fluido de trabajo. Junto con esto, se supone flujo estable, y se desprecian las variaciones de energía potencial y cinética entre las entradas y salidas de los fluidos. La ecuación de balance del sistema, será luego:

$$\dot{m}_{FG}(h_a - h_c) = \dot{m}_{FT}(h_1 - h_4) \tag{2-51}$$

Si se considera que el líquido geotermal posee bajas cantidades de gases y solidos disueltos, este se puede asumir de composición similar al agua. En tal caso, la ecuación 6.3-3, puede reescribirse utilizando el calor específico promedio del recurso y la variación de la temperatura.

$$\dot{m}_{FG}\overline{c_{FG}}(T_a - T_c) = \dot{m}_{FT}(h_1 - h_4)$$
(2-52)

FIGURA 2-27: EVAPORADOR Y PRECALENTADOR EN UNA PLANTA DE CICLO BINARIO. EL COLOR ROJO REPRESENTA EL CICLO PRIMARIO DEL FLUIDO GEOTERMAL (FG) Y EL COLOR AZUL AL CICLO SECUNDARIO, DEL FLUIDO DE TRABAJO (FT). *FUENTE: Elaboración Propia*.

FIGURA 2-28: DIAGRAMA TEMPERATURA- CALOR TRANSFERIDO PARA EL PRECALENTADOR Y EL EVAPORADOR, EN UNA PLANTA DE CICLO BINARIO SIMPLE. FUENTE: Elaboración Propia basada en [10].

El proceso de intercambio de calor entre el fluido geotermal y el de trabajo, se representa en el diagrama T-q de la **FIGURA 2-28**. En este diagrama, la abscisa representa la cantidad de calor que se transfiere desde el fluido geotermal al fluido de trabajo, y la ordenada la variación de temperatura para ambos fluidos; el fluido de trabajo, representado en naranjo, y el geofluido, representado en azul.

El pre calentador (PC), provee de calor sensible para elevar la temperatura del fluido de trabajo hasta su punto de evaporación, representado por el estado 5. El proceso de evaporación del fluido de trabajo ocurre dentro del evaporador (E), y al tratarse de un proceso de cambio de fase, se representa mediante la isoterma (5-1). El punto dentro del proceso de intercambio, donde el fluido de trabajo y el geofluido presentan la menor diferencia de temperatura, es denominado *pinch point,* cuyo valor se representa en el diagrama como ΔT_{pp} .

Los estados 4, 5 y 1 se obtienen conociendo las especificaciones del ciclo termodinámico; el estado 4 corresponde al líquido que sale de la bomba posterior al condensador, el estado 5 corresponde al líquido saturado a la presión de evaporación, antes de ingresar al evaporador, y el estado 1 al vapor saturado antes de ingresar a la turbina. Luego, las ecuaciones de cada intercambiador de calor por separado serían las que a continuación se enuncian.

$$\dot{m}_{FG}\overline{c_{FG}}(T_b - T_c) = \dot{m}_{FT}(h_5 - h_4)$$
(2-53)

$$\dot{m}_{FG}\overline{c_{FG}}(T_a - T_b) = \dot{m}_{FT}(h_1 - h_5)$$
(2-54)

Donde la relación (2-53) representa el balance del pre calentador y la (2-54) del evaporador.

La temperatura del geofluido al ingreso del evaporador T_a se asume siempre conocida, mientras que la temperatura *pinch* es entregada por el fabricante del intercambiador, lo que permite encontrar T_b , a partir del valor conocido T_5 .

2.5.2.6. Eficiencia de la Central

Utilizando la Primera Ley de la Termodinámica, la eficiencia térmica del ciclo secundario, viene dada por la relación de la potencia que genera el ciclo, respecto a la que ingresa al mismo.

$$\eta_{th} = \frac{\dot{W_{neta}}}{\dot{Q_{in}}} = \frac{\dot{W_{neta}}}{\dot{Q_{PC/E}}}$$
(2-55)

Incluyendo las entalpias, así como el calor utilizado en la condensación del fluido de trabajo, la ecuación anterior puede reescribirse como sigue.

$$\eta_{th} = 1 - \frac{\dot{Q}_{c}}{Q_{PH/E}} = 1 - \frac{h_2 - h_3}{h_1 - h_4}$$
⁽²⁻⁵⁶⁾

2.5.3. Fluidos de Trabajo.

La **TABLA 2-2** enlista algunos candidatos típicos usados como fluidos de trabajo en centrales binarias, además de sus propiedades termodinámicas más relevantes según esta característica. Se adjunta el agua pura para el ejercicio de comparación.

Fluido	Formula	Peso Molecular	T _c	P _c	C _P Vapor	Calor Latente
		[gr/mol]	[°C]	[MPa]	[J/kgK]	[kJ/kg]
Propano	C3H8	44,1	96,95	4,236	2395,5	292,13
Isobutano	i-C4H1	58,12	135,92	3,685	1981,4	303,44
Butano	C4H10	58,12	150,8	3,718	1965,6	336,44
Pentano	C5H12	72,15	193,9	3,240	1824,1	349
Amoniaco	NH3	17,03	133,65	11,627	3730,71	1064,38
R-114	ClF ₂ C-CClF ₂	170,9	145,68	3,257	669,9	135,9
Agua	H ₂ O	18	374,14	22,089	1943,2	2391,8

TABLA 2-2: PROPIEDADES TERMODINÁMICAS DE ALGUNOS FLUIDOS DE TRABAJO USADOS EN CENTRALES
BINARIAS [14].

Otra característica importante de los fluidos de trabajo candidatos es la forma de la curva de saturación en el diagrama T-s. Dicha curva para el agua tiene una pendiente negativa en todo momento, lo que implica, que para los procesos de expansión en las turbinas a vapor, el exhausto presente cierta cantidad de humedad si es que el vapor a la entrada de esta no se encuentra lo suficientemente sobrecalentado. Por otro lado, algunos hidrocarbonos y refrigerantes presentan una pendiente positiva o retrograda como se le denomina en la literatura [10] en algunos tramos de la curva de vapor saturado Esta pendiente positiva en la curva hace que no sea necesario sobrecalentar el fluido de trabajo para tener vapor libre de humedad después de la turbina, siendo solo necesaria la condición de saturación para expandir el fluido en la turbina.

2.5.4. Lista de Equipos para Centrales Binarias

En la siguiente sección, se presentan los componentes principales utilizados en plantas de ciclo binario actualmente instaladas [10]. Corresponde a un listado de referencia, para mayor entendimiento de como el ciclo termodinámico es llevado a la práctica.

2.5.4.1. Bombas y motores de bajo pozo.

- Bombas centrifugas multietapas, o bombas sumergibles para la extracción del fluido geotermal y su ingreso al conjunto de intercambio de calor.
- 2.5.4.2. Sistema de suministro de fluido geotérmico.
 - Válvula de control Fluido Geotérmico
 - Piping para salmuera con sistema de aislamiento.
 - Sistema de remoción de arenas.
- 2.5.4.3. Intercambiadores de calor salmuera/fluido de trabajo
 - Precalentador: Cilindro Horizontal liquido/liquido de tipo carcaza y tubos, con el fluido geotermal en el los tubos t el fluido de trabajo en el exterior
 - Evaporador/Sobrecalentador: Intercambiador de cilindro horizontal o caldera, con sección de sobrecalentador opcional, y con el fluido geotermal en la sección tubular del intercambiador.

2.5.4.4. Modulo Turbina Generador

• Sistema turbina generador con consideraciones para el fluido de trabajo seleccionado.

2.5.4.5. Módulo Condensación del fluido de trabajo

- Condensador.
- Bombas de Condensado.
- Tanque de recepción de fluido con capacidad suficiente para almacenar toda la carga de fluido de trabajo.
- Bombas de evacuación del fluido de trabajo para labores de mantención.

2.5.4.6.Sistema de expulsión de calor

• Sin equipos extras respecto a lo enunciado anteriormente para los otros sistemas de generación energética para sistemas de enfriamiento húmedo. Sistema de enfriamiento mediante aeroenfriadores es factible en este tipo de plantas.

3. ANALISIS ENERGÉTICOS DE PLANTAS GEOTÉRMICAS.

3.1. Metodología general de resolución mediante software EES

3.1.1. Ingreso de Funciones y Conformación de un Código

Se utiliza EES[15] (Engineering Equation Solver), para la resolución de los balances energéticos a partir de las ecuaciones que relacionan los estados termodinámicos los ciclos para cada uno de las configuraciones antes descritas. La función principal suministrada por EES es la solución de un grupo de ecuaciones algebraicas, la resolución de ecuaciones diferenciales, y la optimización de parámetros desde modificaciones multivariable. La particularidad de EES frente a otros programas numéricos existentes, y que justifica su uso en el presente trabajo, es su capacidad de suministrar muchas estructuras útiles para el cálculo ingenieril de propiedades matemáticas, termofísicas y termodinámicas. Por ejemplo, las tablas de vapor son ejecutadas de tal forma que cualquier propiedad termodinámica puede ser obtenida a partir de una función que se construye citando a otras dos propiedades de estado ya conocidas. Es posible trabajar de manera similar con los fluidos refrigerantes aptos para ciclos binarios. Las tablas de aire están construidas como lo están las funciones psicométricas así como para la mayoría de los gases más comunes. La **FIGURA 2-12** muestra cómo es posible obtener una alguna propiedad termodinámica en específico para un fluido en particular a partir de datos conocidos.

FIGURA 3-1: EJEMPLO INGRESO DE FUNCIONES PARA LA OBTENCIÓN DE PROPIEDADES TERMODINÁMICAS EN EES. *FUENTE: Elaboración Propia.*

Las funciones de las propiedades termodinámicas, como entalpía y volumen, requieren un formato especial. El primer argumento de la función es el nombre de la sustancia, en este caso vapor de agua. Las siguientes condiciones, son las variables independientes precedidas por una letra identificativa y un signo "igual". Las letras que se aceptan son T, P, H, U, S, V, y X, correspondientes a temperatura, presión, entalpía específica, energía interna específica, entropía

específica, volumen específico, y calidad (Título). Para funciones psicrométricas, otras letras aceptadas son W, R, D, y B, correspondientes a humedad absoluta, humedad relativa, temperatura de punto de rocío, y temperatura de bulbo húmedo. De esta forma, a partir de los datos de entrada de cada ciclo, los supuestos considerados en la operación de cada configuración de ciclo, y las ecuaciones que modelan el funcionamiento termodinámico de los equipos que participan en la generación de potencia, es posible conformar un código para realizar el balance energético de cada central en estudio, a través de la concatenación de los estados o puntos termodinámicos entre sí. Para disminuir el número de programaciones a realizar, se trabajó con variables en forma de arreglos, tal y como se ve en el nombre de la variable de la **FIGURA 2-12**. El índice [i] corresponde a un contador que permitía el ingreso de ocho temperaturas distintas en una sola ejecución del código, manteniendo fijos el resto de los parámetros de entrada, mientras que el subíndice (_1), representaba el punto de estado al cual pertenecía la propiedad. Así, manteniendo la presión de entrada al ciclo constante, fue posible encontrar los estados termodinámicos de cada ciclo para ocho temperaturas del recurso a la vez, siendo posible incluso la optimización de los parámetros de desempeño, cuando existía algún grado de libertad en la configuración programada.

3.1.2. Criterios de Detención y Métodos de Optimización

Cuando el sistema de ecuaciones está completamente consolidado, y el número de ecuaciones y de variables es el mismo, el software entregara la solución a cada una de las incógnitas, si los resultados cumplen los criterios de detención de cálculos. Los criterios son el número de repeticiones, el máximo relativo residual, el máximo cambio en el valor de una variable desde una repetición hasta el siguiente y el tiempo transcurrido. Por defecto en el software los cálculos se pararán cuando hayan ocurrido 1000 repeticiones, el tiempo haya sobrepasado de los 3600 segundos, el residuo máximo sea menor que 10^{-6} o el máximo sea que $e10^{-9}$ [15].

Si dentro del sistema de ecuaciones en el balance de un ciclo existe un grado de libertad, EES[15] es capaz de minimizar o maximizar la variable seleccionada utilizando alguno de los métodos de optimización que incluye; el método de la sección de oro (Golden Section) o el método de curva de aproximación de los mínimos cuadrados. El método de la curva de aproximación de los mínimos cuadrados es normalmente el más rápido, pero el método Golden Section es más fiable. De manera similar, para problemas de optimización multidimensionales EES incluye cuatro métodos para la búsqueda de soluciones; el método de búsqueda directa, el algoritmo de la métrica variable, el método "Nelder-Mead", y la búsqueda mediante algoritmos genéticos. El algoritmo métrico variable utiliza derivadas numéricas, pero suele encontrar valores erróneos si el óptimo se obliga a estar cercano a los límites impuestos a la variable. El algoritmo de Nelder-Mead es especialmente efectivo para hacer búsquedas en los valles o mínimos, mientras que los métodos de crecimiento genético casi siempre encuentran el óptimo global, pero suelen ser muchísimo más lentos que sus contendores.

3.2. Centrales de Vapor Seco

En el presente subcapítulo se presenta el balance energético realizado a un ciclo termodinámico orientado a la generación de energía a partir de un recurso geotérmico de tipo vapor seco. El análisis en cuestión considera distintas temperaturas y presiones de entrada al ciclo, distintos flujos másicos de ingreso dados por una curva de producción, así como temperaturas de condensación variables, producto del uso de tres condiciones climáticas disimiles para la operación del ciclo.

3.2.1. Datos de Entrada, Supuestos y Metodología

El esquema de la **FIGURA 3-2** representa la configuración de la planta a la cual se le realiza el análisis energético del ciclo. Los números representan los puntos o estados termodinámicos a los cuales se les calculan sus propiedades. Con ellas, y mediante el uso de las relaciones explicitadas en la sección 2.2.2, se hace el balance energético del ciclo en busca de las propiedades de performance de la central; potencia neta y eficiencia térmica.

FIGURA 3-2: CONFIGURACIÓN DE ESTUDIO, CICLO DE VAPOR SECO. FUENTE: Elaboración Propia basada en [10].

Para la realización de un estudio general del ciclo, las características termodinámicas y termofísicas del fluido geotermal se asumen iguales a las del agua pura, considerando lo dificultoso que resulta incorporar alguna composición específica para el geo fluido, más aun si se asume que la influencia de estos componentes en las propiedades termodinámicas del fluido no son notables, y suelen además ser obviadas en estudios de similar índole [16]. Al tratarse de un recurso de tipo vapor seco, se presume que el fluido sale del yacimiento en condición sobrecalentada o saturada, lo que hace innecesario el análisis termodinámico de los equipos anteriores a la entrada de la turbina, tomando en cuenta además que en este tipo de configuración, el fluido que realiza el trabajo

es justamente el geotermal. Luego, como el geofluido se asume agua, la influencia de los equipos pre-turbina es nula.

Las variables en este estudio corresponden a la temperatura de salida del geofluido (entrada a la turbina según los supuestos considerados), la presión de entrada al ciclo (coincidente con la presión de operación de la turbina), y la temperatura de operación del condensador. Al tratarse de un recurso de alta entalpia, la definición de esta calificación impone una temperatura de salida del geofluido mínima igual a 150°C. El límite superior de temperatura se fija en 325°C, lo que corresponde a un valor acorde a las temperaturas máximas observadas en recursos de este tipo. De modo similar, la presión de salida del geofluido está limitada por las denominadas curvas de producción de un pozo [10], que relacionan el flujo másico del geofluido en función de la presión de boca de pozo, o presión después de superada la válvula boca de pozo. Según estas curvas, existen dos restricciones para la presión de salida del geofluido; cuando la abertura de la válvula es tal que coincide con la presión de condensación P_c , donde no existiría salto entálpico posible, y cuando la válvula en cuestión se encuentre completamente cerrada P_{ce} , donde no existiría flujo de vapor hacia la planta. Luego, estas dos presiones limitan a las presiones de estudio al rango $[P_c, P_{ce}]$. La literatura entrega parametrizaciones de estas curvas, de entre la cuales se elige una para el presente estudio, mostrada en la **FIGURA 3-3**. La ecuación de esta curva se presenta en (3-1).

FIGURA 3-3: CURVA DE PRODUCCIÓN PARA UN POZO GEOTÉRMICO [10]

$$\dot{m}_1 = 100,23 - 2,34P + 0,4025P^2 - 0,102P^3 \tag{3-1}$$

En particular, cada temperatura tiene una presión máxima intrínseca, dada por su presión de saturación correspondiente. Esto, debido a que por encima de esta presión se ingresa a una región denominada de agua subsaturada, estado en el cual, resulta imposible la generación de potencia a partir de una turbina de vapor. Luego, el límite superior para las presiones de estudio depende directamente de la temperatura que se esté analizando, siendo la presión de saturación P_{sat} o la presión para la cual la válvula boca de pozo se encuentre cerrada, P_{ce} .

En cuanto a la temperatura del condensador, esta se determina a partir del estudio del conjunto condensador y torre de enfriamiento para tres climas distintos, que a su vez entregan un paquete de propiedades necesarias para la realización del balance en la torre de enfriamiento; temperatura ambiental, presión atmosférica, y humedad relativa del ambiente. Por simplicidad, los estudios se realizarán suponiendo una temperatura de condensación, $T_c = 40$ [°C], correspondiente a un clima templado. En el ANEXO G, se detalla cómo realizar el estudio del sistema condensador - torre de enfriamiento, para los otros climas propuestos.

La **TABLA 3-1** resume los datos de entrada antes explicados, agregado además otros de importancia para el análisis.

Temperatura Fluido Geotermal	[°C]	Entre 150° a 325°			
Proción do Entrodo al Cialo	[how]	Caso General: Limite $\min[P_{sat}(T_1), P_{ce} = 17,5]$			
Presion de Entrada al Cicio	[bar]	Optimización: Límite superior variable entre 1,1 a 17,5.			
Temperatura Condensación	[°C]	Fija en $T_{c,t} = 40^{\circ}$, posible de variar según ANEXO G			
Eficiencia Isoentrópica de la Turbina	[%]	85			
Capacidad Calórica del Agua	[kJ/(kgK)]	4,2			

TABLA 3-1: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE VAPOR SECO

3.2.2. Resultados

3.2.2.1. Variación de la Potencia

La **FIGURA 3-4** grafica el comportamiento de la potencia respecto a la variación de la presión de boca de pozo, para cada una de las temperaturas en estudio. Los detalles de los datos mostrados, puede verificarse en el ANEXO C.

FIGURA 3-4: POTENCIA NETA EN CENTRALES DE VAPOR SECO

3.2.2.2. Maximización de la Potencia

La **TABLA 3-2** muestra las temperaturas en estudio con la presión de boca de pozo correspondiente al punto en que se maximiza la potencia neta de la central, además de la eficiencia térmica para cada condición de operación. La **FIGURA 3-5** grafica lo expuesto en la **TABLA 3-2**.

<i>T</i> ₁	P _{VBP}	Potencia	η_{th}
[°C]	[bar]	[kW]	
150	4,755	46889	0,1783
175	8,12	51866	0,1984
200	8,139	53732	0,2021
225	8,283	55663	0,2052
250	8,105	57674	0,208
275	8,128	59769	0,2118
300	8,052	61958	0,2154
325	8,091	64242	0,2197

TABLA 3-2: PRESIONES QUE MAXIMIZAN LA POTENCIA DE LA CENTRAL, PARA CADA TEMPERATURA EN
ESTUDIO

FIGURA 3-5: PRESIÓN DE ENTRADA AL CICLO ÓPTIMA PARA GENERAR LA POTENCIA MÁXIMA PARA CADA TEMPERATURA EN ESTUDIO

El diagrama T-s de los estados termodinámicos para las condiciones del fluido geotermal que produce la mayor potencia de entre todos los casos, correspondientes a $T_1 = 325$ [°C], $P_1 = 8,09$ [bar], $T_c = 40$ [°C] y con la curva de producción mi₁, se exhibe en la **FIGURA 3-6**.

FIGURA 3-6: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA, CON $T_1 = 325 \ [^{\circ}C], P_1 = 8,16 \ [bar], CURVA DE PRODUCCIÓN <math>\dot{m_1} \ge T_c = 40 \ [^{\circ}C]$

3.2.2.3. Variación de la Eficiencia Térmica

La **FIGURA 3-7** grafica el comportamiento de la eficiencia térmica del ciclo respecto a la variación de la presión de boca de pozo, para cada una de las temperaturas en estudio. Los detalles de los datos mostrados, puede verificarse en el ANEXO C.

FIGURA 3-7: EFICIENCIA TÉRMICA EN CENTRALES DE VAPOR SECO.

3.2.2.4. Maximización de la Eficiencia Térmica

La TABLA 3-3 muestra las temperaturas en estudio con la presión de boca de pozo correspondiente al punto en que se maximiza la eficiencia térmica del ciclo, además de la potencia generada para tales condiciones de entrada. La FIGURA 3-8 grafica lo mostrado en la TABLA 3-3.

<i>T</i> ₁	P _{VBP}	Potencia	η_{th}
[°C]	[bar]	[kW]	
150	4,755	45989	0,198
175	8,913	51672	0,21
200	15,53	25315	0,237
225	17,5	3658	0,241
250	17,49	4006	0,245
275	17,5	3941	0,248
300	17,49	4231	0,252
325	17,49	4353	0,257

TABLA 3-3: PRESIONES QUE MAXIMIZAN LA EFICIENCIA TÉRMICA DEL CICLO, PARA CADA TEMPERATURA EN ESTUDIO.

FIGURA 3-8: PRESIONES Y EFICIENCIAS TÉRMICAS MÁXIMAS, PARA CADA TEMPERATURA EN ESTUDIO EN CENTRALES DE VAPOR SECO.

El diagrama T-s de los estados termodinámicos para las condiciones del fluido geotermal que produce la mayor eficiencia térmica de entre todos los casos, correspondientes a $T_1 = 325$ [°C], $P_1 = 17,49$ [bar], $T_c = 40$ [°C] y con la curva de producción m₁, se presenta en la **FIGURA 3-9**

FIGURA 3-9: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA, CON $T_1 = 325 \ [^{\circ}C], P_1 = 17,49 \ [bar], CURVA DE PRODUCCIÓN <math>\dot{m_1} \ge T_c = 40 \ [^{\circ}C]$

3.3. Centrales de Expansión Súbita

En el presente capítulo se presenta el balance energético realizado a un ciclo termodinámico para una planta de expansión súbita orientada a la generación de energía a partir de un recurso geotérmico de tipo líquido dominante. El análisis en cuestión considera distintas temperaturas y presiones de entrada al ciclo, distintos flujos másicos de ingreso relacionados con la presión de entrada al ciclo, así como temperaturas de condensación variables mediante la imposición de tres condiciones climáticas distintas, cuya explicación se encuentra en el ANEXO G.

3.3.1. Datos de Entrada, Supuestos y Metodología

El esquema de la **FIGURA 3-10** representa la configuración de la planta a la cual se le realiza el análisis energético del ciclo. Los números representan los puntos o estados termodinámicos a los cuales se les calculan sus propiedades. Con ellas, y mediante el uso de las relaciones explicitadas en la sección 2.3.2, se hace el balance energético del ciclo, en busca de las propiedades de performance de la central; potencia neta de la central y eficiencia térmica.

FIGURA 3-10: CONFIGURACIÓN DE ESTUDIO, PLANTA DE EXPANSIÓN SÚBITA. FUENTE: Elaboración Propia basada en [10].

Para la realización de un estudio general del ciclo, las características termodinámicas y termofísicas del fluido geotermal se asumen iguales a las del agua pura. Al tratarse de un recurso de tipo líquido dominante, se considera que el fluido sale del yacimiento en condición liquido saturado, imponiendo que la calidad del fluido en la entrada es igual a cero. A diferencia del caso de las centrales de vapor seco, el proceso de expansión súbita y separación de fases supone realizar un estudio de como ocurre esta transformación, y la dependencia del comportamiento del ciclo respecto a este punto. Incluso, la presión y temperatura de entrada al ciclo solo funcionan como un límite ante la presión (temperatura) en que se realiza la separación de fases, de cuya variación depende la optimización del proceso de expansión y generación de potencia. Para simplicidad del estudio, se asume que el proceso de expansión súbita ocurre en la válvula boca de pozo mientras que el de separación de fases ocurre en el separador ciclónico, lo que concuerda con los supuestos considerados para el fluido en la entrada del ciclo. De esta manera, la presión del recurso corresponderá a la presión de saturación según la temperatura del mismo, y la presión de entrada al ciclo coincidirá con la presión boca de pozo, que además de brindar el límite superior para la presión del separador ciclónico, limita el flujo másico de trabajo, según la curva de producción de la FIGURA 3-3.

Las variables en este estudio corresponden a la temperatura del geofluido a la entrada del ciclo, la presión del fluido geotermal a la entrada del ciclo termodinámico (presión boca de pozo, P_{VBP}), la temperatura (presión) en que ocurre el proceso de expansión súbita y separación de fases, y la temperatura de operación del condensador. Al tratarse, al igual que en el caso de una central de vapor seco, de un recurso de alta entalpia, los valores para la temperatura del recurso son los mismos que los mencionados en la sección 3.2.1. La curva de producción a utilizar será también la
misma, y por consiguiente, los parámetros a utilizar como presión de boca de pozo, también. En cuanto a la presión del separador, su variación incorpora un nuevo grado de libertad al estudio, por lo que el procedimiento de búsqueda de resultados en el software EES será algo distinto del vapor seco. En este caso, el procedimiento de maximización de los parámetros de performance coincidirá con el caso general, mediante la siguiente metodología:

- Se fija la presión de entrada al ciclo igual a alguno de los ocho valores discretos seleccionados.
- Se establece como límite superior de la presión del separador, la presión de entrada anteriormente seleccionada.
- Se optimiza algún parámetro de performance del ciclo, a partir de la variación de la presión del separador ciclónico, para cada una de las ocho temperaturas de entrada, y cada una de las temperaturas de condensación.

La **TABLA 3-4** resume los datos de entrada antes explicados, agregado además otros de importancia para el análisis.

Temperatura Fluido Geotermal	[°C]	Entre 150° a 325°		
Presión de Entrada al Ciclo	[bar]	T _{sat} según Temperatura Geofluido		
Presión Válvula Boca de Pozo	[bar]	Entre 1,1 y 17,5		
Presión del Separador	[bar]	Variable, entre 0 y la Presión de Entrada, para cada caso.		
Temperatura Condensación	[°C]	Fija en $T_{c,t} = 40^{\circ}$, posible de variar según ANEXO G		
Eficiencia Isoentrópica de la Turbina	[%]	85		
Capacidad Calórica del Agua	[kJ/(kgK)]	4,2		

TABLA 3-4: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE EXPANSIÓN SÚBITA.

3.3.2. Resultados

3.3.2.1. Variación de la Potencia

La **FIGURA 3-11** grafica el comportamiento de la potencia que es posible producir en un ciclo de expansión súbita, respecto a la variación de la presión de boca de pozo, para cada una de las temperaturas en estudio. Los detalles de los datos mostrados, puede verificarse en el ANEXO D.

FIGURA 3-11: POTENCIA NETA EN CENTRALES DE EXPANSIÓN SÚBITA.

3.3.2.2. Maximización de la Potencia

La **TABLA 3-5** muestra las temperaturas en estudio con la presión de salida del geofluido correspondiente al punto en que se maximiza la potencia neta de la central. Se adjunta además la presión del separador óptima que permite esta maximización de la potencia, y eficiencia térmica, para cada condición de operación.

<i>T</i> ₁	P _{VBP}	P _{sep}	Potencia	η_{th}
[°C]	[bar]	[bar]	[kW]	
150	1,1	0,7348	2892	0,0639
175	1,1	1,094	4272	0,0765
200	3,15	1,621	5817	0,0887
225	3,15	2,38	7706	0,1006
250	3,15	3,15	9899	0,1127
275	5,2	4,728	12454	0,1248
300	5,2	5,2	15401	0,1374
325	7,25	7,078	18914	0,1510

TABLA 3-5: PRESIONES DE ENTRADA Y DEL SEPARADOR QUE MAXIMIZAN LA POTENCIA DE LA CENTRAL,
PARA CADA TEMPERATURA EN ESTUDIO

La **FIGURA 3-12**, grafica lo mostrado en la **TABLA 3-5**, incorporando en un mismo grafico la potencia máxima obtenida en cada caso, para una temperatura, con la respectiva presión de entrada y la correspondiente presión del separador de fases, en el punto en que se produce esta optimización de la potencia.

El diagrama T-s de los estados termodinámicos para las condiciones del fluido geotermal que produce la mayor potencia de entre todos los casos, correspondientes a $P_{VBP} = 7,25 \ [bar], T_1 = 325 \ [^{\circ}C], P_1 = 120,5 \ [bar], P_{sep} = 7,078 \ [bar], T_c = 40 \ [^{\circ}C]$ y con la curva de producción \dot{m}_1 , se exhibe en la **FIGURA 3-13**.

FIGURA 3-12: PRESIÓN BOCA DE POZO Y PRESIÓN DEL SEPARADOR, PARA GENERAR LA POTENCIA MÁXIMA SEGÚN CADA TEMPERATURA EN ESTUDIO EN CENTRALES DE EXPANSIÓN SÚBITA.

FIGURA 3-13: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA, CON $T_1 = 325 \ [^{\circ}C], P_1 = 120,5 \ [bar], P_{sep} = 7,078 \ [bar]$ CURVA DE PRODUCCIÓN $\dot{m_1} \ge T_c = 40 \ [^{\circ}C]$

3.3.2.3. Variación de la Eficiencia Térmica

La **FIGURA 3-14** grafica el comportamiento de la eficiencia térmica en un ciclo de expansión súbita, respecto a la variación de la presión de boca de pozo, para cada una de las temperaturas en estudio.

FIGURA 3-14: EFICIENCIA TÉRMICA, CENTRALES DE EXPANSIÓN SÚBITA.

3.3.2.4. Maximización de la Eficiencia Térmica

Respecto a la optimización de la eficiencia térmica del ciclo, se encontró que estos valores coincidían con los mostrados en la **TABLA 3-5**, y por lo tanto, con los puntos en que se maximiza la potencia.

3.3.2.5. Variación de la Presión del Separador de Fases.

La **FIGURA 3-15**, muestra como varia la presión (temperatura) en que se realiza la expansión súbita y la expansión de fases, respecto a la presión boca de pozo para cada una de las temperaturas de entrada en estudio.

FIGURA 3-15: PRESIÓN DEL SEPARADOR, CENTRALES DE EXPANSIÓN SÚBITA.

3.4. Centrales de Doble Expansión Súbita

En el presente capítulo se exhibe el balance energético realizado a un ciclo termodinámico *doble flash* o con dos etapas de expansión, orientado a la generación de potencia a partir de un recurso geotérmico líquido dominante. Este ciclo tiene como particularidad poseer dos etapas de expansión súbita para la formación de vapor a partir del fluido geotérmico, el cual se expande posteriormente mediante una turbina que genera la potencia mecánica necesaria para la generación eléctrica. El análisis en cuestión considera distintas temperaturas de entrada al ciclo, distintos flujos másicos de fluido de trabajo relacionados con la presión de entrada al ciclo, así como temperaturas de condensación variables.

3.4.1. Datos de Entrada, Supuestos y Metodología

El esquema de la **FIGURA 3-16** representa la configuración de la planta a la cual se le realiza el análisis termodinámico del ciclo. Los números representan los puntos o estados termodinámicos a los cuales se les calculan sus propiedades. Con ellas, y mediante el uso de las bases teóricas explicitadas en capítulos anteriores, se realiza el balance energético del ciclo, en busca de las propiedades de performance de la central; potencia neta de la central y eficiencia térmica.

Al igual que en los casos anteriores, las características termodinámicas y termofísicas del fluido geotermal se consideran iguales a las del agua pura. Los supuestos utilizados para la metodología de solución en las centrales de una expansión súbita única, son igualmente válidos para el caso de dos etapas de expansión. En primer lugar, se considera que el fluido geotermal en el recurso está en saturación liquida, lo que supone que la presión del mismo P_1 viene intrínsecamente dada al suponer la temperatura del mismo T_1 (o viceversa). Por otro lado, el estudio de la formación y posterior separación de fases a partir de la expansión súbita del geofluido, agrega un nuevo grado de libertad; la presión/temperatura en que ocurre este proceso, la que limitará tanto la presión y la temperatura del vapor al ingresar a la turbina, como su cantidad y su título. Al presentar el caso en estudio, dos etapas de expansión y separación, serán dos las nuevas variables para la optimización de los parámetros buscados, además de la ya enunciada temperatura del geofluido T_1 y de la presión de boca de pozo P_{VBP}. La presión de boca de pozo, además de entregar el flujo másico de ingreso al ciclo según la curva de productividad graficada en la FIGURA 3-3 limita la presión en que ocurre el primer proceso de expansión y separación en el separador ciclónico P_2 , la que a su vez restringe a la presión del segundo proceso de expansión y separación, el que ocurre en el expansor o flasher P_6 .

FIGURA 3-16: CONFIGURACIÓN DE ESTUDIO, PLANTA DE DOBLE EXPANSIÓN SÚBITA. FUENTE: Elaboración Propia basada en [10].

Como la configuración en estudio se orienta a la generación de potencia a partir de recursos de alta entalpía, se utilizan los mismos valores de entrada para la temperatura del recurso T_1 mencionados en las secciones 3.2.1 y 3.3.1. La curva de producción con la cual se modelan el presente ciclo es también la misma a la utilizada en los casos anteriores, y por consiguiente, los parámetros considerados para la presión de boca de pozo P_{VBP} son iguales a los presentados en las TABLAS 7.1 y 8.1. El clima de desenvolvimiento del ciclo, se considerará tal que la temperatura de condensación se establece en $T_{c,t} = 40$ [°C], siendo posible modificar esta condición, siguiendo lo enunciado en el ANEXO G. La incorporación de dos nuevas variables a optimizar (presión del separador y del expansor, P2 y P6 respectivamente), obliga la utilización de una nueva metodología de trabajo respecto a la explicitada para las configuraciones anteriores, debido principalmente a limitaciones en el uso de sistemas multivariable en el software EES. Mediante la utilización de la herramienta Solver en Excel, que permite la resolución de problemas multivariable para un escenario, la inclusión de un macro escrito en VBA, que permite multiplicar estos escenarios para incorporar todos los parámetros de entrada deseados, y la librería de propiedades termodinámicas del vapor XSTEAM, capaz de entregar las propiedades en cada estado del ciclo, se logra la modelación computacional del ciclo termodinámico de doble expansión súbita, siguiendo los antecedentes teóricos enunciados en el Capítulo 5. El procedimiento para la obtención de resultados, se enlista a continuación:

- Se programa el ciclo para una condición de entrada (T_1 y P_{VBP} fijas), utilizando los supuestos ya mencionados, así como las bases teóricas enseñadas en el Capítulo 5, para cada equipo y estado termodinámico considerado en la **FIGURA 3-16**.
- Mediante el uso de Solver, se maximiza la potencia mecánica a la salida de la turbina, a partir de la variación de la presión del separador y la presión del expansor, bajo las siguientes condiciones.

 $\begin{array}{l} P_{condensador} \leq P_{expansor} \\ P_{expansor} \leq P_{separador} \\ P_{separador} \leq P_{VBP} \end{array}$

FIGURA 3-17: CONDICIONES PARA LA MAXIMIZACIÓN DE LA POTENCIA EN MODELACIÓN DE CICLO TERMODINÁMICO DE DOBLE EXPANSIÓN SÚBITA.

• Se realiza un macro en VBA que, para la columna siguiente, reinicia el Solver ya calculado, fija las nuevas condiciones, y resuelve el ciclo para distintos parámetros de entrada.

La **TABLA 3-6** muestra los rangos en que cada variable de entrada se mueve, además de presentar otros datos impuestos para la realización del modelo.

Temperatura Fluido Geotermal	[°C]	Entre 150° a 325°
Presión de Entrada al Ciclo	[bar]	Entre 2 y 17
Presión del Separador	[bar]	Variable, entre Presión del Condensador y la Presión de Entrada, para cada caso.
Presión del Expansor	[bar]	Variable, entre la Presión del Condensador y la Presión del Separador, para cada caso.
Temperatura Condensación	[°C]	Fija en $T_{c,t} = 40^{\circ}$, posible de variar según ANEXO G
Eficiencia Isoentrópica de la Turbina	[%]	85
Capacidad Calórica del Agua	[kJ/(kgK)]	4,2

TABLA 3-6: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE EXPANSIÓN SÚBITA.

3.4.2. Resultados

3.4.2.1. Variación de la Potencia

La **FIGURA 3-18** grafica el comportamiento de la potencia que es posible producir en un ciclo de doble expansión súbita, respecto a la variación de la presión de boca de pozo, para cada una de las temperaturas en estudio. Los detalles de los datos mostrados, puede verificarse en el ANEXO E.

FIGURA 3-18: POTENCIA NETA EN CENTRALES DE DOBLE EXPANSIÓN SÚBITA.

3.4.2.2. Maximización de la Potencia

La **TABLA 3-7** muestra las temperaturas en estudio con la presión de boca de pozo del geofluido al ingresar al ciclo en el punto en que se maximiza la potencia neta de la central, además de la eficiencia térmica para cada condición de operación. Se adjuntan además las presiones tanto del separador, como del expansor.

<i>T</i> ₁	P _{VBP}	P _{sep}	P _{exp}	Potencia	η_{th}
[°C]	[bar]	[bar]	[bar]	[kW]	
150	2	1,5	0,378	3918,83	0,064
175	2	2	0,45	5774,15	0,081
200	4	3,7	0,69	7999,38	0,098
225	6	5,8	0,902	10605,63	0,115
250	6	6	0,90	13458,61	0,13
275	8	7,9	1,09	16587,66	0,145
300	8	8	1,09	20000,36	0,158
325	8	8	1,08	23783,06	0,169

 TABLA 3-7: PRESIONES DE ENTRADA, DEL SEPARADOR Y DEL EXPANSOR QUE MAXIMIZAN LA POTENCIA DE LA CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO

La FIGURA 3-19, grafica lo mostrado en la TABLA 3-7, incorporando en un mismo grafico la potencia máxima obtenida en cada caso para una temperatura del geofluido, con la respectiva presión de entrada al ciclo (P_{VBP}) en que se produce esta optimización de la potencia. Además se grafican las presiones del separador (P_{sep}) y del expansor (P_{exp}) correspondientes al estado en estudio.

FIGURA 3-19: PRESIÓN BOCA DE POZO, PRESIÓN DEL SEPARADOR DE FASES, Y PRESIÓN DEL EXPANSOR, PARA GENERAR LA POTENCIA MÁXIMA PARA CADA TEMPERATURA EN ESTUDIO EN CENTRALES DE DOBLE EXPANSIÓN SÚBITA.

El diagrama T-s de los estados termodinámicos para las condiciones del fluido geotermal que produce la mayor potencia de entre todos los casos, correspondientes a $P_{VBP} = 8 [bar], T_1 = 325 [°C], P_1 = 120,5 [bar], P_{sep} = 8 [bar], P_{exp} = 1,08 [bar], T_c = 40 [°C] y con la curva de producción <math>\dot{m}_1$, se exhibe en la **FIGURA 3-20**.

3.4.2.3. Variación de la Eficiencia Térmica

La **FIGURA 3-21** grafica el comportamiento de la eficiencia térmica en un ciclo de doble expansión súbita, respecto a la variación de la presión de boca de pozo, para cada una de las temperaturas en estudio.

FIGURA 3-20: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA, CON $T_1 = 325 \ [^{\circ}C], P_1 = 120,5 \ [bar], P_{sep} = 8 \ [bar], P_{exp} = 1,08 \ [bar], CURVA DE PRODUCCIÓN <math>\dot{m_1} \ge T_c = 40 \ [^{\circ}C].$

FIGURA 3-21: EFICIENCIA TÉRMICA, CENTRALES DE DOBLE EXPANSIÓN SÚBITA.

3.4.2.4. Maximización de la Eficiencia Térmica

Respecto a la optimización de la eficiencia térmica del ciclo, la **TABLA 3-8** muestra los resultados obtenidos para este ejercicio.

	TERMICA DE LA CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO						
T_1	P _{VBP}	P _{sep}	P _{exp}	Potencia	η_{th}		
[°C]	[bar]	[bar]	[bar]	[kW]			
150	2	1,5	0,378	3918,83	0,064		
175	2	2	0,45	5774,15	0,081		
200	4	3,7	0,69	7999,38	0,098		
225	6	5,8	0,902	10605,63	0,115		
250	8	7,9	1,09	13458,61	0,131		
275	13	12,9	1,54	12732,62	0,148		
300	15	15	1,7	10770,53	0,165		
325	17	17	1,85	4258,25	0,181		

 TABLA 3-8: PRESIONES DE ENTRADA, DEL SEPARADOR Y DEL EXPANSOR QUE MAXIMIZAN LA EFICIENCIA TÉRMICA DE LA CENTRAL, PARA CADA TEMPERATURA EN ESTUDIO

La **FIGURA 3-22** representa lo expuesto en la **TABLA 3-8**, haciendo enfasis al comportamiento de las presiones de boca de pozo, presion del separador o de la primera etapa de expansion, y presion del expansor, o de la segunda etapa de expansion, cuando se busca optimizar la eficiencia termica del ciclo.

El diagrama T-s de los estados termodinámicos para las condiciones del fluido geotermal que produce la mayor eficiencia térmica de entre todos los casos estudiados, correspondientes a $P_{VBP} = 17 \ [bar], T_1 = 325 \ [^{\circ}C], P_1 = 120,5 \ [bar], P_{sep} = 17 \ [bar], P_{exp} = 1,85 \ [bar], T_c = 40 \ [^{\circ}C] \ y$ con la curva de producción \dot{m}_1 , se exhibe en la **FIGURA 3-23**.

3.4.2.5. Variación de la Presión del Separador de Fases.

La **FIGURA 3-24**, muestra como varía la presión (temperatura) en que se realiza la primera expansión del geofluido y su posterior separación de fases, respecto a la presión boca de pozo para cada una de las temperaturas de recurso en estudio.

3.4.2.6. Variación de la Presión del Expansor

La **FIGURA 3-25**, muestra como varía la presión (temperatura) en que se realiza la segunda expansión y separación de fases en una central de tipo doble flash, respecto a la presión boca de pozo para cada una de las temperaturas de geofluido en estudio.

FIGURA 3-22: EFICIENCIAS TÉRMICAS MÁXIMAS, Y SUS RESPECTIVAS PRESIONES DE INFLUENCIA EN EL CICLO, PARA CENTRALES DE DOBLE EXPANSIÓN SÚBITA,

FIGURA 3-23: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA EFICIENCIA TÉRMICA, CON $T_1 = 325$ [°C], $P_1 = 120,5$ [bar], $P_{sep} = 17$ [bar], $P_{exp} = 1,85$ [bar], CURVA DE PRODUCCIÓN $\dot{m_1} \ge T_c = 40$ [°C].

FIGURA 3-24: PRESIÓN DEL SEPARADOR, CENTRALES DE DOBLE EXPANSIÓN SÚBITA.

FIGURA 3-25: PRESIÓN DEL EXPANSOR, CENTRALES DE DOBLE EXPANSIÓN SÚBITA

3.5. Centrales de Ciclo Binario

En el capítulo presentado a continuación se muestra un resumen de los balances energéticos realizados, bajo distintos supuestos y parámetros de entrada, a un ciclo termodinámico de tipo binario orientado a la generación de energía a partir de un recurso geotérmico de mediana entalpía. La particularidad de este tipo de ciclos, es el aprovechamiento en términos energéticos de recursos de mediano potencial entálpico en comparación a los explotados para la producción de potencia a gran escala (que son justamente el tipo de recursos necesarios para la aplicación de ciclos de utilización directa, y de centrales una o dos etapas de expansión súbita), a partir del uso de fluidos de trabajo distintos al agua, cuyas características especiales le permitan transformar la energía del recurso, en potencia útil para la generación. Así, a partir de la interacción del fluido geotérmico y el fluido de trabajo mediante intercambiadores de calor, se recrea un ciclo Rankine cerrado, donde, a partir de la expansión del fluido de trabajo en la turbina, se produce potencia mecánica.

El análisis en cuestión considera distintas temperaturas de entrada al ciclo, distintos flujos másicos del recurso geotérmico relacionados con la presión de entrada al ciclo, así como temperaturas de condensación variables, cuyo método de resolución se resume en el ANEXO G.

3.5.1. Datos de Entrada, Supuestos y Metodología

El esquema de la **FIGURA 3-26** representa la configuración de la planta a la cual se le realiza el análisis energético. Los números representan los puntos o estados termodinámicos a los cuales se les calculan sus propiedades. Con ellas, y mediante el uso de las relaciones explicitadas en la sección 2.5.2, se realiza el balance energético del ciclo, en busca de las propiedades de performance de la central; potencia neta de la central y eficiencia térmica.

Al igual que en los casos antes desarrollados, se considera que el fluido geotermal es agua, y por lo tanto se usan las propiedades de dicho fluido para el análisis energético. Se estudia una planta de ciclo binario básico para cuatro fluidos de trabajo; Isobutano, Butano, R114 y Pentano, los cuales fueron seleccionados considerando su contingencia en el estado del arte de este tipo de centrales. Dado que el estudio del ciclo binario está enfocado a la utilización de recursos de mediana entalpia, la temperatura del geofluido se establece entre 100°C a 150°C, siguiendo la definición de un recurso de potencial entálpico medio, mientras que la presión está limitada por la curva de producción presentada en la FIGURA 3-3. A diferencia de los casos anteriores, no existe válvula boca de pozo en superficie, siendo ésta reemplazada por una bomba subterránea que permite que el fluido llegue a superficie en estado líquido dominante o liquido sub-saturado para permitir el intercambio energético con el fluido de trabajo y evitar el problema de escalamiento de sales en el circuito primario. Para el análisis energético global, se obviará esta condición práctica, y se considerará que el fluido llega a superficie, fuese su estado independiente de esto. Por consiguiente, las propiedades con que el geofluido entra en el circuito primario, se obtienen a partir de la temperatura dada por la definición de un recurso de media entalpia, y la presión dada por los límites impuestos por la curva de productividad.

En cuanto al proceso de intercambio de calor, se realiza solo un balance según la Primera Ley de la Termodinámica tanto para el evaporador, como para el pre-calentador, agregando en ambos casos la variable extra de la diferencia de temperatura "pinch point", ΔT_{pp} . Este parámetro es generalmente otorgado por el fabricante [10], y se impone, para el caso del presente modelo igual a 5 [°C]. Además, en orden de facilitar los cálculos, se considera que el fluido de trabajo entra a la turbina en estado saturado, con título de vapor igual a 1.

FIGURA 3-26: CONFIGURACIÓN DE ESTUDIO, PLANTA DE CICLO BINARIO. FUENTE: Elaboración Propia basada en [10].

El clima de desenvolvimiento del ciclo, se considerará tal que la temperatura de condensación se establece en $T_{c,t} = 40 \ [^{\circ}C]$, siendo posible modificar esta condición, siguiendo lo enunciado en el ANEXO G.

En cuanto a la metodología para la obtención del valor optimizado de algún parámetro, se enuncia a continuación

- Se fija la presión de entrada al ciclo primario igual a alguno de los seis valores discretos seleccionados.
- Se maximiza, mediante el software EES, algún parámetro de performance del ciclo a partir de la variación de la presión de saturación del fluido de trabajo, que corresponde a la presión con que este entra a la turbina (P_1) .
- Se realiza el mismo procedimiento anterior, para cada una de las seis temperaturas de entrada, y para cada fluido de trabajo en estudio.

Todos los supuestos e imposiciones nombrados anteriormente para la realización del modelo de la central, se resumen en la **TABLA 3-9**.

THERE 9. DITION DE ENTRIDATIANT DAEMICE ENTRIÈ DE CENTRAL DE CICEO DI VIANO				
Temperatura Fluido Geotermal	[°C]	Entre 100° a 150°		
Presión de Entrada al Circuito Primario	[bar]	Entre 1,1 y 17,5		
Temperatura Condensación	[°C]	Fija en $T_{c,t} = 40^{\circ}$, posible de variar según ANEXO G		
Eficiencia Isoentrópica de la Turbina	[%]	85		
Eficiencia Isoentrópica de la Bomba	[%]	80		
Capacidad Calórica del Agua	[kJ/(kgK)]	Variable, según Presión y Temperatura.		
Diferencia Pinch Point	[°C]	5		
Fluidos de Trabajo		Isobutano, Butano, R114, Pentano		

TABLA 3-9: DATOS DE ENTRADA PARA BALANCE ENERGÉTICO DE CENTRAL DE CICLO BINARIO

3.5.2. Resultados

3.5.2.1. Variación de la Potencia

Desde la **FIGURA 3-27** a la **FIGURA 3-30** se grafica el comportamiento de la potencia que es posible producir en un ciclo de binario básico, respecto a la variación de la presión de entrada al circuito primario, para cada una de las temperaturas en estudio, y para cada fluido de trabajo propuesto. Los detalles de los datos mostrados, puede verificarse en el ANEXO F.

(1) Isobutano:

FIGURA 3-27: POTENCIA NETA EN CENTRALES DE CICLO BINARIO, USANDO ISOBUTANO COMO FLUIDO DE TRABAJO.

(2) Butano:

FIGURA 3-28: POTENCIA NETA EN CENTRALES DE CICLO BINARIO, USANDO BUTANO COMO FLUIDO DE TRABAJO.

```
(3) R114
```


FIGURA 3-29: POTENCIA NETA EN CENTRALES DE CICLO BINARIO, USANDO R114 COMO FLUIDO DE TRABAJO.

FIGURA 3-30: POTENCIA NETA EN CENTRALES DE CICLO BINARIO, USANDO PENTANO COMO FLUIDO DE TRABAJO.

3.5.2.2. Maximización de la Potencia

La **TABLA 3-10** muestra las temperaturas en estudio con la presión del geofluido al ingresar al circuito primario en el punto en que se maximiza la potencia neta en una central de ciclo primario, para cada uno de los fluidos de trabajo considerados en el análisis. Se adjunta además, la eficiencia térmica para cada condición de operación modelada.

<i>T</i> ₁	P_1	Potencia					η_{th}		
[°C]	[bar]		[kW]						
		Isobutano	Butano	R114	Pentano	Isobutano	Butano	R114	Pentano
100	1,1	915,4	888,6	901,1	853,6	0,0623	0,0626	0,0609	0,0623
110	4,4	1283	1259	1279	1182	0,0726	0,0713	0,0713	0,0724
120	4,4	1750	1710	1721	1589	0,0814	0,080	0,080	0,081
130	4,4	2316	2248	2378	2066	0,0907	0,0885	0,089	0,0902
140	4,4	3004	2885	2989	2615	0,1002	0,0962	0,0965	0,0972
150	7,7	3816	3597	3797	3204	0,1118	0,1049	0,105	0,105

TABLA 3-10: PRESIONES DE ENTRADA AL CICLO, QUE MAXIMIZAN LA POTENCIA EN CENTRALES DE CICLO BINARIO, PARA CADA FLUIDO DE TRABAJO Y PARA CADA TEMPERATURA DEL RECURSO EN ESTUDIO.

Las **FIGURA 3-31** a la **FIGURA 3-34** muestran en forma gráfica lo expuesto en la **TABLA 3-10**. Para cada fluido de trabajo, se exhibe el comportamiento tanto de la potencia en forma de barras, como el de la presión de entrada al primario en forma de curva, para cada una de las temperaturas en análisis.

(1) Isobutano

FIGURA 3-31: PRESIÓN DE ENTRADA AL PRIMARIO Y TEMPERATURAS DEL GEOFLUIDO PARA GENERAR LA POTENCIA MÁXIMA EN CENTRALES DE CICLO BINARIO, CON ISOBUTANO COMO FLUJO DE TRABAJO.

(2) Butano

FIGURA 3-32: PRESIÓN DE ENTRADA AL PRIMARIO Y TEMPERATURAS DEL GEOFLUIDO PARA GENERAR LA POTENCIA MÁXIMA EN CENTRALES DE CICLO BINARIO, CON BUTANO COMO FLUJO DE TRABAJO.

(3) R114

(4) Pentano

FIGURA 3-34: PRESIÓN DE ENTRADA AL PRIMARIO Y TEMPERATURAS DEL GEOFLUIDO PARA GENERAR LA POTENCIA MÁXIMA EN CENTRALES DE CICLO BINARIO, CON PENTANO COMO FLUJO DE TRABAJO.

Los diagramas P-h y T-s de los estados termodinámicos para las condiciones del fluido geotermal que produce la mayor potencia, correspondientes a $P_1 = 7,7$ [*bar*], $T_1 = 150$ [°*C*], $T_c = 40$ [°*C*] con curva de producción \dot{m}_1 , e isobutano como fluido de trabajo, se exhibe en la **FIGURA** 3-35 y **FIGURA 3-36**, respectivamente.

FIGURA 3-35: DIAGRAMA P-H CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA, CON $T_1 = 150 [°C]$, $P_1 = 7,7 [bar]$, CURVA DE PRODUCCIÓN \dot{m}_1 , $T_c = 40 [°C]$, E ISOBUTANO COMO FLUIDO DE TRABAJO.

FIGURA 3-36: DIAGRAMA T-S CORRESPONDIENTE A LA MÁXIMA GENERACIÓN DE POTENCIA, CON $T_1 = 150 [°C]$, $P_1 = 7,7 [bar]$, CURVA DE PRODUCCIÓN $\dot{m_1}$, $T_c = 40 [°C]$, E ISOBUTANO COMO FLUIDO DE TRABAJO

3.5.2.3. Variación de la Eficiencia Térmica

Entre la **FIGURA 3-37** a la **FIGURA 3-40** se grafica la eficiencia térmica en ciclos binarios para distintos fluidos de trabajo respecto a la presión de entrada al primario y a la temperatura.

FIGURA 3-37: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON ISOBUTANO COMO FLUIDO DE TRABAJO.

FIGURA 3-38: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON BUTANO COMO FLUIDO DE TRABAJO.

```
(3) R114
```


FIGURA 3-39: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON R114 COMO FLUIDO DE TRABAJO.

(4) Pentano

FIGURA 3-40: EFICIENCIA TÉRMICA EN CENTRALES DE CICLO BINARIO CON PENTANO COMO FLUIDO DE TRABAJO.

3.5.2.4. Maximización de la Eficiencia Térmica

Realizando una observación simple a las gráficas de la sección 10.2.3, es fácil ver que no existe dependencia de la eficiencia térmica respecto a la presión de entrada. Luego, resulta redundante realizar las gráficas correspondientes a esta sección, por lo que se obviarán.

4. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

Se presentan a continuación las observaciones realizadas luego de la simulación de los ciclos termodinámicos, la obtención, recolección y tratamiento de resultados, y la presentación grafica de estos.

4.1. CENTRALES DE VAPOR SECO

Todos los comentarios expuestos en esta sección, hacen referencia al análisis energético mostrado en el Capítulo 7.

Respecto a la variación de potencia en centrales de vapor seco, en un rango de temperaturas de fluido geotermal entre 150°C y 325°C, se presentaron potencias entre 30 [MW] y 65 [MW]. La forma en que se comporta la potencia en razón a la variación de la presión de entrada al ciclo, viene dada en general, por la geometría de la curva de producción del pozo (en este caso $\dot{m_1}$), que como se mencionó anteriormente modela, mediante una expresión matemática, el flujo másico que ingresa al ciclo respecto a la presión de la válvula de boca de pozo. Corresponde eso sí a un comportamiento general pero no completo, puesto que para temperaturas bajas dentro del rango de estudio, se observan decrecimientos notables en la potencia generada, luego de superado algún valor de presión de entrada al ciclo. En específico, la potencia para una temperatura de recurso de 150 [°C], cae bruscamente desde el valor discreto de 3,15 [bar], así como también lo hace a partir de los 7,25 [bar] la curva de potencia a 175 [°C]. Este comportamiento se debe a que en ambos casos, la presión con que se simula el ciclo supera la presión de saturación a la temperatura a la que se hace referencia ($P_{sat}(150 \ ^{\circ}C) = 4,76 \ [bar]$ y $P_{sat}(175 \ ^{\circ}C) = 8,92 \ [bar]$) resultando en que el fluido que ingresa a la turbina se presente como liquido sub-saturado, que posee limitado potencial entálpico. Además, afecta al rendimiento teórico de la turbina según la relación de Baumann, sin siquiera considerar que dicho régimen de operación resulta inviable en la práctica.

En cuanto a la maximización de la potencia, se observó que este parámetro aumenta mientras crece la temperatura del geofluido, lo que se relaciona directamente con el comportamiento de la entalpia del agua con la temperatura, y por consiguiente con la entalpia con que ingresa el fluido a la turbina. Considerando además que la temperatura y presión de condensación es igual para todos los casos estudiados, la entalpia a la salida de la turbina (ingreso al condensador) es aproximadamente constante para todas las temperaturas de ingreso. Luego, el trabajo específico de la turbina resultará mayor, a temperaturas de ingreso mayores. Por otro lado, la presión de boca de pozo para la cual se maximiza la potencia resultó ser cercana a los 8 [bar] para temperaturas por sobre los 175 [°C]. Este valor se explica si se considera que la potencia de la turbina es el producto entre el flujo másico que realiza el trabajo, y la diferencia de entalpias entre su entrada y su salida (trabajo específico realizado). La **FIGURA 4-1**, muestra gráficamente el comportamiento de dichas curvas, para $T_1 = 325$ [°C], donde se observa que mientras el trabajo específico presenta comportamiento creciente, el flujo másico decrece a medida que aumenta la presión boca de pozo.

El producto de ambas curvas, mostrado en la **FIGURA 4-2**, entrega como consecuencia un máximo coincidente con los valores encontrados en las simulaciones.

FIGURA 4-1: TRABAJO ESPECÍFICO (IZQ.) Y FLUJO MÁSICO (DER.) DE UNA CENTRAL DE UTILIZACIÓN DIRECTA, PARA $T_1 = 325$ [°C]

FIGURA 4-2: POTENCIA DE UNA CENTRAL DE UTILIZACIÓN DIRECTA, PARA $T_1 = 325$ [°C]

La eficiencia térmica varía, para los regímenes en que se maximiza la potencia, entre un 17% y un 22%. Estos valores, sin embargo, no corresponden a las máximas eficiencias que se pueden obtener. Considerando la forma en que se simuló el ciclo y los supuestos utilizados, la eficiencia térmica en las centrales de vapor seco no dependen del flujo másico involucrado, puesto que la masa de geofluido en este tipo de configuraciones es reinyectada después de pasar por la torre de enfriamiento, equipo que está fuera de los alcances del presente trabajo. En consecuencia, la variación de la eficiencia térmica, sigue la misma tendencia que el trabajo específico, siendo creciente tanto con la temperatura, como con el aumento de la presión boca de pozo. Al igual que lo ocurrido con la potencia, la eficiencia térmica decae bruscamente cuando se supera la presión de saturación para una temperatura dada.

La máxima eficiencia térmica que se puede obtener con el ciclo ronda el 26%, para $T_1 = 325 [°C]$ y $P_1 = 17,5 [bar]$, punto donde se genera tan solo 4,8 [MW]. Las presiones de boca de pozo que maximizan la eficiencia, tienden a acercarse a las presiones de saturación para cada temperatura en análisis. Por ejemplo, la presión de saturación a 150 [°C] es de $P_{sat}(150 °C) = 4,76 [bar]$, mientras que la presión que maximiza la eficiencia térmica para la misma temperatura

corresponde a $P_{VBP} = 4,75$ [bar]. Este comportamiento es posible explicar si se analiza la ecuación de la eficiencia térmica en centrales de vapor seco, mostrada en la relación 3.4-16. Simplificando los términos de flujo másico, se observa que la maximización de la eficiencia térmica ocurre cuando la relación $\left[\frac{h_1-h_2}{h_1}\right]$ se haga máxima, es decir, cuando el término h_2 se minimice, lo que justamente ocurre cuando el fluido se encuentra saturado.

4.2. Centrales de Expansión Súbita

Todos los comentarios expuestos en esta sección, hacen referencia al análisis energético mostrado en el Capítulo 8.

La variación de potencia en centrales de expansión súbita presenta un comportamiento directamente proporcional respecto a la temperatura del recurso geotérmico. En un rango de temperaturas de fluido geotermal entre 150 [°C] y 325 [°C], se encontraron potencias entre 2 [MW] y 19 [MW], lográndose la potencia máxima a una presión de entrada al ciclo de 7,25 [bar], y una presión de separación de fases de 7,08 [bar]. Por otro lado, análogamente al caso de las centrales de vapor seco, el comportamiento de la potencia respecto a la variación de la presión de boca de pozo, sigue, de forma simultánea, la geometría de la curva de producción \dot{m}_1 y la variación del trabajo específico de la turbina. A temperaturas bajas (menores de 200 [°C]) esta conducta es mucho menos notoria, presentándose potencias similares para todo rango de presión de entrada al ciclo. A diferencia de lo mostrado por las centrales de utilización directa, los resultados de esta configuración no exhibieron singularidades o comportamientos fuera de tendencia a destacar, puesto que se simuló utilizando como supuesto que el geofluido debía ingresar con x = 0 al ciclo, lo que limita el sector de desenvolvimiento de este al interior de la curva de saturación del agua. La eficiencia térmica del ciclo varía entre un 6% y un 15 %, siendo este último valor coincidente con el régimen de operación que genera la máxima potencia.

Un parámetro a destacar dentro de esta configuración de ciclo, es la presión (temperatura) en la que ocurre la separación de fases, y que determina en definitiva que porcentaje del fluido geotérmico es utilizado para la generación de trabajo en la turbina y como son sus propiedades desde el punto de vista termodinámico. Se tomaron dos supuestos principales en la búsqueda de la presión del separador optima; su valor debía ser siempre menor a la presión con que el fluido ingresaba al ciclo (P_{VBP}), y la entalpia en que ocurría este procedimiento debía ser igual a la entalpia a la temperatura de ingreso al ciclo. Considerando estas limitantes, la P_{sep} para P_{VBP} bajas, presentó un comportamiento directamente proporcional con pendiente cercana a 45° despegándose de esta recta una vez que lograron llegar a la presión optima de separación, para seguir desde aquel punto una tendencia cuasi lineal. Como esta presión optima determina tanto el flujo másico de vapor, como la entalpia del fluido a la entrada de la turbina, la performance del ciclo depende directamente de su valor. La **FIGURA 4-3**, muestra gráficamente las variables a considerar para la optimización en cuestión.

FIGURA 4-3: VARIABLES PARA LA OBTENCIÓN DE LA PRESIÓN ÓPTIMA DEL SEPARADOR.

En cuanto a la eficiencia térmica del ciclo, se observa una jerarquía notoria de esta respecto a la temperatura del recurso geotérmico. Para temperaturas de entrada bajas, el comportamiento de la eficiencia es indiferente a la variación de la presión de boca de pozo del ciclo, y solo por sobre los 200 [°C], se presenta una leve tendencia al aumento de la eficiencia en relación al crecimiento de la presión de entrada. Esta tendencia termina a partir del punto discreto 7,7 [bar], desde el cual las eficiencias térmicas alcanzan un valor que se mantiene constante durante todo el resto del rango de presiones, para todo nivel de temperatura.

4.3. Centrales de Doble Expansión Súbita

Todos los comentarios expuestos en esta sección, hacen referencia al análisis energético mostrado en el Capítulo 9.

La variación de potencia en este tipo de centrales respecto al aumento de la temperatura del recurso sigue igual tendencia que en los casos antes analizados. A mayores temperaturas de recurso, mayor es la potencia que es capaz de generar este tipo de configuración. En este sentido, la influencia de una segunda cámara de expansión respecto a las centrales "simple flash" en la potencia generada es, en promedio, un aumento cercano al 26%. Según el estudio, el rango de potencia que es capaz de generar una central de doble expansión súbita es de 4 [MW] a 24 [MW] en un rango de temperaturas de 150 [°C] a 325 [°C]. En cuanto a la condición de operación para la que se logra la mayor potencia mecánica, es para una presión de boca de pozo de 8 [bar], una presión del separador de 8 [bar], presión del expansor o de la segunda cámara de expansión de 1,08

[bar], y una temperatura del recurso de 325 [°C]. Por otro lado, las eficiencias térmicas en este tipo de configuración se mueven entre un 6% y un 18%.

A diferencia de cómo se realizó con las centrales de una etapa de expansión súbita, la búsqueda de la potencia máxima dependía de dos variables intrínsecas al ciclo; cada una de las etapas de expansión súbita eran capaces de modificar la performance total de la configuración. Luego, todos los parámetros de entrada debían estar ligados a estos dos equipos a partir de condiciones o limitaciones para su operación. Así, la presión de boca de pozo (P_{VBP}) limitaba a la presión del separador (P_{sep}) y esta, a su vez, entregaba el valor máximo para la presión del expansor (P_{exp}), mientras que el valor mínimo lo imponía la presión del condensador. Esto restringió a los resultados obtenidos; se observó que la presión del separador coincidía con la presión de entrada al ciclo (P_{VBP}) , hasta lograr su optimo, punto desde el cual se mantenía constante sin importar la variación de la presión de boca de pozo. Por ejemplo, para una temperatura de entrada de 250 [°C], la presión del separador fue igual a la presión de boca de pozo hasta los 8 [bar]. Para el siguiente punto del análisis discreto (10 [bar]), la presión del separador fue de 9,26 [bar], valor que se mantuvo constante por todo el espectro restante de presiones de entrada. Dicho valor, corresponde al punto óptimo si se considera en la operación solo la primera etapa de expansión súbita, en el separador ciclónico. El comportamiento del expansor sigue una lógica similar; la curva entre la presión de entrada al ciclo y la presión del expansor coinciden en primera instancia en todo rango de temperatura, para que, luego de que se encuentra el óptimo de operación de la presión para la segunda etapa de expansión súbita a la temperatura de entrada correspondiente, este se mantenga constante para todas las siguientes presiones de boca de pozo sugeridas.

En orden de maximizar la potencia del ciclo en su totalidad, la calidad del vapor del primero proceso de expansión resulta ser baja en comparación a los valores obtenidos para la optimización de centrales de una única etapa, resultando en bajo porcentaje de vapor que ingresa a la turbina de alta presión, pero en mayor disponibilidad para el segundo proceso de expansión. Si esto se combina con el hecho de que el trabajo específico de la turbina de baja presión resulta ser levemente mayor al de la turbina de alta presión, se obtiene que la potencia generada en la turbina de baja presión es mayor a lo generado en su símil de alta presión.

En cuanto a la eficiencia térmica, su tendencia es similar a lo observado en centrales flash de una etapa. Para temperaturas de recurso menores a 200 [°C], la eficiencia resulta ser constante para todo nivel de presiones de boca de pozo. Por sobre esta temperatura, su comportamiento es creciente hasta llegar a su optimo, coincidente con el punto en que la presión del separador se hace invariable. En particular, la eficiencia máxima obtenida es de 18%, lográndose para los 325 [°C] de temperatura del recurso, y los 17,5 [bar] de presión de boca de pozo. Estos resultados se explican en el hecho en que el trabajo específico de la central es mayor al optimizar la presión del primer proceso de separación de fases respecto a la temperatura del recurso, y no a la presión de boca de pozo, que es la responsable del flujo másico con que funciona el ciclo. Luego, el punto en que se maximiza la potencia no coincide con el que se maximiza la eficiencia, por la influencia de la curva de producción en el flujo másico, y en la presión máxima de operación del separador.

4.4. Centrales de Ciclo Binario

Las centrales de ciclo binario destacan de entre las otras plantas en estudio, por tratarse de configuraciones orientadas a la utilización de recursos de media entalpia. Esta característica obliga a variar las temperaturas de recurso ingresadas en el modelo a un rango entre los 100 [°C] y 150 [°C]. Los parámetros de presión de entrada se mantienen invariables, al utilizarse la misma curva de producción en todas las configuraciones. Luego, se hace necesario reconocer comportamientos propios de la configuración y de sus parámetros de entrada, además de aquellos dependientes del fluido de trabajo que se utiliza.

4.4.1. Comportamiento General del Ciclo

Como primera observación se aprecia que las gráficas de variación de potencia de todos los fluidos analizados, comparten curvas con geometría similar, y con las mismas singularidades en puntos específicos, diferenciándose solo en los valores de potencia generada. Por lo tanto, es válido afirmar que dicha característica es consecuencia de la configuración del ciclo, y no de la presencia de un fluido en particular. La potencia, al igual que en todos los ciclos analizados, aumenta al mismo tiempo que la temperatura de entrada lo hace. Para todo nivel de temperatura, la forma en que varía según la presión de entrada sigue una tendencia similar; concavidad negativa, con comportamiento creciente a presiones de entrada bajas, maximizándose en presiones medias, y decayendo a presiones altas. Existen dos singularidades marcadas con valores que no siguen la tendencia antes explicada; para una temperatura de entrada de 100 [°C] y una presión de entrada al primario de 1,1 [bar], y para una temperatura de entrada de 150 [°C] y una presión de ingreso al primario de 4,4 [bar]. Estos puntos fuera de tendencia comparten explicación para su comportamiento; se tienden a obtener mayores potencias si el geofluido que entra al circuito primario se presenta en estado subsaturado. Desde el punto de vista de la Primera Ley de la Termodinámica, la causa de esta conducta se puede extraer de la observación de la ecuación de balance en el conjunto de intercambiadores, recordada a continuación.

$$\dot{m}_{FG}\overline{c_{FG}}(T_a - T_c) = \dot{m}_{FT}(h_1 - h_4)$$
(4-1)

El calor especifico ($\overline{c_{FG}}$) del agua en estado gaseoso resulta ser menor que en estado líquido. Luego, para una temperatura de ingreso fija, un fluido en fase liquida proporcionará más calor al intercambio, lo que puede traducirse en un aumento en la entalpia del fluido de trabajo, o en la capacidad de poder calentar mayor flujo másico en el circuito secundario. Incluso, este análisis obvia los fenómenos de transferencia de calor dentro del intercambiador, y la presencia de una interface solida entre un flujo y otro.

Por otro lado, el trabajo específico también presenta una conducta común entre todos los fluidos de trabajo. Como es de esperarse, su valor aumenta cada vez que la temperatura de entrada al primario lo hace. Para temperatura de entrada fija, eso sí, se mantiene constante con la variación

de la presión de entrada. Incluso, tanto el valor de la entalpia a la entrada de la turbina (h_1) , como a la salida (h_2) es el mismo, a todo nivel de presión de entrada. La influencia de la presión de entrada, además de verse en la fase que presentará el geofluido, se hace importante en la cantidad de flujo másico geotermal que ingresa al ciclo (mediante a curva de producción), lo que conlleva, según 11.4-1, a menores flujos másicos del fluido de trabajo, lo que se traduce según la apreciación realizada al trabajo específico de la turbina, en menores potencias netas generadas.

La eficiencia térmica, similarmente, presenta un comportamiento independiente de la presión de entrada al primario, y solo varía según la temperatura que presenta el recurso, de manera directamente proporcional. Existen eso sí, valores diferentes de temperatura del recurso que comparten igual eficiencia térmica, o que su diferencia resulta ser ínfima.

4.4.2. Influencia de los Fluidos de Trabajo.

Desde el punto de vista termodinámico y termo físico, existen ciertas propiedades de un fluido que lo hacen considerarse un candidato atractivo para su uso como fluido de trabajo, que definen el desempeño del ciclo, y que al mismo tiempo explican los resultados numéricos obtenidos.

Como se explicó en la sección anterior, el trabajo específico producido por un fluido, dependía solo de la temperatura a la cual ingresaba el geofluido (y por consiguiente de la temperatura con que ingresaba el fluido de trabajo a la turbina), no así de la presión del primario. Esto es posible explicar analizando la función del evaporador en el ciclo. En efecto, según los supuestos considerados, el fluido de trabajo entra al evaporador con saturación liquida y sale con título igual a uno, lo que supone que la entalpia entregada desde el ciclo primario al secundario será directamente proporcional al calor latente de evaporación del fluido de trabajo [14] La **TABLA 4-1**, muestra el trabajo específico producido por cada fluido para la condición de entrada de $T_a = 150$ [°*C*] y $P_a = 7,7[bar]$, junto con la entalpía de vaporización a presión atmosférica de cada uno.

Fluido	Calor Latente	w _T
	[kJ/kg]	[kJ/kg]
Isobutano	303,44	42,43
n-Butano	336,44	45,47
n-Pentano	349	46,61
R-114	135,9	16,21

TABLA 4-1: CALOR LATENTE DE VAPORIZACIÓN Y TRABAJO ESPECÍFICO DE LOS FLUIDOS DE TRABAJO UTILIZADOS. [14]

De manera similar, la cantidad de flujo de trabajo participante en el intercambio térmico dependerá de su capacidad de almacenamiento de energía ante una la variación de temperatura a la que se verá expuesto [14]. En otras palabras, para una condición de entrada al primario fija (es

decir, considerando el calor aportado por el geo fluido al fluido de trabajo, invariable), el flujo másico de fluido de trabajo que verá aumentada su entalpia será inversamente proporcional a la capacidad calórica del mismo. La **TABLA 4-2**, muestra el flujo másico del cada fluido de trabajo para la condición de entrada de $T_a = 150$ [°*C*] y $P_a = 7,7[bar]$, junto con la capacidad calórica a presión constante de la fase vapor de cada uno.

Fluido	C _p Vapor	$\dot{m_{FT}}$
	[J/kgK]	[kg/s]
Isobutano	1981,4	82,19
n-Butano	1965,6	72,38
n-Pentano	1824,1	67,52
R-114	669,9	187,5

TABLA 4-2: CAPACIDAD CALÓRICA DE LA FASE VAPOR Y FLUJO MÁSICO DE LOS FLUIDOS DE TRABAJO

Si bien ambas afirmaciones teóricas coinciden con lo obtenido en la modelación, basta determinar cuál de las dos propiedades analizadas tiene mayor influencia en la potencia generada y en la eficiencia térmica. Según los datos recopilados, la potencia máxima generada se obtuvo mediante la utilización, en orden descendente, de Isobutano, R114, Butano y Pentano. Esto se explica en la ecuación de la potencia de la turbina, considerando despreciable la potencia consumida por la bomba. La eficiencia térmica, por otro lado, no presentó predominancia de un fluido sobre otro, como si sucedió con la potencia.

4.5. VALIDACIÓN DE RESULTADOS OBTENIDOS.

Para ratificar la validez de los resultados, y con esto ratificar la buena conformación de los códigos con que se programaron los balances energéticos, junto con la validez de los supuestos e hipótesis consideradas para el comportamiento termodinámico de cada configuración de ciclo, se procederá a comparar los resultados obtenidos para cierto régimen de funcionamiento de la central, con parámetros de operación conocidos de plantas geotérmicas actualmente en funcionamiento. La **TABLA 4-3** a la **TABLA 4-6** muestran especificaciones técnicas de centrales que trabajan con las tecnologías estudiadas en el presente trabajo; centrales de vapor seco, centrales flash de una y dos etapas, y centrales de ciclo binario básico.

IADLA 4-3: ESPE	IADLA 4-5: ESFECIFICACIONES TECNICAS CENTRALES DE VAFOR SECO [17][16][19]							
Central	Landerello 2	Geysers U.5	Landerello 3	SMUDGEO#1				
Ubicación	Italia	USA	Italia	USA				
Tipo	Vapor Seco	Vapor Seco	Vapor Seco	Vapor Seco				
Año de puesta en marcha	1969	1971	1969	1983				
Temperatura reservorio [° C]	198	179	210	176				
Presión de Entrada [bar]	3,408	-	4,168	-				
Flujo Másico Geotermal [kg/s]	145	122	245	121,1				
Potencia Geotérmica [MW]	69	55	120	72,3				
Potencia Neta [MW]	48,5	53	86,5	66				
Eficiencia de Utilización Neta [%]	48,4	53,5	47	71,2				
NCG%	7,3	-	7,0	-				

TABLA 4-3: ESPECIFICACIONES TÉCNICAS CENTRALES DE VAPOR SECO [17][18][19]

TABLA 4-4: ESPECIFICACIONES TÉCNICAS CENTRALES DE EXPANSIÓN SÚBITA [17][18][19]

Central	Cerro Prieto I	Cerro Prieto IV	Mutnovsky	Verkhne-Mutnovsky
Ubicación	México	México	Rusia	Rusia
Tipo	Simple Flash	Simple flash	Simple Flash	Simple Flash
Año de puesta en marcha	1973 (1-2) 1979 (3-4)	2000	2002	1999
Temperatura reservorio [° C]	250	320	240	-
Presión de Entrada [bar]	5,2	9,5	6,2	-
Flujo másico [kg/s]	361	495/4	-	-
Potencia instalada [MW]	37,5	25	25	4
Turbina				
Flujo másico vapor [kg/s]	79,25	48,9	42,9	-
Temperatura de entrada [° C]	160	182	160	170
Presión de entrada [bar,a]	6,2	10,5	6,2	8
Presión de salida [bar,a]	0,12	0,12	0,05	0,12
Condensador				
Flujo másico [kg/s]	2974	1681	-	-
Temperatura de entrada [° C]	32	32,9	-	-
Temperatura de salida [° C]	45,3	47,4	-	-
Sistema de NCG				
Eyector de Vapor	Si	Si	Si	Si
Flujo de Vapor [kg/s]	6,68	2,16	-	2,78
Sistema de enfriamiento				
Тіро	Torre de enfriamiento	Torre de enfriamiento	-	-
Flujo másico del agua [kg/s]	3213	1848	-	-
Potencia Ocupada [kW]	835	333,5	-	-
Performance Central				
Eficiencia Utilización Bruto [%]	34,5	39,7	33,5	-

Central	Miravalles Unit I	Miravalles Unit III	Beowawe	Cerro Prieto II y III
Ubicación	Costa Rica	Costa Rica	Nevada	México
Tipo	Simple Flash	Simple Flash	Doble Flash	Doble Flash
Año de puesta en marcha	1994	2000	1985	1982 (II), 1983 (III)
Temperatura reservorio [° C]	240	240	215	320
Potencia instalada [MW]	55	29	16,7	110
Flujo másico [kg/s]	760	400	157,5	417-
Turbina				
Flujo másico vapor [kg/s]	110	57,5	22,3 (HP) - 12,2 (LP)	177 (HP) - 25 (LP)
Temperatura de entrada [° C]	158,9	156,8	146 (HP) - 99 (LP)	182,2 (HP) - 134,6 (LP)
Presión de entrada [bar,a]	6	5,6	4,2 (HP) - 0,9 (LP)	10,75 (HP) - 3,16 (LP)
Presión de salida [bar,a]	0,13	0,09	0,33	0,11
Condensador				
Flujo másico [kg/s]	4233,6	2,143	1474	7012
Temperatura de entrada [° C]	28,9	27,4		34
Temperatura de salida [° C]	49,4	40,8		46
Sistema de NCG				
Eyector de Vapor	Sí	Sí	Sí	No
Flujo de Vapor [kg/s]	4,057	1,517	-	8,6
Performance Central				
Eficiencia Utilización Bruto [%]	29,6	29,7	46,7	49,3

 TABLA 4-5: ESPECIFICACIONES TÉCNICAS CENTRALES DE DOBLE EXPANSIÓN SÚBITA [17][18][19]

Ahora bien, en orden de poder aproximar la sensibilidad de los datos, se calculan los porcentajes de error entre los datos de operación de las plantas mostradas en las tablas anteriores, y alguno de los resultados obtenidos que modelen la misma configuración de ciclo, en un régimen de operación parecido al establecido en las especificaciones técnicas de cada central. Se seleccionan dos de las plantas de cada configuración de ciclo, con el fin de comparar el trabajo específico entre las centrales reales y aquellas modeladas termodinámicamente para dar así validez a los resultados obtenidos. Como cada central trabaja con vacimientos geotermales distintos, es muy difícil que la comparación sea directa, es decir, es muy improbable que las condiciones de operación y trabajo de una central, léase, temperatura del reservorio, curva de producción de los pozos, composición del geofluido, o presión de boca de pozo, coincidan con las presentes en otro yacimiento geotérmico. Es por ello, que la comparación se realizará a través del trabajo específico producido por cada central, considerando sobretodo la diferencia entre la curva de producción utilizada para los estudios del presente trabajo, y por ende los flujos geotérmicos, y la infinidad de curvas de producción que se presentan en las centrales a lo largo del mundo. Las TABLA 4-7 a TABLA 4-10, muestran el ejercicio antes explicado para cada una de las centrales analizadas en el presente Trabajo.
Central	Mammuth-Pacific	Amedee	Miravalles Unit 5
Ubicación	Mammoth, CA	Wendel, CA	Costa Rica
Temperatura reservorio [° C]	169	103	165
Potencia instalada [MW]	5x2	1x2	9,5x2
Flujo másico geotermal [kg/s]	220,5	205,1	885 (2 x 442.5)
Fluido de Trabajo	Isobutano	R-114	n-pentano
Turbina			
Flujo másico vapor [kg/s]	92,2	100,8	58,15
Temperatura de entrada [° C]	138	83	147
Presión de entrada [kPa]	33,79	9,93	15,5
Presión de salida [kPa]	Variable	2,76	1,35
Evaporador			
Numero por unidad	6	1	2
Heat Duty [MWt]	86,75	28,72	110,5
T _{IN} Fluido Geotermal [° C]	169	104	165
T_{OUT} Fluido Geotermal [° C]	66-88	71	136
Condensador			
Medio de Enfriamiento	Aire	Agua	Agua
Temperatura de entrada [° C]	Variable	21,1	28
Temperatura de salida [° C]	Variable	na	37
Bombas			
Potencia [kW]	4,057	1,517	-
Performance Central			
Eficiencia Utilización Bruto [%]	32,2	17,2	45,7
Eficiencia Térmica [%]	8,1	5,6	13,97

 TABLA 4-6 : ESPECIFICACIONES TÉCNICAS CENTRALES DE CICLO BINARIO [17][18][19]

TABLA 4-7: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE EXPANSIÓN SÚBITA

	Centrales Vapo	or Seco				
	Landerello 2	Resultado Obtenido	SMUDGEO	Resultado Obtenido		
Temperatura reservorio [° C]	198	200	176	175		
Presión de Entrada [bar]	3,4	3,15	7,92	7,3		
Flujo Másico Geotermal [kg/s]	145	95,82	137	95,04		
Potencia Geotérmica [MW]	69	46,4	72,3	51,5		
Trabajo Especifico [kJ/kg]	475,86	484,24	527,74	541,88		
Error Temperatura [%]	-1,0	01	0,57			
Error Presión [%]	7,3	35	7,83			
Error Trabajo Especifico [%]	-1,7	76	-2,0	68		

	Centrales de Expans	sión Súbita		
	Cerro Prieto IV	Resultado Obtenido	Cerro Prieto I	Resultado Obtenido
Temperatura reservorio [° C]	320	325	250	250
Presión de Entrada [bar]	9,5	9,3	5,2	5,2
Flujo Másico Geotermal [kg/s]	123,75	91,51	361	95,75
Potencia Geotérmica [MW]	25	18,3	37,5	9,896
Trabajo Especifico [kJ/kg]	202,02	199,98	103,88	103,35
Error Temperatura [%]	-1,56		0,00)
Error Presión [%]	2,11		0,00)
Error Trabajo Especifico [%]	1,01		0,51	

TABLA 4-8: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE EXPANSIÓN SÚBITA.

TABLA 4-9: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE DOBLE EXPANSIÓN SÚBITA

	Centrales de Doble	Expansión Súb	ita			
	Beowawe	Resultado Obtenido	Cerro Prieto II y III	Resultado Obtenido		
Temperatura reservorio [° C]	215	225	320	325		
Presión de Entrada [bar]	4,21	4	13	13		
Flujo Másico Geotermal [kg/s]	157,5	95,7	417	71,01		
Potencia Geotérmica [MW]	16,7	10,46	110	18,88		
Trabajo Especifico [kJ/kg]	106,03	109,30	263,79	265,88		
Error Temperatura [%]	-4,	65	-1,56	5		
Error Presión [%]	4,9	99	0,00			
Error Trabajo Especifico [%]	-3,	08	-0,79)		

TABLA 4-10: COMPARACIÓN ENTRE RESULTADOS Y CENTRALES EXISTENTES DE CICLO BINARIO.

	Centrales de	Ciclo Binario		
	Mammuth- Pacific	Resultado Obtenido	Amedee	Resultado Obtenido
Fluido Geotérmico	Isobutano		R114	
Temperatura reservorio [° C]	169	150	103	100
Presión de Entrada [bar]				
Flujo Másico Geotermal [kg/s]	220,5	94,58	205,1	97,41
Potencia Geotérmica [MW]	10	3,82	2	0,901
Trabajo Especifico [kJ/kg]	45,35	40,39	9,75	9,25
Error Temperatura [%]	11,	,24	2,	91
Error Presión [%]				
Error Trabajo Especifico [%]	10,	,94	5,	15

Como se puede observar, el mayor error presente en las comparaciones realizadas, se presentó en las centrales de ciclo binario, donde la razón entre el trabajo específico resultante para la modelación del ciclo trabajando a condiciones similares a la central Mammuth Pacific, es cercano

al 10%. Esta fuente de error en particular, puede deberse a la falta de información respecto a la presión de entrada al primario en la planta binaria existente. Respecto al resto de los resultados, los errores en el trabajo específico son generalmente menores o muy parecidos al error presente entre las condiciones de entrada. La sensibilidad de los resultados es, según este análisis, menor al 4%.

4.6. Influencia de la selección de agua como fluido geotérmico.

Es frecuente en estudios de similar índole, utilizar agua como geofluido para el modelamiento termodinámico de ciclos para la generación de potencia, debido sobre todo a la facilidad de acceso a sus propiedades termo físicas, a la variabilidad de composiciones químicas entre un geofluido y otro, y al supuesto bajo impacto del resto de sus elementos constituyentes en un balance térmico basado en la Primera Ley.

4.6.1. Química de Geo fluidos

Una gran variedad de procesos geoquímicos ocurren en las aguas geotermales. Estos están generalmente asociadas a interacciones entre las aguas mismas del acuífero y la roca que conforma la cámara en que está recluido. La roca generalmente tiende a disolverse muy lentamente en el agua, ayudada de las altas temperaturas en el reservorio y el contacto constante entre ambos elementos. Habitualmente, estas reacciones se asocian a la liberación de especies iónicas y a la producción de soluciones de silicio. De manera similar, las reacciones dentro del líquido típicamente envuelven la creación de sulfuros y metales catiónicos. Ejemplo de composición química de geofluido, se muestra en la **TABLA 4-11**.

Species	Wairakei ²	Rotorua ³	Waitoa ⁴	for com	iparison
	wells ~ 1.5km	springs	springs	seawater ⁵	riverwater
Cl	2156	560	57	19350	5.7
Na ⁺	1200	485	220	10760	4.8
SiO ₂	660	490	175	0.005-0.01	13
\mathbf{K}^{+}	200	58.5	43	399	2
HBO ₂	115	21.6	1.2	0.004	-
HCO3 ⁻	32	167	3177	142	23
SO4 ²⁻	25	88	<1	2710	6.7
Ca ²⁺	17.5	1.2	37	411	15
Li^+	13.2	4.7	0.6	0.18	-
F-	8.1	6.4	0.3	0.0013	-
NH ₃	0.15	0.2	-	-	-

TABLA 4-11: COMPOSICIÓN DE AGUAS GEOTERMALES EN PPM. EL YACIMIENTO DE WAIRAKEI PRESENTA AGUAS DE TIPO CLORURO NEUTRALES, EL DE ROTORUA DE TIPO SULFATO ÁCIDO Y EL DE WAITOA DE TIPO CARBONATO-ALCALINO. [13]

4.6.2. Interacciones Químicas Importantes en el Diseño de una

Central Geotérmica.

Varias características químicas del geofluido deben ser consideradas en el comienzo de la fase de diseño de una planta geotermal, en orden de identificar el desempeño real de esta. Se incluyen, el contenido de gases no condensables (NCG en sus siglas en ingles), la corrosividad, y el potencial de precipitación y escalado de sales [9].

(1) Gases no Condensables:

Los fluidos geotermales arrastran gases no condensables que suelen no ser fáciles de reinyectar hacia el reservorio. Estos gases (CO_2 y H_2S generalmente) se acumulan en el condensador, disminuyendo la transferencia de calor en él y aumentando la contrapresión de la turbina, lo que reduce su rendimiento. Entre las formas de disminuir el efecto de los NCG, destaca la utilización eyectores de vapor anexos al condensador y la utilización de bombas de vacío. Ambos tratamientos poseen contraindicaciones, mientras los primeros reducen la cantidad de vapor disponible para la generación, las bombas de vacío incrementan la carga parasita del sistema.

(2) Corrosión

Algunos fluidos geotermales pueden dañar gradualmente los materiales de la planta por acción química, mediante un proceso conocido como corrosión. Si bien dicho efecto no conlleva ninguna variación de resultados en la teoría, en la práctica puede llegar a la destrucción de la planta si no se prevé ni se trabaja con materiales aptos para su desaparición.

(3) Escalado y Precipitación de Sales

Elementos disueltos en algunos recursos pueden producir escalado, o precipitación directa de sales en la superficie de tuberías o intercambiadores de calor siendo la sílice es la sustancia más común que produce escalamiento en las plantas geotermales actuales. Este fenómeno suele ser inducido por cambios en la temperatura y en el pH del fluido, lo que suele ser especialmente peligroso en los procesos de expansión súbita y separación de fases; cuando el líquido se expande para producir vapor, el dióxido de carbono originalmente disuelto en el geofluido es emitido naturalmente en pequeñas cantidades, lo que provoca un incremento en el pH, creando una retroalimentación positiva que resulta en más escalamiento en dicho elemento. Si bien, este efecto tampoco afecta los resultados teóricos del presente estudio, igualmente en la práctica provoca decrecimiento en el rendimiento térmico y problemas en los equipos de la central.

4.6.3. Sensibilidad de los Resultados Obtenidos.

Si bien, el hecho de utilizar agua como geofluido es ampliamente utilizado tanto en modelaciones de flujo en pozos geotérmicos, como en análisis termodinámicos de plantas de generación de potencia a partir de este tipo de fluidos, existe cierto margen que se considera aceptable, según algunos autores, para su utilización. Cuando la concentración de gases no condensables (tipificados por el CO_2 por ser el gas mayoritariamente presente en el vapor) y las sales (representadas por la concentración equivalente de *NaCl*) no exceden el 10% de su peso (o su equivalente de 100000 ppm), se considera que dicha hipótesis es válida. [20].

De todas formas, existen estudios que buscan tipificar y cuantificar la influencia de la diferencia entre la composición de agua pura y la del fluido en el reservorio, determinando la variación de la energía que llega a la válvula boca de pozo, y comparándola con resultados teóricos utilizando agua como geofluido. La energía que entrega el fluido geotérmico, está determinada por la ecuación de calor siguiente.

$$Energía = (Caudal)_P \cdot (\Delta Entalpía)_p$$

La presencia de sales, por un lado, disminuye la entalpia del fluido [21], tal y como se muestra en la **FIGURA 4-4**. De manera similar, un incremento en la salinidad aumenta la densidad del fluido, lo que provoca disminución en la presión de saturación a una temperatura dada en comparación con el punto de saturación del agua pura [22]. Este fenómeno, sumado a la presencia de gases no condensables, genera que la aparición de la fase gaseosa se produzca antes (a mayor profundidad del pozo, en términos geotérmicos)[23], lo que induce a una disminución en la presión boca de pozo [21] y en el porcentaje de vapor en el fluido bifásico, como se observa en la **FIGURA 4-5**.

FIGURA 4-4: CAMBIO EN LA ENTALPÍA DEL GEOFLUIDO PARA UNA EXPANSIÓN ISOENTRÓPICA A 0,0117 [BAR]. [21]

FIGURA 4-5: VARIACIÓN DE LAS CURVAS DE PRODUCCIÓN RESPECTO A LA SALINIDAD DEL FLUIDO GEOTERMAL.[21]

El resultado de la combinación de ambos efectos se muestra en la **FIGURA 4-6**. Dicha figura ilustra que la energía disponible se ve significativamente reducida con el crecimiento de la salinidad del fluido (22% para 0,25 de fracción en peso de sales), y que la presión boca de pozo a la que se obtiene la máxima energía por unidad de área también se ve disminuida. Luego, como primera aproximación cada 1 % de solidos disueltos en el geofluido, reduce la energía disponible del pozo en un 0,8% a 0,9 %, comparado con el agua pura, en el mismo lugar de estudio.

El efecto de la salinidad en la energía disponible en el pozo se puede extrapolar a los resultados obtenidos en el balance termodinámico de las centrales. Por ejemplo, la disminución en el flujo másico y en la entalpia del geofluido en la boca de pozo, se transfiere también a la entrada de la turbina, lo que genera disminución en la potencia generada. Se deduce, por consiguiente, que el análisis de sensibilidad mostrado para la energía disponible en el pozo, aplica directamente a la energía generada mediante el ciclo. Eso sí, si se toma en cuenta que la curva de producción fue obtenida a partir de bibliografía especializada, que no utiliza el mismo supuesto estudiado en esta sección, es válido presumir que esta curva ya está afectada por la presencia de sales en el fluido geotermal, y por consiguiente, el efecto de decrecimiento de la entalpia del geofluido respecto a la del agua pura es el único que debería considerarse en la sensibilidad de los resultados obtenidos en el estudio.

FIGURA 4-6: EFECTO DE LA SALINIDAD EN LA ENERGÍA DISPONIBLE EN UN POZO POR UNIDAD DE ÁREA. [21]

4.7. Influencia de la Temperatura de Condensación

Dentro de los supuestos considerados en el presente trabajo, se fijó la temperatura de condensación de todos los ciclos en $T_c = 40$ [°C]. Cambios en esta temperatura, modificarían los resultados obtenidos en cuanto a la magnitud de estos, no así respecto al comportamiento de las curvas encontradas, ni tampoco a las tendencias en cuanto al desempeño de las plantas geotérmicas entre sí.

El funcionamiento del sistema de refrigeración empeora con las altas temperaturas, aumentando como consecuencia la presión (temperatura) del condensador. Cuando esto ocurre, la expansión del vapor en la turbina es mayor, considerando que existe mayor disponibilidad de salto entálpico para la producción de trabajo específico, resultando en aumentos en la potencia de la misma. Si bien esta mejora se puede ver reducida ligeramente por la aparición mayores pérdidas de carga en el escape, el aumento de la potencia es igualmente notorio. Similarmente, cuando la presión en el condensador aumenta, la expansión en la turbina se ve limitada y la potencia de esta disminuye.

Una torre de enfriamiento con aire como medio de refrigeración, tiene su base de funcionamiento en la evaporación de parte del agua que refrigera el condensador en una corriente de aire, de manera que ésta absorbe el calor necesario del agua que condensa y que refrigera el condensador. La temperatura que se alcanza en el agua de refrigeración depende básicamente de dos parámetros climáticos. Por una parte, altas temperaturas ambientales favorecen la evaporación, pero hacen que el agua enfriada en la torre y que refrigera el condensador se mantenga en valores altos y no permita alcanzar condiciones de alto vacío. Por otra parte, la humedad relativa alta impide la evaporación del agua y por tanto el calor que se evacua por este sistema se reduce, impidiendo una refrigeración efectiva del condensador. En consecuencia, tanto la cantidad de agua evaporada en la torre de refrigeración como la temperatura ambiente condicionan la refrigeración del condensador y, por tanto, la presión que se consigue a la salida de la turbina.

5. CONSTRUCCIÓN DE DIAGRAMAS GENERALES DE PERFORMANCE

En el capítulo a continuación se explica el procedimiento seguido para la construcción de los diagramas generales que asisten a la selección de una tecnología en particular, conociendo la temperatura del recurso, e imponiendo una presión de ingreso al ciclo, según los supuestos considerados en los análisis energéticos que se desarrollan en capítulos anteriores. Se adjuntan además los dos diagramas obtenidos, uno para la potencia máxima capaz de obtenerse, y otro para la eficiencia térmica. Ambos diagramas comparten la misma metodología, por lo que se limitará a explicar esta una sola vez.

5.1. Supuestos Generales

Para comenzar con la fabricación de los diagramas, se consideran en un inicio los mismos supuestos generales considerados en los análisis energéticos anteriores, los cuales se deben tener claros antes de concluir algún resultado utilizando dichas gráficas. Cabe mencionar los más importantes:

- El análisis que da como resultado los datos utilizados en los diagramas se hacen a partir solo del estudio de la primera ley de la termodinámica, por lo que obvian las perdidas por eficiencia de utilización.
- Se considera que el fluido geotérmico es agua pura, y que la curva de producción que modela el comportamiento del pozo esta aleatoriamente seleccionada y se muestra en la FIGURA 3-3. Luego, la presión de entrada al ciclo (o de boca de pozo) está limitada por el valor máximo admisible según esta curva.

De forma particular, cada ciclo posee supuestos para su modelación y obtención de resultados, pero que no se alejan a los generalmente utilizados en simulaciones termodinámicas teóricas.

5.2. Metodología de construcción de los diagramas.

Respecto a la selección de datos para ingresar al diagrama, esta se hizo según el número de puntos discretos considerados en los balances energéticos. A saber; en el modelamiento de ciclos orientados a recursos de alta entalpia, se utilizaron ocho puntos discretos para la temperatura equiespaciados entre 150 [°C] y 325 [°C], y ocho para la presión, entre 1 [bar] y 17,5 [bar]. Para el caso de los ciclos binarios, se consideraron seis puntos para la temperatura del recurso, entre 100 [°C] y 150[°C], y seis presiones de boca de pozo, entre 1 [bar] y 17,5 [bar]. La selección de los datos se basó en los valores máximos para una condición de operación en particular, sin importar de qué configuración de ciclo se trataba, ni de que supuestos particulares consideraba la

configuración seleccionada. Luego, los diagramas en cuestión solo utilizan como datos de entrada la temperatura del recurso y la presión de ingreso al ciclo obviando el resto de condiciones que influyen en la selección de una tecnología, siendo la más importante desde el punto de vista termodinámico, el estado del fluido disponible y la fase dominante en su composición. En otras palabras, un ciclo de utilización directa que supone vapor saturado a la entrada del ciclo, compite a la par con un ciclo de expansión súbita, que posee como condición que el fluido que ingresa al ciclo sea líquido dominante.

Los pasos seguidos en la construcción de los diagramas, se enumeran a continuación.

- (1) Se elige el valor mayor del parámetro que se desea estudiar de entre todas las configuraciones modeladas.
- (2) Se ingresa el dato a una hoja de Excel, y se pinta la celda en que ingresó para representar la configuración de ciclo a la cual pertenece el dato. Luego, una celda dentro de la hoja tendrá cuatro atributos; su valor, la temperatura y la presión para la cual se obtuvo, y el ciclo o configuración para la cual pertenece. La FIGURA 5-1 muestra la tabla obtenida en la construcción del diagrama de potencia, después de ingresados todos los datos.
- (3) Para las celdas en blanco, se interpola de forma lineal según la relación 12.2-1, sólo si los datos utilizados para ello comparten la misma configuración de ciclo. En las celdas donde no existan suficientes datos para la interpolación debido a la presencia de más de una configuración de ciclo en los alrededores, se elige el ciclo predominante observando las curvas de variación obtenidas en cada balance energético. Una vez se conoce el ciclo, se extrapolan los datos conocidos utilizando una curva de tendencia polinómica de grado dos, con la que se hace posible encontrar la celda en búsqueda. La FIGURA 5-2 exhibe la tabla obtenida una vez completadas las celdas en blanco en la construcción del diagrama de potencia.

$$y = \frac{(x - x_1)}{(x_2 - x_1)}(y_2 - y_1) + y_1$$
⁽⁵⁻¹⁾

(4) Se grafican las tablas obtenidas en un diagrama de barras en 3D, seleccionando como series alguno de los parámetros de entrada (presión o temperatura). Se pintan las columnas según el color del ciclo al que corresponda el valor de la potencia.

5.3. Presentación de los Diagramas de Performance

Las **FIGURA 5-3** y **FIGURA 5-4** muestran los gráficos de performance de potencia y eficiencia térmica respectivamente, considerando todas las simulaciones de ciclo termodinámicas

																		8	ю	2	8	6	4	6	6	8	5	E	3	n	8	0	8	5	
																		4262	1774	3122	4009	4896	5409	5921	6144	6367	6380	6393	6262	6131	5888	5646	5136	4627	330
																		4203	17535	30866	39635	48403	53467	58531	60731	62930	63048	63166	61861	60556	58135	55714	50623	45532	320
																		4144	17325	30506	39171	47836	52839	57842	60013	62183	62292	62402	61100	59798	57383	54967	49879	44790	310
32	27		69	(19	0	78		31		15		60		75	0	1	4085	17115	30145	38708	47270	52212	57154	59295	61435	61536	61637	60338	59039	56630	54221	49134	44047	300
426	312		489	1	592	0	636		639		613		564		462	20 33		4013	16816	29618	38032	46447	51302	56158	58257	60357	60448	60539	59247	57955	55557	53159	48078	42997	290
																310 33		3941	16516	29091	37357	45623	50392	55161	57220	59279	59360	59440	58155	56870	54483	52096	47021	41946	280
4085	30145		47270		57154	1	61435		61637		59039		54221		44047	300		3894	16320	28747	36918	15089	19804	54519	6554	58588	58665	8741	57462	56183	53805	51427	16358	11289	270
1	Ξ		n	,		ç	ç,		0		0		9		9	290		3846	16125	28403	36479	14555 -	19216	53877	55887	57898	57970	8041	6768	55495	53127	50758	15695 4	10632 2	260
394	2905		4562	1	5516	0 1 1	5927		5944		5687		5209		4194	0 280		3799	5929	8059	86040	14021	18628	3235	5221	57207	57275	57342	6075	34808	52449	68009	15032 4	39975 -	250
																260 27		3729	5639]	7549 2	5393 8	3237 4	1769 4	2301 5	4256	6211 5	6276	6341	5086	3832 5	1489	9146	4102 4	9058 8	240
3799	28059		44021	1000	53235		57207		57342		54808		50089		39975	250		3658 :	5349 1	7039 2	4746 5	2453 4	6910 4	1367 5	3291 5	5214 5	5277 5	5339 5	4098 5	2856 5	0529 5	8202 4	3171 4	8140 3	230
					~				6		.0		5		0	240		3539 ;	5004 1	6697 2	4315 3	1934 4	6345 4	0757 5	2664 5	4572 5	4636 5	4701 5	3471 5	2241 5	9928 5	7615 4	2596 4	7576 3	220
3658	27039		4245:	0	5136		5521		55333		5285(4820:		3814(0 230		321 8	4679 1	6354 2	3885 3	1415 4	5781 4	0146 5	2038 5	3929 5	3996 5	4063 5	2845 5	1626 5	9327 4	7027 4	2020 4	7013 3	210 2
																10 220		316 3	280 1	6012 2	3454 3	0896 4	5216 4	9536 50	1412 5:	3287 5	3356 5	3425 5.	2218 5:	1011 5	8726 4	5440 4	1445 4	6449 3	000
6,079	012		896	0	536	1	287		425		011		440		449	00		132 1	032 2	381 20	912 <mark>3:</mark>	457 4	1009 4	5048 49	3185 5	0420 5:	1753 5:	2507 5:	1324 5:	0142 5:	7882 48	5623 40	0651 4	5679 30	90 2
131	26		40	Ş	49	1	50		53		51		46		36	90 2		949 1	939 2	930 3	603 3	277 4	760 4	117 4	190 48	9450 50	809 5.	1589 5:	1431 ⁷5 .	272 50	7039 4	1805 4)857 ⁷ 4(1909 3	80 1
949	930		277						1589		9272		1805		1909	80 19		46 9	729 1	612 2	213 3	814 4	246 4	564 5	761 47	838 46	793 <mark>5</mark> 0	011 51	083 50	157 49	730 47	303 44	376-39	449 34	70 1
	2		4		L				5		46		4		ŝ	170 1		43 8	619 ⁷ 1'	2 95 20	323 33	3 50 38	29 4:	09 4	83 4'	250 48	211 4')65 <mark>50</mark>	89 49	155 48	651 46	800 44	894 39	988 34	50 I
								-	_				20		æ	160		11 7	09 15	78 22	32 28	87 35	35 37	82 4(30 41	30 42	30 42	22 4(13 38	22 34	990 45	298 43	413 38	528 33	50 10
641	1978		2887	000	3653		4237		3830		3422		43298		33528	150		7 64	0 13	32 19)5 24	91 28	76 31	32 33	34 36	35 37	37 38	76 38	36 38	35 34	135	76 432	19 384	21 335	0 15
177		1805		0000	2662		1000	2967				3004			1421	140		7 17	5 72	4 120	2 18(2 206	3 237	3 266	1 276	0 28(8 296	5 297	2 298	9 29	6 30(3 24	0 194	7 142	0 14
137		1392		0100	2053		0000	2228				2316			1107	130		3 13	9 55	3 97.	2 139	8 161	5 183	1 205	0 213	0 221	9 228	4 229	0 230	5 230	0 231	9 191	7 151	3 110) 13(
103		1052			1551		1	T.729				1750			846	120		105	419	736	105	121	5 138	7 155	161	1 167	7 172	1 173	5 174) 174	3 175	5 144	114	84(12(
76		177		10.10	1137		1001	1267				1283			628	110		76	307	539	771	893	101	113'	118(1224	126	127]	1278	1279	128	106	846	628	110
53	1 1	541			797		000	889	,			900			915	100		53	216	378	541	626	712	797	828	858	889	891	894	897	900	905	910	915	100
17	$15 \\ 15$	14	13	12	11	10	6	∞	4	9	S	4	3	2	-	0		17	16	15	14	13	12	11	10	6	∞	7	9	S	4	3	5	-	\circ

realizadas, según la curva de producción $\dot{m_1}$, y para un espectro de temperaturas de 100[°C] a 325 [°C].

FIGURA 5-1: HOJA DE DATOS OBTENIDA DESPUÉS DE INGRESAR LOS DATOS OBTENIDOS EN LOS BALANCES ENERGÉTICOS

FIGURA 5-2: HOJA DE DATOS OBTENIDA DESPUÉS DE COMPLETAR LAS CELDAS DONDE NO SE POSEÍA INFORMACIÓN.

FIGURA 5-3: DIAGRAMA COMPARATIVO DE POTENCIAS MÁXIMAS

FIGURA 5-4: DIAGRAMA COMPARATIVO DE EFICIENCIAS TÉRMICAS MÁXIMAS

6. CONCLUSIONES GENERALES

En base a los objetivos propuestos para el presente trabajo, y una vez obtenidos, analizados y contrastados los resultados, se puede concluir lo siguiente:

- Se cumple a cabalidad, mediante este informe, el objetivo general del Trabajo de Titulo, considerando los modelos de configuraciones termodinámicas realizados, la obtención y el análisis de los resultados, y el diagrama resumen de las configuraciones y condiciones de entrada optimizadas para la obtención de potencias y eficiencias térmicas máximas elaborado.
- En cuanto a las centrales de vapor seco, presentan las máximas potencias en el rango de alta entalpia, para la mayor parte del espectro de temperatura y presión de entrada analizados. Su comportamiento a partir de la variación de temperatura es directamente proporcional, mientras que según la variación de la presión de boca de pozo su conducta depende del efecto combinado del trabajo específico, que aumenta con la presión de entrada, y del flujo másico, que disminuye con esta. Su eficiencia térmica promedio ronda el 20%, el máximo de entre los casos analizados.
- Las centrales de expansión súbita corresponden a la opción con configuración más simple para recursos de tipo líquido dominante. Su comportamiento según la temperatura del recurso es directamente proporcional, mientras que para variaciones de la presión de boca de pozo, depende del efecto combinado del trabajo específico y del flujo másico, tal como en el caso de las centrales de vapor seco. El desempeño de esta central depende de la optimización de la presión en que ocurre el proceso de separación de fases, la que influye tanto en el flujo másico como en la entalpia a la entrada de la turbina, y la que es responsable de que su potencia y rendimiento sea menor al de una central de utilización directa.
- Las centrales de doble expansión súbita, presentan una configuración que busca aumentar el desempeño de un ciclo ante un recurso líquido dominante. En este sentido, este tipo de plantas presenta en promedio una potencia un 26% mayor que las centrales de una etapa de expansión súbita. Su comportamiento general es igual a los casos anteriores; el aumento de potencia es directamente proporcional al de la temperatura del recurso, y la geometría de la curva respecto a la variación de la presión de boca de pozo es resultado de la influencia tanto del trabajo específico como del flujo másico. Se observa, según los resultados obtenidos, que el segundo proceso de expansión aporta mayor trabajo específico y flujo másico a la central, resultado de una presión del separador cercana a la presión de boca de pozo. La dependencia del flujo másico con la presión de entrada al ciclo es la responsable que el punto en que se optimiza el rendimiento no coincida con el que se maximiza la potencia.
- En las centrales de ciclo binario, los resultados dependen tanto de la configuración y el equipamiento del ciclo, como de las propiedades termofísicas de los fluidos de trabajo. Respecto al comportamiento general, se observa que las curvas de potencia a diferente temperatura, poseen igual forma entre distintos fluidos, solo diferenciándose en cuanto a la magnitud de cada valor. Inclusive, se presentan las mismas singularidades de potencia baja, debido al cambio a fase gaseosa del fluido geotérmico a determinadas condiciones de entrada, lo que produce una disminución en el calor que otorga el ciclo primario al

secundario. La variación de la presión de entrada en este tipo de centrales es independiente del valor del trabajo específico, para una temperatura de recurso fija, y solo afecta en términos de la potencia, en el flujo másico participante del ciclo secundario de manera tal que a mayores presiones de entrada, menor es el flujo másico de fluido de trabajo. La eficiencia térmica, de manera similar, solo se ve afectada por el cambio en la temperatura del recurso. Respecto a las propiedades del fluido de trabajo que inciden en los resultados obtenidos, es posible afirmar que el trabajo específico desarrollado en el ciclo, es directamente proporcional al calor latente de evaporación, mientras que la cantidad de flujo másico de trabajo presenta comportamiento inversamente proporcional a la capacidad calórica del mismo, tomando en cuenta los supuestos del modelo.

- En cuanto a las repercusiones de considerar en el modelo el fluido geotérmico como agua pura, desde el punto de vista de los resultados teóricos se ven afectados tanto el flujo másico geotérmico, a partir de la baja de la presión de boca de pozo producto de la variación de las curvas de productividad del yacimiento ante la presencia de sales en el fluido, como la entalpia del geofluido, que se ve disminuida cerca de un 0,8 % para cada 1% de sales disueltas. Solo el segundo efecto es aplicable en los resultados recogidos, ya que la curva fue obtenida a partir de bibliografía, por lo que se presupone que considera la influencia de las sales en el geofluido.
- Respecto a los efectos de suponer el fluido geotérmico como agua pura, en la práctica son solo de orden perjudicial para la operación de la planta; escalamiento de sales en las tuberías, presencia de gases no condensables que aumentan la presión en que el vapor sale de la turbina, corrosión en maquinaria de la planta, etc.
- Las condiciones climáticas del lugar donde esté situada la central geotérmica influyen notablemente en su funcionamiento. En particular, una temperatura y humedad relativa altas afectarán de manera negativa al funcionamiento de la central, de manera tanto la potencia producida como su rendimiento estén por debajo del punto de diseño. Otro factor a tener en cuenta en la selección del emplazamiento es su altitud, ya que cuando la presión atmosférica disminuye el trabajo producido por la turbina también se reduce.
- Los diagramas de performance se realizaron mediante la selección de los ciclos que presentaron mayor desempeño para toda condición de temperatura del recurso y presión de entrada. Respecto a los recursos de media entalpia, el isobutano predomina como el fluido de trabajo con el que se logran las máximas potencias, los ciclos doble flash lo hacen en el rango en que las condiciones de temperatura y presión no permiten la saturación del geofluido (temperaturas bajas a presiones altas), mientras que el ciclo de utilización directa tiene mayor presencia en el diagrama que sus contendientes, con predominancia total desde los 210 [°C]. Respecto al diagrama de eficiencia térmica, el resultado es igual al antes mencionado, con diferencias solo en el rango de media entalpia, con aparición similar de los cuatro fluidos con los que se trabajó.

7. BIBLIOGRAFÍA

- [1] G. Llopis Trillo and V. Rodrigo Angulo, *Guía de la Energía Geotérmica*. Madrid: Fundacion de la Energia de la Comunidad de Madrid, 2003, pp. 43–81.
- [2] D. Plašienka, "Plate Tectonics and Landform Evolution," *Earth Syst. Hist. Nat. Var.*, vol. II, 2003.
- [3] E. Santoyo-Gutierrez and I. Torres-Alvarado, "Escenario futuro de explotación de la energía geotérmica : hacia un desarrollo sustentable," *Rev. Digit. Univ.*, pp. 1–26, 2010.
- [4] A. (1988). Lahsen, "Chilean Geothermal Resources and their possible utilization'," *Geothermics*, vol. v.17, pp. 401–410.
- [5] CEGA, "Geotermia en Chile." [Online]. Available: http://www.cega.ing.uchile.cl/cega/index.php/es/informacion-de-interes-/geotermia-en-chile.
- [6] "Energia Andina S.A. | Geotermia en Chile." [Online]. Available: http://www.energiandina.cl/2010/09/geotermia-en-chile/.
- [7] S. K. Sanyal, "Cost of geothermal power and factors that affect it," *GeothermEx*, 2004.
- [8] C. Herrera, R. Roman, and D. Sims, "El costo nivelado de energía y el futuro de la energía renovable no convencional en Chile : derribando algunos mitos," 2012.
- [9] B. A. Kagel, "The State of Geothermal Technology," no. January, 2008.
- [10] R. DiPippo, *Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact,* 3th ed. ElSevier, 2012.
- [11] M. Moran and H. Shapiro, *Fundamentals of Engineering Thermodynamics*, 5th ed. New York, 2004.
- [12] P. Valdimarsson, "Thermodynamics of Geothermal Power Production," pp. 1–9.
- [13] A. P. Hodder, "Geothermal Waters: A Source of Energy and Metals," pp. 1–10.
- [14] H. Chen, D. Y. Goswami, and E. K. Stefanakos, "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," *Renew. Sustain. Energy Rev.*, vol. 14, no. 9, pp. 3059– 3067, Dec. 2010.
- [15] F.-C. Software, "Engineering Equation Solver Manual for Microsoft Windows Operating Systems," 2014.
- [16] R. Gabbrielli, "A novel design approach for small scale low enthalpy binary geothermal power plants," *Energy Convers. Manag.*, vol. 64, pp. 263–272, Dec. 2012.
- [17] O. E. Lacourt Mora, "Análisis de diversas alternativas de generación eléctrica con fuentes geotermales en Chile," Universidad de Chile, 2010.

- [18] S. J. Zarrouk and H. Moon, "Efficiency of geothermal power plants: A worldwide review," *Geothermics*, vol. 51, pp. 142–153, Jul. 2014.
- [19] R. DiPippo, "Geothermal power plants: Evolution and performance assessments," *Geothermics*, vol. 53, pp. 291–307, Jan. 2015.
- [20] S. Whitaker, E. Santoyo, O. García Valladares, and A. Alvarez del Castillo, "Evaluación estadística de correlaciones de fracción volumétrica de vapor para la modelación numérica de flujo bifásico en pozos geotérmicos," 2010.
- [21] J. Grens, "The effect of salinity on geothermal well performance," 1975.
- [22] A. Miller, "A brine-steam propperties computer program for geothermal energy calculations," 1978.
- [23] A. García, G. Espinosa-Paredes, and R. M. Barragán, "Effect of non-condensable gases on the flow of water and steam in geothermal wells," vol. 41, pp. 377–383, 2002.

ANEXO A

ESTADO DEL ARTE DE LA GEOTERMIA A NIVEL MUNDIAL

El crecimiento de la energía geotérmica en todo el mundo se muestra en la figura A.1. En este grafico se observa que la industria geotérmica ha experimentado varios periodos diferentes en su desarrollo. Hasta la Segunda Guerra Mundial, Italia fue el único país con centrales de energía geotérmica. De 1930 a 1944, el crecimiento anual promedio fue de alrededor del 14 %. Después de la reconstrucción de las centrales de Larderello (destruida durante la 2da Guerra Mundial), el crecimiento cayó al 9,7 % desde 1945 hasta 1979, a pesar de que 11 países más se habían unido al círculo de energía geotérmica. La gran crisis del petróleo de 1973 impulso a muchos países a comenzar a desarrollar sus recursos geotérmicos. Desde1979, el año de la segunda crisis del petróleo, hasta 1985, la tasa de crecimiento anual aumento a 15,0 %.

Ahora en los últimos 22 años, desde 1985 hasta 2007, esta tasa se ha ralentizado considerablemente a alrededor de 3,2 %. En las Tablas A.1, A.2 y A.3 se muestran en detalle la capacidad y número de unidades instaladas de centrales geotérmicas a nivel mundial de las distintas tecnologías. (FUENTE: *Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact, R. DiPippo*).

FIGURA A-1: Crecimiento capacidad geotermal instalada en los últimos 90 años.

Ranking	País	N° Unid	MWe
1	Estados Unidos	193	2555,5
2	Filipinas	58	1979,9
3	México	37	953,3
4	Italia	33	811,2
5	Indonesia	15	807,0
6	Nueva Zelandia	39	572,1
7	Japón	22	537,7
8	Islandia	24	422,4
9	El Salvador	7	204,3
10	Costa Rica	6	163,0
11	Kenia	9	130,2
12	Nicaragua	7	108,9
13	Rusia	12	79,0
14	Papua-Nueva Guinea	6	56,0
15	Guatemala	9	44,6
16	Turquía	2	27,8
17	China (Tibet)	13	27,6
18	Portugal	5	16,0
19	Francia	2	14,7
20	Austria	2	1,3
21	Tailandia	1	0,3
22	Alemania	1	0,2
23	Australia	1	0,2
24	Argentina	0	0,0
25	Etiopia	0	0,0
26	Grecia	0	0,0
27	Zambia	0	0,0
Total		504	9513,2
Promedio (MWe/unid)			18,88

TABLA A-1: Estado del Desarrollo de las Centrales Geotérmicas en todo el Mundo.

País	Vapor Seco	1-Flash	2-Flash	3-Flash	Binario	Flash- Binario	Hibrido	Total
Estados Unidos	1462	49	707	49	257	25	6	2555,5
Filipinas	0	1325	497	0	16	142	0	1979,9
México	0	480	470	0	3	0	0	953,3
Italia	791	20	0	0	1	0	0	811,2
Indonesia	140	667	0	0	0	0	0	807,0
Nueva Zelandia	55	85	227	45	22	139	0	572,1
Japón	24	352	160	0	2	0	0	537,7
Islandia	0	352	60	0	11	0	0	422,4
El Salvador	0	160	35	0	9	0	0	204,3
Costa Rica	0	144	0	0	19	0	0	163,0
Kenia	0	116	0	0	2	12	0	130,2
Nicaragua	0	101	0	0	8	0	0	108,9
Rusia	0	79	0	0	0	0	0	79,0
Papua-Nueva Guinea	0	56	0	0	0	0	0	56,0
Guatemala	0	0	0	0	0	45	0	44,6
Turquía	0	20	0	0	7	0	0	27,8
China (Tibet)	0	1	26	0	1	0	0	27,6
Portugal	0	3	0	0	13	0	0	16,0
Francia	0	5	10	0	0	0	0	14,7
Austria	0	0	0	0	1	0	0	1,3
Tailandia	0	0	0	0	0,3	0	0	0,3
Alemania	0	0	0	0	0,2	0	0	0,2
Australia	0	0	0	0	0,2	0	0	0,2
Total	2471	4015	2192	94	373	363	6	9513,2
Porcentaje	26,0 %	42,2 %	23,0 %	1,0 %	3,9 %	3,8 %	0,1 %	100,0 %

TABLA A-2: Centrales geotérmicas en el mundo por MW instalados para cada tipo de central.

País	Vapor Seco	1-Flash	2-Flash	3-Flash	Binario	Flash-Binario	Hibrido	Total
Estados Unidos	25	3	28	1	125	10	1	193
Filipinas	0	37	10	0	6	5	0	58
Nueva Zelandia	1	3	9	4	6	16	0	39
México	0	29	5	0	3	0	0	37
Italia	31	1	0	0	1	0	0	33
Islandia	0	14	2	0	8	0	0	24
Japón	1	16	3	0	2	0	0	22
Indonesia	3	12	0	0	0	0	0	15
China (Tibet)	0	2	10	0	1	0	0	13
Rusia	0	12	0	0	0	0	0	12
Guatemala	0	0	0	0	0	9	0	9
Kenia	0	6	0	0	1	2	0	9
El Salvador	0	5	1	0	1	0	0	7
Nicaragua	0	6	0	0	1	0	0	7
Costa Rica	0	4	0	0	1	0	0	5
Papua-Nueva Guinea	0	6	0	0	0	0	0	6
Portugal	0	1	0	0	0	4	0	5
Turquía	0	1	0	0	1	0	0	2
Francia	0	1	1	0	0	0	0	2
Austria	0	0	0	0	2	0	0	2
Tailandia	0	0	0	0	1	0	0	1
Alemania	0	0	0	0	1	0	0	1
Australia	0	0	0	0	1	0	0	1
Total	61	159	69	5	162	46	1	504
Porcentaje	12,10 %	31,55 %	13,69 %	0,99 %	32,14 %	9,13 %	0,20 %	100,0 %

TABLA A-3: Centrales geotérmicas en el mundo por número de instalaciones para cada tipo de central.

ANEXO B

ASPECTOS AMBIENTALES ASOCIADOS A PLANTAS GEOTERMALES

Durante la década de los años 1960, cuando el medio ambiente estaba menos dañado que en la actualidad y se estaba menos preocupado por las amenazas de la Tierra, la energía geotérmica era aún considerada una energía limpia. Hoy en día, no existe la tecnología para producir o transformar energía a una forma que sea utilizable por el hombre sin ocasionar algún impacto directo o indirecto sobre el ambiente. Si bien la explotación de la energía geotérmica también tiene un impacto sobre el ambiente, es considerada una de las formas de energía menos contaminante de entre las hoy utilizadas. De todas maneras, se hace necesario cualificar los aspectos ambientales relacionados con la producción de electricidad mediante energía geotérmica, de modo de lograr ser comparable y poder competir con las otras opciones de generación eléctrica.

B.1. Fuentes de contaminación

En la mayoría de los casos el grado con que la explotación geotérmica afecta al ambiente es proporcional a la magnitud de su explotación. El mayor impacto suele ser el visual, ya que las centrales geotérmicas se ubican en campos geotérmicos que suelen coincidir con espacios de gran valor natural y paisajístico (geiseres, termas, volcanes, etc.).

La Tabla 3.1 resume la probabilidad y la gravedad relativa de los efectos de un proyecto geotérmico para usos directos sobre el ambiente. La generación de electricidad en centrales de ciclo binario afectará al ambiente en la misma forma que los usos directos del calor.

Impacto	Probabilidad de ocurrencia	Gravedad de las consecuencias
Contaminación del aire	Baja	Media
Contaminación de agua superficial	Media	Media
Contaminación del subsuelo	Baja	Media
Subsidencia de terreno	Baja	Baja a Media
Altos niveles de ruidos	Alta	Baja a Media
Reventones de pozos	Baja	Baja a Media
Conflictos con aspectos culturales y arqueológicos	Baja a Media	Media a Alta
Problemas Socio-económicos	Baja	Baja
Contaminación química o térmica	Baja	Media a Alta
Emisión de ruidos solidos	Media	Media a Alta

TABLA B-1: Probabilidad y gravedad del impacto potencial sobre el ambiente de los proyectos de uso directo.

Cualquier modificación del ambiente debe evaluarse cuidadosamente, de acuerdo con las disposiciones legales, pero también debido al hecho de que una aparentemente poco significativa modificación podría desencadenar una serie de eventos cuyo impacto es difícil de evaluar completamente de antemano. Por ejemplo, un mero incremento de 2-3° C en la temperatura de un volumen de agua debido a la descarga del agua de desecho de una central podría dañar su ecosistema. Las centrales y organismos animales más sensibles a las variaciones de temperaturas podrían desaparecer, dejando a algunas especies de peces sin su principal fuente de alimentación. Asimismo, debido al incremento en la temperatura del agua, otras especies de peces verían impedido el desarrollo normal de sus temporadas de reproducción. Si estos peces son comestibles y proporcionan los nutrientes básicos necesarios a una comunidad de pescadores, su desaparición podría llegar a ser crítica para la comunidad.

Se va a analizar el impacto de las fuentes de contaminación, dependiendo de si afectan a: recursos hídricos, recursos del aire o recursos de la tierra.

B.2. Recursos de la tierra

El primer efecto perceptible sobre el ambiente es el de la perforación, ya sean pozos someros para medir el gradiente geotérmico en la fase de estudio, o bien pozos exploratorios o de producción. Se tiene que analizar cómo influye a los recursos de la tierra la instalación de la maquinaria de sonda y de todo el equipo accesorio vinculado a la construcción de caminos de acceso y a la plataforma de perforación. Esta última requiere un ´área que va de los 300-500 [m²] para una pequeña sonda montada en camión (profundidad máxima de 300-700 [m]) hasta los 1200-1500 [m²] para una sonda pequeña o mediana (profundidad máxima de 2000 [m]). Estas operaciones modificaran la morfología superficial del área y podrían dañar las centrales y la vida silvestre local. Normalmente los impactos sobre el medio ambiente causados por la perforación terminan una vez que estos son completados.

La extracción de grandes cantidades de fluidos de un reservorio geotermal puede ocasionar fenómenos de subsidencia, esto es, un gradual hundimiento del terreno. Si no se controla de forma adecuada, se puede producir la disminución de los niveles de agua subterránea, con las consiguientes pérdidas de presión, hundimientos del terreno, y compactación de formaciones rocosas.

Este fenómeno es irreversible, pero no catastrófico ya que es un proceso lento que se distribuye sobre grandes áreas. En varios años de descenso de la superficie de la tierra podrían alcanzarse niveles indeseados, en algunos casos de unas pocas decenas de centímetros e incluso metros, y por lo tanto debería ser controlado de forma sistemática, ya que podría afectar la estabilidad de las construcciones geotermales y algunos hogares del vecindario. En muchos casos la subsidencia puede ser evitada o reducida mediante la reinyección de las aguas geotermales previamente utilizadas. Dicha eliminación y/o reinyección de los fluidos geotermales puede provocar o aumentar la frecuencia sísmica en ciertas áreas. Sin embargo se trata de micro-sismos que sólo pueden detectarse mediante instrumentos especializados.

B.3. Recursos Hídricos

La contaminación de las aguas superficiales puede producirse por el vertido o acumulación de fluidos geotérmicos o la descarga de aguas de desecho. Debido a las altas concentraciones de constituyentes como: sodio, potasio, calcio, flúor, magnesio, silicatos, yodatos, antimonio, estroncio, bicarbonato, boro, litio, arsénico, sulfuro de hidrogeno, mercurio, rubidio, amoniaco, etc., en este caso se trata de contaminación química, pues todos ellos influyen, en distinto grado, en un ecosistema acuático. El vertido de fluido suele ser debido a reventones durante la extracción de fluido. Por ese motivo, cuando se perforan pozos geotérmicos y para evitar los reventones, deben instalarse unos dispositivos denominados BOT (blow-outs preventers), presuponiendo altas temperaturas y presiones.

B.3.1. Reinyección del fluido-vapor y gases no condensables

La reinyección tiene la doble finalidad de evitar la contaminación de suelos y ríos, y restituir al yacimiento una parte del agua extraída para prolongar la vida útil del campo geotérmico.

Los pozos de reinyección están convenientemente ubicados en la periferia de las 'áreas en las cuales se localizan los pozos productores, a una distancia tal que permite que las aguas que son restituidas al yacimiento a temperaturas inferiores a las de extracción tengan suficiente tiempo de residencia para que se calienten antes de llegar a los pozos productores, y su temperatura es controlada sistemáticamente. Las aguas residuales son llevadas por gravedad desde los separadores ciclónicos hasta los pozos inyectores, para ser devueltas al yacimiento. Para evitar cualquier tipo de derrame o contaminación superficial, el transporte de los fluidos geotérmicos se realiza por medio de tuberías de acero en un circuito cerrado, que lleva el fluido bifásico de los pozos productores a las estaciones de separación y a los pozos para reinyectar en lo que se denomina sistema de reinyección en caliente". Cuando por alguna razón las aguas no pueden ser reinyectadas en caliente, se utiliza un sistema conocido como reinyección en frio", que se usa por periodos cortos. En este segundo caso, se usa un alcantarillado de tubos de cemento que interconecta todas las plataformas de perforación y las estaciones de separación con lagunas impermeabilizadas en las cuales se acumula el agua antes de ser enviada al pozo de reinyección.

B.3.2 Acidez del fluido del yacimiento geotérmico

Otro aspecto ambiental a tener en cuenta a la hora de explotar un yacimiento geotérmico, es el pH del fluido extraído. En ocasiones, existen yacimientos dentro de un mismo campo geotérmico con similar composición química, idéntico contenido de gases no condensables y misma temperatura, pero distinta acidez. Para evitar la corrosión de las tuberías a contacto con los fluidos ácidos, las aguas de estos pozos son neutralizadas. Para la neutralización, se inyecta en cada pozo una solución de hidróxido de sodio (NaOH) para elevar el pH a valores cercanos a 5,5 y anular así la capacidad corrosiva de estas aguas.

Las aguas de desecho de las centrales geotérmicas tienen también una mayor temperatura que la del ambiente y por lo tanto constituyen una potencial contaminación termal. Las aguas deben ser enfriadas en piletas o estanques especiales de almacenamiento para evitar modificaciones de los ecosistemas acuáticos naturales: ríos, lagos e incluso el mar.

B.4. Recursos del aire

Las centrales geotérmicas de generación de electricidad no queman combustible ni emiten humo. Sin embargo, sí hay ciertas emisiones gaseosas y liquidas que hay que considerar. Durante la operación normal de las centrales geotérmicas, se producen gases no condensables, los cuales son liberados a la atmosfera junto con el vapor. Estos vertidos gaseosos están compuestos principalmente por dióxido de carbono y sulfuros de hidrogeno, con trazas de amoníaco, hidrogeno, nitrógeno, metano, radón y algunas especies volátiles como boro, arsénico y mercurio, las cuales deberán ser tratadas antes de su vertido. De este tipo de gases, los que revierten importancia debido a sus efectos, ya sea sobre el medio o sobre la salud de las personas, son el dióxido de carbono (CO2) y el sulfuro de hidrogeno (H2S).

Dioxido de carbono (CO2): El CO2 es un gas que se encuentra de forma natural en la atmosfera, es inodoro y de sabor acido. El dióxido de carbono también está presente en los fluidos utilizados en las centrales geotérmicas. Sin embargo, en estas centrales se descarga mucho menos CO2 que en las centrales alimentadas por combustibles fósiles: 13-380 [g]. por cada [KWh]. de electricidad producida en centrales geotérmicas, comparado con los 1042 [g/KWh]. de las centrales de gas natural. En altas concentraciones produce confusión mental, dolor de cabeza y finalmente pérdida de conciencia. Inclusive puede ocasionar la muerte debido a alteración del pH de la sangre.

Sulfuro de Hidrogeno (H2S): El H2S es un gas venenoso que al igual que el CO2 se encuentra en el aire proveniente de fuentes naturales tales como volcanes, fumarolas y materia orgánica en descomposición. El H2S en bajas concentraciones causa efectos negativos en la flora. En los humanos causa lagrimeo, irritación de la mucosa nasal y afecta la visión debido a efectos en las corneas. El umbral de olor para el sulfuro de hidrogeno en el aire es alrededor de 5 partes por billón en volumen y ciertos efectos fisiológicos leves pueden ocasionarse a concentraciones levemente mayores. En muy altas concentraciones puede ocasionar la muerte.

Ruido: El ruido asociado al funcionamiento de centrales geotermales puede ser un problema cuando se trata de centrales geotérmicas. Hay que identificar los sitios de interés desde el punto de vista de impacto del ruido para la salud humana o los más vulnerables de ser afectados por cambios en los niveles de presión sonora dentro de las áreas de influencia ambiental del proyecto geotérmico. En estos sitios, se monta una campaña intensiva de mediciones de los niveles de ruido, la cual consiste en tomar mediciones en cada uno de esos sitios tres veces al día (en horas de la mañana, medio día y en la noche). Como el oído humano no responde igual a todas las frecuencias de un ruido, el sonido se mide en decibelios A ([dBA]), una unidad de nivel sonoro medido con un filtro previo que quita parte de las bajas y las muy altas frecuencias. De esta manera, antes de la medición se conservan solamente los sonidos más dañinos para el oído, razón por la cual la exposición medida en [dBA] es un buen indicador del riesgo auditivo. Durante la fase de producción ocurre el mayor grado de ruido del vapor transportado a través de las

tuberías y la ocasional descarga de vapor, aunque normalmente estos son aceptables. En las centrales eléctricas la principal contaminación acústica proviene de los ventiladores de las torres de enfriamiento, de los inyectores de vapor y el zumbido de las turbinas.

ANEXO C

RESULTADOS DE SIMULACIÓN DE CICLO TERMODINÁMICO ORIENTADO A RECURSOS DE VAPOR SECO

		Estado 1			Estado 2						Estado 3					
<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	s ₂	<i>x</i> ₂	<i>T</i> ₃	<i>P</i> ₃	h_3	<i>S</i> ₃	<i>x</i> ₃		
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]			
150	3,15	2759	7,037	100	40	0,0738	2304	7,037	0,888	40	0,0738	167,5	0,5723	0		
175	3,15	2812	7,159	100	40	0,0738	2341	7,159	0,9035	40	0,0738	167,5	0,5723	0		
200	3,15	2864	7,272	100	40	0,0738	2376	7,272	0,918	40	0,0738	167,5	0,5723	0		
225	3,15	2915	7,378	100	40	0,0738	2409	7,378	0,9317	40	0,0738	167,5	0,5723	0		
250	3,15	2966	7,478	100	40	0,0738	2440	7,478	0,9447	40	0,0738	167,5	0,5723	0		
275	3,15	3017	7,573	100	40	0,0738	2470	7,573	0,9572	40	0,0738	167,5	0,5723	0		
300	3,15	3068	7,664	100	40	0,0738	2499	7,664	0,9691	40	0,0738	167,5	0,5723	0		
325	3,15	3119	7,751	100	40	0,0738	2527	7,751	0,9807	40	0,0738	167,5	0,5723	0		

TABLA C-1: Propiedades termodinámicas de una central de vapor seco para $P_1 = 3,15$ [bar] y $T_c = 40$ [°C].

TABLA C-2: Propiedades termodinámicas de una central de vapor seco para $P_1 = 5,2$ [bar] y $T_c = 40$ [°C].

		Estado 1					Estado 2					Estado 3		
<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁	<i>T</i> ₂	<i>P</i> ₂	h_2	<i>S</i> ₂	<i>x</i> ₂	<i>T</i> ₃	<i>P</i> ₃	h_3	<i>s</i> ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]	
150	5,2	632,3	1,842	-100	40	0,07381	598,7	1,842	0,1792	40	0,07381	167,5	0,5723	0
175	5,2	2799	6,92	100	40	0,07381	2285	6,92	0,8801	40	0,07381	167,5	0,5723	0
200	5,2	2854	7,039	100	40	0,07381	2321	7,039	0,8952	40	0,07381	167,5	0,5723	0
225	5,2	2907	7,148	100	40	0,07381	2355	7,148	0,9092	40	0,07381	167,5	0,5723	0
250	5,2	2959	7,251	100	40	0,07381	2387	7,251	0,9225	40	0,07381	167,5	0,5723	0
275	5,2	3011	7,348	100	40	0,07381	2417	7,348	0,9352	40	0,07381	167,5	0,5723	0
300	5,2	3063	7,44	100	40	0,07381	2447	7,44	0,9473	40	0,07381	167,5	0,5723	0
325	5,2	3115	7,529	100	40	0,07381	2475	7,529	0,959	40	0,07381	167,5	0,5723	0

		Estado 1					Estado 2					Estado 3		
<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	<i>T</i> ₃	P_3	h_3	<i>S</i> ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]	
150	7,25	632,5	1,842	-100	40	0,07381	598,7	1,842	0,1792	40	0,07381	167,5	0,5723	0
175	7,25	2785	6,742	100	40	0,07381	2243	6,742	0,8625	40	0,07381	167,5	0,5723	0
200	7,25	2843	6,867	100	40	0,07381	2281	6,867	0,8784	40	0,07381	167,5	0,5723	0
225	7,25	2898	6,981	100	40	0,07381	2316	6,981	0,893	40	0,07381	167,5	0,5723	0
250	7,25	2952	7,087	100	40	0,07381	2349	7,087	0,9066	40	0,07381	167,5	0,5723	0
275	7,25	3005	7,186	100	40	0,07381	2380	7,186	0,9195	40	0,07381	167,5	0,5723	0
300	7,25	3058	7,28	100	40	0,07381	2409	7,28	0,9318	40	0,07381	167,5	0,5723	0
325	7,25	3110	7,37	100	40	0,07381	2438	7,37	0,9436	40	0,07381	167,5	0,5723	0

TABLA C-3: Propiedades termodinámicas de una central de vapor seco para $P_1 = 7,25$ [bar] y $T_c = 40$ [°C]

TABLA C-4: Propiedades termodinámicas de una central de vapor seco para $P_1 = 9,3$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3		
<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁	<i>T</i> ₂	<i>P</i> ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	<i>T</i> ₃	<i>P</i> ₃	h_3	<i>S</i> ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]	
150	9,3	632,6	1,842	-100	40	0,0738	598,7	1,842	0,1792	40	0,0738	167,5	0,5723	0
175	9,3	741,2	2,091	-100	40	0,0738	690,5	2,091	0,2174	40	0,0738	167,5	0,5723	0
200	9,3	2831	6,733	100	40	0,0738	2249	6,733	0,8652	40	0,0738	167,5	0,5723	0
225	9,3	2889	6,852	100	40	0,0738	2286	6,852	0,8804	40	0,0738	167,5	0,5723	0
250	9,3	2945	6,961	100	40	0,0738	2319	6,961	0,8944	40	0,0738	167,5	0,5723	0
275	9,3	2999	7,062	100	40	0,0738	2351	7,062	0,9076	40	0,0738	167,5	0,5723	0
300	9,3	3052	7,158	100	40	0,0738	2381	7,158	0,9201	40	0,0738	167,5	0,5723	0
325	9,3	3106	7,249	100	40	0,0738	2410	7,249	0,932	40	0,0738	167,5	0,5723	0

										и 				
		Estado 1					Estado 2					Estado 3		
<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	<i>P</i> ₂	h_2	<i>S</i> ₂	<i>x</i> ₂	<i>T</i> ₃	<i>P</i> ₃	h_3	<i>S</i> ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]	
150	11,35	632,7	1,841	-100	40	0,07381	598,7	1,841	0,1792	40	0,07381	167,5	0,5723	0
175	11,35	741,3	2,091	-100	40	0,07381	690,5	2,091	0,2174	40	0,07381	167,5	0,5723	0
200	11,35	2819	6,621	100	40	0,07381	2222	6,621	0,8541	40	0,07381	167,5	0,5723	0
225	11,35	2879	6,745	100	40	0,07381	2260	6,745	0,8699	40	0,07381	167,5	0,5723	0
250	11,35	2937	6,857	100	40	0,07381	2295	6,857	0,8844	40	0,07381	167,5	0,5723	0
275	11,35	2992	6,961	100	40	0,07381	2328	6,961	0,8979	40	0,07381	167,5	0,5723	0
300	11,35	3047	7,059	100	40	0,07381	2358	7,059	0,9106	40	0,07381	167,5	0,5723	0
325	11,35	3101	7,151	100	40	0,07381	2387	7,151	0,9227	40	0,07381	167,5	0,5723	0

TABLA C-5: Propiedades termodinámicas de una central de vapor seco para $P_1 = 11,35$ [bar] y $T_c = 40$ [°C]

TABLA C-6: Propiedades termodinámicas de una central de vapor seco para $P_1 = 13,4$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3		
<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁	<i>T</i> ₂	<i>P</i> ₂	h_2	S ₂	<i>x</i> ₂	<i>T</i> ₃	<i>P</i> ₃	h_3	<i>S</i> ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]	
150	13,4	632,8	1,841	-100	40	0,07381	598,8	1,841	0,1793	40	0,07381	167,5	0,5723	0
175	13,4	741,5	2,09	-100	40	0,07381	690,5	2,09	0,2174	40	0,07381	167,5	0,5723	0
200	13,4	2807	6,523	100	40	0,07381	2199	6,523	0,8443	40	0,07381	167,5	0,5723	0
225	13,4	2870	6,653	100	40	0,07381	2239	6,653	0,8608	40	0,07381	167,5	0,5723	0
250	13,4	2929	6,769	100	40	0,07381	2274	6,769	0,8758	40	0,07381	167,5	0,5723	0
275	13,4	2986	6,876	100	40	0,07381	2308	6,876	0,8896	40	0,07381	167,5	0,5723	0
300	13,4	3041	6,975	100	40	0,07381	2339	6,975	0,9025	40	0,07381	167,5	0,5723	0
325	13,4	3096	7,068	100	40	0,07381	2368	7,068	0,9148	40	0,07381	167,5	0,5723	0

		Estado 1					Estado 2					Estado 3		
<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	S ₂	<i>x</i> ₂	<i>T</i> ₃	<i>P</i> ₃	h_3	<i>S</i> ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]	
150	15,45	633	1,841	-100	40	0,07381	598,8	1,841	0,1793	40	0,07381	167,5	0,5723	0
175	15,45	741,6	2,09	-100	40	0,07381	690,5	2,09	0,2174	40	0,07381	167,5	0,5723	0
200	15,45	2793	6,435	100	40	0,07381	2177	6,435	0,8353	40	0,07381	167,5	0,5723	0
225	15,45	2859	6,571	100	40	0,07381	2219	6,571	0,8527	40	0,07381	167,5	0,5723	0
250	15,45	2921	6,691	100	40	0,07381	2256	6,691	0,8681	40	0,07381	167,5	0,5723	0
275	15,45	2979	6,8	100	40	0,07381	2290	6,8	0,8823	40	0,07381	167,5	0,5723	0
300	15,45	3036	6,901	100	40	0,07381	2322	6,901	0,8954	40	0,07381	167,5	0,5723	0
325	15,45	3091	6,996	100	40	0,07381	2352	6,996	0,9079	40	0,07381	167,5	0,5723	0

TABLA C-7: Propiedades termodinámicas de una central de vapor seco para $P_1 = 15,45$ [bar] y $T_c = 40$ [°C]

TABLA C-8: Propiedades termodinámicas de una central de vapor seco para $P_1 = 17,5$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3		
<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	<i>T</i> ₃	<i>P</i> ₃	h_3	<i>S</i> ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]		[°C]	[bar]	[kJ/kg]	[kJ/kgK]	
150	17,5	633,1	1,841	-100	40	0,07381	598,8	1,841	0,1793	40	0,07381	167,5	0,5723	0
175	17,5	741,7	2,09	-100	40	0,07381	690,5	2,09	0,2174	40	0,07381	167,5	0,5723	0
200	17,5	852,5	2,33	-100	40	0,07381	780,8	2,33	0,2549	40	0,07381	167,5	0,5723	0
225	17,5	2849	6,497	100	40	0,07381	2201	6,497	0,8452	40	0,07381	167,5	0,5723	0
250	17,5	2912	6,621	100	40	0,07381	2239	6,621	0,8612	40	0,07381	167,5	0,5723	0
275	17,5	2972	6,733	100	40	0,07381	2274	6,733	0,8757	40	0,07381	167,5	0,5723	0
300	17,5	3030	6,836	100	40	0,07381	2307	6,836	0,8891	40	0,07381	167,5	0,5723	0
325	17,5	3086	6,933	100	40	0,07381	2337	6,933	0,9018	40	0,07381	167,5	0,5723	0

				$T_1 = 150 [^{\circ} ($]				
Presión	[bar]	<i>P</i> ₁ = 3,15	$P_1 = 5,2$	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ =13,4	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	43298	3226	3211	3101	2820	2293	1444	193,6
Trabajo especifico	[kJ/kg]	451,900	33,690	33,790	33,890	33,990	34,090	34,190	34,290
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	85,241	17,158	17,031	16,399	14,870	12,063	7,572	1,013
Eficiencia de la Turbina		0,803	0,501	0,501	0,501	0,501	0,501	0,501	0,501
Eficiencia Térmica		0,19	0,20	0,21	0,07	0,07	0,07	0,07	0,07

TABLA C-9: Características Central de Vapor Seco para $T_1 = 150 \ [^{\circ}C] \ y \ T_c = 40 \ [^{\circ}C]$

TABLA C-10: Características Central de Vapor Seco para $T_1 = 175 \ [^{\circ}C] \ y \ T_c = 40 \ [^{\circ}C]$

				$T_1 = 175 [^{\circ} 0]$	[]				
Presión	[bar]	<i>P</i> ₁ = 3,15	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	<i>P</i> ₁ = 11,35	<i>P</i> ₁ =13,4	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	44805	49272	51589	4647	4222	3430	2157	289,1
Trabajo especifico	[kJ/kg]	467,60	514,60	542,80	50,78	50,88	50,98	51,08	51,18
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	86,73	84,27	81,97	19,89	18,04	14,63	9,18	1,23
Eficiencia de la Turbina		0,81	0,80	0,79	0,52	0,52	0,52	0,52	0,52
Eficiencia Térmica		0,19	0,20	0,21	0,09	0,09	0,09	0,09	0,09

				$T_1 = 200 [^{\circ}C]$					
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	<i>P</i> ₁ = 11,35	$P_1 = 13,4$	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	46440	51011	53425	53287	49536	40896	26012	404,8
Trabajo especifico	[kJ/kg]	484,7	532,7	562,1	582,3	597	607,9	616	71,67
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	88,11	85,72	83,48	79,17	70,87	56,80	35,27	1,44
Eficiencia de la Turbina	[%]	0,82	0,81	0,80	0,79	0,79	0,78	0,78	0,53
Eficiencia Térmica		0,19	0,20	0,21	0,23	0,23	0,24	0,24	0,08

TABLA C-11: Características Central de Vapor Seco para $T_1 = 200 [°C] y T_c = 40 [°C]$

TABLA C-12: Características Central de Vapor Seco para $T_1 = 225 \ [^{\circ}C] \ y \ T_c = 40 \ [^{\circ}C]$

				$T_1 = 225 [^\circ C]$					
Presión	[bar]	$P_1 = 3,15$	$P_1 = 5,2$	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ =13,4	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	48202	52856	55339	55214	51367	42453	27039	3658
Trabajo especifico	[kJ/kg]	503,1	552,0	582,3	603,4	619,0	631,0	640,3	647,7
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	89,42	87,06	84,87	80,57	72,18	57,91	36,01	4,77
Eficiencia de la Turbina	[%]	0,82	0,81	0,80	0,80	0,79	0,79	0,79	0,78
Eficiencia Térmica		0,19	0,20	0,21	0,23	0,23	0,24	0,24	0,25

				$T_1 = 250 [^{\circ}C$]				
Presión	[bar]	$P_1 = 3,15$	$P_1 = 5,2$	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ = 13,4	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	50089	54808	57342	57207	53235	44021	28059	3799
Trabajo especifico	[kJ/kg]	522,70	572,40	603,30	625,10	641,50	654,30	664,50	672,70
Flujo másico geotermal	[kg/s]	95,82	95,75	95,04	91,51	82,98	67,28	42,23	5,65
Flujo másico de vapor	[kg/s]	90,66	88,33	86,16	81,85	73,39	58,92	36,66	4,86
Eficiencia de la Turbina	[%]	0,83	0,82	0,81	0,81	0,80	0,80	0,79	0,79
Eficiencia Térmica		0,19	0,20	0,21	0,23	0,23	0,24	0,24	0,25

TABLA C-13: Características Central de Vapor Seco para $T_1 = 250 \ [^{\circ}C] \ y \ T_c = 40 \ [^{\circ}C]$

TABLA C-14: Características Central de Vapor Seco para $T_1 = 150 \ [^{\circ}C] \ y \ T_c = 40 \ [^{\circ}C]$

	$T_1 = 275 \ [^\circ C]$								
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ = 13,4	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	52096	56870	59440	59279	55161	45623	29091	3941
Trabajo especifico	[kJ/kg]	543,70	593,90	625,40	647,80	664,70	678,10	688,90	697,80
Flujo másico geotermal	[kg/s]	95,82	95,75	95,04	91,51	82,98	67,28	42,23	5,65
Flujo másico de vapor	[kg/s]	91,85	89,55	87,39	83,05	74,51	59,85	37,26	4,95
Eficiencia de la Turbina	[%]	0,83	0,82	0,82	0,81	0,81	0,80	0,80	0,80
Eficiencia Térmica		0,20	0,22	0,23	0,235	0,235	0,24	0,24	0,25
				$T_1 = 300 [^{\circ} 0]$]				
--------------------------	---------	------------------------------	-------------	--------------------------	-----------------------------	---------------	--------------	---------------	--------------
Presión	[bar]	<i>P</i> ₁ = 3,15	$P_1 = 5,2$	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	$P_1 = 13,4$	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	54221	59039	61637	61435	57154	47270	30145	4085
Trabajo especifico	[kJ/kg]	565,90	616,60	648,50	671,30	688,80	702,60	713,90	723,30
Flujo másico geotermal	[kg/s]	95,82	95,75	95,04	91,51	82,98	67,28	42,23	5,65
Flujo másico de vapor	[kg/s]	93,00	90,70	88,56	84,20	75,56	60,72	37,81	5,02
Eficiencia de la Turbina	[%]	0,84	0,83	0,82	0,82	0,81	0,81	0,81	0,80
Eficiencia Térmica		0,19	0,20	0,21	0,23	0,23	0,24	0,24	0,25

TABLA C-15: Características Central de Vapor Seco para $T_1 = 300 [°C] y T_c = 40 [°C]$

TABLA C-16: Características Central de Vapor Seco para $T_1 = 325 \ [^{\circ}C] \ y \ T_c = 40 \ [^{\circ}C]$

				$T_1 = 325 [^{\circ} ($]				
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	$P_1 = 13,4$	$P_1 = 15,45$	$P_1 = 17,5$
Potencia Neta	[kW]	56460	61315	63931	63678	59219	48969	31227	4232
Trabajo especifico	[kJ/kg]	589,20	640,30	672,70	695,80	713,60	727,80	739,50	749,30
Flujo másico geotermal	[kg/s]	95,82	95,75	95,04	91,51	82,98	67,28	42,23	5,65
Flujo másico de vapor	[kg/s]	94,10	91,82	89,68	85,29	76,57	61,55	38,34	5,09
Eficiencia de la Turbina	[%]	0,84	0,83	0,83	0,82	0,82	0,81	0,81	0,81
Eficiencia Térmica		0,20	0,22	0,23	0,235	0,235	0,24	0,24	0,25

ANEXO D

RESULTADOS DE SIMULACIÓN DE CICLO TERMODINÁMICO PARA PLANTAS DE EXPANSIÓN SÚBITA

		Estado 1					Estado 2					Estado 3					Estado 4		
<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	<i>T</i> ₃	P_3	h_3	<i>S</i> ₃	<i>x</i> ₃	<i>T</i> ₃	P_3	h_3	s ₃	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,76	632,3	1,842	0	91,55	0,744	632,3	1,893	0,109	91,55	0,744	383,4	1,21	0	91,55	0,744	2662	7,459	1
175	8,92	741,2	2,091	0	103,1	1,132	741,2	2,163	0,137	103,1	1,132	432,2	1,342	0	103,1	1,132	2681	7,318	1
200	15,55	852,4	2,331	0	113,7	1,621	852,4	2,43	0,169	113,7	1,621	477	1,459	0	113,7	1,621	2697	7,198	1
225	25,5	966,7	2,564	0	125,8	2,38	966,7	2,688	0,200	125,8	2,38	528,5	1,59	0	125,8	2,38	2715	7,069	1
250	39,76	1085	2,793	0	135,2	3,15	1085	2,955	0,239	135,2	3,15	568,7	1,689	0	135,2	3,15	2728	6,976	1
275	59,46	1210	3,021	0	135,2	3,15	1210	3,26	0,297	135,2	3,15	568,7	1,689	0	135,2	3,15	2728	6,976	1
300	85,88	1344	3,253	0	135,2	3,15	1344	3,588	0,359	135,2	3,15	568,7	1,689	0	135,2	3,15	2728	6,976	1
325	120,5	1493	3,498	0	135,2	3,15	1493	3,952	0,428	135,2	3,15	568,7	1,689	0	135,2	3,15	2728	6,976	1
		Estado 5					Estado 6												
T_5	P_5	h_5	<i>S</i> ₅	<i>x</i> ₅	T_6	P_6	h_6	<i>s</i> ₆	<i>x</i> ₆										
[°C]	[bar]	[kJ/kg]	[kJ/kg K]	[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]										
40	0,073	2390	7,425	0,923	40	0,073	167,5	0,572	0										
40	0,073	2362	7,464	0,912	40	0,073	167,5	0,572	0										
40	0,073	2338	7,47	0,902	40	0,073	167,5	0,572	0										
40	0,073	2313	7,427	0,891	40	0,073	167,5	0,572	0										
40	0,073	2296	7,489	0,884	40	0,073	167,5	0,572	0										
40	0,073	2296	7,501	0,884	40	0,073	167,5	0,572	0										
40	0,073	2296	7,529	0,884	40	0,073	167,5	0,572	0										
40	0,078	2296	7,369	0,884	40	0,078	167,5	0,572	0										

TABLA D-1: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 3,15$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3					Estado 4		
<i>T</i> ₁ [°C]	P ₁ [bar]	h ₁ [kJ/kg]	s ₁ [kJ/kg K]	<i>x</i> ₁	<i>T</i> ₂ [°C]	P ₂ [bar]	h ₂ [kJ/kg]	s ₂ [kJ/kg K]	<i>x</i> ₂	<i>T</i> ₃ [°C]	P ₃ [bar]	h ₃ [kJ/kg]	s ₃ [kJ/kg K]	<i>x</i> ₃	<i>T</i> ₃ [°C]	P ₃ [bar]	h ₃ [kJ/kg]	s ₃ [kJ/kg K]	<i>x</i> ₃
150	4,76	632,3	1,842	0	91,56	0,744	632,3	1,893	0,109	91,56	0,744	383,5	1,211	0	91,56	0,744	2662	7,459	1
175	8,92	741,2	2,091	0	102,4	1,105	741,2	2,165	0,138	102,4	1,105	429,3	1,334	0	102,4	1,105	2680	7,326	1
200	15,55	852,4	2,331	0	114,3	1,653	852,4	2,428	0,168	114,3	1,653	479,5	1,466	0	114,3	1,653	2698	7,191	1
225	25,5	966,7	2,564	0	125,3	2,341	966,7	2,69	0,201	125,3	2,341	526,2	1,584	0	125,3	2,341	2714	7,075	1
250	39,76	1085	2,793	0	137,1	3,323	1085	2,949	0,236	137,1	3,323	576,6	1,709	0	137,1	3,323	2730	6,958	1
275	59,46	1210	3,021	0	149,8	4,728	1210	3,208	0,273	149,8	4,728	631,2	1,84	0	149,8	4,728	2746	6,84	1
300	85,88	1344	3,253	0	153,3	5,2	1344	3,511	0,331	153,3	5,2	646,7	1,876	0	153,3	5,2	2750	6,808	1
325	120,5	1493	3,498	0	153,3	5,2	1493	3,859	0,402	153,3	5,2	646,7	1,876	0	153,3	5,2	2750	6,808	1
		Estado 5					Estado 6												
T_5	P_5	h_5	S_5	<i>x</i> ₅	T_6	P_6	h_6	<i>s</i> ₆	<i>x</i> ₆	-									
[°C]	[bar]	[kJ/kg]	[kJ/kg K]	[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]										
40	0,073	2390	7,529	0,923	40	0,073	167,5	0,572	0	-									
40	0,073	2363	7,404	0,912	40	0,073	167,5	0,572	0										
40	0,073	2337	7,325	0,901	40	0,073	167,5	0,572	0										
40	0,073	2314	7,511	0,892	40	0,073	167,5	0,572	0										
40	0,073	2292	7,46	0,883	40	0,073	167,5	0,572	0										
40	0,073	2271	7,332	0,874	40	0,073	167,5	0,572	0										
40	0,073	2265	7,313	0,819	40	0,073	167,5	0,572	0										
40	0,073	2265	7,271	0,819	40	0,073	167,5	0,572	0										

TABLA D-2: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 5,2$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3					Estado 4		
<i>T</i> ₁ [°C]	P ₁ [bar]	h ₁ [kJ/kg]	s ₁ [kJ/kg K]	<i>x</i> ₁	<i>T</i> ₂ [°C]	P ₂ [bar]	h ₂ [kJ/kg]	s ₂ [kJ/kg K]	<i>x</i> ₂	<i>T</i> ₃ [°C]	P ₃ [bar]	h ₃ [kJ/kg]	s ₃ [kJ/kg K]	<i>x</i> ₃	<i>T</i> ₄ [°C]	P ₄ [bar]	h ₄ [kJ/kg]	s ₄ [kJ/kg K]	<i>x</i> ₄
150	4,76	632,3	1,842	0	91,51	0,743	632,3	1,893	0,109	91,51	0,743	383,3	1,21	0	91,51	0,743	2662	7,459	1
175	8,92	741,2	2,091	0	102,1	1,094	741,2	2,165	0,139	102,1	1,094	428,1	1,331	0	102,1	1,094	2679	7,329	1
200	15,55	852,4	2,331	0	114,3	1,654	852,4	2,428	0,168	114,3	1,654	479,6	1,466	0	114,3	1,654	2698	7,191	1
225	25,5	966,7	2,564	0	125,8	2,382	966,7	2,688	0,200	125,8	2,382	528,6	1,59	0	125,8	2,382	2715	7,069	1
250	39,76	1085	2,793	0	137,8	3,391	1085	2,947	0,235	137,8	3,391	579,6	1,716	0	137,8	3,391	2731	6,951	1
275	59,46	1210	3,021	0	150,5	4,826	1210	3,206	0,272	150,5	4,826	634,5	1,847	0	150,5	4,826	2747	6,833	1
300	85,88	1344	3,253	0	163,8	6,806	1344	3,473	0,314	163,8	6,806	692,3	1,981	0	163,8	6,806	2762	6,718	1
325	120,5	1493	3,498	0	165,4	7,078	1493	3,806	0,384	165,4	7,078	699,2	1,997	0	165,4	7,078	2764	6,704	1
		Estado 5					Estado 6												
T_5	P_5	h_5	<i>s</i> ₅	<i>x</i> ₅	T_6	P_6	h_6	s ₆	<i>x</i> ₆										
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]											
40	0,073	2390	7,457	0,924	40	0,073	167,5	0,572	0										
40	0,073	2364	7,366	0,912	40	0,073	167,5	0,572	0										
40	0,073	2337	7,329	0,901	40	0,073	167,5	0,572	0										
40	0,073	2313	7,521	0,891	40	0,073	167,5	0,572	0										
40	0,073	2291	7,34	0,882	40	0,073	167,5	0,572	0										
40	0,073	2270	7,391	0,878	40	0,073	167,5	0,572	0										
40	0,073	2249	7,47	0,865	40	0,073	167,5	0,572	0										
40	0,073	2246	7,206	0,864	40	0,073	167,5	0,572	0										

TABLA D-3: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 7,25$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3					Estado 4		
<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	T_3	P_3	h_3	<i>s</i> ₃	<i>x</i> ₃	T_4	P_4	h_4	S ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,76	632,3	1,842	0	91,41	0,740	632,3	1,893	0,109	91,41	0,740	382,9	1,209	0	91,41	0,740	2662	7,46	1
175	8,92	741,2	2,091	0	102,5	1,108	741,2	2,165	0,138	102,5	1,108	429,6	1,335	0	102,5	1,108	2680	7,325	1
200	15,55	852,4	2,331	0	113,7	1,622	852,4	2,43	0,169	113,7	1,622	477,1	1,459	0	113,7	1,622	2697	7,197	1
225	25,5	966,7	2,564	0	125,1	2,33	966,7	2,69	0,201	125,1	2,33	525,6	1,583	0	125,1	2,33	2714	7,077	1
250	39,76	1085	2,793	0	136,3	3,248	1085	2,951	0,237	136,3	3,248	573,2	1,7	0	136,3	3,248	2729	6,966	1
275	59,46	1210	3,021	0	149,9	4,741	1210	3,208	0,273	149,9	4,741	631,7	1,841	0	149,9	4,741	2746	6,839	1
300	85,88	1344	3,253	0	162,3	6,549	1344	3,478	0,317	162,3	6,549	685,6	1,966	0	162,3	6,549	2760	6,731	1
325	120,5	1493	3,498	0	171	8,121	1493	3,783	0,375	171	8,121	723,9	2,052	0	171	8,121	2769	6,658	1
		Estado 5					Estado 6			<u>.</u>									
T_5	P_5	h_5	<i>S</i> ₅	<i>x</i> ₅	T_6	P_6	h_6	s ₆	<i>x</i> ₆										
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		_									
40	0,073	2391	7,367	0,924	40	0,073	167,5	0,572	0	-									
40	0,073	2363	7,449	0,912	40	0,073	167,5	0,572	0										
40	0,073	2338	7,373	0,902	40	0,073	167,5	0,572	0										
40	0,073	2315	7,238	0,892	40	0,073	167,5	0,572	0										
40	0,073	2294	7,217	0,883	40	0,073	167,5	0,572	0										
40	0,073	2271	7,252	0,874	40	0,073	167,5	0,572	0										
40	0,073	2251	7,396	0,866	40	0,073	167,5	0,572	0										
40	0,073	2238	7,158	0,860	40	0,073	167,5	0,572	0										

TABLA D-4: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 9,3$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3					Estado 4		
<i>T</i> ₁ [°C]	<i>P</i> ₁ [bar]	h ₁ [kJ/kg]	s ₁ [kJ/kg K]	<i>x</i> ₁	<i>T</i> ₂ [°C]	P ₂ [bar]	h ₂ [kJ/kg]	s ₂ [kJ/kg K]	<i>x</i> ₂	<i>T</i> ₃ [°C]	P ₃ [bar]	h ₃ [kJ/kg]	s ₃ [kJ/kg K]	<i>x</i> ₃	<i>T</i> ₄ [°C]	P ₄ [bar]	h ₄ [kJ/kg]	s ₄ [kJ/kg K]	<i>x</i> ₄
150	4,76	632,3	1,842	0	91,14	0,732	632,3	1,894	0,109	91,14	0,732	381,7	1,206	0	91,14	0,732	2661	7,464	1
175	8,92	741,2	2,091	0	102,8	1,118	741,2	2,164	0,138	102,8	1,118	430,7	1,338	0	102,8	1,118	2680	7,322	1
200	15,55	852,4	2,331	0	114,4	1,656	852,4	2,428	0,168	114,4	1,656	479,8	1,466	0	114,4	1,656	2698	7,19	1
225	25,5	966,7	2,564	0	125,3	2,343	966,7	2,69	0,201	125,3	2,343	526,3	1,585	0	125,3	2,343	2714	7,075	1
250	39,76	1085	2,793	0	136,4	3,258	1085	2,951	0,237	136,4	3,258	573,6	1,702	0	136,4	3,258	2729	6,965	1
275	59,46	1210	3,021	0	150,4	4,81	1210	3,206	0,272	150,4	4,81	634	1,846	0	150,4	4,81	2747	6,835	1
300	85,88	1344	3,253	0	164,1	6,851	1344	3,472	0,314	164,1	6,851	693,5	1,984	0	164,1	6,851	2762	6,715	1
325	120,5	1493	3,498	0	179,4	9,876	1493	3,751	0,363	179,4	9,876	760,4	2,133	0	179,4	9,876	2777	6,59	1
		Estado 5					Estado 6												
T_5	P_5	h_5	S_5	<i>x</i> ₅	T_6	P_6	h_6	s ₆	<i>x</i> ₆										
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]											
40	0,073	2391	7,482	0,924	40	0,073	167,5	0,572	0	-									
40	0,073	2362	7,284	0,912	40	0,073	167,5	0,572	0										
40	0,073	2336	7,403	0,901	40	0,073	167,5	0,572	0										
40	0,073	2314	7,287	0,892	40	0,073	167,5	0,572	0										
40	0,073	2294	7,148	0,883	40	0,073	167,5	0,572	0										
40	0,073	2270	7,206	0,873	40	0,073	167,5	0,572	0										
40	0,073	2248	7,171	0,864	40	0,073	167,5	0,572	0										
40	0,073	2226	7,148	0,855	40	0,073	167,5	0,572	0										

TABLA D-5: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 11,35$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3					Estado 4		
<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	T_3	P_3	h_3	<i>s</i> ₃	<i>x</i> ₃	T_4	P_4	h_4	<i>s</i> ₄	<i>x</i> ₃
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,76	632,3	1,842	0	91,65	0,747	632,3	1,893	0,109	91,65	0,747	383,9	1,212	0	91,65	0,747	2662	7,457	1
175	8,92	741,2	2,091	0	102,4	1,104	741,2	2,165	0,138	102,4	1,104	429,2	1,334	0	102,4	1,104	2680	7,326	1
200	15,55	852,4	2,331	0	114,2	1,647	852,4	2,428	0,168	114,2	1,647	479,1	1,464	0	114,2	1,647	2698	7,192	1
225	25,5	966,7	2,564	0	125	2,322	966,7	2,691	0,201	125	2,322	525,1	1,582	0	125	2,322	2713	7,078	1
250	39,76	1085	2,793	0	136,7	3,289	1085	2,95	0,236	136,7	3,289	575,1	1,705	0	136,7	3,289	2729	6,962	1
275	59,46	1210	3,021	0	148,7	4,594	1210	3,212	0,275	148,7	4,594	626,6	1,829	0	148,7	4,594	2745	6,85	1
300	85,88	1344	3,253	0	162,1	6,514	1344	3,479	0,317	162,1	6,514	684,7	1,964	0	162,1	6,514	2760	6,732	1
325	120,5	1493	3,498	0	179,2	9,831	1493	3,752	0,363	179,2	9,831	759,5	2,132	0	179,2	9,831	2777	6,592	1
		Estado 5					Estado 6			<u>.</u>									
T_5	P_5	h_5	S_5	<i>x</i> ₅	T_6	P_6	h_6	s ₆	<i>x</i> ₆										
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		_									
40	0,073	2390	7,463	0,923	40	0,073	167,5	0,572	0	-									
40	0,073	2363	7,329	0,912	40	0,073	167,5	0,572	0										
40	0,073	2337	7,14	0,901	40	0,073	167,5	0,572	0										
40	0,073	2315	7,226	0,892	40	0,073	167,5	0,572	0										
40	0,073	2293	7,099	0,883	40	0,073	167,5	0,572	0										
40	0,073	2273	7,168	0,875	40	0,073	167,5	0,572	0										
40	0,073	2251	7,349	0,866	40	0,073	167,5	0,572	0										
40	0,073	2226	7,154	0,855	40	0,073	167,5	0,572	0										

TABLA D-6: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 13,4$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3					Estado 4		
<i>T</i> ₁ [°C]	<i>P</i> ₁ [bar]	h ₁ [kJ/kg]	s ₁ [kJ/kg K]	<i>x</i> ₁	<i>T</i> ₂ [°C]	P ₂ [bar]	h ₂ [kJ/kg]	s ₂ [kJ/kg K]	<i>x</i> ₂	<i>T</i> ₃ [°C]	P ₃ [bar]	h ₃ [kJ/kg]	s ₃ [kJ/kg K]	<i>x</i> ₃	<i>T</i> ₄ [°C]	P ₄ [bar]	h ₄ [kJ/kg]	s ₄ [kJ/kg K]	<i>x</i> ₄
150	4,76	632,3	1,842	0	91,06	0,730	632,3	1,894	0,11	91,06	0,730	381,4	1,205	0	91,06	0,730	2661	7,465	1
175	8,92	741,2	2,091	0	102,4	1,106	741,2	2,165	0,138	102,4	1,106	429,4	1,334	0	102,4	1,106	2680	7,325	1
200	15,55	852,4	2,331	0	114,4	1,656	852,4	2,428	0,168	114,4	1,656	479,8	1,466	0	114,4	1,656	2698	7,19	1
225	25,5	966,7	2,564	0	125,2	2,34	966,7	2,69	0,201	125,2	2,34	526,1	1,584	0	125,2	2,34	2714	7,075	1
250	39,76	1085	2,793	0	137,3	3,348	1085	2,948	0,235	137,3	3,348	577,7	1,711	0	137,3	3,348	2730	6,956	1
275	59,46	1210	3,021	0	150,3	4,795	1210	3,207	0,272	150,3	4,795	633,5	1,845	0	150,3	4,795	2747	6,836	1
300	85,88	1344	3,253	0	162,4	6,565	1344	3,478	0,317	162,4	6,565	686,1	1,967	0	162,4	6,565	2761	6,73	1
325	120,5	1493	3,498	0	175,6	9,057	1493	3,765	0,368	175,6	9,057	744	2,097	0	175,6	9,057	2774	6,62	1
		Estado 5					Estado 6												
T_5	P_5	h_5	<i>S</i> ₅	<i>x</i> ₅	T_6	P_6	h_6	s ₆	<i>x</i> ₆										
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]											
40	0,073	2392	7,499	0,924	40	0,073	167,5	0,572	0	-									
40	0,073	2363	7,18	0,912	40	0,073	167,5	0,572	0										
40	0,073	2336	7,12	0,901	40	0,073	167,5	0,572	0										
40	0,073	2314	7,251	0,892	40	0,073	167,5	0,572	0										
40	0,073	2292	7,118	0,883	40	0,073	167,5	0,572	0										
40	0,073	2270	7,09	0,873	40	0,073	167,5	0,572	0										
40	0,073	2251	7,086	0,866	40	0,073	167,5	0,572	0										
40	0,073	2231	7,154	0,857	40	0,073	167,5	0,572	0										

TABLA D-7: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 15,45$ [bar] y $T_c = 40$ [°C]

		Estado 1					Estado 2					Estado 3					Estado 4		
T ₁	P_1	h_1	S_1	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	T_3	P_3	h_3	<i>S</i> ₃	<i>x</i> ₃	T_4	P_4	h_4	<i>S</i> ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,76	632,3	1,842	0	91,11	0,732	632,3	1,894	0,11	91,11	0,732	381,6	1,205	0	91,11	0,732	2661	7,464	1
175	8,92	741,2	2,091	0	102,7	1,117	741,2	2,164	0,138	102,7	1,117	430,6	1,338	0	102,7	1,117	2680	7,322	1
200	15,55	852,4	2,331	0	113,3	1,598	852,4	2,431	0,169	113,3	1,598	475,2	1,454	0	113,3	1,598	2696	7,202	1
225	25,5	966,7	2,564	0	125,6	2,362	966,7	2,689	0,200	125,6	2,362	527,4	1,587	0	125,6	2,362	2714	7,072	1
250	39,76	1085	2,793	0	137,7	3,388	1085	2,947	0,235	137,7	3,388	579,5	1,716	0	137,7	3,388	2731	6,952	1
275	59,46	1210	3,021	0	149,4	4,688	1210	3,209	0,274	149,4	4,688	629,9	1,836	0	149,4	4,688	2746	6,843	1
300	85,88	1344	3,253	0	162,4	6,573	1344	3,477	0,317	162,4	6,573	686,3	1,967	0	162,4	6,573	2761	6,729	1
325	120,5	1493	3,498	0	179,3	9,866	1493	3,752	0,363	179,3	9,866	760,2	2,133	0	179,3	9,866	2777	6,591	1
		Estado 5					Estado 6			-									
T_5	P_5	h_5	<i>S</i> ₅	<i>x</i> ₅	T_6	P_6	h_6	s ₆	<i>x</i> ₆	-									
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]											
40	0,073	2392	7,478	0,924	40	0,073	167,5	0,572	0	-									
40	0,073	2362	7,262	0,912	40	0,073	167,5	0,572	0										
40	0,073	2339	7,228	0,902	40	0,073	167,5	0,572	0										
40	0,073	2314	7,131	0,892	40	0,073	167,5	0,572	0										
40	0,073	2291	7,512	0,882	40	0,073	167,5	0,572	0										
40	0,073	2271	7,084	0,874	40	0,073	167,5	0,572	0										
40	0,073	2251	7,224	0,866	40	0,073	167,5	0,572	0										
40	0.073	2226	7.155	0.855	40	0.073	167.5	0.572	0										

TABLA D-8: Propiedades Termodinámicas de una Central de Expansión Súbita para $P_1 = 17,5$ [bar] y $T_c = 40$ [°C]

				$T_1 = 150 [^{\circ} 0]$	<u>[]</u>				
Presión	[bar]	$P_1 = 3,15$	$P_1 = 5,2$	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ = 13,4	<i>P</i> ₁ =15,45	<i>P</i> ₁ =17,5
Potencia Neta	[kW]	2844	2842	2821	2717	2463	1997	993,9	167,7
Trabajo específico	[kJ/kg]	272,5	271,9	270,9	269,8	269,3	270,3	372,2	271,1
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	10,440	10,450	10,420	10,070	9,146	7,389	2,670	0,618
Eficiencia de la Turbina	[%]	0,804	0,804	0,804	0,804	0,804	0,804	0,788	0,804
Eficiencia Térmica		0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064
\mathbf{T}° del Separador	[°C]	91,55	91,56	91,51	91,41	91,14	91,65	91,72	91,11
Presión del Separador	[bar]	0,7441	0,7444	0,7431	0,7404	0,7328	0,747	0,7489	0,7321

TABLA D-9: Características Central de Expansión Súbita para $T_1 = 150 [°C] Y T_c = 40 [°C]$

TABLA D-10: Características Central de Expansión Súbita para $T_1 = 175 \ [^{\circ}C] \ Y \ T_c = 40 \ [^{\circ}C]$

				$T_1 = 175 [^{\circ}]$	[]				
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ =13,4	<i>P</i> ₁ =15,45	$P_1 = 17,5$
Potencia Neta	[kW]	4202	4199	4168	4013	3639	2951	1852	247,7
Trabajo específico	[kJ/kg]	315,9	317,5	317,5	318,6	319	317,4	316,8	318,3
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	13,300	13,230	13,130	12,600	11,410	9,297	5,845	0,778
Eficiencia de la Turbina	[%]	0,797	0,796	0,796	0,796	0,796	0,796	0,796	0,796
Eficiencia Térmica		0,076	0,076	0,076	0,076	0,076	0,076	0,076	0,076
\mathbf{T}° del Separador	[°C]	103,1	102,4	102,1	102,5	102,8	102,4	102,4	102,7
Presión del Separador	[bar]	1,132	1,105	1,094	1,108	1,118	1,104	1,106	1,117

				$T_1 = 200 [^{\circ} 0]$	C]				
Presión	[bar]	<i>P</i> ₁ = 3,15	$P_1 = 5,2$	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ = 13,4	<i>P</i> ₁ =15,45	<i>P</i> ₁ =17,5
Potencia Neta	[kW]	5817	5813	5770	5556	5038	4085	2564	342,9
Trabajo específico	[kJ/kg]	358,3	360,8	361,1	359,1	362,2	360,1	361,7	359
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	16,240	16,110	15,980	15,470	13,910	11,340	7,088	0,955
Eficiencia de la Turbina	[%]	0,790	0,789	0,789	0,790	0,790	0,790	0,789	0,790
Eficiencia Térmica		0,089	0,089	0,089	0,089	0,089	0,089	0,089	0,089
\mathbf{T}° del Separador	[°C]	113,7	114,3	114,3	113,7	114,4	114,2	114,4	113,3
Presión del Separador	[bar]	1,621	1,653	1,654	1,622	1,656	1,647	1,656	1,598

TABLA D-11: Características Central de Expansión Súbita para $T_1 = 200 [°C] Y T_c = 40 [°C]$

TABLA D-12: Características Central de Expansión Súbita para $T_1 = 225 \ [^{\circ}C] \ Y \ T_c = 40 \ [^{\circ}C]$

				$T_1 = 225 [^{\circ} 0]$	[]				
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ =13,4	<i>P</i> ₁ =15,45	$P_1 = 17,5$
Potencia Neta	[kW]	7706	7701	7644	7360	6674	5411	3396	454,3
Trabajo específico	[kJ/kg]	401,8	401,6	401,2	482,3	402,2	400,8	400,1	401,4
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	19,180	19,180	19,050	14,090	16,590	13,500	8,488	1,132
Eficiencia de la Turbina	[%]	0,783	0,783	0,783	0,771	0,783	0,783	0,783	0,783
Eficiencia Térmica		0,101	0,101	0,101	0,101	0,101	0,101	0,101	0,101
T° del Separador	[°C]	125,8	125,3	125,8	125,1	125,3	125	125,2	125,6
Presión del Separador	[bar]	2,38	2,341	2,382	2,33	2,343	2,322	2,34	2,362

				$T_1 = 250 [^{\circ} C_1]$]				
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ = 13,4	<i>P</i> ₁ =15,45	<i>P</i> ₁ =17,5
Potencia Neta	[kW]	9899	9896	9823	9458	8576	6953	4364	583,7
Trabajo específico	[kJ/kg]	431,7	439,5	440,4	439,4	439,8	435,9	439,6	440,3
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	22,930	22,520	22,300	21,520	19,500	15,950	9,928	1,326
Eficiencia de la Turbina	[%]	0,778	0,777	0,777	0,777	0,777	0,778	0,777	0,777
Eficiencia Térmica		0,113	0,113	0,113	0,113	0,113	0,113	0,113	0,113
\mathbf{T}° del Separador	[°C]	135,2	137,1	137,8	136,3	136,4	136,7	137,3	137,7
Presión del Separador	[bar]	3,15	3,323	3,391	3,248	3,258	3,289	3,348	3,388

TABLA D-13: Características Central de Expansión Súbita para $T_1 = 250 \ [^{\circ}C] \ Y \ T_c = 40 \ [^{\circ}C]$

TABLA D-14: Características Central de Expansión Súbita para $T_1 = 275 [°C] Y T_c = 40 [°C]$

				$T_1 = 275 [^{\circ}]$	C]				
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ =13,4	<i>P</i> ₁ =15,45	$P_1 = 17,5$
Potencia Neta	[kW]	12291	12454	12362	11902	10793	8750	5492	734,6
Trabajo específico	[kJ/kg]	431,7	476,5	475,8	474,7	474,2	434	475,3	463,2
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	28,470	26,140	25,980	25,070	22,760	19,910	11,560	1,584
Eficiencia de la Turbina	[%]	0,778	0,772	0,772	0,772	0,772	0,778	0,772	0,774
Eficiencia Térmica		0,123	0,125	0,125	0,125	0,125	0,125	0,125	0,125
\mathbf{T}° del Separador	[°C]	135,2	149,8	150,5	149,9	150,4	148,7	150,3	149,4
Presión del Separador	[bar]	3,15	4,728	4,826	4,741	4,81	4,594	4,795	4,688

				$T_1 = 300 [^{\circ} 0]$]				
Presión	[bar]	<i>P</i> ₁ = 3,15	$P_1 = 5,2$	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	<i>P</i> ₁ = 13,4	<i>P</i> ₁ =15,45	<i>P</i> ₁ =17,5
Potencia Neta	[kW]	14857	15401	15356	14791	13413	10874	6825	912,9
Trabajo específico	[kJ/kg]	431,7	485,2	503,6	498,2	511,5	513,7	512,7	513,5
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	34,410	31,740	30,490	29,650	26,220	21,170	13,310	1,778
Eficiencia de la Turbina	[%]	0,778	0,770	0,767	0,768	0,766	0,766	0,766	0,766
Eficiencia Térmica		0,132	0,137	0,137	0,137	0,137	0,137	0,137	0,137
\mathbf{T}° del Separador	[°C]	135,2	153,3	163,8	162,3	164,1	162,1	162,4	162,4
Presión del Separador	[bar]	3,15	5,2	6,806	6,549	6,851	6,514	6,565	6,573

TABLA D-15: Características Central de Expansión Súbita para $T_1 = 300 [°C] Y T_c = 40 [°C]$

TABLA D-16: Características Central de Expansión Súbita para $T_1 = 325[°C] Y T_c = 40 [°C]$

				$T_1 = 325 [^{\circ}]$	[]				
Presión	[bar]	$P_1 = 3,15$	<i>P</i> ₁ = 5,2	$P_1 = 7,25$	<i>P</i> ₁ = 9,3	$P_1 = 11,35$	$P_1 = 13,4$	<i>P</i> ₁ =15,45	<i>P</i> ₁ =17,5
Potencia Neta	[kW]	17703	18681	18914	18313	16608	13465	8451	1130
Trabajo específico	[kJ/kg]	431,7	485,2	519,8	544,3	547,6	551,5	548,2	551,4
Flujo másico geotermal	[kg/s]	95,818	95,753	95,043	91,511	82,982	67,279	42,227	5,648
Flujo másico de vapor	[kg/s]	41,010	38,500	36,380	33,650	30,330	24,420	15,410	2,050
Eficiencia de la Turbina	[%]	0,778	0,770	0,765	0,761	0,761	0,760	0,761	0,760
Eficiencia Térmica		0,139	0,147	0,150	0,151	0,151	0,151	0,151	0,151
\mathbf{T}° del Separador	[°C]	135,2	153,3	165,4	171	179,4	179,2	175,6	179,3
Presión del Separador	[bar]	3,15	5,2	7,078	8,121	9,876	9,831	9,057	9,866

ANEXO E

RESULTADOS DE SIMULACIÓN DE CICLO TERMODINÁMICO PARA PLANTAS DE DOBLE EXPANSIÓN SÚBITA

T ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁	T_2	P ₂	<i>h</i> ₂	<i>s</i> ₂	<i>x</i> ₂	T_3	P ₃	h ₃	<i>s</i> ₃	<i>x</i> ₃	T_4	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,497	632,25	1,433	0,0743	111,29	1,497	466,82	1,433	0	111,29	1,497	2693	7,2236	1
175	8,9244	741,15	2,091	0	120,21	2	741,15	1,53	0,1074	120,21	2	504,68	1,53	0	120,21	2	2706,2	7,1268	1
200	15,546	852,39	2,33	0	120,21	2	852,39	1,53	0,1579	120,21	2	504,68	1,53	0	120,21	2	2706,2	7,1268	1
225	25,494	966,83	2,563	0	120,21	2	966,83	1,53	0,2099	120,21	2	504,68	1,53	0	120,21	2	2706,2	7,1268	1
250	39,759	1085,6	2,79	0	120,21	2	1085,6	1,53	0,2639	120,21	2	504,68	1,53	0	120,21	2	2706,2	7,1268	1
275	59,462	1210,7	3,021	0	120,21	2	1210,7	1,53	0,3206	120,21	2	504,68	1,53	0	120,21	2	2706,2	7,1268	1
300	85,877	1344,7	3,254	0	120,21	2	1344,7	1,53	0,3815	120,21	2	504,68	1,53	0	120,21	2	2706,2	7,1268	1
325	120,50	1493,3	3,499	0	120,21	2	1493,3	1,53	0,4490	120,21	2	504,68	1,53	0	120,21	2	2706,2	7,1268	1
<i>T</i> ₅	P ₅	h_5	s ₅	<i>x</i> ₅	T ₆	P ₆	<i>h</i> ₆	<i>s</i> ₆	<i>x</i> ₆	<i>T</i> ₇	P ₇	h ₇	s ₇	<i>x</i> ₁	T ₈	P ₈	<i>h</i> ₈	<i>s</i> ₈	<i>x</i> ₈
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,3778	2505,2	7,3189	0,9446	74,493	0,3778	466,82	1,4552	0,0667	74,493	0,3778	311,84	1,0094	0	74,493	0,3778	2633,7	7,6884	1
78,685	0,4494	2500,3	7,2301	0,9392	78,685	0,4494	504,68	1,5578	0,0758	78,685	0,4494	329,43	1,0597	0	78,685	0,4494	2640,8	7,6292	1
78,663	0,449	2500,2	7,2301	0,9392	78,663	0,449	504,68	1,5578	0,0758	78,663	0,449	329,34	1,0594	0	78,663	0,449	2640,7	7,6295	1
78,663	0,449	2500,2	7,2301	0,9392	78,663	0,449	504,68	1,5578	0,0758	78,663	0,449	329,34	1,0594	0	78,663	0,449	2640,7	7,6295	1
78,663	0,449	2500,2	7,2301	0,9392	78,663	0,449	504,68	1,5578	0,0758	78,663	0,449	329,34	1,0594	0	78,663	0,449	2640,7	7,6295	1
78,578	0,4475	2499,8	7,2304	0,9390	78,578	0,4475	504,68	1,5580	0,0760	78,578	0,4475	328,98	1,0584	0	78,578	0,4475	2640,6	7,6307	1
78,578	0,4475	2499,8	7,2304	0,9390	78,578	0,4475	504,68	1,5580	0,0760	78,578	0,4475	328,98	1,0584	0	78,578	0,4475	2640,6	7,6307	1
78,578	0,4475	2499,8	7,2304	0,9390	78,578	0,4475	504,68	1,5580	0,0760	78,578	0,4475	328,98	1,0584	0	78,578	0,4475	2640,6	7,6307	1
T ₉	P ₉	h_9	S 9	<i>x</i> 9	<i>T</i> ₁₀	P_{10}	<i>h</i> ₁₀	s_{10}	<i>x</i> ₁₀	<i>T</i> ₁₁	P ₁₁	<i>h</i> ₁₁	<i>s</i> ₁₁	<i>x</i> ₁₁	<i>T</i> ₁₂	P ₁₂	<i>h</i> ₁₂	<i>s</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,3778	2563,6	7,4866	0,9697	40	0,073	2367,3	7,597	0,9143	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
78,685	0,4494	2554,6	7,3843	0,9627	40	0,073	2338,7	7,506	0,9024	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
78,663	0,449	2540,7	7,3451	0,9567	40	0,073	2326,2	7,466	0,8972	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
78,663	0,449	2531,4	7,3188	0,9527	40	0,073	2317,8	7,439	0,8937	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
78,663	0,449	2524,8	7,2999	0,9498	40	0,073	2311,8	7,419	0,8912	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
78,578	0,4475	2519,3	7,2859	0,9475	40	0,073	2307,2	7,405	0,8893	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
78,578	0,4475	2515,2	7,2743	0,9457	40	0,073	2303,5	7,3936	0,8878	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
78,578	0,4475	2511,8	7,2645	0,9442	40	0,073	2300,4	7,3836	0,8865	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1

TABLA E-1: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 2 \text{ [bar] y } T_c = 40 \text{ [°C]}$

<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P ₂	<i>h</i> ₂	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h ₃	<i>s</i> ₃	<i>x</i> ₃	T_4	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,497	632,25	1,433	0,074	111,29	1,497	466,82	1,432	0	111,29	1,497	2693,	7,223	1
175	8,9244	741,15	2,091	0	127,29	2,490	741,15	1,606	0,094	127,29	2,490	534,83	1,605	0	127,29	2,490	2716,3	7,053	1
200	15,546	852,39	2,33	0	143,41	3,978	852,39	1,774	0,116	143,41	3,978	603,88	1,774	0	143,41	3,978	2737,8	6,897	1
225	25,494	966,83	2,563	0	143,61	4	966,83	1,777	0,169	143,61	4	604,72	1,776	0	143,61	4	2738	6,895	1
250	39,759	1085,6	2,79	0	143,61	4	1085,6	1,777	0,225	143,61	4	604,72	1,776	0	143,61	4	2738,	6,895	1
275	59,462	1210,7	3,021	0	143,61	4	1210,7	1,777	0,284	143,61	4	604,72	1,776	0	143,61	4	2738	6,895	1
300	85,877	1344,7	3,254	0	143,61	4	1344,7	1,777	0,346	143,61	4	604,72	1,776	0	143,61	4	2738	6,895	1
325	120,50	1493,3	3,499	0	143,61	4	1493,3	1,777	0,416	143,61	4	604,72	1,776	0	143,61	4	2738,	6,895	1
<i>T</i> ₅	P ₅	h_5	s ₅	<i>x</i> ₅	T ₆	P ₆	h_6	s ₆	<i>x</i> ₆	<i>T</i> ₇	P ₇	h_7	s ₇	<i>x</i> ₁	T ₈	P ₈	h ₈	<i>s</i> ₈	<i>x</i> ₈
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2505,2	7,318	0,944	74,493	0,377	466,82	1,455	0,0667	74,493	0,377	311,84	1,0094	0	74,493	0,377	2633,7	7,688	1
82,018	0,514	2496,9	7,162	0,9351	82,018	0,514	534,83	1,638	0,0831	82,018	0,514	343,42	1,0992	0	82,018	0,514	2646,3	7,583	1
89,559	0,690	2489,8	7,017	0,926	89,559	0,690	603,88	1,818	0,1001	89,559	0,690	375,11	1,1875	0	89,559	0,690	2658,8	7,4837	1
89,613	0,691	2489,5	7,016	0,925	89,613	0,691	604,72	1,819	0,1004	89,613	0,691	375,34	1,1881	0	89,613	0,691	2658,8	7,483	1
89,569	0,690	2489,3	7,016	0,925	89,569	0,690	604,72	1,820	0,1005	89,569	0,690	375,15	1,1876	0	89,569	0,690	2658,8	7,483	1
89,569	0,6904	2489,3	7,016	0,925	89,569	0,6904	604,72	1,820	0,1005	89,569	0,6904	375,15	1,1876	0	89,569	0,6904	2658,8	7,483	1
89,455	0,687	2488,8	7,017	0,925	89,455	0,687	604,72	1,820	0,1007	89,455	0,687	374,67	1,1863	0	89,455	0,687	2658,6	7,485	1
89,455	0,687	2488,8	7,017	0,925	89,455	0,687	604,72	1,820	0,1007	89,455	0,687	374,67	1,1863	0	89,455	0,687	2658,6	7,485	1
T ₉	P 9	h_9	S 9	<i>x</i> ₉	<i>T</i> ₁₀	<i>P</i> ₁₀	<i>h</i> ₁₀	<i>s</i> ₁₀	<i>x</i> ₁₀	<i>T</i> ₁₁	P ₁₁	<i>h</i> ₁₁	<i>s</i> ₁₁	<i>x</i> ₁₁	<i>T</i> ₁₂	P ₁₂	<i>h</i> ₁₂	<i>s</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2563,6	7,4866	0,9697	40	0,073	2367,3	7,597	0,9143	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
82,018	0,514	2563,1	7,349	0,9638	40	0,073	2330,6	7,4801	0,8990	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,559	0,690	2562,8	7,219	0,957	40	0,073	2296	7,3693	0,8846	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,613	0,691	2545,3	7,170	0,9502	40	0,073	2280,3	7,3194	0,8781	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,569	0,690	2532,8	7,1363	0,9448	40	0,073	2269,5	7,2847	0,8736	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,569	0,6904	2523,6	7,1108	0,9407	40	0,073	2261,3	7,2586	0,8702	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,455	0,687	2515,8	7,0917	0,9374	40	0,073	2254,9	7,2383	0,8675	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,455	0,687	2509,8	7,0746	0,9348	40	0,073	2249,6	7,2221	0,8653	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1

TABLA E-2: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 4 \text{ [bar] y } T_c = 40 \text{ [°C]}$

<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁	T ₂	P ₂	<i>h</i> ₂	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h ₃	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,497	632,25	1,433	0,074	111,29	1,497	466,82	1,432	0	111,29	1,497	2693	7,223	1
175	8,9244	741,15	2,091	0	127,29	2,49	741,15	1,606	0,094	127,29	2,49	534,83	1,605	0	127,29	2,49	2716,3	7,053	1
200	15,546	852,39	2,33	0	143,41	3,978	852,39	1,774	0,116	143,41	3,978	603,88	1,774	0	143,41	3,978	2737,8	6,897	1
225	25,494	966,83	2,563	0	158,83	6	966,83	1,931	0,142	158,83	6	670,50	1,931	0	158,83	6	2756,1	6,759	1
250	39,759	1085,6	2,79	0	158,83	6	1085,6	1,931	0,199	158,83	6	670,50	1,931	0	158,83	6	2756,1	6,759	1
275	59,462	1210,7	3,021	0	158,83	6	1210,7	1,931	0,259	158,83	6	670,50	1,931	0	158,83	6	2756,1	6,759	1
300	85,877	1344,7	3,254	0	158,83	6	1344,7	1,931	0,323	158,83	6	670,50	1,931	0	158,83	6	2756,1	6,759	1
325	120,50	1493,3	3,499	0	158,83	6	1493,3	1,931	0,394	158,83	6	670,50	1,931	0	158,83	6	2756,1	6,759	1
<i>T</i> ₅	P_5	h_5	s ₅	<i>x</i> ₅	T ₆	P ₆	h_6	<i>s</i> ₆	<i>x</i> ₆	T ₇	P ₇	h_7	<i>s</i> ₇	<i>x</i> ₁	<i>T</i> ₈	P ₈	h_8	<i>s</i> ₈	<i>x</i> ₈
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2505,2	7,318	0,944	74,493	0,377	466,82	1,455	0,0667	74,493	0,377	311,84	1,009	0	74,493	0,377	2633,7	7,688	1
82,018	0,514	2496,9	7,162	0,935	82,018	0,514	534,83	1,638	0,0831	82,018	0,514	343,42	1,099	0	82,018	0,514	2646,3	7,583	1
89,559	0,69	2489,8	7,017	0,926	89,559	0,69	603,88	1,818	0,1001	89,559	0,69	375,11	1,187	0	89,559	0,69	2658,8	7,483	1
96,747	0,901	2483,8	6,889	0,9176	96,747	0,901	670,5	1,986	0,117	96,747	0,901	405,38	1,270	0	96,747	0,901	2670,4	7,393	1
96,692	0,9	2483,5	6,889	0,9175	96,692	0,9	670,5	1,986	0,1171	96,692	0,9	405,15	1,269	0	96,692	0,9	2670,3	7,394	1
96,628	0,898	2483,2	6,889	0,9174	96,628	0,898	670,5	1,987	0,117	96,628	0,898	404,87	1,268	0	96,628	0,898	2670,2	7,394	1
96,549	0,895	2482,9	6,889	0,9173	96,549	0,895	670,5	1,9872	0,117	96,549	0,895	404,54	1,267	0	96,549	0,895	2670,0	7,395	1
96,447	0,892	2482,4	6,889	0,9172	96,447	0,892	670,5	1,9874	0,117	96,447	0,892	404,11	1,266	0	96,447	0,892	2669,9	7,397	1
T_9	P 9	h_9	s 9	<i>x</i> ₉	<i>T</i> ₁₀	P ₁₀	<i>h</i> ₁₀	s_{10}	<i>x</i> ₁₀	<i>T</i> ₁₁	P ₁₁	<i>h</i> ₁₁	s_{11}	<i>x</i> ₁₁	<i>T</i> ₁₂	P ₁₂	<i>h</i> ₁₂	<i>s</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2563,6	7,486	0,969	40	0,073	2367,3	7,597	0,914	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
82,018	0,514	2563,1	7,349	0,963	40	0,073	2330,6	7,480	0,899	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,559	0,690	2562,8	7,219	0,957	40	0,073	2296	7,369	0,884	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
96,747	0,901	2561	7,097	0,951	40	0,073	2263,5	7,265	0,871	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
96,692	0,900	2543,3	7,05	0,943	40	0,073	2248,3	7,217	0,864	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
96,628	0,898	2530,2	7,016	0,938	40	0,073	2237,1	7,181	0,860	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
96,549	0,895	2519,8	6,989	0,933	40	0,073	2228,4	7,153	0,856	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
96,447	0,892	2511	6,967	0,929	40	0,073	2221,2	7,130	0,853	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1

TABLA E-3: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 6 \text{ [bar] y } T_c = 40 \text{ [°C]}$

										ir					0				
T_1	P_1	h_1	s_1	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	s_2	<i>x</i> ₂	<i>T</i> ₃	P_3	h_3	s ₃	x_3	T ₄	P_4	h_4	s_4	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,497	632,25	1,433	0,074	111,29	1,497	466,82	1,432	0	111,29	1,497	2693	7,223	1
175	8,9244	741,15	2,091	0	127,2	2,49	741,15	1,606	0,094	127,29	2,49	534,83	1,605	0	127,29	2,490	2716,3	7,053	1
200	15,546	852,39	2,33	0	143,41	3,978	852,39	1,774	0,116	143,41	3,978	603,88	1,774	0	143,41	3,978	2737,8	6,897	1
225	25,494	966,83	2,563	0	159,7	6,149	966,83	1,94	0,14	159,79	6,149	674,67	1,94	0	159,79	6,149	2757,2	6,750	1
250	39,759	1085,6	2,79	0	170,41	8	1085,6	2,046	0,178	170,41	8	721,01	2,045	0	170,41	8	2768,3	6,661	1
275	59,462	1210,7	3,021	0	170,41	8	1210,7	2,046	0,239	170,41	8	721,01	2,045	0	170,41	8	2768,3	6,661	1
300	85,877	1344,7	3,254	0	170,41	8	1344,7	2,046	0,304	170,41	8	721,01	2,045	0	170,41	8	2768,3	6,661	1
325	120,50	1493,3	3,499	0	170,41	8	1493,3	2,046	0,377	170,41	8	721,01	2,045	0	170,41	8	2768,3	6,661	1
T_5	P ₅	h_5	<i>s</i> ₅	x_5	T ₆	P ₆	h_6	<i>s</i> ₆	<i>x</i> ₆	T ₇	P ₇	h_7	<i>s</i> ₇	<i>x</i> ₁	T ₈	P ₈	h_8	<i>s</i> ₈	<i>x</i> ₈
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2505,2	7,318	0,944	74,493	0,377	466,82	1,455	0,066	74,493	0,377	311,84	1,0094	0	74,493	0,3778	2633,7	7,688	1
82,018	0,514	2496,9	7,162	0,935	82,018	0,514	534,83	1,638	0,083	82,017	0,514	343,42	1,099	0	82,018	0,5142	2646,3	7,583	1
89,559	0,69	2489,8	7,017	0,926	89,559	0,69	603,88	1,818	0,1001	89,558	0,69	375,11	1,187	0	89,559	0,6901	2658,8	7,483	1
97,198	0,916	2483,4	6,881	0,917	97,198	0,916	674,67	1,997	0,118	97,199	0,916	407,28	1,275	0	97,198	0,9168	2671,1	7,387	1
102,12	1,093	2479,4	6,797	0,911	102,12	1,093	721,01	2,111	0,13	102,12	1,093	428,07	1,331	0	102,12	1,0936	2678,9	7,328	1
102,05	1,090	2479,1	6,797	0,911	102,05	1,09	721,01	2,111	0,1302	102,05	1,09	427,76	1,330	0	102,05	1,0907	2678,7	7,329	1
101,96	1,087	2478,7	6,797	0,911	101,96	1,087	721,01	2,111	0,1304	101,96	1,087	427,37	1,329	0	101,96	1,0872	2678,6	7,33	1
101,84	1,082	2478,1	6,798	0,911	101,84	1,082	721,01	2,112	0,1306	101,84	1,082	426,87	1,327	0	101,84	1,0826	2678,4	7,332	1
T ₉	P 9	h_9	S 9	<i>x</i> 9	<i>T</i> ₁₀	<i>P</i> ₁₀	<i>h</i> ₁₀	<i>s</i> ₁₀	<i>x</i> ₁₀	<i>T</i> ₁₁	P ₁₁	<i>h</i> ₁₁	<i>s</i> ₁₁	<i>x</i> ₁₁	<i>T</i> ₁₂	P ₁₂	<i>h</i> ₁₂	<i>s</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2563,6	7,486	0,969	40	0,073	2367,3	7,597	0,914	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
82,018	0,514	2563,1	7,349	0,963	40	0,073	2330,6	7,48	0,899	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
89,559	0,69	2562,8	7,219	0,957	40	0,073	2296	7,369	0,884	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
97,198	0,916	2562,2	7,094	0,951	40	0,073	2262,6	7,262	0,87	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
102,12	1,093	2554,3	6,996	0,944	40	0,073	2235,5	7,176	0,859	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
102,05	1,09	2537,6	6,953	0,937	40	0,073	2221,5	7,131	0,853	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
101,96	1,087	2524,5	6,92	0,9315	40	0,073	2210,6	7,096	0,849	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1
101,84	1,082	2513,7	6,892	0,926	40	0,073	2201,8	7,068	0,845	40	0,074	167,54	0,572	0	40	0,074	2573,5	8,255	1

TABLA E-4: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 8 [bar] y T_c = 40 [°C]$

					1 1					(F					0				
<i>T</i> ₁	<i>P</i> ₁	<i>h</i> ₁	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P ₂	<i>h</i> ₂	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	<i>h</i> ₃	<i>s</i> ₃	<i>x</i> ₃	T ₄	<i>P</i> ₄	<i>h</i> ₄	<i>s</i> ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,497	632,25	1,433	0,074	111,29	1,497	466,82	1,432	0	111,29	1,497	2693	7,223	1
175	8,9244	741,15	2,091	0	127,29	2,490	741,15	1,606	0,094	127,29	2,490	534,83	1,605	0	127,29	2,490	2716,3	7,053	1
200	15,546	852,39	2,33	0	143,41	3,978	852,39	1,774	0,116	143,41	3,978	603,88	1,774	0	143,41	3,978	2737,8	6,89	1
225	25,494	966,83	2,563	0	159,79	6,149	966,83	1,94	0,140	159,79	6,149	674,67	1,940	0	159,79	6,149	2757,2	6,750	1
250	39,759	1085,6	2,79	0	176,60	9,266	1085,6	2,107	0,166	176,60	9,266	748,19	2,106	0	176,60	9,266	2774,1	6,611	1
275	59,462	1210,7	3,021	0	179,88	10	1210,7	2,138	0,222	179,88	10	762,68	2,138	0	179,88	10	2777,1	6,584	1
300	85,877	1344,7	3,254	0	179,88	10	1344,7	2,138	0,288	179,88	10	762,68	2,138	0	179,88	10	2777,1	6,584	1
325	120,50	1493,3	3,499	0	179,88	10	1493,3	2,138	0,362	179,88	10	762,68	2,138	0	179,88	10	2777,1	6,584	1
T_5	P_5	h_5	s ₅	<i>x</i> ₅	T ₆	P ₆	h_6	<i>s</i> ₆	<i>x</i> ₆	T ₇	P ₇	h_7	S ₇	<i>x</i> ₁	<i>T</i> ₈	P ₈	h_8	<i>s</i> ₈	<i>x</i> ₈
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2505,2	7,318	0,944	74,493	0,377	466,82	1,455	0,0667	74,493	0,377	311,84	1,009	0	74,493	0,377	2633,7	7,688	1
82,018	0,514	2496,9	7,162	0,935	82,018	0,514	534,83	1,638	0,0831	82,017	0,514	343,42	1,099	0	82,018	0,514	2646,3	7,583	1
89,559	0,690	2489,8	7,017	0,926	89,559	0,690	603,88	1,818	0,100	89,558	0,690	375,11	1,187	0	89,559	0,690	2658,8	7,483	1
97,198	0,916	2483,4	6,881	0,917	97,198	0,916	674,67	1,997	0,118	97,199	0,916	407,28	1,275	0	97,198	0,916	2671,1	7,387	1
105,03	1,210	2477,3	6,749	0,908	105,03	1,210	748,19	2,177	0,137	105,04	1,210	440,38	1,363	0	105,03	1,21	2683,4	7,294	1
106,50	1,273	2475,8	6,725	0,906	106,50	1,273	762,68	2,212	0,141	106,50	1,273	446,57	1,379	0	106,5	1,273	2685,7	7,277	1
106,40	1,268	2475,4	6,725	0,906	106,40	1,268	762,68	2,212	0,141	106,40	1,268	446,14	1,378	0	106,4	1,268	2685,5	7,278	1
106,26	1,263	2474,8	6,725	0,906	106,26	1,263	762,68	2,213	0,141	106,27	1,263	445,58	1,377	0	106,2	1,263	2685,3	7,280	1
<i>T</i> ₉	P ₉	<i>h</i> ₉	S 9	<i>x</i> ₉	<i>T</i> ₁₀	P ₁₀	<i>h</i> ₁₀	<i>s</i> ₁₀	<i>x</i> ₁₀	<i>T</i> ₁₁	P ₁₁	<i>h</i> ₁₁	<i>s</i> ₁₁	<i>x</i> ₁₁	<i>T</i> ₁₂	P ₁₂	<i>h</i> ₁₂	<i>s</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2563,6	7,486	0,969	40	0,074	2367,3	7,597	0,914	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
82,018	0,514	2563,1	7,349	0,963	40	0,074	2330,6	7,480	0,899	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
89,559	0,690	2562,8	7,219	0,957	40	0,074	2296	7,369	0,884	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
97,198	0,916	2562,2	7,094	0,951	40	0,074	2262,6	7,262	0,870	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
105,03	1,210	2561,2	6,971	0,945	40	0,074	2229,9	7,158	0,857	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
106,50	1,273	2545,2	6,907	0,937	40	0,074	2210,4	7,096	0,849	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
106,40	1,268	2529,6	6,868	0,930	40	0,074	2197,6	7,055	0,843	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
106,26	1,263	2516,7	6,836	0,924	40	0,074	2187,1	7,021	0,839	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1

TABLA E-5: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 10 \text{ [bar] y } T_c = 40 \text{ [°C]}$

										ir									
T_1	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	x_2	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T ₄	P_4	h_4	<i>s</i> ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,497	632,25	1,433	0,074	111,29	1,497	466,82	1,432	0	111,29	1,497	2693	7,223	1
175	8,9244	741,15	2,091	0	127,29	2,490	741,15	1,606	0,094	127,29	2,490	534,83	1,605	0	127,29	2,490	2716,3	7,053	1
200	15,546	852,39	2,33	0	143,41	3,978	852,39	1,774	0,116	143,41	3,978	603,88	1,77	0	143,41	3,978	2737,8	6,89	1
225	25,494	966,83	2,563	0	159,79	6,149	966,83	1,94	0,140	159,79	6,149	674,67	1,940	0	159,79	6,149	2757,2	6,750	1
250	39,759	1085,6	2,79	0	176,60	9,266	1085,6	2,107	0,166	176,60	9,266	748,19	2,106	0	176,60	9,266	2774,1	6,611	1
275	59,462	1210,7	3,021	0	191,61	13	1210,7	2,251	0,200	191,61	13	814,76	2,251	0	191,61	13	2786,4	6,493	1
300	85,877	1344,7	3,254	0	191,61	13	1344,7	2,251	0,268	191,61	13	814,76	2,251	0	191,61	13	2786,4	6,493	1
325	120,50	1493,3	3,499	0	191,61	13	1493,3	2,251	0,344	191,61	13	814,76	2,251	0	191,61	13	2786,4	6,493	1
T_5	P ₅	h_5	s ₅	<i>x</i> ₅	T ₆	P ₆	h_6	s ₆	<i>x</i> ₆	T ₇	P ₇	h_7	s ₇	<i>x</i> ₁	T ₈	P ₈	h_8	<i>s</i> ₈	<i>x</i> ₈
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2505,2	7,318	0,944	74,493	0,377	466,82	1,455	0,066	74,493	0,377	311,84	1,009	0	74,493	0,377	2633,7	7,688	1
82,018	0,514	2496,9	7,162	0,935	82,018	0,514	534,83	1,63	0,083	82,017	0,514	343,42	1,09	0	82,018	0,514	2646,3	7,583	1
89,559	0,690	2489,8	7,017	0,92	89,559	0,690	603,88	1,818	0,100	89,558	0,690	375,11	1,187	0	89,559	0,690	2658,8	7,483	1
97,198	0,916	2483,4	6,881	0,917	97,198	0,916	674,67	1,997	0,118	97,199	0,916	407,28	1,275	0	97,198	0,916	2671,1	7,387	1
105,03	1,210	2477,3	6,749	0,908	105,03	1,210	748,19	2,177	0,137	105,04	1,210	440,38	1,363	0	105,03	1,210	2683,4	7,294	1
112,05	1,535	2471,7	6,63	0,900	112,05	1,535	814,76	2,33	0,154	112,05	1,535	470,05	1,441	0	112,05	1,535	2694,1	7,21	1
111,93	1,529	2471,2	6,638	0,899	111,93	1,529	814,76	2,336	0,155	111,94	1,529	469,56	1,440	0	111,93	1,529	2693,9	7,216	1
111,78	1,521	2470,6	6,638	0,899	111,78	1,521	814,76	2,336	0,155	111,79	1,521	468,91	1,43	0	111,78	1,521	2693,7	7,218	1
T ₉	P 9	h_9	S 9	<i>x</i> 9	<i>T</i> ₁₀	<i>P</i> ₁₀	<i>h</i> ₁₀	<i>s</i> ₁₀	<i>x</i> ₁₀	<i>T</i> ₁₁	P ₁₁	<i>h</i> ₁₁	<i>s</i> ₁₁	<i>x</i> ₁₁	<i>T</i> ₁₂	P ₁₂	<i>h</i> ₁₂	<i>s</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2563,6	7,486	0,969	40	0,074	2367,3	7,59	0,914	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
82,018	0,514	2563,1	7,349	0,963	40	0,074	2330,6	7,480	0,899	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
89,559	0,690	2562,8	7,219	0,957	40	0,074	2296,0	7,369	0,884	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
97,198	0,916	2562,2	7,094	0,951	40	0,074	2262,6	7,262	0,870	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
105,03	1,210	2561,2	6,971	0,945	40	0,074	2229,9	7,158	0,857	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
112,05	1,535	2556,6	6,858	0,938	40	0,074	2198,9	7,059	0,844	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
111,93	1,529	2537,3	6,809	0,929	40	0,074	2183,2	7,009	0,837	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
111,78	1,521	2521,6	6,770	0,922	40	0,074	2170,5	6,968	0,832	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1

TABLA E-6: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 13 \text{ [bar] y } T_c = 40 \text{ [°C]}$

															(r				
<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁	T_2	P ₂	<i>h</i> ₂	<i>s</i> ₂	<i>x</i> ₂	T_3	P ₃	<i>h</i> ₃	<i>s</i> ₃	<i>x</i> ₃	T_4	P ₄	<i>h</i> ₄	<i>s</i> ₄	<i>x</i> ₄
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,497	632,25	1,433	0,074	111,29	1,497	466,82	1,432	0	111,29	1,497	2693,0	7,223	1
175	8,9244	741,15	2,091	0	127,29	2,490	741,15	1,606	0,094	127,29	2,490	534,83	1,605	0	127,29	2,490	2716,3	7,053	1
200	15,546	852,39	2,33	0	143,41	3,978	852,39	1,774	0,116	143,41	3,978	603,88	1,77	0	143,41	3,978	2737,8	6,897	1
225	25,494	966,83	2,563	0	159,79	6,149	966,83	1,94	0,140	159,79	6,149	674,67	1,940	0	159,79	6,149	2757,2	6,750	1
250	39,759	1085,6	2,79	0	176,60	9,266	1085,6	2,107	0,166	176,60	9,266	748,19	2,106	0	176,60	9,266	2774,1	6,611	1
275	59,462	1210,7	3,021	0	194,09	13,71	1210,7	2,275	0,1961	194,09	13,71	825,88	2,274	0	194,09	13,71	2788,2	6,474	1
300	85,877	1344,7	3,254	0	198,29	15	1344,7	2,315	0,256	198,29	15	844,71	2,314	0	198,29	15	2791,0	6,443	1
325	120,50	1493,3	3,499	0	198,29	15	1493,3	2,315	0,333	198,29	15	844,71	2,314	0	198,29	15	2791,0	6,443	1
T_5	P_5	h_5	S_5	<i>x</i> ₅	T ₆	P_6	h_6	s ₆	<i>x</i> ₆	<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2505,2	7,318	0,944	74,493	0,377	466,82	1,455	0,066	74,493	0,377	311,84	1,009	0	74,493	0,377	2633,7	7,688	1
82,018	0,514	2496,9	7,162	0,935	82,018	0,514	534,83	1,63	0,083	82,017	0,514	343,42	1,09	0	82,018	0,514	2646,3	7,583	1
89,559	0,690	2489,8	7,017	0,92	89,559	0,690	603,88	1,818	0,100	89,558	0,690	375,11	1,187	0	89,559	0,690	2658,8	7,483	1
97,198	0,916	2483,4	6,881	0,917	97,198	0,916	674,67	1,99	0,118	97,199	0,916	407,28	1,275	0	97,198	0,916	2671,1	7,387	1
105,03	1,210	2477,3	6,749	0,908	105,03	1,210	748,19	2,177	0,137	105,04	1,210	440,1	1,363	0	105,03	1,210	2683,4	7,294	1
113,23	1,596	2470,9	6,619	0,898	113,23	1,596	825,88	2,36	0,157	113,24	1,596	475,06	1,454	0	113,23	1,596	2695,9	7,202	1
115,10	1,697	2468,8	6,589	0,896	115,10	1,697	844,71	2,40	0,163	115,11	1,697	483,01	1,474	0	115,10	1,697	2698,7	7,181	1
114,94	1,688	2468,1	6,589	0,896	114,94	1,688	844,71	2,406	0,16	114,95	1,688	482,32	1,473	0	114,94	1,688	2698,5	7,183	1
T ₉	P_9	h_9	<i>S</i> ₉	<i>x</i> 9	<i>T</i> ₁₀	P_{10}	h_{10}	S_{10}	<i>x</i> ₁₀	<i>T</i> ₁₁	P_{11}	h_{11}	<i>S</i> ₁₁	<i>x</i> ₁₁	<i>T</i> ₁₂	P_{12}	h_{12}	<i>S</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,377	2563,6	7,486	0,969	40	0,074	2367,3	7,59	0,914	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
82,018	0,514	2563,1	7,349	0,963	40	0,074	2330,6	7,480	0,899	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
89,559	0,690	2562,8	7,219	0,95	40	0,074	2296	7,369	0,884	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
97,198	0,916	2562,2	7,094	0,951	40	0,074	2262,6	7,262	0,87	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
105,03	1,210	2561,2	6,97	0,945	40	0,074	2229,9	7,158	0,857	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
113,23	1,596	2559,3	6,848	0,938	40	0,074	2196,8	7,052	0,843	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
115,10	1,697	2542,5	6,77	0,929	40	0,074	2175,9	6,985	0,834	40	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
114,94	1,688	2524,9	6,736	0,921	40	0,074	2161,7	6,940	0.828	40	0.074	167.54	0.572	0	40,000	0,074	2573,5	8,255	1

TABLA E-7: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 15 \text{ [bar] y } T_c = 40 \text{ [°C]}$

					(r					(r					1				
T_1	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	x_2	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T ₄	P_4	h_4	<i>s</i> ₄	x_4
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
150	4,7610	632,25	1,842	0	111,29	1,50	632,25	1,433	0,07	111,29	1,50	466,83	1,43	0	111,29	1,497	2693,0	7,223	1
175	8,9244	741,15	2,091	0	127,29	2,49	741,15	1,606	0,09	127,29	2,49	534,84	1,61	0	127,29	2,490	2716,3	7,053	1
200	15,546	852,39	2,33	0	143,42	3,98	852,39	1,774	0,12	143,42	3,98	603,88	1,77	0	143,41	3,978	2737,8	6,89	1
225	25,494	966,83	2,563	0	159,79	6,15	966,84	1,94	0,14	159,79	6,15	674,68	1,94	0	159,79	6,149	2757,2	6,750	1
250	39,759	1085,6	2,79	0	176,60	9,27	1085,6	2,107	0,17	176,60	9,27	748,20	2,11	0	176,60	9,266	2774,1	6,611	1
275	59,462	1210,7	3,021	0	194,10	13,72	1210,7	2,275	0,20	194,10	13,72	825,89	2,27	0	194,09	13,718	2788,2	6,474	1
300	85,877	1344,7	3,254	0	204,31	17,00	1344,7	2,371	0,25	204,31	17,00	871,89	2,37	0	204,31	17	2794,5	6,398	1
325	120,50	1493,3	3,499	0	204,31	17,00	1493,3	2,371	0,32	204,31	17,00	871,89	2,37	0	204,31	17	2794,5	6,398	1
T_5	P_5	h_5	<i>S</i> ₅	<i>x</i> ₅	T ₆	P_6	h_6	s ₆	<i>x</i> ₆	<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁	<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,49	0,378	2505,2	7,319	0,945	74,493	0,378	466,82	1,455	0,067	74,49	0,378	311,84	1,009	0,000	74,49	0,378	2633,7	7,688	1
82,01	0,514	2496,9	7,163	0,935	82,018	0,514	534,83	1,638	0,083	82,01	0,514	343,42	1,099	0,000	82,01	0,514	2646,3	7,583	1
89,56	0,690	2489,8	7,018	0,926	89,560	0,690	603,88	1,818	0,100	89,55	0,690	375,11	1,188	0,000	89,56	0,690	2658,8	7,484	1
97,19	0,917	2483,4	6,881	0,917	97,198	0,917	674,67	1,997	0,118	97,19	0,917	407,28	1,275	0,000	97,19	0,917	2671,1	7,388	1
105,03	1,211	2477,3	6,750	0,908	105,03	1,211	748,19	2,178	0,137	105,04	1,211	440,38	1,364	0,000	105,03	1,211	2683,4	7,295	1
113,23	1,597	2470,9	6,620	0,899	113,23	1,597	825,88	2,362	0,158	113,24	1,597	475,06	1,454	0,000	113,23	1,597	2695,9	7,202	1
117,98	1,863	2466,6	6,546	0,893	117,98	1,863	871,88	2,469	0,171	117,99	1,863	495,21	1,506	0,000	117,98	1,863	2702,9	7,151	1
117,81	1,853	2465,8	6,547	0,893	117,81	1,853	871,88	2,469	0,171	117,82	1,853	494,48	1,504	0,000	117,81	1,853	2702,7	7,152	1
T ₉	P_9	h_9	<i>S</i> ₉	<i>x</i> ₉	<i>T</i> ₁₀	P ₁₀	h_{10}	<i>s</i> ₁₀	<i>x</i> ₁₀	<i>T</i> ₁₁	P ₁₁	h_{11}	<i>s</i> ₁₁	<i>x</i> ₁₁	<i>T</i> ₁₂	P ₁₂	<i>h</i> ₁₂	<i>s</i> ₁₂	<i>x</i> ₁₂
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
74,493	0,378	2563,6	7,487	0,970	40,000	0,074	2367,3	7,597	0,914	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
82,018	0,514	2563,1	7,349	0,964	40,000	0,074	2330,6	7,480	0,899	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
89,560	0,690	2562,8	7,219	0,958	40,000	0,074	2296,0	7,369	0,885	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
97,198	0,917	2562,2	7,094	0,952	40,000	0,074	2262,6	7,263	0,871	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
105,03	1,211	2561,2	6,972	0,946	40,000	0,074	2229,9	7,158	0,857	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
113,23	1,597	2559,3	6,849	0,938	40,000	0,074	2196,8	7,053	0,843	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
117,98	1,863	2547,7	6,754	0,930	40,000	0,074	2169,9	6,967	0,832	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1
117,81	1,853	2528,3	6,706	0,921	40,000	0,074	2154,3	6,917	0,826	40,000	0,074	167,54	0,572	0	40,000	0,074	2573,5	8,255	1

TABLA E-8: Propiedades termodinámicas de una central de doble expansión súbita para $P_{VBP} = 17 \text{ [bar] y } T_c = 40 \text{ [°C]}$

				$P_{VBP} = 17$ [ba	ır]				
Temperatura	[°C]	$T_1 = 150$	<i>T</i> ₁ = <i>175</i>	$T_1 = 200$	<i>T</i> ₁ = 225	$T_1 = 250$	<i>T</i> ₁ = 275	$T_1 = 300$	<i>T</i> ₁ = <i>325</i>
Potencia Neta	[kW]	640,353	948,640	1316,080	1745,997	2244,964	2824,614	3499,767	4258,251
Trabajo Específico ($T_{ap} + T_{bp}$)	[kJ/kg]	383,984	451,883	514,770	573,337	628,179	679,823	705,806	702,611
Flujo másico geotermal	[kg/s]	15,750	15,750	15,750	15,750	15,750	15,750	15,750	15,750
Flujo másico de vapor	[kg/s]	3,314	4,164	5,062	6,018	7,048	8,177	9,774	12,004
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,098	0,115	0,131	0,148	0,165	0,181
\mathbf{T}° del Separador	[°C]	111,291	127,294	143,417	159,794	176,601	194,100	204,315	204,315
Presión del Separador	[bar]	1,497	2,491	3,978	6,149	9,266	13,718	17,000	17,000
\mathbf{T}° del Expansor	[°C]	74,493	82,018	89,560	97,198	105,039	113,234	117,983	117,811
Presión del Expansor	[bar]	0,378	0,514	0,690	0,917	1,211	1,597	1,863	1,853

TABLA E-9: Características central de doble expansión súbita para $P_{VBP} = 17 \text{ [bar] Y } T_c = 40 \text{ [°C]}$

TABLA E-10: Características central de doble expansión súbita para $P_{VBP} = 15 \text{ [bar] y } T_c = 40 \text{ [°C]}$

				$P_{VBP} = 15$ [b	ar]				
Temperatura	[°C]	$T_1 = 150$	T ₁ = 175	$T_1 = 200$	<i>T</i> ₁ = 225	$T_1 = 250$	$T_1 = 275$	T ₁ = 300	T ₁ = 325
Potencia Neta	[kW]	1977,508	2929,545	4064,257	5391,907	6932,795	8722,844	10770,534	13045,535
Trabajo Específico $(T_{ap} + T_{bp})$	[kJ/kg]	383,984	451,883	514,770	573,337	628,179	679,823	688,795	685,995
Flujo másico geotermal	[kg/s]	48,638	48,638	48,638	48,638	48,638	48,638	48,638	48,638
Flujo másico de vapor	[kg/s]	10,233	12,860	15,633	18,586	21,767	25,252	30,892	37,722
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,098	0,115	0,131	0,148	0,165	0,180
T° del Separador	[°C]	111,291	127,294	143,417	159,794	176,601	194,100	198,295	198,295
Presión del Separador	[bar]	1,497	2,491	3,978	6,149	9,266	13,718	15,000	15,000
\mathbf{T}° del Expansor	[°C]	74,493	82,018	89,560	97,198	105,039	113,234	115,109	114,947
Presión del Expansor	[bar]	0,378	0,514	0,690	0,917	1,211	1,597	1,698	1,689

				<i>P_{VBP}</i> = 13 [b	ar]				
Temperatura	[°C]	$T_1 = 150$	<i>T</i> ₁ = <i>175</i>	$T_1 = 200$	<i>T</i> ₁ = 225	$T_1 = 250$	<i>T</i> ₁ = 275	$T_1 = 300$	T ₁ = 325
Potencia Neta	[kW]	2887,103	4277,049	5933,693	7872,024	10121,674	12732,619	15629,720	18840,910
Trabajo Específico $(T_{ap} + T_{bp})$	[kJ/kg]	383,984	451,883	514,770	573,337	628,179	672,338	669,348	666,937
Flujo másico geotermal	[kg/s]	71,009	71,009	71,009	71,009	71,009	71,009	71,009	71,009
Flujo másico de vapor	[kg/s]	14,941	18,775	22,824	27,135	31,779	37,314	46,233	56,118
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,098	0,115	0,131	0,148	0,164	0,178
\mathbf{T}° del Separador	[°C]	111,291	127,294	143,417	159,794	176,601	191,613	191,613	191,613
Presión del Separador	[bar]	1,497	2,491	3,978	6,149	9,266	13,000	13,000	13,000
\mathbf{T}° del Expansor	[°C]	74,493	82,018	89,560	97,198	105,039	112,052	111,935	111,784
Presión del Expansor	[bar]	0,378	0,514	0,690	0,917	1,211	1,535	1,529	1,522

TABLA E-11: Características central de doble expansión súbita para $P_{VBP} = 13 \text{ [bar] Y } T_c = 40 \text{ [°C]}$

TABLA E-12: Características central de doble expansión súbita para $P_{VBP} = 10 \text{ [bar] y } T_c = 40 \text{ [°C]}$

				<i>P_{VBP}</i> = 10 [b	ar]				
Temperatura	[°C]	$T_1 = 150$	T ₁ = 175	$T_1 = 200$	T ₁ = 225	$T_1 = 250$	<i>T</i> ₁ = 275	$T_1 = 300$	T ₁ = 325
Potencia Neta	[kW]	3629,549	5376,931	7459,598	9896,388	12724,556	15907,101	19325,946	23115,440
Trabajo Específico $(T_{ap} + T_{bp})$	[kJ/kg]	383,984	451,883	514,770	573,337	628,179	635,982	633,722	631,886
Flujo másico geotermal	[kg/s]	89,270	89,270	89,270	89,270	89,270	89,270	89,270	89,270
Flujo másico de vapor	[kg/s]	18,783	23,603	28,693	34,113	39,951	49,508	60,563	72,815
Eficiencia de la Turbina	[%]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,098	0,115	0,131	0,147	0,161	0,173
T° del Separador	[°C]	111,291	127,294	143,417	159,794	176,601	179,886	179,886	179,886
Presión del Separador	[bar]	1,497	2,491	3,978	6,149	9,266	10,000	10,000	10,000
\mathbf{T}° del Expansor	[°C]	74,493	82,018	89,560	97,198	105,039	106,506	106,403	106,270
Presión del Expansor	[bar]	0,378	0,514	0,690	0,917	1,211	1,273	1,269	1,263

				$P_{VBP} = 8 [b]$	ar]				
Temperatura	[°C]	$T_1 = 150$	<i>T</i> ₁ = <i>175</i>	$T_1 = 200$	<i>T</i> ₁ = 225	$T_1 = 250$	<i>T</i> ₁ = 275	$T_1 = 300$	$T_1 = 325$
Potencia Neta	[kW]	3829,700	5673,442	7870,958	10442,125	13405,291	16587,653	20000,369	23783,067
Trabajo Específico $(T_{ap} + T_{bp})$	[kJ/kg]	383,984	451,883	514,770	573,337	607,567	605,262	603,480	602,023
Flujo másico geotermal	[kg/s]	94,193	94,193	94,193	94,193	94,193	94,193	94,193	94,193
Flujo másico de vapor	[kg/s]	19,818	24,905	30,276	35,994	43,631	54,396	65,939	78,733
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,098	0,115	0,131	0,145	0,158	0,169
\mathbf{T}° del Separador	[°C]	111,291	127,294	143,417	159,794	170,414	170,414	170,414	170,414
Presión del Separador	[bar]	1,497	2,491	3,978	6,149	8,000	8,000	8,000	8,000
\mathbf{T}° del Expansor	[°C]	74,493	82,018	89,560	97,198	102,127	102,052	101,960	101,842
Presión del Expansor	[bar]	0,378	0,514	0,690	0,917	1,094	1,091	1,087	1,083

TABLA E-13: Características central de doble expansión súbita para $P_{VBP} = 8 [bar] Y T_c = 40 [°C]$

TABLA E-14: Características central de doble expansión súbita para $P_{VBP} = 6 [bar] Y T_c = 40 [°C]$

				$P_{VBP} = 6 [b]$	ar]				
Temperatura	[°C]	$T_1 = 150$	$T_1 = 175$	$T_1 = 200$	T ₁ = 225	$T_1 = 250$	<i>T</i> ₁ = 275	$T_1 = 300$	T ₁ = 325
Potencia Neta	[kW]	3889,858	5762,562	7994,596	10605,626	13458,612	16459,702	19678,022	23245,245
Trabajo Específico $(T_{ap} + T_{bp})$	[kJ/kg]	383,984	451,883	514,770	569,884	567,604	565,923	564,612	563,533
Flujo másico geotermal	[kg/s]	95,672	95,672	95,672	95,672	95,672	95,672	95,672	95,672
Flujo másico de vapor	[kg/s]	20,130	25,296	30,751	36,794	47,067	57,873	69,460	82,304
Eficiencia de la Turbina	[%]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,098	0,115	0,130	0,142	0,153	0,163
\mathbf{T}° del Separador	[°C]	111,291	127,294	143,417	158,832	158,832	158,832	158,832	158,832
Presión del Separador	[bar]	1,497	2,491	3,978	6,000	6,000	6,000	6,000	6,000
T° del Expansor	[°C]	74,493	82,018	89,560	96,747	96,693	96,628	96,549	96,448
Presión del Expansor	[bar]	0,378	0,514	0,690	0,902	0,900	0,898	0,895	0,892

				$P_{VBP} = 4 [b]$	ar]				
Temperatura	[°C]	$T_1 = 150$	T ₁ = 175	$T_1 = 200$	<i>T</i> ₁ = 225	<i>T</i> ₁ = 250	<i>T</i> ₁ = 275	$T_1 = 300$	<i>T</i> ₁ = <i>325</i>
Potencia Neta	[kW]	3892,184	5766,007	7999,376	10459,563	13014,428	15701,916	18583,938	21778,393
Trabajo Específico $(T_{ap} + T_{bp})$	[kJ/kg]	383,984	451,883	514,770	513,487	512,056	510,982	510,142	509,438
Flujo másico geotermal	[kg/s]	95,730	95,730	95,730	95,730	95,730	95,730	95,730	95,730
Flujo másico de vapor	[kg/s]	20,142	25,311	30,770	40,482	50,618	61,274	72,714	85,379
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,098	0,113	0,125	0,135	0,144	0,152
T° del Separador	[°C]	111,291	127,294	143,417	143,613	143,613	143,613	143,613	143,613
Presión del Separador	[bar]	1,497	2,491	3,978	4,000	4,000	4,000	4,000	4,000
\mathbf{T}° del Expansor	[°C]	74,493	82,018	89,560	89,613	89,570	89,570	89,456	89,456
Presión del Expansor	[bar]	0,378	0,514	0,690	0,692	0,690	0,690	0,687	0,687

TABLA E-15: Características central de doble expansión súbita para $P_{VBP} = 4 \text{ [bar] } \text{ y } T_c = 40 \text{ [°C]}$

TABLA E-16: Características central de doble expansión súbita para $P_{VBP} = 2 \text{ [bar] Y } T_c = 40 \text{ [°C]}$

				$P_{VBP} = 2 \ [baseline]{baseline}$	ar]				
Temperatura	[°C]	$T_1 = 150$	$T_1 = 175$	$T_1 = 200$	<i>T</i> ₁ = 225	$T_1 = 250$	<i>T</i> ₁ = 275	<i>T</i> ₁ = 300	T ₁ = 325
Potencia Neta	[kW]	3918,839	5774,155	7720,668	9723,227	11802,831	13990,392	16336,290	18936,501
Trabajo Específico $(T_{ap} + T_{bp})$	[kJ/kg]	383,984	421,726	420,433	419,568	418,945	418,474	418,094	417,774
Flujo másico geotermal	[kg/s]	96,385	96,385	96,385	96,385	96,385	96,385	96,385	96,385
Flujo másico de vapor	[kg/s]	20,280	27,228	36,603	46,243	56,255	66,796	78,089	90,606
Eficiencia de la Turbina	[%]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia Térmica		0,064	0,081	0,094	0,104	0,113	0,120	0,126	0,132
\mathbf{T}° del Separador	[°C]	111,291	120,212	120,212	120,212	120,212	120,212	120,212	120,212
Presión del Separador	[bar]	1,497	2,000	2,000	2,000	2,000	2,000	2,000	2,000
T° del Expansor	[°C]	74,493	78,685	78,664	78,664	78,664	78,578	78,578	78,578
Presión del Expansor	[bar]	0,378	0,449	0,449	0,449	0,449	0,448	0,448	0,448

ANEXO F

RESULTADOS DE SIMULACIÓN DE CICLO TERMODINÁMICO PARA PLANTAS BINARIAS BÁSICAS.

F.1. Isobutano

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	$P_{\rm b}$	$h_{ m b}$	S _b	x _b	$T_{\rm c}$	$P_{\rm c}$	h_c	S _c	x _c	T_1	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	1,1	419,1	1,307	-100	73,64	0,3643	308,3	0,9992	0	66,22	0,2642	277,2	0,9086	0	68,64	10,55	644,8	2,353	1
110	1,1	2695	7,368	100	79,37	0,4618	332,3	1,068	0	68,55	0,2928	287	0,9373	0	74,37	11,93	651,6	2,359	1
120	1,1	2715	7,42	100	85,45	0,5885	357,8	1,14	0	70,33	0,3162	294,4	0,959	0	80,45	13,55	658,5	2,365	1
130	1,1	2735	7,471	100	92,07	0,7582	385,7	1,216	0	71,51	0,3327	299,3	0,9733	0	87,07	15,48	665,6	2,371	1
140	1,1	2755	7,52	100	99,66	1,001	417,6	1,303	0	72,07	0,3408	301,7	0,9802	0	94,66	17,94	673,1	2,377	1
150	1,1	2775	7,568	100	109,7	1,418	460,1	1,415	0	72,3	0,3441	302,6	0,9829	0	104,7	21,64	681,3	2,381	1
		Estado 2					Estado 3					Estado 4					Estado 5		
T ₂	P_2	<i>h</i> ₂	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h ₃	<i>s</i> ₃	<i>x</i> ₃	T_4	P ₄	h ₄	<i>s</i> ₄	<i>x</i> ₄	T_5	P_5	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
46,89	5,309	621,8	2,366	100	40	5,309	297	1,329	0	40,9	10,55	297	1,326	-100	68,64	10,55	373,5	1,559	0
48,25	5,309	624,5	2,374	100	40	5,309	297	1,329	0	41	11,93	297	1,325	-100	74,37	11,93	389,6	1,605	0
49,63	5,309	627,2	2,382	100	40	5,309	297	1,329	0	41,1	13,55	297,1	1,329	-100	80,45	13,55	407,1	1,654	0
51,02	5,309	629,9	2,391	100	40	5,309	297	1,329	0	41.2	15,48	297,1	1,329	-100	87,07	15,48	426,6	1,708	0
52,39	5,309	632,6	2,399	100	40	5,309	297	1,329	0	41,2	17,94	297,1	1,321	-100	94,66	17,94	449,8	1,77	0
53,65	5,309	635	2,406	100	40	5,309	297	1,329	0	41,4	21,64	297,1	1,319	-100	104,7	21,64	482	1,854	0

TABLA F-1: Propiedades termodinámicas de una central de ciclo binario con isobutano como fluido de trabajo, para $P_1 = 1,1$ [bar] y $T_c = 40$ [°C].

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	$T_{\rm b}$	$P_{\rm b}$	$h_{ m b}$	Sb	x _b	$T_{\rm c}$	$P_{\rm c}$	h_c	S _c	x _c	<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	4,4	419,3	1,307	-100	73,64	0,3643	308,3	0,9992	0	66,22	0,2642	277,2	0,9086	0	68,64	10,55	644,8	2,353	1
110	4,4	461,6	1,418	-100	79,37	0,4618	332,3	1,068	0	68,55	0,2927	286,9	0,9372	0	74,37	11,93	651,6	2,359	1
120	4,4	503,9	1,528	-100	85,45	0,5885	357,8	1,14	0	70,33	0,3162	294,4	0,9589	0	80,45	13,55	658,5	2,365	1
130	4,4	546,5	1,634	-100	92,07	0,7582	385,7	1,216	0	71,5	0,3326	299,3	0,9732	0	87,07	15,48	665,6	2,371	1
140	4,4	589,3	1,739	-100	99,66	1,001	417,6	1,303	0	72,07	0,3407	301,7	0,9801	0	94,66	17,94	673,1	2,377	1
150	4,4	2749	6,88	100	110	1,433	461,4	1,419	0	72,52	0,3473	303,6	0,9855	0	105	21,77	681,4	2,381	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
46,89	5,309	621,8	2,366	100	40	5,309	297	1,329	0	40,8	10,55	297	1,326	-100	68,64	10,55	373,5	1,559	0
48,25	5,309	624,5	2,374	100	40	5,309	297	1,329	0	40,8	11,93	297	1,325	-100	74,37	11,93	389,6	1,605	0
49,63	5,309	627,2	2,382	100	40	5,309	297	1,329	0	41,1	13,55	297	1,329	-100	80,45	13,55	407,1	1,654	0
51,02	5,309	629,9	2,391	100	40	5,309	297	1,329	0	41.2	15,48	297	1,329	-100	87,07	15,48	426,6	1,708	0
52,39	5,309	632,6	2,399	100	40	5,309	297	1,329	0	41,2	17,94	297	1,321	-100	94,66	17,94	449,8	1,77	0
53,64	5,309	635	2,406	100	40	5,309	297	1,329	0	41,4	21,77	297	1,319	-100	105	21,77	483,1	1,857	0

TABLA F-2: Propiedades termodinámicas de una central de ciclo binario con isobutano como fluido de trabajo, para $P_1 = 4,4$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C			Estado 1				
T _a	Pa	h _a	s _a	<i>x</i> _a	$T_{\rm b}$	$P_{\rm b}$	$h_{ m b}$	Sb	x _b	T _c	Pc	h_c	S _c	x _c	T_1	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	7,7	419,6	1,306	-100	73,64	0,3643	308,3	0,9992	0	66,22	0,2642	277,2	0,9086	0	68,64	10,55	644,8	2,353	1
110	7,7	461,8	1,418	-100	79,37	0,4618	332,3	1,068	0	68,55	0,2927	286,9	0,9372	0	74,37	11,93	651,6	2,359	1
120	7,7	504,2	1,527	-100	85,45	0,5885	357,8	1,14	0	70,33	0,3162	294,4	0,9589	0	80,45	13,55	658,5	2,365	1
130	7,7	546,7	1,634	-100	92,07	0,7582	385,7	1,216	0	71,5	0,3326	299,3	0,9732	0	87,07	15,48	665,6	2,371	1
140	7,7	589,5	1,739	-100	99,66	1,001	417,6	1,303	0	72,07	0,3407	301,7	0,9801	0	94,66	17,94	673,1	2,377	1
150	7,7	632,5	1,842	-100	110	1,433	461,4	1,419	0	72,51	0,3472	303,5	0,9855	0	105	21,77	681,4	2,381	1
		Estado 2			Estado 3				Estado 4						Estado 5				
T_2	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T ₄	P_4	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P ₅	h_5	s ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
46,89	5,309	621,8	2,366	100	40	5,309	297	1,329	0	40,8	10,55	297	1,326	-100	68,64	10,55	373,5	1,559	0
48,25	5,309	624,5	2,374	100	40	5,309	297	1,329	0	40,8	11,93	297	1,325	-100	74,37	11,93	389,6	1,605	0
49,63	5,309	627,2	2,382	100	40	5,309	297	1,329	0	41,1	13,55	297	1,329	-100	80,45	13,55	407,1	1,654	0
51,02	5,309	629,9	2,391	100	40	5,309	297	1,329	0	41.2	15,48	297	1,329	-100	87,07	15,48	426,6	1,708	0
52,39	5,309	632,6	2,399	100	40	5,309	297	1,329	0	41,2	17,94	297	1,321	-100	94,66	17,94	449,8	1,77	0
53,64	5,309	635	2,406	100	40	5,309	297	1,329	0	41,4	21,77	297	1,319	-100	105	21,77	483,1	1,857	0

TABLA F-3: Propiedades termodinámicas de una central de ciclo binario con isobutano como fluido de trabajo, para $P_1 = 7,7$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C			Estado 1				
T _a	Pa	h _a	s _a	x _a	$T_{\rm b}$	Pb	$h_{ m b}$	s _b	x _b	$T_{\rm c}$	Pc	h_c	S _c	x _c	<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	11	419,8	1,306	-100	73,79	0,3665	308,9	1,001	0	66,48	0,2672	278,3	0,9118	0	68,79	10,58	645	2,353	1
110	11	462	1,418	-100	79,53	0,4648	332,9	1,07	0	68,88	0,297	288,3	0,9413	0	74,53	11,97	651,8	2,359	1
120	11	504,4	1,527	-100	85,24	0,5835	356,9	1,137	0	70,39	0,3171	294,7	0,9597	0	80,24	13,49	658,3	2,365	1
130	11	547	1,634	-100	91,87	0,7524	384,8	1,214	0	71,7	0,3354	300,1	0,9756	0	86,87	15,42	665,4	2,371	1
140	11	589,7	1,739	-100	99,29	0,9877	416	1,299	0	72,28	0,3438	302,6	0,9827	0	94,29	17,82	672,7	2,377	1
150	11	632,7	1,841	-100	110,1	1,436	461,6	1,419	0	73,33	0,3595	307	0,9954	0	105,1	21,79	681,5	2,381	1
		Estado 2			Estado 3				Estado 4				Estado 5						
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	s ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
46,93	5,309	621,9	2,366	100	40	5,309	297	1,329	0	40,42	10,58	298,3	1,33	-100	68,79	10,58	373,9	1,56	0
48,28	5,309	624,6	2,374	100	40	5,309	297	1,329	0	40,53	11,97	298,6	1,33	-100	74,53	11,97	390	1,606	0
49,58	5,309	627,1	2,382	100	40	5,309	297	1,329	0	40,65	13,49	299	1,335	-100	80,24	13,49	406,5	1,652	0
50,98	5,309	629,8	2,39	100	40	5,309	297	1,329	0	40,8	15,42	299,4	1,336	-100	86,87	15,42	426	1,706	0
52,33	5,309	632,5	2,399	100	40	5,309	297	1,329	0	40,99	17,82	300	1,331	-100	94,29	17,82	448,6	1,767	0
53,64	5,309	635	2,406	100	40	5,309	297	1,329	0	41,3	21,79	300,9	1,331	-100	105,1	21,79	483,2	1,857	0

TABLA F-4: Propiedades termodinámicas de una central de ciclo binario con isobutano como fluido de trabajo, para $P_1 = 11 \text{ [bar] y } T_c = 40 \text{ [°C]}$

		Estado A					Estado B					Estado C			Estado 1				
T _a	Pa	h _a	s _a	x _a	$T_{\rm b}$	$P_{\rm b}$	$h_{ m b}$	S _b	x _b	$T_{\rm c}$	$P_{\rm c}$	h _c	S _c	x _c	<i>T</i> ₁	P_1	h_1	<i>S</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	14,3	420,1	1,306	-100	73,8	0,3666	308,9	1,001	0	66,49	0,2674	278,3	0,9119	0	68,8	10,58	645	2,353	1
110	14,3	462,3	1,417	-100	79,17	0,4581	331,5	1,065	0	68,54	0,2926	286,9	0,9371	0	74,17	11,88	651,3	2,359	1
120	14,3	504,6	1,527	-100	85,24	0,5837	356,9	1,137	0	70,4	0,3172	294,7	0,9598	0	80,24	13,49	658,3	2,365	1
130	14,3	547,2	1,634	-100	92,27	0,7637	386,5	1,219	0	72,06	0,3406	301,6	0,98	0	87,27	15,54	665,8	2,371	1
140	14,3	589,9	1,738	-100	99,92	1,01	418,7	1,306	0	72,82	0,3518	304,8	0,9892	0	94,92	18,03	673,3	2,377	1
150	14,3	632,9	1,841	-100	109,7	1,419	460,1	1,415	0	73,07	0,3556	305,9	0,9923	0	104,7	21,64	681,3	2,381	1
		Estado 2			Estado 3				Estado 4					Estado 5					
T ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T_4	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
46,93	5,309	621,9	2,366	100	40	5,309	297	1,329	0	40,42	10,58	298,3	1,33	-100	68,8	10,58	373,9	1,56	0
48,2	5,309	624,4	2,374	100	40	5,309	297	1,329	0	40,52	11,88	298,6	1,33	-100	74,17	11,88	389	1,603	0
49,58	5,309	627,1	2,382	100	40	5,309	297	1,329	0	40,65	13,49	299	1,335	-100	80,24	13,49	406,5	1,652	0
51,06	5,309	630	2,391	100	40	5,309	297	1,329	0	40,81	15,54	299,4	1,336	-100	87,27	15,54	427,2	1,709	0
52,43	5,309	632,7	2,399	100	40	5,309	297	1,329	0	41	18,03	300	1,331	-100	94,92	18,03	450,6	1,772	0
53,65	5,309	635	2,406	100	40	5,309	297	1,329	0	41,29	21,64	300,9	1,331	-100	104,7	21,64	482,1	1,854	0

TABLA F-5: Propiedades termodinámicas de una central de ciclo binario con isobutano como fluido de trabajo, para $P_1 = 14,3$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C			Estado 1				
T _a	Pa	h _a	sa	x _a	T _b	Pb	$h_{ m b}$	s _b	x _b	T _c	Pc	h _c	s _c	xc	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	17,5	420,3	1,306	-100	73,51	0,3622	307,7	0,9975	0	66,21	0,2641	277,1	0,9084	0	68,51	10,52	644,6	2,353	1
110	17,5	462,5	1,417	-100	79,56	0,4654	333,1	1,07	0	68,91	0,2974	288,5	0,9417	0	74,56	11,98	651,8	2,359	1
120	17,5	504,9	1,526	-100	85,74	0,5951	359	1,143	0	70,86	0,3236	296,6	0,9655	0	80,74	13,63	658,8	2,365	1
130	17,5	547,4	1,633	-100	91,85	0,7519	384,7	1,214	0	71,69	0,3352	300,1	0,9754	0	86,85	15,41	665,4	2,371	1
140	17,5	590,1	1,738	-100	99,33	0,9891	416,2	1,299	0	72,32	0,3444	302,7	0,9831	0	94,33	17,83	672,8	2,377	1
150	17,5	633,1	1,841	-100	110,2	1,44	462	1,42	0	73,41	0,3607	307,3	0,9964	0	105,2	21,82	681,6	2,381	1
		Estado 2			Estado 3				Estado 4							Estado 5			
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
46,86	5,309	621,8	2,365	100	40	5,309	297	1,329	0	40,41	10,51	298	1,33	-100	68,7	10,58	372,9	1,56	0
48,29	5,309	624,6	2,374	100	40	5,309	297	1,329	0	40,53	11,98	298,6	1,33	-100	74,56	11,98	390,1	1,607	0
49,69	5,309	627,3	2,383	100	40	5,309	297	1,329	0	40,66	13,63	299	1,335	-100	80,74	13,63	407,9	1,656	0
50,97	5,309	629,8	2,39	100	40	5,309	297	1,329	0	40,8	15,41	299,4	1,336	-100	86,85	15,41	426	1,706	0
52,34	5,309	632,5	2,399	100	40	5,309	297	1,329	0	40,99	17,83	300	1,331	-100	94,33	17,83	448,7	1,767	0
53,69	5,309	635,1	2,407	100	40	5,309	297	1,329	0	41,5	21,82	300,9	1,331	-100	105,2	21,82	483,5	1,858	0

TABLA F-6: Propiedades termodinámicas de una central de ciclo binario con isobutano como fluido de trabajo, para $P_1 = 17,5$ [bar] y $T_c = 40$ [°C]

$P_1 = 1, 1 [bar]$												
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$					
Potencia Neta	[kW]	866,3	591,4	793,3	1032	1317	1660					
Trabajo específico	[kJ/kg]	21,61	25,65	29,28	33,43	37,68	42,58					
Flujo másico geotermal	[kg/s]	97,41	97,41	97,41	97,41	97,41	97,41					
Flujo másico Fluido de Trabajo	[kg/s]	40,09	23,06	27,09	30,87	34,95	38,99					
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85					
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8					
Eficiencia Térmica		0,06238	0,07261	0,0815	0,09128	0,1009	0,1119					
Capacidad Calórica geofluido	[kJ/(kgK)]	4,217	2,035	2,017	2,004	1,994	1,987					

TABLA F-7: Características central de ciclo binario usando isobutano como fluido de trabajo, para $P_1 = 1,1$ [bar] Y $T_c = 40$ [°C]

TABLA F-8: Características central de ciclo binario usando isobutano como fluido de trabajo, para $P_1 = 4,4$ [bar] y $T_c = 40$ [°C]

			<i>P</i> ₁ = 4, 4 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	<i>T</i> ₁ = 140	$T_1 = 150$
Potencia Neta	[kW]	899,9	1283	1751	2317	3004	2028
Trabajo específico	[kJ/kg]	22,95	27,10	31,33	35,74	40,51	46,45
Flujo másico geotermal	[kg/s]	95,73	95,73	95,73	95,73	95,73	95,73
Flujo másico Fluido de Trabajo	[kg/s]	39,21	47,35	55,89	64,83	74,16	43,66
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,066	0,07643	0,08668	0,09696	0,1077	0,1208
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,231	4,248	4,267	4,288	2,263

<i>P</i> ₁ = 7,7 [bar]												
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$					
Potencia Neta	[kW]	888,9	1268	1730	2289	2968	3816					
Trabajo específico	[kJ/kg]	22,95	27,11	31,34	35,74	40,52	46,43					
Flujo másico geotermal	[kg/s]	94,58	94,58	94,58	94,58	94,58	94,58					
Flujo másico Fluido de Trabajo	[kg/s]	38,73	46,78	55,2	64,04	73,25	82,19					
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85					
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8					
Eficiencia Térmica		0,066	0,07643	0,08668	0,09696	0,1077	0,1208					
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,23	4,247	4,266	4,287	4,311					

TABLA F-9: Características central de ciclo binario usando isobutano como fluido de trabajo, para $P_1 = 7,7$ [bar] Y $T_c = 40$ [°C]

TABLA F-10: Características central de ciclo binario usando isobutano como fluido de trabajo, para $P_1 = 11 \text{ [bar] Y } T_c = 40 \text{ [°C]}$

			$P_1 = 11$ [bar	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	<i>T</i> ₁ = 140	$T_1 = 150$
Potencia Neta	[kW]	797,6	1137	1552	2054	2663	3424
Trabajo específico	[kJ/kg]	22,95	27,09	31,33	35,75	40,51	46,46
Flujo másico geotermal	[kg/s]	84,89	84,89	84,89	84,89	84,89	84,89
Flujo másico Fluido de Trabajo	[kg/s]	34,75	41,97	49,53	57,46	65,73	73,69
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,066	0,07643	0,08668	0,09696	0,1077	0,1209
Capacidad Calórica geofluido	[kJ/(kgK)]	4,215	4,23	4,246	4,265	4,286	4,31
			<i>P</i> ₁ = 14, 3 [ba	ar]			
--------------------------------	------------	-------------	-----------------------------------	-------------	-------------	-------------	-------------
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	540,8	771,1	1052	1392	1805	2321
Trabajo específico	[kJ/kg]	22,95	27,09	31,33	35,74	40,51	46,27
Flujo másico geotermal	[kg/s]	57,56	57,56	57,56	57,56	57,56	57,56
Flujo másico Fluido de Trabajo	[kg/s]	23,56	28,46	33,58	38,95	44,56	50,16
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,066	0,07643	0,08668	0,09696	0,1077	0,1204
Capacidad Calórica geofluido	[kJ/(kgK)]	4,214	4,229	4,246	4,264	4,285	4,309

TABLA F-11: Características central de ciclo binario usando isobutano como fluido de trabajo, para $P_1 = 14,3$ [bar] Y $T_c = 40$ [°C]

TABLA F-12: Características central de ciclo binario usando isobutano como fluido de trabajo, para $P_1 = 17,5$ [bar] Y $T_c = 40$ [°C]

			<i>P</i> ₁ = 17, 5 [ba	ar]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	53,05	75,64	103,2	136,6	177,1	227,7
Trabajo específico	[kJ/kg]	22,96	27,09	31,33	35,75	40,52	46,28
Flujo másico geotermal	[kg/s]	5,648	5,648	5,648	5,648	5,648	5,648
Flujo másico Fluido de Trabajo	[kg/s]	2,311	2,792	3,294	3,821	4,371	4,92
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,066	0,07643	0,08668	0,09696	0,1077	0,1204
Capacidad Calórica geofluido	[kJ/(kgK)]	4,213	4,228	4,245	4,263	4,284	4,308

F.2. Butano

					ú					·									
		Estado A					Estado B					Estado C					Estado 1		
T _a	P _a	h _a	s _a	x _a	T _b	Pb	$h_{\rm b}$	s _b	x _b	T _c	P _c	h _c	s _c	x _c	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	1,1	419,1	1,307	-100	73,02	0,3547	305,6	0,9916	0	66,68	0,2697	279,1	0,9143	0	68,02	7,739	680,4	2,46	1
110	1,1	2695	7,368	100	78,54	0,4463	328,8	1,058	0	69,4	0,3037	290,5	0,9476	0	73,54	8,78	687,8	2,467	1
120	1,1	2715	7,42	100	84,63	0,5698	354,4	1,13	0	72	0,3398	301,4	0,9793	0	79,63	10,05	695,8	2,474	1
130	1,1	2735	7,471	100	90,17	0,7058	377,7	1,195	0	73,33	0,3595	307	0,9954	0	85,17	11,31	702,9	2,481	1
140	1,1	2755	7,52	100	97,01	0,9097	406,4	1,273	0	74,96	0,3851	313,8	1,015	0	92,01	13,02	711,4	2,489	1
150	1,1	2775	7,568	100	103,4	1,141	433,3	1,345	0	75,07	0,3868	314,3	1,016	0	98,38	14,79	719	2,496	1
		Estado 2					Estado 3					Estado 4					Estado 5		
T ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	T_3	<i>P</i> ₃	h_3	s ₃	<i>x</i> ₃	T_4	<i>P</i> ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P_5	h_5	s ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
47,29	3,792	655,5	2,474	100	40	3,792	296,5	1,328	0	40,27	7,739	297,4	1,328	-100	68,02	7,739	370,2	1,551	0
48,8	3,792	658,4	2,483	100	40	3,792	296,5	1,328	0	40,34	8,78	297,6	1,328	-100	73,54	8,78	385,4	1,594	0
50,46	3,792	661,6	2,493	100	40	3,792	296,5	1,328	0	40,43	10,05	297,9	1,332	-100	79,63	10,05	402,5	1,643	0
51,95	3,792	664,5	2,502	100	40	3,792	296,5	1,328	0	40,51	11,31	298,2	1,333	-100	85,17	11,31	418,5	1,687	0
51,95 53,73	3,792 3,792	664,5 668	2,502 2,512	100 100	40 40	3,792 3,792	296,5 296,5	1,328 1,328	0 0	40,51 40,63	11,31 13,02	298,2 298,5	1,333 1,334	-100 -100	85,17 92,01	11,31 13,02	418,5 438,5	1,687 1,741	0 0

TABLA F-13: Propiedades termodinámicas de una central de ciclo binario con butano como fluido de trabajo, para $P_1 = 1,1$ [bar] y $T_c = 40$ [°C].

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	P _b	$h_{\rm b}$	s _b	x _b	T _c	Pc	h _c	s _c	xc	T_1	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	4,4	419,3	1,307	-100	73,6	0,3636	308,1	0,9987	0	66,15	0,2634	276,9	0,9077	0	68,6	7,118	215,4	0,6892	1
110	4,4	461,6	1,418	-100	79,19	0,4584	331,5	1,066	0	68,44	0,2913	286,5	0,9359	0	74,19	8,11	218,5	0,6932	1
120	4,4	503,9	1,528	-100	84,98	0,5778	355,9	1,134	0	70,16	0,3139	293,7	0,9569	0	79,98	9,242	221,8	0,6972	1
130	4,4	546,5	1,634	-100	91,11	0,7314	381,6	1,205	0	71,32	0,3299	298,5	0,971	0	86,11	10,56	225	0,7013	1
140	4,4	589,3	1,739	-100	97,21	0,9163	407,3	1,275	0	71,39	0,331	298,8	0,9719	0	92,21	12,01	228,2	0,7052	1
150	4,4	2749	6,88	100	104,4	1,184	437,8	1,357	0	71,21	0,3284	298,1	0,9697	0	99,43	13,9	231,7	0,7095	1
		Estado 2					Estado 3					Estado 4					Estado 5		
T_2	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	s ₃	x_3	T ₄	P_4	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,55	3,369	206,4	0,6942	100	40	3,369	76,29	0,2791	0	40,36	7,118	76,67	0,2803	-100	68,6	7,118	107,2	0,3727	0
52,58	3,369	207,9	0,699	100	40	3,369	76,29	0,2791	0	40,47	8,11	76,78	0,2807	-100	74,19	8,11	113,5	0,3906	0
54,65	3,369	209,5	0,7038	100	40	3,369	76,29	0,2791	0	40,59	9,242	76,9	0,2811	-100	79,98	9,242	120	0,409	0
56,77	3,369	211,2	0,7088	100	40	3,369	76,29	0,2791	0	40,73	10,56	77,06	0,2816	-100	86,11	10,56	127	0,4284	0
58,79	3,369	212,7	0,7135	100	40	3,369	76,29	0,2791	0	40,9	12,01	77,23	0,2821	-100	92,21	12,01	134	0,4475	0
61,02	3,369	214,4	0,7186	100	40	3,369	76,29	0,2791	0	41,12	13,9	77,47	0,2829	-100	99,43	13,9	142,5	0,47	0

TABLA F-14: Propiedades termodinámicas de una central de ciclo binario con butano como fluido de trabajo, para $P_1 = 4,4$ [bar] y $T_c = 40$ [°C].

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	P _b	h_{b}	s _b	x _b	T _c	P _c	h _c	s _c	x _c	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	7,7	419,6	1,306	-100	73,63	0,364	308,2	0,9989	0	66,17	0,2636	277	0,908	0	68,63	7,122	215,4	0,6893	1
110	7,7	461,8	1,418	-100	78,78	0,4508	329,8	1,061	0	68,04	0,2863	284,8	0,931	0	73,78	8,033	218,3	0,6929	1
120	7,7	504,2	1,527	-100	84,54	0,5677	354	1,129	0	69,73	0,3082	291,9	0,9517	0	79,54	9,15	221,5	0,6969	1
130	7,7	546,7	1,634	-100	91,23	0,7345	382,1	1,207	0	71,42	0,3314	299	0,9722	0	86,23	10,59	225,1	0,7014	1
140	7,7	589,5	1,739	-100	107	1,294	448,6	1,385	0	81,31	0,4995	340,4	1,091	0	102	14,63	232,9	0,7109	1
150	7,7	632,5	1,842	-100	105	1,209	440,2	1,363	0	71,73	0,3358	300,2	0,976	0	100	14,07	232	0,7098	1
		Estado 2					Estado 3					Estado 4					Estado 5		
T_2	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	s ₃	x_3	T ₄	P_4	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,56	3,369	206,4	0,6942	100	40	3,369	76,29	0,2791	0	40,36	7,122	76,67	0,2803	-100	68,63	7,122	107,2	0,3728	0
52,43	3,369	207,8	0,6986	100	40	3,369	76,29	0,2791	0	40,46	8,033	76,77	0,2806	-100	73,78	8,033	113	0,3893	0
54,49	3,369	209,4	0,7034	100	40	3,369	76,29	0,2791	0	40,58	9,15	76,89	0,281	-100	79,54	9,15	119,5	0,4076	0
56,81	3,369	211,2	0,7089	100	40	3,369	76,29	0,2791	0	40,73	10,59	77,06	0,2816	-100	86,23	10,59	127,1	0,4287	0
61,76	3,369	215	0,7203	100	40	3,369	76,29	0,2791	0	41,21	14,63	77,57	0,2832	-100	102	14,63	145,6	0,478	0
61,19	3,369	214,6	0,719	100	40	3,369	76,29	0,2791	0	41,14	14,07	77,49	0,2829	-100	100	14,07	143,2	0,4718	0

TABLA F-15: Propiedades termodinámicas de una central de ciclo binario con butano como fluido de trabajo, para $P_1 = 7,7$ [bar] y $T_c = 40$ [°C].

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	P _b	$h_{\rm b}$	s _b	x _b	T _c	Pc	h _c	s _c	x _c	T_1	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	11	419,8	1,306	-100	73,58	0,3632	308	0,9984	0	66,12	0,2631	276,8	0,9074	0	68,58	7,113	215,4	0,6892	1
110	11	462	1,418	-100	78,83	0,4517	330	1,061	0	68,09	0,2869	285	0,9316	0	73,83	8,042	218,3	0,6929	1
120	11	504,4	1,527	-100	84,61	0,5693	354,3	1,13	0	69,8	0,3091	292,2	0,9525	0	79,61	9,164	221,5	0,6969	1
130	11	547	1,634	-100	91,16	0,7325	381,8	1,206	0	71,36	0,3305	298,7	0,9714	0	86,16	10,57	225,1	0,7013	1
140	11	589,7	1,739	-100	97,8	0,9363	409,8	1,282	0	71,94	0,3388	301,1	0,9785	0	92,8	12,16	228,5	0,7056	1
150	11	632,7	1,841	-100	104,2	1,174	436,8	1,354	0	71	0,3255	297,2	0,9671	0	99,19	13,84	231,6	0,7093	1
		Estado 2					Estado 3					Estado 4					Estado 5		
T ₂	P ₂	h ₂	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	<i>h</i> ₃	s ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	s ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,54	3,369	206,4	0,6941	100	40	3,369	76,29	0,2791	0	40,36	7,113	76,67	0,2803	-100	68,58	7,113	107,2	0,3726	0
52,45	3,369	207,8	0,6986	100	40	3,369	76,29	0,2791	0	40,46	8,042	76,77	0,2806	-100	73,83	8,042	113	0,3895	0
54,52	3,369	209,4	0,7035	100	40	3,369	76,29	0,2791	0	40,58	9,164	76,9	0,281	-100	79,61	9,164	119,6	0,4078	0
56,79	3,369	211,2	0,7088	100	40	3,369	76,29	0,2791	0	40,73	10,57	77,06	0,2816	-100	86,16	10,57	127	0,4285	0
58,98	3,369	212,9	0,7139	100	40	3,369	76,29	0,2791	0	40,91	12,16	77,25	0,2822	-100	92,8	12,16	134,7	0,4493	0
60,95	3,369	214,4	0,7185	100	40	3,369	76,29	0,2791	0	41,12	13,84	77,46	0,2828	-100	99,19	13,84	142,2	0,4693	0

TABLA F-16: Propiedades termodinámicas de una central de ciclo binario con butano como fluido de trabajo, para $P_1 = 11 [bar] y T_c = 40 [°C]$.

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	sa	x _a	T _b	Pb	h_{b}	s _b	x _b	T _c	P _c	h _c	s _c	x _c	T_1	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	14,3	420,1	1,306	-100	73,6	0,3636	308,1	0,9987	0	66,15	0,2634	276,9	0,9077	0	68,6	7,118	215,4	0,6892	1
110	14,3	462,3	1,417	-100	79,18	0,4582	331,5	1,066	0	68,43	0,2911	286,4	0,9357	0	74,18	8,107	218,5	0,6932	1
120	14,3	504,6	1,527	-100	85,1	0,5804	356,3	1,135	0	70,27	0,3154	294,1	0,9582	0	80,1	9,265	221,8	0,6973	1
130	14,3	547,2	1,634	-100	91,15	0,7323	381,8	1,206	0	71,35	0,3304	298,6	0,9713	0	86,15	10,57	225,1	0,7013	1
140	14,3	589,9	1,738	-100	96,95	0,9079	406,2	1,272	0	71,16	0,3278	297,9	0,9691	0	91,95	11,94	228,1	0,705	1
150	14,3	632,9	1,841	-100	104,4	1,184	437,7	1,357	0	71,2	0,3282	298	0,9695	0	99,41	13,9	231,7	0,7094	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P_4	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,55	3,369	206,4	0,6942	100	40	3,369	76,29	0,2791	0	40,36	7,118	76,67	0,2803	-100	68,6	7,118	107,2	0,3727	0
52,58	3,369	207,9	0,6989	100	40	3,369	76,29	0,2791	0	40,47	8,107	76,78	0,2807	-100	74,18	8,107	113,4	0,3906	0
54,69	3,369	209,6	0,7039	100	40	3,369	76,29	0,2791	0	40,59	9,265	76,91	0,2811	-100	80,1	9,265	120,1	0,4094	0
56,78	3,369	211,2	0,7088	100	40	3,369	76,29	0,2791	0	40,73	10,57	77,06	0,2816	-100	86,15	10,57	127	0,4285	0
58,71	3,369	212,7	0,7133	100	40	3,369	76,29	0,2791	0	40,89	11,94	77,22	0,2821	-100	91,95	11,94	133,7	0,4467	0
61,02	3,369	214,4	0,7186	100	40	3,369	76,29	0,2791	0	41,12	13,9	77,47	0,2829	-100	99,41	13,9	142,5	0,47	0

TABLA F-17: Propiedades termodinámicas de una central de ciclo binario con butano como fluido de trabajo, para $P_1 = 14,3$ [bar] y $T_c = 40$ [°C].

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	P _b	$h_{\rm b}$	s _b	x _b	T _c	Pc	h_c	s _c	x _c	T_1	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	17,5	420,3	1,306	-100	73,51	0,3622	307,7	0,9975	0	66,21	0,2641	277,1	0,9084	0	68,51	10,52	644,6	2,353	1
110	17,5	462,5	1,417	-100	79,56	0,4654	333,1	1,07	0	68,91	0,2974	288,5	0,9417	0	74,56	11,98	651,8	2,359	1
120	17,5	504,9	1,526	-100	85,74	0,5951	359	1,143	0	70,86	0,3236	296,6	0,9655	0	80,74	13,63	658,8	2,365	1
130	17,5	547,4	1,633	-100	91,85	0,7519	384,7	1,214	0	71,69	0,3352	300,1	0,9754	0	86,85	15,41	665,4	2,371	1
140	17,5	590,1	1,738	-100	99,33	0,9891	416,2	1,299	0	72,32	0,3444	302,7	0,9831	0	94,33	17,83	672,8	2,377	1
150	17,5	633,1	1,841	-100	110,2	1,44	462	1,42	0	73,41	0,3607	307,3	0,9964	0	105,2	21,82	681,6	2,381	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	x_4	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
46,86	5,309	621,8	2,365	100	40	5,309	297	1,329	0	40,41	10,52								
48,29	5,309	624,6	2,374	100	40	5,309	297	1,329	0	40,53	11,98	298,6	1,33	-100	74,56	11,98	390,1	1,607	0
49,69	5,309	627,3	2,383	100	40	5,309	297	1,329	0	40,66	13,63	299	1,335	-100	80,74	13,63	407,9	1,656	0
50,97	5,309	629,8	2,39	100	40	5,309	297	1,329	0	40,8	15,41	299,4	1,336	-100	86,85	15,41	426	1,706	0
52,34	5,309	632,5	2,399	100	40	5,309	297	1,329	0	40,99	17,83	300	1,331	-100	94,33	17,83	448,7	1,767	0
53,69	5,309	635,1	2,407	100	40	5,309	297	1,329	0	41,3	21,82	300,9	1,331	-100	105,2	21,82	483,5	1,858	0

TABLA F-18: Propiedades termodinámicas de una central de ciclo binario con butano como fluido de trabajo, para $P_1 = 17,5$ [bar] y $T_c = 40$ [°C].

			<i>P</i> ₁ = 1, 1 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	888,6	605,4	809,6	1049	1329	1656
Trabajo específico	[kJ/kg]	23,97	28,24	32,75	36,71	41,34	45,47
Flujo másico geotermal	[kg/s]	97,41	97,41	97,41	97,41	97,41	97,41
Flujo másico Fluido de Trabajo	[kg/s]	35,74	20,62	23,7	27,32	30,6	34,53
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,0626	0,07236	0,08231	0,09069	0,1002	0,1082
Capacidad Calórica geofluido	[kJ/(kgK)]	4,217	2,035	2,017	2,004	1,994	1,987

TABLA F-19: Características central de ciclo binario usando butano como fluido de trabajo, para $P_1 = 1,1$ [bar] Y $T_c = 40$ [°C]

TABLA F-20: Características central de ciclo binario usando butano como fluido de trabajo, para $P_1 = 4,4$ [bar] Y $T_c = 40$ [°C]

			<i>P</i> ₁ = 4, 4 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	847,9	1200	1623	2123	2709	1780
Trabajo específico	[kJ/kg]	23,97	28,24	32,75	36,71	41,34	45,47
Flujo másico geotermal	[kg/s]	95,73	95,73	95,73	95,73	95,73	95,73
Flujo másico Fluido de Trabajo	[kg/s]	34,85	42,87	49,65	56,67	65,2	38,45
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06205	0,0713	0,08009	0,08856	0,0962	0,1043
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,231	4,248	4,267	4,288	2,263

			<i>P</i> ₁ = 7, 7 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	837,5	1186	1604	2097	2545	3348
Trabajo específico	[kJ/kg]	23,97	28,24	32,75	36,71	41,34	45,47
Flujo másico geotermal	[kg/s]	94,58	94,58	94,58	94,58	94,58	94,58
Flujo másico Fluido de Trabajo	[kg/s]	34,42	46,21	50,21	56,28	65,72	72,38
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06209	0,07065	0,07944	0,08871	0,1069	0,1049
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,23	4,247	4,266	4,287	4,311

TABLA F-21: Características central de ciclo binario usando butano como fluido de trabajo, para $P_1 = 7,7$ [bar] y $T_c = 40$ [°C]

TABLA F-22: Características central de ciclo binario usando butano como fluido de trabajo, para $P_1 = 11 \text{ [bar] Y } T_c = 40 \text{ [°C]}$

			<i>P</i> ₁ = 11 [bar	r]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	751,5	1064	1439	1882	2400	3007
Trabajo específico	[kJ/kg]	21,61	25,65	29,56	33,20	37,35	42,61
Flujo másico geotermal	[kg/s]	84,89	84,89	84,89	84,89	84,89	84,89
Flujo másico Fluido de Trabajo	[kg/s]	30,66	37,30	43,89	50,35	57,44	65,79
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06201	0,07072	0,07954	0,08862	0,0969	0,104
Capacidad Calórica geofluido	[kJ/(kgK)]	4,215	4,23	4,246	4,265	4,286	4,31

			<i>P</i> ₁ = 14, 3 [ba	ar]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	509,5	721,3	975,3	1276	1628	2038
Trabajo específico	[kJ/kg]	21,61	25,65	29,56	33,20	37,35	42,61
Flujo másico geotermal	[kg/s]	57,56	57,56	57,56	57,56	57,56	57,56
Flujo másico Fluido de Trabajo	[kg/s]	20,77	25,05	29,43	34,13	39,51	44,46
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06205	0,07128	0,08026	0,08861	0,09589	0,1043
Capacidad Calórica geofluido	[kJ/(kgK)]	4,214	4,229	4,246	4,264	4,285	4,309

TABLA F-23: Características central de ciclo binario usando butano como fluido de trabajo, para $P_1 = 14,3$ [bar] Y $T_c = 40$ [°C]

TABLA F-24: Características central de ciclo binario usando butano como fluido de trabajo, para $P_1 = 17,5$ [bar] Y $T_c = 40$ [°C]

			$P_1 = 17, 5$ [ba	ar]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	32,2	71,25	96,77	127,4	164,1	208,6
Trabajo específico	[kJ/kg]	21,61	25,65	29,56	33,20	37,35	42,61
Flujo másico geotermal	[kg/s]	5,648	5,648	5,648	5,648	5,648	5,648
Flujo másico Fluido de Trabajo	[kg/s]	2,054	2,778	3,274	3,837	4,393	4,895
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,0624	0,07262	0,08215	0,09074	0,1002	0,112
Capacidad Calórica geofluido	[kJ/(kgK)]	4,214	4,229	4,246	4,264	4,285	4,309

F.3. R114

					-					-									
		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	h_{b}	s _b	x _b	T _c	Pc	h _c	s _c	x _c	<i>T</i> ₁	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	1,1	419,1	1,307	-100	73,62	0,3639	308,2	0,9989	0	66,17	0,2636	277	0,9079	0	68,62	7,121	215,4	0,6893	1
110	1,1	2695	7,368	100	78,87	0,4524	330,2	1,062	0	68,13	0,2874	285,2	0,9321	0	73,87	8,05	218,4	0,693	1
120	1,1	2715	7,42	100	84,99	0,578	355,9	1,134	0	70,17	0,314	293,7	0,957	0	79,99	9,244	221,8	0,6972	1
130	1,1	2735	7,471	100	91,21	0,734	382	1,206	0	71,4	0,3312	298,9	0,972	0	86,21	10,58	225,1	0,7014	1
140	1,1	2755	7,52	100	97,67	0,9317	409,2	1,28	0	71,81	0,337	300,6	0,977	0	92,67	12,12	228,4	0,7055	1
150	1,1	2775	7,568	100	104,5	1,185	437,9	1,357	0	71,23	0,3288	298,2	0,97	0	99,46	13,91	231,7	0,7095	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P_2	h_2	<i>s</i> ₂	<i>x</i> ₂	T_3	P ₃	h_3	s ₃	<i>x</i> ₃	<i>T</i> ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	s ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,56	3,369	206,4	0,6942	100	40	3,369	76,29	0,2791	0	40,36	7,121	76,67	0,2803	-100	68,62	7,121	107,2	0,3728	0
52,47	3,369	207,9	0,6987	100	40	3,369	76,29	0,2791	0	40,46	8,05	76,77	0,2806	-100	73,87	8,05	113,1	0,3896	0
54,65	3,369	209,5	0,7038	100	40	3,369	76,29	0,2791	0	40,59	9,244	76,9	0,2811	-100	79,99	9,244	120	0,4091	0
56,8	3,369	211,2	0,7088	100	40	3,369	76,29	0,2791	0	40,73	10,58	77,06	0,2816	-100	86,21	10,58	127,1	0,4287	0
58,94	3,369	212,8	0,7138	100	40	3,369	76,29	0,2791	0	40,91	12,12	77,25	0,2821	-100	92,67	12,12	134,6	0,4489	0
61,03	3,369	214,4	0,7187	100	40	3,369	76,29	0,2791	0	41,12	13,91	77,47	0,2829	-100	99,46	13,91	142,5	0,4701	0

TABLA F-25: Propiedades termodinámicas de una central de ciclo binario con R114 como fluido de trabajo, para $P_1 = 1,1$ [bar] y $T_c = 40$ [°C].

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	h_{b}	s _b	x _b	T _c	Pc	h _c	s _c	x _c	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	4,4	419,3	1,307	-100	73,6	0,3636	308,1	0,9987	0	66,15	0,2634	276,9	0,9077	0	68,6	7,118	215,4	0,6892	1
110	4,4	461,6	1,418	-100	79,19	0,4584	331,5	1,066	0	68,44	0,2913	286,5	0,9359	0	74,19	8,11	218,5	0,6932	1
120	4,4	503,9	1,528	-100	84,98	0,5778	355,9	1,134	0	70,16	0,3139	293,7	0,9569	0	79,98	9,242	221,8	0,6972	1
130	4,4	546,5	1,634	-100	91,11	0,7314	381,6	1,205	0	71,32	0,3299	298,5	0,971	0	86,11	10,56	225	0,7013	1
140	4,4	589,3	1,739	-100	97,21	0,9163	407,3	1,275	0	71,39	0,331	298,8	0,9719	0	92,21	12,01	228,2	0,7052	1
150	4,4	2749	6,88	100	104,4	1,184	437,8	1,357	0	71,21	0,3284	298,1	0,9697	0	99,43	13,9	231,7	0,7095	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,55	3,369	206,4	0,6942	100	40	3,369	76,29	0,2791	0	40,36	7,118	76,67	0,2803	-100	68,6	7,118	107,2	0,3727	0
52,58	3,369	207,9	0,699	100	40	3,369	76,29	0,2791	0	40,47	8,11	76,78	0,2807	-100	74,19	8,11	113,5	0,3906	0
54,65	3,369	209,5	0,7038	100	40	3,369	76,29	0,2791	0	40,59	9,242	76,9	0,2811	-100	79,98	9,242	120	0,409	0
56,77	3,369	211,2	0,7088	100	40	3,369	76,29	0,2791	0	40,73	10,56	77,06	0,2816	-100	86,11	10,56	127	0,4284	0
58,79	3,369	212,7	0,7135	100	40	3,369	76,29	0,2791	0	40,9	12,01	77,23	0,2821	-100	92,21	12,01	134	0,4475	0
61,02	3,369	214,4	0,7186	100	40	3,369	76,29	0,2791	0	41,12	13,9	77,47	0,2829	-100	99,43	13,9	142,5	0,47	0

TABLA F-26: Propiedades termodinámicas de una central de ciclo binario con R114 como fluido de trabajo, para $P_1 = 4,4$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	h_{b}	s _b	x _b	T _c	Pc	h _c	s _c	x _c	T_1	P_1	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	7,7	419,6	1,306	-100	73,63	0,364	308,2	0,9989	0	66,17	0,2636	277	0,908	0	68,63	7,122	215,4	0,6893	1
110	7,7	461,8	1,418	-100	78,78	0,4508	329,8	1,061	0	68,04	0,2863	284,8	0,931	0	73,78	8,033	218,3	0,6929	1
120	7,7	504,2	1,527	-100	84,54	0,5677	354	1,129	0	69,73	0,3082	291,9	0,9517	0	79,54	9,15	221,5	0,6969	1
130	7,7	546,7	1,634	-100	91,23	0,7345	382,1	1,207	0	71,42	0,3314	299	0,9722	0	86,23	10,59	225,1	0,7014	1
140	7,7	589,5	1,739	-100	107	1,294	448,6	1,385	0	81,31	0,4995	340,4	1,091	0	102	14,63	232,9	0,7109	1
150	7,7	632,5	1,842	-100	105	1,209	440,2	1,363	0	71,73	0,3358	300,2	0,976	0	100	14,07	232	0,7098	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h ₂	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P_5	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,56	3,369	206,4	0,6942	100	40	3,369	76,29	0,2791	0	40,36	7,122	76,67	0,2803	-100	68,63	7,122	107,2	0,3728	0
52,43	3,369	207,8	0,6986	100	40	3,369	76,29	0,2791	0	40,46	8,033	76,77	0,2806	-100	73,78	8,033	113	0,3893	0
54,49	3,369	209,4	0,7034	100	40	3,369	76,29	0,2791	0	40,58	9,15	76,89	0,281	-100	79,54	9,15	119,5	0,4076	0
56,81	3,369	211,2	0,7089	100	40	3,369	76,29	0,2791	0	40,73	10,59	77,06	0,2816	-100	86,23	10,59	127,1	0,4287	0
61,76	3,369	215	0,7203	100	40	3,369	76,29	0,2791	0	41,21	14,63	77,57	0,2832	-100	102	14,63	145,6	0,478	0
61,19	3,369	214,6	0,719	100	40	3,369	76,29	0,2791	0	41,14	14,07	77,49	0,2829	-100	100	14,07	143,2	0,4718	0

TABLA F-27: Propiedades termodinámicas de una central de ciclo binario con R114 como fluido de trabajo, para $P_1 = 7,7$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	P _b	h_{b}	s _b	x _b	T _c	Pc	h_c	s _c	x _c	T_1	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	11	419,8	1,306	-100	73,58	0,3632	308	0,9984	0	66,12	0,2631	276,8	0,9074	0	68,58	7,113	215,4	0,6892	1
110	11	462	1,418	-100	78,83	0,4517	330	1,061	0	68,09	0,2869	285	0,9316	0	73,83	8,042	218,3	0,6929	1
120	11	504,4	1,527	-100	84,61	0,5693	354,3	1,13	0	69,8	0,3091	292,2	0,9525	0	79,61	9,164	221,5	0,6969	1
130	11	547	1,634	-100	91,16	0,7325	381,8	1,206	0	71,36	0,3305	298,7	0,9714	0	86,16	10,57	225,1	0,7013	1
140	11	589,7	1,739	-100	97,8	0,9363	409,8	1,282	0	71,94	0,3388	301,1	0,9785	0	92,8	12,16	228,5	0,7056	1
150	11	632,7	1,841	-100	104,2	1,174	436,8	1,354	0	71	0,3255	297,2	0,9671	0	99,19	13,84	231,6	0,7093	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,54	3,369	206,4	0,6941	100	40	3,369	76,29	0,2791	0	40,36	7,113	76,67	0,2803	-100	68,58	7,113	107,2	0,3726	0
52,45	3,369	207,8	0,6986	100	40	3,369	76,29	0,2791	0	40,46	8,042	76,77	0,2806	-100	73,83	8,042	113	0,3895	0
54,52	3,369	209,4	0,7035	100	40	3,369	76,29	0,2791	0	40,58	9,164	76,9	0,281	-100	79,61	9,164	119,6	0,4078	0
56,79	3,369	211,2	0,7088	100	40	3,369	76,29	0,2791	0	40,73	10,57	77,06	0,2816	-100	86,16	10,57	127	0,4285	0
58,98	3,369	212,9	0,7139	100	40	3,369	76,29	0,2791	0	40,91	12,16	77,25	0,2822	-100	92,8	12,16	134,7	0,4493	0
60,95	3,369	214,4	0,7185	100	40	3,369	76,29	0,2791	0	41,12	13,84	77,46	0,2828	-100	99,19	13,84	142,2	0,4693	0

TABLA F-28: Propiedades termodinámicas de una central de ciclo binario con R114 como fluido de trabajo, para $P_1 = 11 \text{ [bar] y } T_c = 40 \text{ [°C]}$

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	h_{b}	s _b	x _b	T _c	P _c	h _c	s _c	x _c	T_1	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	14,3	420,1	1,306	-100	73,6	0,3636	308,1	0,9987	0	66,15	0,2634	276,9	0,9077	0	68,6	7,118	215,4	0,6892	1
110	14,3	462,3	1,417	-100	79,18	0,4582	331,5	1,066	0	68,43	0,2911	286,4	0,9357	0	74,18	8,107	218,5	0,6932	1
120	14,3	504,6	1,527	-100	85,1	0,5804	356,3	1,135	0	70,27	0,3154	294,1	0,9582	0	80,1	9,265	221,8	0,6973	1
130	14,3	547,2	1,634	-100	91,15	0,7323	381,8	1,206	0	71,35	0,3304	298,6	0,9713	0	86,15	10,57	225,1	0,7013	1
140	14,3	589,9	1,738	-100	96,95	0,9079	406,2	1,272	0	71,16	0,3278	297,9	0,9691	0	91,95	11,94	228,1	0,705	1
150	14,3	632,9	1,841	-100	104,4	1,184	437,7	1,357	0	71,2	0,3282	298	0,9695	0	99,41	13,9	231,7	0,7094	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	s ₃	<i>x</i> ₃	T ₄	P_4	h_4	<i>s</i> ₄	<i>x</i> ₄	T_5	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,55	3,369	206,4	0,6942	100	40	3,369	76,29	0,2791	0	40,36	7,118	76,67	0,2803	-100	68,6	7,118	107,2	0,3727	0
52,58	3,369	207,9	0,6989	100	40	3,369	76,29	0,2791	0	40,47	8,107	76,78	0,2807	-100	74,18	8,107	113,4	0,3906	0
54,69	3,369	209,6	0,7039	100	40	3,369	76,29	0,2791	0	40,59	9,265	76,91	0,2811	-100	80,1	9,265	120,1	0,4094	0
56,78	3,369	211,2	0,7088	100	40	3,369	76,29	0,2791	0	40,73	10,57	77,06	0,2816	-100	86,15	10,57	127	0,4285	0
58,71	3,369	212,7	0,7133	100	40	3,369	76,29	0,2791	0	40,89	11,94	77,22	0,2821	-100	91,95	11,94	133,7	0,4467	0
61,02	3,369	214,4	0,7186	100	40	3,369	76,29	0,2791	0	41,12	13,9	77,47	0,2829	-100	99,41	13,9	142,5	0,47	0

TABLA F-29: Propiedades termodinámicas de una central de ciclo binario con R114 como fluido de trabajo, para $P_1 = 14,3$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	h _b	s _b	x _b	T _c	Pc	h _c	s _c	xc	<i>T</i> ₁	<i>P</i> ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	17,5	420,3	1,306	-100	73,31	0,3591	306,9	0,9951	0	65,86	0,26	275,7	0,9041	0	68,31	7,068	215,2	0,689	1
110	17,5	462,5	1,417	-100	78,7	0,4494	329,5	1,06	0	67,97	0,2854	284,5	0,9301	0	73,7	8,019	218,3	0,6928	1
120	17,5	504,9	1,526	-100	84,55	0,5679	354	1,129	0	69,74	0,3083	291,9	0,9518	0	79,55	9,152	221,5	0,6969	1
130	17,5	547,4	1,633	-100	90,63	0,718	379,6	1,2	0	70,86	0,3235	296,6	0,9654	0	85,63	10,45	224,8	0,701	1
140	17,5	590,1	1,738	-100	97,18	0,9154	407,2	1,275	0	71,37	0,3307	298,7	0,9716	0	92,18	12	228,2	0,7052	1
150	17,5	633,1	1,841	-100	105	1,207	440,1	1,363	0	71,69	0,3352	300,1	0,9755	0	99,97	14,06	232	0,7098	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T_3	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	x_4	<i>T</i> ₅	P_5	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,4	3,369	206,3	0,6939	100	40	3,369	76,29	0,2791	0	40,36	7,068	76,66	0,2803	-100	68,31	7,068	106,9	0,3718	0
52,41	3,369	207,8	0,6985	100	40	3,369	76,29	0,2791	0	40,46	8,019	76,77	0,2806	-100	73,7	8,019	112,9	0,3891	0
54,49	3,369	209,4	0,7034	100	40	3,369	76,29	0,2791	0	40,58	9,152	76,89	0,281	-100	79,55	9,152	119,5	0,4076	0
56,61	3,369	211	0,7084	100	40	3,369	76,29	0,2791	0	40,72	10,45	77,04	0,2815	-100	85,63	10,45	126,4	0,4268	0
58,78	3,369	212,7	0,7134	100	40	3,369	76,29	0,2791	0	40,9	12	77,23	0,2821	-100	92,18	12	134	0,4474	0
61,18	3,369	214,6	0,719	100	40	3,369	76,29	0,2791	0	41,14	14,06	77,49	0,2829	-100	99,97	14,06	143,1	0,4717	0

TABLA F-30: Propiedades termodinámicas de una central de ciclo binario con R114 como fluido de trabajo, para $P_1 = 17,5$ [bar] y $T_c = 40$ [°C]

			<i>P</i> ₁ = 1, 1 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	<i>T</i> ₁ = 120	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	862,9	587,5	784,2	1014	1281	1591
Trabajo específico	[kJ/kg]	8,61	10,02	11,60	13,12	14,62	16,10
Flujo másico geotermal	[kg/s]	97,41	97,41	97,41	97,41	97,41	97,41
Flujo másico Fluido de Trabajo	[kg/s]	100,2	58,61	67,59	77,26	87,62	98,85
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06209	0,07079	0,0801	0,08868	0,09674	0,1043
Capacidad Calórica geofluido	[kJ/(kgK)]	4,217	2,035	2,017	2,004	1,994	1,987

TABLA F-31: Características central de ciclo binario usando R114 como fluido de trabajo, para $P_1 = 1,1$ [bar] Y $T_c = 40$ [°C]

TABLA F-32: Características central de ciclo binario usando R114 como fluido de trabajo, para $P_1 = 4,4$ [bar] Y $T_c = 40$ [°C]

			$P_1 = 4, 4$ [ba	ır]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	847,9	1200	1623	2123	2709	1780
Trabajo específico	[kJ/kg]	8,61	10,11	11,60	13,10	14,52	16,08
Flujo másico geotermal	[kg/s]	95,73	95,73	95,73	95,73	95,73	95,73
Flujo másico Fluido de Trabajo	[kg/s]	98,5	118,7	139,9	162	186,6	110,7
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06205	0,0713	0,08009	0,08856	0,0962	0,1043
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,231	4,248	4,267	4,288	2,263

			<i>P</i> ₁ = 7, 7 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	837,5	1186	1604	2097	2545	3348
Trabajo específico	[kJ/kg]	8,61	10,00	11,49	13,13	16,61	16,21
Flujo másico geotermal	[kg/s]	94,58	94,58	94,58	94,58	94,58	94,58
Flujo másico Fluido de Trabajo	[kg/s]	97,23	118,6	139,6	159,7	153,2	206,6
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06209	0,07065	0,07944	0,08871	0,1069	0,1049
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,23	4,247	4,266	4,287	4,311

TABLA F-33: Características central de ciclo binario usando R114 como fluido de trabajo, para $P_1 = 7,7$ [bar] Y $T_c = 40$ [°C]

TABLA F-34: Características central de ciclo binario usando R114 como fluido de trabajo, para $P_1 = 11 [bar]$ Y $T_c = 40 [°C]$

			<i>P</i> ₁ = 11 [bar	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	<i>T</i> ₁ = 130	<i>T</i> ₁ = 140	$T_1 = 150$
Potencia Neta	[kW]	751,5	1064	1439	1882	2400	3007
Trabajo específico	[kJ/kg]	8,60	10,01	11,50	13,11	14,66	16,04
Flujo másico geotermal	[kg/s]	84,89	84,89	84,89	84,89	84,89	84,89
Flujo másico Fluido de Trabajo	[kg/s]	87,38	106,3	125,1	143,5	163,7	187,5
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06201	0,07072	0,07954	0,08862	0,0969	0,104
Capacidad Calórica geofluido	[kJ/(kgK)]	4,214	4,229	4,246	4,264	4,285	4,309

TABLA F-35: Características central de ciclo binario usando R114 como fluido de trabajo, para $P_1 = 14,3$ [bar] Y $T_c = 40$ [°C]

LXXIII

			$P_1 = 14, 3$ [ba	ar]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	509,5	721,3	975,3	1276	1628	2038
Trabajo específico	[kJ/kg]	8,61	10,11	11,63	13,12	14,46	16,09
Flujo másico geotermal	[kg/s]	57,56	57,56	57,56	57,56	57,56	57,56
Flujo másico Fluido de Trabajo	[kg/s]	59,19	71,38	83,87	97,28	112,6	126,7
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06205	0,07128	0,08026	0,08861	0,09589	0,1043
Capacidad Calórica geofluido	[kJ/(kgK)]	4,214	4,229	4,246	4,264	4,285	4,301

TABLA F-36: Características central de ciclo binario usando R114 como fluido de trabajo, para $P_1 = 17,5$ [bar] Y $T_c = 40$ [°C]

			$P_1 = 17, 5$ [ba	ar]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	49,99	70,78	95,73	125,2	159,7	199,8
Trabajo específico	[kJ/kg]	8,53	9,98	11,49	12,99	14,52	16,20
Flujo másico geotermal	[kg/s]	5,648	5,648	5,648	5,648	5,648	5,648
Flujo másico Fluido de Trabajo	[kg/s]	5,863	7,093	8,331	9,639	11	12,33
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06154	0,07053	0,07945	0,08792	0,09616	0,1049
Capacidad Calórica geofluido	[kJ/(kgK)]	4,213	4,228	4,245	4,263	4,284	4,308

F.4. Pentano

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	P _b	$h_{\rm b}$	s _b	x _b	T _c	Pc	h _c	s _c	xc	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	1,1	419,1	1,307	100	72,72	0,3502	304,4	0,988	0	67,1	0,2747	280,9	0,9194	0	67,72	2,663	431,7	1,286	1
110	1,1	2695	7,368	100	78,25	0,4412	327,6	1,055	0	70,24	0,3149	294	0,9578	0	73,25	3,087	440,5	1,296	1
120	1,1	2715	7,42	100	83,63	0,5478	350,2	1,118	0	72,72	0,3503	304,4	0,988	0	78,63	3,546	449,2	1,307	1
130	1,1	2735	7,471	100	88,62	0,6652	371,1	1,177	0	74,29	0,3744	311	1,007	0	83,62	4,018	457,2	1,317	1
140	1,1	2755	7,52	100	94,13	0,8186	394,3	1,24	0	75,79	0,3986	317,3	1,025	0	89,13	4,592	466	1,328	1
150	1,1	2775	7,568	-100	99,97	1,012	419	1,307	0	76,97	0,4185	322,2	1,039	0	94,97	5,267	475,3	1,339	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	s ₃	<i>x</i> ₃	T_4	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	T ₅	P ₅	h 5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,47	1,163	406,5	1,3	100	40	1,163	33,2	0,1093	0	40,08	2,663	33,51	0,1095	-100	67,72	2,663	101,5	0,3174	0
52,75	1,163	410,7	1,313	100	40	1,163	33,2	0,1093	0	40,1	3,087	33,6	0,1095	-100	73,25	3,087	115,7	0,3584	0
55,01	1,163	414,8	1,325	100	40	1,163	33,2	0,1093	0	40,13	3,546	33,69	0,1096	-100	78,63	3,546	129,6	0,3981	0
57,13	1,163	418,7	1,337	100	40	1,163	33,2	0,1093	0	40,15	4,018	33,79	0,1111	-100	83,62	4,018	142,7	0,4348	0
59,5	1,163	423,1	1,35	100	40	1,163	33,2	0,1093	0	40,19	4,592	33,91	0,1115	-100	89,13	4,592	157,3	0,4752	0
61,704	1,163	427,12	1,3622	100	40	1,163	33,2	0,1093	0	40,211	5,0179	33,997	0,1119	-100	94,427	5,0179	170,94	0,5143	0

TABLA F-37: Propiedades termodinámicas de una central de ciclo binario con pentano como fluido de trabajo, para $P_1 = 1,1$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	$h_{\rm b}$	s _b	x _b	T _c	P _c	h _c	s _c	x _c	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	4,4	419,3	1,307	-100	73,04	0,355	305,7	0,9918	0	67,41	0,2785	282,2	0,9233	0	68,04	2,686	432,2	1,287	1
110	4,4	461,6	1,418	-100	78,27	0,4415	327,7	1,055	0	70,25	0,3151	294,1	0,958	0	73,27	3,088	440,6	1,296	1
120	4,4	503,9	1,528	-100	83,64	0,5481	350,2	1,118	0	72,73	0,3505	304,4	0,9881	0	78,64	3,547	449,2	1,307	1
130	4,4	546,5	1,634	-100	89,18	0,6795	373,5	1,183	0	74,83	0,3828	313,2	1,013	0	84,18	4,073	458,1	1,318	1
140	4,4	589,3	1,739	-100	93,89	0,8113	393,3	1,237	0	75,57	0,3949	316,3	1,022	0	88,89	4,565	465,6	1,327	1
150	4,4	2749	6,88	100	100,6	1,034	421,4	1,313	0	77,52	0,4281	324,5	1,046	0	95,56	5,338	476,3	1,341	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	x_3	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	s ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,6	1,163	406,8	1,301	100	40	1,163	33,2	0,1093	0	40,08	2,686	33,51	0,1095	-100	68,04	2,686	102,3	0,3197	0
52,76	1,163	410,7	1,313	100	40	1,163	33,2	0,1093	0	40,1	3,088	33,6	0,1095	-100	73,27	3,088	115,7	0,3585	0
55,01	1,163	414,8	1,325	100	40	1,163	33,2	0,1093	0	40,13	3,547	33,69	0,1096	-100	78,64	3,547	129,6	0,3981	0
57,37	1,163	419,2	1,339	100	40	1,163	33,2	0,1093	0	40,16	4,073	33,8	0,1112	-100	84,18	4,073	144,1	0,4388	0
59,39	1,163	422,9	1,35	100	40	1,163	33,2	0,1093	0	40,18	4,565	33,9	0,1115	-100	88,89	4,565	156,7	0,4734	0
62,29	1,163	428,3	1,366	100	40	1,163	33,2	0,1093	0	40,23	5,338	34,06	0,112	-100	95,56	5,338	174,7	0,5222	0

TABLA F-38: Propiedades termodinámicas de una central de ciclo binario con pentano como fluido de trabajo, para $P_1 = 4,4$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	h _b	s _b	x _b	T _c	Pc	h _c	s _c	xc	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	7,7	419,6	1,306	-100	73,08	0,3558	305,9	0,9924	-100	67,46	0,2791	282,4	0,9238	0	68,08	2,69	432,3	1,287	1
110	7,7	461,8	1,418	-100	77,95	0,4357	326,3	1,051	-100	69,94	0,3109	292,7	0,9542	0	72,95	3,062	440,1	1,296	1
120	7,7	504,2	1,527	-100	83,23	0,5392	348,5	1,114	-100	72,33	0,3445	302,8	0,9833	0	78,23	3,51	448,5	1,306	1
130	7,7	546,7	1,634	-100	88,63	0,6656	371,2	1,177	-100	74,31	0,3746	311,1	1,007	0	83,63	4,019	457,2	1,317	1
140	7,7	589,5	1,739	-100	94,22	0,8212	394,7	1,241	-100	75,87	0,3999	317,6	1,026	0	89,22	4,601	466,1	1,328	1
150	7,7	632,5	1,842	-100	99,94	1,011	418,8	1,306	-100	76,93	0,4179	322,1	1,039	0	94,94	5,262	475,3	1,339	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,62	1,163	406,8	1,301	100	40	1,163	33,2	0,1093	0	40,08	2,69	33,51	0,1095	-100	68,08	2,69	102,4	0,3201	0
52,62	1,163	410,5	1,312	100	40	1,163	33,2	0,1093	0	40,1	3,062	33,59	0,1095	-100	72,95	3,062	114,9	0,3561	0
54,84	1,163	414,5	1,324	100	40	1,163	33,2	0,1093	0	40,13	3,51	33,68	0,1096	-100	78,23	3,51	128,5	0,3951	0
57,13	1,163	418,8	1,337	100	40	1,163	33,2	0,1093	0	40,15	4,019	33,79	0,1111	-100	83,63	4,019	142,7	0,4349	0
59,53	1,163	423,2	1,351	100	40	1,163	33,2	0,1093	0	40,19	4,601	33,91	0,1115	-100	89,22	4,601	157,5	0,4758	0
62,02	1,163	427,8	1,365	100	40	1,163	33,2	0,1093	0	40,22	5,262	34,04	0,112	-100	94,94	5,262	173	0,5177	0

TABLA F-39: Propiedades termodinámicas de una central de ciclo binario con pentano como fluido de trabajo, para $P_1 = 7,7$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	$h_{\rm b}$	s _b	x _b	T _c	Pc	h _c	s _c	xc	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	11	419,8	1,306	-100	72,61	0,3487	304	0,9867	-100	67	0,2734	280,4	0,9181	0	67,61	2,655	431,5	1,286	1
110	11	462	1,418	-100	78,26	0,4413	327,6	1,055	-100	70,24	0,315	294	0,9579	0	73,26	3,087	440,6	1,296	1
120	11	504,4	1,527	-100	83,18	0,538	348,3	1,113	-100	72,28	0,3438	302,5	0,9826	0	78,18	3,505	448,4	1,306	1
130	11	547	1,634	-100	89,04	0,676	372,9	1,181	-100	74,7	0,3808	312,7	1,012	0	84,04	4,059	457,9	1,317	1
140	11	589,7	1,739	-100	94,2	0,8206	394,6	1,241	-100	75,86	0,3997	317,5	1,026	0	89,2	4,599	466,1	1,328	1
150	11	632,7	1,841	-100	99,92	1,01	418,7	1,306	-100	76,92	0,4177	322	1,039	0	94,92	5,261	475,3	1,339	1
		Estado 2					Estado 3					Estado 4					Estado 5		
T_2	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	x_4	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,43	1,163	406,4	1,3	100	40	1,163	33,2	0,1093	0	40,08	2,655	33,51	0,1095	-100	67,61	2,655	101,2	0,3166	0
52,75	1,163	410,7	1,313	100	40	1,163	33,2	0,1093	0	40,1	3,087	33,6	0,1095	-100	73,26	3,087	115,7	0,3584	0
54,81	1,163	414,5	1,324	100	40	1,163	33,2	0,1093	0	40,13	3,505	33,68	0,1096	-100	78,18	3,505	128,4	0,3947	0
57,31	1,163	419,1	1,338	100	40	1,163	33,2	0,1093	0	40,16	4,059	33,8	0,1112	-100	84,04	4,059	143,8	0,4378	0
59,53	1,163	423,2	1,351	100	40	1,163	33,2	0,1093	0	40,19	4,599	33,91	0,1115	-100	89,2	4,599	157,5	0,4757	0
62,01	1,163	427,8	1,365	100	40	1,163	33,2	0,1093	0	40,22	5,261	34,04	0,112	-100	94,92	5,261	172,9	0,5176	0

TABLA F-40: Propiedades termodinámicas de una central de ciclo binario con pentano como fluido de trabajo, para $P_1 = 11 [bar] y T_c = 40 [°C]$

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	s _a	x _a	T _b	Pb	h _b	s _b	x _b	T _c	Pc	h _c	s _c	xc	<i>T</i> ₁	<i>P</i> ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
100	14,3	420,1	1,306	-100	73	0,3545	305,6	0,9914	-100	67,38	0,2781	282	0,9229	0	68	2,684	432,1	1,287	1
110	14,3	462,3	1,417	-100	78,34	0,4428	328	1,056	-100	70,32	0,3161	294,3	0,9588	0	73,34	3,094	440,7	1,297	1
120	14,3	504,6	1,527	-100	83,76	0,5505	350,7	1,12	-100	72,84	0,3521	304,9	0,9895	0	78,76	3,558	449,4	1,307	1
130	14,3	547,2	1,634	-100	88,66	0,6661	371,3	1,177	-100	74,33	0,3749	311,1	1,007	0	83,66	4,021	457,2	1,317	1
140	14,3	589,9	1,738	-100	94,73	0,8369	396,8	1,247	-100	76,36	0,4081	319,7	1,032	0	89,73	4,658	467	1,329	1
150	14,3	632,9	1,841	-100	99,91	1,01	418,7	1,306	-100	76,9	0,4174	321,9	1,038	0	94,91	5,258	475,2	1,339	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T_3	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T_4	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P_5	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
50,59	1,163	406,7	1,301	100	40	1,163	33,2	0,1093	0	40,08	2,684	33,51	0,1095	-100	68	2,684	102,2	0,3195	0
52,79	1,163	410,8	1,313	100	40	1,163	33,2	0,1093	0	40,1	3,094	33,6	0,1095	-100	73,34	3,094	115,9	0,359	0
55,06	1,163	414,9	1,326	100	40	1,163	33,2	0,1093	0	40,13	3,558	33,69	0,1096	-100	78,76	3,558	129,9	0,399	0
57,14	1,163	418,8	1,337	100	40	1,163	33,2	0,1093	0	40,15	4,021	33,79	0,1111	-100	83,66	4,021	142,8	0,435	0
59,76	1,163	423,6	1,352	100	40	1,163	33,2	0,1093	0	40,19	4,658	33,92	0,1116	-100	89,73	4,658	158,9	0,4796	0
62	1,163	427,8	1,364	100	40	1,163	33,2	0,1093	0	40,22	5,258	34,04	0,112	-100	94,91	5,258	172,9	0,5175	0

TABLA F-41: Propiedades termodinámicas de una central de ciclo binario con pentano como fluido de trabajo, para $P_1 = 14,3$ [bar] y $T_c = 40$ [°C]

		Estado A					Estado B					Estado C					Estado 1		
T _a	Pa	h _a	sa	x _a	T _b	Pb	h _b	s _b	x _b	T _c	Pc	h _c	s _c	x _c	<i>T</i> ₁	P ₁	h_1	<i>s</i> ₁	<i>x</i> ₁
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
110	17,5	462,5	1,417	-100	78,25	0,4411	327,6	1,054	-100	70,23	0,3149	294	0,9578	0	73,25	3,087	440,5	1,296	1
110	17,5	462,5	1,417	-100	78,25	0,4411	327,6	1,054	-100	70,23	0,3149	294	0,9578	0	73,25	3,087	440,5	1,296	1
120	17,5	504,9	1,526	-100	83,18	0,538	348,3	1,113	-100	72,28	0,3438	302,5	0,9826	0	78,18	3,506	448,4	1,306	1
130	17,5	547,4	1,633	-100	89,09	0,6773	373,1	1,182	-100	74,74	0,3815	312,9	1,012	0	84,09	4,064	457,9	1,318	1
140	17,5	590,1	1,738	-100	94,19	0,8205	394,6	1,241	-100	75,85	0,3996	317,5	1,026	0	89,19	4,599	466,1	1,328	1
150	17,5	633,1	1,841	-100	100,5	1,031	421,1	1,312	-100	77,44	0,4268	324,2	1,045	0	95,48	5,329	476,2	1,341	1
		Estado 2					Estado 3					Estado 4					Estado 5		
<i>T</i> ₂	P ₂	h_2	<i>s</i> ₂	<i>x</i> ₂	T ₃	P ₃	h_3	<i>s</i> ₃	<i>x</i> ₃	T ₄	P ₄	h_4	<i>s</i> ₄	<i>x</i> ₄	<i>T</i> ₅	P ₅	h_5	<i>s</i> ₅	<i>x</i> ₅
[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]		[°C]	[bar]	[kJ/kg]	[kJ/kg K]	
52,75	1,163	410,7	1,313	100	40	1,163	33,2	0,1093	0	40,1	3,087	33,6	0,1095	-100	73,25	3,087	115,6	0,3583	0
52,75	1,163	410,7	1,313	100	40	1,163	33,2	0,1093	0	40,1	3,087	33,6	0,1095	-100	73,25	3,087	115,6	0,3583	0
54,81	1,163	414,5	1,324	100	40	1,163	33,2	0,1093	0	40,13	3,506	33,68	0,1096	-100	78,18	3,506	128,4	0,3947	0
57,33	1,163	419,1	1,338	100	40	1,163	33,2	0,1093	0	40,16	4,064	33,8	0,1112	-100	84,09	4,064	143,9	0,4382	0
59,52	1,163	423,2	1,351	100	40	1,163	33,2	0,1093	0	40,19	4,599	33,91	0,1115	-100	89,19	4,599	157,5	0,4756	0
62,25	1,163	428,3	1,366	100	40	1,163	33,2	0,1093	0	40,23	5,329	34,06	0,112	-100	95,48	5,329	174,4	0,5217	0

TABLA F-42: Propiedades termodinámicas de una central de ciclo binario con pentano como fluido de trabajo, para $P_1 = 17,5[bar]$ y $T_c = 40$ [°C]

			<i>P</i> ₁ = 1, 1 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	843,1	570,5	756,9	971,9	1217	1494
Trabajo específico	[kJ/kg]	24,83	29,45	33,85	37,85	42,17	46,63
Flujo másico geotermal	[kg/s]	97,41	97,41	97,41	97,41	97,41	97,41
Flujo másico Fluido de Trabajo	[kg/s]	33,95	19,37	22,36	25,68	28,86	32,04
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06238	0,07239	0,08148	0,08938	0,09757	0,1057
Capacidad Calórica geofluido	[kJ/(kgK)]	4,217	2,035	2,017	2,004	1,994	1,987

TABLA F-43: Características central de ciclo binario usando pentano como fluido de trabajo, para $P_1 = 1,1$ [bar] Y $T_c = 40$ [°C]

TABLA F-44: Características central de ciclo binario usando pentano como fluido de trabajo, para $P_1 = 4,4$ [bar] Y $T_c = 40$ [°C]

			$P_1 = 4, 4$ [ba	ır]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	828,4	1166	1567	2034	2572	1672
Trabajo específico	[kJ/kg]	25,11	29,47	33,87	38,29	41,98	47,09
Flujo másico geotermal	[kg/s]	95,73	95,73	95,73	95,73	95,73	95,73
Flujo másico Fluido de Trabajo	[kg/s]	98,5	118,7	139,9	162	186,6	110,7
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06298	0,07242	0,0815	0,09023	0,09722	0,1065
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,231	4,248	4,267	4,288	2,263

			<i>P</i> ₁ = 7, 7 [ba	r]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	818,3	1152	1548	2009	2540	3147
Trabajo específico	[kJ/kg]	25,15	29,21	33,54	37,86	42,22	46,61
Flujo másico geotermal	[kg/s]	94,58	94,58	94,58	94,58	94,58	94,58
Flujo másico Fluido de Trabajo	[kg/s]	32,54	39,44	46,16	53,07	60,16	67,52
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06209	0,07065	0,07944	0,08871	0,1069	0,1049
Capacidad Calórica geofluido	[kJ/(kgK)]	4,216	4,23	4,247	4,266	4,287	4,311

TABLA F-45: Características central de ciclo binario usando pentano como fluido de trabajo, para $P_1 = 7,7$ [bar] Y $T_c = 40$ [°C]

TABLA F-46: Características central de ciclo binario usando pentano como fluido de trabajo, para $P_1 = 11 [bar]$ Y $T_c = 40 [°C]$

			$P_1 = 11$ [bas	r]			
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$
Potencia Neta	[kW]	734,3	1034	1389	1803	2279	2824
Trabajo específico	[kJ/kg]	24,75	29,48	33,49	38,18	42,20	46,60
Flujo másico geotermal	[kg/s]	84,89	84,89	84,89	84,89	84,89	84,89
Flujo másico Fluido de Trabajo	[kg/s]	29,67	35,08	41,48	47,22	54	60,6
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8
Eficiencia Térmica		0,06201	0,07072	0,07954	0,08862	0,0969	0,104
Capacidad Calórica geofluido	[kJ/(kgK)]	4,214	4,229	4,246	4,264	4,285	4,309

	<i>P</i> ₁ = 14, 3 [bar]									
Temperatura	[°C]	$T_1 = 100$	<i>T</i> ₁ = 110	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$			
Potencia Neta	[kW]	497,8	700,7	941,3	1222	1545	497,8			
Trabajo específico	[kJ/kg]	25,08	29,53	33,96	37,87	42,62	46			
Flujo másico geotermal	[kg/s]	57,56	57,56	57,56	57,56	57,56	57,56			
Flujo másico Fluido de Trabajo	[kg/s]	19,85	23,73	27,72	32,27	36,25	41,09			
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85			
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8			
Eficiencia Térmica		0,06292	0,07254	0,08168	0,08944	0,09843	0,1056			
Capacidad Calórica geofluido	[kJ/(kgK)]	4,214	4,229	4,246	4,264	4,285	4,301			

TABLA F-47: Características central de ciclo binario usando pentano como fluido de trabajo, para $P_1 = 14,3$ [bar] Y $T_c = 40$ [°C]

TABLA F-48: Características central de ciclo binario usando pentano como fluido de trabajo, para $P_1 = 17,5$ [bar] Y $T_c = 40$ [°C]

		<i>P</i> ₁ = 17, 5 [bar]							
Temperatura	[°C]	$T_1 = 100$	$T_1 = 110$	$T_1 = 120$	$T_1 = 130$	$T_1 = 140$	$T_1 = 150$		
Potencia Neta	[kW]	68,74	68,74	92,36	119,9	151,6	187,8		
Trabajo específico	[kJ/kg]	29,45	29,45	33,49	38,22	42,22	47,03		
Flujo másico geotermal	[kg/s]	5,648	5,648	5,648	5,648	5,648	5,648		
Flujo másico Fluido de Trabajo	[kg/s]	2,334	2,334	2,758	3,137	3,591	3,993		
Eficiencia de la Turbina		0,85	0,85	0,85	0,85	0,85	0,85		
Eficiencia de la Bomba		0,8	0,8	0,8	0,8	0,8	0,8		
Eficiencia Térmica		0,07238	0,07238	0,08073	0,0901	0,09766	0,1064		
Capacidad Calórica geofluido	[kJ/(kgK)]	4,213	4,228	4,245	4,263	4,284	4,308		

ANEXO G

CODIGO DE EES PARA SIMULACIÓN DE TORRE DE ENFRIAMIENTO EN DISTINTOS ESCENARIOS

Para la comprensión del código a continuación presentado, se añade un diagrama con representativo de la torre de enfriamiento modelada en la FIGURA G-1, con los estados a calcular integrados, junto con la posición de algunas variables de la simulación.

FIGURA G-1: Diagrama Torre de Enfriamiento

En definitiva, el código a continuación mostrado realiza el balance energético de una torre de enfriamiento por aire. Para añadirlo al resto de las programaciones desarrolladas, basta identificar la temperatura y el flujo másico del vapor del agua de enfriamiento que sale del condensador, además de ciertas variables climáticas como la humedad relativa del aire, la temperatura ambiente, y el flujo másico de aire que ingresa a la torre, cuyo valor brinda el valor de la potencia que los ventiladores deben ser capaces de entregar. La temperatura de retorno al condensador y el flujo másico junto con la temperatura del agua makeup son alguno de los parámetros que el programa entrega.

\$Unidades: SI Mass Grados kJ C bar

```
T_agua_in=40 [C]
                               "temperatura ingreso de agua"
                               "flujo volumétrico de agua"
V_dot_agua=0,0063 [m^3/s]
T_amb=15 [C]
                               "temperatura ambiente"
                               "humedad relativa del aire"
phi_amb=0,5 [-]
                               "presión atmosferica"
P=1 [atm]*convert(atm;bar)
V_dot_aire=5 [m^3/s]
                               "flujo volumetrico de aire entrante"
T_makeup=30 [C]
                               "temperatura agua makeup"
eff ct=0,7 [-]
                               "efectividad torre"
"Estado 3"
T[3]=T_amb
                               "Temperatura"
phi[3]=phi_amb
                               "Humedad Relativa"
v_aireseco[3]=volume(AirH2O;P=P;T=T[3];R=phi[3])
                                                    "Volumen especifico de aire seco"
h_aireseco[3]=enthalpy(AirH20;P=P;T=T[3];R=phi[3]) "Entalpia especifica de aire seco"
omega[3]=humrat(AirH2O;P=P;T=T[3];R=phi[3]) "Humedad Especifica"
T_bh[3]=wetbulb(AirH20;P=P;T=T[3];R=phi[3]) "Temperatura de Bulbo Húmedo"
m_dot_aire=V_dot_aire/v_aireseco[3]
                                      "Flujo másico de aire seco"
 "Estado1"
T[1]=T_agua_in
                               "Temperatura condensador"
v[1]=volume(Water;T=T[1];P=P) "Volumen agua"
h[1]=enthalpy(Water;T=T[1];P=P) "Entalpía Agua"
                             "Flujo másico agua"
m_dot_agua=V_dot_agua/v[1]
"Estado 4"
h_aireseco_4_max=enthalpy(AirH2O;P=P;T=T_agua_in;R=1 [-]) "Entalpia máxima de aire seco en
[4]"
eff_ct=(h_aireseco[4]-h_aireseco[3])/(h_aireseco_4_max-h_aireseco[3]) "Entalpia
especifica de aire seco[4]"
omega_4_max=humrat(AirH2O;P=P;T=T_agua_in;R=1 [-]) "Humedad especifica máxima en [4]"
                                                   "Humedad especifica aire"
eff_ct=(omega[4]-omega[3])/(omega_4_max-omega[3])
T[4]=temperature(AirH20;P=P;h=h_aireseco[4];w=omega[4])
                                                          "Temperatura"
                              "en Celsius"
T_aire_out=T[4]
phi[4]=relhum(AirH2O;P=P;h=h_aireseco[4];w=omega[4])
                                                          "Humedad relativa"
"Estado 5"
T[5]=T_makeup
                               "temperature"
h[5]=enthalpy(Water;T=T[5];P=P) "Entalpía agua"
m_dot_makeup=m_dot_aire*(omega[4]-omega[3]) "Flujo Másico agua makeup"
"Estado 2"
m_dot_agua*h[1]+m_dot_makeup*h[5]+m_dot_aire*h_aireseco[3]=m_dot_aire*h_aireseco[4]+m_dot_
agua*h[2] "Balance Energético"
T[2]=temperature(Water;P=P;h=h[2])
                                       "Temperatura"
                               "en Celsius"
T_agua_out=T[2]
Q_dot_ct=m_dot_agua*(h[1]-h[2]) "Carga Térmica"
Rango=T[1]-T[2]
                               "Rango / Salto Térmico"
Acerc=T[2]-T_bh[3]
                               "Acercamiento"
```