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Abstract
Wepresent an experimental and theoretical study on the gravity-wave instability developing in a
highly turbulent free-surface Taylor–Couetteflow, for which only the inner cylinder rotates. Above a
critical rotation speed, from an axisymmetric turbulent base state a non-axisymmetric fluctuating
gravity-wave state develops, with anm=1 azimuthal wave number. The bifurcation is discontinuous
and presents hysteresis. In contrast to previously reportedwork (MujicaN and LathropD2006 J. Fluid
Mech. 51 49–62), herewe compare our experimental results with a universalmodel based on a quintic
subcritical amplitude equationwith additive noise. In general, themodel describes correctly themean
free-surface oscillation amplitude and itsfluctuations, although differences exist in the bistability
regionwidth and the free-surface fluctuations in the gravity wave state. These differences are due to
thefinite timemeasurements and non-linear effects, respectively. Indeed, we show that longermea-
surement times allow the system to transit in either direction (fromor to the base state), which results
in the shrinking of the bistability region. For very longmeasurement times, and in a very narrow range
of rotation rates, the systempresents a series of random reversals between both states. Finally, by
removing themeanwave andflowoscillations in themeasured free-surface and bulk pressure signals,
we demonstrate that their dynamicfluctuations depend on the system state.

1. Introduction

Nonlinear systems display instabilities and bifurcations, qualitatively changing the nature and properties of such
systems as a control parameter surpasses a critical value.Hydrodynamical systems present such instabilities [1],
giving rise to a rich variety of structures and patterns observed in a large range of temporal and spatial scales.
These hydrodynamical instabilities can be characterized via simple yet universal tools, such as amplitude
equations [2], which describe the dynamics of a small number of relevant (marginal)modes that dominate the
flow state at long times. Examples of such hydrodynamical instabilities are the ones displayed by flows in
cylindrical containers involving rotation. The paradigmatic example is the Taylor–Couetteflow [3], in which the
fluid is driven by the independent rotation of the inner or (and) outer cylinder(s). The diversity of states that
have been observed in this particular system is vast, ranging from thewell known vortical cells present in the path
of the laminar to turbulent transition [4], to highly turbulent states in the so-called ultimate regime in
turbulence [5].

In general, the existence and stability of the different states in driven systems is affected at different levels by
the presence offluctuations, which can be inherent to the systemor added by an externalmechanism.
Sometimes, the net effect is that of shifting the critical value at which the bifurcation occurs [6, 7], whereas in
some other cases, the effect of the noise ismore drastic and it can even change the nature of the bifurcation (i.e.
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sub or supercriticality) [8], or the nature of the saturationmechanism [9]. These effects can occur separately or
simultaneously depending on the nature of the instability, fluctuations and their couplingmechanism.

Of particular interest is the transition between two highly turbulent states, of which at least one has a broken
symmetry respecting the systemʼs geometry or driving. In the case of subcritical bifurcations, the coexistence of
turbulent states has gained a large amount of attention. Turbulent flows that present bistability and hysteresis
have been studied in the contexts of purefluid dynamics [10–15] andmagnetohydrodynamics, particularly
concerning theDynamo instability [16–18]. An interesting issue is the possibility of random reversals between
two turbulent attractors [10, 13, 16, 19, 20].More generally, the existence of large-scale fields on top of strongly
turbulent backgrounds is also present inmany geophysical and astrophysical flows.Here, we justmention a few
cases: the existence and dynamics ofmagnetic fields in planets and stars generated by theDynamo effect [21]; the
observation of strong equatorial eastwardwinds in Saturn and Jupiter [22, 23] aswell as for the Earth at higher
global temperatures, eithermeasured in the past or predicted to occur in the future due to stronger global
warming, which could lead to the so-called super-rotational state [24];finally, the quasi-biennial oscillation that
occurs in the Earthʼs atmosphere, wherewith afluctuating period slightly longer than two years, a coherent and
oscillatingmean flow results from the interaction of upward-propagating waves and themeanflow at higher
altitudes [25]. Surprisingly, despite the strong turbulent flows on top ofwhich all these coherent large-scale
fields exist, their dynamics are reminiscent of those of low-dimensional systems.

Thus, a theoreticalmodel that can take into account fluctuations on hydrodynamical instabilities that occur
in highly turbulent flows is needed. Amplitude equations, which are very successful in describing and predicting
hydrodynamical bifurcations for laminar flows, appear as a natural candidate to describe the bifurcation
diagrams and dynamics offlowswhen turbulent fluctuations are taken into account. Although this is a
hypothesis, it has been reported recently, in a highly turbulent flowof liquid sodiumpresentingDynamo action,
that the low dimensional dynamics of themagnetic field can be accurately described using amplitude equations
[16, 17]. Similarly, low-dimensional dynamical systems also describe a purely hydrodynamical instability in a
turbulent vonKármánflow [13] and other turbulent flows [20].

In this paper, we study the bifurcation between two highly turbulent states in a free-surface Taylor–Couette
(TC)flow (videos from the present setup displaying the different turbulent states can be found as supplementary
material). The systemhas been previously studied in [12], where it was found that the axial symmetry of the
meanflow and free surface in a turbulent base state with Reynolds number Re∼ 106 is brokenwhen a gravity
wave develops from a resonantmode of the free surface pumped by the fluctuating turbulent flow. This gravity
wave state shows anm=1 azimuthal pattern and the transition is subcritical, presenting bistability and
hysteresis. It is worthmentioning that the symmetry breakingmechanism appears at very large Reynolds
number, where symmetries are expected to be recovered statistically at small scales [26]. Also, we note that the
formation of the gravity wave is analogue to the one of large coherent structures in two-dimensional turbulence
via an inverse cascade [27]. Indeed, the gravity waveʼs frequency was found to be very close to the one of the
quiescent resonant surfacemode ( ≈f 1.6w Hz and ≈f 1.40 Hz respectively in [12]), whereas the characteristic
time scale of energy injection is the one of the rotating cylinder, typically in the range 20–30 Hz.Other
transitions in rotational flowswith a free surface have also been studied [28–31]. In theseworks, a rotating disk
acting as the bottomof a cylindrical container drives the system. Above a certain critical value of the driving, the
axial symmetry of the free surface is broken, leading to the observation of polygonal shapes of the free
surface [31].

The aimof the present work is to study the gravity wave bifurcation focusing on the nature of its inherent
turbulent fluctuations through a universal description. Therefore, we compare our experimental data with the
bifurcation diagram andfluctuating properties of a subcritical stochastic amplitude equation. So the question
that arises is: can such a turbulent systembewell describedwith the simplestmodel that considers bistability and
noise? From themodeling point of view, noisy systems presenting super and subcritical bifurcations have been
the subject of several recent studies [32, 33] including suitable noise terms. Particularly, for the case of
supercritical bifurcations, both additive andmultiplicative noise terms have been introduced for comparison
with experiments on granular beds forced by blowing air, whereas for the subcritical case, only the case of
additive noise was studied. Furthermore, wemake it possible to compare the statistics of observables such as the
mean ormost probable value of thewaveʼs envelopewith themodel. In the case of exactly counter rotating
propellers in a turbulent vonKármán flow [13], it has been shown that the systempresents bistability and
reversals between two states that break themid-plane symmetry. These results are well described by a noisy
quintic subcritical amplitude equation for the azimuthalflowvelocity near thewall and at themid-plane. The
authors also show that the noise term is not simply additive; theymodel the noise amplitude as a linear function
of the control parameter in order to explain qualitatively their observations.

In the present work, the predictions of a subcritical quintic amplitude equationwith a suitable additive noise
term are studied and its validity is explored. Formoderatemeasurement times, our results are comparedwith
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the theoretically predicted stationary bifurcated states. Thefitted bifurcation diagram allows us to obtain the
amplitude equation parameters, which in turn are used to obtain the predicted probability density functions
(PDFs) of the surface fluctuation amplitude. These distributions are then compared quantitatively with the
experimental PDFs. Additionally, longermeasurements in the vicinity of the bistability region are performed
with a two-foldmotivation:firstly, we show the effect of increasing themeasurement time on the shrinking of
the bistability region and, secondly, we demonstrate that it is possible to observe reversals between the two
turbulent states, namely the axisymmetric base state and the gravity wave one. Thus, this article presents an
extensive comparison between a universal stochastic amplitude equation and an experimental systemdisplaying
large scale dynamics coupledwith highly turbulent fluctuations.

The paper is organized as follows: in section 2, the experimental setup and techniques are described together
with themethodologies used for the analysis. The experimental results are presented in the subsequent section 3,
followedwith section 4, where the experiments andmodel are compared.We thenfinalize with sections 5 and 6
devoted to the discussion and conclusions respectively.

2. Experimental setup anddata analysis

2.1. Taylor–Couette setup
The experiments are carried out in a Taylor–Couette (TC) geometry. A schematic drawing of the experimental
setup is shown infigure 1. An outer plexiglass cylinder with radius = ±r 16.60 0.02o cm isfixed, whereas the
inner stainless steel cylinder with radius = ±r 2.00 0.01i cm rotates (the radii ratio being η = =r r0 i o 0.12).
The length of the cylinders isHc = 60 cm. The system is closed by stainless steel plates. The inner cylinder is
driven by amotor (Kollmorgen B-206-CA-34-T) and a servo controller that provides the current necessary to
ensure a constant angular veolcityΩm. Themotor is coupled to the inner cylinder through pulleys. The annulus
between the cylinders is partiallyfilledwith distilledwater up to certain height h0 creating a free surface. Inwhat
follows, for themost relevant parameters wewill introduce dimensionless quantities, using the gap between
both cylinders = − =L r r 14.6o i cm and the oscillation period of the gravity waveʼs fundamentalmode of the
system at rest τ = =f1 0.6250 0 s. The latter is computed using the dispersion relation for gravity waves in a

fluid layer offinite height h0, namelyω = gk khtanh2
0, where g is the gravitational acceleration, k the

wavenumber, andω π= f2 . The fundamentalmode of the quiescent system is given by a combination of Bessel
andNewman cylindrical functions of azimuthal wavenumberm=1. Formost of the results presented herewe
have used afixedwater level =h L 1.230 , although some results are discussed in section 5 for =h L 2.60 and

=h L 1.80 . The normalized inner cylinder rotation rate Ω π=f f f(2 )m m0 0 is varied in the range 10.4–15.6,
where fm is the rotation rate ( =f 16.7m –25 Hz). The rotation rate isfixedwith a precision of±1 rpm,
approximately ±0.017 Hz.

Figure 1.Experimental Taylor–Couette setup. The different lengthsHc, ro, ri and h0 are shown. A servomotor drives the inner cylinder
at constant angular velocityΩm. For clarity, only the bottom stainless steel plate is shown in the schematic. The locations of the
pressure and temperature sensors together with those of the two resistance probes are also indicated.
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2.2. Relevant dimensionless parameters
The relevant parameters describing the system are themass density ρ, the kinematic viscosity ν ofwater, the
gravitational acceleration g, the surface tension σ of the air-water interface, the radius of the inner cylinder ri, the
large scale velocity Ω=U rm i, the gap between the cylinders = −L r ro i, and the height of the still free surface h0.
As there are three fundamental physical dimensions involved in the problem, there are five dimensionless
parameters that can describe the system: theReynolds number ν=Re UL , defined as the ratio ofmomentum to
viscous forces, is varied in the range × − ×3 10 4.5 105 5; the Froude number Ω=Fr r gh( )mi

2
0, defined as the

ratio of inertial to gravity forces, is varied in the range 1–5.5; theCapillary number ρν σ=Ca U , defined as the
ratio of viscous to surface tension forces, varies in the range × − ×− −2.9 10 4.3 102 2; andfinally, two
geometrical ratios,h L0 and the radii ratio η = r r0 i o. To describe the gravity wave instability, the natural choice
for the order parameter isFr , as it considers the gravity force which is directly related to the occurrence or
disappearance of thewave. A discussion on the choice of the control parameter is left for section 5, where it will
be shown that this is a non-trivial issue.

2.3. Free-surface heightmeasurements and calibration
The appearance of the gravity wave is determined bymeasuring the height oscillations of the free surface h(t) at a
fixed location near thewall.We determine the height bymeans of a resistance probe, consisting of two stainless
steel rodswith diameterdrod =1.14 mmand separated from each other by a distance of 4 mm.The length of the
rods is 50 cm, and they are placed vertically starting from the bottom. The height of the free surface is then equal
to the length of the immersed portion of the rods. They are also radially aligned at a position close to the outer
cylinder (the radial distance from the innerwall of the outer cylinder to each of the rods is 3 and 7 mm).Due to
its electric conductance, thewater acts as a resistance between the rodswhen there is an electric voltage applied
on them (neglecting the conductance of the air). The voltage drop across the rodsV t( )probe is inversely
proportional to thewater level at that location. A function generator, driving the circuit with a sinusoidal wave
with 4 −Vp p at 1 kHz, is connected in series to an additional resistance (700 kΩ) and then to the resistance probe
(whichwe define as the resistance between the two rods that are immersed inwater). Bymeans of a lock-in
amplifier (Stanford Research System SR830DSP), the voltage across the resistance probe ismeasured
synchronously in frequency and phase-lockedwith the driving voltage delivered by the function generator,
reducing voltage noise. The analog output of the lock-in is then digitized employing a 14-bit data acquisition
card (NIUSB-9001) connected to a computer for storage and further analysis.

As explained above, the height of the free surface can be expressed as =h t k V t( ) ( )probe , where k is a
proportionality constant that can be obtained by calibrating the probe, i.e.measuring the voltage at different
water levels. Ensuring a constant electrical conductivity of thewater, its value remains unchanged.However, in
our setupwe noticed that the conductivity of water changed slowly over time as a result of contamination
(primarily due to leakage of bearing grease, but probe erosion or changes in pH are not discarded), so frequent
recalibrations are needed formeaningfulmeasurements. Therefore, a similar second resistance probewith
length =lref 7.6 cmwas located at the bottom close to the outer cylinderʼs wall. In such away, we can have a
reference value of the effective electrical conductivity of thewater at any time duringmeasurements, since this
reference probe is always immersed, allowing for consistent and stablemeasurements of the height of the free
surface over time. Figure 2(a) shows calibration curves performed at different days and their linearfits; one can
observe the inverse proportionality between the voltage of the probeVprobe and the quiescent free surface height

h0, since the x-axis corresponds to h1 0. The curves do not collapse due to the change of electrical conductivity
over days; the slopes of the curves are different, with values =k 192.41 mV cmand =k 198.42 mV cm.
However, when normalizing the probe voltagewith the voltage of the fully immersed reference resistance probe,
these curves collapse and are thusmeaningful, as shown infigure 2(b). This procedure ensures that the
calibration curves collapse independent of the electrical conductivity differences that can occur due to residual
contamination present over days.

In order to corroborate themeasurements of the height of the free surface obtainedwith the resistance
probes, we recorded images of the TC experiment using a high speed camera (PhantomV641) at 300 frames per
second, and determine this height also by digital image analysis. The imaged area has 200 pixels inwidth and
1000 pixels in height, and a spatial resolution of 105.4 pixel/cm. Infigure 3, we show a comparison of the
measurement of thewaveʼs amplitude using these two techniques. Here,R corresponds to the surface oscillation
peak value (wave amplitude) normalized by h0 and〈 〉denotes time averaging. The amplitudemeasurements
are very close to each other, showing a linear dependencewith slope close to one (see the solid line infigure 3).
Actually, we observe〈 〉 ≈ 〈 〉R R0.95probe video. The fact that〈 〉R probe is≈5% smaller than〈 〉R video can be attributed
to a residual signalfilteringwith the lock-in amplifier, although an optimal time constantwas chosen to
minimize this effect. Furthermore, since the partially immersed probe is located at a small distance away from
the innerwall of the outer cylinder (3 mm), itsmeasurement is necessarily lower than the video image because of
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the gravity waveʼs radial and angular dependence. Both effects tend to decrease thewire probemeasurement
with respect to the one donewith image analysis. For our purpose, this systematic difference is small and does
not affect our results.

2.4. Pressure and temperaturemeasurements
Pressurefluctuations in the bulk of theflow are alsomeasuredwith a dynamic pressure sensor (PCB 113A28),
located at the outer cylinder 10 cm above the bottomplate, and a signal conditioner (PCB 480C02).
Additionally, wemeasure temperature bymeans of a 4-wire resistive temperature sensor (RTDprobe-Keithley
8681) put directly in contact with the liquid at the outer cylinder, and previously embedded in an epoxy resin
with high thermal conductivity. It is located 9 cm above the bottomof the setup. Although our TC setup does not
have an active temperature control system, we verified that the gravity wave instability is independent of small
temperature variations. For typical increasing rampmeasurements (see the description of the different ramp
measurements below), themaximal temperature increment recorded is of ≈ ° −0.2 C hr 1, while for a continuous
operation of themotor and the specified volume ofwater, we have recorded a temperature increment ratio of
≈ ° −0.3 C hr 1 for long timemeasurements with themotor continuously running for 8 hours. Such variation of
temperature yields a change of surface tension of less than 1% in awhole 8-hourmeasurement run. The change
in viscosity is greater: for a °2.4 C temperature change in an 8-hourmeasurement, the variation in the viscosity is
of about 6%. Since the control parameter is the Froude numberFr , the temperature variation does not change
the critical value for the appearance of the instability.

Figure 2. (a) Calibration curves on different days of the resistance probeVprobe as functions of h1 0. The symbols denote
calibrations performed on different days. The lines represent fits to linear polynomials, with slopes =k 192.41 mV cm (solid line)
and =k 198.42 mV cm (dashed line). (b) Normalized voltage of the resistance probe using the completely immersed reference
probe.

Figure 3.Comparison of the normalizedwave amplitudemeasurements obtainedwith the resistance probe and video acquisition.
The solid line corresponds to〈 〉 = 〈 〉R R0.95probe video.
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2.5. Analysis of free-surfacefluctuations
The free surface height is obtained from the resistance probe voltage as = ×h t l V V t( ) ( )ref ref probe , beingVref the
voltage of the totally immersed reference probe. As the inner cylinder rotates, there is a decrease in height at
small radius, whereas the height increases at larger radii due to the axisymmetric flow andmass conservation
(the axisymmetric base state surface profile follows a∼r−2 law, consistent with themean azimuthal velocity∼r−1

[12]).With respect to this axisymmetric state, fluctuations also develop. Above a critical value of the rotation
rate, a gravity wave grows, breaking the azimuthal symmetry of the free surface. The normalized surface
fluctuations, either noisy below the critical value or dominated by an oscillating component above it, are
characterized by δ = − 〈 〉h h t h t h( ( ) ( ) ) 0.When the gravity wave sets in,δh can be expressed as:

δ Ω ϕ= + +h t T R T t h o t( , ) ( ) cos ( ) . . ., (1)

whereΩ is thewave angular frequency andR(T) is thenormalized envelope of the free surfaceʼs oscillations that
varies slowly in a timescaleT, which ismuch slower than thewave oscillation period π Ω2 .h o t. . . stands for higher
order terms that includewaveharmonics andnoise. The slowevolution time scale is expected to be related to the
fast scale, α=T t , withα a small parameter. Theorder parameter is thendefined as the envelopeR(T). Fromhere
on,wewill refer to it simply asR. Todetermine the slowdynamics ofR, we calculate the fast Fourier transformof
the signal,which has amaximumat thewaveʼs frequency, andfilter out the contribution at other frequencies, i.e.
only informationwithin a frequency range δ±f fw is kept, where Ω π=f 2w is thewave frequency andδf is half
of the frequency band considered.Typically, ≃f 1.75w Hzandweuseδ =f 0.1Hz.Then, the signal is transformed
back into the time domain. Thisfiltered signal is called hwave. Finally, themagnitude of the envelope of thisfiltered
signal, calculatedwith theHilbert transform, allows us to determine itsmean value〈 〉R , itsmost probable value
(mode) and its probability distribution in general. The aimof bandpassfiltering the free surfaceʼs height timeseries
centered at thewaveʼs frequency is twofold:first, itwill allowus a better comparisonwith a universal amplitude
equationmodel, which is derived for the criticalmode; second, as it eliminates the slow variationof the signal over
time, it ensures that the envelope does follow themaximal amplitude of the oscillations, without oscillating itself as
it is observed for nonperiodic signals.

Figure 4(a) shows a typicalmeasurement signal ofδh t( ) forFr above the critical value, where the gravity
wave state is stable.We observe that starting from a quiescent state, there is a transient time inwhich the gravity
wave grows until it reaches a steady stable state at τ≈t 600 0, with an amplitude that fluctuates in time. In
figure 4(b), a zoom in ofδh t( ) together with hwave and its envelopeR, used to define the normalizedwaveʼs
amplitude, are plotted. One observes the slowfluctuations of the envelope. A closer detail of the raw and filtered
signal at thewaveʼs frequency is displayed in the inset offigure 4(b).

2.6. Rotation rate ramps
Different types of rotation rate rampswere performed for determining the bifurcation diagram: increasing and
decreasing fm. For the increasing rotation rate ramps, we start the experiments at a small value ofFr where the
turbulent axisymmetric base state is stable. Themeasurement time is τ τ= 1440m 0 (15 min) followed by a
settling down timewhere themotor is stopped allowing the flow to become quiescent. Othermeasurement
times are tested and details are given below (section 3). The settling down time in the present experiments is

τ960 0 (10 min) andwas determined by analyzing the signal of the pressure sensor. Next, we increase themotor

Figure 4. (a) A typical timeseries of the normalized free surface oscillationδh t( ) forFr above the critical value. (b) Zoom-in of the
timeseries in (a), where the slow variation of the envelopeR(T) is shown (dashed line). In the inset, the raw data (light gray solid line)
and band-pass filtered signal hwave (black solid line) at the gravity wave frequency are displayedwithmore detail.
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velocity again and repeat themotor on-off cycle up to a certainmaximalmotor rotation frequency, namely
=f f 15.6m 0 (fm= 25Hz).With this kind of ramp, the appearance of the gravity wave is independent for each

measurement. For every rotation rate, the system starts from a quiescent state and therefore it is possible to
obtain amaximumvalue ofFr for which the turbulent axisymmetric state is stable, for a givenmeasurement
time. Additionally with this type of ramp, it is also possible tomeasure the growth rate of the order parameter as a
function ofFr , which gives us information on how a perturbation grows close to the bifurcation. The other type
of rotation rate ramp is a decreasing one, where the starting rotation rate of themotor is set large enough so that
the gravity-wave state has already appeared.Wemeasure for τ τ= 1440m 0 (15 min) and after that we decrease fm
without stopping themotor.With decreasing ramps’measurements we can thenfind out theminimum Fr at
which the gravity wave state is stable, allowing us to determine the bistability region.With both types of ramps,
the hysteresis loop can be constructed.

For subcritical bifurcations in turbulent flows, an important question is whether alternating transitions
(reversals) between the lower and upper branch states within the bistable zone occur as an effect of the turbulent
fluctuations. Thismeans that within a region inside the bistable range ofFr , turbulent fluctuations could
produce transitions from the base state to the gravity wave state and viceversa. Shortmeasurements do not allow
the required time forfluctuations to trigger such transitions and, therefore, longer timemeasurements are
necessary. Thus, we also perform experiments with ameasurement time τ τ= 46080m 0 (τ = 8m h) in the bistable
zone at constant fm.

3. Experimental results

Wepresentfirstly the bifurcation diagramobtainedwith increasing and decreasing ramps for =h L 1.230 and
τ τ= 1440m 0 infigure 5(a).We showdata of six increasing and six decreasing rotation rate ramps. Each data
point corresponds to the time average of themeasured envelope〈 〉R for a given realization.We also present the
average of all realizations (as a solid line), which considers the state of the system (i.e. considering the data only
for the upper or the lower branch). The bifurcation is subcritical, as for both increasing and decreasing Fr the
amplitude varies discontinuously, presenting sudden changes around particular critical values. The bistable
region exists within the range < <Fr Fr Frc d c u, , , where Frc d, (Frc u, ) is the critical Froude number determinedwith
decreasing (increasing) ramps.We obtain =Fr 3.05c d, and =Fr 3.33c u, for τ τ= 1440m 0. However, bothFrc d, and
Frc u, depend on τm, more specifically on the rate of change of the control parameter (discussed below). For
example, with τ τ= 2880m 0 but fewer realizationswe obtain =Fr 3.08c d, and =Fr 3.19c u, .

Within the bistability region, one observes that there is a larger dispersion between the different ramps
realizations in both branches. Infigure 5(b), the standard deviation of the envelopeσR as a function ofFr is

shown. Sincewe have several ramp realizations, we calculate this standard deviation as ⎜ ⎟⎛
⎝

⎞
⎠σ = σ∑

R N

1 2
i
N

i
2

, whereσi

is the envelopeʼs standard deviation in the ramp realization i, andN is the total number of ramp realizations. It is
clear that, as the system approaches the bistability region, either from the base state or from the gravity wave
state, the surface fluctuations increase, reaching amaximal valuewithin this zone.Here, by surfacefluctuations

Figure 5. (a) Bifurcation diagrams of the normalizedmean envelope〈 〉R , obtainedwith increasing (□) and decreasing (•) rotation
rate ramps. The solid black line represents the average of all ramps considering the state of the system. (b) Standard deviation of the
envelope for both the base state (◯) and gravity wave state (□). For both (a) and (b), the bistable zone lies between the vertical dashed
lines.

7

New J. Phys. 17 (2015) 013039 JMartínez-Mercado et al



wemean the non-coherent noisy fluctuations of the turbulent base state or the variations of the envelope for the
gravity wave state. In both cases, we recall that we aremeasuring the fluctuations centered around thewave
frequency. This behavior is reminiscent of the fluctuations of an order parameter in a classical phase
transition [37, 38].

We have alsomeasured the pressure fluctuations at afixed position on thewall below the free surface at rest.
In the previous work on aTC systemwith free surface [12], it was reported that the instability appears in the
entireflow, bulk and the free surface. Using ultrasound in the bulk, time traces of the azimuthal velocity above
the instability onset weremeasured. The velocity signals showed oscillations with the same frequency of the free
surface height fluctuations and pressuremeasurements.We verify this and present a frequency-forcing diagram
of the power spectrumof the pressure signal infigure 6 for a decreasing ramp realization. The use of a pressure
sensor is also easier to implement compared to ultrasound velocimetry techniques. It is possible to observe the
existence of the gravity wave state in the diagram for ≳Fr 3.1; the spectrum shows a peakwith ≈f f 1.1w 0

(fw= 1.75Hz), the harmonics of this fundamental frequency can also be distinguished. Thismakes evident the
close relation between the flow structure in the bulk, the boundary layer and the free surface.When the
instability develops in one of them, then it can be reflected in the otherflow regions (see [28–31]).

In the range ofFr where the two states coexist, onewould like to observe a sequence of transitions between
the turbulent base and gravity wave states. Aiming at such observations, we perform long timemeasurements
with τ τ= 46080m 0 (8 hr). Infigure 7(a), we show the timeseries of hwave for Fr=3.11. From the signal one can
clearly observe transitions between the turbulent base state (small hwave values) and the gravity wave state (larger
hwave values). Notice for instance that in the vicinity of times τ= ×t [0.7, 2, 3.5, 4.2] 104

0 the normalized
amplitude reaches values between 0.07–0.10, which correspond to a completely developed gravity wave state.
The system can remain in either of the states for times τ τ∼ −3000 60000 0 (∼30–60 min), that can be longer than
typicalmeasurement times in an increasing or decreasing rotation rate ramp, and then suddenly jumps back to
the previous state. The turbulent fluctuations in the system are responsible for the reversals between both states:
they can trigger the growth of thewave but they can also suppress it. These jumps occurmany times during the
measurement showing the importance of turbulent induced noise for the transition between the stable states in
this subcritical bifurcation. Althoughwe carried out long timemeasurements atmanyFr within the bistability
zone, we observed this behavior just in a narrow gap ofFr , namely < <Fr3.03 3.15. At lowerFr , the system
remained in the turbulent base state and nowave grew and developed or, for largerFr , after some time (that can
be of order τ τ−10 103

0
4

0) the gravity wave state developed and persisted for the rest of the long time
measurement. The narrow zonewhere reversals occur, is related to the point at which the potential of the two
different states are equal and the systemhas the same probability to be in either state, known as theMaxwell
point [39]within the framework of amplitude equations. The signal obtainedwith the pressure probe also shows
the transitions between these two stable states as it can be observed infigure 7(b), where a frequency-time
diagramof the logarithmof the power spectrumof the pressure signal is presented. In the spectrum there is a
peak at the frequency of thewave fw that intermittently appears and disappears.When the amplitude of thewave
is larger ( τ≈ ×t 2 104

0 and τ≈ ×t 3.5 104
0), one can even distinguish the harmonic at 2fw. In order to observe

the correlation between the free surface oscillations time-series and the pressure signal, we also obtain the power
spectra of the amplitude oscillations and get the trace at fw. Figure 7(c) compares these two traces, a high
correlation between the information of the free surface and that of the bulk is remarkable. In fact, the value of the

Figure 6. Frequency-forcing diagramof the power spectrum in a decreasing ramp obtainedwith the pressure probe. It can be observed
that once thewave of the free surface sets in, there is also a symmetry breakingmechanismpresent in the bulk flow as the power
spectrumof the pressure signal has a peak at thewaveʼs frequency ≈f f 1.1w 0 (fw= 1.75Hz) and persists for ≳Fr 3.1.
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correlation coefficient is 0.992. Therefore, this is strong evidence of the close interplay between theflow
structure, fluctuations and free surface.

4. Comparisonwith amplitude equations

4.1.Quintic subcritical amplitude equationswith noise
Aswe have seen in the previous section, the influence of noise is very important on the behavior of our system
and it is of interest to compare the experimental data with a phenomenologicalmodel, namely an amplitude
equationwith a stochastic noise term [13, 32, 33]. Particularly, ourmodel is based on the theoretical analysis
done in [13, 33], butwe limit our analysis to the case of a stochastic quintic amplitude equationwith additive
noise tomodel the observed subcritical bifurcation.

Amplitude equations are the simplest equations that help us tomodel the qualitative change in the dynamics
of a system close to a bifurcation. A typical example of such systems are pattern-forming ones. This is the case of
the appearance of the above described surface gravity wave. For the free surface height, one canwrite its temporal
and spatial evolution as: θ = + +Ω θ−h t A T c c h o t( , ) ( )e . . . . .t mi( ) , whereA(T) is a complex function that
represents the slow evolution of the amplitudeʼs oscillations of the free surface for large time scales (T), c c. . is the
complex conjugate of the first term andh o t. . are higher order terms. Fulfilling the invariants in time and space
(e.g. due to symmetry of thewave ifA is the solution of the partial differential equation that describes the
dynamic, then its conjugateA* should also be a solution), and considering an additive noise term, the simplest

Figure 7. Long timemeasurements within the bistability region at Fr=3.11. (a) Time-series of hwave showing reversals between the
turbulent base and gravity wave states. (b) Frequency-time diagramof the logarithmof the power spectrumobtainedwith the pressure
sensor. Sudden jumps between these two states at thewaveʼs frequency ≈f f 1.1w 0 (fw=1.75Hz) are evident. Harmonics are also
observed; (c) comparison between the traces of the power spectrumdensity (PSD) of both the pressure signal (◦) and thewave
amplitude (□), both at thewaveʼs frequency fw. Thewave amplitude PSD at fw has beenmultiplied by a factor 104 for better
comparison.
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differential equation that describes the evolution of the complex amplitudeA(T) close to the instability for a
subcritical bifurcationwith hysteresis, bistability andwith an additive noise term reads:

ϵ ν γ η ξ∂ = + − +A A A A A A T( ), (2)T
2 4

where δ=A R exp (i ) is the complex amplitude of the free surface oscillations, ϵ the reduced control parameter,
ν is related to thewidth of the bistable region (usually known as the detuning parameter), γ is a scaling parameter,
and η is the noise intensity. The stochastic termξ T( ) is aGaussianwhite noise. This type of equation has been
widely used in describing the appearance of bistability. It was first obtained in the context of Rayleigh–Bènard
convection [35]. In absence of noise, forϵ ν γ< − (4 )2 the only stable solution isA=0 (turbulent base state); for

ν γ ϵ− < <(4 ) 02 there are two stable solutions,A=0 and ν ν γϵ γ= + +A| | ( 4 ) (2 )2 2 (base and gravity

wave states) and a third unstable solution ν ν γϵ γ= − +A| | ( 4 ) (2 )2 2 ; forϵ > 0 there is one stable solution

ν ν γϵ γ= + +A| | ( 4 ) (2 )2 2 (gravity wave) andA= 0 is unstable (base state). In our case, the reduced control
parameter isϵ = −Fr Fr Fr( c u c u, ) , . Themeasured normalized envelopeR of the free surface oscillations, as
defined in equation (1), corresponds to =R A| |.

Asmentioned earlier, we canmeasure the growth rate s of the gravity waveʼs amplitude as a function of the
control parameter with the increasing rampmeasurements. One expects both a linear dependence of swith Fr
and an exponential growth in time close to the bifurcation due to the linear termof equation (2). To obtain the
growth rate s in an increasing rampmeasurement above Frc, we calculated themean value ofR in the gravity
wave state. Then, we select the part of the growing envelope signal that lies between 〈 〉R0.2 and 〈 〉R0.8 , for which
we indeed observe an exponential growth. Figure 8(a) shows the logarithmof the envelope, the signal between
the vertical lines is used to perform the linearfitting. Figure 8(b) shows the growth rate s as a function ofFr
obtainedwith increasing rampmeasurements. In such ramps, for values ofFr beyondFrc u, , thewavewill always
start growing from the turbulent base state to the completely developed gravity state. In this plot, a linear
dependence of s is observed for small ϵ. A linear fit is performed for <F 4.5r , for whichwe obtain

= ±Fr 3.17 0.08c u, , which is very close towhat is obtained from the bifurcation diagram (for τ τ= 2880m 0,
≈Fr 3.19c u, ). From this linearfit, one can also calculate the proportionality factor α that relates ϵ∝s , which

itself is derived from α=T t . Indeed, considering the linear term in equation (2), and plugging in the expression
for the amplitude close to the bifurcation =R R stexp0 , one gets αϵ=s . The value obtained is
ατ = ±0.033 0.0040 (α = ±0.053 0.007 s−1), which puts in evidence the separation of timescales.

Equation (2) is of Langevin type, and it has an associated Fokker−Planck equation for the distribution

probabilityP A A T( , *; )of the criticalmode amplitude A (A* denotes the complex conjugate) [36]:

ϵ ν γ η ϵ ν γ η∂ = ∂ − − + + ∂ + ∂ − − + + ∂{ } { }P A A A A A P A A A A A P
2

*
2

, (3)* *T A A A A
2 4 2 4

Figure 8. (a) Logarithm of the envelopeR in a typical increasing rampmeasurement at Fr=4.11. The part that lies between the vertical
solid and dashed lines is used to fit a linear polynomial in order to calculate the growth rate s. The arrow shows the value of〈 〉R , the
solid line 〈 〉R0.2 and the dashed one 〈 〉R0.8 . (b) Growth rate of thewaveʼs amplitude obtainedwith the increasing ramp
measurements. The solid line represents a linear fit of the data, fromwhichwe obtain = ±Fr 3.17 0.08c u, andατ = ±0.033 0.0040 .
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for which the stationary probability distribution of themodulus ofA reads [33]:

⎛
⎝⎜

⎞
⎠⎟

ϵ
η

ν
η

γ
η

= + −P A C A
A A A

( ) exp
2 4 6

, (4)
2 4 6

themost probable value (mode), obtained by setting

∂
∂

=P

A
0, (5)

satisfies thus the following equation:

ϵ ν γ η=
−

= − + −
Fr Fr

Fr
A A

A2
. (6)c

c

2 4
2

4.2. Bifurcation diagrams
Weconsider the experimental bifurcation curve obtainedwith increasing and decreasing ramps and
τ τ= 1440m 0. The bifurcation curve can be constructed eitherwith themean ormode values of the free surfaceʼs
oscillation. In practice, it is easier to use themean values, as for themode, one needs to have information of the
probability distribution functions (PDFs). In our experiment, the information of the PDFs is available, sowe
present infigure 9(a) the bifurcation diagramobtained using both statistical parameters. There is no large
difference between the curves.

Next, we reconsider the stationary solutions (∂ =A 0T ) of the deterministic part of equation (2):

ν ν ϵγ
γ

= =
± +

R R0 and
4

2
. (7)2 2

2

Thus, for large ϵ, themodel predicts ϵ∝R4 . Experimentally, we indeed observe this proportionality. Figure 9(b)
shows the bifurcation diagram in thismanner, plottingR4 as a function ofFr for both themean amplitude and
for themode amplitude. The curves show a linear dependence onFr , which indicates the proper choice of a
quintic subcritical bifurcation.Moreover, if we consider large values of ϵ in equation (7), and that ν ismuch
smaller than γ for a relatively small bistability region, we obtain ϵ γ≈R4 . Fromfigure 9(b), we use the values of
R4 with >Fr 4.5 andfit themwith a linear polynomial. Sincewe are fitting = +R aFr b4 , and this should be
equal to ϵ γ=R4 , then γ=a Fr1 ( )c and γ= −b 1 .With the linear adjustment, we obtain γ = ±1474 342.

It is worthmentioning that in [12], the scaling ϵ∝R ˜2 was demonstrated for large ϵ̃, with
ϵ = −Re Re Re˜ ( )c c , which does not contradict our current results.We recall that Ω∝Re m and Ω∝Fr m

2, thus
ϵ ϵ∼˜ . Thus, both scalings are in fact inmutual agreement.

Because〈 〉R is close to themode ofR, we canfit both bifurcation curves with themodel given by
equation (6). Figure 10(a) shows the bifurcation diagramusing themean alongwith the fitted curve.We observe
that themodel describes well the experimental curve. However, thewidth of the bistable zone is narrower for the
fittedmodel. Infigure 10(b), the bifurcation diagramobtainedwith the envelopeʼsmode and the fitting curve
are shown. Again, we observe that themodel curve describes well the bifurcation diagram, having the larger

Figure 9.Bifurcation diagrams ofR versusFr (a) andR4 versusFr (b), using both themean (◦) and themode (*) with τ τ= 1440m 0.
The solid line in (b) is a linearfit to the data obtainedwith themode considering >Fr 4.5.
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difference in the bistable zone, where it fails in predicting its width. The values of the parameters obtainedwith
thefitting using themode are the following: = ±Fr 3.04 0.08c u, ,ν = ±7.9 4.6, γ = ±2286 184, and

η = ± × −(8.6 0.1) 10 6. As expected, ν γ≪ for this subcritical bifurcation that presents such a small bistability
region and relatively small discontinuities. The larger uncertainty in ν is due to the small amount of data in the
bistability zone comparedwith the stable branches at lower and largerFr . Despite the good general agreement,
thewidth of the predicted bistability region seems underestimated.However, we recall that themodel assumes
an infinite time, whereas for the experiments this width depends on the ramp rate, becoming narrower as the
ramp rate decreases (in our case, a largermeasurement time for afixed increment of rotation rate).With this
situation, the turbulent fluctuations in the bulk have a higher probability to trigger a jump into the stable states.

We can now compare the values of γ obtained in two different ways. Its value using the approximation of
equation (7) for large Fr is smaller than the value obtained by fitting the complete bifurcation diagram
(equation (6)). However, if we assume thatR is very large, then in equation (6), the dominating termwill be
again γR4, yielding ϵ γ≈R ( )1 4. Consider ϵ γ′ ≈ ′R ( )1 4 as the dominating term in equation (7) for very largeR.
One expects in the limit of large amplitudes, that the ratio ′ ≈R R 1. Indeed, the values of γ obtained by fitting
the bifurcation curve or by using equation (7) as explained above, yield γ γ′ = ′ =R R ( ) 1.121 4 . Thus, the
difference in γ is reflected in a small difference in the predictedR for a given ϵ; this can be considered as a result of
small errors in the datafitting procedure.

4.3. Effect of increasing themeasurement time
Motivated by the difference in the predicted andmeasured bistability regionwidth, we carried out different
rampmeasurements varying themeasurement time, specifically for τ τ = 480m 0 , 1440, 2880, 11520 and 46080
(5, 15, 30, 120 and 480min respectively). This is donewith afixed difference of the rotation rate Δ =f f 0.104m 0

(10 rpm) for all τm except the longest one, for which the rotation rate increment is Δ =f f 0.052m 0 (5 rpm). Also,
for this longestmeasurement time, only results for increasing ramps are reported. The bifurcation diagrams for
these different ramp rates of the order parameter are shown infigure 11. Solid (open) symbols represent the data
obtained for decreasing (increasing) ramps. All the data points correspond to averages. For all τm except the
largestmeasurement times (τ τ = 46080m 0 ), these averages are computed following this simple procedure: if for
thewholemeasurement time the system remains in the turbulent base state, then the average is computed for the
complete time series; if during themeasurement time the systembifurcates, then the average is computed
restricted to times larger than the transition time to the gravity wave state; finally, if the time series shows
reversals, then the average also considers the complete signal.

For τ τ = 46080m 0 , we only present data forwhich reversals were observed. In this case, we separated the
envelope in regions forwhich the system is in either the gravity wave state or the base state. This is done using a
lowpass filter as done in [13], with a frequency cutoff of 0.7mHz and a threshold valueRc=0.03.We also impose
an additional constraint in order to distinguish the developed gravity wave state from a strong fluctuation,
namely the identified event has to endure longer than three times the typical growth time of the gravity wave
( τ≈550 0 fromfigure 4). Thus, the averages were performed separately for each state. The error bars correspond

Figure 10. (a) Comparison of the experimental data using themean envelopewith a fit considering the amplitude equationwith
stochastic noise term (equation (6)). The inset shows amagnification around the theoretical bistability region. (b) Fit and bifurcation
diagramusing themode. The symbols☆ correspond to the twoRm of the bimodal distribution obtainedwith Fr=3.11 and
τ τ= 46880m 0. Error bars correspond to the standard deviations of theGaussians distributions that are used tofit the bimodal
distribution (see inset infigure 13).
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then to the standard deviation of these averages. This simple procedure is consistent with amore sophisticated
one presented later (figure 13).

Figure 11 demonstrates that thewidth of the bistability region depends on τm. For the two shortest
measurement times, τ τ = 480m 0 and 1140, no reversals were observed. Instead, the system shows hysteresis,
presenting a dependence on the systemʼs history. For these two cases, the upper critical Froude number Frc u, is
computed as the average between the lastFr in the turbulent base state and the firstFr that presents a transition
to the gravity wave state. For the computation of Frc d, , a similar procedure is used considering the last and firstFr
for which the gravity wave and base states are stable. For the two larger times, τ τ = 11520m 0 and 46080, the same
procedure is implemented except that it is between states presenting reversals and either the base or gravity wave
states depending on the side of the bistability region. For the intermediate time τ τ = 2880m 0 , reversals were
observed for only some of the realizations, so the previous procedures were applied on each realization
accordingly.

For the fastest ramp, the bistable zone is very large as the gravity wave sets in at a value of ≈Fr 3.8c u, , whereas
for the decreasing ramp at this ramp rate, the gravity wave state lasts down to ≈Fr 3.0c d, . For τ τ= 1440m 0, the
bistable zone exists within the range < <Fr3.05 3.33, which represents a hysteresis range of∼10%. If one
considers the data for τ τ= 11520m 0, thewidth of the bistable zone is considerably reduced: ≈Fr 3.14c u, and

≈Fr 3.03c d, .We observe that this width does not change significantly for τ τ= 46080m 0, for whichwe obtain
≈Fr 3.15c u, and ≈Fr 3.03c d, . As expected, if onemeasures for longer times, the probability of the inherent

turbulent fluctuations to induce a transition fromone state to the other increases. In the bistable zone, noise is of
great significance to determine the stable state of the system and its long termdynamics.

Here, we stress that the bistable zone, also referred to a hysteresis region, depends on τm for short time
measurements. In this case, the observed stable state depends on the systemʼs history. For larger τm, we approach
the infinite time asymptotic limit, for which the system forgets its history and shows reversals between the two
metastable states, induced by turbulent fluctuations. In this limit, thewidth of the bistable zone does not seem to
depend anymore on τm, at least for the realizations with τ τ = 11520m 0 and 46080 thatwe havemeasured.
However, for even longer timemeasurements, we do not discard that thewidth of the bistable zonewhere
reversals are observed could increase.

4.4. Probability density functions of surfacefluctuations
Once the parameters have been obtained byfitting the experimental data, these are used in equation (4) to
compute themodel PDFs, and compare themwith the experimental ones. Figure 12(a) shows the experimental
PDFs for =Fr [2.43, 2.73, 2.89] in the lower branch, and for =Fr [3.5, 4.11, 4.77] in the bifurcated state. For
lowFr , themode (most probable value) ofR is small, increasing withFr . The two stable states, either turbulent
base or gravity wave states, are clearly distinguishable in two different regions ofR values. Infigure 12(b), the
PDF of the experimental data with Fr= 2.68, in the base state, is shown together with twofits: the dashed curve is
obtained by using the values of the parameters byfitting themean envelope in the bifurcation diagram (see
figure 10(a)), whereas the solid line is obtained by using the parameters’ values obtained by fitting the envelopeʼs
mode (see figure 10(b)). For the dashed line, themodel overestimates the peak of the distribution and has a

Figure 11.Effect of themeasurement time on thewidth of the bistable zone,〈 〉R for τ τ= 480m 0 (◦), τ τ= 1440m 0 (□), τ τ= 2880m 0 (⋄)
τ τ= 11520m 0 (▿) and τ τ = 46080m 0 (☆). The number of increasing (open symbols) and decreasing (solid symbols) ramp
realizations for each τm is 3, 6, 2 and 3, respectively. For τ τ = 46080m 0 , only one increasing ramp is included. For τ τ = 480m 0 , the top
right point corresponds to a realization that did not reach a steady state value. Thewidth of the bistability region for each τm is
indicated between the vertical lines, with increasing τm from top to bottom. For τ τ = 2880m 0 , 11520 and 46080, these regions
correspond to parameters forwhich reversals between both states are observed.
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larger standard deviation, contrarily, when using the values obtained by fitting the envelopemode, themodel
PDF is on top of the experimental one. It is worth remembering that the stationary probability distribution is
obtained for themost probable value, a better collapse with the experimental data that used themode is therefore
expected. The different results observedwhen using themean ormode information for the PDFs cannot be
observed so easily in the bifurcation diagram, as for these unimodal distributions, the two statisticalmeasures
(mean andmode) are close to each other. Infigure 12(c), the experimental PDF for Fr= 4.11, already in the
gravity wave state, is shown togetherwith thefitted PDFs. Again, two curves are shown, which correspond to the
different data available to construct the bifurcation diagram as explained above. In this case, there is an
agreement on the location of the peak for the two curves, but the agreement on thewidth of the distribution is
better when using themean value rather than themode, as one can observewith the dashed curve. The solid
curve, corresponding to thefitting using themode, has a smaller standard deviation than the experimental PDF.
We discuss further this issue in section 5.

Finally, we also show infigure 13 the PDF obtained at Fr=3.11 for the longer timemeasurement in the
bistable zone (τ τ= 46080m 0). The PDF is now a bimodal distribution, although the second peak is broader, thus
not verywell defined. From this curve, one can obtain the twomost probable values and compare themwith the
bifurcation diagramobtainedwith lower τm (figures 10(b) and 11). To achieve this, we use a very simple solution
which considers a functionalG(R) consisting of the addition of twoGaussians tofit the experimental PDF, i.e.

= +G R G R G R( ) ( ) ( )1 2 with = μ σ− −G R C e( ) R
1,2 1,2

( ) 21,2
2

1,2
2
, we are interested in the values of μ1, μ2,σ1 andσ2.

Although the choice of this functional can be questioned, it quantifies roughly and easily the location of the
peaks of the PDF to comparewith the bifurcation curve. In the inset offigure 13, the PDF and itsfitting are
plotted in logarithmic scale, although the fitted curve does not describe well the tails of the experimental data,
one can still use the values of μ1 and μ2 as a quantitative estimation of the peaks of the bimodal distribution
(μ = 0.0171 , μ = 0.0492 ,σ = 0.0101 andσ = 0.0232 ). The comparison of these two values in the bifurcation
diagramobtainedwith themode is shown infigure 10(b). The agreement is good, although a smaller value is
obtainedwith the longermeasurement time.We attribute this difference to the finite timemeasurements as well

Figure 12.PDFs of the normalized envelope of free surface oscillationsR. (a) Several PDFs for the base and gravity wave state for
severalFr . (b-c) Comparison between the experimental and theoretical PDFs for the base state at Fr=2.68 (b) and the gravity wave
state at Fr=4.11 (c). The theoretical PDFs are computed using the parameter values obtainedwhenfitting the bifurcation curve, either
using themean (dashed line) or themode (solid line).

14

New J. Phys. 17 (2015) 013039 JMartínez-Mercado et al



as the broadness of the distribution around the highestR values, which results in a largerσ2 value that is
considered as an estimate of the error in the value of μ2 (error bars infigures 10(b) and 11).We can also compare
these values with those presented infigure 11, which considers different ramp ratemeasurements. For Fr=3.11,
the simpler procedure applied for the largest τm results in〈 〉 = ±R 0.021 0.011and〈 〉 = ±R 0.054 0.020 for the
base and gravity wave states respectively, which are consistent withwhat we obtain from the data offigure 13.

5.Discussion

5.1.Model adjustment andfluctuations
Aswe have seen in the previous section, themodel describes well the bifurcation curve but above the transition it
fails to capture the noise level of the experimental PDFs. To have a better understanding of this problem,we
compare the theoretical and experimental standard deviation of the fluctuations. Figure 14(a) presents these
quantities as functions of the normalized envelopeʼsmode. The data for small amplitudes (in the lower branch
of the bifurcation diagram) show that thefluctuations increasemonotonically. Above the bifurcation, they
decrease and nearly saturate far away from the transition. The experimental standard deviation is the same as the
one presented infigure 5(b). The theoretical one is computed by numerical integration of equation (4),

Figure 13.PDFof the normalized envelope of free surface oscillationsR at Fr=3.11 in the bistable zone for τ τ= 46080m 0. The
distribution is bimodal, corresponding to the probability of the system being in either the base or gravity-wave states. The inset shows
the fit using a functional consisting of the sumof twoGaussians. The fit does not describe the tails of the experimental PDFwell, but
still we can use the predicted peak locations as a quantitative estimate and compare its values with the bifurcation curve obtained in
short timemeasurements. This is shown infigure 10(b).

Figure 14. (a)σR of the PDFs for experimental data (•) andmodel considering themode amplitude for thefitting (·). (b) η〈 〉h
2 as a

function of Fr obtained from the average of the six increasing and decreasing rotation rate ramps for τ τ= 1440m 0. The horizontal

dashed lines correspond to average values obtained for the base state η〈 〉 = × −2.5 10h
2 3 and the gravity wave state

η〈 〉 = × −3.7 10h
2 3. The averages are performed for allFr below 2.78 and above 3.36, respectively.
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Here, we used the values of the parameters as obtainedwhen fitting the bifurcation diagram for themode.
However, a full quantitative agreement of themodel standard deviation and experiments is not achieved. As
already observedwith the theoretical PDFs, when themode amplitude is considered for the fitting, fluctuations
arewell described in the base state, and are underestimated in the gravity wave state. A possible explanation
might be that the noise behaves differently in both states: in the lower branch, the noise intensity is different than
in the bifurcated gravity wave state, as also observed by de la Torre andBurguete [13]. Thus, amultiplicative
noise term in the subcritical amplitude equationwould have a better quantitative agreementwith experiments.

In order tomake evident the differences of the amplitude fluctuations, we calculate the departure of the
filtered signal from themeanwave oscillation

η Ω ϕ= − +t h t R t( ) ( ) cos ( ), (9)h wave

the typical variations with respect to themeanwave oscillation.We thenfit a sinusoidal function to hwave(t) and

compute η〈 〉h
2 , shown infigure 14(b) as a function ofFr .We note that the fitting procedure has to be done

with some caution. Thewave frequencyΩ is obtained from the Fourier transformof the complete hwave time
series. The averageR is the one obtained from the envelope analysis. So, the only fitting parameter is the phaseϕ,
for whichwe observe phase noise, with slow variations compared to π Ω2 . This is reflected in the fact that hwave
is randomly in advance or behind thefitted signal if one uses a single fitted phaseϕ. This phase noise is indeed
expected theoretically from the complex amplitude equation (2).

Thus, for simplicity, we perform localfits, dividing the times series in sections of ten oscillations of period
π Ω2 , eachwith afitted phaseϕ. In this way, we concentrate on the fluctuations of the signalʼs amplitude,
whereas we leave for a future study the characterization of the noisy dynamics that is observed forϕ. Thus, from

figure 14(b), we indeed obtain that after the transition occurs, themagnitude of η〈 〉h
2 changes, showing that

the noise intensity in the base state and bifurcated gravity wave state are different. This fact explains why in the
PDFs therewas only a good agreement in one of the states.

In section 3, the evidence is provided that the flow as awhole bifurcates (as the spectra of the pressure signal
shows infigures 6 and 7). This fact is observed clearer if onefilters the pressure signal within a frequency band
centered at thewave frequency, as donewithσR. The calculated standard deviation of this signal (σP) is shown in
figure 15 as a function ofFr . Remarkably one observes a similar behavior of the pressure noise as in the
amplitude bifurcation diagram. Another feature of this curve is that the error bars are larger within the bistability
zone. This result is very interesting, as it shows that the bifurcation of the system can be determinedwithout
needing the information of the free surface. Since the bifurcation diagramof the free surface oscillations shows a
similar behavior asfigure 15, one expects thatσP is proportional toRm, which is verified as shown in the inset of

figure 15. Additionally, we have verified thatσP also scales asϵ1 4 for large ϵ, which confirms that once the
oscillating part has been removed, pressure fluctuations are governed by the envelopewavefluctuations,
σ ∼ RP m.

Figure 15. (a) Standard deviation of the pressure signalfilteredwithin a frequency band centered at thewave frequency,σP , as a
function of Fr . In the inset,σP versusRm.
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5.2. Choice of the control parameter
Wewould like to draw attention to the proper choice of the control parameter. The previous work on a gravity
wave instability in a TC geometry [12], usedRe as the control parameter for the system.We propose to useFr
instead, as it considers the gravity forcewhich is directly related to the occurrence or disappearance of thewave.
Infigures 16(a) and (b), we show bifurcation curves usingFr andRe as the control parameter, respectively. The
data displayed in these figures correspond to three different setups, namely: the present experiment, data from
Mujica and Lathrop [12], and data obtained in a previous TC setup in our lab [34].We compare the data for
decreasing rampmeasurements with =h L 2.60 that for the case in [12] corresponds to a height of the free
surface at rest of =h 500 cm, for the case in [34] corresponds to a height of =h 330 cm, and in our case to

=h 380 cm. Although the ratioh L0 is kept fixed in the three different setups, the data clearly do not collapse as a
function ofRe. The data aremuch closer to collapse on a single curvewhenFr is used as the control parameter.
We also carried outmeasurements with =h L 1.80 and compared themwith the data of [12], the results were
similar: therewas no complete collapse of the curves. Still, we have chosenFr as the control parameter as the
difference is smaller compared toRe.

Besides someminute differences between experimental facilities that are not fully controlled, like axis
centering ormechanical vibration level, a possible explanation for the lack of collapse between the different
experiments is a large sensitivity of the threshold andwave amplitude to small variations in the radii ratio η0.
Indeed, the value ofη0 in the present experiment is 0.12, slightly lower than in the previous experiments in which
η = 0.1280 [12] and η = 0.1270 [34]. Some improvement in the collapse between the different data sets can be

obtained by including somedependance onη0 in the bifurcation diagram, for example, by using η ζFr 0 as the
control parameter withζ ≈ 4. However, this is not included since the available data is not sufficient to establish
the correct dependence onη0; moremeasurements are required to establish the influence ofη0 on the
bifurcation.

5.3. A possible origin of the instability
Themechanism at the origin of the gravity wave instability is an important open question. In [34], the linear
stability of the free surface of an axisymmetric TC flowwas studied under the approximation of inviscid
potentialflow, inwhich the non-zero circulation is given by a line vortex at the axis (outside of the physical
domain limited by the inner and outer radii). Associated to such potentialflow, there is an azimuthal velocity

∼θv r1 and a free surface∼ r1 ,2 which corresponds, well away from the boundary layers, to the experimentally
measuredmeanflowof the base state [12]. Despite some difficulties regarding the convergence of the results for
large rotation rates or truncation dimension, the predictedmodal frequencies showed good agreementwith the
measured peaks of the spectra [34]. There was, however, no indication of linear instability. Despite this negative
result, there is an aspect of the inviscid stability problem thatmay shed light on the origin of the instability in a
way that is consistent with a large sensitivity of the bifurcation on the radii ratioη0: the possible development of a
critical layer that enters the physical domain from the inner cylinder as the rotation rate increases.

A critical layer is a region inwhich the phase velocity of themode equals the advection velocity of themean
flow atwhich there is a singularity of the inviscid stability equations [1, 40]. At such a region, viscous or
nonlinear effectsmust be included in order to connect the inviscid solutions at both sides of the critical layer.
The stability properties of themode can therefore change, as is the case for plane Poiseuilleflow. But even if all

Figure 16.Bifurcation diagrams described by different control parameters, using Fr (a) orRe (b). The symbols correspond to: (□)
[12], (▿) previous setup [34] and (◊) this study.
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themodes remain stable, the receptivity of the flow to the forcing of the turbulent fluctuations can be greatly
enhanced at critical layers of a harmonic component of the forcing, as described byMcKeon and Sharma for the
pipeflow case [41]. In that open flow case, they used it to describe very large scale fluctuations. Aswe deal here
with a closed flow, onemight expect that similarmechanisms could here lead to the development of a coherent
structure.

6. Conclusion

Wehave presented an experimental work on the gravity-wave instability of a Taylor–Couetteflowwith a free
surface. Thework aims at studying the nature of its inherent turbulent noise, having the particular interest to use
phenomenologicalmodels with stochastic noise to describe the system. The control parameter for the system is
the Froude numberFr and the order parameter is the normalized envelope of the free surface oscillationsR. The
observed bifurcation is subcritical.We show that themeasured growth rate of thewaveʼs amplitude is linear with
the control parameter, consistent with the phenomenological framework of amplitude equations. A quintic
subcritical amplitude equationwith a stochastic additive noise term is used to describe the experimental data. In
general, there is a good quantitative agreement betweenmodel and experiments.

However, differences in the bistability regionwidth and the noise level on both stable branches are observed.
The difference between thewidths of the theoretical and experimental bistability regions is a consequence of our
finite-timemeasurements. Themodel considers the stationary state, i.e. infinite times.We show that there is a
dependence of thewidth of the bi-stability zonewith the rate of change of the control parameter. For slow ramp
rates (longmeasurement time), the bistable region of the system is reduced and a better agreementwith the
model that considers infinite times is therefore obtained.However, for the longestmeasurement times, the
width of the bistable regions saturates and an important difference with the adjusted parameters persists. A
better agreement could be obtained if the bifurcation curve adjustment is done using the short time data of
figure 10 away from the bistable region and the longer timemeasurement data for the bistability zone. This is
work in progress, asmanymore realizations for the longer timemeasurements are needed.

The free surface heightmeasurements allowed us to obtain PDFs of thewaveʼs amplitude whichwere also
comparedwith themodel. The agreement between themodel PDF and the experimental one occurs only at the
turbulent base state. In the gravity wave state, themodel predicts a lower level of stochastic fluctuations. This
discrepancy has been confirmed experimentally to correspond to a noise dependence on the current state, which
can be understood as a non-linear effect. The systemʼs inherent noise is thenmultiplicative as its value depends
on the actual state, indicating that the turbulent fluctuations behave differently in the gravity wave state. A
similar result was obtained by de la Torre andBurguete [13], where a noise termproportional to the bifurcation
parameter was introduced to explain qualitatively the observed behavior of three coexisting states of azimuthal
velocity near themid plane to a counterrotating vonKarman turbulent flow.However, ourwork goes beyond
[13] because we compare quantitatively analytical results for the noisy system–bifurcation diagram and PDFs–
instead of comparing qualitatively numerical and experimental results.

The bifurcation is also observed in the filtered pressure signal fluctuations. This is of great importance, as it
indicates that the transition can also be determinedwithout the information of the free surface. This is further
evidence of the close interplay between the bulkflow and the surface dynamics, as previously reported [12].

Additionally, wewere able to observe sequences of reversals between the gravity-wave and turbulent base
states for very long timemeasurements. These observations occurred in a narrow zone of the control parameter.
The statistical study of reversals (e.g. escape times of each state) remains to be done. Finally,measurements in the
bulk and in the boundary layer will provide a better insight on themechanisms behind the transition, helping
also the selection of the control parameter. This is seemingly a non-trivial issue as shown in this work by
comparing data fromdifferent setups. In particular,more experiments varying the radii ratio and surface
tension are needed to elucidate their effects on the instabilitymechanism and thus on the selection of the control
parameter.

Finally, it is of interest to put our results in amore general context. The existence of large scale transitions in
highly turbulent flows, purely hydrodynamic ormagnetohydrodynamic, is of both fundamental as well as
applied interest. However, only a handful of systems have been studied in detail [10, 11, 13–18]. Turbulent
velocityfluctuations can smooth the transition or suppress bistability. In some cases, they can also trigger
dynamical reversals between differentmetastable states, although it has also been reported that, within the
experimental observation times, on occasion thesefluctuations do not induce such reversals [17]. The search for
genericmechanisms for reversals has been initiated and some simple low dimensionalmodels, where for
example an unstablemode is coupled to other stablemodes, have been proposed [19, 20]. It would be interesting
to go beyond the quintic subcritical amplitude equation that we propose in this work, searching for such a simple
model of interactingmodes.
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