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Abstract

We present an experimental and theoretical study on the gravity-wave instability developing in a
highly turbulent free-surface Taylor—Couette flow, for which only the inner cylinder rotates. Above a
critical rotation speed, from an axisymmetric turbulent base state a non-axisymmetric fluctuating
gravity-wave state develops, with an m = 1 azimuthal wave number. The bifurcation is discontinuous
and presents hysteresis. In contrast to previously reported work (Mujica N and Lathrop D 2006 J. Fluid
Mech. 51 49-62), here we compare our experimental results with a universal model based on a quintic
subcritical amplitude equation with additive noise. In general, the model describes correctly the mean
free-surface oscillation amplitude and its fluctuations, although differences exist in the bistability
region width and the free-surface fluctuations in the gravity wave state. These differences are due to
the finite time measurements and non-linear effects, respectively. Indeed, we show that longer mea-
surement times allow the system to transit in either direction (from or to the base state), which results
in the shrinking of the bistability region. For very long measurement times, and in a very narrow range
of rotation rates, the system presents a series of random reversals between both states. Finally, by
removing the mean wave and flow oscillations in the measured free-surface and bulk pressure signals,
we demonstrate that their dynamic fluctuations depend on the system state.

1. Introduction

Nonlinear systems display instabilities and bifurcations, qualitatively changing the nature and properties of such
systems as a control parameter surpasses a critical value. Hydrodynamical systems present such instabilities [ 1],
giving rise to a rich variety of structures and patterns observed in a large range of temporal and spatial scales.
These hydrodynamical instabilities can be characterized via simple yet universal tools, such as amplitude
equations [2], which describe the dynamics of a small number of relevant (marginal) modes that dominate the
flow state at long times. Examples of such hydrodynamical instabilities are the ones displayed by flows in
cylindrical containers involving rotation. The paradigmatic example is the Taylor—Couette flow [3], in which the
fluid is driven by the independent rotation of the inner or (and) outer cylinder(s). The diversity of states that
have been observed in this particular system is vast, ranging from the well known vortical cells present in the path
of the laminar to turbulent transition [4], to highly turbulent states in the so-called ultimate regime in
turbulence [5].

In general, the existence and stability of the different states in driven systems is affected at different levels by
the presence of fluctuations, which can be inherent to the system or added by an external mechanism.
Sometimes, the net effect is that of shifting the critical value at which the bifurcation occurs [6, 7], whereas in
some other cases, the effect of the noise is more drastic and it can even change the nature of the bifurcation (i.e.
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sub or supercriticality) [8], or the nature of the saturation mechanism [9]. These effects can occur separately or
simultaneously depending on the nature of the instability, fluctuations and their coupling mechanism.

Of particular interest is the transition between two highly turbulent states, of which at least one has a broken
symmetry respecting the system’s geometry or driving. In the case of subcritical bifurcations, the coexistence of
turbulent states has gained a large amount of attention. Turbulent flows that present bistability and hysteresis
have been studied in the contexts of pure fluid dynamics [10-15] and magnetohydrodynamics, particularly
concerning the Dynamo instability [ 16—18]. An interesting issue is the possibility of random reversals between
two turbulent attractors [10, 13, 16, 19, 20]. More generally, the existence of large-scale fields on top of strongly
turbulent backgrounds is also present in many geophysical and astrophysical flows. Here, we just mention a few
cases: the existence and dynamics of magnetic fields in planets and stars generated by the Dynamo effect [21]; the
observation of strong equatorial eastward winds in Saturn and Jupiter [22, 23] as well as for the Earth at higher
global temperatures, either measured in the past or predicted to occur in the future due to stronger global
warming, which could lead to the so-called super-rotational state [24]; finally, the quasi-biennial oscillation that
occurs in the Earth’s atmosphere, where with a fluctuating period slightly longer than two years, a coherent and
oscillating mean flow results from the interaction of upward-propagating waves and the mean flow at higher
altitudes [25]. Surprisingly, despite the strong turbulent flows on top of which all these coherent large-scale
fields exist, their dynamics are reminiscent of those of low-dimensional systems.

Thus, a theoretical model that can take into account fluctuations on hydrodynamical instabilities that occur
in highly turbulent flows is needed. Amplitude equations, which are very successful in describing and predicting
hydrodynamical bifurcations for laminar flows, appear as a natural candidate to describe the bifurcation
diagrams and dynamics of flows when turbulent fluctuations are taken into account. Although thisisa
hypothesis, it has been reported recently, in a highly turbulent flow of liquid sodium presenting Dynamo action,
that the low dimensional dynamics of the magnetic field can be accurately described using amplitude equations
[16, 17]. Similarly, low-dimensional dynamical systems also describe a purely hydrodynamical instability in a
turbulent von Kédrman flow [13] and other turbulent flows [20].

In this paper, we study the bifurcation between two highly turbulent states in a free-surface Taylor—Couette
(TC) flow (videos from the present setup displaying the different turbulent states can be found as supplementary
material). The system has been previously studied in [12], where it was found that the axial symmetry of the
mean flow and free surface in a turbulent base state with Reynolds number Re ~ 10 is broken when a gravity
wave develops from a resonant mode of the free surface pumped by the fluctuating turbulent flow. This gravity
wave state shows an m = 1 azimuthal pattern and the transition is subcritical, presenting bistability and
hysteresis. It is worth mentioning that the symmetry breaking mechanism appears at very large Reynolds
number, where symmetries are expected to be recovered statistically at small scales [26]. Also, we note that the
formation of the gravity wave is analogue to the one of large coherent structures in two-dimensional turbulence
viaan inverse cascade [27]. Indeed, the gravity wave’s frequency was found to be very close to the one of the
quiescent resonant surface mode (f,, ~ 1.6 Hzand f, =~ 1.4 Hzrespectivelyin [12]), whereas the characteristic
time scale of energy injection is the one of the rotating cylinder, typically in the range 20-30 Hz. Other
transitions in rotational flows with a free surface have also been studied [28-31]. In these works, a rotating disk
acting as the bottom of a cylindrical container drives the system. Above a certain critical value of the driving, the
axial symmetry of the free surface is broken, leading to the observation of polygonal shapes of the free
surface [31].

The aim of the present work is to study the gravity wave bifurcation focusing on the nature of its inherent
turbulent fluctuations through a universal description. Therefore, we compare our experimental data with the
bifurcation diagram and fluctuating properties of a subcritical stochastic amplitude equation. So the question
thatarises is: can such a turbulent system be well described with the simplest model that considers bistability and
noise? From the modeling point of view, noisy systems presenting super and subcritical bifurcations have been
the subject of several recent studies [32, 33] including suitable noise terms. Particularly, for the case of
supercritical bifurcations, both additive and multiplicative noise terms have been introduced for comparison
with experiments on granular beds forced by blowing air, whereas for the subcritical case, only the case of
additive noise was studied. Furthermore, we make it possible to compare the statistics of observables such as the
mean or most probable value of the wave’s envelope with the model. In the case of exactly counter rotating
propellers in a turbulent von Kdrmén flow [13], it has been shown that the system presents bistability and
reversals between two states that break the mid-plane symmetry. These results are well described by a noisy
quintic subcritical amplitude equation for the azimuthal flow velocity near the wall and at the mid-plane. The
authors also show that the noise term is not simply additive; they model the noise amplitude as a linear function
of the control parameter in order to explain qualitatively their observations.

In the present work, the predictions of a subcritical quintic amplitude equation with a suitable additive noise
term are studied and its validity is explored. For moderate measurement times, our results are compared with
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Figure 1. Experimental Taylor—Couette setup. The different lengths H,, r,, r; and h, are shown. A servo motor drives the inner cylinder
at constant angular velocity £2,,,. For clarity, only the bottom stainless steel plate is shown in the schematic. The locations of the
pressure and temperature sensors together with those of the two resistance probes are also indicated.

the theoretically predicted stationary bifurcated states. The fitted bifurcation diagram allows us to obtain the
amplitude equation parameters, which in turn are used to obtain the predicted probability density functions
(PDFs) of the surface fluctuation amplitude. These distributions are then compared quantitatively with the
experimental PDFs. Additionally, longer measurements in the vicinity of the bistability region are performed
with a two-fold motivation: firstly, we show the effect of increasing the measurement time on the shrinking of
the bistability region and, secondly, we demonstrate that it is possible to observe reversals between the two
turbulent states, namely the axisymmetric base state and the gravity wave one. Thus, this article presents an
extensive comparison between a universal stochastic amplitude equation and an experimental system displaying
large scale dynamics coupled with highly turbulent fluctuations.

The paper is organized as follows: in section 2, the experimental setup and techniques are described together
with the methodologies used for the analysis. The experimental results are presented in the subsequent section 3,
followed with section 4, where the experiments and model are compared. We then finalize with sections 5 and 6
devoted to the discussion and conclusions respectively.

2. Experimental setup and data analysis

2.1. Taylor—Couette setup

The experiments are carried out in a Taylor—Couette (TC) geometry. A schematic drawing of the experimental
setup is shown in figure 1. An outer plexiglass cylinder with radiusr, = 16.60 + 0.02 cm is fixed, whereas the
inner stainless steel cylinder with radiusr, = 2.00 + 0.01 cmrotates (the radii ratio being#, = 77, =0.12).
Thelength of the cylinders is H. = 60 cm. The system is closed by stainless steel plates. The inner cylinder is
driven by a motor (Kollmorgen B-206-CA-34-T) and a servo controller that provides the current necessary to
ensure a constant angular veolcity £2,,,. The motor is coupled to the inner cylinder through pulleys. The annulus
between the cylinders is partially filled with distilled water up to certain height h, creating a free surface. In what
follows, for the most relevant parameters we will introduce dimensionless quantities, using the gap between
both cylinders L = r, — 1 = 14.6 cm and the oscillation period of the gravity wave’s fundamental mode of the
systematrestzy = 1/f; = 0.625 s. The latter is computed using the dispersion relation for gravity waves ina
fluid layer of finite height h, namely w* = gk tanh khg, where gis the gravitational acceleration, k the
wavenumber, andw = 2zf . The fundamental mode of the quiescent system is given by a combination of Bessel
and Newman cylindrical functions of azimuthal wavenumber 1 = 1. For most of the results presented here we
have used a fixed water level hy/L = 1.23, although some results are discussed in section 5 for hy/L = 2.6 and
ho/L = 1.8. The normalized inner cylinder rotationrate f, /f, = £2,,/(2xf, ) is varied in the range 10.4-15.6,
where f,,, is the rotation rate (f, = 16.7-25 Hz). The rotation rate is fixed with a precision of +1rpm,
approximately +0.017 Hz.
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2.2. Relevant dimensionless parameters

The relevant parameters describing the system are the mass density p, the kinematic viscosity v of water, the
gravitational acceleration g, the surface tension o of the air-water interface, the radius of the inner cylinder r;, the
large scale velocityU = £2,,1;, the gap between the cylinders L = r, — 1, and the height of the still free surface h,.
As there are three fundamental physical dimensions involved in the problem, there are five dimensionless
parameters that can describe the system: the Reynolds number Re = UL/v, defined as the ratio of momentum to
viscous forces, is varied in the range 3 X 10° — 4.5 x 10; the Froude number Fr = (,02,,)? / gh,, defined as the
ratio of inertial to gravity forces, is varied in the range 1-5.5; the Capillary number Ca = pvU/o, defined as the
ratio of viscous to surface tension forces, varies in the range 2.9 X 1072 —4.3 x 107%;and finally, two
geometrical ratios, ho/L and the radii ratio 5, = r/7,. To describe the gravity wave instability, the natural choice
for the order parameter is Fr, as it considers the gravity force which is directly related to the occurrence or
disappearance of the wave. A discussion on the choice of the control parameter is left for section 5, where it will
be shown that this is a non-trivial issue.

2.3.Free-surface height measurements and calibration

The appearance of the gravity wave is determined by measuring the height oscillations of the free surface h(t) ata
fixed location near the wall. We determine the height by means of a resistance probe, consisting of two stainless
steel rods with diameter d,,g = 1.14 mm and separated from each other by a distance of 4 mm. The length of the
rods is 50 cm, and they are placed vertically starting from the bottom. The height of the free surface is then equal
to the length of the immersed portion of the rods. They are also radially aligned at a position close to the outer
cylinder (the radial distance from the inner wall of the outer cylinder to each of the rods is 3 and 7 mm). Due to
its electric conductance, the water acts as a resistance between the rods when there is an electric voltage applied
on them (neglecting the conductance of the air). The voltage drop across the rods Vjqp. (t) is inversely
proportional to the water level at that location. A function generator, driving the circuit with a sinusoidal wave
with4V,,_, at 1 kHz, is connected in series to an additional resistance (700 k £2) and then to the resistance probe
(which we define as the resistance between the two rods that are immersed in water). By means of alock-in
amplifier (Stanford Research System SR830DSP), the voltage across the resistance probe is measured
synchronously in frequency and phase-locked with the driving voltage delivered by the function generator,
reducing voltage noise. The analog output of the lock-in is then digitized employing a 14-bit data acquisition
card (NI USB-9001) connected to a computer for storage and further analysis.

As explained above, the height of the free surface can be expressed ash (t) = k/Vj;obe (t), where kis a
proportionality constant that can be obtained by calibrating the probe, i.e. measuring the voltage at different
water levels. Ensuring a constant electrical conductivity of the water, its value remains unchanged. However, in
our setup we noticed that the conductivity of water changed slowly over time as a result of contamination
(primarily due to leakage of bearing grease, but probe erosion or changes in pH are not discarded), so frequent
recalibrations are needed for meaningful measurements. Therefore, a similar second resistance probe with
lengthl,.s = 7.6 cm was located at the bottom close to the outer cylinder’s wall. In such a way, we can have a
reference value of the effective electrical conductivity of the water at any time during measurements, since this
reference probe is always immersed, allowing for consistent and stable measurements of the height of the free
surface over time. Figure 2(a) shows calibration curves performed at different days and their linear fits; one can
observe the inverse proportionality between the voltage of the probe V., and the quiescent free surface height
hy, since the x-axis corresponds to1/h. The curves do not collapse due to the change of electrical conductivity
over days; the slopes of the curves are different, with valuesk; = 192.4 mV cmandk, = 198.4 mV cm.
However, when normalizing the probe voltage with the voltage of the fully immersed reference resistance probe,
these curves collapse and are thus meaningful, as shown in figure 2(b). This procedure ensures that the
calibration curves collapse independent of the electrical conductivity differences that can occur due to residual
contamination present over days.

In order to corroborate the measurements of the height of the free surface obtained with the resistance
probes, we recorded images of the TC experiment using a high speed camera (Phantom V641) at 300 frames per
second, and determine this height also by digital image analysis. The imaged area has 200 pixels in width and
1000 pixels in height, and a spatial resolution of 105.4 pixel/cm. In figure 3, we show a comparison of the
measurement of the wave’s amplitude using these two techniques. Here, R corresponds to the surface oscillation
peak value (wave amplitude) normalized by hy and( ) denotes time averaging. The amplitude measurements
are very close to each other, showing a linear dependence with slope close to one (see the solid line in figure 3).
Actually, we observe (R)probe & 0.95(R)video- The fact that (R)rqpe is 5% smaller than (R)yige, can be attributed
to aresidual signal filtering with the lock-in amplifier, although an optimal time constant was chosen to
minimize this effect. Furthermore, since the partially immersed probe is located at a small distance away from
the inner wall of the outer cylinder (3 mm), its measurement is necessarily lower than the video image because of
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Figure 2. (a) Calibration curves on different days of the resistance probe Vj,rob s functions of 1/h¢. The symbols denote
calibrations performed on different days. The lines represent fits to linear polynomials, with slopesk; = 192.4 mV c¢m (solid line)
andk, = 198.4 mV cm (dashedline). (b) Normalized voltage of the resistance probe using the completely immersed reference
probe.
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Figure 3. Comparison of the normalized wave amplitude measurements obtained with the resistance probe and video acquisition.
The solid line corresponds to (R)probe = 0.95(R )video-

the gravity wave’s radial and angular dependence. Both effects tend to decrease the wire probe measurement
with respect to the one done with image analysis. For our purpose, this systematic difference is small and does
not affect our results.

2.4. Pressure and temperature measurements

Pressure fluctuations in the bulk of the flow are also measured with a dynamic pressure sensor (PCB 113A28),
located at the outer cylinder 10 cm above the bottom plate, and a signal conditioner (PCB 480C02).
Additionally, we measure temperature by means of a 4-wire resistive temperature sensor (RTD probe-Keithley
8681) put directly in contact with the liquid at the outer cylinder, and previously embedded in an epoxy resin
with high thermal conductivity. It is located 9 cm above the bottom of the setup. Although our TC setup does not
have an active temperature control system, we verified that the gravity wave instability is independent of small
temperature variations. For typical increasing ramp measurements (see the description of the different ramp
measurements below), the maximal temperature increment recorded is of ~0.2 °C hr™!, while for a continuous
operation of the motor and the specified volume of water, we have recorded a temperature increment ratio of
~0.3 °Chr™" for long time measurements with the motor continuously running for 8 hours. Such variation of
temperature yields a change of surface tension of less than 1% in a whole 8-hour measurement run. The change
in viscosity is greater: for a2.4 °C temperature change in an 8-hour measurement, the variation in the viscosity is
of about 6%. Since the control parameter is the Froude number Fr, the temperature variation does not change
the critical value for the appearance of the instability.




I0OP Publishing

NewJ. Phys. 17 (2015) 013039 J Martinez-Mercado et al

0.2 T . . . .
(b)
015 m \ Ll
0.15 i L L - ‘
0.1 "
0.1 ‘
0.05
0.05 ® |
[
< i
0 =l |
“©  _0.05
-0.05 |
-0.1
0.1 Y, J
-0.15
-0.15 : : : : ‘ : : : : : :
200 400 600 800 1000 1200 1400 740 750 760 770 780 790 800
t/'c0 t/‘co
Figure 4. (a) A typical timeseries of the normalized free surface oscillation 6 () for Fr above the critical value. (b) Zoom-in of the
timeseries in (a), where the slow variation of the envelope R(T) is shown (dashed line). In the inset, the raw data (light gray solid line)
and band-pass filtered signal h,,,y. (black solid line) at the gravity wave frequency are displayed with more detail.

2.5. Analysis of free-surface fluctuations

The free surface height is obtained from the resistance probe voltage ash (t) = I ef X Vief / Virobe (£), being Vi the
voltage of the totally immersed reference probe. As the inner cylinder rotates, there is a decrease in height at
small radius, whereas the height increases at larger radii due to the axisymmetric flow and mass conservation
(the axisymmetric base state surface profile follows a ~7~* law, consistent with the mean azimuthal velocity ~r "
[12]). With respect to this axisymmetric state, fluctuations also develop. Above a critical value of the rotation
rate, a gravity wave grows, breaking the azimuthal symmetry of the free surface. The normalized surface
fluctuations, either noisy below the critical value or dominated by an oscillating component above it, are
characterized by sh = (h(t) — (h(t)))/ho. When the gravity wave sets in, 5h can be expressed as:

S6h(t, T) = R(T) cos (2t + ¢) + h.o.t., (1)

where Q is the wave angular frequency and R(T) is the normalized envelope of the free surface’s oscillations that
varies slowly in a timescale T, which is much slower than the wave oscillation period 2z/£2. h.o.t. stands for higher
order terms that include wave harmonics and noise. The slow evolution time scale is expected to be related to the
fastscale, T = at, with a a small parameter. The order parameter is then defined as the envelope R(T). From here
on, we will refer to it simply as R. To determine the slow dynamics of R, we calculate the fast Fourier transform of
the signal, which has a maximum at the wave’s frequency, and filter out the contribution at other frequencies, i.e.
only information within a frequency range f,, + f iskept, where f, = € /27 is the wave frequency and of is half
of the frequency band considered. Typically, f, ~ 1.75 Hzand we use 6f = 0.1 Hz. Then, the signal is transformed
back into the time domain. This filtered signal is called /.y, Finally, the magnitude of the envelope of this filtered
signal, calculated with the Hilbert transform, allows us to determine its mean value (R), its most probable value
(mode) and its probability distribution in general. The aim of bandpass filtering the free surface’s height timeseries
centered at the wave’s frequency is twofold: first, it will allow us a better comparison with a universal amplitude
equation model, which is derived for the critical mode; second, as it eliminates the slow variation of the signal over
time, it ensures that the envelope does follow the maximal amplitude of the oscillations, without oscillating itself as
itis observed for non periodic signals.

Figure 4(a) shows a typical measurement signal of 6/ (¢) for Fr above the critical value, where the gravity
wave state is stable. We observe that starting from a quiescent state, there is a transient time in which the gravity
wave grows until it reaches a steady stable state at# ~ 6007;, with an amplitude that fluctuates in time. In
figure 4(b), azoom in of 6h () together with h,,. and its envelope R, used to define the normalized wave’s
amplitude, are plotted. One observes the slow fluctuations of the envelope. A closer detail of the raw and filtered
signal at the wave’s frequency is displayed in the inset of figure 4 (b).

2.6. Rotation rate ramps

Different types of rotation rate ramps were performed for determining the bifurcation diagram: increasing and
decreasing f,,,. For the increasing rotation rate ramps, we start the experiments at a small value of Fr where the
turbulent axisymmetric base state is stable. The measurement time is 7,, = 14407, (15 min) followed by a
settling down time where the motor is stopped allowing the flow to become quiescent. Other measurement
times are tested and details are given below (section 3). The settling down time in the present experiments is
9607, (10 min) and was determined by analyzing the signal of the pressure sensor. Next, we increase the motor
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Figure 5. (a) Bifurcation diagrams of the normalized mean envelope (R), obtained with increasing ([]) and decreasing (e) rotation
rate ramps. The solid black line represents the average of all ramps considering the state of the system. (b) Standard deviation of the
envelope for both the base state (O) and gravity wave state ([]). For both (a) and (b), the bistable zone lies between the vertical dashed
lines.

velocity again and repeat the motor on-off cycle up to a certain maximal motor rotation frequency, namely
fu/fo = 15.6 (f,, =25 Hz). With this kind of ramp, the appearance of the gravity wave is independent for each
measurement. For every rotation rate, the system starts from a quiescent state and therefore it is possible to
obtain a maximum value of Fr for which the turbulent axisymmetric state is stable, for a given measurement
time. Additionally with this type of ramp, it is also possible to measure the growth rate of the order parameter as a
function of Fr, which gives us information on how a perturbation grows close to the bifurcation. The other type
of rotation rate ramp is a decreasing one, where the starting rotation rate of the motor is set large enough so that
the gravity-wave state has already appeared. We measure for 7,, = 14407, (15 min) and after that we decrease f,,,
without stopping the motor. With decreasing ramps’ measurements we can then find out the minimum Fr at
which the gravity wave state is stable, allowing us to determine the bistability region. With both types of ramps,
the hysteresis loop can be constructed.

For subcritical bifurcations in turbulent flows, an important question is whether alternating transitions
(reversals) between the lower and upper branch states within the bistable zone occur as an effect of the turbulent
fluctuations. This means that within a region inside the bistable range of Fr, turbulent fluctuations could
produce transitions from the base state to the gravity wave state and viceversa. Short measurements do not allow
the required time for fluctuations to trigger such transitions and, therefore, longer time measurements are
necessary. Thus, we also perform experiments with a measurement time z,, = 460807, (z,, = 8 h) in the bistable
zone at constant f,,.

3. Experimental results

We present firstly the bifurcation diagram obtained with increasing and decreasing ramps for hy/L = 1.23 and
7., = 14407, in figure 5(a). We show data of six increasing and six decreasing rotation rate ramps. Each data
point corresponds to the time average of the measured envelope (R) for a given realization. We also present the
average of all realizations (as a solid line), which considers the state of the system (i.e. considering the data only
for the upper or the lower branch). The bifurcation is subcritical, as for both increasing and decreasing Fr the
amplitude varies discontinuously, presenting sudden changes around particular critical values. The bistable
region exists within the range Fr, ; < Fr < Fr ,, where Fr, 4 (Fr,,) is the critical Froude number determined with
decreasing (increasing) ramps. We obtain Fr, ; = 3.05and Fr; , = 3.33 forz,,, = 14407,. However, both Fr, ; and
Fr;,, depend on 7,,,, more specifically on the rate of change of the control parameter (discussed below). For
example, with 7,, = 28807, but fewer realizations we obtain Fr, ; = 3.08 and Fr , = 3.19.

Within the bistability region, one observes that there is a larger dispersion between the different ramps

realizations in both branches. In figure 5(b), the standard deviation of the envelope oy, as a function of Fr is
N 2\1/2

% oi
N

shown. Since we have several ramp realizations, we calculate this standard deviation as o = , where o;

is the envelope’s standard deviation in the ramp realization i, and N is the total number of ramp realizations. It is
clear that, as the system approaches the bistability region, either from the base state or from the gravity wave
state, the surface fluctuations increase, reaching a maximal value within this zone. Here, by surface fluctuations
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Figure 6. Frequency-forcing diagram of the power spectrum in a decreasing ramp obtained with the pressure probe. It can be observed
that once the wave of the free surface sets in, there is also a symmetry breaking mechanism present in the bulk flow as the power
spectrum of the pressure signal has a peak at the wave’s frequency f, /f; ~ 1.1 (f, = 1.75Hz) and persists for Fr 2 3.1.

we mean the non-coherent noisy fluctuations of the turbulent base state or the variations of the envelope for the
gravity wave state. In both cases, we recall that we are measuring the fluctuations centered around the wave
frequency. This behavior is reminiscent of the fluctuations of an order parameter in a classical phase

transition [37, 38].

We have also measured the pressure fluctuations at a fixed position on the wall below the free surface at rest.
In the previous work on a TC system with free surface [12], it was reported that the instability appears in the
entire flow, bulk and the free surface. Using ultrasound in the bulk, time traces of the azimuthal velocity above
the instability onset were measured. The velocity signals showed oscillations with the same frequency of the free
surface height fluctuations and pressure measurements. We verify this and present a frequency-forcing diagram
of the power spectrum of the pressure signal in figure 6 for a decreasing ramp realization. The use of a pressure
sensor is also easier to implement compared to ultrasound velocimetry techniques. It is possible to observe the
existence of the gravity wave state in the diagram for Fr 2 3.1; the spectrum shows a peak with f, /f) =~ 1.1
(fw=1.75 Hz), the harmonics of this fundamental frequency can also be distinguished. This makes evident the
close relation between the flow structure in the bulk, the boundary layer and the free surface. When the
instability develops in one of them, then it can be reflected in the other flow regions (see [28—-31]).

In the range of Fr where the two states coexist, one would like to observe a sequence of transitions between
the turbulent base and gravity wave states. Aiming at such observations, we perform long time measurements
with 7, = 460807, (8 hr). In figure 7(a), we show the timeseries of h,y,y, for Fr=3.11. From the signal one can
clearly observe transitions between the turbulent base state (small /1,y values) and the gravity wave state (larger
hyave values). Notice for instance that in the vicinity of timest = [0.7, 2, 3.5, 4.2] X 10z, the normalized
amplitude reaches values between 0.07-0.10, which correspond to a completely developed gravity wave state.
The system can remain in either of the states for times ~30007, — 60007, (~30—60 min), that can be longer than
typical measurement times in an increasing or decreasing rotation rate ramp, and then suddenly jumps back to
the previous state. The turbulent fluctuations in the system are responsible for the reversals between both states:
they can trigger the growth of the wave but they can also suppress it. These jumps occur many times during the
measurement showing the importance of turbulent induced noise for the transition between the stable states in
this subcritical bifurcation. Although we carried out long time measurements at many Fr within the bistability
zone, we observed this behavior just in a narrow gap of Fr, namely3.03 < Fr < 3.15. Atlower Fr, the system
remained in the turbulent base state and no wave grew and developed or, for larger Fr, after some time (that can
be of order 10z, — 10%z,) the gravity wave state developed and persisted for the rest of the long time
measurement. The narrow zone where reversals occur, is related to the point at which the potential of the two
different states are equal and the system has the same probability to be in either state, known as the Maxwell
point [39] within the framework of amplitude equations. The signal obtained with the pressure probe also shows
the transitions between these two stable states as it can be observed in figure 7(b), where a frequency-time
diagram of the logarithm of the power spectrum of the pressure signal is presented. In the spectrum thereisa
peak at the frequency of the wave f,, that intermittently appears and disappears. When the amplitude of the wave
islarger (t & 2 X 10%*zyandt ~ 3.5 X 10*z), one can even distinguish the harmonic at 2f,,. In order to observe
the correlation between the free surface oscillations time-series and the pressure signal, we also obtain the power
spectra of the amplitude oscillations and get the trace at f,,. Figure 7(c) compares these two traces, a high
correlation between the information of the free surface and that of the bulk is remarkable. In fact, the value of the
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Figure 7. Long time measurements within the bistability region at Fr = 3.11. (a) Time-series of h,. showing reversals between the
turbulent base and gravity wave states. (b) Frequency-time diagram of the logarithm of the power spectrum obtained with the pressure
sensor. Sudden jumps between these two states at the wave’s frequency f, /fy ~ 1.1 (f, = 1.75 Hz) are evident. Harmonics are also
observed; (c) comparison between the traces of the power spectrum density (PSD) of both the pressure signal (o) and the wave
amplitude ((J), both at the wave’s frequency f,,. The wave amplitude PSD at f,, has been multiplied by a factor 10* for better
comparison.

correlation coefficient is 0.992. Therefore, this is strong evidence of the close interplay between the flow
structure, fluctuations and free surface.

4. Comparison with amplitude equations

4.1. Quintic subcritical amplitude equations with noise

As we have seen in the previous section, the influence of noise is very important on the behavior of our system
and itis of interest to compare the experimental data with a phenomenological model, namely an amplitude
equation with a stochastic noise term [13, 32, 33]. Particularly, our model is based on the theoretical analysis
donein [13, 33], but we limit our analysis to the case of a stochastic quintic amplitude equation with additive
noise to model the observed subcritical bifurcation.

Amplitude equations are the simplest equations that help us to model the qualitative change in the dynamics
of a system close to a bifurcation. A typical example of such systems are pattern-forming ones. This is the case of
the appearance of the above described surface gravity wave. For the free surface height, one can write its temporal
and spatial evolution as: h (t, §) = A(T)e!“*~"9 4 c.c. + h.o.t., where A(T) is a complex function that
represents the slow evolution of the amplitude’s oscillations of the free surface for large time scales (1), c.c. is the
complex conjugate of the first term and h.0.t are higher order terms. Fulfilling the invariants in time and space
(e.g. due to symmetry of the wave if A is the solution of the partial differential equation that describes the
dynamic, then its conjugate A" should also be a solution), and considering an additive noise term, the simplest

9
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Figure 8. (a) Logarithm of the envelope R in a typical increasing ramp measurement at Fr=4.11. The part that lies between the vertical
solid and dashed lines is used to fit a linear polynomial in order to calculate the growth rate s. The arrow shows the value of (R), the
solid line 0.2 (R) and the dashed one 0.8 (R). (b) Growth rate of the wave’s amplitude obtained with the increasing ramp
measurements. The solid line represents a linear fit of the data, from which we obtain Fr, , = 3.17 + 0.08 andazy = 0.033 + 0.004.

differential equation that describes the evolution of the complex amplitude A(T) close to the instability for a
subcritical bifurcation with hysteresis, bistability and with an additive noise term reads:

OrA = €A + V|APA — y|AP*A + JRE(T), (2)

where A = R exp (i) is the complex amplitude of the free surface oscillations, e the reduced control parameter,
visrelated to the width of the bistable region (usually known as the detuning parameter), y is a scaling parameter,
and x is the noise intensity. The stochastic term & (T') is a Gaussian white noise. This type of equation has been
widely used in describing the appearance of bistability. It was first obtained in the context of Rayleigh—Bénard
convection [35]. In absence of noise, fore < —v%/(4y) the only stable solution is A = 0 (turbulent base state); for

—1%/(4y) < € < 0 there are two stable solutions, A=0and|A|? = (v + \/v* + 4ye)/(2y) (base and gravity
wave states) and a third unstable solution|A|? = (v — \/v? + 4ye)/(2y); fore > 0 there is one stable solution

|A|? = (v + \/V* + 4y¢)/(2y) (gravity wave) and A = 0 is unstable (base state). In our case, the reduced control
parameterise = (Fr — Fr,)/Fr. . The measured normalized envelope R of the free surface oscillations, as
defined in equation (1), correspondstoR = |A|.

As mentioned earlier, we can measure the growth rate s of the gravity wave’s amplitude as a function of the
control parameter with the increasing ramp measurements. One expects both a linear dependence of s with Fr
and an exponential growth in time close to the bifurcation due to the linear term of equation (2). To obtain the
growth rate sin an increasing ramp measurement above Fr,, we calculated the mean value of R in the gravity
wave state. Then, we select the part of the growing envelope signal that lies between 0.2 (R) and 0.8 (R), for which
we indeed observe an exponential growth. Figure 8(a) shows the logarithm of the envelope, the signal between
the vertical lines is used to perform the linear fitting. Figure 8(b) shows the growth rate s as a function of Fr
obtained with increasing ramp measurements. In such ramps, for values of Fr beyond Fr, ,,, the wave will always
start growing from the turbulent base state to the completely developed gravity state. In this plot, alinear
dependence of sis observed for small €. A linear fit is performed for F. < 4.5, for which we obtain
Fr.,, = 3.17 + 0.08, which is very close to what is obtained from the bifurcation diagram (for z,, = 28807,
Fr., = 3.19). From this linear fit, one can also calculate the proportionality factor a that relates s o ¢, which
itselfis derived from T = at. Indeed, considering the linear term in equation (2), and plugging in the expression
for the amplitude close to the bifurcation R = Ry, exp st, one getss = ae. The value obtained is
azy = 0.033 + 0.004 (@ = 0.053 + 0.007 s~ '), which puts in evidence the separation of timescales.

Equation (2) is of Langevin type, and it has an associated Fokker—Planck equation for the distribution

probability P (A, A*; T) of the critical mode amplitude A (A" denotes the complex conjugate) [36]:

OrP = aA{ —eA — V|APA + y]AJ'A + gaA*}P + aA*{ — eA* — U|APA + 7]AJA + gaA}P, (3)
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Figure 9. Bifurcation diagrams of R versus Fr (a) and R*versus Fr (b), using both the mean (o) and the mode (*) with 7,, = 14407,.
The solid line in (b) is a linear fit to the data obtained with the mode considering Fr > 4.5.

for which the stationary probability distribution of the modulus of A reads [33]:

elAf  v|AP}Y y|AlP
Pa = cla] ewp| <L, 20 _7BE) @
4n 61
the most probable value (mode), obtained by setting
oP
— =0, 5
oA] (5)
satisfies thus the following equation:
Fr — Fr; n
e=——=—v|AP +y|A' - ——. (6)
= AR + 7l — Sl

4.2. Bifurcation diagrams
We consider the experimental bifurcation curve obtained with increasing and decreasing ramps and
7,, = 14407,. The bifurcation curve can be constructed either with the mean or mode values of the free surface’s
oscillation. In practice, it is easier to use the mean values, as for the mode, one needs to have information of the
probability distribution functions (PDFs). In our experiment, the information of the PDFs is available, so we
presentin figure 9(a) the bifurcation diagram obtained using both statistical parameters. There is no large
difference between the curves.

Next, we reconsider the stationary solutions (0rA = 0) of the deterministic part of equation (2):

v+ U2+ dey

2y

RP=0 and R? = (7)
Thus, for large €, the model predicts R* « €. Experimentally, we indeed observe this proportionality. Figure 9(b)
shows the bifurcation diagram in this manner, plotting R* as a function of Fr for both the mean amplitude and
for the mode amplitude. The curves show a linear dependence on Fr, which indicates the proper choice of a
quintic subcritical bifurcation. Moreover, if we consider large values of € in equation (7), and that v is much
smaller than y for a relatively small bistability region, we obtain R* ~ ¢/y. From figure 9(b), we use the values of
R*with Fr > 4.5 and fit them with a linear polynomial. Since we are fitting R* = aFr + b,and this should be
equaltoR* = ¢/y,thena = 1/(yF.) andb = —1/y. With the linear adjustment, we obtainy = 1474 + 342.

Itis worth mentioning that in [12], the scaling R* « € was demonstrated for large €, with
é = (Re — Re,)/Re., which does not contradict our current results. We recall that Re « 2, and Fr « .2, thus
€ ~ Je.Thus, both scalings are in fact in mutual agreement.

Because (R) is close to the mode of R, we can fit both bifurcation curves with the model given by
equation (6). Figure 10(a) shows the bifurcation diagram using the mean along with the fitted curve. We observe
that the model describes well the experimental curve. However, the width of the bistable zone is narrower for the
fitted model. In figure 10(b), the bifurcation diagram obtained with the envelope’s mode and the fitting curve
are shown. Again, we observe that the model curve describes well the bifurcation diagram, having the larger
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Figure 10. (a) Comparison of the experimental data using the mean envelope with a fit considering the amplitude equation with
stochastic noise term (equation (6)). The inset shows a magnification around the theoretical bistability region. (b) Fit and bifurcation
diagram using the mode. The symbols % correspond to the two R,,, of the bimodal distribution obtained with Fr=3.11 and

7., = 468807. Error bars correspond to the standard deviations of the Gaussians distributions that are used to fit the bimodal
distribution (see inset in figure 13).

difference in the bistable zone, where it fails in predicting its width. The values of the parameters obtained with
the fitting using the mode are the following: Fr, , = 3.04 + 0.08,v = 7.9 + 4.6,y = 2286 + 184,and
n = (8.6 + 0.1) X 1075, Asexpected, v < y for this subcritical bifurcation that presents such a small bistability
region and relatively small discontinuities. The larger uncertainty in v is due to the small amount of data in the
bistability zone compared with the stable branches at lower and larger Fr. Despite the good general agreement,
the width of the predicted bistability region seems underestimated. However, we recall that the model assumes
an infinite time, whereas for the experiments this width depends on the ramp rate, becoming narrower as the
ramp rate decreases (in our case, a larger measurement time for a fixed increment of rotation rate). With this
situation, the turbulent fluctuations in the bulk have a higher probability to trigger a jump into the stable states.
We can now compare the values of y obtained in two different ways. Its value using the approximation of
equation (7) for large Fr is smaller than the value obtained by fitting the complete bifurcation diagram
(equation (6)). However, if we assume that R is very large, then in equation (6), the dominating term will be
again yR*, yielding R ~ (e/y)"*. Consider R’ ~ (e/y’)!’* as the dominating term in equation (7) for very large R.
One expects in the limit of large amplitudes, that the ratio R/R’ & 1. Indeed, the values of y obtained by fitting
the bifurcation curve or by using equation (7) as explained above, yield R'/R = (y/y')"* = 1.12. Thus, the
difference in y is reflected in a small difference in the predicted R for a given ¢; this can be considered as a result of
small errors in the data fitting procedure.

4.3. Effect of increasing the measurement time

Motivated by the difference in the predicted and measured bistability region width, we carried out different
ramp measurements varying the measurement time, specifically for 7,,/7y = 480, 1440, 2880, 11520 and 46080
(5,15, 30, 120 and 480 min respectively). This is done with a fixed difference of the rotation rate Af,, / 'f, = 0.104
(10 rpm) for all 7, except the longest one, for which the rotation rate increment is Af, /f, = 0.052 (5 rpm). Also,
for this longest measurement time, only results for increasing ramps are reported. The bifurcation diagrams for
these different ramp rates of the order parameter are shown in figure 11. Solid (open) symbols represent the data
obtained for decreasing (increasing) ramps. All the data points correspond to averages. For all 7,,, except the
largest measurement times (z,,/7o = 46080), these averages are computed following this simple procedure: if for
the whole measurement time the system remains in the turbulent base state, then the average is computed for the
complete time series; if during the measurement time the system bifurcates, then the average is computed
restricted to times larger than the transition time to the gravity wave state; finally, if the time series shows
reversals, then the average also considers the complete signal.

For z,,/7y = 46080, we only present data for which reversals were observed. In this case, we separated the
envelope in regions for which the system is in either the gravity wave state or the base state. This is done using a
lowpass filter as done in [13], with a frequency cutoff of 0.7 mHz and a threshold value R, = 0.03. We also impose
an additional constraint in order to distinguish the developed gravity wave state from a strong fluctuation,
namely the identified event has to endure longer than three times the typical growth time of the gravity wave
(~5507, from figure 4). Thus, the averages were performed separately for each state. The error bars correspond
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Figure 11. Effect of the measurement time on the width of the bistable zone, (R) for 7,, = 4807 (°), 7, = 14407 (), 7:n = 28807 (©)
Ty = 115207, (v) and 7,,,/79 = 46080 (5% ). The number of increasing (open symbols) and decreasing (solid symbols) ramp
realizations for each 7,, is 3, 6, 2 and 3, respectively. For 7,,/7y = 46080, only one increasing ramp is included. For 7,,,/7y = 480, the top
right point corresponds to a realization that did not reach a steady state value. The width of the bistability region for each z,,, is
indicated between the vertical lines, with increasing z,, from top to bottom. For 7,,/7y = 2880, 11520 and 46080, these regions
correspond to parameters for which reversals between both states are observed.

then to the standard deviation of these averages. This simple procedure is consistent with a more sophisticated
one presented later (figure 13).

Figure 11 demonstrates that the width of the bistability region depends on 7,,,. For the two shortest
measurement times, 7,,,/7y = 480 and 1140, no reversals were observed. Instead, the system shows hysteresis,
presenting a dependence on the system’s history. For these two cases, the upper critical Froude number Fr; ,, is
computed as the average between the last Fr in the turbulent base state and the first Fr that presents a transition
to the gravity wave state. For the computation of Fr, 4, a similar procedure is used considering the last and first Fr
for which the gravity wave and base states are stable. For the two larger times, 7,,/7y = 11520 and 46080, the same
procedure is implemented except that it is between states presenting reversals and either the base or gravity wave
states depending on the side of the bistability region. For the intermediate time z,,,/z7, = 2880, reversals were
observed for only some of the realizations, so the previous procedures were applied on each realization
accordingly.

For the fastest ramp, the bistable zone is very large as the gravity wave sets in at a value of Fr, ,, ~ 3.8, whereas
for the decreasing ramp at this ramp rate, the gravity wave state lasts down to Fr, ; ~ 3.0. Forz,, = 14407, the
bistable zone exists within the range3.05 < Fr < 3.33, which represents a hysteresis range of ~10%. If one
considers the data for 7,,, = 115207, the width of the bistable zone is considerably reduced: Fr. , ~ 3.14 and
Fr. 4 = 3.03. We observe that this width does not change significantly for z,, = 460801z, for which we obtain
Fr., =~ 3.15and Fr, ; ~ 3.03. As expected, if one measures for longer times, the probability of the inherent
turbulent fluctuations to induce a transition from one state to the other increases. In the bistable zone, noise is of
great significance to determine the stable state of the system and its long term dynamics.

Here, we stress that the bistable zone, also referred to a hysteresis region, depends on z,,, for short time
measurements. In this case, the observed stable state depends on the system’s history. For larger 7,,, we approach
the infinite time asymptotic limit, for which the system forgets its history and shows reversals between the two
metastable states, induced by turbulent fluctuations. In this limit, the width of the bistable zone does not seem to
depend anymore on 7, at least for the realizations with 7,,/7y = 11520 and 46080 that we have measured.
However, for even longer time measurements, we do not discard that the width of the bistable zone where
reversals are observed could increase.

4.4. Probability density functions of surface fluctuations

Once the parameters have been obtained by fitting the experimental data, these are used in equation (4) to
compute the model PDFs, and compare them with the experimental ones. Figure 12(a) shows the experimental
PDFs for Fr = [2.43, 2.73, 2.89]in the lower branch, and for Fr = [3.5, 4.11, 4.77]in the bifurcated state. For
low Fr, the mode (most probable value) of R is small, increasing with Fr. The two stable states, either turbulent
base or gravity wave states, are clearly distinguishable in two different regions of R values. In figure 12(b), the
PDF of the experimental data with Fr = 2.68, in the base state, is shown together with two fits: the dashed curve is
obtained by using the values of the parameters by fitting the mean envelope in the bifurcation diagram (see
figure 10(a)), whereas the solid line is obtained by using the parameters’ values obtained by fitting the envelope’s
mode (see figure 10(b)). For the dashed line, the model overestimates the peak of the distribution and has a
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Figure 12. PDFs of the normalized envelope of free surface oscillations R. (a) Several PDFs for the base and gravity wave state for
several Fr. (b-c) Comparison between the experimental and theoretical PDFs for the base state at Fr=2.68 (b) and the gravity wave
state at Fr=4.11 (c). The theoretical PDFs are computed using the parameter values obtained when fitting the bifurcation curve, either
using the mean (dashed line) or the mode (solid line).

larger standard deviation, contrarily, when using the values obtained by fitting the envelope mode, the model
PDF is on top of the experimental one. It is worth remembering that the stationary probability distribution is
obtained for the most probable value, a better collapse with the experimental data that used the mode is therefore
expected. The different results observed when using the mean or mode information for the PDFs cannot be
observed so easily in the bifurcation diagram, as for these unimodal distributions, the two statistical measures
(mean and mode) are close to each other. In figure 12(c), the experimental PDF for Fr=4.11, already in the
gravity wave state, is shown together with the fitted PDFs. Again, two curves are shown, which correspond to the
different data available to construct the bifurcation diagram as explained above. In this case, there is an
agreement on the location of the peak for the two curves, but the agreement on the width of the distribution is
better when using the mean value rather than the mode, as one can observe with the dashed curve. The solid
curve, corresponding to the fitting using the mode, has a smaller standard deviation than the experimental PDF.
We discuss further this issue in section 5.

Finally, we also show in figure 13 the PDF obtained at Fr= 3.11 for the longer time measurement in the
bistable zone (z,, = 460807,). The PDF is now a bimodal distribution, although the second peak is broader, thus
not very well defined. From this curve, one can obtain the two most probable values and compare them with the
bifurcation diagram obtained with lower z,, (figures 10(b) and 11). To achieve this, we use a very simple solution
which considers a functional G(R) consisting of the addition of two Gaussians to fit the experimental PDF, i.e.
G(R) = Gi(R) + Gy (R)withG, , (R) = C; ,e~(R=#.)"/2002 wye are interested in the values of u,, jt,, 6, and 5.
Although the choice of this functional can be questioned, it quantifies roughly and easily the location of the
peaks of the PDF to compare with the bifurcation curve. In the inset of figure 13, the PDF and its fitting are
plotted in logarithmic scale, although the fitted curve does not describe well the tails of the experimental data,
one can still use the values of 41, and i, as a quantitative estimation of the peaks of the bimodal distribution
(u, = 0.017, 4, = 0.049,0; = 0.010 and 6, = 0.023). The comparison of these two values in the bifurcation
diagram obtained with the mode is shown in figure 10(b). The agreement is good, although a smaller value is
obtained with the longer measurement time. We attribute this difference to the finite time measurements as well
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Figure 14. (a) oy of the PDFs for experimental data (o) and model considering the mode amplitude for the fitting (-). (b) (ﬂhz) asa

function of Fr obtained from the average of the six increasing and decreasing rotation rate ramps for 7,, = 14407;. The horizontal
dashed lines correspond to average values obtained for the base state ,/ (17,,2 ) = 2.5 X 107> and the gravity wave state
J{1?) = 3.7 x 107%. The averages are performed for all Fr below 2.78 and above 3.36, respectively.

as the broadness of the distribution around the highest R values, which results in a larger ¢, value that is
considered as an estimate of the error in the value of y1, (error bars in figures 10(b) and 11). We can also compare
these values with those presented in figure 11, which considers different ramp rate measurements. For Fr=3.11,
the simpler procedure applied for the largest z,,, results in(R) = 0.021 + 0.011and(R) = 0.054 + 0.020 for the
base and gravity wave states respectively, which are consistent with what we obtain from the data of figure 13.

5. Discussion

5.1.Model adjustment and fluctuations

As we have seen in the previous section, the model describes well the bifurcation curve but above the transition it
fails to capture the noise level of the experimental PDFs. To have a better understanding of this problem, we
compare the theoretical and experimental standard deviation of the fluctuations. Figure 14(a) presents these
quantities as functions of the normalized envelope’s mode. The data for small amplitudes (in the lower branch
of the bifurcation diagram) show that the fluctuations increase monotonically. Above the bifurcation, they
decrease and nearly saturate far away from the transition. The experimental standard deviation is the same as the
one presented in figure 5(b). The theoretical one is computed by numerical integration of equation (4),
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Figure 15. (a) Standard deviation of the pressure signal filtered within a frequency band centered at the wave frequency, op, asa
function of Fr. In the inset, op versus R,,,.

op = \//Ow R?P(R)dR — ( fow RP(R)dR)Z. (8)

Here, we used the values of the parameters as obtained when fitting the bifurcation diagram for the mode.
However, a full quantitative agreement of the model standard deviation and experiments is not achieved. As
already observed with the theoretical PDFs, when the mode amplitude is considered for the fitting, fluctuations
are well described in the base state, and are underestimated in the gravity wave state. A possible explanation
might be that the noise behaves differently in both states: in the lower branch, the noise intensity is different than
in the bifurcated gravity wave state, as also observed by de la Torre and Burguete [ 13]. Thus, a multiplicative
noise term in the subcritical amplitude equation would have a better quantitative agreement with experiments.

In order to make evident the differences of the amplitude fluctuations, we calculate the departure of the
filtered signal from the mean wave oscillation

nh(t) = hwave(t) - <R> cos ('Qt + d))) (9)

the typical variations with respect to the mean wave oscillation. We then fit a sinusoidal function to f,,y.(#) and

compute,/ (’7;,2 ), shown in figure 14(b) as a function of Fr. We note that the fitting procedure has to be done
with some caution. The wave frequency £2 is obtained from the Fourier transform of the complete /1,y time
series. The average R is the one obtained from the envelope analysis. So, the only fitting parameter is the phase ¢,
for which we observe phase noise, with slow variations compared to 2z/€2. This is reflected in the fact that k.
is randomly in advance or behind the fitted signal if one uses a single fitted phase ¢. This phase noise is indeed
expected theoretically from the complex amplitude equation (2).

Thus, for simplicity, we perform local fits, dividing the times series in sections of ten oscillations of period
27/$2, each with a fitted phase ¢. In this way, we concentrate on the fluctuations of the signal’s amplitude,
whereas we leave for a future study the characterization of the noisy dynamics that is observed for ¢. Thus, from

figure 14(b), we indeed obtain that after the transition occurs, the magnitude of /(7,7 ) changes, showing that
the noise intensity in the base state and bifurcated gravity wave state are different. This fact explains why in the
PDFs there was only a good agreement in one of the states.

In section 3, the evidence is provided that the flow as a whole bifurcates (as the spectra of the pressure signal
shows in figures 6 and 7). This fact is observed clearer if one filters the pressure signal within a frequency band
centered at the wave frequency, as done with . The calculated standard deviation of this signal (6p) is shown in
figure 15 as a function of Fr. Remarkably one observes a similar behavior of the pressure noise as in the
amplitude bifurcation diagram. Another feature of this curve is that the error bars are larger within the bistability
zone. This result is very interesting, as it shows that the bifurcation of the system can be determined without
needing the information of the free surface. Since the bifurcation diagram of the free surface oscillations shows a
similar behavior as figure 15, one expects that o is proportional to R,,,, which is verified as shown in the inset of
figure 15. Additionally, we have verified that op also scales as €'/* for large €, which confirms that once the
oscillating part has been removed, pressure fluctuations are governed by the envelope wave fluctuations,

Op ~ Rm-
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Figure 16. Bifurcation diagrams described by different control parameters, using Fr (a) or Re (b). The symbols correspond to: ([(])
[12], (v) previous setup [34] and ({)) this study.

5.2. Choice of the control parameter

We would like to draw attention to the proper choice of the control parameter. The previous work on a gravity
wave instability in a TC geometry [12], used Re as the control parameter for the system. We propose to use Fr
instead, as it considers the gravity force which is directly related to the occurrence or disappearance of the wave.
In figures 16(a) and (b), we show bifurcation curves using Fr and Re as the control parameter, respectively. The
data displayed in these figures correspond to three different setups, namely: the present experiment, data from
Mujica and Lathrop [12], and data obtained in a previous TC setup in our lab [34]. We compare the data for
decreasing ramp measurements with /L = 2.6 that for the case in [12] corresponds to a height of the free
surface at rest of iy = 50 cm, for the case in [34] corresponds to a height of iy = 33 cm, and in our case to

ho = 38 cm. Although the ratio ho/L is kept fixed in the three different setups, the data clearly do not collapse as a
function of Re. The data are much closer to collapse on a single curve when Fr is used as the control parameter.
We also carried out measurements with hy/L = 1.8 and compared them with the data of [12], the results were
similar: there was no complete collapse of the curves. Still, we have chosen Fr as the control parameter as the
difference is smaller compared to Re.

Besides some minute differences between experimental facilities that are not fully controlled, like axis
centering or mechanical vibration level, a possible explanation for the lack of collapse between the different
experiments is a large sensitivity of the threshold and wave amplitude to small variations in the radii ratio 7.
Indeed, the value of 77, in the present experiment is 0.12, slightly lower than in the previous experiments in which
1y = 0.128 [12] and 7, = 0.127 [34]. Some improvement in the collapse between the different data sets can be

obtained by including some dependance on, in the bifurcation diagram, for example, by using Fr / 170‘: as the
control parameter with { &~ 4. However, this is not included since the available data is not sufficient to establish
the correct dependence on 77,; more measurements are required to establish the influence of 7, on the
bifurcation.

5.3. A possible origin of the instability

The mechanism at the origin of the gravity wave instability is an important open question. In [34], the linear
stability of the free surface of an axisymmetric TC flow was studied under the approximation of inviscid
potential flow, in which the non-zero circulation is given by a line vortex at the axis (outside of the physical
domain limited by the inner and outer radii). Associated to such potential flow, there is an azimuthal velocity

vy ~ 1/r and a free surface ~1/r%, which corresponds, well away from the boundary layers, to the experimentally
measured mean flow of the base state [12]. Despite some difficulties regarding the convergence of the results for
large rotation rates or truncation dimension, the predicted modal frequencies showed good agreement with the
measured peaks of the spectra [34]. There was, however, no indication of linear instability. Despite this negative
result, there is an aspect of the inviscid stability problem that may shed light on the origin of the instabilityina
way that is consistent with a large sensitivity of the bifurcation on the radii ratio #,: the possible development of a
critical layer that enters the physical domain from the inner cylinder as the rotation rate increases.

A critical layer is a region in which the phase velocity of the mode equals the advection velocity of the mean
flow at which there is a singularity of the inviscid stability equations [1, 40]. At such aregion, viscous or
nonlinear effects must be included in order to connect the inviscid solutions at both sides of the critical layer.
The stability properties of the mode can therefore change, as is the case for plane Poiseuille flow. But even if all
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the modes remain stable, the receptivity of the flow to the forcing of the turbulent fluctuations can be greatly
enhanced at critical layers of a harmonic component of the forcing, as described by McKeon and Sharma for the
pipe flow case [41]. In that open flow case, they used it to describe very large scale fluctuations. As we deal here
with a closed flow, one might expect that similar mechanisms could here lead to the development of a coherent
structure.

6. Conclusion

We have presented an experimental work on the gravity-wave instability of a Taylor—Couette flow with a free
surface. The work aims at studying the nature of its inherent turbulent noise, having the particular interest to use
phenomenological models with stochastic noise to describe the system. The control parameter for the system is
the Froude number Fr and the order parameter is the normalized envelope of the free surface oscillations R. The
observed bifurcation is subcritical. We show that the measured growth rate of the wave’s amplitude is linear with
the control parameter, consistent with the phenomenological framework of amplitude equations. A quintic
subcritical amplitude equation with a stochastic additive noise term is used to describe the experimental data. In
general, there is a good quantitative agreement between model and experiments.

However, differences in the bistability region width and the noise level on both stable branches are observed.
The difference between the widths of the theoretical and experimental bistability regions is a consequence of our
finite-time measurements. The model considers the stationary state, i.e. infinite times. We show that thereisa
dependence of the width of the bi-stability zone with the rate of change of the control parameter. For slow ramp
rates (long measurement time), the bistable region of the system is reduced and a better agreement with the
model that considers infinite times is therefore obtained. However, for the longest measurement times, the
width of the bistable regions saturates and an important difference with the adjusted parameters persists. A
better agreement could be obtained if the bifurcation curve adjustment is done using the short time data of
figure 10 away from the bistable region and the longer time measurement data for the bistability zone. This is
work in progress, as many more realizations for the longer time measurements are needed.

The free surface height measurements allowed us to obtain PDFs of the wave’s amplitude which were also
compared with the model. The agreement between the model PDF and the experimental one occurs only at the
turbulent base state. In the gravity wave state, the model predicts a lower level of stochastic fluctuations. This
discrepancy has been confirmed experimentally to correspond to a noise dependence on the current state, which
can be understood as a non-linear effect. The system’s inherent noise is then multiplicative as its value depends
on the actual state, indicating that the turbulent fluctuations behave differently in the gravity wave state. A
similar result was obtained by de la Torre and Burguete [13], where a noise term proportional to the bifurcation
parameter was introduced to explain qualitatively the observed behavior of three coexisting states of azimuthal
velocity near the mid plane to a counterrotating von Karman turbulent flow. However, our work goes beyond
[13] because we compare quantitatively analytical results for the noisy system—bifurcation diagram and PDFs—
instead of comparing qualitatively numerical and experimental results.

The bifurcation is also observed in the filtered pressure signal fluctuations. This is of great importance, as it
indicates that the transition can also be determined without the information of the free surface. This is further
evidence of the close interplay between the bulk flow and the surface dynamics, as previously reported [12].

Additionally, we were able to observe sequences of reversals between the gravity-wave and turbulent base
states for very long time measurements. These observations occurred in a narrow zone of the control parameter.
The statistical study of reversals (e.g. escape times of each state) remains to be done. Finally, measurements in the
bulk and in the boundary layer will provide a better insight on the mechanisms behind the transition, helping
also the selection of the control parameter. This is seemingly a non-trivial issue as shown in this work by
comparing data from different setups. In particular, more experiments varying the radii ratio and surface
tension are needed to elucidate their effects on the instability mechanism and thus on the selection of the control
parameter.

Finally, itis of interest to put our results in a more general context. The existence of large scale transitions in
highly turbulent flows, purely hydrodynamic or magnetohydrodynamic, is of both fundamental as well as
applied interest. However, only a handful of systems have been studied in detail [10, 11, 13—18]. Turbulent
velocity fluctuations can smooth the transition or suppress bistability. In some cases, they can also trigger
dynamical reversals between different metastable states, although it has also been reported that, within the
experimental observation times, on occasion these fluctuations do not induce such reversals [ 17]. The search for
generic mechanisms for reversals has been initiated and some simple low dimensional models, where for
example an unstable mode is coupled to other stable modes, have been proposed [ 19, 20]. [t would be interesting
to go beyond the quintic subcritical amplitude equation that we propose in this work, searching for such a simple
model of interacting modes.
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