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We consider the Allen–Cahn equation Δu + u(1 − u2) = 0 in R
3. We construct

two classes of axially symmetric solutions u = u(|x′|, x3) such that the (multiple)
components of the zero set look for large |x′| like catenoids, namely |x3| ∼ A log |x′|.
In Theorem 1, we find a solution which is even in x3, with Morse index one and a
zero set with exactly two components, which are graphs. In Theorem 2, we construct
a solution with a zero set with two or more nested catenoid-like components, whose
Morse index become as large as we wish. While it is a common idea that nodal
sets of the Allen–Cahn equation behave like minimal surfaces, these examples show
that the nonlocal interaction between disjoint portions of the nodal set, governed
in suitably asymptotic regimes by explicit systems of 2d PDE, induces richness and
complex structure of the set of entire solutions, beyond the one in minimal surface
theory. © 2014 Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère l’équation de Allen–Cahn Δu + u(1 − u2) = 0 dans R
3. On construit

deux classes de solutions à symétrie axiale u = u(|x′|, x3) telles que les composantes
(multiples) de l’ensemble des zéros ressemblent à des caténőides pour les grandes
valeurs de |x′|, c’est-à-dire pour |x′| ∼ A log |x′|. Le Théorème 1 donne une solution
paire en x3, d’indice de Morse égal à 1 et un ensemble de zéros ayant exactement
deux composantes qui sont des graphes. Dans le Théorème 2 on construit une
solution avec un ensemble de zéros à deux ou plusieurs composantes imbriquées,
semblables à des caténőides d’indice de Morse arbitrairement grand. Si on pense
généralement que les ensembles nodaux de l’équation de Allen–Cahn se comportent
comme des surfaces minimales, ces exemples montrent que l’interaction non locale
entre les parties disjointes de l’ensemble nodal sont régies par des systèmes explicites
de deux équations aux dérivées partielles. Ceci montre la richesse et la structure
complexe de l’ensemble des solutions entières, bien au-delà de la théorie des surfaces
minimales.

© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper deals with the discovery of new solutions to the classical Allen–Cahn equation

Δu + u
(
1 − u2) = 0, in R

N (1.1)

when space dimension is N = 3. Eq. (1.1), introduced in [1] to model the allocation of binary mixtures, is
a prototype for the continuous modeling of phase transition phenomena.

In the so-called gradient theory of phase transitions, the function u represents a continuous realization of
the phase, with values making a transition between the pure states −1 and +1 along some thick interface.
The most interesting solutions in that context are therefore those in which this transition wall takes an
identifiable shape.

In the one-dimensional case, there is a standard solution connecting the states −1 and +1 namely

w(t) = tanh
(

t√
2

)
, t ∈ R,

which is the unique solution, up to translations, of the problem

w′′ + w
(
1 − w2) = 0, in R, w(±∞) = ±1. (1.2)

In 1978, E. De Giorgi raised in [10] a celebrated conjecture: solutions u to problem (1.1) which are
monotone in one direction have the following rigidity property: its level sets [u = λ] must be parallel
hyperplanes, at least if N = 8. That is equivalent to saying that for some point p and a unit vector ν, u only
depends on the normal coordinate to the hyperplane that passes through p with normal vector ν, namely

u(x) = w(t), t = (x− p) · ν. (1.3)

This rationale behind the conjecture is that level sets of an entire solution of (1.1) monotone in one direction
should have the same rigidity of minimal surfaces that are graphs of entire functions of N − 1 variables.
The latter question is known as the Bernstein Problem, and it is known to be true precisely up to dimension 8,
as established in the works [2,9,16,27] after the original result in 1917 by Bernstein in [4], proving it for
N = 3. Bombieri, De Giorgi and Giusti [5] proved that Bernstein’s statement is false in dimensions 9 or
higher, by constructing a minimal graph in R

9 which is not a hyperplane.
In [17,3], De Giorgi’s conjecture was established in dimensions N = 2, 3. In [25], it was proved to hold

true in dimensions 4 � N � 8 under the additional assumption

lim
xN→±∞

u
(
x′, xN

)
= ±1.

On the other hand, in [14] a counterexample was built in dimension N = 9 in the following way: a nontrivial
minimal graph Γ as built in [5] is fixed, then a large dilation of it is taken, Γα = α−1Γ , where α is a very
small positive number. Since Γα is nearly flat around each of this points, then the quantity w(t), where
t = t(x) is a choice of normal coordinate (signed distance) from x to Γα, is a good approximation to a
solution of Eq. (1.1). This approximation turns out to have an extra order of accuracy in α thanks to the
fact that Γ is a minimal surface. In [14] it is proven that there exists an actual solution uα to (1.1) which
is monotone in one direction and such that

uα(x) = w(t) + o(α)

The zero level set [uα = 0] is then a manifold close to Γα, therefore non-flat.
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The method in [14] actually applies to more general minimal surfaces. Recently in [12] this approach was
used in dimension N = 3 to construct, for a general embedded minimal surface M with finite total curvature,
that satisfies certain non-degeneracy assumptions, and all small α > 0, a solution uα with uα(x) ≈ w(z)
where z denotes a choice of normal coordinate to Mα = α−1M . The setting of a compact manifold was
considered in [23,20]. See also [22,21,24] for the earlier connection discovered between this problem and
minimal surfaces.

A notable example of such a M is given by a catenoid. In that case, there exists an axially symmetric
solution with zero set constituted by a smooth surface close to Mα. Another example are the Costa surface,
and more generally the Costa–Hoffman–Meeks surfaces [19,7,18]. These solutions have finite Morse index.

For a bounded, entire solution u to (1.1), its Morse index m(u) is defined as the maximal dimension of
a vector space E of compactly supported smooth functions such that

B(ψ,ψ) :=
∫
RN

|∇ψ|2 +
(
3u2 − 1

)
ψ2 < 0, ∀ψ ∈ E − {0}.

For the solutions in [12], we have that m(uα) coincides with the number of negative eigenvalues in L∞(R3)
of the linearized operator Δ + (1 − 3u2

α). Moreover, it is found that m(uα) = i(M), the index of M , which
under the assumptions in [12] corresponds to the number of negative eigenvalues in L∞(M) of the Jacobi
operator ΔM + |AM |2. That number is indeed finite, because of the finite total curvature assumption. In
particular i(M) = 1 for a catenoid, and i(M) = 2�+ 3 for the Costa–Hoffmann–Meeks surface genus � � 1.

The results in [12] provide a connection between a large class of minimal surfaces in R
3 and families of

solutions to the Allen–Cahn equation, where even Morse index is transmitted. The purpose of this paper
is to show that more richness is present in solutions to Allen–Cahn with transition layers. A big difference
between Allen–Cahn and the minimal surface problem, is that two disjoint surfaces do not interact in the
latter problem, while they do as components of the zero set of solutions to the Allen–Cahh equations. These
nodal sets are actually solving a form of nonlocal minimal surface problem, which is interesting in its own
sake, not just regarding Allen–Cahn as a sort of regularization of the minimal surface problem. We will
show in this paper two results showing that in the simple setting of axially symmetric solutions in R

3, very
interesting phenomena in going on.

As remarked in [8], the Morse index is a natural quantity to consider in the classification of entire solutions
to (1.1). It is easy to see that a solution u monotone in one direction is stable, in the sense that m(u) = 0.
For instance, it is natural step beyond De Giorgi’s conjecture, to understand “mountain pass solutions”
namely those with m(u) = 1. The only example available of such a solution seems to be the catenoidal
axially symmetric solution in [12]. More precisely, for x = (x′, x3) we write

r =
∣∣x′∣∣ =√x2

1 + x2
2.

We have that

uα(x) = uα(r, x3),

and uα(x) = w(z) + O(α) where z is a choice of signed distance to Mα = α−1M . In precise terms, M is
parametrized as

|x3| = log
(
r +

√
r2 − 1

)
, r > 1, (1.4)

so that Mα becomes

|x3| = α−1 log
(
αr +

√
α2r2 − 1

)
. (1.5)
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Fig. 1. Solutions for Theorem 1. Morse index 1 and two logarithmical sheets as nodal set.

For minimal surfaces, a famous result by Schoen [26] asserts that a minimal surface with embedded ends
and Morse index 1 must be a catenoid. Our first result shows that the structure of Morse index one solutions
of (1.1) is more complicated than dilations of a catenoid: there exists an axially symmetric solution of Morse
index one whose zero set is disconnected.

Theorem 1. For all sufficiently small α > 0 there exists an smooth axially symmetric bounded solution
uα(r, x3) to Eq. (1.1) for N = 3, with Morse index m(uα) = 1 and

uα(r, x3) = w
(
x3 + qα(r)

)
− w

(
x3 − qα(r)

)
− 1 + O(α), uniformly as α → 0, (1.6)

where

qα(r) =
√

2
2
(
1 + o(α)

)
log
(
1 + α2r2)+ b0 +

√
2

2 log 1
α
. (1.7)

uniformly, as α → 0. Here b0 is an explicit constant.

The solution of the above theorem is in addition even in the x3-coordinate. The zero level set of uα of
this result is the union of the graph of a positive radially symmetric function which asymptotically behaves
logarithmically, and its reflection through the plane x3 = 0. We can actually think of this solution as having
a parallel with minimal surfaces: If we take two planes x3 = ±A, their union is a (disconnected) minimal
surface. For no solution of the Allen–Cahn equation the zero set can be close to this two-plane object.
Instead, the Allen–Cahn equation produces (for A large) a nonlocal interaction between the corresponding
components of the nodal set, which can be quantified, making them diverge logarithmically (Fig. 1).

As we shall see, the law governing the interaction of the two components, assumed to be graphs,
x3 = ±qα(r), is a perturbation of the Liouville equation

Δqα − a0e
−2

√
2qα = 0, in R

2. (1.8)
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Then all radial solutions of (1.8) are given by the one-parameter family of functions

qα(r) = q(αr) +
√

2
2 log

(
1
α

)
.

where q is given by

q(r) = 1
2
√

2
log
(√

2a0

4
(
1 + r2)2). (1.9)

This is how expression (1.7) comes into play.
Until now, two families of Morse index 1 axially symmetric solutions have become known: That with a

connected, catenoidal zero set constructed in [12], and the two-component constructed in Theorem 1. We
believe these solutions correspond to limiting situations of a single one-parameter family of solutions, in a
similar sense to how two-sheet and one sheet revolution hyperboloids are connected by a parameter, where
the family becomes singular in the form of two opposite cones with same vertex for some special value.

The examples found suggest that the richness of the topology of the zero level set may be in accordance
to the size of the Morse index. Our second result exhibits a surprising phenomenon: this is not the case.
In fact we can find axially symmetric solutions whose zero set is the union of any given catenoid-like nested
surfaces, whose Morse index becomes arbitrarily large.

Let M be the catenoid described in (1.4), and its dilation Mα = α−1M parametrized by (1.5). We choose
a normal vector field ν(y) for y ∈ M , so that να(y) = ν(αy) is the corresponding normal for y ∈ Mα.

Theorem 2. Let N = 3 and M be the catenoid in R
3. Then for any m ∈ N, m � 2 and for all sufficiently

small α > 0 there exists a bounded solution uα to problem (1.1) such that as α → 0,

uα(x) =
m∑
j=1

(−1)j−1w
(
z − hj(αy)

)
+ (−1)m−1 − 1

2 + o(1), x = y + zν(αy), y ∈ Mα.

Here for y = (y′, y3) ∈ M and r = |y′|,

hl(y) =
(
l − m + 1

2

)[
2 log 1

α
− log

(
log 1

α

)
+ 4 log(1 + r) + O(1)

]
+ o(1) log(1 + r), l = 1, . . . ,m.

(1.10)

The Morse index of uα, m(uα) goes to +∞ as α → 0. In fact, it satisfies that

m(uα) � c0 log
(

1
α

)
.

The location of the interfaces z = h�(αy) (see Fig. 2) is governed by a Jacobi–Toda system, described
in (3.1). Entire solutions with multiple transition layers to (1.1) in R

2 were found in [11]. In this case the
nodal set of the solutions consists on multiple asymptotically straight lines, not intersecting themselves,
whose locations are governed by a Toda system of ODEs. A Jacobi–Toda system was introduced in [13] to
find multiple interfaces on a compact manifold, and in [15] in a related traveling wave problem.

This paper is structured as follows. Sections 2 through 8 are concerned with the construction of the
solutions predicted in Theorems 2 and 1, while Section 9 sketches the estimates and computations regarding
information about the Morse index of these families of solutions.
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Fig. 2. Solutions for Theorem 2. The surfaces Mα ± h(αr)να correspond to the nodal set of these solutions in the case m = 2.

2. Geometric setting near the dilated catenoid

We begin with the description of the geometrical background needed for the proof of Theorem 2, since the
developments from this section will useful throughout the paper. In this section we compute the Euclidean
Laplacian in R

3, in a neighborhood of the dilated catenoid Mα.
Let us consider the curve

γ(s) =
(
cosh(s), s

)
, s ∈ R.

The set γ(R) corresponds to the catenary curve in R
2, for which we can compute the corresponding signed

arch-length as

y(s) =
s∫

0

∥∥γ′(ζ)
∥∥ dζ = sinh(s), s ∈ R.

Setting

s(y) = log
(
y +

√
1 + y2

)
, y ∈ R

we can parameterize γ(R) using the mapping

γ
(
s(y)

)
=
(√

1 + y2, log
(
y +

√
1 + y2

))
, y ∈ R.

Let us now consider the catenoid M in R
3, with γ(R) as profile curve. The mapping Y : R×(0, 2π) → R

3,
defined by

Y (y, θ) :=
(√

1 + y2 cos θ,
√

1 + y2 sin θ, log
(
y +

√
1 + y2

))
gives local coordinates on M in terms of the signed arch-length variable of γ(R) and the angle of rotations
around the x3-axis which, in our setting, corresponds to the axis of symmetry of M . Observe also that for
y = (y1, y2, y3) ∈ M
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r(y) :=
∣∣(y1, y2)

∣∣ =√1 + y2, y = Y (y, θ) ∈ M.

We consider local Fermi coordinates

X(y, θ, z) = Y (y, θ) + zν(y, θ), y ∈ R, θ ∈ (0, 2π), z ∈ R.

This map defines a smooth local change of variables onto the open neighborhood of M , given by

N :=
{
Y (y, θ) + zν(y, θ): |z| < η + 1

2 log
(
1 + y2)}

for some small, but fixed η > 0. Observe that |z| = dist(x,M), for every x ∈ N with x = X(y, θ, z).
Let us compute the Euclidean Laplacian in N , in terms of these local coordinates, from the formula

ΔX = 1√
det(g)

∂i
(√

det(g)gij∂j
)
, i, j = y, θ, z,

where gij = ∂iX · ∂jX corresponds to the ij-th entry of the metric g on N and gij = (g−1)ij .
Computing the metric g, we find that

g =

⎡
⎢⎣ gyy 0 0

0 gθθ 0
0 0 gzz

⎤
⎥⎦ =

⎡
⎢⎣ (1 + z

1+y2 )2 0 0
0 (1 + y2)(1 − z

1+y2 )2 0
0 0 1

⎤
⎥⎦

so that

√
det(g) =

√
1 + y2

(
1 − z2

(1 + y2)2

)
.

Since

ΔX = 1√
det(g)

[
∂y
(√

det(g)g−1
yy ∂y

)
+ ∂θ

(√
det(g)g−1

θθ ∂θ
)

+ ∂z
(√

det(g)∂z
)]
,

we find by a direct computation that

ΔX = ∂zz + ∂yy + y

1 + y2 ∂y + 1
1 + y2 ∂θθ −

2z
(1 + y2)2 ∂z + D, (2.1)

where

D = za1(y, z)∂yy + za2(y, z)∂θθ + zb1(y, z)∂y + z3b2(y, z)∂z,

and the smooth functions ai(y, z), bi(y, z) satisfy

|ai| + |yDyai| = O
(
|y|−2), |b1| + |yDyb1| = O

(
|y|−3),

|b2| + |yDyb2| = O
(
|y|−8) (2.2)

as |y| → ∞, uniformly on z in the neighborhood N of M . Actually, it is not hard to check that, inside N
and for i = 1, 2
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ai(y, z) = ai,0(y) + zai,1(y, z), b1(y, z) = b1,0(y) + zb1,1(y, z),

b2(y, z) = b2,0(y) + z2b2,1(y, z), (2.3)

where

ai,0(y) = (−2)i−1

(1 + y2)i , b1,0(y) = − 2y
(1 + y2)2 , b2,0(y) = − 2

(1 + y2)4 ,

and

|ai,1| + |yDyai,1| = O
(
|y|−(4+2i)), |b1,1| + |yDyb1,1| = O

(
|y|−5),

|b2,1| + |yDyb2,1| = O
(
|y|−12).

At this point, we remark that since the catenoid is an axially symmetric minimal surface, the functions
ai, bi, i = 1, 2, also share this symmetry and actually they enjoy the additional properties

ai(y, z) = ai(−y, z), b1(y, z) = −b1(−y, z), b2(y, z) = b2(y, z), x = X(y, θ, z) ∈ N .

Let us now consider a large dilation of the catenoid M , given by

Mα = α−1M

for a small positive number α.
We parameterize Mα by Yα : (y, θ) 	→ α−1Y (αy, θ) and define associated local Fermi coordinates

Xα(y, θ, z) = α−1Y (αy, θ) + zν(αy, θ)

on the neighborhood Nα = α−1N of Mα. Observe that

Nα =
{
Yα(y, θ) + zν(αy, θ): |z| < η

α
+ 1

2α log
(
1 + (αy)2

)}
.

Scaling formula (2.1) we find that

ΔXα
= ∂zz + ∂yy + α2y

1 + (αy)2 ∂y + α2

1 + (αy)2 ∂θθ −
2α2z

(1 + (αy)2)2 ∂z + Dα, (2.4)

where

Dα = αza1(αy, αz)∂yy + α3za2(αy, αz)∂θθ + α2zb1(αy, αz)∂y + α4z3b2(αy, αz)∂z

and the smooth functions ai, bi, i = 1, 2, satisfy (2.2) and (2.3).
Let us consider next an arbitrary smooth function h : R → R and local coordinates near Mα, defined by

Xα,h(y, θ, t) = α−1Y (αy, θ) +
(
t + h(αy)

)
ν(αy, θ)

onto the region Nα, which can be described as

Nα =
{
Xα,h(y, θ, t):

∣∣t + h(αy)
∣∣ � η + 1 log

(√
1 + (αy)2

)}
.

α α
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Observe that for x ∈ Nα we have x = Xα(y, θ, z) = Xα,h(y, θ, t), which means t = z − h(αy). We will
often emphasize the description of the region Nα in terms of the local coordinates Xα,h by writing Nα,h.

We compute directly, from expression (2.4), the Euclidean Laplacian in these new coordinates.

Lemma 2.1. On the open neighborhood Nα,h of Mα in R
3, in the coordinates x = Xα,h(y, θ, t), the Euclidean

Laplacian has the following expression:

ΔXα,h
= ∂tt + ∂yy + α2y

1 + (αy)2 ∂y + α2

1 + (αy)2 ∂θθ

− α2
{
h′′(αy) + αy

1 + (αy)2h
′(αy) + 2(t + h)

(1 + (αy)2)2

}
∂t

− 2αh′(αy)∂ty + α2[h′(αy)
]2
∂tt + Dα,h, (2.5)

where

Dα,h = α(t + h)a1
(
αy, α(t + h)

)(
∂yy − 2αh′(αy)∂yt − α2h′′(αy)∂t + α2[h′(αy)

]2
∂tt
)

+ α3(t + h)a2
(
αy, α(t + h)

)
∂θθ + α2(t + h)b1

(
αy, α(t + h)

)(
∂y − αh′(αy)∂t

)
+ α4(t + h)3b2

(
αy, α(t + h)

)
∂t (2.6)

and the smooth functions ai, bi are those described in (2.2)–(2.3).

Proof. Set z = t + h(αy) and consider a function U ∈ C2(Nα,h). In the coordinates Xα,h as well as in the
coordinates Xα, we can write

U
(
Xα(y, θ, z)

)
= u(y, θ, z) and U

(
Xα,h(y, θ, t)

)
= v(y, θ, t)

which means that u(y, θ, z) = v(y, θ, z − h(αy)).
It remains to notice that in the local coordinates Xα,h

∂zu = ∂tv, ∂zzu = ∂ttv,

∂θu = ∂θv, ∂θθw = ∂θθv,

∂yu = ∂yv − αh′(αy)∂tv,

∂yyu = ∂yyv − 2αh′(αy)∂tyv − α2h′′(αy)∂tv + α2[h′(αy)
]2
∂ttv.

Substituting these partial derivatives into formula (2.4) and using that z = t + h, we get the
expression (2.5). �
Remark 2.1. The Laplace–Beltrami operator of the dilated catenoid Mα, in the coordinates Yα(y, θ),
corresponds to the differential operator

ΔMα
= ∂yy + α2y

1 + (αy)2 ∂y + α2

1 + (αy)2 ∂θθ

with the convention that M = M1. On the other hand, since each of these dilated catenoids is a minimal
surface, we have that the Gaussian curvature, KMα

of Mα, is given by the relation

2KMα
(y) = −α2∣∣AM (αy)

∣∣2 = − 2α2

(1 + (αy)2)2 , y ∈ R,

where |AM (y)| is the norm of the second fundamental form of the catenoid M .
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Hence, we can write the Euclidean Laplacian in (2.5), as follows

ΔXα,h
= ∂tt + ΔMα

− α2{ΔMh + (t + h)|AM |2
}
∂t − 2αh′(αy)∂ty + α2[h′(αy)

]2
∂tt + Dα,h, (2.7)

where the functions h, ΔMh, |AM |2 are evaluated at αy.

3. Jacobi–Toda system on the catenoid

In the previous section, we discussed the system of coordinates and differential operators that come
into play in the proof of Theorem 2. We continue our discussion providing a detailed description of the
approximate nodal set of the solutions predicted by this theorem. As mentioned in the introduction, the
location of this nodal set is governed by the nonlinear system of PDEs for h = (h1, h2, . . . , hm)

α2(ΔMhl + |AM |2hl

)
− a0

[
e−

√
2(hl−hl−1) − e−

√
2(hl+1−hl)

]
= 0, in M, (3.1)

where a0 > 0 is a constant, α > 0 is a small parameter and with the convention that

−∞ = h0 < h1 < · · · < hm < hm+1 = ∞.

In this section we provide a complete proof of the following proposition:

Proposition 3.1. For every α > 0 small enough there exists an axially symmetric and smooth vector function
h = (h1, . . . , hm) solving system (3.1) and satisfying

hl =
(
l − m + 1

2

)[
σα +

(
1 − 1√

2σα

)
log
(∣∣AM (y)

∣∣−2)]+ h̃l, l = 1, . . . ,m, (3.2)

where σα ∼ log(α−1) and the functions h̃l satisfy the estimates

∣∣h̃l(y)
∣∣ � Kσ− 5

4 log
(
2 + r(y)

)
, y ∈ M,∥∥(1 + r(y)

)j
D(j)h̃l

∥∥
L∞(M) � Kjσ

− 5
4+ j

2 , l = 1, . . . ,m, j = 1, 2, . . .

for some large constant K > 0, independent of α > 0. In addition h is even respect to the arch-length
variable of the catenoid M

We split the proof of Proposition 3.1 into a series of steps, each of which is presented as a subsection.

3.1. Decoupling procedure and the approximate solution

We look for a solution h = (h1, h2, . . . , hm) to (3.1) having the form

hl =
(
l − m + 1

2

)
σα + ql, l = 1, . . . ,m (3.3)

where the constant σ = σα solves the algebraic equation

α2σ = a0e
−
√

2σ

so that σα is a smooth function of α, satisfying the asymptotic expansion
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σα = log
(√

2a0

α2

)
− log

(
log
(√

2a0

α2

))
+ O

( log log log 1
α2

log log 1
α2

)
.

In what follows, we omit the explicit dependence of σ respect to α and we set δ = σ−1.
Plugging (3.3) into (3.1) and dividing by σ, we obtain the system for (q1, . . . , qm)

δ
(
ΔMql + |AM |2ql

)
−
[
e−

√
2(ql−ql−1) − e−

√
2(ql+1−ql)

]
+
(
l − m + 1

2

)
|AM |2 = 0, in M, l = 1, . . . ,m. (3.4)

Before solving system (3.4), let us introduce some useful notation. Consider the invertible m × m real
matrix

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1
1 1 1 . . . 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

and the auxiliary functions

( v
vm

)
:= B ·

( q
qm

)
, q :=

⎛
⎜⎝

q1
...

qm−1

⎞
⎟⎠ .

We notice that the l-th entry of the constant vector B−1 · 1 corresponds to l − m+1
2 .

Let us introduce also the notation

ev :=

⎡
⎢⎣

ev1

...
evm−1

⎤
⎥⎦ , 1 :=

⎛
⎝ 1

...
1

⎞
⎠

and consider the constant invertible (m− 1) × (m− 1) matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0
1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1
0 0 · · · 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠ . (3.6)

With this notation, system (3.4) can be written as

δ
(
ΔMv + |AM |2v

)
+ C · e−

√
2v + |AM |2 · 1 = 0, in M (3.7)

ΔMvm + |AM |2vm = 0, in M (3.8)

Since the matrix B in (3.5) is invertible, any information about system (3.7)–(3.8) has a direct translation
into system (3.4) and vice versa.
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Taking vm = 0 in (3.8), we only need to take care of system (3.7). In order to solve this system, let us set

E(v, δ, y) := δ
(
ΔMv + |AM |2v

)
+ C · e−

√
2v + |AM |21. (3.9)

We want to find an approximate solution v0 to (3.7) such that E(v0, δ, y) is as close to zero as possible.
Writing

v0(y, δ) = ω0(y) + δω1(y)

expression (3.9) becomes

E(v0, δ, y) = C · e−
√

2ω0 + |AM |21 + δ
(
ΔMω0 + |AM |2ω0

)
+ δDv

(
C · e−

√
2v)

v=ω0
· ω1

+ δ2(ΔMω1 + |AM |2ω1
)

+ C ·
[
e−

√
2(ω0+δω1) − e−

√
2ω0 − δDv

(
e−

√
2v)

v=ω0
ω1
]
. (3.10)

Proceeding formally by taking δ → 0, we find that ω0 must solve the algebraic equation

C · e−
√

2ω0 + |AM |21 = 0, (3.11)

where we recall that in local coordinates
∣∣AM (y)

∣∣2 = 2
(1 + y2)2 , y = Y (y, θ).

From this we write ω0 = (ω0,1, . . . , ω0,m−1) where

ω0,l(y) = − 1√
2

log
(

1
2
∣∣AM (y)

∣∣2(m− l)l
)
, 1 � l � m− 1

so that

ω0 = 1√
2

log
(
|AM |−2)1 + c0 (3.12)

for some constant vector c0. A direct computation yields that

ΔMω0 + |AM |2ω0 = |AM |2(2 · 1 + ω0). (3.13)

With this choice of ω0, dividing expression (3.10) by δ and taking δ → 0, we find that ω1 must solve the
algebraic equation

Dv
(
C · e−

√
2v)

v=ω0
· ω1 +

(
ΔMω0 + |AM |2ω0

)
= 0. (3.14)

Observe that

Dv
(
C · e−

√
2v)

v=ω0
= −

√
2|AM |2C · diag

(
(m− j)j

2

)
(m−1)×(m−1)

=
√

2|AM |2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2a1 a2 . . . . . . 0 0
a1 −2a2 . . . . . . 0 0
0 a2 −2a3 . . . 0 0
...

...
. . . . . .

... 0
0 0 . . . am−3 −2am−2 am−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.15)
0 0 . . . 0 am−2 −2am−1
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where

al = (m− l)l
2

, l = 1, . . . ,m− 1.

Directly from (3.15) we find that

−C · diag
(

(m− j)j
2

)
(m−1)×(m−1)

· 1 = 1.

and consequently (3.14) becomes

√
2C · diag

(
(m− j)j

2

)
m−1

ω1 = (2 · 1 + ω0).

It follows that

ω1 = −
√

2 · 1 − 1
2 log

(
|AM |−2) · 1 + c1 (3.16)

for some constant vector c1. Therefore, our choice of the approximation to (3.7) is

v0(y, δ) = 1√
2

(
1 − δ√

2

)
log
(∣∣AM (y)

∣∣−2)⎛⎝ 1
...
1

⎞
⎠+ c0 + δc1

and observe that

E(v0, δ, y) = δ2(ΔMω1 + |AM |2ω1
)

+ C ·
[
e−

√
2(ω0+δω1) − e−

√
2ω0 − δDv

(
e−

√
2v)

v=ω0
δω1
]
. (3.17)

From (3.12), (3.16), (3.17) and a direct computation we get the pointwise estimate in M

∣∣E(v0, δ, y)
∣∣ � Cδ2|AM |2(1−δ)−ε

[
1 +

∣∣log
(
|AM |2

)∣∣+ O
(∣∣log

(
|AM |2

)∣∣2)]. (3.18)

for some ε > 0 small. To verify estimate (3.18), first recall that

r(y) = |y′|, y =
(
y′, y3

)
∈ M

which in the local coordinates y = Y (y, θ) reads as r(y) =
√

1 + y2.
Next, using a Taylor’s expansion up to second derivatives in the region of M , where

δ log
(
|AM |2

)
� K1

we get that

∣∣e−√
2(ω0+δω1) − e−

√
2ω0 − δDv

(
e−

√
2v)

v=ω0
δω1
∣∣ � Cδ2|AM |2|ω1|2,

where K1 is independent of δ and y. Since |AM |2 ∼ O(r(y)−4), this actually occurs in the large region
determined by

r(y) � e
K1
4δ , y ∈ M
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while in the remaining part of M , we use the fast decay of |AM |2 to get that

∣∣e−√
2(ω0+δω1) − e−

√
2ω0 − δDv

(
e−

√
2v)

v=ω0
δω1
∣∣ � C|AM |2eδ log(r4(y)) � r(y)−βe−

c1
δ

which is exponentially small in δ, provided that we choose β so that 0 < β < 4− 4δ. Clearly, (3.18) follows
at once from these remarks.

3.2. Solving the Jacobi–Toda system

Next, we linearize system (3.7) around the approximate solution v0(y, δ) we have described in the previous
subsection.

Let us first introduce the topologies that will be used to set up our functional analytical scheme.
For functions g and ζ defined in M , 1 < p � ∞ and β > 5

2 we consider the norms

‖g‖p,β :=
∥∥(1 + r(y)β

)
g
∥∥
Lp(M), (3.19)

‖ζ‖δ,∞ := δ
∥∥D2ζ

∥∥
∞,2 + δ

1
2
∥∥(1 + r(y)

)
Dζ
∥∥
L∞(M) +

∥∥log
(
r(y) + 2

)−1
ζ
∥∥
L∞(M), (3.20)

‖ζ‖δ,p,β := δ
∥∥D2ζ

∥∥
p,β

+ δ
1
2
∥∥(1 + r(y)

)
Dζ
∥∥
L∞(M) +

∥∥log
(
r(y) + 2

)−1
ζ
∥∥
L∞(M). (3.21)

Next, we study the linearization of system (3.7) around v0(y, δ). Recall that

v0(y, δ) = 1√
2

(
1 − δ√

2

)
log
(∣∣AM (y)

∣∣−2)⎛⎝ 1
...
1

⎞
⎠+ c0 + δc1 (3.22)

and we look for a solution to (3.7) of the form

v = v0 + ζ.

Thus, we are led to study the system

δ
(
ΔMζ + |AM |2ζ

)
+ Dv

[
C · e−

√
2v]

v=v0
ζ

= −E(v0, δ) −
(
C · e−

√
2(v0+ζ) − C · e−

√
2v0 −Dv

[
C · e−

√
2v]

v=v0
ζ
)
, in M. (3.23)

Let us observe that

Dv
[
C · e−

√
2v]

v=ω0+δω1
= Dv

[
C · e−

√
2v]

v=ω0
+ C ·

([
Dve

−
√

2v]
v=ω0+δω1

−Dv
[
e−

√
2v]

v=ω0

)
. (3.24)

Proceeding as in (3.18), it can be checked that

∥∥C ·
([
Dve

−
√

2v]
v=ω0+δω1

−Dv
[
e−

√
2v]

v=ω0

)∥∥
∞,β

� Cδ (3.25)

for any 0 < β < 4 − 4δ. Consequently, we can write system (3.23) as

Lδ(ζ) = −E(v0, δ) − Q(v0, ζ), in M, (3.26)

where
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Lδ(ζ) := δ
(
ΔMζ + |AM |2ζ

)
−
√

2|AM |2C ·A(y, δ)ζ,

A(y, 0) := diag
(

(m− j)j
2

)
(m−1)×(m−1)∥∥|AM |2

(
A(·, δ) −A(·, 0)

)∥∥
∞,β

� Cδ, 0 < β < 4 − 4δ

and

Q(v0, ζ) := C · e−
√

2(v0+ζ) − C · e−
√

2v0 −Dv
[
C · e−

√
2v]

v=v0
ζ.

The following proposition provides a suitable linear theory needed to solve the linear equation

Lδ(ζ) = g̃, on M (3.27)

in the class of axially symmetric even functions.

Proposition 3.2. For every δ > 0 small enough and any given axially symmetric even vector function g̃

defined on M , with

‖g̃‖p,β < ∞

for 4
3 < p � ∞ and 5

2 < β < 4− 2
p , there exists a unique axially symmetric even solution ζ to system (3.27)

satisfying the estimates

‖ζ‖δ,p,β � Cδ−
3
4 ‖g̃‖p,β , (3.28)

‖ζ‖δ,∞ � Cδ−
3
4 ‖g̃‖∞,β . (3.29)

We remark that the constant C > 0 in Proposition 3.2 does not depend on δ but rather on β and p.
We provide the proof of this result in next section.

We finish this section solving system (3.26). Let ζ = Tδ(g̃) denote the linear operator provided by
Proposition 3.2. We recast system (3.26) as the fixed point problem for the vector function ζ

ζ = R(ζ), R(ζ) := Tδ

[
−E(v0, δ) − Q(v0, ζ)

]
in the Banach space X of smooth vector functions ζ with the norm

‖ζ‖X := ‖ζ‖δ,∞ < ∞.

From (3.18) and for any β such that 2 < β < 4 − 4δ, we get that

∥∥E(v0, δ)
∥∥
∞,β

� Cδ2 (3.30)

and consequently, from (3.29) we obtain that

∥∥R(0)
∥∥
X

=
∥∥Tδ

[
E(v0, δ)

]∥∥
X

� Cδ
5
4 .

On the other hand, proceeding as we did to verify (3.18), for any 5
2 < β < 4 − 4δ and any ζ such that

‖ζ‖X � Cδ
5
4 (3.31)



O. Agudelo et al. / J. Math. Pures Appl. 103 (2015) 142–218 157
it follows that
∥∥Tδ

[
Q(v0, ζ)

]∥∥
X

� Cδ−
3
4
∥∥Q(v0, ζ)

∥∥
∞,β

� Cδ−
3
4 ‖ζ‖2

X = O
(
δ

7
4
)
.

Finally, to check the Lipschitz character of Q(v0, ζ) respect to ζ, we simply observe that for ζ1, ζ2 satisfying
(3.31), we have

Q(v0, ζ1) − Q(v0, ζ2) = C ·
[
e−

√
2(v0+ζ1) − e−

√
2(v0+ζ2) −Dv

(
e−

√
2v)

v=v0
(ζ1 − ζ2)

]
.

From this and proceeding again as we did to obtain (3.30), the inequality

∥∥Q(v0, ζ1) − Q(v0, ζ2)
∥∥
∞,β

� Cδ
5
4 ‖ζ1 − ζ2‖X (3.32)

follows. This implies that
∥∥R(ζ1) −R(ζ2)

∥∥
X

� Cδ−
3
4
∥∥Q(v0, ζ1) − Q(v0, ζ2)

∥∥
∞,β

� Cδ
1
2 ‖ζ1 − ζ2‖X .

Hence, the function R maps the ball in X of radius Kδ
5
4 onto itself, provided the constant K > 0 is chosen

large enough, but independent of δ > 0 small. A direct application of Banach fixed point theorem allows us
to solve system (3.26). We have thus proven the following proposition:

Proposition 3.3. For every δ > 0 small and β such that 5
2 < β < 4(1 − δ) there exists a unique axially

symmetric even and smooth solution ζ to the system

Lδ(ζ) = −E(v0, δ) − Q(v0, ζ), in M

satisfying

‖ζ‖δ,∞ � Kδ
5
4 ,

∥∥(1 + r(y)
)j
D(j)ζ

∥∥
∞ � Kδ

5
4−

j
2 , j = 1, 2, . . .

To conclude the proof of Proposition 3.1 simply notice that, from the previous proposition and a direct
computation, the solution h = B−1[v0 + ζ] is such that

hl =
(
l − m + 1

2

)[
σα +

(
1 − 1√

2σα

)
log
(∣∣AM (y)

∣∣−2)]+ h̃l, l = 1, . . . ,m

with the h̃l as predicted in Proposition 3.1.

4. Jacobi and linearized Jacobi–Toda operators on the catenoid

This section is devoted to prove Proposition 3.2 and the study of the linearization of the decoupled
Jacobi–Toda system around the exact solution we found in the previous section.

4.1. Linearized Jacobi–Toda operator

We first prove Proposition 3.2. In order to do so, we study the linear system

δΔMζ + |AM |2
(
−
√

2C ·A(y, 0) + δI
)
ζ = g̃, in M, (4.1)

where we recall that
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A(y, 0) = diag
(

(m− j)j
2

)
(m−1)×(m−1)

and the matrix C is given in (3.6). Actually, a direct computation shows that the numbers

1, 1
2 , . . . ,

m− 1
m

are the m− 1 eigenvalues of the matrix −C, so that −C is symmetric and positive definite. Let us write

ζ = [−C] 1
2ψ, g̃ = [−C] 1

2 ḡ.

System (4.1) becomes

δΔMψ + |AM |2(δI + B)ψ = ḡ, in M, (4.2)

where the matrix B is given by

B = 1√
2
[−C] 1

2 diag
(
(m− j)j

)
(m−1)×(m−1)[−C] 1

2 .

Next, we consider the eigenvectors ê1, . . . , êm−1 of the matrix B, i.e.

B · êi = λiêi, i = 1, . . . ,m− 1

and we write

ψ =
m−1∑
i=1

ψiêi, ḡ =
m−1∑
i=1

ḡiêi.

Hence, system (4.2) decouples into m− 1 scalar equations, namely

δΔMψi + |AM |2(λi + δ)ψi = ḡi, in M, i = 1, . . . ,m− 1. (4.3)

The eigenvalues λ1, . . . , λm−1 are positive, a fact that makes invertibility of each equation in (4.3) a very
delicate matter.

Without any loss of generality, we study solvability theory for the model linear equation

Lδ(ψ) = δΔMψ + |AM |2ψ = g̃, in M. (4.4)

Since we are working in the class of axially symmetric and even functions, we only need to study
solutions to

Lδψ = 0, in M ∩ {x3 � 0}

which in the arch-length variable of M reads as the ODE

δ

(
ψ′′(y) + y

1 + y2ψ
′(y)

)
+ 2

(1 + y2)2ψ(y) = 0, y � 0. (4.5)

Let us denote yδ > 0, the real number such that
√

1 + y2 = 1√ .
δ δ
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Consider the change of variables y = sinh(t) and consider the outer region y > yδ. Let us choose Tδ > 0
so that δ cosh2(Tδ) = 2. Hence writing solutions to (4.5) in the form ψ(y) = φ(t), we see that the function
φ must satisfy

∂ttφ + pδ(t)φ = 0, pδ(t) := 2δ−1 sech2(t) t > Tδ (4.6)

The following lemma gives us a precise description of the solutions to (4.6) in the outer region t > Tδ.

Lemma 4.1. The linear ODE (4.6) has two linearly independent solutions, φ1(t), φ2(t), satisfying that

φ1(t) = t + O(1), ∂tφ1(t) = 1 + O
(
t−1), for t > Tδ, (4.7)

φ2(t) = 1 + O
(
t−1), ∂tφ2(t) = O

(
t−1), for t > Tδ, (4.8)

provided δ is small enough, which amounts to the fact that Tδ is large enough. Even more, φ2(t) satisfies
the estimate

∣∣∂tφ2(t)
∣∣ � C‖φ2‖L∞(Tδ,∞)pδ(t), t > Tδ. (4.9)

Proof. First let us look for a solution φ1(t) to (4.6) of the form φ1(t) = tv(t). We find that v(t) must solve

∂t
(
t2∂tv(t)

)
+ pδ(t)t2v(t) = 0.

Setting z(t) = t2∂tv(t), we obtain the first order IVP for z(t) and v(t)

∂tz(t) = −pδ(t)t2v(t), ∂tv(t) = 1
t2
z(t), z(Tδ) = z0, v(Tδ) = v0.

Integrating each equation on the system, we find that

z(t) = z0 −
t∫

Tδ

pδ(τ)τ2v(τ) dτ, v(t) = v0 +
t∫

Tδ

1
τ2 z(τ) dτ.

Hence, using this integral formulas and Fubini’s theorem, we obtain the integral representation for z(t)

z(t) = z0 − v0

t∫
Tδ

pδ(τ)τ2 dτ −
t∫

Tδ

1
τ2 z(τ)

t∫
τ

pδ(s)s2 ds dτ.

Next, we prove that z(t) is bounded. First observe that

0 �
t∫

Tδ

pδ(τ)τ2 dτ �
∞∫

Tδ

pδ(τ)τ2 dτ � Cδ−1T 2
δ e

−2Tδ � CT 2
δ ,

where C > 0 is independent of δ, provided δ > 0 is small enough. On the other hand,

∣∣z(t)∣∣ � C
(
|z0| + δ−1|v0|

)
+

t∫
Tδ

pδ(τ)
∣∣z(τ)

∣∣ dτ
and directly from Gronwall’s inequality we obtain that



160 O. Agudelo et al. / J. Math. Pures Appl. 103 (2015) 142–218
∣∣z(t)∣∣ � C
(
|z0| + δ−1|v0|

)
exp
( t∫

Tδ

pδ(τ) dτ
)
.

Since

∞∫
Tδ

pδ(τ) dτ � C

δ
e−2Tδ

then for δ small enough, and taking v0 = 0, we find that |z(t)| � C|z0|, for t > Tδ.
Plugging this into the integral formula for z(t) we observe that

z(t) = z0 +
t∫

Tδ

z(τ) 1
τ2

t∫
τ

pδ(s)s2 ds dτ.

Since z(t) is bounded, we obtain that

z(∞) = lim
t→∞

z(t) = z0 +
∞∫

Tδ

z(τ) 1
τ2

∞∫
τ

pδ(s)s2 ds dτ

and without any loss of generality we write

z(t) = 1 +
∞∫
t

z(τ) 1
τ2

t∫
τ

pδ(s)s2 ds dτ, t > Tδ.

Observe that
∣∣z(t) − 1

∣∣ � Cpδ(t) � Ce−2(t−Tδ), t > Tδ.

From the integral formula for v(t), we obtain that

v(t) = v(∞) +
∞∫
t

z(τ) 1
τ2 dτ = v(∞) + O

(
1
t

)

so that, we may choose

φ1(t) = t + O(1), t > Tδ, ∂tφ1(t) = v(t) + t∂tv(t) = 1 + O
(

1
t

)
.

Using the reduction of order formula, we find the second solution φ2(t), satisfying

φ2(t) = 1 + O
(

1
t

)
, ∂tφ2(t) = O

(
1
t

)
.

To find estimate (4.9), observe that ∂tφ2(∞) = 0. So we obtain from (4.6) that

∂tφ2(t) = −
∞∫
pδ(τ)φ2(τ) dτ, t > Tδ
t
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from which

∣∣∂tφ2(t)
∣∣ � C‖φ2‖L∞(Tδ,∞)pδ(t), for t > Tδ.

This concludes the proof of the lemma. �
Next, we describe solutions to (4.5) in the whole line and in the arch-length variable y. Let ψ1(y), ψ2(y)

be two linearly independent solutions of (4.5) satisfying

ψi(0) = ci,1, ∂yψi(0) = ci,2δ
− 1

2 , i = 1, 2, (4.10)

where c1,1c2,2 − c1,2c2,1 = 1, so that the Wronskian is given by

W (ψ1, ψ2) = δ−
1
2√

1 + y2
, ∀y ∈ R.

The following proposition completes the description of the kernel.

Proposition 4.1. The fundamental set {ψ1, ψ2} of (4.5) satisfies the following estimates

∣∣ψi(y)
∣∣ � C

(
1 + y2) 1

4 ,
∣∣∂yψi(y)

∣∣ � Cδ−
1
2
(
1 + y2)− 1

4 , 0 � y � yδ, (4.11)∣∣ψi(y)
∣∣ � Cδ−

1
4
∣∣log(δ)

∣∣ ln(1 + |y|
)
,

(
1 + |y|

)∣∣∂yψi(y)
∣∣ � Cδ−

1
4 , y � yδ. (4.12)

Proof. We pass to the sphere S2 using the stereographic projection

y = tan(θ), for 0 < θ < θδ,

where the number θ < θδ is such that yδ = tan(θδ), 0 < θδ < π
2 . Writing

ψ(y) = ϕ(θ), for 0 < θ < θδ

we find that ϕ solves the equation

∂θθϕ(θ) − tan(θ)∂θϕ(θ) + 2
δ
ϕ(θ) = 0. (4.13)

Assume further that

ψ(y) = 1√
cos(θ)

γ

(
θ√
δ

)
, for 0 < θ < θδ. (4.14)

so that

∂ssγ(s) +
([

1 + δ

4

]
+ δ

4 sec2(
√
δs)
)
γ(s) = 0, for 0 < s < sδ := θδ√

δ
.

We claim that γ(s) and ∂sγ(s) are uniformly bounded in (0, sδ). To prove this claim, we consider the
pointwise energy

J(s) :=
∣∣∂sγ(s)

∣∣2 +
[
1 + δ

]∣∣γ(s)
∣∣2
4
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for which

∂sJ(s) = −2∂sγ(s)γ(s)δ4 sec2(
√
δs).

Hence, for a constant C > 0 independent of δ > 0, it follows that

∣∣∂sJ(s)
∣∣ � CJ(s)δ4 sec2(

√
δs)

and consequently

0 � J(s) � J(0) + C
δ

4

s∫
0

J(ξ) sec2(
√
δξ) dξ, for 0 < s < sδ.

Using Gronwall’s inequality, we find that

J(s) � J(0) exp
(
C
δ

4

sδ∫
0

sec2(
√
δξ) dξ

)
. (4.15)

We compute explicitly the integral in (4.15) to find that

δ

4

sδ∫
0

sec2(
√
δξ) dξ =

√
δ

4 tan(
√
δsδ) =

√
δ

4 tan(θδ) � c0,

where c0 does not depend on δ > 0. Hence, we find that

J(s) :=
∣∣∂sγ(s)

∣∣2 +
[
1 + δ

4

]∣∣γ(s)
∣∣2 � CJ(0), 0 < s <

θδ√
δ

and so the claim is proven. Pulling back the change of variables given in (4.14) and since

(
1 + y2)∂yψ(y) = 1√

δ

∂sγ( θ√
δ
)√

cos(θ)
+

sin(θ)γ( θ√
δ
)

2 cos 3
2 (θ)

. (4.16)

we find that

ψ(0) = γ(0), ∂yψ(0) = δ−
1
2 ∂sγ(0).

and consequently we obtain (4.11).
On the other hand, using Lemma 4.1 we may find another fundamental set for (4.5), say {ψ̃1(y), ψ̃2(y)},

such that

ψ̃1(y) = ln
(
1 + |y|

)
+ O(1),

(
1 + |y|

)
∂yψ̃1(y) = 1 + O

(
ln
(
1 + |y|

)−1)
, y � yδ,

ψ̃2(y) = 1 + O
(
ln
(
1 + |y|

)−1)
,

(
1 + |y|

)
∂yψ̃2(y) = O

(
log
(
1 + |y|

)
|−1), y � yδ,

and with Wronski determinant

0 < W (ψ̃1, ψ̃2) = c
(
1 + y2)− 1

2 .
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Let us consider next equation (4.5) for ψi in the region y > yδ. Since γ(s), |∂sγ(s)| are uniformly bounded,
we find from (4.14) and (4.16) the conditions

ψi(yδ) = O
(
δ−

1
4
)
, ∂yψi(yδ) = O

(
δ

1
4
)

(4.17)

and we write

ψi(y) = ci,1ψ̃1 + ci,2ψ̃2, y � yδ, i = 1, 2.

A direct computation shows that

[
ci,1

ci,2

]
= cδ−

1
2

[
∂yψ̃2(yδ) −ψ̃2(yδ)
−∂yψ̃1(yδ) ψ̃1(yδ)

]
·
[

ψi(yδ)
∂yψi(yδ)

]
.

From this we obtain that

ci,1 = O
(
δ−

1
4
)
, ci,2 = O

(
δ−

1
4
∣∣log(δ)

∣∣)
and clearly (4.12) follows at once from these remarks. �
Proof of Proposition 3.2. Using Proposition 4.1 we choose a solution to (4.4) defined by the variations of
parameters formula

ψ(y) = −δ−
1
2ψ1(y)

y∫
0

√
1 + ξ2ψ2(ξ)g̃(ξ) dξ + δ−

1
2ψ2(y)

y∫
0

√
1 + ξ2ψ1(ξ)g̃(ξ) dξ. (4.18)

In order to estimate the size of ψ, we observe that for 2 � p < ∞, β > 5
2 and 0 < y < yδ, it holds that

y∫
0

√
1 + ξ2

∣∣ψi(ξ)
∣∣∣∣g̃(ξ)∣∣ dξ � C‖g̃‖p,β

( y∫
0

(
1 + |ξ|

)(1+ p′
2 −βp′)

dξ

) 1
p′

.

Directly from this inequality and using (4.11), we find that

∣∣∣∣∣ψi(y)
y∫

0

√
1 + ξ2ψj(ξ)g̃(ξ) dξ

∣∣∣∣∣ � Cδ−
1
4 ‖g̃‖p,β , i, j = 1, 2, i 
= j

and since we are taking β > 5
2 and using again (4.11), we get that

δ
1
2
√

1 + y2
∣∣ψ′(y)

∣∣+ ∣∣ψ(y)
∣∣ � Cδ−

3
4 ‖g̃‖p,β , 0 < y � yδ. (4.19)

Proceeding as above, we observe that for y > yδ

y∫
0

√
1 + ξ2

∣∣ψi(ξ)
∣∣∣∣g̃(ξ)∣∣ dξ � C‖g̃‖p,β +

y∫
yδ

√
1 + ξ2

∣∣ψi(ξ)
∣∣∣∣g̃(ξ)∣∣ dξ

and using (4.12) and since β > 5 , we find that for some ε > 0 small
2
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y∫
yδ

√
1 + ξ2

∣∣ψi(ξ)
∣∣∣∣g̃(ξ)∣∣ dξ � C

∣∣log(δ)
∣∣δ− 1

4 ‖g̃‖p,β

( y∫
yδ

(
1 + |ξ|

)(1−βp′) log
(
1 + |ξ|

)p′
) 1

p′

� Cδε‖g̃‖p,β .

Hence, using again (4.12), it holds that

δ
1
2
√

1 + y2
∣∣ψ′(y)

∣∣+ log
(
2 + |y|

)−1∣∣ψ(y)
∣∣ � Cδ−

3
4 ‖g̃‖p,β , y � yδ. (4.20)

Putting together, estimate (4.19) and (4.20) we obtain that

√
δ
∥∥(1 + r(y)

)
Dψ
∥∥
L∞(M) +

∥∥log
(
2 + r(y)

)−1
ψ
∥∥
L∞(M) � Cδ−

3
4 ‖g̃‖p,β . (4.21)

Finally, observe that for 2 � p < ∞, β < 3 and some ε > 0 arbitrarily small, we have that
∫
M

(
1 + r(y)β

)p∣∣AM (y)
∣∣2p∣∣ψ(y)

∣∣p dVM � C
∥∥(log

(
r(y) + 2

)−1
ψ
∥∥
L∞(M)

∫
M

(
1 + r(y)

)(β−4−ε)p
dVM .

Since (β − 4)p < −2, we obtain that

∥∥|AM |2ψ
∥∥
p,β

� C
∥∥(log

(
r(y) + 2

))−1
ψ
∥∥
L∞(M) � Cδ−

3
4 ‖g̃‖p,β .

and so, from (4.4)

‖ψ‖δ,p,β � Cδ−
3
4 ‖g̃‖p,β

where

‖ψ‖δ,p,β = δ
∥∥D2ψ

∥∥
p,β

+ δ
1
2
∥∥(1 + r(y)

)
Dψ
∥∥
L∞(M) +

∥∥log
(
2 + r(y)

)−1
ψ
∥∥
L∞(M).

The case p = ∞ is treated in an analogous fashion.
To finish the proof of Proposition 3.2, we simply notice that linear system (4.1) can be written as the

fixed point problem

ψ = L−1
δ [g̃] − L−1

δ

[
−|AM |2

(
A(y, δ) −A(y, 0)ψ

)]
and as we observed before, it holds that

∥∥|AM |2
(
A(·, δ) −A(·, 0)

)∥∥
p,β

� Cδ,

then a direct application of the contraction mapping principle, in both of the norms (3.20)–(3.21) for ψ,
completes the proof of Proposition 3.2. �
4.2. The Jacobi operator in M

To study the linearization of the system (3.1), we also need to develop solvability theory for the equation

JM (v) = ΔMv + |AM |2v = g, in M. (4.22)
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Operator JM in Eq. (4.22) corresponds to the linearization around the catenoid M of the mean curvature
operator.

It is well known that the catenoid M is L∞-nondegenerate, in the sense that the functions zi = ν · ei, for
i = 1, 2, 3 are the only bounded solutions to the equation

JM (v) = ΔMv + |AM |2v = 0, in M,

where e1, e2, e3 corresponds to the canonical basis in R
3. One can check directly that z3(y), which has the

explicit expression

z3(y) = y√
1 + y2

, y = Y (y, θ) ∈ M

is the only bounded axially symmetric Jacobi field. Hence, using the reduction of order formula with
the ansatz

z4(y) = 1 + s(y)z3(y), y 
= 0

one can also deduce the existence of another axially symmetric element of the kernel of JM , with logarithmic
growth, associated to the dilations of the catenoid M , namely

z4(y) := Y (y, θ) · ν(y, θ) = 1 − ln
(
y +

√
1 + y2

) y√
1 + y2

, y = Y (y, θ) ∈ M.

We compute the derivatives of z3 and z4, with respect to y, so we get

∂yz
′
3(y) = − 1

(1 + y2) 3
2

= O
(
|y|−3), (4.23)

∂yz
′
4(y) = − ln

(
y +

√
1 + y2

)(
1 + y2)− 3

2 − y

1 + y2 = O
(
|y|−1). (4.24)

Since we are working in the class of axially symmetric functions, we use the variations of parameters
formula to define J−1(g) := v, where

v(y) := −z3(y)
y∫

0

√
1 + ξ2g(ξ)z4(ξ) dξ + z4(y)

y∫
−∞

√
1 + ξ2g(ξ)z3(ξ) dξ (4.25)

for any function g satisfying that

‖g‖p,β :=
∥∥(1 + r(y)β

)
g
∥∥
Lp(M) < ∞.

Formula (4.25) defines a function v that solves equation (4.22). We remark that, under the orthogonality
condition

∞∫
−∞

√
1 + ξ2g(ξ)z3(ξ) dξ = 0 (4.26)

this solution is unique in the class of bounded functions with v′(0) = 0 and the following lemma gives us
an estimate on the size of J−1.
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Lemma 4.2. Let g be an axially symmetric function satisfying condition (4.26), and such that ‖g‖p,β < ∞,
for 1 < p � ∞ and 2 < β < 4 − 2

p . Then, the function v, given by formula (4.25), defines an axially
symmetric solution to

ΔMv + |AM |2v = g, in M,

such that v′(0) = 0 and the following estimate holds true

‖v‖2,p,β � C‖g‖p,β , (4.27)

where

‖v‖2,p,β := ‖v‖L∞(M) +
∥∥rβ−1(y)∇v

∥∥
L∞(M) +

∥∥D2v
∥∥
p,β

.

The proof of this lemma follows calculations similar to those in the proof of Proposition 3.2, so we leave
details to the reader.

Remark 4.1. To prove Lemma 4.2, we simply notice that an even axially symmetric function g in L1(M),
automatically satisfies the orthogonality condition (4.26). In such a case, formula (4.25) defines an even
function.

5. Approximation of the solution in Theorem 2

To define our approximate solution to problem (1.1), let us first observe that the heteroclinic solution to

w′′(s) + w
(
1 − w2) = 0, s ∈ R, w(±∞) = ±1

is given explicitly by

w(s) = tanh
(

s√
2

)
, s ∈ R

and has the asymptotic properties

w(s) = 1 − 2e−
√

2s + O
(
e−2

√
2|s|), s > 1,

w(s) = −1 + 2e
√

2s + O
(
e−2

√
2|s|), s < −1,

w′(s) = 2
√

2e−
√

2|s| + O
(
e−2

√
2|s|), |s| > 1, (5.1)

where w′ = dw
ds .

5.1. The first local approximation

Let us consider the vector function h = (h1, . . . , hm) given in Proposition 3.1 and solving the Jacobi–Toda
system. Recall that every hl has the form

hl(y) =
(
l − m + 1

2

)[
σ +

√
2
(

1 − 1
σ

)
log
(
1 + y2)]+ h̃l(y), y ∈ R, (5.2)

where



O. Agudelo et al. / J. Math. Pures Appl. 103 (2015) 142–218 167
∣∣h̃l(y)
∣∣ � Kσ− 5

4 log
(
2 + r(y)

)
, y ∈ M,∥∥(1 + r(y)

)j
D(j)h̃l

∥∥
L∞(M) � Kσ− 5

4+ j
2 , l = 1, . . . ,m, j ∈ N,

where σ is the unique positive real number that solves the algebraic equation

α2σ = a0e
−
√

2σ. (5.3)

Let us also consider a parameter vector function v = (v1, . . . , vm) satisfying the a priori estimate that

σ− 1
4
∥∥(1 + r(y)

)
Dvl

∥∥
L∞(M) +

∥∥(log
(
2 + r(y)

))−1vl

∥∥
L∞(M) � K1α

τ0σ
3
4 (5.4)

for some τ0 > 0 small and K1 > 0 a universal constant to be chosen large but independent of α > 0.
Let us consider m normal graphs over M of the axially symmetric functions fl = hl + vl ∈ C2(M),

l = 1, . . . ,m. With a slight abuse of notation we write

fl
(
Y (y, θ)

)
= fl(y), (y, θ) ∈ R× (0, 2π), l = 1, . . . ,m.

From (5.2)–(5.4), we observe that

fl+1(y) − fl(y) � σ +
√

2
(

1 − 1
σ
−Mσ− 5

4

)
log
(
1 + y2), y ∈ R, (5.5)

for some positive universal constant M > 0 and for every fixed j = 1, . . . ,m− 1.
In the region Nα we consider as a local approximation the function

U0(x) =
m∑
j=1

wj

(
z − fj(αy)

)
+ (−1)m−1 − 1

2 , wj(s) = (−1)j−1w(s), (5.6)

where x = Xα(y, θ, z) ∈ Nα. Observe that for points x ∈ Nα, for which z is close enough to hj(αy),
we have that

U0(x) ≈ wj

(
z − fj(αy)

)
.

For l = 1, . . . ,m fixed, we consider the set

Al =
{
Xα(y, θ, z):

∣∣z − fl(αy)
∣∣ � 1

2

[
σ +

√
2
(

1 − 1
σ
−Mσ− 5

4

)
log
(
1 + (αy)2

)]}
.

From (5.2) it is direct to check that Al ⊂ Nα, for every α > 0 small enough. Setting t = z − fl(αy), the
set Al can also be describe in terms of the local coordinates Xα,fl(y, θ, t) as

Al =
{
Xα,fl(y, θ, t): |t| � 1

2

[
σ +

√
2
(

1 − 1
σ
−Mσ− 5

4

)
log
(
1 + (αy)2

)]}
.

Next, with the aid of Lemma 2.1, we compute the error

S(U0) = ΔU0 + F (U0), in Al, l = 1, . . . ,m

of the approximation U0 defined in (5.6) and where F (u) = u(1 − u2).
We proceed as in Lemma 2.4 in [13], collecting all the computations in the following lemma:
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Lemma 5.1. For l = 1, . . . ,m and x = Xα,fl(y, θ, t) ∈ Al, it holds that

(−1)l−1S(U0) = −α2(ΔMfl + |AM |2fl
)
w′(t)

+ 6
(
1 − w2(t)

)[
e−

√
2te−

√
2(fl−fl−1) − e

√
2te−

√
2(fl+1−fl)

]
− α2|AM |2tw′(t) + α2[f ′

l

]2
w′′(t) − α3(t + fl)a1

(
αy, α(t + fl)

)
f ′′
l w

′(t)

− α2
∑

|j−l|�1

(
ΔMfj − α(t + fl)a1

(
αy, α(t + fl)

)
f ′′
j

)
w′

j(t + fl − fj)

+ Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm), (5.7)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and

∣∣DpRl(αy, t, p, q)
∣∣+ ∣∣DqRl(αy, t, p, q)

∣∣+ ∣∣Rl(αy, t, p, q)
∣∣ � Cα2+τ

(
1 + |αy|

)−4
e−�|t| (5.8)

for 0 < � <
√

2, some 0 < τ < 1 and where

p = (v1, . . . , vm), q = (Dv1, . . . , Dvm).

Proof. Denote

E1 = F
(
(−1)l−1U0

)
, E2 = ΔXα,hl

[
(−1)l−1U0(x)

]
.

We first compute E1. We begin noticing that

F (U0) =
m∑
j=1

F
(
wj(t + fl − fj)

)
+
[
F
(
U0(x)

)
−

m∑
j=1

F
(
wj(t + fl − fj)

)]
.

Since F (u) = u(1 − u2), for u ∈ R, we find that

0 � F (u) � |1 − u||1 + u|, ∀u ∈ [−1, 1]. (5.9)

On the other hand, for |j − l| � 1, we have that

|fl − fj | = |l − j|
[
σ +

√
2
(

1 − 1
σ

+ O
(
σ− 5

4
))

log
(
1 + (αy)2

)]

and recall that

α2σ = a0e
−
√

2σ.

Hence, we obtain for |j − l| � 1 and for ε ∈ [0, 1) that

|t + fl − fj | � |l − j|
[
σ +

√
2
(

1 − 1
σ

+ O
(
σ− 5

4
))

log
(
1 + (αy)2

)]
− |t|

�
(
|j − l| − 1 + ε

2

)[
σ +

√
2
(

1 − 1
σ

)
log
(
1 + (αy)2

)]
+ ε|t|.

Assume for the moment that 2 � l � m− 1. For x = Xα,fl(y, θ, t) ∈ Al and 1 � j < l, it holds that
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t + fl(αy) − fj(αy) � 1
2

[
σ +

√
2
(

1 − 1
σ
−Mσ− 5

4

)
log
(
1 + (αy)2

)]

while for l < j � m, it holds that

t + fl(αy) − fj(αy) � −1
2

[
σ +

√
2
(

1 − 1
σ
−Mσ− 5

4

)
log
(
1 + (αy)2

)]
.

Using the asymptotic behavior of w(s) from (5.1), we find that

w(t + fl − fj) = 1 − 2e−
√

2te−
√

2(fl−fj) + O
(
e−2

√
2|t+fl−fj |), 1 � j < l,

w(t + fl − fj) = −1 + 2e
√

2te
√

2(fl−fj) + O
(
e−2

√
2|t+fl−fj |), l < j � m.

From (5.9) and the remarks made above, we conclude that
∣∣∣∣ ∑
|j−l|�2

F
(
wj(t + fl − fj)

)∣∣∣∣ � C max
|j−l|�2

e−
√

2|t+fl−fj | � Cα2+τ
(
1 + |αy|

)−4
e−�|t|

for some 0 < � <
√

2 independent of α > 0 and 0 < τ < 1 depending only on � > 0.
From the previous estimate we also observe that

(−1)l−1

[
F
(
U0(x)

)
−

m∑
j=1

F
(
wj(t + fl − fj)

)]

= (−1)l−1F
(
U0(x)

)
+ F

(
w(t + fl − fl−1)

)
− F

(
w(t)

)
+ F

(
w(t + fl − fl+1)

)
+ R̄l(αy, t, v1, . . . , vm), (5.10)

where

∣∣DpR̄l(αy, t, p)
∣∣+ ∣∣R̄l(αy, t, p)

∣∣ � Cα2+τ
(
1 + |αy|

)−4
e−�|t|.

for p = (v1, . . . , vm).
Let us now denote

a1 = w(t + fl − fl−1) − 1, a2 = w(t + fl − fl+1) + 1.

From the mean value theorem, we can choose numbers si ∈ (0, 1), for i = 1, 2, 3, such that

F
(
w(t + fl − fl−1)

)
= F (1) + F ′(1)a1 + 1

2F
′′(1 + s1a1)a2

1,

F
(
w(t + fl − fl+1)

)
= F (−1) + F ′(−1)a2 + 1

2F
′′(−1 + s2a2)a2

2,

(−1)l−1F
(
U0(x)

)
= F (w) − F ′(w)(a1 + a2) + F ′(w)

∑
|j−l|�2

(−1)j−l
[
w(t + fl − fj) − sign(l − j)

]

+ 1
2F

′′[w + s3
(
(−1)l−1U0 − w

)]( ∑
|j−l|�1

(−1)j+lw(t + fl − fj) − sign(l − j)
)2

.

Hence, using that F ′(1) = F ′(−1), we obtain that
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(−1)l−1F (U0) =
m∑
j=1

(−1)l−1F
(
wj(t + fl − fj)

)
+ 6
(
1 − w2(t)

)[
e−

√
2te−

√
2(fl−fl−1) − e

√
2te−

√
2(fl+1−fl)

]
+ Rl(αy, t, v1, . . . , vm), (5.11)

where for p = (v1, . . . , vm)

∣∣DpRl(αy, p)
∣∣+ ∣∣Rl(αy, t, p)

∣∣ � Cα2+τ
(
1 + |αy|

)−4
e−�|t|. (5.12)

The remaining cases, namely l = 1 and l = m, are treated in an similar fashion, replacing the term

e−
√

2te−
√

2(fl−fl−1) − e
√

2te−
√

2(fl+1−fl)

by the respective terms

−e
√

2te−
√

2(f2−f1), e−
√

2te−
√

2(fm−fm−1).

So far, we have only written the term E1 in a convenient way. We still have to compute E2. In order to
do so, we write

E2 = ΔXα,fl
w(t) +

∑
|j−l|�1

ΔXα,fl

[
(−1)l−1wj(t + fl − fj)

]
= E21 + E22.

Directly from Lemma 2.1, we obtain that

E21 = w′′(t) − α2(ΔMfl + |AM |2fl
)
w′(t) − α2|AM |2tw′(t) + α2[f ′

l

]2
w′′(t)

− α3(t + fl)a1
(
αy, α(t + fl)

){
f ′′
l w

′(t) −
[
f ′
l

]2
w′′(t)

}
− α3(t + fl)b1

(
αy, α(t + fl)

)
h′
lw

′(t) − α4(t + fl)3b2
(
αy, α(t + fl)

)
w′(t).

Using assumptions (5.2)–(5.4), we can write E21 as follows:

E21 = w′′(t) − α2(ΔMfl + |AM |2fl
)
w′(t) − α2|AM |2tw′(t) + α2[f ′

l

]2
w′′(t)

− α3(t + fl)a1
(
αy, α(t + fl)

)
h′′
l w

′(t) + Q21(αy, t, vl, Dvl), (5.13)

where

Q21 = Q21(αy, t, p, q)

and

∣∣DpQ21(αy, t, p, q)
∣∣+ ∣∣DqQ21(αy, t, p, q)

∣∣+ ∣∣Q21(αy, t, p, q)
∣∣ � Cα3(1 + |αy|

)−4
e−�|t| (5.14)

for some 0 < � <
√

2.
Next, we compute E22. A direct computation yields that
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(−1)l−1E22 =
∑

|j−l|�1

w′′
j (t + fl − fj)

− α2
∑

|j−l|�1

([
ΔMfj + |AM |2(fl + t)

]
w′

j(t + fl − fj) −
[
f ′
j

]2
w′′

j (t + fl − hj)
)

− α3(t + fl)a1
(
αy, α(t + fl)

) ∑
|j−l|�1

(
f ′′
j w

′
j(t + fl − fj) −

[
f ′
j

]2
w′′

j (t + fl − fj)
)

− α3(t + fl)b1
(
αy, α(t + fl)

) ∑
|j−l|�1

(
f ′
jw

′
j − α(t + fl)3b2

(
αy, α(t + fl)

)
w′

j(t + fl − fj)
)
.

Using the fact that for ε ∈ (0, 1) and |j − l| � 1

|t + fl − fj | �
(

1 − 1 + ε

2

)[
σ +

√
2
(

1 − 1
σ

)
log
(
1 + (αy)2

)]
+ ε|t|

and proceeding as above, we can write E22 as follows

(−1)l−1E22 = w′′
j (t + fl − fj)

− α2
∑

|j−l|�1

(
ΔMfj − α(t + fl)a1

(
αy, α(t + fl)

)
f ′′
j

)
w′

j(t + fl − fj)

+ Q22(αy, t, v1, . . . , vm, Dv1, . . . , Dvm), (5.15)

where

Q22 = Q22(αy, t, p, q)

and

∣∣DpQ22(αy, t, v, q)
∣∣+ ∣∣DqQ22(αy, t, p, q)

∣∣+ |Q22| � Cα2+τ
(
1 + |αy|

)−4
e−�|t| (5.16)

for some 0 < � <
√

2 and some 0 < τ < 1.
Setting Rl = Rl + Q21 + Q22, we have that Rl = Rl(αy, t, p, q) is smooth on its arguments and

∣∣DpRl(αy, t, p, q)
∣∣+ ∣∣DqRl(αy, t, p, q)

∣∣+ ∣∣Rl(αy, t, p, q)
∣∣ � Cα2+τ

(
1 + |αy|

)−4
e−�|t|

for 0 < � <
√

2 and 0 < τ < 1. Putting together (5.11)–(5.15) and using that w′′
j + F (wj) = 0, we obtain

expressions (5.7) and (5.8) and the proof of the lemma is complete. �
5.2. Improvement of the local approximation

For subsequents developments, it will be useful to have more precise information about the asymptotics
of the solution we are looking for, so we improve our first approximation U0. In order to do so, we write

6
(
1 − w2(t)

)
e−

√
2t = a0w

′(t) + g0(t),
∫
R

g0(t)w′(t) dt = 0. (5.17)

Using (5.17), the fact that the vector function h is an exact solution of the Jacobi–Toda system in M

and Lemma 5.1, we observe that
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(−1)l−1S(U0) := −α2(ΔMvl + |AM |2vl

)
w′(t)

+ g0(−t)e−
√

2(hl−hl−1) − g0(t)e−
√

2(hl+1−hl) + α2[h′
l

]2
w′′(t) − α2|AM |2tw′(t)

+ 6
(
1 − w2(t)

)
e−

√
2te−

√
2(hl−hl−1)

[
e−

√
2(vl−vl−1) − 1

]
− 6
(
1 − w2(t)

)
e
√

2te−
√

2(hl+1−hl)
[
e−

√
2(vl+1−vl) − 1

]
+ α2v′

l

(
2h′

l + v′
l

)
w′′(t) − α3(t + fl)a1

(
αy, α(t + fl)

)
f ′′
l w

′(t)

− α2
∑

|j−l|�1

(
ΔMfj − α(t + fl)a1

(
αy, α(t + fl)

)
f ′′
j

)
w′

j(t + fl − fj)

+ Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm), (5.18)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and satisfies (5.8) for 0 < � <
√

2 and some 0 < τ < 1.
Let us consider ψ0(t) to be the bounded solution to the equation

∂ttψ0(t) + F ′(w(t)
)
ψ0(t) = g0(t), t ∈ R

given explicitly by the variations of parameters formula

ψ0(t) = w′(t)
t∫

0

w′(s)−2
∞∫
s

w′(ξ)g0(ξ) dξ ds. (5.19)

From (5.19), we obtain the estimate

∥∥(1 + e2
√

2tχ{t>0}
)
∂

(j)
t ψ0

∥∥
L∞(R) � Cj , j ∈ N.

Let us also consider functions ψ1(t) and ψ2(t) so that

∂ttψ1(t) + F ′(w(t)
)
ψ1(t) = −w′′(t), t ∈ R, (5.20)

∂ttψ2(t) + F ′(w(t)
)
ψ2(t) = tw′(t), t ∈ R. (5.21)

Proceeding as before, we see that

ψ2(t) = −w(t)
t∫

0

w′(s)−2
∞∫
s

ξw′(ξ)2 dξ ds

and ψ1(t) = −1
2 tw

′(t), from where the following estimate follows at once

∥∥e�|t|∂(j)
t ψi

∥∥
L∞(R) � Cj , i = 1, 2, j ∈ N, 0 < � <

√
2.

So, we consider as a second approximation in the region Nα, the function

U1(x) = U0 +
m∑
j=1

φj,0 (5.22)

where for every l = 1, . . . ,m and in the coordinates Xα,fl
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(−1)l−1φl,0(y, t) = −e−
√

2(hl−hl−1)ψ0(−t) + e−
√

2(hl+1−hl)ψ0(t)

+ α2[h′
l(αy)

]2
ψ1(t) + α2∣∣AM (αy)

∣∣2ψ2(t).

The new error created reads as

S(U1) := S(U0) +
m∑
j=1

∂ttφj,0 + F ′(wj(t)
)
φj,0

+
m∑
j=1

ΔMα
φj,0 + Bj(φj,0) +

[
F ′(U1) − F ′(wj(t)

)]
φj,0.

Directly from (5.18) in each one of the sets Al, the error reads at main order as follows:

(−1)l−1S(U1) = −α2(ΔMvl + |AM |2vl

)
w′(t)

+ 6
(
1 − w2(t)

)
e−

√
2te−

√
2(hl−hl−1)

[
e−

√
2(vl−vl−1) − 1

]
− 6
(
1 − w2(t)

)
e
√

2te−
√

2(hl+1−hl)
[
e−

√
2(vl+1−vl) − 1

]
+ α2v′

l

(
2h′

l + v′
l

)
w′′(t) − α3(t + fl)a1

(
αy, α(t + fl)

)
f ′′
l w

′(t)

− α2(ΔMfj − α(t + fl)a1
(
αy, α(t + fl)

)
f ′′
j

)
w′

j(t + fl − fj) + R̃l, (5.23)

where

R̃l = R̃l(αy, t, v1, . . . , vm, Dv1, . . . , Dvm)

and

∣∣DpR̃(αy, t, p, q)
∣∣+ ∣∣DqR̃(αy, t, p, q)

∣∣+ ∣∣R̃(y, t, p, q)
∣∣ � Cα2+τrα(y)−4e−�|t| (5.24)

for some 0 < � <
√

2 and some 0 < τ < 1.

5.3. Global approximation

The approximation U1 is so far defined only on the neighborhood Nα of Mα. To define our global
approximation, we use the non-negative function β ∈ C∞(R) from the previous sections to define the
cut-off function

βα(x) = β

(
|z| − η

α
− 2

√
2(m + 1) log

(
r(αy)

)
+ 3
)
, x = Xα(y, θ, z) ∈ Nα

for which we observe that is supported in a region that expands logarithmically in rα(y). With the aid of
this function, we set up as approximation in R

3, the function

w(x) = βα(x)U1 +
(
1 − βα(x)

)
H, x ∈ R

3 (5.25)

where H is the function

H(x) =
{ 1, x ∈ S+

α

m −
(−1) , x ∈ Sα
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and S±
α = α−1S±, S± being the two connected components of R

3 − M for which S+ is the component
containing the x3-axis.

We compute the new error as follows

S(w) = Δw + F (w) = βα(x)S(U1) + E

where

E = 2∇βα∇U1 + Δβα(U1 −H) + F
(
βαU1 + (1 − βα)H

)
− βαF (U1).

Due to the choice of βα(x) and the explicit form of the error the term E, the error created only takes
into account values of βα for x ∈ R

3 in the region

x = Xα(y, θ, z), |z| � η

α
+ 4 ln

(
rα(y)

)
− 2,

and so, we get the following estimate for the term E

|DyE| + |E| � Ce−
η
α r−4

α (y).

We observe that the error E decays rapidly and is exponentially small in α > 0, so that its contribution
is basically negligible.

6. Proof of Theorem 2

Since the proof of Theorem 2 is fairly technical, first we sketch the steps of the proof and then leave the
detailed proofs of the propositions and lemmas mentioned here to subsequent sections.

First, we introduce the norms we will use to set up an appropriate functional analytic scheme for the
proof of Theorem 1. Let us recall the notation

r(x) =
√

x2
1 + x2

2, x = (x1, x2, x3) ∈ R
3

and let us define for α > 0, μ > 0 and f(x), defined in R
3, the norm

‖f‖p,μ,∼ := sup
x∈R3

(
1 + r(αx)

)μ‖f‖Lp(B1(x)), p > 1. (6.1)

We also consider 0 < � <
√

2, μ > 0, α > 0 and functions g = g(y, t) and φ = φ(y, t), defined for every
(y, t) ∈ Mα × R. Let us define the norms

‖g‖p,μ,� := sup
(y,t)∈Mα×R

(
1 + r(αy)

)μ
e�|t|‖g‖Lp(B1(y,t)) (6.2)

‖φ‖∞,μ,� :=
∥∥(1 + r(αy)μ

)
e�|t|φ

∥∥
L∞(Mα×R) (6.3)

‖φ‖2,p,μ,� :=
∥∥D2φ

∥∥
p,μ,�

+ ‖Dφ‖∞,μ,� + ‖φ‖∞,μ,�. (6.4)

Finally, for functions v and g̃ defined in M , we recall the norms

‖g̃‖p,β :=
∥∥(1 + r(y)β

)
g̃
∥∥
Lp(M) (6.5)

‖v‖δ,p,β := δ
∥∥D2v

∥∥ + δ
1
2
∥∥(1 + r(y)

)
Dv
∥∥

∞ +
∥∥log

(
r(y) + 2

)−1v
∥∥

∞ . (6.6)

p,β L (M) L (M)
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Now, in order to prove Theorem 1, let us look for a solution to Eq. (1.1) of the form

U(x) = w(x) + ϕ(x),

where w(x) is the global approximation defined in (5.25) and ϕ is going to be chosen small. Hence, since
F (u) = u(1 − u2), for U(x) being a genuine solution to (1.1), we see that ϕ must solve the equation

Δϕ + F ′(w)ϕ + S(w) + N(ϕ) = 0, in R
3

or equivalently

Δϕ + F ′(w)ϕ = −S(w) −N(ϕ) = −βαS(U1) −E −N(ϕ), (6.7)

where

N(ϕ) = F (w + ϕ) − F (w) − F ′(w)ϕ.

6.1. Gluing procedure

In order to solve equation (6.7), we consider a non-negative function β ∈ C∞(R) such that

β(s) =
{ 1, |s| � 1

0, |s| � 2

and define for l = 1, . . . ,m and n ∈ N, the cut off function for x = Xα,fl(y, θ, t) ∈ Nα,fl

ζl,n(x) = β

(
|t| − 1

2

[
σ +

√
2
(

1 − 1
σ
−Mσ− 5

4

)
log
(
1 + (αy)2

)]
+ n

)
. (6.8)

Observe that for k 
= l and n ∈ N, ζl,n · ζk,n = 0. Observe that for k 
= l, ζl,n · ζk,n = 0.
Now we look for a solution ϕ(x) in the particular form

ϕ(x) =
m∑
j=1

ζj,3(x)ϕj(y, z) + ψ(x),

where the functions ϕj(y, z) are defined in Mα × R and the function ψ(x) is defined in the whole R
3. So,

from Eq. (6.7) and noticing that ζj,2 · ζj,3 = ζj,3, we find that

m∑
j=1

ζj,3
[
ΔNα

ϕj + F ′(ζj,2w)ϕj + ζj,2S(w) + ζj,2N(ϕj + ψ) + ζj,2
(
F ′(w) + 2

)
ψ
]

+ Δψ −
[
2 −

(
1 −

m∑
j=1

ζj,3

)(
F ′(w) + 2

)]
ψ +

(
1 −

m∑
j=1

ζj,3

)
S(w)

+
m∑
j=1

2∇ζj,3 · ∇Nα
ϕj + ϕjΔζj,3 + (1 − ζj,3)N

[
ψ +

m∑
i=1

ζi,2ϕi

]
= 0.

Hence, to construct a solution to (6.7), it suffices to solve the system of PDEs
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Δψ −
[
2 −

(
1 −

m∑
j=1

ζj,2

)(
F ′(w) + 2

)]
ψ = −

(
1 −

m∑
j=1

ζj,2

)
S(w) −

m∑
j=1

2∇ζj,2 · ∇Nα
ϕj − ϕjΔζj,2

−
(

1 −
m∑
j=1

ζj,3

)
N

[
m∑
i=1

ζi,2ϕi + ψ

]
, in R

3 (6.9)

ΔNα
ϕl + F ′(ζl,2w)ϕl = −ζl,2S(w) − ζl,2N(ϕl + ψ)

− ζl,2
(
F ′(w) + 2

)
ψ, for

∣∣z − fl(αy)
∣∣ � ρα(y), l = 1, . . . ,m, (6.10)

where

ρα(y) := 1
2

[
σα +

√
2
(

1 − 1
σα

)
log
(
1 + (αy)2

)]
, y = Yα(y, θ) ∈ Mα.

Now, we extend Eq. (6.10) to the whole Mα × R. First, let us introduce the differential operator

Bl := ζl,2[ΔNα,fl
− ∂tt − ΔMα

]

for l = 1, . . . ,m. Recall that ΔMα
is nothing but the Laplace–Beltrami and which in the local coordinates

Yα(y, θ), has the expression

ΔMα
= ∂yy + α2y

1 + (αy)2 ∂y + α2

1 + (αy)2 ∂θθ.

Clearly, Bl vanishes in the domain

|t| � 1
2

[
σα + 2

(
1 − 1

σα

)
ln
(
1 + (αy)2

)]
− 1.

We look for a solution to (6.10) having the form

φl(y, t) = ϕl

(
y, t + fl(αy)

)
, x = Xα,fl(y, θ, t)

and so, instead of Eq. (6.10), we consider the equation

∂ttφl + ΔMα
φl + F ′(wl(t)

)
φl = −Sl(w) −Bl(φl) −

[
F ′(ζl,2w) − F ′(wl(t)

)]
φl

− ζl,2
(
F ′(w) + 2

)
ψ − ζl,2N(φl + ψ), in Mα × R, (6.11)

where we have denoted

(−1)l−1Sl(w) = −α2(ΔMvl + |AM |2vl

)
w′(t)

+ 6
(
1 − w2(t)

)
e−

√
2tζl,2e

−
√

2(hl−hl−1)
[
e−

√
2(vl−vl−1) − 1

]
− 6
(
1 − w2(t)

)
e
√

2tζl,2e
−
√

2(hl+1−hl)
[
e−

√
2(vl+1−vl) − 1

]
+ α2v′

l

(
2h′

l + v′
l

)
w′′(t) + ζl,2

[
−α3(t + fl)a1

(
αy, α(t + fl)

)
f ′′
l w

′(t)

− α2(ΔMfj − α(t + fl)a1
(
αy, α(t + fl)

)
f ′′
j

)
w′

j(t + fl − fj) + R̃l

]
, (6.12)

where we recall that
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R̃l = Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm)

and
∣∣DpR̃(αy, t, p, q)

∣∣+ ∣∣DqR̃(αy, t, p, q)
∣∣+ ∣∣R̃(y, t, p, q)

∣∣ � Cα2+τrα(y)−4e−�|t| (6.13)

for 0 < � <
√

2 and 0 < τ < 1. Observe that Sl(w) coincides with S(U1) where ζl,2 = 1, but we have
basically cut-off the parts in S(U1) that, in the local coordinates Xα,fl , are not defined for all t ∈ R.

Using (6.12) and (6.13) and since the support of ζl,2 is contained in a region of the form

|t| � 1
2

[
σα − 2

(
1 − 1

σα

)
ln
(
1 + (αy)2

)]

we compute directly the size of this error to obtain that
∥∥Sl(w)

∥∥
p,2,� � Cα2+τ1 (6.14)

for some 0 < � <
√

2, some constant C > 0 and some 0 < τ1 < τ0 small, independent of α > 0.
Hence we solve system (6.9)–(6.11). We first solve equation (6.9), using the fact that the potential

2− (1−
∑m

j=1 ζj3)(F ′(w) + 2) is uniformly positive, so that the linear operator there behaves like ΔR3 − 2.
A solution ψ = Ψ(φ1, . . . , φm) is then found using contraction mapping principle. We collect this discussion
in the following proposition, that will be proven in detail in Section 7.

Proposition 6.1. Assume 0 < � <
√

2, μ > 0, p > 2 and let the functions f ′
ls be as in (5.2)–(5.4). Then, for

every α > 0 sufficiently small and for m fixed functions φ1, . . . , φm, satisfying that

‖φl‖2,p,μ,� � 1, l = 1, . . . ,m

Eq. (6.9) has a unique solution ψ = Ψ(φ1, . . . , φm). Even more, the operator ψ = Ψ(φ1, . . . , φm) turns out
to be Lipschitz in every φj. More precisely, ψ = Ψ(φ1, . . . , φm) satisfies that

‖ψ‖X :=
∥∥D2ψ

∥∥
p,μ̂,∼

+
∥∥(1 + rμ̂(αx)

)
Dψ
∥∥
L∞(R3) +

∥∥(1 + rμ̂(αx)
)
ψ
∥∥
L∞(R3)

� C

(
α2+ �√

2−ε + α
�√
2−ε

m∑
j=1

‖φj‖2,p,μ,�

)
, (6.15)

where 0 < μ̂ < min(2μ, μ + �
√

2, 2 + �
√

2 ) and

∥∥Ψ(φj) − Ψ(φ̂j)
∥∥
X

� Cα
�√
2−ε‖φj − φ̂j‖2,p,μ,�. (6.16)

Hence, using Proposition 6.1, we solve Eq. (6.11) with ψ = Ψ(φ1, . . . , φm). Let us set

Nl(φ1, . . . , φl, . . . , φm) := Bl(φl) +
[
F ′(ζl,2w) − F ′(w(t)

)]
φl

+ ζl,2
(
F ′(w) + 2

)
Ψ(φ1, . . . , φm) + ζl,2N

[
φl + Ψ(φ1, . . . , φm)

]
.

So, setting Φ = (φ1, . . . , φm), we only need to solve

∂ttφl + ΔMα
φl + F ′(wl(t)

)
φl = −Sl(w) − Nl(Φ), in Mα × R (6.17)

for every l = 1, . . . ,m.
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To treat system (6.17), we solve a nonlinear and nonlocal problem for φl, in such a way that we eliminate
the parts of the error that do not contribute to the projections onto w′(t). This step can be though as an
improvement of the approximation w. We use the fact that the error has the size

∥∥Sl(w)
∥∥
p,2,� � α2+τ1 (6.18)

and as we will see in Section 7 for 0 < τ1 < τ0, Nl(φ) satisfies

∥∥Nl(Φ)
∥∥
p,4,� � Cα3+τ1 , (6.19)∥∥Nl(Φ1) − Nl(Φ2)
∥∥
p,4,� � Cα‖Φ1 − Φ2‖2,p,2,�, (6.20)

for Φ1, Φ2 ∈ Bα a ball of radius O(α2+τ1) in the product norm ‖Φ‖2,p,2,�. A direct application of the
contraction mapping principle allows us to solve the projected system

∂ttφl + ΔMα
φl + F ′(wl(t)

)
φl = −Sl(w) − Nl(Φ) + cl(y)w′(t), in Mα × R, (6.21)∫

R

φl(y, t)w′(t) dt = 0, l = 1, . . . ,m, (6.22)

where

cl(y) =
∫
R

[
Sl(w) + Nl(Φ)

]
w′(t) dt, ∀l = 1, . . . ,m.

This solution φl, defines a Lipschitz operator φl = Φl(v1, . . . , vm) for the product norm

∥∥(v1, . . . , vm)
∥∥
δ,p,β

:=
m∑
j=1

‖vj‖δ,p,β .

This information is collected in the following proposition:

Proposition 6.2. Assume 0 < μ � 2, 0 < � <
√

2 and p > 2. For every α > 0 small enough, there
exists a universal constant C > 0, such that system (6.21)–(6.22) has a unique solution (φ1, . . . , φm) =
Φ(v1, . . . , vm), satisfying

‖Φ‖2,p,2,� � Cα2+τ1

and

∥∥Φ(v1, . . . , vm) − Φ(v̂1, . . . , v̂m)
∥∥

2,p,2,� � Cα2+τ1
∥∥(v1, . . . , vm) − (v̂1, . . . , v̂m)

∥∥
δ,p,β

for some fixed β ∈ (5
2 , 4 − 4δ).

6.2. Solving the Jacobi–Toda system to adjust the nodal sets

First, to estimate the size of the error of the projected problem, we borrow a result from Section 8 in [12].

Lemma 6.1. Assume g(y, t) is a function defined in Mα × R and for which
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sup
(y,t)∈Mα×R

(
1 + r(αy)μ

)
e�|t|‖g‖Lp(B1(y,t)) < ∞

for some �, μ > 0 and p > 2. The function defined in M as

q(y) :=
∫
R

g

(
y

α
, t

)
w′(t) dt

satisfies

‖q‖p,β � C sup
(y,t)∈Mα×R

(
1 + r(y)μ

)
e�|t|‖g‖Lp(B1(y,t))

provided

μ > β + 2
p
.

To conclude the proof of Theorem 2, we choose the vector function v = (v1, . . . , vm) in such a way that

cl(y) =
∫
R

[
Sl(w) + Nl(Φ)

]
w′(t) dt = 0, ∀l = 1, . . . ,m.

Using (6.12), we find that making these projections zero is equivalent to solve the nonlinear and nonlocal
system of equations

α2(ΔMvl + |AM |2vl

)
−

√
2a0
[
e−

√
2(hl−hl−1)(vl − vl+1) − e−

√
2(hl+1−hl)(vl+1 − vl)

]
= α2Ql(v), (6.23)

where

Ql(v) := Gl,1(v) + Gl,2(v)

α2Gl,1(v) :=
∫
R

ζj2
[
−α3(t + fj)a1

(
αy, α(t + fj)

)
f ′′
j w

′(t)

− α2(ΔMfj − α(t + fl)a1
(
αy, α(t + fl)

)
f ′′
j

)
w′

j(t + fl − fj) + R̃l

]
w′(t) dt

− a0e
−
√

2(hl−hl−1)
(
e−

√
2(vl−vl−1) − 1 +

√
2(vl − vl−1)

)
+ a0e

−
√

2(hl+1−hl)
(
e−

√
2(vl+1−vl) − 1 +

√
2(vl+1 − vl)

)
−
∫
R

6
(
1 − w2(t)

)
e−

√
2t(1 − ζl,2)w′(t) dt e−

√
2(hl−hl−1)

[
e−

√
2(vl−vl−1) − 1

]

+
∫
R

6
(
1 − w2(t)

)
e
√

2t(1 − ζl,2)w′(t) dt e−
√

2(hl+1−hl)
[
e−

√
2(vl+1−vl) − 1

]
,

α2Gl,2(v) :=
∫
R

Nl(Φ)w′(t) dt,

where we set Φ = (Φ1, . . . , Φm) and

a0 =
∥∥w′∥∥−2

L2(R)

∫
6
(
1 − w2(t)

)
e−

√
2tw′(t) dt.
R
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Direct computations using (6.12) and Lemma 6.1 yield the estimates

∥∥Gl,1(v)
∥∥
p,β

� Cατ0∥∥Gl,1(v) −Gl,1(v̂)
∥∥
p,β

� Cατ0‖v − v̂‖δ,p,β

for some 0 < τ0 < 1 fixed independent of α > 0.
From (6.19) and Lemma 6.1 we also have that for any p > 2 and 0 < β < 4 − 2

p

∥∥Gl,2(v)
∥∥
p,β

� α−2
∥∥∥∥
∫
R

Nl(Φ)w′(t) dt
∥∥∥∥
p,β

� Cα1+τ1 .

On the other hand, it is direct to check from (6.20) and Proposition 6.2 that

∥∥Gl,2(v) −Gl,2(v̂)
∥∥
p,β

� Cα1+τ1‖v − v̂‖δ,p,β

Hence we find that

Q(v) :=
(
Q1(v, ), . . . ,Qm(v, )

)
satisfies

∥∥Q(v)
∥∥
p,β

� Cατ0∥∥Q(v) − Q(v̂)
∥∥
p,β

� Cατ0‖v − v̂‖δ,p,β .

Since we are linearizing the Jacobi–Toda system (6.23) around the exact solution h, we can proceed as
in the proof Proposition 3.1 to solve this system. We see that using Propositions 3.2 and 3.3 and a direct
application of contraction mapping principle in a ball of radius O(ατ0σ

3
4 ) in the product topology ‖v‖δ,p,β

yields the existence of functions v1, . . . , vm satisfying (5.4), so that

cl(y) =
∫
R

[
Sl(w) + Nl(Φ)

]
w′(t) dt = 0, ∀l = 1, . . . ,m

and this completes the proof of the theorem. We omit the details since the procedure is similar to the
decoupling developed in Section 3.2.

In Section 7 we will carry out the proofs of the auxiliary results mentioned in this section.

7. Gluing reduction and solution to the projected problem

In this section, we prove Propositions 6.1 and 6.2. The notations we use in this section have been set up
in Sections 4 and 5.

7.1. Solving the gluing system

Given fixed functions φ1, . . . , φm such that ‖φl‖2,p,μ,� � 1 for l = 1, . . . ,m, we solve problem (6.9).
To begin with, we observe that there exist constants a < b, independent of α, such that

0 < a � Qα(x) � b, for every x ∈ R
3,
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where we set

Qα(x) = 2 −
(

1 −
m∑
j=1

ζj2

)[
F ′(w) + 2

]
.

Using this remark, we study the problem

Δψ −Qα(x)ψ = g(x), x ∈ R
3 (7.1)

for a given g = g(x) such that

‖g‖p,μ̂,∼ := sup
x∈R3

(
1 + Rμ̂(αx)

)
‖g‖Lp(B1(x)).

Solvability theory for Eq. (7.1) is collected in the following lemma whose proof follows the same lines as
in Lemma 7.1 in [12] and [14].

Lemma 7.1. Assume p > 2 and μ̂ � 0. There exists a constant C > 0 and α0 > 0 small enough such that for
0 < α < α0 and any given g = g(x) with ‖g‖p,μ̂,∼ < ∞, Eq. (7.1) has a unique solution ψ = ψ(g), satisfying
the a-priori estimate

‖ψ‖X � C‖g‖p,μ̂,∼,

where

‖ψ‖X :=
∥∥D2ψ

∥∥
p,μ̂,∼

+
∥∥(1 + r(αx)μ̂(x)

)
Dψ
∥∥
L∞(R3) +

∥∥(1 + rμ̂(αx)
)
ψ
∥∥
L∞(R3).

Now we prove Proposition 6.1. Denote by X, the space of functions ψ ∈ W 2,p
loc (R3) such that ‖ψ‖X < ∞

and let us denote by Γ (g) = ψ the solution to Eq. (7.1) from the previous lemma. We see that the linear
map Γ is continuous, i.e.

∥∥Γ (g)
∥∥
X

� C‖g‖p,μ̂,∼

with 0 < μ̂ < min(2μ, μ + �
√

2, 2 + �
√

2 ). Using this we can recast (6.9) as a fixed point problem, in the
following manner

ψ = −Γ

((
1 −

m∑
j=1

ζj2

)
S(w) + g1 +

(
1 −

m∑
j=1

ζj2

)
N

[
m∑
i=1

ζi3φi + ψ

])
, (7.2)

where

g1 =
m∑
j=1

2∇ζj2 · ∇φj + φjΔζj2.

Under conditions (5.2)–(5.4) and max1�l�m ‖φl‖2,p,μ,� � 1, we estimate the size of the right-hand side
in (7.2).

Recall that S(w) = βα(x)S(U1) + E, where

|DyE| + |E| � Ce−
η
α r−4

α (y).
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So, we estimate directly using (8.32), to get∣∣∣∣∣
(

1 −
m∑
j=1

ζj2

)
S(w)

∣∣∣∣∣ � C
m∑
j=1

α2(1 + rα(y)
)−2

e−�|t|(1 − ζj2)

� Cα2+ �√
2σ

�

2
√

2
(
1 + rα(y)

)−2(1+ �√
2 )

this means that ∣∣∣∣∣
(

1 −
m∑
j=1

ζj2(x)
)
S(w)

∣∣∣∣∣ � Cα2+ �√
2σ

�

2
√

2
(
1 + Rα(x)

)−2(1+ �√
2 )
.

Consequently we get, for 0 < μ̂ < 2(1 + �√
2) that

∥∥∥∥∥
(

1 −
m∑
j=1

ζj,2

)
S(w)

∥∥∥∥∥
p,μ̂,∼

� Cα2+ �√
2−ε

for some ε > 0 sufficiently small.
As for the second term in the right-hand side of (7.2), the following holds true

|2∇ζj,2 · ∇φj + φjΔζj,2| � C(1 − ζj2)
(
1 + rμ(αy)

)−1
e−�|t|‖φj‖2,p,μ,�

� Cα
�√
2σ

�

2
√

2
(
1 + rμ+ �√

2 (αy)
)−1‖φj‖2,p,μ,�.

This implies that

‖2∇ζj,2 · ∇φj + φjΔζj,2‖p,μ+�
√

2−ε,∼ � Cα
�√
2−ε

m∑
j=1

‖φj‖2,p,μ,�.

Finally we must check the Lipschitz character of (1 −
∑m

j=1 ζj2)N [
∑m

i=1 ζi2φi + ψ]. Take ψ1, ψ2 ∈ X.
Then (

1 −
m∑
j=1

ζj2

)∣∣∣∣∣N
[

m∑
i=1

ζi2φi + ψ1

]
−N

[
m∑
i=1

ζi2φi + ψ2

]∣∣∣∣∣
�
(

1 −
m∑
j=1

ζj2

)∣∣∣∣∣F
(

w +
m∑
i=1

ζj1φi + ψ1

)
− F

(
w +

m∑
i=1

ζi1φi + ψ2

)
− F ′(w)(ψ1 − ψ2)

∣∣∣∣∣
� C

(
1 −

m∑
j=1

ζj2

)
sup

s∈[0,1]

∣∣∣∣∣
m∑
i=1

ζi1φi + sψ1 + (1 − s)ψ2

∣∣∣∣∣|ψ1 − ψ2|

� Cα�−ε

(
m∑
i=1

‖φi‖∞,μ,� + ‖ψ1‖X + ‖ψ2‖X

)
|ψ1 − ψ2|

So, we see that∥∥∥∥∥
(

1 −
m∑
j=1

ζj2

)
N

[
m∑
i=1

ζi2φi + ψ1

]
−
(

1 −
m∑
j=1

ζj2

)
N

[
m∑
i=1

ζi2φi + ψ2

]∥∥∥∥∥
p,2μ̂,∼

� Cα
�√
2−ε‖ψ1 − ψ2‖∞,μ̂,∼.
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In particular, we take advantage of the fact that N(ϕ) ∼ ϕ2, to find that∥∥∥∥∥
(

1 −
m∑
j=1

ζj2

)
N

(
m∑
i=1

ζi2φi

)∥∥∥∥∥
p,2μ,∼

� Cα2�−ε
m∑
j=1

‖φj‖2
2,p,μ,�.

Consider Γ̃ : X → X, Γ̃ = Γ̃ (ψ) the operator given by the right-hand side of (7.2). From the previous
remarks we have that Γ̃ is a contraction provided α is small enough and so we have found ψ = Γ̃ (ψ) the
solution to (6.9) with

‖ψ‖X � C

(
α2+ �√

2−ε + α
�√
2−ε

m∑
j=1

‖φj‖2,p,μ,ρ

)
.

We can check directly that Ψ(Φ) = ψ is Lipschitz in Φ = (φ1, . . . , φm), i.e.

∥∥Ψ(Φ1) − Ψ(Φ2)
∥∥
X

� C

∥∥∥∥∥
(

1 −
m∑
j=1

ζj2

)[
N

(
m∑
i=1

ζi2φi1 + Ψ(Φ1)
)

−N

(
m∑
i=1

ζi2φi2 + Ψ(Φ2)
)]∥∥∥∥∥

p,2μ,∼

� Cα�−ε
(∥∥Ψ(Φ1) − Ψ(Φ2)

∥∥
X

+ ‖Φ1 − Φ2‖2,p,μ,�
)
.

Hence for α small, we conclude
∥∥Ψ(Φ1) − Ψ(Φ2)

∥∥
X

� Cατ‖Φ1 − Φ2‖2,p,μ,�.

7.2. Solving the projected system (6.21)–(6.22)

Now we solve system

∂ttφl + ΔMα
φl + F ′(wl(t)

)
φl = −Sl(w) − Nl(φl) + cl(y)w′(t), in Mα × R.∫
R

φl(y, t)w′(t) dt = 0.

To do so, we need to study solvability for the linear equation

∂ttφ + ΔMα
φ + F ′(w(t)

)
φ = g(y, t) + c(y)w′(t), in Mα × R, (7.3)∫

R

φ(y, t)w′(t) dt = 0. (7.4)

Solvability of (7.3)–(7.4) is based upon the fact that the heteroclinic solution w(t) is nondegenerate in
the sense, that the following property holds true.

Lemma 7.2. Assume that φ ∈ L∞(R3) and assume φ = φ(x1, x2, t) satisfies

L(φ) := ∂ttφ + ΔR2φ + F ′(w(t)
)
φ = 0, in R

2 × R. (7.5)

Then φ(x1, x2, t) = Cw′(t), for some constant C ∈ R.

For the detailed proof of this lemma we refer the reader to [12,14] and references therein.
The linear theory we need to solve system (6.22), is collected in the following proposition, whose proof

is again contained in essence in Proposition 4.1 in [12] and [14].
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Proposition 7.1. Assume p > 2, 0 < � <
√

2 and μ � 0. There exist C > 0, a universal constant and α0 > 0
small such that, for every α ∈ (0, α0) and any given g with ‖g‖p,μ,� < ∞, problem (7.3)–(7.4) has a unique
solution (φ, c) with ‖φ‖p,μ,� < ∞, satisfying the a priori estimate

∥∥D2φ
∥∥
p,μ,�

+ ‖Dφ‖∞,μ,� + ‖φ‖∞,μ,� � C‖g‖p,μ,�.

Using Proposition 7.1, we are ready to solve system (6.21)–(6.22). First, recall that as stated in (6.14)

∥∥Sl(w)
∥∥
p,2,� � Cα2+τ1 (7.6)

for some 0 < τ1 < τ0 small enough.
From Proposition 6.1 we have a nonlocal operator ψ = Ψ(φ1, . . . , φm). We want to solve the following

problem:
Recall that for Φ = (φ1, . . . , φm),

Nl(Φ) := Bl(φl) +
[
F ′(ζl2w) − F ′(wl(t)

)]
φl + ζl2

[
F ′(w) + 2

]
Ψ(Φ) + ζl2N

(
φl + Ψ(Φ)

)
.

Let us denote

N1(Φ) := Bl(φl) +
[
F ′(ζl2w) − F ′(wl(t)

)]
φl,

N2(Φ) := ζl2
[
F ′(w) + 2

]
Ψ(Φ),

N3(Φ) := ζl2N
(
φl + Ψ(Φ)

)
.

We need to investigate the Lipschitz character of Ni, i = 1, 2, 3. We begin with N3. Observe that

∣∣N3(Φ1) −N3(Φ2)
∣∣ = ζl2

∣∣N(φl1 + Ψ(Φ1)
)
−N

(
φl2 + Ψ(Φ2)

)∣∣
� Cζl2 sup

τ∈[0,1]

∣∣τ(φl1 + Ψ(Φ1)
)

+ (1 − τ)
(
φl2 + Ψ(φl2)

)∣∣ · ∣∣φl1 − φl2 + Ψ(Φ1) − Ψ(Φ2)
∣∣

� C
[∣∣Ψ(Φ2)

∣∣+ |φl1 − φl2| +
∣∣Ψ(Φ1) − Ψ(Φ2)

∣∣+ |φl2|
]
·
[
|φl1 − φl2| +

∣∣Ψ(Φ1) − Ψ(Φ2)
∣∣].

This implies that

∥∥N3(Φ1) −N3(Φ2)
∥∥
p,2μ,�

� C

[
α2+ �√

2−ε +
m∑
j=1

‖φj1‖∞,μ,� +
m∑
j=1

‖φj2‖∞,μ,�

]
·

m∑
j=1

‖φj1 − φj2‖∞,μ,�.

Now we check on N1(Φ). Clearly, we just have to pay attention to Bl(φl). But notice that Bl(φl) is linear
in φl and

Bl(φl) = −α2
{
f ′′
l (αy) + αy

1 + (αy)2 f
′
l (αy) + 2(t + fl)

(1 + (αy)2)2

}
∂tφl

− 2αf ′
l (αy)∂tyφl + α2[f ′

l (αy)
]2
∂ttφl + Dα,fl(φl),

where the differential operator Dα,fl is given in (2.6). From assumptions (5.2)–(5.5) made on the functions
f ′
l s, we have that

∥∥N1(Φ1) −N1(Φ2)
∥∥ � Cα‖Φ1 − Φ2‖2,p,μ,�.
p,2+μ,�
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Then, assuming that max1�j�m ‖φj‖2,p,μ,� � Aα2+τ1 , we have that

∥∥Nl(Φ)
∥∥
p,2+μ,�

� Cα3+τ1 .

Letting T (g) = φ be the linear operator given by Lemma 7.1, we recast problem (6.21) as the fixed point
problem

φl = T
(
−Sl(w) − Nl(Φ)

)
=: Tl(Φ), l = 1, . . . ,m

in the ball

Bα :=
{
Φ = (φ1, . . . , φm): ‖Φ‖∗∗ � Aα2+τ1 , j = 1, . . . ,m

}
,

where clearly we are working in the space of function Φ ∈ W 2,p
loc (Mα × R) endowed with the norm

‖Φ‖∗∗ :=
m∑
j=1

‖φj‖2,p,2,�.

Observe that

∥∥Tl(Φ1) − Tl(Φ2)
∥∥
∗∗ � C

∥∥Nl(Φ1) − Nl(Φ2)
∥∥
p,4,� � Cα‖Φ1 − Φ2‖∗∗, Φ1, Φ2 ∈ Bα.

On the other hand, because C and K1 are universal constants and taking A large enough independent
of α > 0, we have that

∥∥Tl(Φ)
∥∥
∗∗ � C

(∥∥Sl(w)
∥∥
p,2,� +

∥∥Nl(Φ)
∥∥
p,4,�

)
� Aα2+τ1 , φ ∈ Bα.

Hence, the mapping T = (T1, . . . , Tm) is a contraction from the ball Bα onto itself. From the contraction
mapping principle we get a unique solution

Φ = Φ(v1, . . . , vm)

as required. As for the Lipschitz character of Φ(v1, . . . , vm) it comes from a lengthy by direct computation
from the fact that

∥∥Φ(v1, . . . , vm) − Φ(ṽ1, . . . , ṽm)
∥∥

2,p,2,� � C
m∑
j=1

∥∥Sj(w, v1, . . . , vm) − Sj(w, ṽ1, . . . , ṽm)
∥∥
p,2,�

+
m∑
j=1

∥∥Nj

(
Φ(v1, . . . , vm)

)
−Nj

(
Φ(ṽ1, . . . , ṽm)

)∥∥
p,4,�.

We left to the reader to check on the details of the proof of the following estimate

∥∥Φ(v1, . . . , vm) − Φ(ṽ1, . . . , ṽm)
∥∥

2,p,2,� � Cα2+τ1

m∑
j=1

‖vj − ṽj‖δ,p,β

for (v1, . . . , vm) and (ṽ1, . . . , ṽm) satisfying (5.2) and (5.4). This completes the proof of Proposition 6.2 and
consequently the proof of Theorem 2.
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8. Proof of Theorem 1

This section is devoted to the construction of the solutions predicted in Theorem 1. We skip details that
are similar to the proof of Theorem 2. We begin by describing the location of the nodal set of the solutions
predicted by this theorem.

8.1. Toda system in R
2 and its linearization

In this part we describe the way we solve the Toda System of PDEs

Δf1 + a0e
−
√

2(f2−f1) = g1, in R
2 (8.1)

Δf2 − a0e
−
√

2(f2−f1) = g2, in R
2 (8.2)

where

a0 =
∥∥w′∥∥−2

L2(R)

∫
R

6
(
1 − w2(t)

)
e
√

2tw′(t) dt > 0.

A decoupling procedure similar to the one performed in Section 3, implies that system (8.1)–(8.2) becomes

Δ(f2 − f1) − 2a0e
−
√

2(f2−f1) = g2 − g1, in R
2, (8.3)

Δ(f1 + f2) = g1 + g2, in R
2. (8.4)

Let us look for a radially symmetric smooth solution to (8.1)–(8.2) having the form

f1
(
x′) = q1

(
x′)+ v1

(
x′), f2

(
x′) = q2

(
x′)+ v2

(
x′), x′ ∈ R

2, (8.5)

where the vector function (q1, q2) solves the system of PDEs

Δq1 + a0e
−
√

2(q2−q1) = 0, in R
2, (8.6)

Δq2 − a0e
−
√

2(q2−q1) = 0, in R
2. (8.7)

Since we are looking for an axially symmetric nodal sets that are also symmetric respect to the x3-axis,
we assume that q2 = −q1 = q, so that the system (8.6)–(8.7) reduces to a Liouville equation, namely

Δq − a0e
−2

√
2q = 0, in R

2. (8.8)

It is known that every radially symmetric solution to (8.8) is given by

q
(
x′, ρ, γ

)
= 1

2
√

2
log
(√

2a0

4ρ2γ2

(
1 + ρ2∣∣x′∣∣2γ)2)− (γ − 1)√

2
log
(∣∣x′∣∣), r > 0. (8.9)

Since we are looking for smooth solutions to (8.8) with the initial conditions

q(0) = a > 0, ∇x′q(0) = 0

this forces γ = 1, so that
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q
(
x′, ρ

)
= 1

2
√

2
log
(√

2a0

4ρ2

(
1 + ρ2∣∣x′∣∣2)2), ρ > 0. (8.10)

From the fact that q(0) = a > 0, we obtain

log
(√

2a0

4ρ2

)
= 2a√

2
.

Remark 8.1. Observe that ρ is a free parameter that determines the conditions at the origin in (8.8). Without
any loss of generality we assume that ρ = 1, but it is important to keep in mind that the function q is smooth
respect to this parameter ρ > 0. We also remark that in the case when ρ lies in a fixed and compact interval
of R+, the topologies considered and the procedure we carry out below, can be done independent of ρ.

Decoupling and linearizing (8.1)–(8.2) around the exact solution (q1, q2) as we did in Section 3.2, we obtain
the nonlinear system

Δv1 + 2
√

2a0e
−2

√
2qv1 + N(v1) = g̃1, in R

2, (8.11)

Δv2 = g̃2, in R
2, (8.12)

where we consider right-hand side functions g̃j such that

‖g̃j‖p,β :=
∥∥(1 +

∣∣x′∣∣β)g̃j∥∥Lp(R2) < ∞, j = 1, 2 (8.13)

for some p > 1 and β � 0 and where we have denoted

N(v1) = −e−2
√

2q[e−√
2v1 − 1 +

√
2v1
]
. (8.14)

Let us consider first the linear system associated to (8.11)–(8.12), namely

Δv1 + 2
√

2a0e
−2

√
2qv1 = g̃1, in R

2, (8.15)

Δv2 = g̃2, in R
2. (8.16)

Since our setting is radially symmetric, we deal with this system using variations of parameters formula.
We solve first Eq. (8.15). Taking derivatives in (8.9) respect to γ and ρ, for γ = 1 and ρ = 1, we find that
the functions ψ1(r) = ∂γq(r, 1, 1) and ψ2(r) = ∂ρq(r, 1, 1) span the set of radially symmetric solutions to

Δψ + 2
√

2a0e
−2

√
2qψ = 0, in R

2,

where

√
2ψ1(r) = log(r)(r2 − 1)

r2 + 1 − 1,
√

2ψ2(r) = r2 − 1
r2 + 1 . (8.17)

Observe that ψ1 is clearly singular at the origin. Observe also that

∂rψ1(r) = −1 + r4 + 4r2 log(r)√
2r(1 + r2)2

, ∂rψ2(r) = 2
√

2r
(1 + r2)2 (8.18)

so that from (8.18) we find that
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c

r
�
∣∣∂rψ1(r)

∣∣ � C

r
,

∣∣∂rψ2(r)
∣∣ � Cr

1 + r4 , r > 0. (8.19)

We compute the Wronskian

W(ψ1, ψ2) := ψ1∂rψ2 − ψ2∂rψ1 = − 1
2r

and we observe that the function

v1(r) = 2ψ1(r)
r∫

0

ξψ2(ξ)g̃1(ξ) dξ + 2ψ2(r)
∞∫
r

ξψ1(ξ)g̃1(ξ) dξ (8.20)

defines a smooth solution to Eq. (8.15). From (8.17) and (8.18), we directly check that ∂rv1(0) = 0 and that

‖v1‖2,p,β � C‖g̃1‖p,β , p, β > 2,

where

‖v1‖2,p,β :=
∥∥D2v1

∥∥
p,β

+
∥∥(1 +

∣∣x′∣∣)Dv1
∥∥
L∞(R2) +

∥∥log
(
2 +

∣∣x′∣∣)−1
v1
∥∥
L∞(R2). (8.21)

Next, we observe that (8.16) has a radially symmetric smooth solution given by

v2(r) :=
∞∫
r

ξ log(ξ)g̃2(ξ) dξ + log(r)
r∫

0

ξg̃2(ξ) dξ. (8.22)

Taking p, β > 2, we see directly from this formula that

‖v2‖2,p,β � C‖g̃2‖p,β .

We are now in position to invert the linear system (8.11)–(8.12). We collect this information in the
following lemma:

Lemma 8.1. Assume p > 2, 0 < β < 4 − 2
p and consider a vector function (g̃1, g̃2) satisfying

‖g̃j‖p,β � Cακ1 , j = 1, 2

for some small parameter α > 0 and some κ1 > 0. Then, the vector function (v1, v2) defined (8.20)–(8.22)
is the solution to the system (8.11)–(8.12) and satisfies that

‖vj‖2,p,β � C max
k=1,2

‖g̃k‖p,β , j = 1, 2.

Even more this solution turns out to be Lipschitz in the vector function (g̃1, g̃2), namely

‖vj − v̂j‖2,p,β � C max
k=1,2

‖g̃k − ĝk‖p,β , j = 1, 2.

The proof of this lemma is straightforward from the previous comment, proceeding as in Section 4. Let us
remark that in the case where g̃j , j = 1, 2, are nonlocal operators in (v1, v2) having small Lipschitz constant
a direct application of Banach fixed point theorem will also lead to the existence of a unique solution to
(8.11)–(8.12).
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Remark 8.2. When looking for solutions to (8.4)–(8.3) that are symmetric respect to the x3-axis, i.e. f2 = −f1
then g̃2 = 0 and consequently the function v2 defined in (8.22) is zero. Hence, we deal only with the single
linear equation (8.15).

8.2. Approximate solution to the projected problem

Now that we have described the location of the nodal set of our solution, we proceed to set up our
approximation. Consider a radially symmetric solution (q1, q2) to the system

Δq1 + a0e
−
√

2(q2−q1) = 0, Δq2 − a0e
−
√

2(q2−q1) = 0, in R
2, (8.23)

where

a0 :=
∥∥w′∥∥−2

L2(R)

∫
R

6
(
1 − w(t)2

)
e
√

2tw′(t) dt.

Recall from the previous section that we have chosen −q1 = q2 = q, and the function q is a solution to
the Liouville equation

Δq − a0e
−2

√
2q = 0, in R

2

given explicitly by

q
(
x′, ρ

)
= 1

2
√

2
log
(√

2a0

4ρ2

(
1 + ρ2∣∣x′∣∣2)2), (8.24)

and observe that, for every α > 0 the vector function (q1α, q2α), defined by

q1,α
(
x′) = − 1

2
√

2
log
(

1
α2

)
− q
(
αx′), q2,α

(
x′) = 1

2
√

2
log
(

1
α2

)
+ q
(
αx′), r > 0

are also smooth radially symmetric solutions to (8.23).
Now, for α > 0 small, consider a parameter function v, satisfying

‖v‖2,p,β :=
∥∥D2v

∥∥
p,β

+
∥∥(1 +

∣∣x′∣∣)Dv
∥∥
L∞(R2) +

∥∥log
(
2 +

∣∣x′∣∣)−1
v
∥∥
L∞(R2) � Kα2∣∣log(α)

∣∣ (8.25)

for some K > 0 that will be chosen later and independent of α > 0 and consider the functions

flα
(
x′) = qlα

(
x′)+ vlα

(
x′), l = 1, 2, (8.26)

where v2α = −v1α = vα and vα(x′) = v(αx′).
Proceeding as in the proof of Theorem 2, we consider as local approximation the function

U0(x) = w
(
x3 − f1α

(
x′))+ w

(
x3 − f2α

(
x′))− 1, x ∈ R

3. (8.27)

As in Section 5.1, let us consider the sets

Al :=
{
x =

(
x′, x3

)
:
∣∣x3 − fjα

(
x′)∣∣ � 1

2
(
f2α
(
x′)− f1α

(
x′))}, l = 1, 2.

Writing z = t + flα(x′), we notice that Al can be described as
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Al :=
{
x =

(
x′, t

)
: |t| � 1

2
(
f2α
(
x′)− f1α

(
x′))}, l = 1, 2.

Hence, we can estate the following lemma regarding the error of this approximation in the set Al.

Lemma 8.2. For l = 1, 2 and every x ∈ Al, x = (x′, t), we have that

(−1)l−1S(U0) = −ΔR2 flαw′(t) + (−1)l6
(
1 − w2(t)

)
e(−1)l−1√2te−

√
2(f2α−f1α)

+ |∇flα|2w′′(t) − ΔR2 fjαw′(t + flα − fjα) + |∇fjα|2w′′(t + flα − fjα)

+
[
(−1)l−16

(
1 − w2(t)

)
+ 12

(
1 + (−1)lw(t)

)]
e(−1)l−12

√
2te−2

√
2(f2α−f1α)

+ Rl

(
αx′, t, v,Dv

)
, (8.28)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and

∣∣DpRl

(
αx′, t, p, q

)∣∣+ ∣∣DqRl

(
αx′, t, p, q

)∣∣+ ∣∣Rl

(
αx′, t, p, q

)∣∣ � Cα2+τ
(
1 +

∣∣αx′∣∣)−4
e−�|t| (8.29)

for some 0 < τ < 1 small and some 0 < � <
√

2 and where p = v and q = Dv.

Proof. The proof of this lemma follows the same lines of Lemma 5.1, with no significant changes and actually
with easier computations. So, we only remark that in the set A1

U0
(
x′, t

)
= w(t) − w(t + f1α − f2α) − 1,

where the function w(s) is the heteroclinic solution to

w′′ + F (w) = 0, w(±∞) = ±1, w′ > 0

having the asymptotic expansion

w(s) = 1 − 2e−
√

2s + 2e−2
√

2s + O
(
e−2

√
2|s|), s > 0,

w(s) = −1 + 2e
√

2s − 2e−2
√

2s + O
(
e−3

√
2|s|), s < 0, (8.30)

where these relations can be differentiated. Using that F (±1) = 0,

F (U0) = F
(
w(t)

)
− F

(
w(t + f1α − f2α)

)
−
(
F ′(w(t)

)
− F ′(−1)

)[
w(t + f1α − f2α) + 1

]
+ 1

2
(
F ′′(w(t)

)
+ F ′(−1)

)[
w(t + f1α − f2α) + 1

]2 + O
([
w(t + f1α − f2α) + 1

]3)
.

From (8.30) we obtain that

F (U0) = F
(
w(t)

)
− F

(
w(t + f1α − f2α)

)
− 6
(
1 − w2(t)

)
e
√

2te−
√

2(f2α−f1α)

+ 6
[(

1 − w2(t)
)

+ 2
(
1 − w(t)

)]
e2

√
2te−2

√
2(f2α−f1α) + O

(
e−3

√
2|t+f1α−f2α|).

Similar computations hold true in the set A2 and this completes the proof of the lemma. �
Using the fact that the vector function q = (q1, q2) is an exact solution to the Toda system in R

2 and
using the function for g0 described in (5.17), we can write expression (8.28) as
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(−1)l−1S(U0) = −ΔR2vlαw
′(t) + (−1)l6

(
1 − w2(t)

)
e(−1)l−1√2te−

√
2(q2,α−q1,α)(e−√

2(v2α−v1α) − 1
)

+ (−1)lg0
(
(−1)lt

)
e−

√
2(q2,α−q1,α) + |∇qlα|2w′′(t)

+ ∇vlα(2∇qlα + ∇vlα)w′′(t) − ΔR2 fjαw′(t + flα − fjα) + |∇fjα|2w′′(t + flα − fjα)

+
[
(−1)l−16

(
1 − w2(t)

)
+ 12

(
1 + (−1)lw(t)

)]
e(−1)l−12

√
2te−2

√
2(f2α−f1α)

+ Rl

(
αx′, t, v,Dv

)
. (8.31)

Next, we improve the approximation by considering the function

U1
(
x′, x3

)
= U0

(
x′, x3

)
+ ϕ1,0

(
x′, x3 − f1α

)
− ϕ2,0

(
x′, x3 − f2α

)
and

(−1)l+1ϕl,0
(
x′, t

)
= e−

√
2(q2α−q1α)ψ0

(
(−1)lt

)
+ |∇qlα|2ψ1(t),

where the functions ψ0(t) is the one described in (5.19) and ψ1(t) = −1
2 tw

′(t).
We recall that

q2α
(
x′) = −q1α

(
x′) = 1

2
√

2
log
(

1
α2

)
+ 1

2
√

2
log
(√

2a0

4
(
1 +

∣∣αx′∣∣2)2)

so that

e−
√

2(q2α−q1α) = α2

a0
√

2
4

(1 + |αx′|2)2 .

Proceeding as in Section 5.2 and setting z = t + flα, we compute the new error created in the region Al

(−1)l−1S(U1) = −ΔR2vlαw
′(t) − (−1)l6

(
1 − w2(t)

)
e
√

2(−1)l−1te−
√

2(q2α−q1α)[e−√
2(v2α−v1α) − 1

]
+ ∇vlα(2∇qlα + ∇vlα)w′′(t) − ΔR2 fjαw′(t + flα − fjα) + |∇fjα|2w′′(t + flα − fjα)

+
[
(−1)l−16

(
1 − w2(t)

)
+ 12

(
1 + (−1)lw(t)

)]
e(−1)l−12

√
2te−2

√
2(f2α−f1α) + R̃l, (8.32)

where

R̃l = R̃l

(
αx′, t, v,Dv

)
and

∣∣DpR̃l

(
αx′, t, p, q

)∣∣+ ∣∣DqR̃l

(
ααx′, t, p, q

)∣∣+ ∣∣R̃l

(
αx′, t, p, q

)∣∣ � Cα2+τ
(
1 +

∣∣αx′∣∣)−4
e−�|t| (8.33)

for some 0 < � <
√

2 and some 0 < τ < 1. Actually, from the proof of Lemma 8.2 we have that

∣∣R̃l

(
αx′, t, v,Dv

)∣∣ � Ce−3
√

2|t+f1α−f2α|, in A1.

The next step, consists on defining the global approximation to the solution. We consider again the
smooth cut-off function β ∈ C∞

c (R), such that β(t) = 1, for |t| � 1/2 and β(t) = 0, for |t| � 1. Now, for
α > 0 small we define the cut-off function

βα(x) := β

(
|x3| −

η − 4 log
(∣∣αx′∣∣+ 3

))
, x =

(
x′, x3

)
∈ R

3.

α
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We see that βα is supported in a region that expands logarithmically in |αx′| and we consider as global
approximation the function

w(x) := βα(x)U1(x) +
(
1 − βα(x)

)
(−1). (8.34)

Recalling that F (u) = u(1 − u2), we compute the new error as follows

S(w) = Δw + F (w) = βα(x)S(U1) + E,

where

E = 2∇βα∇U1 + Δβα(U1 + 1) + F
(
βαU1 − (1 − βα)

)
− βαF (U1).

Due to the choice of βα(x), the error term E only takes into account values of βα for x ∈ R
3 in the region

|x3| � η

α
+ 4 ln

(∣∣αx′∣∣+ 3
)
− 2, x =

(
x′, x3

)
∈ R

3

and so, we get the following estimate for the term E

|∇E| + |E| � Ce−
η
α

(
1 +

∣∣αx′∣∣)−4
.

We observe that the error E decays rapidly and is exponentially small in α > 0, so that its contribution
is negligible.

Remark 8.3. The local approximation U1 is clearly axially symmetric and even in the z-axis. This is due to
the fact that the graph of the function f1α is a reflection through the z-axis of the graph of the function f2α.
Of course, this is also true for the global approximation w. Observe also that for the moment, we are
omitting the role of the parameter ρ > 0, but clearly the approximations U1 and w and the error created
depend smoothly on it.

8.3. Outline of the Lyapunov–Schmidt reduction

Let us consider first an appropriate functional setting to work with. Consider the norms

‖f‖p,μ̂,∼ := sup
x∈R3

(
1 +

∣∣αx′∣∣)μ̂‖f‖Lp(B1(x)), p > 1. (8.35)

and

‖ψ‖2,p,μ̂,∼ :=
∥∥D2ψ

∥∥
p,μ̂,∼ + ‖Dψ‖∞,μ̂,∼ + ‖ψ‖∞,μ̂,∼ (8.36)

where 0 < μ̂ � min(2μ, μ + �
√

2, 2 + �
√

2 ).
We also consider 0 < � <

√
2, μ > 0, α > 0 and functions g = g(x′, t) and φ = φ(y, t), defined for every

(y, t) ∈ Mα × R. Let us set the norms

‖g‖p,μ,� := sup
(x′,t)∈R2×R

(
1 +

∣∣αx′∣∣)μe�|t|‖g‖Lp(B1(x′,t)) (8.37)

‖φ‖∞,μ,� :=
∥∥(1 +

∣∣αx′∣∣μ)e�|t|φ∥∥
L∞(R2×R) (8.38)

‖φ‖2,p,μ,� :=
∥∥D2φ

∥∥ + ‖Dφ‖∞,μ,� + ‖φ‖∞,μ,�. (8.39)

p,μ,�
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Finally, for functions v and g̃ defined in R
2, recall the definition of the norms

‖g̃‖p,β :=
∥∥(1 +

∣∣x′∣∣β)g̃∥∥
Lp(R2), (8.40)

‖v‖2,p,β :=
∥∥D2v

∥∥
p,β

+
∥∥(1 +

∣∣x′∣∣)Dv
∥∥
L∞(R2) +

∥∥log
(∣∣x′∣∣+ 2

)−1
v
∥∥
L∞(R2). (8.41)

Observe that the functional setting we are considering in this part is basically the same one used for the
proof of Theorem 1.

Let us recall that our goal is to find an axially symmetric solution to Eq. (1.1) which is close to the
function w defined in (8.34).

We proceed as in Section 6, with no significant changes, so we rather prefer to give an outline of the
scheme. We consider for l = 1, 2 and n ∈ N, the cut off function

ζl,n(x) = β

(
|t| − 1

2
[
f2α
(
x′)− f1α

(
x′)]+ n

)
, x =

(
x′, t + flα

)
∈ R

2. (8.42)

A crucial observation we make is that, under assumptions (8.25), directly from Lemma 8.2 and the choice
of the functional setting, the error

(−1)l−1Sl(w) := −ΔR2vlαw
′(t) − (−1)l6

(
1 − w2(t)

)
e
√

2(−1)l−1te−
√

2(q2α−q1α)ζl,2
[
e−

√
2(v2α−v1α) − 1

]
+ ∇vlα(2∇qlα + ∇vlα)w′′(t) − ζl,2ΔR2 fjαw′(t + flα − fjα) + ζl,2|∇fjα|2w′′(t + flα − fjα)

+ ζl,2
[
(−1)l−16

(
1 − w2(t)

)
+ 12

(
1 + (−1)lw(t)

)]
e(−1)l−12

√
2te−2

√
2(f2α−f1α) + ζl,2R̃l

(8.43)

has the size

∥∥Sl(w)
∥∥
p,2,� � Cα2+τ1 . (8.44)

where 0 < � <
√

2 and 0 < τ1 � 1 is arbitrarily close or equal to 1, in which case � goes or equals 0,
independently of α > 0. The following proposition collects estimates regarding (8.44).

Proposition 8.1. Assume � ∈ (0,
√

2 ) and that the functions fjα satisfy condition (8.25). Then there exist a
constant C > 0 and a small number 0 < τ1 � 1, both independent of α > 0, such that

∥∥Sl(w)
∥∥
p,2,� � Cα2+τ1 (8.45)

and

∥∥Sl(w, v) − Sl(w, ṽ)
∥∥
p,2,� � Cα2+τ1‖v − ṽ‖2,p,β , (8.46)

where

‖v‖2,p,β :=
∥∥D2v

∥∥
p,β

+
∥∥(1 +

∣∣x′∣∣)Dv
∥∥
L∞(R2) +

∥∥log
(
2 +

∣∣x′∣∣)−1
v
∥∥
L∞(R2). (8.47)

As before, we look for a solution to (1.1) of the form

U = w + ζ1,3(x)φ1
(
x′, x3 − f1α

)
− ζ2,3(x)φ2

(
x′, x3 − f2α

)
+ ψ (8.48)

so that we fall into a system of elliptic PDEs for φ1, φ2 and ψ similar to (6.9)–(6.11).
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The linear theory needed to solve this problem is a copy of the one sketched in Section 7, but applied to
the system

Δψ(x) − 2ψ(x) = h(x), x ∈ R
3, (8.49)

∂ttφl

(
x′, t

)
+ ΔR2φl

(
x′, t

)
+ F ′(w(t)

)
φl

(
x′, t

)
= gl

(
x′, t

)
+ cl

(
x′)w′(t), in R

2 × R (8.50)

in the class of axially symmetric functions and in the topologies induced by the norms set above. In partic-
ular, the nonlinear nonlocal system of equations for the functions φl reads as

∂ttφl + ΔR2φl + F ′(w(t)
)
φl = −Sl(w) −Bl(φl) −

[
F ′(ζl,2w) − (−1)l−1F ′(w(t)

)]
φl

− ζl,2
(
F ′(w) + 2

)
ψ − ζl,2N(φl + ψ), in R

2 × R (8.51)

with

Bl(φl) := −ΔR2 flα∂tφl − 2∇flα∇x′∂tφl + |∇flα|2∂ttφl

and

N(φl + ψ) = F (w + φl) − F (w) − F ′(w)(φl + ψ),

from where we get that

‖φl‖2,p,2,� � Cα2+τ1 ,

∫
R

φl

(
x′, t

)
w′(t) dt = 0, l = 1, 2, (8.52)

with τ1 as above.
As we already saw, the Lyapunov–Schmidt reduction scheme is based upon the fact that we can find

functions v1, v2 satisfying (8.25) such that the functions cl(x′), l = 1, 2 in (8.50) are zero.

8.4. Solving the reduced problem

Let us recall that

w(x) := βα(x)U1(x) +
(
1 − βα(x)

)
(−1) (8.53)

where

U1(x) = w
(
x3 − f1α

(
x′))− w

(
x3 − f2α

(
x′))− 1 + φ1,0

(
x′, x3 − f1α

(
x′))

− φ2,0
(
x′, x3 − f2α

(
x′)) (8.54)

where for l = 1, 2

φl,0
(
x′, t

)
= (−1)l+1e−

√
2(q2α−q1α)ψ0

(
(−1)l+1t

)
+ |∇qlα|2ψ1(t) (8.55)

the functions ψ0, ψ1 are those described in (5.19) and (5.20).
Next we make use of the symmetries we have assumed for the nodal set and the local and global approx-

imations. From the structure of Eq. (1.1) and using the fact that the approximation w is axially symmetric
and even respect to the x3-axis, we find that the functions φ1, φ2 and ψ share also this symmetry.
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In this setting the error S1(w) in the region A1 and in terms of the parameter function vα, reads as

S1(w) = ΔR2vαw
′(t) − 6

(
1 − w2(t)

)
e
√

2te−2
√

2qαζl,2
[
e−2

√
2vα − 1

]
+ ∇vα(2∇qα + ∇vα)w′′(t) + ζl,2ΔR2 fαw′(t− 2fα) + ζl,2|∇fα|2w′′(t− 2fα)

+ ζl,2
[
6
(
1 − w2(t)

)
+ 12

(
1 − w(t)

)]
e2

√
2te−4

√
2fα + ζl,2R̃ (8.56)

with similar computations in the set A2.
In what comes next, we derive the system that governs the location of the interfaces, namely a system

of PDE’s that will guarantee that

cl
(
x′) = 0, l = 1, 2.

Since the error S(w) is also axially symmetric and even in the x3-variable, we easily verify that
c2(x′) = −c1(x′) = c(x′).

In order to determine the function c(x′), for l = 1, we multiply Eq. (8.51) by w and integrate in t to get
that at main order

−
∫
R

S1(w)w(t) dt−O
(
α4(1 +

∣∣αx′∣∣)−3) = c
(
x′) ∫

R

w′ 2 dt.

This can be done since in inequality (8.45) as τ1 approaches to 1, the constant � goes to zero, while the
constant C > 0 remains uniformly bounded.

Hence using Lemma 8.2, and setting

c∗ :=
∫
R

∣∣w′(t)
∣∣2 dt, a0 =

∥∥w′∥∥−2
L2(R)

∫
R

(
1 − w2(t)

)
w′(t)e−

√
2t dt

we find that

c
(
x′) = c∗ΔR2vα + c∗2

√
2a0e

−2
√

2qαvα

+ ΔR2 fα
∫
R

ζ1,2w
′(t− 2fα)w′(t) dt

︸ ︷︷ ︸
A

+ |∇fα|2
∫
R

ζ1,2w
′′(t− 2fα)w′(t) dt

︸ ︷︷ ︸
B

+ e−4
√

2fα
∫
R

ζ1,2
[
6
(
1 − w2(t)

)
+ 2
(
1 − w(t)

)]
e2

√
2tw′(t) dt

︸ ︷︷ ︸
C

+ c∗a0e
−2

√
2qα
[
e−2

√
2vα − 1

] ∫
R

6
(
1 − w2(t)

)
e
√

2tw′(t)(ζ1,2 − 1) dt

− c∗a0e
−2

√
2qα
[
e−2

√
2vα − 1 + 2

√
2vα

]
+ O

(
α4(1 +

∣∣αx′∣∣)−3) (8.57)

and using Lemma 8.1 one finds that

c
(
x′)+ c∗ΔR2vlα

(
x′)+ 2

√
2c∗a0e

−
√

2(q2α−q1α)vα

is Lipschitz in the parameter function vα. Actually it is not hard to check from Lemma 8.2 that its Lipschitz
constant is of order O(α2+τ ), for some 0 < τ < τ1 small. Hence we see that making c(x′) = 0 is equivalent
to a nonlinear and nonlocal equation of the form
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Δv + 2
√

2a0e
−2

√
2qv = G(v), in R

2, (8.58)

where we conclude from (8.57) that A + B + C is the leading order term in the expression for G(v).
In order to give a more precise expression for the nonlinear term G(v), we recall that w(s), the heteroclinic

solution to

w′′ + F (w) = 0, w(±∞) = ±1, w′ > 0

has the asymptotic behavior

w(s) = 1 − 2e−
√

2s + 2e−2
√

2s + O
(
e−2

√
2|s|), s > 0,

w(s) = −1 + 2e
√

2s − 2e−2
√

2s + O
(
e−3

√
2|s|), s < 0, (8.59)

and these relations can be differentiated.
Since in the set A1

w′(t− 2fα) = 2
√

2e
√

2te−2
√

2fα + O
(
e−2

√
2|t−2fα|)

we obtain that

w′(t− 2fα)w′(t) =
{

8e−2
√

2fα + O(e−2
√

2|t|e−2
√

2fα), t > 0
8e2

√
2te−2

√
2fα + O(e−3

√
2|t|e−2

√
2fα), t < 0.

Hence it is direct to check that

A = 8Δfαe−2
√

2fα
(
fα + O(1)

)
.

Proceeding in the same fashion, we obtain in the set A1 that

w′′(t− 2fα)w′(t) =
{

8
√

2e−2
√

2fα + O(e−2
√

2|t|e−2
√

2fα), t > 0
8
√

2e2
√

2te−2
√

2fα + O(e−3
√

2|t|e−2
√

2fα), t < 0

so that

B = 8
√

2|∇fα|2e−2
√

2fα
(
fα + O(1)

)
.

Finally, we directly check using again (8.59) that

[
6
(
1 − w2(t)

)
+ 2
(
1 − w(t)

)]
e2

√
2tw′(t) =

{
96

√
2 + O(e−

√
2|t|), t > 0,

O(e−5
√

2|t|), t < 0,

from where

C = 96
√

2e−4
√

2fα
(
fα + O(1)

)
.

Hence, we obtain that

−α2G(v) = e−2
√

2fα fα
[
8Δfα + 8

√
2|∇fα|2 + 96

√
2e−2

√
2fα
]
+ O

(
α4(1 +

∣∣αx′∣∣)−3)
.

From this expression, we obtain that
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G(0) = α2

2
√

2a0

(
1

2
√

2
log
(

1
α2

)
+ q
(
x′))R0

(
x′)+ O

(
α4(1 +

∣∣αx′∣∣)−3)
,

where

R0
(
x′) = −

[
8Δq + 8

√
2|∇q|2 + 96

√
2e−2

√
2q]e−2

√
2q = −4|x′|2 + 4 + 3

√
2

(1 + |x′|2)4 .

Since, so far the scheme involves the same estimates as those in Proposition 6.2, we find that the function
G satisfies

∥∥G(v)
∥∥
∞,3 � Kα2∣∣log(α)

∣∣∥∥G(v) −G(ṽ)
∥∥
∞,3 � Cατ‖v − ṽ‖2,p,β .

A direct application of Lemma 8.1 and the Banach fixed point theorem completes the construction of
the solutions predicted in Theorem 1. We leave further details to the reader.

Using the integral formula (8.20) and the last remarks, and since

ψ1(r) = 1√
2
(
log(r) − 1

)
+ O

(
r−2 log(r)

)
, as r → ∞

we can actually describe the asymptotic behavior for the function v(x′) as |x′| → ∞, namely

v
(
x′) = α2

2a0

[
log
(

1
α2

)
β0 + O(1)

]
log
(∣∣x′∣∣)+ O

(
α2 log(α)

∣∣x′∣∣−2 log
(
|x′|
))

(8.60)

and

β0 :=
∞∫
0

ζψ2R0 dζ = 1
12(3 + 2

√
2 ) > 0.

Next, we study the smooth dependence of this family of solutions respect to the parameter α in order to
obtain useful information about some elements of the kernel of the linear equation

ΔR3φ + F ′(uα)φ = 0, in R
3. (8.61)

This information is collected in the following proposition:

Proposition 8.2. For every α > 0 small, the functions ∂xi
uα(x′, x3), for i = 1, 2, 3 are bounded solutions to

Eq. (8.61). Besides, uα is smooth respect to α and the following asymptotic formulae hold true

∂x′
i
uα

(
x′, z

)
= α∂xi

q
(
αx′)[w′(x3 − f1α) + w′(x3 − f2α)

]
+ α2O

( 2∑
l=1

e−�|x3−flα|

)
, i = 1, 2

∂x3uα

(
x′, x3

)
=
[
w′(x3 − f1α) − w′(x3 − f2α)

]
+ α2O

( 2∑
l=1

e−�|x3−flα|

)
,

∂αuα

(
x′, x3

)
= ∂α(qα + vα)

[
w′(x3 − f1α) + w′(x3 − f2α)

]
+ αO

( 2∑
l=1

e−�|x3−flα|

)
.
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Proof. From the smoothness of these solutions we readily check the first two equalities. So, we only need to
take care of the last assertion.

Smoothness respect to α > 0 small is a direct consequence of the Implicit Function Theorem. We remark
that following step by step the construction and taking into account the dependence on ρ ∼ 1 of this family
of smooth solutions we have the asymptotic behavior

uαρ(x) = w
(
x3 − f1αρ

(
x′))− w

(
x3 − f2αρ

(
x′))− 1 + φ1,0

(
x′, x3 − f1αρ

(
x′))− φ2,0

(
x′, x3 − f2αρ

(
x′))

+ α2+τ1

2∑
l=1

O
((

1 +
∣∣αρx′∣∣)−2

e−�|x3−flαρ(x′)|) (8.62)

with 0 < � <
√

2.
Provided ρ is taken in a small, bounded and fixed interval around one, we can recast the fact that the

functions v = (v1, v2), Φ = (φ1, φ2) and ψ in (8.48) yield a solution to Eq. (1.1) as a system for (ρ, v, Φ, ψ)
of the form

Φ−Π(ρ, v, Φ, ψ) = 0, ψ − Π̃(ρ, v, Φ, ψ) = 0,

v − T (ρ, v, Φ, ψ) = 0,

where smooth dependence on each one of the variables, in the respective topologies described in
(8.36), (8.39) and (8.41), is readily check from the scheme of the construction of this family of solutions.
Solvability theory of the linear problems implies that the derivative of this system respect to (v, Φ, ψ) is
an isomorphism and consequently, we obtain a smooth dependence of the solution respect to ρ. Uniqueness
from the fixed point argument in our proof guarantees that these solutions correspond to those ones given
by the Implicit Function Theorem.

In order to find the asymptotics of ∂αuα, we first notice from (8.62) that at main order

∂αuα

(
x′, x3

)
= ∂αU1

(
x′, x3

)
+ ∂αφ1 − ∂αφ2. (8.63)

We need to find the size of ∂αφl in terms of α > 0 in the sets

Al =
{(

x′, x3
)
∈ R

2 × R: |x3 − flα| � 1
2 |f2α − f1α|

}
, l = 1, 2

and to fix ideas, let us localize ∂αϕ in Al. Consider cut-off functions ζ̃l supported in the set Al.
Set x3 = t + flα

L∗(∂αφl) = ∂tt∂αφl + ΔR2∂αφl + F ′(w(t)
)
∂αφl + B(∂αφl),

where B(∂αφl) is a small differential operator in ∂αφl. We find that inside Al, ∂αφl solves at main order an
equation of the form

L∗(∂αφl) + Bl(∂αφl) = Elα in Bα−1R(0) × R,

where

Elα =: −ζ̃l
(
Δ∂αU1 + F ′(uα)∂αU1

)
.

Since we have symmetry respect to the z-axis we only focus the developments for the set Ã1, where
Notice for instance that in A1
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ζ̃1
(
Δ∂αU1 + F ′(uα)∂αU1

)
= −ΔR2∂αvlαw

′(t) − 6
(
1 − w2(t)

)
∂α
(
e
√

2(−1)l−1te−
√

2(q2α−q1α)[e−√
2(v2α−v1α) − 1

])
+ ∂α

(
2∇qlα · vlα + |∇vlα|2

)
w′′(t) + O

(
α2+τ1

(
1 +

∣∣αx′∣∣2+ �√
2−ε)−1

e−�|t|). (8.64)

From (8.26) and (8.64) we observe that

∣∣∂αvα

(
x′)∣∣ � Cα log

(
1
α

)
log
(
2 +

∣∣αx′∣∣)
so that and from (8.32) it is direct to check that

∥∥ζ̃1(Δ∂αU1 + F ′(uα)∂αU1
)∥∥

p,2−β,�
� Cα1+τ1 .

Consider functions k1, k2 defined by the integrals∫
R

∂αφ1
(
x′, t

)
w′(t) dt = k1

(
x′) ∫

R

(
w′(t)

)2
dt + k2

(
x′) ∫

R

ζ̃1w(t + f1α − f2α)w′(t) dt

∫
R

∂αφ2
(
x′, t

)
w′(t) = k2

(
x′) ∫

R

(
w′(t)

)2
dt + k1

(
x′) ∫

R

ζ̃2w(t + f2α − f1α)w′(t) dt

so that in the set A1 we have the decomposition

φ̃1 = k1
(
x′)w′(t) + ζ̃1k2

(
x′)w′(t + f1α − f2α) + ϕ1∫

R

ϕ1w
′(t) dt = 0.

Analogously, in A2, we have

φ̃2 = k2
(
x′)w′(t) + ζ̃2k1

(
x′)w′(t + f2α − f1α) + ϕ2∫

R

ϕ2w
′(t) dt = 0.

We recall that ∫
R

φl

(
x′, t

)
w′(t) dt = 0, l = 1, 2,

and taking derivative respect to α in these orthogonality condition for φl, keeping in mind that t = x3− f1α,
we obtain ∫

R

∂αφlw
′(t) dt = −∂αfα

(
x′) ∫

R

φlw
′′(t) dt + O

(
α1+τ

(
1 +

∣∣αx′∣∣)−2)
, τ > τ1,

so that ∣∣∣∣
∫

∂αφlw
′(t) dt

∣∣∣∣ = O
(
α1+τ1

(
1 +

∣∣αx′∣∣)−2 log
(
2 +

∣∣αx′∣∣)).

R
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It is clear that the functions ki(x′), ϕ′
is are smooth and bounded up to their second derivatives and

actually for any β > 0 small

∥∥D2kl
∥∥
p,2−β

+ ‖Dkl‖∞,2−β + ‖kl‖∞,2−β � Cα1+τ1 , l = 1, 2.

Dropping the subindexes we have that the equation for the functions ϕl have the form

L∗(ϕ) + B(ϕ) = Eα − S∗,0 + B
(
kw′)

in Bα−1R(0) × R, where for instance in A1

S∗,0 := ΔR2k1w
′ + |∇q1α|2k1w

′′′︸ ︷︷ ︸
Q̂1

+ F ′′(w(t)
)[
−
(
2e

√
2t + ψ0(t)

)
e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1w

′︸ ︷︷ ︸
Q̂2

+
√

2
(
F ′(w) − F ′(1)

)
e
√

2te−
√

2(q2α−q1α)k2︸ ︷︷ ︸
Q̂3

−w′′[ΔR2 f1αk1 + 2∇x′ f1α∇x′k1]︸ ︷︷ ︸
Q̂4

+ O
(
α2+τ1

(
1 + |αy|2+

�√
2−ε)−1

e−�|t|)︸ ︷︷ ︸
Q̂5

(8.65)

for some τ > τ1 > 0 small enough. Let us write ϕ = ϕ̄1 + ϕ̄2, where

L∗(ϕ̄1) = ∂α
(
2∇qlα · ∇vlα + |∇vlα|2

)
w′′(t) + Q̂4

with ∫
R

ϕ̄1w
′(t) dt = 0.

Then, we obtain the estimate

∥∥D2ϕ̄1
∥∥
p,2−β,�

+ ‖Dϕ̄1‖∞,2−β,� + ‖ϕ̄1‖∞,2−β,� � Cα1+τ , τ > τ1.

Next, we observe that

L∗(ϕ̄2) + B(ϕ̄2) = g
(
x′, t

)
+ c
(
x′)w′(t),

where

g
(
x′, t

)
= Eα + ∂α

(
2∇qlα · ∇vlα + |∇vlα|2

)
w′′(t) − S∗,0 − (Q̂1 + Q̂2 + Q̂3 + Q̂5) −B(ϕ̄1)

and observe that ‖B(ϕ̄1)‖p,3−τ,� � Cα2+τ . Using the size of Eα we obtain that

‖g‖p,2−β,� � Cα1+τ1

for some τ > 0 small enough.
Since,
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∫
R

ϕ̄2w
′(t) dt = 0

we obtain that

∥∥D2ϕ̄2
∥∥
p,2−β,�

+ ‖Dϕ̄2‖∞,2−β,� + ‖ϕ̄2‖p,2−β,� � Cα1+τ .

Hence from (8.63), we can write in the set A1

∂αuα = −∂αf1αw′(t) + ∂αf2αw(t− 2fα)

αz1
(
αx′)w′(t) + αz2

(
αx′)w(t− 2fα) + O

(
α1+τ1

(
1 +

∣∣αx′∣∣)−2+β
e−�|t|)

with

‖zl‖∞,2−β � C

and this completes the proof of the proposition, since the same procedure yields an analogous expansion in
the set A2. �
9. Morse index of the solutions in Theorems 1 and 2

In this section we provide information about the Morse index of the solutions found in Theorems 1 and 2.
Most of the developments we carry out in this part are motivated by those in Section 11 of [12]. Hence,
we simply remark the key points of the scheme, referring the reader to Sections 10 and 11 in [12] for more
details.

Let us consider the eigenvalue problem

ΔMh + (σ + λ)|AM |2h = 0, in M, h ∈ L∞(M) (9.1)

with σ ∼ log(α−1). Using the stereographic projection θ = arctan(y), we can recast this problem as

ΔS2 h̃ + 2(σ + λ)h̃ = 0, h̃ ∈ L∞(S2).
By standard spectral theory on the sphere, we know that

λk = 1
2k(k + 1) − σ, k ∈ N

are the eigenvalues to problem (9.1), so that there are at least O(
√
σ ) negative eigenvalues for this problem.

Next, let us consider another related eigenvalue problem, namely

ΔR2h + 8 + λ

(1 + |x′|2)2h = 0, in R
2, h ∈ L∞(

R
2). (9.2)

Using the stereographic projection θ = arctan( r
2−1

r2+1 ), we can transform (9.2) into the problem

ΔS2 h̃ + (2 + λ̂)h̃ = 0, h̃ ∈ L∞(S2)
from where it is also direct to check that problem (9.2) has exactly one negative eigenvalue. On the other
hand, using Fourier decomposition and maximum principle, in Proposition 1 of [6], it was shown that the
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graph of the function described in (8.24) is non-degenerate, in the sense that the space of bounded solutions
to (9.2) for the case λ = 0 is spanned only by the functions described in polar coordinates by

z̄0 = −1 + r2

1 + r2 , z̄1
r

1 + r2 cos(θ), z̄2
r

1 + r2 sin(θ), r > 0, θ ∈ (0, 2π). (9.3)

As in [12], we define the Morse index of uα, m(uα), to be the largest dimension of a vector space E of
compactly supported functions for which the quadratic form

Q(ψ,ψ) :=
∫
R3

|∇ψ|2 − F ′(uα)ψ2, ψ ∈ E − {0} (9.4)

is strictly negative.
In this part, we sketch briefly the proof of the inequalities m(uα) � c0

√
σ for the solutions in Theorem 1,

and m(uα) � 1 for the solutions in Theorem 2.
To prove both inequalities, we follow the scheme developed in the proof of Theorem 2 in [12], getting

information about the eigenvalue problem

ΔR3φ + F ′(uα)φ + λp(αx)φ = 0, in R
3, φ ∈ L∞(

R
3), (9.5)

where p(x) is a function such that

p(x) := |AM |2, x ∈ N ,

a

1 + |x′|4 � p(x) � b

1 + |x′|4 , x ∈ R
3 −N

for the case in Theorem 1 and

p(x) := 8
(1 + |x′|2)2 , x ∈ R

3

for the case in Theorem 2.
In any case, a useful characterization of m(uα) is given through the following eigenvalue problem:

ΔR3φ + F ′(uα)φ + λp(αx)φ = 0, in CR, φ = 0, on ∂CR, (9.6)

where CR is the cylinder

CR :=
{(

x′, x3
)
:
∣∣x′∣∣ < Rα−1, |x3| < Rα−1}.

Let mR(uα) denote the number of negative eigenvalues to (9.6), counting multiplicities. Then, as in [12]
it is straightforward to check that

m(uα) = sup
R>0

mR(uα). (9.7)

9.1. Estimates on the Morse index for solutions in Theorem 2

Regarding solutions of Theorem 1 and to keep computations as clear as possible we consider only the
case of two transitions, namely m = 2. We also recall the definition of the sets
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Al =
{
Xα(y, θ, z):

∣∣z − fl(αy)
∣∣ � 1

2

[
σ +

√
2
(

1 − 1
σ
−Mσ− 5

4

)
log
(
1 + (αy)2

)]}
.

We remark that the solutions we have found in Theorem 1 have the asymptotic expansion for
x = Xα(y, θ, z) ∈ Nα

uα(x) = w
(
z − f1(αy)

)
− w

(
z − f2(αy)

)
− 1 + φ1,0

(
y, z − f1(αy)

)
− φ2,0

(
y, z − f2(αy)

)
+ O

(
α2+τ1

(
1 + |αy|2

)−1
e−�|t|), (9.8)

where for l = 1, 2 and t = z − fl(αy)

φl,0(y, t) = e−
√

2(h2−h1)ψ0
(
(−1)l+1t

)
+ α2[h′

l

]2
ψ1(t) + α2∣∣AM (αy)

∣∣2ψ2(t) (9.9)

and the functions ψi are those described in (5.19), (5.21) and (5.20).
Using (9.8)–(9.9), we find for instance in the set A1 and in the coordinates Xα,f1 that

F ′(uα)w′(t) = F ′(w)w′ + F ′′(w)w′[(−2e
√

2t + ψ0(t)
)
e−

√
2(h2−h1) + α2[h′

1
]2
ψ1(t) + α2|AM |2ψ2(t)

]
+ O

(
α2+τ1

(
1 + |αy|2

)−1
e−�|t|). (9.10)

Since F ′′(w) = −6w, taking derivatives in the equations that the functions ψi(t) solve, and integrating
against w′(t), we can easily check that

∫
R

F ′′(w)
(
w′)2(−2e

√
2t + ψ0(t)

)
dt =

√
2
∫
R

6
(
1 − w2)e√2tw′ dt =

√
2a0

∫
R

(
w′(t)

)2
dt

∫
R

F ′′(w)
(
w′)2ψ1(t) dt = −

∫
R

tw′w′′ dt = 1
2

∫
R

(
w′)2 dt

∫
R

F ′′(w)
(
w′)2ψ2(t) dt = −

∫
R

(
w′′)2 dt.

On the other hand,

F ′(uα)w′(t + f1 − f2) = F ′(w(t + f1 − f2)
)
w′(t + f1 − f2)

+
√

2
(
F ′(w) − F ′(1)

)
e
√

2te−
√

2(h2−h1) + O
(
α2+τ1e−�|t|

(
1 + |αy|

)−4+β)
,

and since F ′(w) − F ′(1) = 6(1 − w2), we obtain that

√
2
∫
R

6
(
1 − w2(t)

)
e
√

2tw′(t) dt =
√

2a0

∫
R

(
w′(t)

)2
dt.

With the previous remarks, let us now consider a test function v(x) in the region Nα, defined in local
coordinates x = Xα(y, θ, z) as

v(x) := k1(y, θ)w′(z − f1(αy)
)
− k2w

′(z − f2(αy)
)
.

Using Lemma 2.1 together with (2.3), (9.8) and (9.9) and carrying out computations similar to those in
Lemma 11.1 in [12], we obtain, for instance in A1, the validity of the following expression:
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ΔXα,f1
v + F ′(uα)v = ΔMα

k1w
′ − α2|AM |2k1tw

′′ + α2[h′
1
]2
k1w

′′′ + αa1,0f1∂yk1w
′︸ ︷︷ ︸

Q1

+ F ′′(w(t)
)[(

−2e
√

2t − ψ0(t)
)
e−

√
2(h2−h1) + α2[h1]2ψ1(t) + α2|AM |2ψ2(t)

]
k1w

′︸ ︷︷ ︸
Q2

×
√

2
(
F ′(w) − F ′(1)

)
e
√

2te−
√

2(h2−h1)k2︸ ︷︷ ︸
Q3

− w′′[α2JM (f1)k1 + 2αf ′
1∂yk1 + α2a1,0f1

(
f ′
1∂yk1 + f ′′

1 k1
)]︸ ︷︷ ︸

Q4

× αtw′[a1,0∂yyk1 + αb1,0∂yk1]︸ ︷︷ ︸
Q5

α2(t + f1)2a1,1
[
∂yyk1w

′ − 2f ′
1∂yk1w

′′]︸ ︷︷ ︸
Q6

+ O
(
α2+τ1

(
1 + |αy|2+

�√
2−ε)−1

e−�|t|)︸ ︷︷ ︸
Q7

. (9.11)

Observe also that ∫
|t|<ρα

Qiw
′(t) dt =

∫
R

Qiw
′(t) dt + O

(
α2+τ1

(
1 + |αy|2+

�√
2−ε
)−1)

,

where

ρα(y) := 1
2

[
σα +

√
2
(

1 − 1
σα

−Mσ− 5
4

)
log
(
1 + (αy)2

)]
.

We notice also that

∫
R

5∑
i=1

Qiw
′(t) dt =

(
ΔMα

k1 + α2|AM |2k1 +
√

2a0e
−
√

2(h2−h1)(k1 + k2) + αa1,0f1∂yyk1
) ∫
R

w′(t)2 dt

and ∫
R

(Q6 + Q7)w′(t) dt = O
(
α2r(αy)−2)∂yyk1 + O

(
α3r(αy)−3)∂yk1.

Combining these computations, we have in the set A1 that

∫
|t|�ρα

(
Δv + F ′(uα)v

)
w′(t) dt =

(
ΔMα

k1 + α2|AM |2k1 + αa1,0f1∂yyk1
) ∫
R

w′(t)2 dt

+
√

2a0e
−
√

2(h2−h1)(k1 + k2)
∫
R

w′(t)2 dt + O
(
α2r(αy)−2)∂yyk1

+ O
(
α3r(αy)−3)∂yk1 + O

(
α2+τ1r(αy)2+β

)
k1.

Regarding computations in the set A2 in the coordinates Xα,f2 and using again (9.8) (9.9), we find in
the set A2 that
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F ′(uα)w′ = F ′(w)w′ + F ′′(w)w′[(2e−√
2t − ψ0(−t)

)
e−

√
2(h2−h1) + α2[h′

2
]2
ψ1(t) + α2|AM |2ψ2(t)

]
+ O

(
α2+τ1

(
1 + |αy|2

)−1
e−�|t|) (9.12)

and the interaction term this time is

F ′(uα)w′(t + f2 − f1) = F ′(w(t + f2 − f1)
)
w′(t + f2 − f1)

−
√

2
(
F ′(w) − F ′(1)

)
e−

√
2te−

√
2(f2−f1) + O

(
α2+τ1e−�|t|

(
1 + |αy|

)−4+β)
.

Consequently when testing against w′(t) we obtain

∫
R

F ′′(w)
(
w′)2(2e−√

2t − ψ0(−t)
)
dt =

√
2
∫
R

6
(
1 − w2)e√2tw′ dt =

√
2a0

so that in the set A2∫
|t|�ρα

(
Δv + F ′(uα)v

)
w′(t) dt =

(
ΔMα

k2 + α2|AM |2k2 + αa1,0f1∂yyk2
) ∫
R

w′(t)2 dt

+
√

2a0e
−
√

2(h2−h1)(k1 + k2)
∫
R

w′(t)2 dt

+ O
(
α2r(αy)−2)∂yyk2 + O

(
α3r(αy)−3)∂yk2 + O

(
α2+τ1r(αy)2+β

)
k2.

Hence, choosing functions k1 = −k2 = k, with k bounded and using the fact that

dx =
√

1 + (αy)2
(
1 − α2(t + f1)2|AM |2

)
dy dt

we observe that in the region

WR =
{
x ∈ Nα: r(αx) < R

}
it holds that

Q(v, v) =
∫ ∫
WR

|∇v|2 − F ′(uα)v2 dx

= 2
∫
R

w′(t)2 dt
∫

MR
α

|∇Mα
k|2 − α2|AM |2k2 + 2

√
2a0e

−
√

2(h2−h1)k2 dVMα

+ O
(
α

∫
MR

α

|∇Mk|2 + α2(1 + (αy)
)2+β

k2 dVMα

)
.

On the other hand, since

e−
√

2(h2−h1) = α2σ
∣∣AM (αy)

∣∣2 + O
(
α2σ−1(1 + r(αy)

)−4 log
(
r(αy)

)2)
we find that
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Q(v, v) = 2
∫
R

(
w′(t)

)2
dt

∫
r(αy)<R

|∇Mα
k|2 − α2(2σ + 1)

∣∣AM (αy)
∣∣2k2(y) dVMα

+ ατ1O
( ∫
r(αy)<R

|∇Mα
k|2 + α2σ

∣∣AM (αy)
∣∣2k2

)
.

Taking k(y) = z(αy), with z ∈ C2(M) is an eigenfunction associated to a negative eigenvalue of the
problem (9.1) and taking R → ∞, we obtain that

Q(v, v) = α2λ

∫
M

|AM |2z2 dV + O
(
α2+τ1

∫
M

|∇Mz|2 + σ|AM |2z2
)
.

Since we can take at least O(
√
σ ) of these eigenfunctions, we conclude that m(uα) � c̃

√
σ.

9.2. Estimates on the Morse index for solutions in Theorem 1

As for the solutions described in Theorem 1, we have the asymptotic expansion

uα(x) = w(x3 − f1α) − w(x3 − f2α) − 1 + φ1,0
(
x′, x3 − f1α

)
− φ2,0

(
x′, x3 − f2α

)
+ O

(
α2+τ1

(
1 +

∣∣αx′∣∣2)−1 ∑
l=1,2

e−�|x3−flα|
)
, (9.13)

where for l = 1, 2

(−1)lφl,0
(
x′, t

)
= (−1)l+1e−

√
2(q2α−q1α)ψ0

(
(−1)l+1t

)
+ |∇qlα|2ψ1(t) (9.14)

and the functions ψ0, ψ1 are again those described in (5.19) and (5.20). We also recall the sets

Al :=
{
x =

(
x′, x3

)
:
∣∣x3 − fjα

(
x′)∣∣ � 1

2
(
f2α
(
x′)− f1α

(
x′))}, l = 1, 2.

We use a test function v(x′, x3) of the form

v
(
x′, x3

)
:= k1

(
x′)w′(x3 − f1α

(
x′))+ k2

(
x′)w′(x3 − f2α

(
x′)),

and proceed as before to obtain in the set A1

Δv + F ′(uα)v = ΔR2k1w
′ + |∇q1α|2k1w

′′′︸ ︷︷ ︸
Q1

+ F ′′(w(t)
)[
−
(
2e

√
2t + ψ0(t)

)
e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1w

′︸ ︷︷ ︸
Q2

+
√

2
(
F ′(w) − F ′(1)

)
e
√

2te−
√

2(q2α−q1α)k2︸ ︷︷ ︸
Q3

−w′′[ΔR2 f1αk1 + 2∇x′ f1α∇x′k1]︸ ︷︷ ︸
Q4

+ O
(
α2+τ1

(
1 +

∣∣αx′∣∣2+ �√
2−ε)−1

e−�|t|)︸ ︷︷ ︸
Q5

. (9.15)

Observe also that
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∫
|t|<ρα

Qiw
′(t) dt =

∫
R

Qiw
′(t) dt + O

(
α2+τ1

(
1 + |αy|2+

�√
2−ε
)−1)

,

where this time

ρα(y) := 1
2
(
f2α
(
x′)− f1α

(
x′)).

We conclude that in the set A1∫
|t|�ρα

(
Δv + F ′(uα)v

)
w′(t) dt =

(
ΔR2k1 +

√
2a0e

−
√

2(q2α−q1α)(k1 + k2)
) ∫
R

w′(t)2 dt

+ O
(
α2r
(
αx′)−2)

D2k1 + O
(
α3r
(
αx′)−3)∇k1 + O

(
α2+τ1r

(
αx′)2+β)

k1.

As before, a similar estimate holds estimate holds for the region A2, namely

∫
|t|�ρα

(
Δv + F ′(uα)v

)
w′(t) dt =

(
ΔMα

k2 +
√

2a0e
−
√

2(q2α−q1α)(k1 + k2)
) ∫
R

w′(t)2 dt

+ O
(
α2r(αy)−2)D2k2 + O

(
α3r(αy)−3)∇k2 + O

(
α2+τ1r(αy)2+β

)
k2,

so that for the test function

v
(
x′, z

)
= k

(
x′)[w′(x3 − f1α

(
x′))− w′(x3 − f2α

(
x′))]

it holds that

Q(v, v) =
∫
R3

(
|∇v|2 − F ′(uα)v2) dx′ dx3 = 2

∫
R2

(
|∇k|2 − 8

(1 + |αx′|2)2 k
2
)
dx′

+ O
(
ατ

∫
R2

(
|∇k|2 + 1

(1 + |αx′|2)2 k
2
)
dx′
)
.

Taking k(y) = z(αy), with z ∈ C2(R2) an eigenfunction associated to a negative eigenvalue of the problem
(9.2) and taking R → ∞, we obtain that

Q(v, v) = α2λ

∫
R

w′(t)2 dt
∫
R2

p
(
x′)z2 dV + O

(
α2+τ1

∫
R2

|∇R2z|2 + p
(
x′)z2

)
.

This last expression implies that m(uα) � 1, since the problem (9.2) has exactly one negative simple
eigenvalue.

Let us next prove the following lemma involving the size of negative eigenvalues to problem (9.5).

Lemma 9.1. There exists a universal constant μ > 0 such that for any eigenvalue λ < 0 for the problem
(9.6) and any R > 0 large enough

λ � −μα2. (9.16)
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Proof. To prove this claim, let us consider sets Ωl := Al ∩ CR, l = 1, 2, where we recall that

Al =
{(

x′, t
)
: |t| � 1

2
∣∣f2α(x′)− f1α

(
x′)∣∣}, z = t + f1α

(
x′).

Observe that it is enough to prove that

Ql(ψ,ψ) =
∫
Ωl

(
|∇ψ|2 − F ′(uα)ψ2) dx′ dz � −μα2

∫
Ωl

p(αx)ψ2 dx′ dz, l = 1, 2.

As in [12], consider the eigenvalue problem

ΔR3ψ + F ′(uα)ψ + λp(αx)ψ = 0, in Ω1 ∪Ω2

ψ = 0, on
∣∣αx′∣∣ = R, ∂nψ = 0,

∣∣z − flα
(
x′)∣∣ = 1

2
∣∣f2α(x′)− f1α

(
x′)∣∣, l = 1, 2. (9.17)

For a solution ψ to (9.17), we write in Ωl

ψ
(
x′, t

)
= ζl,1kl

(
x′)w′(t) + ψ⊥

l

and where we can choose the functions kl so that∫
|t|� 1

2 |f2α−f1α|

ψ⊥
l w

′(t) dt = 0. (9.18)

We write

Ql(ψ,ψ) = Ql(ζl,1kl, ζl,1kl) + 2Ql

(
ζl,1kl, ψ

⊥
l

)
+ Ql

(
ψ⊥
l , ψ

⊥
l

)
= Il + II l + III l.

By a series of lengthy calculations similar to those performed in Section 9.1, we obtain that

Il =
∫
R

w′(t)2 dt
∫
R2

(
|∇kl|2 −

4α2

(1 + |αx′|2)2 k
2
l

)
dx′

+ ατO
( ∫

R2

(∣∣∇kl
(
x′)∣∣2 + α2

(1 + |αx′|2)2 k
2
l

(
x′)) dx′

)
. (9.19)

Since, ψ⊥
l satisfies the same boundary conditions as ψ, we obtain that

III l =
∫

|αx′|<R

∫
|t|� 1

2 |f2α−f1α|

∣∣∂tψ⊥
l

∣∣2 +
∣∣∇x′ψ⊥

l

∣∣2 − F ′(uα)ψ⊥
l

2
dx′ dt

=
∫

|αx′|<R

∫
|t|� 1

2 |f2α−f1α|

∣∣∇ψ⊥
l

∣∣2 − ψ⊥
l

[
∂ttψ

⊥
l + F ′(uα)ψ⊥

l −∇x′(f2α − f1α) · ∇ψ⊥
l

]

�
(
γ

2

∫∫ ∣∣∂tψ⊥
l

∣∣2 +
∣∣∇x′ψ⊥

l

∣∣2 +
∣∣ψ⊥

l

∣∣2)+ α2−τO
(∫∫ (

1 +
∣∣αx′∣∣)−4+β

ψ⊥
l

2
)

� μ̃

∫∫ (∣∣∂tψ⊥
l

∣∣2 +
∣∣∇ψ⊥

l

∣∣2 +
∣∣ψ⊥

l

∣∣2). (9.20)
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As for II l, we proceed as follows. For instance in Ω1 it holds that

L
(
k1
(
x′)w′(t)

)
:= Δk1

(
x′)w′(t) + F ′(uα)k1

(
x′)w′(t) = ΔR2k1w

′ + |∇q1α|2k1w
′′′

F ′′(w(t)
)[
−
(
2e

√
2t + ψ0(t)

)
e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1w

′ − w′′[ΔR2 f1αk1 + 2∇x′ f1α∇x′k1]

+ O
(
α2+τ

(
1 +

∣∣αx′∣∣2+ �√
2−ε)−1

e−�|t|)
and this implies that

II 1 = −
∫

ζ1,1L
(
k1
(
x′)w′(t)

)
ψ⊥

1 +
∫

2∇ζ1,1 · ∇
(
k1
(
x′)w′(t)

)
ψ⊥

1 + Δζ1,1w
′(t)k1

(
x′)ψ⊥

1 .

Since ψ⊥
1 satisfies condition (9.18), using Eq. (9.17), we obtain that

II 1 = −
∫
Ω

L
(
k1
(
x′)w′(t)

)
ψ⊥

1 dx′ dz −
∫
Ω1

(1 − ζ1,1)L
(
k1
(
x′)w′(t)

)
ψ⊥

1 dx′ dz + θ

= −
∫
Ω1

(
6w(t)w′(t) + 3w(t)ψ0(t)

)
e
√

2te−
√

2(f2α−f1α)k1
(
x′)ψ⊥

1 dx′ dz + θ,

where

θ = o(1)
∫
R2

(∣∣∇k1
(
x′)∣∣2 + α2p(αx)k2

1
(
x′)) dx′ + o(1)

∫
Ω1

(∣∣ψ⊥
1
∣∣2 +

∣∣∇ψ⊥
1
∣∣2) dx′ dz.

So, we obtain that

|II 1| � Cν−1α2
∫
R2

(
1 +

∣∣αx′∣∣)−4
k2
i

(
x′) dx′ + ν

∫
Ωi

(
1 +

∣∣αx′∣∣)−4∣∣ψ⊥
i

∣∣2 dx′ dz. (9.21)

Putting together estimate (9.19)–(9.21) we get the estimate

QΩ1(ψ,ψ) � −μ1α
2
∫ (

1 +
∣∣αx′∣∣)−4

k2
1
(
x′) dx′.

Then inequality

Q(ψ,ψ) � −μα2
∫

p(αx)ψ2

follows since a similar procedure can be applied in the region A2. �
9.3. The proof of inequality m(uα) � 1 for solutions in Theorem 1

We begin this subsection by proving that eigenvalues to problem (9.6) that are close to zero are actually
positive and we give a precise estimate on their size. This information is collected in the following lemma,
whose proof proceeds as in Section 11 of [12], but that we include here for the sake of completeness.
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Lemma 9.2. Assume that φα,R and λα,R 
= 0 are respectively an eigenfunction and eigenvalue for problem
(9.6) such that

‖φα,R‖L∞(R3) = 1, |λα,R| � Mα2 (9.22)

for some M → 0 as α → 0. Then there exists a positive universal constant β̂ such that for every α > 0
small and R large enough

λα := lim
R→∞

λα,R = α3 log
(

1
α

)
β̂ + O

(
α3)

and

φα,R

(
x′, x3

)
= Z

(
αx′)[w′(x3 − f1α) − w′(x3 − f2α)

]
+ O

( ∑
l=1,2

e−�|x3−flα|
)
,

where Z(x′) is a scalar multiple of the function z̄0(x′) described in (9.3).

Proof. Let us consider a solution φ to the problem (9.6). Using assumption (9.22) and a sub and super
solutions scheme, it can be proven that

∣∣φ(x′, z
)∣∣ � C

2∑
j=1

e−�|z−fjα(x′)|

for |αx′| � R0 and R0 large enough. This inequality basically states that any solution to problem (9.6) can
have values bounded away from zero only in the regions Al.

From inequality (9.22) we can write

λ = λα,R = μα,Rα
2, μα,R → μα, as R → ∞.

We consider the sets

Ãl =
{(

x′, x3
)
∈ R

2 × R: |x3 − flα| � θ[f2α − f1α])
}
, θ ∈

(
1
2 , 1
)
, l = 1, 2

and consider a cut-off function ζ̃l, supported in the set Ãl.
We consider a solution to the eigenvalue problem

ΔR3φ + F ′(uα)φ + α2μp
(
αx′)φ = 0, in CR

φ = 0, on ∂CR

and to fix ideas, let us localize φ in Ã1 by setting

φ̃1 = ζ1φ

which implies that φ̃1 must solve the equation

ΔR3 φ̃1 + F ′(uα)φ̃1 + α2μp
(
αx′)φ̃1 = 2∇x′ζ1 · ∇x′φ1 + φ1Δζ1 =: E1α.

Since in the set Ã1
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|Dφ| + |Dφ| + |φ| � Ce−�|t|, z = t + f1,α, 0 < � <
√

2 (9.23)

we find that

|E1α| � Ce−�ε|t|e−(1−ε)�|t| � C
[
α2(1 +

∣∣αx′∣∣)−4+β] �θ√
2 (1−ε)

e−�̂|t|

from where we conclude that

|E1α| � Cα1+τ
(
1 +

∣∣αx′∣∣)−2(1+τ)
e−�̂|t|, in Ã1.

for some �̂ > 0, 1
2 < θ < 1 and τ > 0 small.

Setting x3 = t + f1α, we write inside Ã1

L∗(φ̃1) = ∂ttφ̃1 + ΔR2 φ̃1 + F ′(w(t)
)
φ̃1 + B(φ̃1),

where

B(φ̃1) := −ΔR2 f1α∂tφ̃1 − 2∇f1α∇x′∂tφ̃1 + [∇f1α]2∂ttφ̃1 +
[
F ′(uα) − F ′(w)

]
φ̃1.

Hence, φ̃1 solves the equation

L∗(φ̃1) + α2μp
(
αx′)φ̃1 + B1(φ̃1) = E1α in Bα−1R(0) × R.

Proceeding in the same fashion, localizing φ in Ã2, we find that

L∗(φ̃2) + α2μp
(
αx′)φ̃2 + B2(φ̃2) = E2α in Bα−1R(0) × R,

where

E2α := 2∇x′ζ2 · ∇x′φ2 + φ2Δζ2

and

B2(φ̃2) := −ΔR2 f2α∂tφ̃2 − 2∇f2α∇x′∂tφ̃2 + [∇f2α]2∂ttφ̃2 +
[
F ′(uα) − F ′(w)

]
φ̃2.

Consider functions k1, k2 defined by the integrals∫
R

φ̃1
(
x′, t

)
w′(t) dt = k1

(
x′) ∫

R

(
w′(t)

)2
dt + k2

(
x′) ∫

R

ζ̃1w(t + f1α − f2α)w′(t) dt

∫
R

φ̃2
(
x′, t

)
w′(t) = k2

(
x′) ∫

R

(
w′(t)

)2
dt + k1

(
x′) ∫

R

ζ̃2w(t + f2α − f1α)w′(t) dt

so that in the set Ã1 we have the decomposition

φ̃1 = k1
(
x′)w′(t) + ζ̃1k2

(
x′)w′(t + f1α − f2α) + ϕ1,∫

R

ϕ1w
′(t) dt = 0.

Analogously, in Ã2, we have
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φ̃2 = k2
(
x′)w′(t) + ζ̃2k1

(
x′)w′(t + f2α − f1α) + ϕ2,∫

R

ϕ2w
′(t) dt = 0.

From (9.23), it is clear that the functions are smooth and bounded up to their second derivatives.
We perform the subsequent developments for φ̃1 only, since for φ̃2 is the procedure is the same.
Dropping again the subindexes we have that the equations for the function ϕ have the form

L∗(ϕ) + α2μp
(
αx′)ϕ + B(ϕ) = S∗,μ + Eα + B

(
kw′), in Bα−1R(0) × R,

where

S∗,μ = ΔR2k1w
′ + |∇q1α|2k1w

′′′︸ ︷︷ ︸
Q1

+ F ′′(w(t)
)[
−
(
2e

√
2t + ψ0(t)

)
e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1w

′︸ ︷︷ ︸
Q2

+
√

2
(
F ′(w) − F ′(1)

)
e
√

2te−
√

2(q2α−q1α)k2︸ ︷︷ ︸
Q3

−w′′[ΔR2 f1αk1 + 2∇x′ f1α∇x′k1]︸ ︷︷ ︸
Q4

+ O
(
α2+τ1

(
1 + |αy|2+

�√
2−ε)−1

e−�|t|)︸ ︷︷ ︸
Q5

(9.24)

for some τ > 0 small enough. Observe that k1(x′), k2(x′) are bounded in C2-norm, in Bα−1R(0).
Testing this equation against w′, we observe that

ΔR2k1 +
√

2a0e
−
√

2(q2α−q1α)(k1 + k2) + α2μp
(
αx′)k1

= B̃ + O
(
α2r
(
αx′)−2)

D2k1 + O
(
α3r
(
αx′)−3)∇k1 + O

(
α2+τ1r

(
αx′)2+β)

k1,

where

B̃ = 1∫
R
w′(t)2 dt

∫
R

B(ϕ).

We will prove that B̃ ∼ O(α2+τ ) for some τ > 0 small enough.
Let us write ϕ = ϕ̄1 + ϕ̄2, where

L∗(ϕ̄1) + α2μp
(
αx′)ϕ̄1 = Q4,

∫
R

ϕ̄1w
′(t) dt = 0.

Then, we obtain the estimate

∥∥D2ϕ̄1
∥∥
p,1,� + ‖Dϕ̄1‖∞,1,� + ‖ϕ̄1‖∞,1,� � Cα.

Next, we observe that

L∗(ϕ̄2) + α2μp
(
αx′)ϕ̄2 + B(ϕ̄2) = g

(
x′, t

)
+ c
(
x′)w′(t),
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where

g
(
x′, t

)
= Eα − α2μp

(
αx′)k1w

′(t) − (Q1 + Q2 + Q3 + Q5) −B(ϕ̄1),

and ∫
R

ϕ̄2w
′(t) dt = 0.

Observe that ‖B(ϕ̄1)‖p,2−τ,� � Cα2. Using the size of Eα we obtain that

‖g‖p,2−τ,� � Cα1+τ

for some τ > 0 small enough, so that we conclude
∥∥D2ϕ̄2

∥∥
p,2−τ,�

+ ‖Dϕ̄2‖p,2−τ,� + ‖ϕ̄2‖p,2−τ,� � Cα1+τ

and consequently
∥∥B(ϕ̄2)

∥∥
p,3−τ,�

� Cα2+τ .

So, we decompose

B̃ = B̃1 + B̃2, B̃l = 1
α2‖w′‖2

L2(R)

∫
R

B(ϕ̄l),

where

|B̃1| � C, |B̃2| � Cατ .

Even more, keeping into account the procedure for ϕ2 and setting zl(αx′) = kl(x′), for l = 1, 2, and using
elliptic estimates in the system of equations for z1, z2 we find that

∥∥D2z
∥∥
p,2−τ

+
∥∥(1 +

∣∣x′∣∣)1−τ
Dz
∥∥
∞ � Cα

from which

‖Q4‖p,2−τ,� � Cα2

and so

‖ϕ̄1‖p,2−τ,� � Cα2, ‖B̃1‖p,3−τ � C‖B̃‖p,2−τ � Cα3

and so

|B̃| � Cα2+τ .

At this point we recall that φ = φα,R has a uniform C1 bound and that

φα,R

(
x′, x3

)
= k1,α,R

(
x′)w′(x3 − f1α) + k2,α,R

(
x′)w′(x3 − f2α) + O

(
α

2∑
e−�|x3−fjα|

)
(9.25)
j=1
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so that

φα,R → φα, as R → ∞

uniformly on compact sets and

ΔR3φα + F ′(uα)φα = 0, in R
3

with

φα

(
x′, x3

)
= k1,α

(
x′)w′(x3 − f1α) + k2,α

(
x′)w′(x3 − f2α) + O

(
α

2∑
j=1

e−�|x3−fjα|

)
.

Observe also that zl,α,R(x′) = kl,α,R(x
′

α ) satisfies

ΔR2z1,α,R +
√

2e−
√

2(q2−q1)(z2,α,R − z1,α,R) + μα,Rp
(
x′)z1,α,R = O

(
ατ
(
1 +

∣∣x′∣∣)−2−β)
,

ΔR2z2,α,R +
√

2e−
√

2(q2−q1)(z2,α,R + z1,α,R) + μα,Rp
(
x′)z2,α,R = O

(
ατ
(
1 +

∣∣x′∣∣)−2−β)
so that, after passing to the limit R → ∞, we obtain the estimates

‖z1,α ± z2,α‖L∞(R2) � C
[
‖z1,α ± z2,α‖L∞(|x′|<R0) + O

(
ατ
)]

(9.26)

or equivalently

‖k1,α ± k2,α‖L∞(R2) � C
[
‖k1,α ± k2,α‖L∞(|αx′|<R0) + O

(
ατ
)]
.

From (9.27) we know that k1,α ± k2,α cannot be simultaneously zero. Then we obtain the limit system

ΔR2z1 +
√

2e−
√

2(q2−q1)(z2 + z1) = 0,

ΔR2z2 +
√

2e−
√

2(q2−q1)(z2 + z1) = 0,

hence, for every α > 0 small and R large enough we have the asymptotics

φα,R

(
x′, x3

)
= z1

(
αx′)w′(x3 − f1α) + z2

(
αx′)w′(x3 − f2α) + O

(
α

2∑
j=1

e−�|x3−fjα|

)

and the functions z = z1 + z2, ẑ = z1 − z2 are bounded, no simultaneously zero and solve the system

ΔR2z + 2
√

2e−
√

2(q2−q1)z = 0, Δẑ = 0, in R
2.

Since the bounded kernel of the operator

ΔR2 + 2
√

2e−
√

2(q2−q1)

is described in polar coordinates in (9.3)

z̄0 := −1 + r2
, z̄1 := r cos(θ), z̄2 := r sin(θ), r > 0, θ ∈ (0, 2π),
1 + r2 1 + r2 1 + r2



O. Agudelo et al. / J. Math. Pures Appl. 103 (2015) 142–218 215
we find that

z
(
x′) =

2∑
i=0

β̄iz̄i
(
x′), β̄i ∈ R.

Since we are assuming λ 
= 0, we may also assume from spectral theory that
∫
CR

p
(
αx′)φα,R · φ̄ dx′ dz = 0

for every bounded φ̄ solving

Δφ̄ + F ′(uα)φ̄ = 0, in CR, φ̄ = 0, on ∂CR,

and from Proposition 8.2 we know that the functions

∂x′
1
uα, ∂x′

2
uα, ∂zuα

are bounded solutions to the equation

Δφ + F ′(uα)φ = 0, in R
3.

Passing to the limit, we obtain that
∫
R3

p
(
αx′)φ2,α

(
x′, x3

)
Z
(
x′, x3

)
dx′ dx3 = 0

for any Z having the form

Z =
3∑

i=1
βi∂xi

uα, βi ∈ R, i = 1, 2, 3.

From the asymptotic expansion

∂x3uα

(
x′, x3

)
= w′(x3 − f1α) − w′(x3 − f2α) + O

(
α
(
1 +

∣∣αx′∣∣)−2
2∑

j=1
e−�|x3−fjα|

)

we can pass to the limit as α → 0, in the orthogonality condition respect to ∂zuα, to obtain that
∫
R2

p
(
x′)ẑ dx′ = 0

so that from Liouville theorem we get that ẑ2 = 0. This implies that

φα,R

(
x′, x3

)
= 1

2z
(
αx′)[w′(x3 − f1α) +

(
αx′)w′(x3 − f2α)

]
+ O

(
α

2∑
j=1

e−�|x3−fjα|

)
.

Proceeding similarly, but this time using the asymptotic expansions
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∂x′
i
uα

(
x′, z

)
= α∂xi

q
(
αx′)[w′(z − f1α) − w′(z − f2α)

]
+ O

(
α2), i = 1, 2

and orthogonality conditions respect to ∂xi
uα, we find that

∫
R2

p
(
x′)z(x′)z̄i(x′) dx′ = 0, i = 1, 2.

Consequently, z(x′) must be a scalar multiple of z̄0(x′) and with no loss of generality we write

φα,R

(
x′, x3

)
= z̄0

(
αx′)[w′(x3 − f1α) +

(
αx′)w′(x3 − f2α)

]
+ O

(
α

2∑
j=1

e−�|x3−fjα|

)
.

To finish the proof of the lemma, let us consider again the sets Ωl = Al ∩ CR defined in Lemma 9.1 and
notice that

α2μα

∫
Ω1,R∪Ω2,R

p
(
αx′)α∂αuα · φα dx′ dx3 = α

∫
Ω1,R∪Ω2,R

∇φα · ∇∂αuα − F ′(uα)φα · ∂αuα

= α

∫
∂(Ω1,R∪Ω2,R)

φα∂n(∂αuα) dS.

Observe first that

α3μα

∫
Ω1,R∪Ω2,R

p
(
αx′)φα · ∂αuα dx′ dx3 = 2α2μα

∫
|αx′|�R, |t|� 1

2 (f2α−f1α)

p
(
αx′)z̄0

(
αx′)2w′(t)2 dx′ dt + O

(
ατ
)

= μα

∥∥w′∥∥2
L2

∫
|x′|�R

p
(
x′)z̄2

0 dx
′ + O

(
ατ
)

= c0μ2,α + O
(
ατ
)
, c0 > 0.

On the other hand,

α

∫
∂(Ω1,R∪Ω2,R)

φ2,α∂n(∂αuα) dS =
∫

|αx′|=R,|t|� 1
2 (f2α−f1α)︸ ︷︷ ︸

I

+
∫

|αx′|�R,|t|= 1
2 (f2α−f1α)

φ2,α∂n(∂αuα)

︸ ︷︷ ︸
II

.

Clearly, the largest contribution in this integral comes from the first term, which from the asymptotic
formula (8.60), yields that

I = 2πα−1R
∥∥w′∥∥2

L2 z̄0(R)[α∂r,αqα + α∂r,αvα]|x′|=α−1R + O
(
α1+τ

)
= β̃0α log

(
1
α

)
+ O(α)

with β̃0 > 0. Hence, taking R → ∞, we find that μα ∼ α log(α)β̂ for some β̂ > 0 and this completes the
proof of the lemma. �
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9.4. Proof of inequality m(uα) � 1 for solutions in Theorem 1

To sketch the proof of inequality m(uα) � 1 we proceed as in the proof of Lemma 9.2. From the
characterization of m(uα) in (9.7), we can take an eigenfunctions φα,R, associated to strictly negative
eigenvalue λα,R < 0, which from the variational characterization of the eigenvalues can be chosen to be
decreasing in R. We also may assume that

‖φα,R‖∞ = 1,
∫
R3

p
(
x′)φα,Rφ̄α,R dx′ dz = 0 (9.27)

for φ̄α,R an eigenfunction to problem (9.6) associated to a different eigenvalue. From inequality (9.16) we
can write

λα,R = α2μα,R, μα,R → μα < 0, as R → ∞.

Proceeding as above, we find the asymptotics for φα,R

φα,R

(
x′, x3

)
= z1

(
αx′)w′(x3 − f1α) + z2

(
αx′)w′(x3 − f2α) + O

(
α

2∑
j=1

e−�|x3−fjα|

)

with

ΔR2z1 +
√

2e−
√

2(q2−q1)(z2 + z1) + μp
(
x′)z1 = 0,

ΔR2z2 +
√

2e−
√

2(q2−q1)(z2 + z1) + μp
(
x′)z2 = 0,

where μ � 0.
The case μ = 0 is discarded with the help of Lemma 9.2, which states that there are not strictly negatives

eigenvalues close to zero. Hence, μ < 0 and we observe that the equation for the difference ẑ = z1 − z2,
reads as

ΔR2 ẑ + μp
(
x′)ẑ = 0, ‖ẑ‖∞ < ∞. (9.28)

Since the eigenspace associated to the eigenvalue in (9.28) μ is spanned by exactly one simple and positive
eigenfunction and using as in the proof of Lemma 9.2 the orthogonality condition against ∂x3uα, we find
that ∫

R3

p
(
x′)ẑ dx′ = 0

which implies that ẑ = 0. So we have the asymptotic expansion

φα,R

(
x′, x3

)
= z
(
αx′)[w′(x3 − f1α) + w′(x3 − f2α)

]
+ α2O

( 2∑
j=1

e−�|x3−fjα|

)
,

where

ΔR2z + 2
√

2e−
√

2(q2−q1)z + μp
(
x′)z = 0, ‖z‖L∞(R3) < ∞.
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From condition (9.27) for eigenfunctions associated to the same eigenvalue and since there is exactly one
negative eigenvalue for problem (9.6), we conclude that this eigenvalue must be simple so that m(uα) � 1
and this concludes the proof of Theorem 1.
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