
UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

IMPROVING THE EFFICIENCY AND RELIABILITY OF GRADUAL

TYPING

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS

MENCIÓN COMPUTACIÓN

ESTEBAN ARMANDO ALLENDE PRIETO

PROFESORES GUÍAS:

JOHAN FABRY

ÉRIC TANTER

MIEMBROS DE LA COMISIÓN:

ALEXANDRE BERGEL

DAVID RÖTHLISBERGER

LAURENCE TRATT

Este trabajo ha sido parcialmente financiado por CONICYT

SANTIAGO DE CHILE

2015

Resumen

Gradual Typing permite a un programador aplicar tipos estáticos a ciertas partes

de un programa, dejando el resto dinámicamente tipeado. Sin embargo, esto viene

con un costo en el rendimiento. Una razón es que el runtime tiene que realizar

siempre un casteo en el borde entre tipos estáticos y dinámicos. Otra razón es que

el borde puede ser creado accidentalmente. Esto también trae un efecto lateral de

reducir la fiabilidad del código estático, porque ahora el programador no puede

garantizar que su código no arrojará errores de tipo en tiempo de ejecución.

En este trabajo de tesis, mejoramos el rendimiento y la fiabilidad de los progra-

mas gradualmente tipeados. Para esto, desarrollamos un lenguaje gradualmente

tipeado, Gradualtalk, y luego presentamos dos novedosas ideas: hybrid strategy y

Confined Gradual Typing.

La hybrid strategy es una nueva forma de insertar los casts al invocar métodos

que combina dos estrategias existentes, permitiendo obtener el mejor rendimiento

de ambas. Validamos esta afirmación con benchmarks.

Confined Gradual Typing refina gradual typing con anotaciones para pro-

hibir expĺıcitamente ciertos cruces de frontera entre el código estáticamente y

dinámicamente tipeado. Nosotros desarrollamos formalmente dos variantes de CGT

que capturan diferentes compromisos entre flexibilidad/garant́ıas. Probamos que

CGT es type sound y que las anotaciones ofrecen las garant́ıas esperadas.

ii

Abstract

Gradual typing allows a programmer to apply static typing to certain portions

of a program, leaving the rest dynamically typed. However, this comes with a

performance cost. One reason is that the runtime needs to perform a typecheck

in the boundary between static and dynamic typing. Another reason is that the

boundary can be created accidentally. This also have the side effect of reducing the

reliability of static code, because now the programmer cannot ensure that his code

will not throw type errors at runtime.

In this thesis work, we improve the performance and reliability of gradually

typed programs. To adress this, we develop a gradually-typed language, Gradualtalk,

and then we present two novel ideas: hybrid strategy and Confined Gradual Typing.

The hybrid strategy is a novel way to insert casts on method invocation that

combines two existing strategies, allowing to get the best performance of each. We

validate this claim with benchmarks.

Confined Gradual Typing refines gradual typing with annotations to explicitly

prohibit certain boundary crossings between statically and dynamically typed code.

We formally develop two variants of CGT that capture different flexibility/guarantee

tradeoffs. We prove that CGT is type sound and the qualifiers provide the expected

guarantees.

iii

Agradecimientos

En primer lugar, deseo agradecer a mis profesores gúıas Johan Fabry y Éric Tanter

por la enseñanza, el apoyo y la paciencia mientras realizaba mi doctorado. Muchas

gracias por ayudarme a ampliar mi modo de visión al de investigador, cambiando

mi forma de ver el mundo profesional.

Quiero agradecer a mi páıs, que a través de CONICYT financio mis estudios

de doctorado. Además deseo agradecer al gobierno francés, que a través de su

embajada en Chile, financio mi pasant́ıa en Francia. También agradezco a todas

las personas en INRIA con quienes trabaje mientras realizaba mi pasant́ıa, en

particular a Marcus Denker.

Igualmente, quiero darle las gracias a mis compañeros de posgrado que me han

acompañado en esta traveśıa. Algunos de ellos son: Oscar Callau, Paul Ledger,

Teresa Bracamonte, Daniel Moreno, Ismael Figueroa y Héctor Ferrada. Perdónenme

a los que he olvidado. Además agradezco al personal académico y administrativo

del DCC. En particular, a Angélica Aguirre y Sandra Gáez, que me han ayudado a

destruir cada una de las rocas administrativas que me he encontrado en cada paso

de mi viaje por el doctorado.

Finalmente, quiero agradecer a mi familia: a mi madre Maŕıa Angélica Prieto,

mi padre José Allende y hermano Sebastián Allende; quienes siempre me han

apoyado y han estado conmigo. Muchas gracias por el apoyo tanto emocional como

económico.

iv

Table of contents

1 Introduction 1

1.1 Introduction . 1

1.1.1 Static Type Systems . 1

1.1.2 Dynamic Type Systems . 3

1.1.3 Integrating Static and Dynamic Type Systems 4

1.2 Problem statement . 5

1.3 Goals of this work . 7

1.4 Methodology . 7

1.5 Contributions . 8

1.6 Structure of this thesis . 9

2 Gradual Typing 10

2.1 Gradual Typing in a Nutshell . 10

2.2 Implementation . 12

2.2.1 Consistency . 12

2.2.2 Consistent subtyping . 13

2.2.3 Gradual typing type checker 14

2.2.4 Cast Insertion process . 15

2.3 Extensions to Gradual Typing . 15

2.3.1 Generics . 15

2.3.2 First-class classes . 16

2.3.3 More than one kind of dynamically typed code 16

2.4 Performance related work . 17

2.5 Blame tracking . 18

v

TABLE OF CONTENTS

2.6 Other type systems . 19

3 Gradualtalk 22

3.1 Introduction . 22

3.2 Introduction to Smalltalk . 23

3.2.1 Programming in Smalltalk 23

3.2.2 Classes and metaclasses . 26

3.3 Gradual Typing for Smalltalk . 27

3.3.1 From dynamically typed to gradually typed code 28

3.3.2 Closures . 29

3.3.3 Self and metaclasses . 29

3.3.4 Casts . 30

3.3.5 Blame tracking . 31

3.4 Refining the Type System . 31

3.4.1 Parametric Polymorphism 32

3.4.2 Union Types . 33

3.4.3 Structural Types . 34

3.4.4 Nominal Types . 36

3.4.5 Reconciling Nominal and Structural types 37

3.4.6 Safety and Type Soundness 39

3.4.7 Summary . 39

3.5 Type System Semantics . 40

3.5.1 Self types . 40

3.5.2 Subtyping . 41

3.5.3 Runtime Coercion . 43

3.6 Implementation . 44

3.6.1 Live system . 45

3.6.2 The Untouchables . 47

3.6.3 Fragile classes . 47

3.6.4 Performance . 48

3.7 Related Work . 49

3.8 Conclusion . 51

vi

TABLE OF CONTENTS

4 Cast Insertion Strategies for Gradually-Typed Objects 53

4.1 Introduction . 53

4.2 Experimental Setting: Microbenchmarks 54

4.3 Call strategy . 57

4.3.1 Description . 57

4.3.2 Microbenchmarks . 58

4.4 Execution strategy . 60

4.4.1 Description . 60

4.4.2 Microbenchmarks . 62

4.5 Hybrid strategy . 62

4.5.1 Description . 63

4.5.2 Microbenchmarks . 64

4.6 Macrobenchmarks . 66

4.6.1 Experimental Setup . 66

4.6.2 Results . 68

4.7 Comparing Strategies beyond Performance 69

4.7.1 Memory . 69

4.7.2 Modularity . 71

4.7.3 Interaction with inheritance 72

4.8 Conclusion . 74

5 Confined Gradual Typing 75

5.1 Introduction . 75

5.2 Motivation . 77

5.2.1 Reliability . 77

5.2.2 Efficiency . 79

5.2.3 Confined Gradual Typing 80

5.2.3.1 Strict Confined Gradual Typing 80

5.2.3.2 Relaxed Confined Gradual Typing 81

5.2.4 Usage Scenarios of Confined Gradual Typing 83

5.3 Strict Confined Gradual Typing . 84

5.3.1 Source Language . 84

5.3.2 Internal Language . 87

vii

TABLE OF CONTENTS

5.3.3 Translating Source Programs to the Internal Language . . . 89

5.3.4 Type Safety and Correctness of Qualifiers 90

5.4 Relaxed Confined Gradual Typing 92

5.4.1 Directed Consistency, Revisited 93

5.4.2 Dynamic Semantics, Revisited 93

5.4.3 Type Safety and Correctness of Qualifiers 94

5.5 Implementation . 94

5.5.1 From Theory to Practice . 95

5.5.2 Confined Gradual Typing in Gradualtalk 96

5.6 Performance Evaluation . 97

5.6.1 Microbenchmarks . 98

5.6.1.1 The Cost of Boundary Crossing 98

5.6.1.2 The Cost of Applying Wrappers 100

5.6.2 Macrobenchmark . 101

5.6.3 Summary . 103

5.7 Related Work . 103

5.8 Conclusion . 105

6 Conclusion 106

6.1 Summary of the work . 106

6.1.1 Gradualtalk . 107

6.1.2 Cast Insertion Strategies . 107

6.1.3 Confined Gradual Typing 108

6.2 Perspectives . 109

6.2.1 Extensions . 109

6.2.2 Formalization . 110

6.2.3 Inheritance and Modularity 110

6.2.4 Case studies . 111

A Confined Gradual Typing: Formal Proof 112

A.1 SCGT: Type Safety . 112

A.2 SCGT: Cast Insertion . 119

A.3 SCGT: Correctness of Qualifiers . 122

viii

TABLE OF CONTENTS

A.4 RCGT- Type Safety . 140

A.5 RCGT- Correctness of Qualifiers . 140

B Confined Gradual Typing: Microbenchmark Results 143

List of Figures 146

Bibliography 151

ix

Chapter 1

Introduction

1.1 Introduction

While developing applications, software engineers are always looking for reliable

methods of program verification (e.g. functions behave correctly with respect

to some specifications) at several levels of modularity (e.g. expression, function,

module). Among all the methods in the literature, such as runtime monitoring,

Hoare logic [31], model checking [17], denotational semantics [56] and others, type

systems [40] have arguably become the best known and the most used in practice

while being a relatively lightweight formal method.

A type system is a tractable method for proving the absence of certain program

behaviors [41].A type system classifies program expressions according to the kinds

of values they evaluate to. These kinds of values are called types. There are two

principal kinds of type systems that define how a given program is validated. These

are static type systems and dynamic type systems. Each one has its own features,

advantages and drawbacks.

1.1.1 Static Type Systems

A static type system can be regarded as calculating a static approximation of the

runtime values of all the terms in a program. Languages such as C, Java, and

Haskell use this kind of type system.

1

1.1 Introduction

Statically typed languages enforce types at compile time. These languages

are generally explicitly typed, i.e. types are part of their syntax (e.g. Java and

C). Other languages such as ML and Haskell are implicitly typed: they include

an inference process that assigns types to well-formed expressions, making type

annotations optional.

Static type systems represent a highly valuable first line of defense against

programming errors, because they can catch type errors early in the development

cycle. Static type systems use the type information to verify the absence of some

bad program behaviors (e.g. invocation of a method that is not implemented in the

receiver object). Moreover, in a statically typed language, efficiency improvements

can be obtained by eliminating many of the dynamic checks that would be needed

to guarantee a type-safe execution in a dynamically typed language [41].

However, static type systems have a number of drawbacks as reported by

Tratt [61]:

� They are not flexible and a change in the software requirements could require

redesigning the software. Static type systems often prevent software evolution,

because they require that the program as a whole always typechecks correctly.

So, it is not possible to turn off selectively static type-checking.

� They are too conservative; meaning that, certain valid programs will not be

accepted by the type checker.

� Relatively small increases in the expressiveness of static type systems cause a

comparatively large increase in language complexity.

The above disadvantages can be solved, at least partially, by using a dynamic

type system (see Section 1.1.2) or by deferring part of the checking to runtime. For

example, several languages, such as Java, support explicit type coercions (called

casts), whose effect is to allow a programmer to specify the type of the expression,

and run a type check at runtime. So, Point p = (Point) list.getFirst() gets

the first element of a list and casts it to Point, allowing to bypass the restriction

of storing in p an object that must be proven to be of type Point at compile time.

However, at runtime, a check is performed in order to verify that the returned

object is actually of type Point. If not, a runtime exception is thrown.

2

1.1 Introduction

1.1.2 Dynamic Type Systems

Dynamic typing, also referred to as “dynamic checking” [13], differs from static

typing on how types are enforced. While a static type system enforces types at

compile time, a dynamic type system performs type checks at runtime. Dynamically

typed languages use tags, an annotation on the value about its type, at runtime to

distinguish different kinds of structures, so they can guarantee safe execution [36].

There are many languages that are dynamically typed, e.g. Smalltalk,

JavaScript, Python, and others. They are typically used in the industry to allow agile

support for systems and fast adaptation to changing requirements [36]. Features

like the ones described before make dynamically typed languages prominent in

modern software development [36]. In general, dynamically typed languages allow

code to be written that is more expressive than what would be possible with typical

statically typed languages [61]. This is because a written code in a statically typed

language requires that the programmer could also express the required types, and

this restriction is lifted in a dynamically typed language.

Nevertheless, applying dynamic type systems have some drawbacks as reported

by Tratt [61]:

� Software developed in languages that are dynamically typed are generally

slower than its equivalent written in a statically typed language.

� Dynamic type systems cannot emit warnings or detect errors until the exe-

cution of the program. That means some errors that would easily be found

at compile time, could eventually even reach the production stage of the

software, increasing the cost for fixing them.

� Statically typed programs provide an enforced form of documentation. It is

possible to informally annotate the expected types of a function in comments,

but these neither represent any guarantee nor are they usually updated if

the function specification changes. Some features of sophisticated Integrated

Development Environments (IDEs), such as code completion, are enhanced

by type information; such features cannot be provided easily (if at all) for

dynamically typed languages.

3

1.1 Introduction

Static and dynamic typing seem to be antagonists, but they actually are

complementary. The following questions naturally arise: is it possible to integrate

both? If so, how can that integration assist programmers in the software development

process?

1.1.3 Integrating Static and Dynamic Type Systems

The main difference between statically typed and dynamically typed languages is

the stage at which types are enforced. Actually we can see them as complementary:

the advantages of one of them are the drawbacks of the other. Integrating both is

the next logical step, and it has been pursued for some time. From the dynamic

type, mentioned in Abadi et al. [1], to most modern partial typing techniques such

as like types [63], researchers have been studying this particular symbiosis.

Listing 1.1: Gradual typing example
1 ModuleSystem class>> (Self) add: (Module)m
2 modules add: m.
3
4 Loader >> loadFromNetwork
5 |toLoad|
6 toLoad := Network getObject.
7 toLoad isModule ifTrue: [
8 ModuleSystem add: toLoad.
9]

10 ...

Gradual typing [50, 51] is one of those techniques. It combines the advantages

of both static and dynamic type checking. Gradual typing allows a programmer to

apply static typing to certain portions of a program, leaving the rest dynamically

typed. This enables the programmer to select the best trade-off between the

advantages and disadvantages between static typing and dynamic typing.

Listing 1.1 is an example of a gradually typed program written in Gradualtalk 1,

a gradually typed Smalltalk, introduced in Chapter 3. It shows two methods: The

first in Line 1 and Line 2, while the second method is between Line 4 and Line 10.

Line 1 is the method declaration of the first method: we define the method add: that

is a class method of ModuleSystem. It accepts one argument, m, of type Module

and returns an object of type Self. Line 2 adds the argument that the method

1The webpage for Gradualtalk is http://www.pleiad.cl/gradualtalk

4

http://www.pleiad.cl/gradualtalk

1.2 Problem statement

received to the collection stored in the class variable modules. Line 4 is the method

declaration of the second method: we are defining the method loadFromNetwork that

is an instance method of Loader. It accepts no arguments and returns a dynamically

typed value. Line 5 declares one local variable named toLoad that is dynamically

typed. Line 6 calls the class method getObject of the class Network and stores the

result in toLoad. Line 6 checks that the object is a module calling the method

isModule and if that is the case, executes Line 7. Line 7 calls the class method

add: of ModuleSystem, implemented in Line 1 and Line 2, passing as parameter the

value stored in the variable toLoad.

While all methods in the class ModuleSystem are statically typed, the methods

in class Loader are dynamically typed. The only visible interaction between these

worlds in this example is the call to the method add in loadFromNetwork. The

places where the program flow passes from a dynamically typed world to a statically

typed world, or vice versa, is the boundary of these worlds. At the boundary, there

is a need to perform a type check only when passing from a dynamically typed world

to a statically typed world. These dynamic type checks are implicitly introduced

by the compiler/type checker. The compiler/type checker decides where the type

check goes in the code. In the example before, there is an implicit type check in

line 8 that the variable toLoad is actually a subtype of class Module when calling

the method add in class ModuleSystem class.

1.2 Problem statement

Static and dynamic typing have different strengths, making them suited for different

tasks. Static typing provides for efficient program execution, compile-time error

detection, and better documentation, whereas dynamic typing enables rapid devel-

opment and fast adaptation to changing requirements [61]. Gradual typing [50, 51]

allows a programmer to apply static typing to certain portions of a program, leaving

the rest dynamically typed. This enables us to select the best trade-off between

the advantages and disadvantages of static typing and dynamic typing.

However, the advantages of efficient program execution due to static typing do

not immediately carry over to a gradual type system. This is in part because of the

existence of the boundary between statically typed and dynamically typed code.

5

1.2 Problem statement

The existence of this boundary poses two problems, which are specific to gradual

typing. The first problem is that the runtime needs to perform a type check in the

boundary; otherwise, it would be type unsafe. This check implies a performance

penalty in the program. The second problem is that the boundary depends on the

execution flow of the program, instead of on the lexical structure of the source code.

For example, when a dynamically typed piece of code calls a function whose code

has been fully typed, a type check must be performed to trap errors early before

executing the function. However, when a statically typed piece of code calls the

same function, there is no need to do a type check.

The existence of the boundary makes that type checks at runtime are done

for a different reason in dynamically typed programs than in gradually typed

programs. In a dynamically typed application, if the program would never raise an

error, a perfect optimizer could discard all runtime checks. However, in the case

of a gradually typed application, this is not possible because an object having an

incorrect type must not pass the boundary to the statically typed world, even if the

program would run fine otherwise. These differences in semantics makes discarding

type checks as done by some dynamically typed languages (e.g. Self), difficult on

gradually typed languages.

The existence of the boundary and the associated performance penalty discussed

above, makes the decision to use gradual typing over dynamic typing not so

easy when performance is critical. Furthermore, to the best of our knowledge, no

published research has focused in reducing the performance hit of gradually typed

applications with higher order (function) casts, except indirectly by optimizing the

cast themselves.

Sometimes, the boundary is created accidentally by the programmer. For exam-

ple, he could have forgotten to type one instance variable. Because of that oversight,

that instance variable will be assigned the type Dyn, a special type assigned to

dynamically typed values. If the rest of the program is typed, then all read or write

to that instance variable will need to cross the boundary between statically typed

and dynamically typed code.

Even when the existence of this boundary is accidental, it still affects the

performance as we mentioned above. But it also affects the reliability of static code.

This is because the programmer can never be sure that his code is 100% statically

6

1.3 Goals of this work

typed nor that values managed by his code are not wrapped, even when his code is

100% annotated. When closures flow from or into the untyped world, they may be

wrapped to check at runtime that their arguments and the return value have the

correct type. However, evaluating these wrappers has a cost in performance. The

programmer does not have the tools that could help him to prevent accidentally

creating such wrappers.

1.3 Goals of this work

The main goal of this thesis work is to increase the performance and improve the

reliability of gradually typed applications, using techniques transferable to any

gradually typed language. As a result, these techniques cannot be dependent on

the presence of certain optimizations, like Just-In-Time compilers. To achieve our

main goal, there are three specific goals:

� Implement a gradually typed language. The main motivation for this goal is

to have a gradually typed language where we can implement our proposed

optimizations and validate them.

� Reduce the performance penalty suffered in the boundary between statically

typed and dynamically typed sections when invoking methods.

� Improve the reliability and remove the existence of accidental boundaries by

giving programmers the tools to allow or disallow accidental crossing between

statically and dynamically typed code.

1.4 Methodology

We address the three specific goals of this thesis work as follows. The first goal

is addressed with Gradualtalk. Gradualtalk is the gradually typed Smalltalk we

developed. In this thesis, we present the design and implementation of Gradualtalk.

The second goal is addressed introducing a new cast insertion strategy: the

hybrid strategy. In this thesis, we describe two insertion strategies for method

invocation casts and propose the hybrid strategy, which is a merge of the other two

7

1.5 Contributions

strategies. We also validate our claim that the hybrid strategy provides the best

performance when invoking methods in all situations, compared with the other two

cast insertion strategies. Using the hybrid strategy, we can reduce the performance

penalty suffered in the boundary between statically typed and dynamically typed

sections when invoking methods. The speedup gained heavily depends on how the

program is typed and the strategy that is compared. The speed up can be between

0% and 93% less time spent in total.

The third goal is addressed with Confined Gradual Typing. Confined Gradual

Typing defines two new qualifiers for types, which are the tools the programmers

have to control boundary crossing between statically and dynamically typed code.

These improve the reliability and remove the existence of accidental boundaries,

because they allow to control whether values are able to cross the boundary. One

qualifier prohibits crossing the boundary in the past, while the other prohibits

crossing the boundary in the future. We develop two variants of Confined Gradual

Typing. In the first variant, the qualifiers allow to control whether the values can

flow from or to the dynamically typed code. In the second variant, the qualifiers

allow to control whether the values have never been wrapped or cannot be wrapped.

1.5 Contributions

In this work, we make three contributions: Gradualtalk, Cast Insertion Strategies

and Confined Gradual Typing. Each of these contributions have resulted in the

following publications:

� Gradual Typing for Smalltalk [2]: This journal paper describes Gradualtalk

and its features, as well as a preliminary empirical validation of its design

(not included in this thesis).

� Cast Insertion Strategies for Gradually-Typed Objects [4]: This con-

ference paper describes the different cast insertion strategies and validates

them.

� Confined Gradual Typing [3]: This conference paper presents Confined

Gradual Typing (CGT) in two variants. The paper provides a formal descrip-

8

1.6 Structure of this thesis

tion and proof for each variant. Finally, it presents an implementation for

CGT and shows that there is no significant performance hit for using CGT.

1.6 Structure of this thesis

This thesis is organized as follows. In Chapter 2, we present the necessary back-

ground of gradual typing. In Chapter 3, we introduce Gradualtalk, a gradually

typed language, and provide its design and implementation. In Chapter 4, we study

two cast insertion strategies and introduce a new cast insertion strategy, validating

it versus the other two. In Chapter 5, we presents Confined Gradual Typing, an

extension to gradual typing that allows to control the flow between statically typed

and dynamically typed code, and provide formal proof that it is type sound and

actually provides the guarantees we expect. In Chapter 6, we give a summary of

this work and provide perspectives for future work.

9

Chapter 2

Gradual Typing

Gradual typing is a type discipline where expressions are either statically typed

or dynamically typed, allowing programmers to choose either type discipline in

different sections of the program code. To make this integration possible, gradual

typing introduces a special type: Dyn. The Dyn type represents statically-unknown

types. Gradual typing also introduces and changes type and evaluation rules to

specify the meaning of this unknown type.

In this chapter we introduce gradual typing, how it is implemented, extensions

to gradual typing and related work.

In explanations in this chapter, the language used to describe has both objects

and closures. For simplicity’s sake, we treat objects as black boxes and there is a

nominal subtype relationship that relates them. A type T can be either a nominal

type A, the unknown type Dyn or a function type T1 → T2.

2.1 Gradual Typing in a Nutshell1

Gradual typing [50, 51] allows for the smooth integration of static and dynamic

typing by swapping the conservative pessimism of a static type system (i.e. rejecting

all programs that may go wrong) for a healthy dose of optimism (i.e. accepting all

programs that may go right).

1This section is based on Section 2.1 of the paper “Confined Gradual Typing” [3]

10

2.1 Gradual Typing in a Nutshell

Suppose an untyped function id, and two variables s1 and s2 that are both

statically typed as String. The programmer can reasonably expect s2 = id s1 to

work fine, but this is just a belief; id might return any value it wants, not necessarily

a String. The gradual type system statically accepts that expectation, because the

type of id is the unknown type, denoted Dyn, and Dyn is consistent [50] with any

type. Consistency and consistent subtyping will be described in more detail in

Section 2.2.2.

But the optimism of the gradual type system is no blind faith: at runtime,

a check is performed to ensure that the value returned by id is indeed a String,

so that the static assumption that s2 is of type String is not violated. Internally,

the above program is rewritten to an intermediate representation in which casts

(<Target type ⇐ Source type>) are inserted:

s2 = <String ⇐ Dyn> id (<Dyn ⇐ String> s1)

The first cast executed, from String to Dyn, serves no purpose in a language whose

runtime is based on tagged values (i.e. values with annotations about its type). In

a language with untagged values, it tags the value referred to by s1 with its type,

String. When id returns, the value is cast from Dyn to String. This cast fails if id

does not return a String value.

Higher-order casts. Higher-order casts, casts to function types, are much more

subtle. Consider a variation of the above example in which s1 is typed as String →
String and s2 has type X. The intermediate representation with casts is now as

follows:

s2 = <X ⇐ Dyn> id (<Dyn ⇐ String → String> s1)

If X is not a function type, and assuming id is the identity function, then a cast

error is raised at runtime. If X is a function type, say A → B, then we need to know

if it makes sense to treat a String → String function as a function of type A → B.

This depends on whether the two function types are consistent with one another.

If they are inconsistent, e.g. X=Int→Int, a cast error is raised immediately. If

they are consistent, however, we need to ensure that the untyped function (the

result of the application of id) properly obeys the type restrictions of an A → B

function. This is not decidable in general, so the runtime system must generate a

11

2.2 Implementation

function wrapper: a function of the expected type that internally inserts casts to

the arguments and returned value of the underlying function.

To illustrate, let us call v the underlying function bound to s1. If id is the identity,

it returns the tagged value <Dyn ⇐ String→String>v. The function wrapper is

hence a new function of type A → B that internally applies v, with corresponding

casts applied to the argument and result:

s2 = λ x: A. <B ⇐ String>(v <String ⇐ A>x)

Note that if A=B=String, then the corresponding wrapper would always succeed

trivially. This allows the wrapper to be avoided altogether, in which case s2 gets

bound to v without any intervening wrapper. On the other hand, if the function

cast is consistent but not equal, for instance X=Dyn→String, then the wrapper is

needed to cast the argument x from Dyn to String.

2.2 Implementation

Until now, we have seen the programmer’s view of gradual typing. In this section,

we discuss how gradual typing is implemented. The implementation of gradual

typing can be divided in two parts: the type checker and the cast insertion process.

However, before we can discuss each of these parts, we need to introduce the concept

of consistency and consistent subtyping.

The implementation explained in this section corresponds to the work developed

by Siek and Taha [50, 51].

2.2.1 Consistency

Gradual typing needs a concept of type substitutability between static types and

the Dyn type to allow the seamless interaction between them. A value typed as

Dyn can be used in any part where any other type is expected. In the same way,

any type can be used where a Dyn typed value is expected.

The naive solution would be to make Dyn a subtype of any type (Dyn <: T) and

all types a subtype of Dyn (T <: Dyn). However, because the subtype relationship

is transitive, this would allow for any type to be a subtype of another arbitrary type

(T1 <: Dyn <: T2). This would break the purpose of the type checker to disallow

12

2.2 Implementation

values to be used incorrectly when they are of a statically-incompatible types. The

solution proposed by Siek and Taha [50] is to introduce a new relationship between

types: consistency.

The consistency relationship (∼) is the type equivalency relationship for gradual

typing, relating two types that are “equivalent” in gradual typing. This relaxes type

equality: if two types are consistent, one type can replace another in any context

and viceversa. In gradual typing, any type is consistent with Dyn and viceversa.

Formally, the consistency relationship is defined using the following four rules:

1. A ∼ A

2. A ∼ Dyn

3. Dyn ∼ A

4. T11 → T12 ∼ T21 → T22, if T11 ∼ T21 and T12 ∼ T22

2.2.2 Consistent subtyping

The consistency relationship is sufficient for a functional language. However, in a

type system with subtyping, like the ones used in object oriented languages, it is

not sufficient. This is because the subtyping relationship is the relationship that

relates what types can replace another type. The solution proposed by Siek and

Taha [51], when there is subtyping, is to introduce another relationship: consistent

subtyping.

The consistent subtype relationship (.) relates a type T1 with a type T2. If T1

is a consistent subtype of T2, T1 can substitute T2 in gradual typing with subtyping.

This relationship is reflexive, but not transitive. This prevents the problem of the

naive solution described in Section 2.2.1.

The consistent subtype relationship is defined using both consistency and

subtyping. Informally, a type T1 is a consistent subtype of T2, iff T1 is a subtype

of T2 using only once the consistency relationship instead of the equals operator.

Formally, the consistent subtype relationship is defined using the following two

rules:

1. A . B, if A <: B or A ∼ B.

13

2.2 Implementation

2. T11 → T12 . T21 → T22, if T21 . T11 and T12 . T22

2.2.3 Gradual typing type checker

The goal of the type checker is to reject obviously wrong programs (e.g. assigning

a String to an Integer variable) at compile time. In the case of gradual typing,

the type checker must be aware of the existence of the Dyn type and allow the

interaction between statically typed variables and dynamically typed variables.

To make a normal type checker of either a functional language or object oriented

language aware of the Dyn type, therefore making it a gradual type checker, two

changes must be made. The first change is to use consistency instead of equality

and consistent subtyping instead of subtyping in the typing rules.

The second change is to take care of rules that use information that would not

be available if the type is Dyn. The only rule with this issue in functional languages

is the application rule:

(T-APP)
Γ ` e1 : T1 Γ ` e2 : T2 T1 ∼ T11 → T12 T2 . T11

Γ ` e1 e2 : T12

This type rule checks that the argument passed to the function is a subtype of its

parameter type. If the type of the function T1 is Dyn, then the parameter type T11

and the return type T12 could be any type and this rule would be non-deterministic.

To solve this, the rule is broken up into two rules, one for each case:

(T-APP1)
Γ ` e1 : Dyn Γ ` e2 : T2

Γ ` e1 e2 : Dyn

(T-APP2)
Γ ` e1 : T11 → T12 Γ ` e2 : T2 T2 . T11

Γ ` e1 e2 : T12

In the case when the type of the function T1 is Dyn, the dependent types of T1

(i.e. T11 and T12) are assumed to be Dyn too. In the case of the rule (T-APP1), the

condition T2 . Dyn is redundant because it is always true, so it has been removed

from the rule.

14

2.3 Extensions to Gradual Typing

2.2.4 Cast Insertion process

The type checker has blind faith with regard to the interaction between statically

typed values and dynamically typed values. However, at runtime we cannot have

this blind faith, because that would make the type system unsound. One solution

would be that the runtime checks everywhere if the value is of the expected type.

However, this would unnecessarily and drastically reduce the performance. The

solution proposed by Siek and Taha [51] is to insert casts in places where it is

known that an interaction between the statically typed and dynamically typed

code happens. This corresponds to two kinds of places in the code.

The first kind of place is when the typecheck rule is only true using consistency

or consistent subtype, but becomes false if the check uses equality or subtyping,

respectively, as a non-gradual type checker would. For example, when checking the

rule (T-APP2), if T2 . T11 but T2 6<: T11. In this case, a cast is inserted around

the value that fails this check from its type to the target type. In the example, the

expression e1 e2 would be translated to e1 (〈T11 ⇐ T2〉 e2)
The second kind of place is when the type checker needs to be too permissive if

a value has type Dyn. This is the case for the rule (T-APP1). Because the function

has type Dyn, the runtime needs to check that e1 is a function that can accept the

argument that is passed. To carry out this check, the expression e1 e2 is always

translated to (〈T2 → Dyn ⇐ Dyn〉 e1) e2 when the rule (T-APP1) is used to

typecheck that expression.

2.3 Extensions to Gradual Typing

The work of Siek and Taha [50, 51] is the foundation of gradual typing. However,

there are still further work that extends gradual typing to support additional

features. In this section, we discuss those additional works.

2.3.1 Generics

Ina et al. extend gradual typing to support generics [32]. Extending gradual typing

to a type system with generics is straightforward. Similar to what we explained

in Section 2.2.3, the rules with generics must use consistent subtyping instead

15

2.3 Extensions to Gradual Typing

of subtyping. However, integrating generics also requires one more decision: the

default type when no type is defined for its generics. For statically typed languages,

the default type is the root of the object type system (e.g.Object for Java).

For gradually typed languages, a better default type is the Dyn type. This is

because dynamically typed code can obtain types without defined generics when

creating a new object from a class constant (e.g.Collection new). If the default type

were Object, it would produce typecheck errors in code that should run when the

code is completely dynamically typed. For example, in a gradually typed Smalltalk,

the code (Collection new add: 3) first + 32 would raise an error, because

the retrieved element from the created collection would be of type Object, and

Object typed values do not support the addition operator.

2.3.2 First-class classes

Takikawa et al. developed a gradual type system for first-class classes in Racket [55].

They notice that the calculus of Siek and Taha does not deal with inheritance,

and that a direct adaptation would be unsound. This is because an overriden

method could change his return or parameter type from or to Dyn, which would

not be correctly checked. Furthermore, the inheritance semantics that their work

supports is rich in that it deals with accidental overridings. In order to address both

requirements, their work adopts row polymorphism [45] instead of standard subtype

polymorphism. To match these static typing features, on the dynamic checking side

they propose opaque and sealed contracts. Opaque and sealed contracts protect

methods or fields of classes from being accessed or overriden if they are not explicitly

declared in the contract. A sealed contract can be removed from a class by an user,

thus removing the protection if the user has the seal key. In contrast, an opaque

contract protection cannot be removed after being applied. Consequently, mixins

and other higher-order programming patterns with first-class classes can be checked

soundly.

2.3.3 More than one kind of dynamically typed code

A language can use a type checker to provide more guarantees than preventing

unhandled errors. Security is one of these guarantees. From the perspective of

16

2.4 Performance related work

security protection, there are two kinds of dynamically typed code. One kind

of dynamically typed code is one that is still under the scrutiny of the gradual

typechecker. The other kind of dynamically typed code is code that has not been

verified by the typechecker.

Swamy et al. [54] proposes a trichotomy between statically typed code, checked

dynamically typed code and unchecked code. The type Dyn represents a value from

checked dynamically typed code, while a new special type, Untyped, represents a

value from unchecked code. The interaction between static types and Dyn is the

same as normal gradual typing. However, the interaction between Untyped and any

other kind of type, even Dyn, is not normally allowed. To interact, values need to

be explicitly cast from or to Untyped. This interaction is made explicitly to prevent

accidental sending of values from or to unchecked code. The explicit casts add all

the required protection to checked values to prevent unauthorized changes of these

values from unchecked code.

The example provided by Swamy for an usage of this trichotomy is in a gradually

typed JavaScript with a focus in security. Statically typed code and checked

dynamically typed code are code that is checked by the typechecker. Because

of this, the typechecker can prevent bad program behavior (e.g. Changing the

prototype of an unrelated object). Meanwhile, unchecked code correspond to code

not checked by the typechecker, like third party libraries.

2.4 Performance related work

As a value flows in a program, casts can pile up. Different strategies exist to deal

with chains of casts. They can be reduced as eagerly or as lazily as possible, yielding

different flexibility/strictness tradeoffs [49]. However, even with an eager approach,

higher-order casts, i.e. casts on function types, cannot be fully resolved eagerly and

typically imply wrapping functions in proxies that perform casts upon entry and

exit. As noted by Herman et al., this approach can result in unbounded growth in

the number of proxies, affecting both space efficiency and tail call optimization [30].

They propose the use of coercions instead of proxies to be able to combine adjacent

coercions in order to limit space consumption. Going a step further, Siek and

Wadler develop threesomes as a data structure and algorithm to represent and

17

2.5 Blame tracking

normalize coercions [52]. A threesome is a cast with three positions: source, target,

and an intermediate lowest type. Combining a sequence of threesomes is done by

taking the greatest lower bound of the intermediate types.

Chang et al. report on JIT-level optimizations based on optional type infor-

mation [16]. They studied two groups of optimizations: low level and high level.

Low level optimizations are optimizations that are language agnostic, optimizing

the bytecode using the bytecode itself (e.g., redundant store and load elimina-

tion, variable stored in a physical register). High level optimizations are aware of

the language and runtime behavior (e.g., method inlining, type inference). The

conclusion they reached is that low level optimizations are not sufficient to pay

back the time invested on them. However, introducing high level optimizations,

the optimizations can increase performance by a significant amount. This work is

however in ActionScript, which is not gradual in the sense of Siek and Taha in

that it does not rely on the consistency relation and does not support higher-order

casts.

Also in the context of ActionScript, Rastogi et al. use local type inference to

eliminate occurrences of the dynamic type and therefore augment the “static-ness”

of programs [44]. They report very encouraging results: on average, they observe a

1.6x improvement with inferred types, and up to 5x in certain cases.

The expected overhead of fine-grained integration between typed and untyped

code that gradual typing supports has led several researchers to develop alternative

ways to do the integration. In the Typed Racket language, the granularity of

integration between statically typed and dynamically typed code is at the module

level: a module is either typed or untyped, but it cannot mix both disciplines

internally [57]. This reduces the flexibility of the integration somewhat, but also

reduces the cases of interaction, while proposing a reasonable engineering trade-

off. Interaction between typed and untyped code in Racket is mediated through

contracts [58], with blame tracking.

2.5 Blame tracking

A transversal issue when dealing with casts is whether or not blame tracking is

done in order to report the guilty party whenever a cast fails [22, 49, 62]. Siek

18

2.6 Other type systems

et al. propose different strategies for blame assignment that may lead to blaming

different parties for the same example [49]. These strategies are: Eager UD, Eager

D, Lazy UD and Lazy D.They result from taking two decisions. The first decision

is whether a location where a Dyn cast is realized could be blamed or not of a cast

exception. An UD blame strategy is a strategy where casts from and to Dyn can be

blamed for a cast exception. In contrast, a D blame strategy does not allow cast to

Dyn to be blamed. The second decision is when a cast exception should be raised

when a wrapper is added that will always raise a cast exception when used. An

eager blame strategy will raise this exception when the wrapper is added, and a

lazy blame strategy will raise this exception when the wrapped closure is used.

To illustrate the differences between blame strategies, we use the following code

snippet:

1 a = <Dyn⇐String→Int> func
2 b = <Int→Int⇐Dyn> a

Using a lazy blame strategy, the example code would never raise an exception

because b is never applied. In contrast, using an eager blame strategy will raise an

exception when executing Line 2. The line that is blamed depends if the blame

strategy is UD or D. With an UD strategy, the blame is assigned to Line 1, because

the mismatch is at the argument side and in that case the culprit is the cast to

Dyn. With a D strategy, the blame is assigned to Line 2 because that is where the

cast from Dyn was done.

Adding blame tracking complicates matters, both theoretically and practically.

For instance, threesomes with blame is considerably more complex to understand

than threesomes without blame [52, 25].

2.6 Other type systems

Integrating static and dynamic type checking is a highly active area of research.

Gradual typing is just one of several partial typing techniques developed in the

literature. Some other popular partial typing techniques are soft typing, pluggable

types, hybrid typing and like types. We discuss these here.

Soft typing [14] is a static type discipline that does not reject potentially

erroneous programs, but inserts casts to ensure safety. A soft type system does not

19

2.6 Other type systems

have type declarations. It uses an inferencer to add the type declarations. If it finds

an inconsistency, the type system will warn the programmer and will add dynamic

checks. In contrast, gradual typing allows the programmer to use type declarations

and insert casts whenever there is an inconsistency with those declarations

Pluggable types [9] is an approach that allows plugging optional type systems

into code. Because these optional type systems may interact with another optional

type system, they cannot modify the compiled code in any form. However, this

allows to plug in as many optional type systems as needed, without the risk of

conflicts between them. Also, it allows to enable at discretion an optional type

system only when it is needed, because the final compiled code is the same either

way. This can be beneficial when the typechecking process is time consuming. In

contrast, gradual typing modifies the compiled code to insert the casts. Because

of this, gradual typing can give more guarantees compared with pluggable types,

without sacrificing the seemless integration between static typing and dynamic

typing.

Hydrid typing [35] combines static typing with refinement types [23]. An auto-

mated theorem prover is used to check type consistency, and run-time checks are

inserted where static type inconsistencies cannot be detected. The main difference

between hybrid typing and gradual typing is where those type inconsistencies

cannot be detected. In Hybrid typing, undecidable type consistency arises because

of complex contracts. Checking if any contract is a subtype of another contract is

an undecidable problem. In gradual typing, undecidable type consistency practi-

cally arises because of the existence of the Dyn type. The reason is because type

consistency in gradual typing is too permissive with Dyn types, making it necessary

to check at runtime that the assumption made by type consistency is correct.

Wrigstad et al. propose another approach to alleviate the performance issue of

gradual types, integrated in Thorn [7, 63]. Instead of relying on the type consistency

relation, they introduce a novel intermediate point between dynamic and static

types: like types. When a method argument is declared to be of a like type, its

uses in the method body are statically checked. Clients of the method can pass

any value, just as if there was no declared static type. Conformance is checked

dynamically. Values typed with a like type permit all kinds of invocations, in the

same way as the Dyn type. However, a like type declares a set of methods that the

20

2.6 Other type systems

Type Static and dynamic
annotations Casts integration

Soft types no yes no
Pluggable types yes no yes
Hybrid typing yes yes no
Like types yes yes limited
Gradual typing yes yes yes

Table 2.1: Comparison of features between the different type systems

object must possess. All interactions between the static and dynamic world are

done using like types. The Thorn compiler is able to aggressively optimize concrete

types, and the authors report speedups of 2x to 4x between an untyped Thorn

program and a fully typed one (with untyped libraries).

Table 2.1 presents a comparison of features between the different type systems.

In general, all the type systems described here can be type annotated and use

casts to check the integrity of operations when this is not possible at compile

time. The exceptions are soft typing which does not accept type annotations at

all, and pluggable types which cannot use casts. Gradual typing, like types and

pluggable types provide an integration between static and dynamic typing, while

hybrid typing and soft typing are completely statically typed. Moreover, like types

provide this integration only where like types are used. We choose gradual typing

for our research because it provides a full integration between static and dynamic

typing and it also uses casts to check that static type assumptions are respected at

runtime.

21

Chapter 3

Gradualtalk

This chapter1 presents the design and implementation of Gradualtalk, a gradually-

typed Smalltalk. Implementing Gradualtalk was the necessary step to finding and

validating any proposal for improving the performance of gradual typing.

The validation of Gradualtalk itself is not the focus of this work. A fully

explained validation of Gradualtalk can be found in the PhD thesis “Empirically-

Driven Design and Implementation of Gradualtalk” [11]

3.1 Introduction

Designing and implementing a gradual type system for Smalltalk is a challenging

task because of the highly-dynamic nature of the language and the “live” program-

ming environment approach. Indeed, Smalltalk is a reflective language that cannot

be, in general, easily typed. Moreover, incremental programming in Smalltalk

implies accepting partially-defined methods by the type system and to dynamically

(at runtime) react to class updates. Additionally, as in any language, programmers

rely on various programming idioms, some of which are challenging to type properly.

These Smalltalk particularities make the design and implementation of a gradual

type system a challenge in itself.

This chapter reports on the design and implementation of Gradualtalk2, a

gradually-typed Smalltalk, which is fully compatible with existing code. Following

1This chapter is based on the publication: “Gradual Typing for Smalltalk” [2].
2Available online at http://www.pleiad.cl/gradualtalk

22

http://www.pleiad.cl/gradualtalk

3.2 Introduction to Smalltalk

the philosophy of Typed Racket [57], a major design goal of Gradualtalk is that

the type system should accommodate existing programming idioms in order to

allow for an easy, incremental path from untyped to typed code. The design of

Gradualtalk was guided by a study of existing Smalltalk projects, incrementally

typing them in Gradualtalk.

The type system of Gradualtalk supports Smalltalk idioms as much as possible

through a number of features: a combination of nominal and structural types,

union types, self types, parametric polymorphism, and blame tracking, amongst

others. While there is no groundbreaking type system feature in Gradualtalk,

the combination is quite novel, and the choice of these features—as well as their

interactions—is carefully discussed in this chapter.

This chapter is organized as follows. We introduce Smalltalk in Section 3.2. We

then introduce Gradualtalk by examples in Section 3.3. We then refine it with

several typing features in Section 3.4. Later, in Section 3.5, we explore subtyping

and runtime coercion semantics. Section 3.6 discusses implementation challenges.

We finally summarize in Section 3.8.

3.2 Introduction to Smalltalk

Smalltalk [26] is a dynamically typed, class based, object oriented language. This

section introduces Smalltalk syntax and concepts that are used in the rest of the

chapter. For readers that are familiar with Smalltalk, this section can be safely

skipped.

3.2.1 Programming in Smalltalk

Messages and method declaration The following code snippet is the imple-

mentation of the method distanceTo: in the Point class that calculates the distance

between two points.

1 Point� distanceTo: p
2 ”This method calculates the distance between two points”
3 |dx dy|
4 dx := self x -- p x.
5 dy := self y -- p y.
6 ˆ (dx squared + dy squared) sqrt

23

3.2 Introduction to Smalltalk

The first line is the method declaration. Point is the name of the class where

the method is defined, distanceTo: is the name of the method and p is the name

of the first and only argument. The second line is a comment. Comments can be

placed in any place in the method and they are enclosed by double quotes(”). The

third line declares the local variables dx and dy. The fourth line until the seventh

line are the statements of the method. Statements are separated by periods. The

last statement can end in a period, but this is optional.

The fourth line calculates the distance in the x axis between the two points

and stores it in the local variable dx. Assignment is denoted by the operator :=.

self is the object that is the receiver of the message. It is the equivalent of this in

Java and C++. self x, p x and self x -- p x are all message sends to objects. Because

everything in Smalltalk is an object, nearly every computation is performed by

sending a message to an object. There are three kinds of messages: unary, binary

and keyword:

� Unary messages have only the receiver as its argument. self x and p x are

unary messages that are sending the x message to the objects self and p

respectively.

� Binary messages have one additional argument and can only use special char-

acters (e.g. +--*/@<>). self x -- p x is a binary message, where the message

-- is sent to the object returned by self x with an additional argument: the

value of p x.

� Keyword messages can have one or more additional arguments. p1 distanceTo:

p2, which is an usage of the method that is being defined, is a keyword

message. The colon is required for keyword messages and if two or more

arguments are required, more keywords are needed. An example is 1 to: 10

by: 2, which creates a collection of integers from 1 to 10 with an increase of 2

for each element.

The precedence of messages is unary messages first, then binary messages and

finally keyword messages. For same kind of message, left message have precedence

over right message. For example, the value of 2 + 3 * 5 is 25 and not 17, because

24

3.2 Introduction to Smalltalk

2 + 3 is evaluated first. Parenthesis can be used to change the precedence. After

evaluating self x -- p x, the result is stored in the variable dx.

The seventh line returns the value of (dx squared + dy squared) sqrt. Return is

denoted by the operator ˆ. In the case that no value is explicitly returned by the

programmer, the method will implicitly return self as a value. This guarantees that

all methods return a value.

Control flow and blocks Smalltalk features a rich set of control flow mecha-

nisms. The following examples are a small set of those:

� Conditional: (p < 3) ifTrue:[a:=1] ifFalse:[a:=0]

� While: (p < 3) whileTrue: [p := p + 1]

� For: 1 to: 10 do: [:i|acc := acc + i]

� Iterator: points do: [:p|dispersion := dispersion + p distanceTo: zeroPoint]

As mentioned before, everything in Smalltalk is done by sending messages

and the control flow mechanisms are no exception. However, to effectively use the

control flow, it is necessary to use another feature of Smalltalk: blocks.

Blocks are closures and are defined by enclosing the list of instructions with

square brackets([]). Blocks can also declare that they need arguments to be

executed. The arguments are defined by a list of parameter name with a colon at

the start of each name. The list of arguments is separated from the body of the

block by a vertical line(|).
The value returned by executing the block is the value returned by the last

statement of the block. If the return operator is executed in a block(ˆ), the method

where the block was defined will end its execution and return the value specified

by the return operator.

Because blocks store their contexts, the instructions stored in them can access

the variables that were available where it was defined, no matter where the block

is being executed. In formal language theory, this kind of data is know as closures.

25

3.2 Introduction to Smalltalk

Constants Smalltalk has the following as constants:

� Integers: 42

� Floats: 3.14

� Booleans: true, false

� Characters: $c

� String: 'Hello world!'

� Symbol: #Point

� Array constructors: {p1 x. p2 x}

� Null object: nil

3.2.2 Classes and metaclasses

As said before, Smalltalk is an object oriented language with classes. The following

code snippet is the declaration of class Point.

1 Object subclass: #Point
2 instanceVariableNames: 'x y'

The first line declares that the name of the new class is Point and it is a subclass

of Object. The second line declares two instance variables: x and y. There is a more

complex version of the class declaration available, but it is not necessary for the

understanding of this thesis. The class declaration above is also a message sent to

an object: Object.

Everything in Smalltalk is an object. This even includes the classes. Classes are

objects that create and instantiate objects. They also act as a dictionary of all the

methods that are shared between the objects instantiated by themselves.

All objects have a class. In the case of classes, their class is known as a metaclass.

The class of Point is Point class. Because metaclasses are also objects, they have a

class. Their class is Metaclass. The class of Metaclass is the metaclass Metaclass class

and the class of Metaclass class is Metaclass, closing the relationship.

26

3.3 Gradual Typing for Smalltalk

If the class A is subclass of class B, then A class is subclass of B class. The only

exception is the root of the hierarchy, Object1. Because Object is the root of the

hierarchy, Object has no superclass. However, the superclass of Object class is Class.

This is done for the purpose that all classes can understand the methods defined in

Class. Both Class and Metaclass have a common ancestor, Behavior. The relationship

described here between classes and metaclasses is represented in Figure 3.1.

Object

String String class

Object class

Class Metaclass

Behavior Behavior class

Class class Metaclass class

is subclass of is instantiated by

Figure 3.1: Relationship diagram between classes and metaclasses in Smalltalk.

3.3 Gradual Typing for Smalltalk

In this section, we present the Gradualtalk language, which is a Smalltalk dialect

with gradual typing support. We now showcase the features of the language using

as an example code snippets from a geometric calculation module.

1In Pharo Smalltalk, the real root of the hierarchy is ProtoObject, but we are ignoring that
detail here.

27

3.3 Gradual Typing for Smalltalk

3.3.1 From dynamically typed to gradually typed code

A developer is trusted with the development of the geometric calculation module

for a graphics application. She starts writing dynamically-typed code. The following

code snippets are the implementation of two example methods: euclidean distance

and a class method for creating points.

Point� distanceTo: p
|dx dy|
dx := self x -- p x.
dy := self y -- p y.
ˆ (dx squared + dy squared) sqrt

Point class� x: aNumber1 y: aNumber2
ˆself new x: aNumber1; y: aNumber2

After development and testing, the developer wants to increase robustness and

provide basic (checked) documentation for these methods. For that purpose, she

needs to type the method declarations of those methods. The following example is

the typed version of the method distanceTo:.

Point� (Number) distanceTo: (Point) p
|dx dy|
dx := self x -- p x.
dy := self y -- p y.
ˆ (dx squared + dy squared) sqrt

The method declaration of this method specifies that the type of the parameter

p is Point, while the return value type is Number. Because the local variables dx

and dy are not annotated, they are treated as being of type Dyn, i.e. the type of

any object in a dynamically-typed language.

Note that the Dyn type is also very helpful for typing methods that cannot

otherwise be typed precisely, either because of a limitation of the type system,

or because of inherent dynamicity. The typical example of the latter is reflective

method invocation, done in Smalltalk with the perform: method:

Object >> (Dyn) perform: (Symbol)aSymbol

The argument to the method perform is a Symbol, which denotes the name of the

method (selector) that must be invoked on the receiver object. In general, the

return type cannot be statically determined. Declaring it as Dyn instead of Object

means that clients of this method can then conveniently use the return value at

any type, instead of having to manually coerce it.

28

3.3 Gradual Typing for Smalltalk

3.3.2 Closures

The next method to type in our example is perimeter:. This method takes as

parameter a closure that computes the distance between two points, and returns

the value of the perimeter of the polygon, using the provided closure. Closures,

also known as blocks, are a basic feature in Smalltalk, so the type system supports

them. The following code is the typed version of the perimeter: method declaration:

Polygon � (Number) perimeter: (Point Point → Number) metricBlock
...

In the example, the parameter metricBlock is a closure; its type annotation specifies

that it receives two Points and returns a Number.

3.3.3 Self and metaclasses

The next method to type is y:. This method is a setter for the instance variable y.

Its return value is self, the receiver of the message. The following code corresponds

to its typed method implementation:

Point� (Self) y: (Number) aNumber
y := aNumber.

Self is the type of self, as in the work of Saito et al. [47]. Declaring the return type

to be Point would not be satisfactory: calling y: on an instance of a subclass of Point

would lose type information and forbid chained invocations of subclass-specific

methods.

We now consider the class method x:y:, which acts as a constructor:

Point class� (Self instance) x: (Number) aNumber1 y: (Number) aNumber2
ˆself new x: aNumber1; y: aNumber2

Self instance is the type of objects instantiated by self. Self instance is therefore

only applicable when self is a class or metaclass. This was inspired by the type

declaration “Instance” in Strongtalk [10]. Using Self instance instead of Point offers

the same benefits as explained above. Constructor methods are inherited, and

Self instance ensures that the returned object is seen as an object of the most

precise type. The dual situation, where an object returns the class that instantiated

it is dealt with using Self class, also inspired by Strongtalk.

29

3.3 Gradual Typing for Smalltalk

Self instance in Gradualtalk and Strongtalk Instance are similar, but subtly

different. The difference shows up when looking at the Class class, and related

classes. Recall that in Smalltalk, classes are objects, instances of their respective

metaclass, which derive from the Class class. The problem is that in Strongtalk,

inside methods of that class, the type Instance is a synonym of Self. This means that

all methods defined in Class—and its superclasses ClassDescription and Behavior—

lack a way to refer to the type of their instances. This limitation can be observed

in several places. For example, the return type of Behavior � #new is Object in

Strongtalk, which is imprecise, while it is Self instance in Gradualtalk. To type the

method new correctly, Strongtalk needs to redefine new in the subclass Object class

(the metaclass of Object), and change its return type to Instance. Another example

of this problem is in the following method from Behavior:

Behavior� (Self) allInstancesDo: (Self instance → Object)aBlock
”Evaluate the argument, aBlock, for each of the current instances of the receiver.''

Using Self instance above as the argument type of the block denotes any possible

instance of a Behavior object. Properly typing this method is not possible in

Strongtalk: as a consequence, it has been moved down the hierarchy to the Object

class class. Self types in Gradualtalk are strictly more expressive than in Strongtalk.

3.3.4 Casts

The following code is the method perimeter, which computes the perimeter using

the Euclidean metric:

Polygon � perimeter
ˆ self perimeter: [:x :y| x distanceTo: y]

This dynamically-typed method invokes the perimeter: method with a (Dyn

Dyn → Dyn) closure, yet this method expects a (Point Point → Number) closure.

In the Gradualtalk type system, the former closure type is implicitly cast to the

latter. As a result, the developer does not need to write any type annotation.

The language also gives the programmer the option of explicitly coercing from

one type to another type. An explicit cast is shown in the following:

Polygon � perimeter
ˆ self perimeter: [:x :y| (<Integer> x distanceTo: y)]

30

3.4 Refining the Type System

The return value of the expression “x distanceTo: y” is cast to an Integer. If it

is not a subtype of Integer at runtime, a runtime exception is raised.

3.3.5 Blame tracking

Casts can fail. However, a higher-order cast (i.e. , a cast that involves function

types or, by extension, structural object types) cannot be verified immediately and

therefore this check must be delayed [22, 49]. This means that the point where an

error is detected can be spatially and temporally decoupled from the actual source

of the error. The general solution to this issue is to perform blame tracking [62].

When a check is delayed, the type system remembers information that will then

allow blame to be properly assigned, pointing at the expression that is responsible

for the error.

Consider the following:

PolygonTest � testPolygon: b
|block (Polygon)pol|
block := (<Point Point → Integer> b).
...
pol perimeter: block.

The cast of b to the proper function type cannot be checked immediately. Hence

the type system ensures that clients of block use it properly by providing two

Point arguments (otherwise they are to blame), and checks that the block always

effectively returns an Integer (otherwise the cast itself is to blame, because it would

have failed if we were able to check it immediately).

3.4 Refining the Type System

In this section, we extend the gradual type system introduced in Section 3.3. These

extensions are a series of features that we found necessary while typing several

Smalltalk projects. We conclude that these are necessary for a smooth migration of

Smalltalk projects to a typed version that is as precise as possible. Indeed, since

no type annotation means Dyn, any Smalltalk program is already a Gradualtalk

program with only Dyn types. The objective is therefore to introduce some features

that help minimize the number of required Dyn annotations in the code. As we

31

3.4 Refining the Type System

show in this section, many Smalltalk programming idioms suggest a specific type

system mechanism in order to avoid relying on Dyn.

Supporting programmer idioms is important for backward compatibility and

seamless integration. The first simply is to maintain support for the legacy packages

that are the core of today’s Smalltalk programs. The second is because programmers

should not have to refactor code to satisfy the type system.

3.4.1 Parametric Polymorphism

Consider the following piece of code, where an array of Dyn objects is defined:

|(Array) points|
... ”filled with points''
(points at: 1) x ”potentially unsafe''

The programmer knows that any element of the array is a Point., and invokes

the method x of class Point. Sadly, the type system cannot guarantee a safe method

call at compile time. Consequently, a coercion is introduced by the type system.

Here, the type information is lost, forcing the programmer to either use casts or

the Dyn type. Casts need to be manually inserted, which is cumbersome and error

prone.

To solve this problem, Gradualtalk supports parametric polymorphism [41].

Adding parametric polymorphism to gradually typed languages is not new: Ina

and Igarashi [32] presented a formalization and initial implementation of generics

for gradual typing in the context of Featherweight Java. We adopt their approach

in Gradualtalk. As of now, generics are implemented using type erasure as in Java.

That means that generic annotations are removed before execution time and the

runtime does not require those annotations to work.

Gradualtalk includes a generically-typed version of the Collection library. For

instance, the next piece of code solves the above problem by introducing Point as a

type argument to the generic Array type:

|(Array<Point>) points|
...
(points at: 1) x ”safe call”

Below is an example of a generic method definition:

Collection<e> � (a) add: (a <: e) newObject

32

3.4 Refining the Type System

This method inserts an object in a collection. Interestingly, in Smalltalk, the return

value of this method is the added object. Therefore, in order to not lose type

information, we use a bounded type variable a, subtype of the collection element

type e, and specify a as the return type. Note that by convention, in Gradualtalk,

type variables are single lowercase characters, similar to Haskell and ML.

Along with generics the type system also supports polymorphic functions

(blocks in Smalltalk), which is useful in several cases, e.g.higher-order functions in

collections:

Collection<e> � (Self<f>) collect: (e → f) op
Collection<e> � (Self<e>) select: (e → Boolean) pred
Collection<e> � (f) inject: (f) init into: (f e → f) op

Note that the two first methods above use parametric self types to precisely type

their return values.

Combining parametric types with some other typing features may produce new

and interesting properties. For instance, the interactions between the Dyn type and

generics, called bounded dynamic types [32], permits flexible bounded parametric

types. Gradualtalk does not include this feature as of now. Another interesting

interaction occurs between self types and generics, called self type constructors [47],

allowing programmers to parametrize self types. Self type constructors are required

to properly type collections in Gradualtalk, and are therefore supported.

3.4.2 Union Types

The following piece of code is a polymorphic implementation of the ifTrue:ifFalse:

method, where we use RT as a placeholder for the return type:

Boolean� (RT) ifTrue: (→ a) trueBlock ifFalse: (→ b) falseBlock
...

The method receives two block arguments, one for the true case named trueBlock

and one for the false case, named falseBlock. In this example each block can evaluate

to a result with a different type. Because of this, the trueBlock has return type a

and the falseBlock has b, and a=b is not always the case. Consequently, at this

moment there are two possible values for RT:

33

3.4 Refining the Type System

Object. The type Object does not provide any information to programmers. Even

if we consider the lowest common ancestor between types A and B, still some

type information is lost. Therefore, programmers are forced to insert a cast

to get the real type.

Dyn. We get the flexibility that we need, but again type information is lost.

While this is a simple example, there are several places where examples like

this can be found. To solve this problem, we use union types [41]. These allow

programmers to join several types in a single one, via disjunction. Union types are

represented by | in Gradualtalk. A union between types a and b solves the problem

of the example, letting the programmer specify that only one of these is possible.

Boolean� (a | b) ifTrue: (→ a) trueBlock ifFalse: (→ b) falseBlock

Another example is the following method:

Collection<e> � (Self | a) ifEmpty: (→ a) aBlock
ˆ self isEmpty ifTrue: [ˆaBlock value] ifFalse: [self]

The method returns the result of the invocation of aBlock (of type a) if the collection

is empty, or self otherwise. To type this precisely, a union type Self | a is used.

When using a variable typed with a union type a | b, the programmer can safely

call common methods in a and b. Calling specific methods of a or b requires explicit

disambiguation, for instance using isKindOf: to perform a runtime type check and

then using a coercion.

3.4.3 Structural Types

RBNode

value
RBValue

left
right

RBArray
left
right

RBBlock
return
RBReturn

Figure 3.2: A common structural protocol.

Figure 3.2 describes the RBNode hierarchy (RB is shorthand for Refactoring

Browser) that represents abstract syntax tree nodes in a Smalltalk program. In the

34

3.4 Refining the Type System

example, only the classes RBArray and RBBlock understand the selectors left and

right.

Consider the following code that is added to handle brackets in the parser,

where we use AT as a placeholder for the argument type:

RBParser � bracketsOfNode: (AT) node
... node left.
... node right.

Consequently, there are three possible values for AT:

RBNode. RBNode is the common ancestor of RBArray and RBBlock. However any

call to the methods left and right will be rejected by the type system, because

RBNode does not define these methods. Even a cast will not help, because

the type system cannot statically determine if either RBArray or RBBlock will

be the correct type.

RBArray | RBBlock A union type could be a good solution. However it is not

scalable if more nodes include brackets later on in development.

Dyn. The code will be accepted by the type system, but again type information

is lost.

This problem appears because RBArray and RBBlock have no relation between

one another except that they are nodes, and not all nodes have brackets. But

RBArray and RBBlock also share a set of common methods used in the method

bracketsOfNode:. Therefore, objects of type AT will understand this set of methods,

i.e. the selectors left and right. A type with this structural representation, i.e. set

of method types, is called a structural type [41]. This means that the type system

permits as argument any object that understands the selectors in the structural

definition. Using structural types, the solution is as follows:

RBParser � bracketsOfNode: ({left (→ Integer) . right (→ Integer)}) node

The syntax of structural types is {methodA (T1) . methodB (T2)} where

methodA and methodB are the names of the methods declared in the structural

type and T1 and T2 are the types of the corresponding method as a function type.

The use of structural types allows programmers to explicitly specify a set of

methods that an object must implement. These methods are the only available

35

3.4 Refining the Type System

methods for the structurally-typed variable (node, in the above example) and

therefore any call to another method will be invalid, unless a cast is used.

Type Alias The verbosity of structural types could be a problem for programmers,

and even worse it can lead to an agglomeration of anonymous protocols. To solve

this, Gradualtalk permits the use of a type alias [41], where programmers can give

names to arbitrary types in order to enhance readability. Note that the use of a

type alias is not only restricted to structural types. For example, Nil is a type alias

for the UndefinedObject type.

Named Protocols Smalltalk does not support explicit interfaces or protocols.

Instead, programmers rely on their understanding of what a given protocol is,

and provide the necessary methods. For example consider the pseudo protocol

“property”, where the methods that handle properties in an object are listed:

propertyAt:
propertyAt:Put:
propertyAt:ifAbsent:
propertyAt:ifAbsentPut:
removeProperty:
removeProperty:ifAbsent:

Not making this protocol explicit is fragile, because it may evolve over time.

By combining a structural type and a type alias, programmers are able to

define named protocols, which are similar to nominal interface types, except that

they are checked structurally. With this, protocols are explicitly documented, and

programmers can explicitly require them e.g. as an argument type of a method,

without losing the flexibility of structural typing.

Note that a named protocol can work to give a type to a trait [48]. A trait is a

set of methods that can be used to extend the functionality of a class. However,

traits come with a specific implementation, while named protocols are pure interface

specifications. The same protocol can be implemented by different traits.

3.4.4 Nominal Types

Nominal types [41] are the types that are induced by classes, e.g., an instance of

class String is of type String. One of the primary advantages of nominal types is

36

3.4 Refining the Type System

that it helps programmers easily express and enforce design intent. Because of this,

most mainstream statically typed object-oriented languages support nominal types

rather than other alternatives, such as structural types.

Nevertheless, structural types offer their own advantages [37, 38]. For instance,

structural types are flexible and compositional, providing better support for unan-

ticipated reuse. This is because they imply a more flexible subtyping relationship

compared to nominal subtyping, allowing unrelated classes in the class hierarchy to

be subtypes. Taking this into account, some type systems [51, 20, 37] use structural

types. In fact, a nominal type also can be considered in terms of its structural

representation. This means that instances of class String have a structural type: the

set of all methods that a string understands. Using such a type alias, programmers

can benefit from the advantages of structural types.

In the case of Smalltalk, considering class-induced types as their structural repre-

sentation is, however, not suitable. This is because Smalltalk classes tend to have a

large number of methods, which makes it impractical to comply with subtyping out-

side of the inheritance hierarchy. For instance, consider the SequenceableCollection

class, which has hundreds of methods. If the programmer wants to define a subtype

that is not a subclass she must implement all methods in the SequenceableCollection

class. A solution is to combine structural and nominal types, as discussed next.

3.4.5 Reconciling Nominal and Structural types

Figure 3.3 describes the hierarchy of some classes in Smalltalk that define the

selectors left and right with type signature (→ Integer). With this new set of classes,

the solution presented in Section 3.4.3 is not complete. This is because the type

system will accept calls to the method bracketsOfNode: with a parameter that

complies with the protocol, e.g., a Morph object, but which is not a node.

Gradualtalk supports the combination of nominal and structural types, similar

to Unity [37] and Scala [19].1 A type combines both a nominal part and a structural

part, as in A{m1...mn}. For instance, consider the following modification in the

parameter type that takes structural and nominal types into account:

1Note that because Scala compiles to the JVM, structural invocations introduce an extra
performance penalty due to reflection. Gradualtalk, on the other hand, does not penalize structural
invocations.

37

3.4 Refining the Type System

Object

RBNode left
right

Morph

left
right

RBBlock
left
right

RBArray

left
right

Rectangle
left
right

TextContainer
left
right

TextLine

Figure 3.3: A common structural protocol across projects.

RBParser � bracketsOfNode: (RBNode{left (→ Integer) . right (→ Integer)}) node

Here the type system is requesting an explicit RBNode object that has selectors

left and right. Now a call with a Morph object as argument is rejected because it is

not an RBNode.

Note that a nominal type A is a syntactic shortcut for the combined type

A{} (empty structural component), while a structural type {m1, m2, ...} is the

equivalent of Object{m1, m2, ...}.

Flexible Protocols Interestingly, the combination of the Dyn type with a struc-

tural type produces a flexible protocol, of the form Dyn {m1, m2, ...}. A flexible

protocol represents objects that must comply with a protocol (structural part),

but can otherwise be used with an implicit coercion (Dyn part). An object typed

with flexible protocols allows the programmer to invoke any method. In contrast,

an object typed with a structural type requires an explicit cast if the programmer

wants to invoke any method not declared in its type. Assigning to a variable typed

with flexible protocols will check that the object complies with the protocol. In

contrast, any object can be assigned to a variable typed as Dyn.

Consider the following piece of code:

Canvas� (Self) drawPoint:(Dyn {x(→ Integer). y(→ Integer)}) point
... point x. ”safe call”
... point y. ”safe call”
... point z. ”not an error, considering point as Dyn”

The last statement does not raise a type error, because point has been typed

with a flexible protocol. However, calling drawPoint: with an argument that does

38

3.4 Refining the Type System

not support the {x, y} protocol is a static type error. Since Unity and Scala are

not gradually-typed, flexible protocols are a novel feature of Gradualtalk.

3.4.6 Safety and Type Soundness

Gradualtalk is based on Smalltalk, which is a safe language: sending an unknown

message to an object is a trapped error that results in a MessageNotUnderstood

exception, instead of producing unspecified result or system crash. Gradualtalk

inherits this safety property.

With respect to type soundness, Gradualtalk follows the foundational work

on gradual typing by Siek and Taha [51], with the blame assignment mechanism

of Wadler and Findler [62]. The result is that Gradualtalk guarantees that, if a

runtime type error occurs (that is, a MessageNotUnderstood exception is thrown),

it is either due to an explicit cast that failed, or the consequence of passing an

inappropriate untyped value to typed code. In the latter case, the error may occur

anywhere in the code, but blame assignment will necessarily point to a faulty

dynamically-typed expression that caused the error to occur later.

Note the practical value of blame assignment: without it, the programmer is

left with the current call stack to investigate; however the root cause may be long

gone and therefore not appear in the call stack.

3.4.7 Summary

τ ::=γ | τ → τ | τ + τ | γ<τ> | γσ Type
γ ::=ν | ε | x | Dyn Ground type
ν ::=C | C class | Nominal type
ε ::=Self | Self instance | Self class Self type
σ ::={m τ → τ} Structural type

Table 3.1: Types in Gradualtalk

Table 3.1 presents the grammar of types in Gradualtalk. C ranges over class

names in the system, x ranges over type variables and m ranges over selector names.

A bar over a type term specify zero or more occurrences of the term.

39

3.5 Type System Semantics

A type τ is a either a ground type γ, a function type, a union type, a generic

type, or a combined type with a structural component σ. A ground type is either a

nominal type ν, a self type ε, a type variable or Dyn. A structural type σ is a list

of selector types, including a selector name and a function type.

3.5 Type System Semantics

We now describe three important aspects of the type system of Gradualtalk: self

types, subtyping and runtime coercions.

3.5.1 Self types

Although the semantics of the type Self are well known, this is not the case for the

Self instance and Self class types. To define them properly, we define the concepts

of instance types and class types. The instance type of τ is the type of objects

instantiated by objects of type τ . If an object of type τ cannot have instances, then

the instance type of τ is undefined. For example, the instance type of String class

is String. This is because the String class object (and its subclasses) instantiate

objects of type String (or a subtype of it). The class type of τ is the type of the

class object that produces objects of type τ . Figure 3.4 and Figure 3.5 define the

rules for instance types and class types respectively. Note that a key challenge in

Smalltalk is to properly take into account the core classes that describe classes and

metaclasses: Behavior, its subclass ClassDescription, and its subclasses Class and

Metaclass.

A self type can be found in a calling context, as the type of a parameter or

return value of an invoked method, or in called context, as the type of a variable or

of the return value. In a calling context, self types are replaced by the type of the

receiver. If the type of the receiver of the invoked method is τ , Self, Self instance

and Self class are replaced by τ , instance(τ) and class(τ) respectively. In a called

context, the type Self is represented in the type system as SelfC, where C is the

current class. Self instance and Self class are represented in the same manner.

40

3.5 Type System Semantics

instance(Nil)=Nil

instance(C class)=C

instance(Metaclass)=Class

instance(A)=Object, if Class <: A <:
Behavior

instance(SelfC class)=SelfC

instance(SelfC)=SelfC instance, if C <:
Behavior

instance(SelfC instance)=
instance(instance(C))

instance(γσ)=instance(γ)

instance(τ1 + τ2)= instance(τ1) +
instance(τ2)

instance(x)=instance(upperbound(x))

instance(γ<τ>)=instance(γ)

instance(Dyn)=Dyn

Figure 3.4: Definition of the instance
relation on types.

class(Nil)=Nil

class(Object)=Behavior

class(C)=C class, if C ≮: Behavior ∧ C
6= Object

class(A)=A, if A ∈ {Behavior
,ClassDescription}

class(Class)=Metaclass

class(Metaclass)=Metaclass class

class(SelfC class)=class(class(C))

class(SelfC)=SelfC class

class(SelfC instance)=SelfC

class(γσ)=class(γ)

class(τ1 + τ2)=class(τ1)+class(τ2)

class(τ → τ)=BlockClosure class

class(x)=class(upperbound(x))

class(γ<τ>)=class(γ)

class(Dyn)=Dyn

Figure 3.5: Definition of the class rela-
tion on types

3.5.2 Subtyping

One important feature in object-oriented languages is subtyping, by which an

object of a given type can also be considered as being of any of its supertypes. The

presence of several kind of types in Gradualtalk makes the subtyping relationship

nontrivial. We next explain how it is treated.

Basic Forms of Subtyping Lambda types, self types, union types and para-

metric types have well-known subtyping relationships [41, 13, 47, 32]. Gradualtalk

follows these rules. However, because of our extension to self types, there are two

additional subtyping rules concerning self types:

41

3.5 Type System Semantics

(Self instance)
SelfC instance <: instance(C)

(Self class)
SelfC class <: class(C)

Bottom Type In Gradualtalk, Nil (which is an alias for UndefinedObject) serves

as the bottom type. Since this type is a subtype of any other type, the programmer

can use either nil or raise exceptions in any place where a typed object is expected.

Nominal and Structural Subtyping As explained in Section 3.4.4, Gradualtalk

supports the combination of nominal and structural subtyping as in Scala. First,

note that Gradualtalk (as most mainstream languages) equates nominal subtyping

with the inheritance relationship. Subtyping of mixed types is described by the

following rule:

(Mixed)
γ1 <: γ2 structural(γ1) ∪ σ1 <: σ2

γ1σ1 <: γ2σ2

This rule states that a mixed type A {n1,...} is a subtype of B {m1,...} if and

only if A is a nominal subtype of B and the union of {n1,...} and all the methods

of A (i.e. , the structural view of A) is a structural subtype of {m1,...}. The reason

that this rule adds all the methods of A when checking the structural part of

the types is because A alone can be a subtype of B {m1,....}. The definition of

structural(.) is direct and omitted here for brevity.

Consistent subtyping As explained in Section 2.2.2, Gradual typing extends

traditional subtyping to consistent subtyping [51]. Consistent subtyping does not

present any specific challenge with respect to the different kinds of types in

Gradualtalk. An interesting case to mention though is that of flexible protocols,

since these are a novelty of Gradualtalk. Recall that a flexible protocol is a type

of the form Dyn {m1,...}, i.e. , a type that combines Dyn with a structural type.

The consistent subtyping relation for flexible protocols is defined by the rules

Mixed-Dyn1 and Mixed-Dyn2:

42

3.5 Type System Semantics

(Mixed-Dyn1)
τ . σ

τ . Dyn σ
(Mixed-Dyn2)

Dyn σ . τ

Mixed-Dyn1 states that τ is a consistent subtype of Dyn σ, if τ is a consistent

subtype of σ. This rule explicitly makes τ comply with the structural part of the

flexible protocol. Mixed-Dyn2 states that Dyn σ is a consistent subtype of any τ .

Indeed, it is valid to pass a value of type Dyn σ anywhere, since this is already

the case with Dyn alone. Interestingly, both rules Mixed-Dyn1 and Mixed-Dyn2

correspond to two of the basic rules of consistent subtyping, τ . Dyn and Dyn . τ ,

generalized to mixed types. Both of these basic rules are obtained when σ is the

empty structure.

Note that flexible protocols also enjoy a direct subtyping relation as defined by

the following rule Mixed-Dyn-sub:

(Mixed-Dyn-sub)
σ1 <: σ2

Dyn σ1 <: Dyn σ2

Mixed-Dyn-sub states that Dyn σ1 is a subtype of Dyn σ2, if σ1 is a subtype of

σ2. This rule is the generalization of the reflexive rule Dyn <: Dyn to mixed types;

that rule can be recovered by considering both σ1 and σ2 empty.

3.5.3 Runtime Coercion

Coercions are expression-level checkers introduced by the type system at compile

time, seen in Section 3.3.4. There are two kinds of coercions: explicit and implicit.

Explicit coercions are written by the programmer, while implicit coercions are

introduced by the type system to guarantee soundness. Coercions are performed at

runtime either nominally or structurally through subtyping.

Method invocation Implicit coercions on method arguments can be performed

either on the call site when sending the message, or at the beginning of the execution

of the called method. In Chapter 4, we explore this decision from the point of view

focused on performance, and present a novel third way to perform cast insertion

on method invocation.

43

3.6 Implementation

Union types To reduce the number of coercions at runtime, in the presence of

union types these are simplified as follows: An object declared as a union type is

implicitly coerced only in the calls to valid methods (methods in the union) that

are not present in the intersection between the structural representation of the

types in the union. Consider the following simplified example:

|({m1,m2} | {m2,m3}) obj|
obj m2. ”no coercion needed. m2 is present in both {m1,m2} and {m2,m3} ”
(<{m3}>obj) m3. ”manual coercion is needed. m3 is not present in {m1,m2}”

In this example, the call to m2 is safe, however the call to m3 needs a manual

coercion.

Structural types Coercions to structural types can be performed in two ways:

Eager. These are performed when the code is executed, checking that the object

with the structural type understands all messages that are defined in the type.

One benefit of this is that it aims to express the users intention, because

objects are forced to understand all methods specified by the programmer.

However, it could reject some codes that will never fail.

Lazy. These are performed on demand, checking only the used methods when they

are invoked. This is more flexible, because it is not necessary to comply with

the full set of methods, only a subset. However, it may be harmful, because

some objects can accidentally match this subset of methods.

The choice between these options is hard to make and may depend on the context

where these objects or types are used. We have chosen to use eager coercions in

order to maximize the benefits of using static types in the first place. If practical

experience ends up requiring to use lazy coercions, it can be integrated in the

language, offering the choice to the programmer.

3.6 Implementation

The implementation of Gradualtalk extends Pharo Smalltalk, by adding a gradual

type system. This extension consists primarily of three components: the core, the

typechecker and the type dictionary. The core allows for the representation of types

44

3.6 Implementation

and their relationships in Smalltalk. The typechecker is a pluggable extension to the

Smalltalk compiler that verifies the correct typing of methods before compilation.

The type dictionary is where type information is stored, i.e. , the typing of instance

variables and methods for each class. The current implementation of Gradualtalk

is focused on expressiveness and correctness.

In this section, we present the problems we encountered while developing

Gradualtalk that we believe are important to consider when implementing a type

system in Smalltalk or a language with similar features.

3.6.1 Live system

Nearly every Smalltalk environment is a live system. This means that the developer

writes the code, runs it and debugs it in the same execution environment. To

support this live environment, individual methods can be compiled and added

to an existing class. This is in contrast to other languages where the smallest

compilation unit is a class. This feature of a live environment raises three problems

for a typechecker.

The first problem is the granularity of the compiling process. In Smalltalk,

the compilation process is done per method, instead of per class. Traditionally,

a type checker prevents compilation when type errors are found. But with such

a fine-grained compilation process, the traditional approach does not work. For

example, if a programmer needs to define two mutually-dependent methods, when

the first method is defined, the typechecker cannot know if the second method

referenced is going to be defined later. The error should however not block the

programmer from keeping this as-yet-buggy method and then define the second

method. The same situation happens when loading code, since code loading in

Smalltalk is just a script adding definitions one-by-one. In order to address this

issue, we decouple the typechecking process from the compiling process: Gradualtalk

can compile methods with type errors. Errors are collected in a separate typing

report window.

The second problem is that the work done by the typechecker can become

obsolete when new methods are introduced or an old method is modified. For

example, if the return type of a method is changed from Integer to String, all

45

3.6 Implementation

methods that invoke it can potentially become ill-typed. To solve this problem, we

introduce a dependency tracking system based on Ghosts [12], which allows the

type system to properly support partially-defined classes and circular dependencies.

Undefined classes and methods that are referenced are considered ghost entities.

This allows the type system to check for consistent usage of as-yet-undefined entities.

Dependency tracking considers both defined entities and ghosts. Each time the

programmer updates or deletes definitions, the dependency tracker notifies the

type system of which methods must be checked again. In case the type system

detects some type errors, it reports the exact points of failure. More precisely, the

dependency tracking system records bi-directional references between dependents

and dependees. These dependencies are updated whenever a method is type-checked,

and whenever the format of a class definition (variables) changes. The result of this

process is a dependency graph of dependent and dependee nodes. A dependent node

is either a pair (class, selector), for dependent methods, or a pair (class, variable),

for dependent instance or class variables. A dependee node is either a class, for type

related dependencies, or a pair (class, selector) for method invocation dependencies.

Whenever a dependee node is updated, all dependents are re-checked and re-

compiled (necessary because implicit cast insertion may have to change).

The third problem occurs when compiling typed system code that is critical

for the operation of the virtual machine. It is common that programmers commit

errors when typing code, especially if the code was not developed by them. With

normal code, it is not a problem that a method fails when compiling, or cast errors

are raised when they are executed. However, in critical code for the VM, having

cast errors is fatal. For example, if the default error handler raises a cast error, an

infinite loop is produced and the system is unresponsive, making it impossible to

use the debugger. To address this problem, in Gradualtalk runtime cast insertion

and checking can be disabled or enabled at will. To gradually type important and

critical system parts, we used this feature to first focus on debugging the cause

of typecheck errors at compile time, then progress to runtime cast errors. Also,

disabling runtime casts after a cast error is raised allows us to use the debugger

without further interference of the type system.

46

3.6 Implementation

Gradual or optional? Disabling runtime casts insertion was built in Gradualtalk

to address the problem discussed above. Interestingly, it can also be used to

make the type system of Gradualtalk an optional type system, just like that of

Strongtalk. Moreover, because code instrumentation can be enabled or disabled at

will, Gradualtalk allows optionally-typed and gradually-typed code to co-exist in

the same system; a combination which, to the best of our knowledge, has not been

explored so far.

3.6.2 The Untouchables

Smalltalk permits a programmer to modify existing classes, including the structure

of their instance variables, with a few exceptions. The classes whose object instance

structure cannot be touched are Class, CompiledMethod and any of their ancestors.

The reason for this is fundamental: the VM needs to know statically how they are

composed so it can carryout method lookup and execute Smalltalk code without

relying on the method lookup being implemented as Smalltalk code. Because of this

restriction, we need to put the type information of methods and instance variables

outside of the class, in the type dictionary.

There is also a set of virtually untouchable methods, e.g. whileFalse: in

BlockClosure. These methods can be modified by a developer, however, the VM

ignores those changes, because the compiler optimizes all methods that invoke them

with a sequence of label and jump bytecodes that implement the original behavior

of these methods. Because of this, we cannot modify them to realize coercions on

their parameters. Instead, we insert coercions at their call sites.

3.6.3 Fragile classes

The type system uses nominal subtyping, as described in Section 3.5.2. For testing

if a class is a subclass of another one, we use the tools provided by the Smalltalk

environment. However, there is a time where using those tools can be detrimental,

such as when the structure of the class is changing. For example, when changing

the structure of the class Point, the environment in that moment can either answer

that ColorPoint is or is not one of its subclasses.

47

3.6 Implementation

The problem is that when changing the class structure, a typecheck is required

to be performed on all the methods of the class and its subclasses. This is needed

to verify that when an instance variable is removed, it is unused in the class or

subclasses.

The above is not the only part where classes are fragile. Interrupting the process

of modification of a class can have far-reaching consequences. For example, if the

typechecker throws a type error, ColorPoint can become a subclass of a pseudo-Point

that appears exactly like the class Point, has the same name, but nonetheless is

a different class. This effectively makes ColorPoint not a subtype of Point. The

developer has no easy way to be aware of this without the knowledge that the class

is corrupted.

Both of these problems can be solved with two actions: separating the type-

checker from the compilation process when a class is being modified, and recording

the structure of the actual class hierarchy. This allows simulation of the change on

the copy of the structure, while performing the typecheck on that copy without

changing the current environment. If the typecheck fails, the actual hierarchy

remains unchanged.

3.6.4 Performance

The current implementation of Gradualtalk is focused on expressiveness and cor-

rectness. However, that does not mean that performance is not important. If the

use a typed library incurs a high performance overhead, this is likely to discourage

the adoption of static types.

Sadly, this is the case for the first implementation of Gradualtalk. Initially, we

believed that this was because of a lack of polish in the implementation. However,

we discovered that some of the performance issues where caused inherently by how

Gradual Typing worked, at least using Siek-Taha design as direct implementation.

Using this insight as an incentive for our research, we proposed two novel ideas

which are discussed in the following chapters.

48

3.7 Related Work

3.7 Related Work

Before diving into our contributions in the next chapters, we now review related

practical partial type systems available today. At the end of this section, we mention

other interesting type systems.

Strongtalk Strongtalk [10] is a well-known statically typed Smalltalk dialect that

incorporates several typing features. The Strongtalk type system is optional: it does

not guarantee that the assumptions made in statically typed code are respected

at runtime. There are two major versions of Strongtalk. The first one relies on

a structural type system using brands (named structural protocols). The second

version abandons brands and uses declared relations to determine subtyping. The

main reason reported by Bracha for this change is the fact that structural types do

not appropriately express the intent of the programmer, and are difficult to read,

especially when debugging [8]. Strongtalk supports parametric polymorphism and

self types. In contrast to Gradualtalk, “Strongtalk is not designed to type Smalltalk

code without modifications” [10]. Pegon [53] is a recent optional type system for

Smalltalk, inspired by Strongtalk. It includes all typing features of Strongtalk

(including the conflation of Instance and Self in Class and related classes that we

discussed in Section 3.3.3), and adds type inference.

The objective of Gradualtalk is to be a gradually-typed language, while both

Strongtalk and Pegon are optionally-typed: they do not enforce any guarantees at

runtime about the types of values [9]. However, as we discussed earlier, Gradualtalk

can also be used like an optional type system, by deactivating the runtime casts

insertion and checking. In addition, there are subtle differences: in Gradualtalk

nominal subtyping is equated to inheritance (Section 3.5.2), the semantics of self

types is refined (Section 3.3.3), and protocols are implicit (Section 3.4.3).

Typed Racket Typed Racket [60] is an extension to Racket in order to support

statically typed Racket programs. Typed Racket provides smooth and sound

interoperability with untyped Racket [57], by using contracts at the boundaries.

Gradualtalk was directly inspired by Typed Racket in the sense that the type

system should be flexible enough to support existing programmer idioms. Typed

49

3.7 Related Work

Racket includes several interesting features, such as union types, occurrence typing,

first-class polymorphic functions and local type inference. It is designed for the

functional core of the Racket language.

The most notable difference between Gradualtalk and Typed Racket is the

granularity of typed and untyped code boundaries. In Typed Racket, the boundary

is at the module level: a whole module is either entirely typed or not at all.

Expression-level boundaries are more costly but more flexible, in that it is possible

to statically type portions of a class while leaving a few difficult expressions typed

dynamically. Accordingly to this design philosophy, Typed Racket does not support

explicit type casts. The limitations of the per-module approach have been reported

by Figueroa et al. in an experiment to implement a monadic aspect weaver in Typed

Racket; they had to resort to the top type Any everywhere in their system [21].

DRuby DRuby [24] is an optional static type system for Ruby, which uses type

inference. Programmers can annotate their code, such as methods, and DRuby will

checks these annotations using runtime contracts on suspicious code, i.e. DRuby

infers type to discard well-typed code. DRuby includes union and intersection

types, structural types (called object types), parametric polymorphism and self

types, among others. Furthermore, DRuby introduces a novel dynamic analysis to

infer types in highly dynamic language constructors, i.e. the use of eval, send and

missing method functions.

Although the type systems of Gradualtalk and DRuby are very similar, despite

the language differences, there are some notable differences. Gradualtalk does not

infer types (yet). Dynamic language operators, such as send (perform in Smalltalk),

are dealt with using Dyn in Gradualtalk. While Ruby has proper classes as objects

and class methods, DRuby does not support the notions of Self instance and Self

class. This means that constructor (class) methods cannot be precisely typed, nor

can the uses of class. Finally, DRuby is not a partial type system, so not all Ruby

programs are valid DRuby programs.

Other type systems The previous type systems are just a few examples of

types systems for dynamically-typed languages. There are several other proposals

for Smalltalk [33, 34, 27, 29, 42], although Strongtalk is the most representative

50

3.8 Conclusion

and complete. Some [33, 34, 27] are prior to Strongtalk, and they do not include

all necessary features to type Smalltalk programs, as Strongtalk does. Haldiman et

al. [29] present a practical approach to pluggable types implemented in Smalltalk

where only code that contains partial type annotations are type checked using type

inference and traditional static type checking. Finally, Pluquet et al. [42], present

RoelTyper, a type reconstruction tool for Smalltalk that infer possible nominal

types for variables (instance, temporary and argument variables, as well as return

method) with an accuracy of 75%.

In addition, type systems have been developed for other dynamic languages, for

instance for Python, JavaScript and ActionScript. RPython (Restricted Python) [5]

is a statically-typed subset of Python, in which some dynamic features (e.g.dynamic

modifications of classes and methods) have been removed. JS0 [6] is a statically-

typed version of JavaScript with inference, where both dynamic addition of fields

and method updating are supported. ActionScript is one of the first languages

used in the industry to embrace gradual typing, and efforts have been made to

optimize it using local type inference [44]. Gradualtalk could certainly benefit from

this technique.

3.8 Conclusion

Providing a practical gradual type system that supports programmer idioms in a

highly dynamic language such as Smalltalk is a complex task. This requires meeting

two goals: a type system design that properly supports common programmer idioms

without unduly increasing its complexity and dealing with implementation tradeoffs

for such a type system in a live environment.

In this chapter, we have introduced Gradualtalk, a practical gradually-typed

Smalltalk that successfully meets the above challenges. The type system of

Gradualtalk combines several state-of-the-art features, such as gradual typing,

unified nominal and structural subtyping, self type constructors for metaclasses,

and blame tracking. Gradualtalk is designed to ease the migration of existing,

untyped Smalltalk to typed Gradualtalk code.

In the following chapters, using Gradualtalk, we partially address two issues

raised from both the implementation and practical experiences: performance and

51

3.8 Conclusion

reliability of static code. In Chapter 4, we explore different ways to insert casts

in method invocations and show how it could improve performance. In Chapter 5,

we define qualifiers that improve the reliability of static code, as well as indirectly

improving performance.

52

Chapter 4

Cast Insertion Strategies for

Gradually-Typed Objects

In the previous chapter, we presented the design and implementation of Gradualtalk,

a gradually typed Smalltalk. In the process, two issues were highlighted: performance

and reliability. In this chapter 1 we present different cast insertion strategies and

how they can affect performance.

4.1 Introduction

As Section 2.2.4 described, the semantics of a gradually-typed language is typically

given by translation to an intermediate language with casts, i.e. , runtime type

checks that control the boundaries between typed and untyped code. A major

challenge in the adoption of gradually-typed languages is the cost of these casts,

especially in a higher-order setting. Theoretical approaches have been developed to

tackle the space dimension [30, 52], but execution time is also an issue. This has

led certain languages to favor a coarse-grained integration of typed and untyped

code [59] or to consider a weaker form of integration that avoids costly casts [63].

Other approaches include the work of Rastogi et al. [44], using local type inference

to significantly reduce the number of casts that are required.

1This chapter is based on the publication: “Cast Insertion Strategies for Gradually-Typed
Objects” [4].

53

4.2 Experimental Setting: Microbenchmarks

While developing Gradualtalk1, a gradually-typed Smalltalk, our first concern

was the design of the gradual type system, with its various features (Chapter 3).

However, after addressing that concern, our focus shifted to the efficiency of casts,

especially those related to method invocations. This is because method invocations

are naturally very frequent in object-oriented programs, especially in pure object-

oriented languages like Smalltalk. Casts incur a runtime cost, and we are interested

in their efficiency so as to achieve an acceptable level of performance without

losing the features of gradual typing. In the foundational paper on gradually-typed

objects [51], Siek and Taha describe the semantics of cast insertion using a caller-

side strategy—which we term the call strategy. Due to implementation issues (which

have since been resolved), our very first implementation of cast insertion, before

implementing the Siek-Taha approach, was however based on a different approach,

which we name the execution strategy. Here, casts are inserted on the callee side, at

the beginning of each typed method. Studying the performance of both approaches

revealed that they have complementary strengths, and that a third approach, which

we call the hybrid strategy, could combine the best of both approaches.

This chapter reports on the study of these three cast insertion strategies

in Gradualtalk. We present the experimental setting for microbenchmarks in

Section 4.2. We then describe all three strategies in turn in Sections 4.3, 4.4, and

4.5. In each of these sections, we informally describe the approach and report on

microbenchmarks. We then report on macrobenchmarks in Section 4.6. We discuss

memory consumption and other considerations in Section 4.7 and Section 4.8

concludes.

4.2 Experimental Setting: Microbenchmarks

We evaluate cast insertion strategies by implementing them for Gradualtalk, pre-

sented in Chapter 3. In Gradualtalk code, omitting type annotations is equal to

specifying the unknown type, which is denoted as Dyn. Gradualtalk is currently

implemented in Pharo Smalltalk version 2.0. Note that Pharo uses the Cog VM,

which features a JIT compiler.

1http://www.pleiad.cl/gradualtalk

54

http://www.pleiad.cl/gradualtalk

4.2 Experimental Setting: Microbenchmarks

MyCollection � (Self) addElement: (Integer)x
collection addLast: x.

MyCollection � (Integer) at: (Integer)index
ˆcollection at: index.

MyCollection class � (Self instance) new: (Integer)size
ˆsuper new
collection: (OrderedCollection new: size);
yourself.

Listing 4.1: MyCollection class.

Because there is no standard benchmark suite for Smalltalk, we designed both

micro- and macrobenchmarks. We describe microbenchmarks in this section; they

will be used in the explanation of the different strategies to give a first assessment

of their performance. The macrobenchmarks are described in Section 4.6 to provide

an evaluation of the performance of cast insertion strategies on larger-scale, real-

world scenarios. To favor reproducibility, the Smalltalk image used to perform

all our experiments can be downloaded from: http://pleiad.cl/gradualtalk/

strategies

Microbenchmarks

We designed the microbenchmark setting to study the specific cost of each cast

insertion strategy in both their best and worst cases.

To do so, we start with a typed collection, MyCollection, shown in Listing 4.1.

Note that the addElement: method returns Self, following the convention for side-

effecting methods in Smalltalk. The class method new: has Self instance as the

return type, specifying that it returns an instance of itself.

We then use two versions of a client: untyped and typed. The client repeatedly

inserts elements and then looks for them. The idea behind the microbenchmark

is that it simulates two common actions done in programs: inserting elements

and a search in an unordered collection. We used integers as elements because

they are one of the most common data type used. Technically, the collection has

sorted elements, but the search does not use that knowledge. We did not use

random integers because we wanted to control where the search stopped and we

consider that for our benchmarks, there would not be a difference between using

55

http://pleiad.cl/gradualtalk/strategies
http://pleiad.cl/gradualtalk/strategies

4.2 Experimental Setting: Microbenchmarks

Client � untypedClient: stop withSize: size
|col|
col := MyCollection new: size.

1 to: size do: [:i|
col addElement: i.

].
1 to: size do: [:i|
((col at: i) > stop) ifTrue: [ˆi]

].
ˆ--1

Listing 4.2: Untyped client.

Client � (Integer) typedClient: (Integer)stop withSize: (Integer)size
|(MyCollection)col|
col := MyCollection new: size.

1 to: size do: [:(Integer)i|
col addElement: i.

].
1 to: size do: [:(Integer)i|
((col at: i) > stop) ifTrue: [ˆi]

].
ˆ--1

Listing 4.3: Typed client.

different integer collections of the same size. The code for both versions is shown

in Listing 4.2 and Listing 4.3, respectively. The goal of the microbenchmarks is

to measure the cost of each strategy for the calls that perform element insertion

(#addElement:) and the calls that perform lookup of an element (#at:). Beyond

these calls, the code run in each version is the same; in particular, methods #to:do:,

#ifTrue: and #> are primitives, i.e. they are not subject to cast insertion.

We execute the microbenchmarks for different sizes between 1,000,000 and

10,000,000 elements. For each size, the experiment is repeated thirty times and

the average time is calculated. The maximum measured relative error in the

microbenchmarks is ±1.23%, with a confidence level of 95%. In each case, the value

of stop is half that in size. The benchmarks were run on a machine with an Intel

Core i7 3.20 GHz CPU, 4 GB RAM and 250 GB SSD disk, running Ubuntu 12.10.

56

4.3 Call strategy

4.3 Call strategy

The call strategy is the direct implementation of the specification of Siek and

Taha [51].

Before explaining the informal description of the call strategy, we are going

to briefly describe the concept of consistent subtyping, previously explained in

Section 2.2.2. Consistency, denoted as ∼, is a relation that accounts for the presence

of Dyn: Dyn is consistent with any other type and any type is consistent with itself.

The consistency relation is not transitive in order to avoid collapsing the type

relation [50]. A type σ is a consistent subtype of τ , noted σ . τ , iff either σ <: σ′

and σ′ ∼ τ for some σ′, or σ ∼ σ′′ and σ′′ <: τ for some σ′′.

4.3.1 Description

Essentially, the call strategy inserts casts at call sites whenever needed. A typed

callee can therefore rely upon the fact that all callers have been checked previously,

and hence assume that its arguments are of the proper types.

The call strategy has two different scenarios for inserting casts, depending on

whether the receiver type in the call site is known at compile time. For call sites

where the receiver type is known at compile time (i.e. non-Dyn), the compiler

compares the type of the passed arguments in the invocation with the type of the

parameters in the method declaration. If the argument type is not a subtype of the

parameter type but it is a consistent subtype, then a cast to the parameter type is

inserted.

For call sites where the receiver type is unknown at compile time (i.e. Dyn), the

compiler inserts code that, at runtime, looks up the method type information and

casts each argument to the expected parameter type. This lookup must take into

account that methods can be overridden, and that the required type information is

obtained from the appropriate overriding method. This lookup procedure is similar

to the lookup used to retrieve a method when it is invoked. That means that when

carrying out method lookup, the runtime could also retrieve the type information

of that method for the usage of the cast strategy. However, this would require

modifying the VM.

57

4.3 Call strategy

For example, in the case of typedClient, because col is statically known to be

of type MyCollection and the argument i of type Integer, there is no cast inserted

when adding an element to the collection:

...
col addElement: i.
...

Similarly, there is no cast needed when accessing the collection with at:.

In the case of untypedClient, however, there is no static type information available,

therefore the call strategy inserts code that will, at runtime, retrieve the actual type

of the receiver, and assuming it is statically typed (as MyCollection is), perform

runtime checks on the arguments to ensure they match.

The code below shows the transformation of the call strategy in the untypedClient

when addElement: is invoked (optimized for the single parameter case):

...
rcv := col.
typeParam := GTRuntime getTypeParamOf: #addElement:

in: rcv.
rcv addElement: (< typeParam>i).

...

Note that retrieving the method type information dynamically is costly; our current

implementation maintains a cache per class that associates each selector with its

argument types. As a matter of fact, if gradual typing were integrated at the virtual

machine level, we could extend the existing infrastructure of polymorphic inline

caches to deal with the type information, and hence further reduce the associated

cost.1

4.3.2 Microbenchmarks

Figure 4.1 shows the results of the microbenchmark for the call strategy. Detailed

numbers are in Table 4.1. We can observe that with a typed client, the call strategy

exhibits almost identical performance as base Smalltalk, e.g., 0.62 seconds versus

0.63 seconds for 10M elements. With the untyped code, the call strategy however

takes up to 90 times the time of base Smalltalk: 57.49 seconds versus 0.63 seconds

for 10M elements. This result reflects the fact that with a typed client, the call

1For simplicity, we focus on argument types only; in the three strategies, casts on return types
are performed in the callee, following [51].

58

4.3 Call strategy

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Untyped

Typed

Baseline

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 4.1: Running times of the call strategy for untyped and typed code, as well
as of baseline Smalltalk.

Call Call Base
Size (untyped) (typed) ST

(1M) (sec) (sec) (sec)

1 1.666 0.126 0.063
2 4.256 0.180 0.127
3 7.740 0.235 0.190
4 12.129 0.289 0.252
5 17.425 0.344 0.315
6 23.611 0.397 0.378
7 30.693 0.452 0.441
8 38.656 0.504 0.504
9 47.592 0.565 0.566

10 57.464 0.620 0.629

Table 4.1: Running times of the call strategy microbenchmark.

strategy does not insert any cast, making the resulting bytecode exactly the same

as that of base Smalltalk. Conversely, with an untyped client, the call strategy

inserts costly casts. This cost is slightly non linear, because of the increased usage

of the garbage collector to recollect the objects used in the cast. The results show

that even with the cache, the incurred overhead is substantial.

59

4.4 Execution strategy

4.4 Execution strategy

As we have seen, the call strategy performs very well when a typed client calls

a typed library, but it does not perform well when the client is untyped and the

library is typed. This is unfortunate, because the scenario of a typed library that is

used from untyped code is a predictably frequent scenario in Gradualtalk. Indeed,

only a handful of libraries have been typed so far [2]. If using a typed library incurs

a high performance overhead, this is likely to discourage the adoption of static

types.

As it turns out, when first implementing Gradualtalk, a limitation of the compiler

(which was subsequently resolved) prevented us from adopting the call strategy for

cast insertion at first. To address this, we developed another approach, called the

execution strategy, which turns out to perform well in the case of dynamically-typed

receivers.

4.4.1 Description

The idea of the execution strategy is to insert casts on arguments of a statically-

typed method directly at the beginning of the method. The useful characteristic of

this strategy is that, in the case of a dynamically-typed receiver, there is no need

to retrieve its type information at runtime.

In the execution strategy, the compiler inserts one cast per parameter at the

start of the method. Each cast checks that the type of the value bound to the

parameter corresponds with the declared type in the method signature.

The difference between the execution strategy and the call strategy is where

the casts for the arguments are inserted. The call strategy inserts those calls just

before the invocation of the method, while the execution strategy inserts the casts

just after the method has been invoked.

For example, at the start of the method MyCollection >> #addElement:, the

execution strategy inserts casts to the parameters of the method:

MyCollection � addElement: x
(<Integer>) x.
collection addLast: x.

60

4.4 Execution strategy

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Untyped

Typed

Baseline

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 4.2: Running times of the execution strategy for untyped and typed code,
as well as of baseline Smalltalk.

At call sites, regardless of whether the receiver is statically or dynamically

typed, the execution strategy does not perform any transformation:

...
col addElement: i.
...

Note that this strategy is only meaningful in safe languages like Smalltalk, in

which the runtime type of an object can be retrieved directly, e.g. through its

class pointer. In the core semantics of gradually-typed objects of Siek and Taha,

two-position casts play the role of tagging values with their type, so that injecting a

value into Dyn does not lose its original type. This being said, all existing dynamic

object-oriented languages that we are aware of are safe, and therefore the execution

strategy is a meaningful option in all these languages.

Finally, observe that if casts are not implemented as primitives of the VM,

then care must be taken to not create an infinite loop when the casting method

uses methods of the system. This infinite loop can be produced if the casting

procedure calls a method with at least one argument. In that case, because of

how the execution strategy works, a cast would be done again in that argument

when the method is invoked, creating the infinite loop. To avoid this, we have

chosen to disable casts while a cast method is being executed, as it is the most

straightforward approach.

61

4.5 Hybrid strategy

Base Exec Hybrid
Size Call Exec Hybrid ST vs Call vs Exec

(1M) (sec) (sec) (sec) (sec) (%) (%)

1 1.666 0.671 0.626 0.063 -59.75 -6.71
2 4.256 1.609 1.529 0.127 -62.19 -4.97
3 7.740 2.899 2.785 0.190 -62.55 -3.93
4 12.129 4.504 4.357 0.252 -62.87 -3.26
5 17.425 6.433 6.252 0.315 -63.08 -2.82
6 23.611 8.705 8.473 0.378 -63.13 -2.67
7 30.693 11.158 11.010 0.441 -63.65 -1.32
8 38.656 14.033 13.870 0.504 -63.70 -1.16
9 47.592 17.222 17.054 0.566 -63.81 -0.98

10 57.464 20.748 20.528 0.629 -63.89 -1.06

Table 4.2: Running times of the untyped client microbenchmark.

4.4.2 Microbenchmarks

Figure 4.2 shows the results of the microbenchmark for the execution strategy.

Detailed numbers for all microbenchmarks are in Tables 4.2 and 4.3. We observe

that the execution strategy is unaffected if the client is typed or not: for 10M

elements it takes 20.75 seconds with the untyped client, and 20.73 seconds with

the typed client. This is because argument casts are inserted at the start of the

methods of MyCollection, and are therefore always executed.

As a result, the call strategy is much faster than the execution strategy in

the case of the typed client (around 93%). Recall that with the typed client, the

call strategy does not insert any cast at all. Conversely, the execution strategy is

considerably faster than the call strategy when using an untyped client (around

63%). While both approaches incur the cost of argument casts, the call strategy

is slower because it first needs to retrieve the method type information (from the

cache) to determine the actual cast to perform. In the execution strategy, the

expected argument type is statically known, so only the proper cast is performed.

4.5 Hybrid strategy

The comparison of the call and execution strategies shows that they have com-

plementary benefits. The call strategy performs well with typed clients, and the

62

4.5 Hybrid strategy

Base Call Hybrid
Size Call Exec Hybrid ST vs Exec vs Call

(1M) (sec) (sec) (sec) (sec) (%) (%)

1 0.126 0.663 0.125 0.063 -80.95 -0.79
2 0.180 1.606 0.180 0.127 -88.81 -0.11
3 0.235 2.898 0.234 0.190 -91.89 -0.34
4 0.289 4.500 0.292 0.252 -93.59 1.18
5 0.344 6.430 0.346 0.315 -94.65 0.70
6 0.397 8.667 0.402 0.378 -95.42 1.31
7 0.452 11.146 0.455 0.441 -95.95 0.80
8 0.504 14.018 0.514 0.504 -96.40 1.94
9 0.565 17.212 0.564 0.566 -96.72 -0.11

10 0.620 20.725 0.620 0.629 -97.01 -0.13

Table 4.3: Running times of the typed client microbenchmark.

execution strategy performs well with untyped clients. We now present a novel

strategy that combines the best of both strategies.

4.5.1 Description

The idea of the hybrid strategy is to trade space for speed. This is done by

duplicating each method: one version is the original method that does not cast its

arguments—called the unguarded method; and the other method starts by casting

its arguments, as in the execution strategy—called the guarded method. Then, as

in the call strategy, it has two different scenarios for inserting casts, depending

on whether the receiver type in the call site is known at compile time or not.

For statically-typed receivers, the compiler modifies the call site to invoke the

unguarded method. If the argument type is not a subtype of the parameter type

of the method declaration, the compiler inserts casts to the argument types. For

dynamically-typed receivers, the compiler leaves the call site intact, as it will call

the guarded method. If casts are also not implemented as primitives, then the same

precaution with respect to the infinite loops made in the execution strategy should

be taken in the hybrid strategy.

For instance, the addElement: method of MyCollection is replaced with the two

methods:

MyCollection � addElement: x ”guarded”

63

4.5 Hybrid strategy

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Untyped

Typed

Baseline

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 4.3: Running times of the hybrid strategy for untyped and typed code, as
well as of baseline Smalltalk.

(<Integer>)x.
collection addLast: x.

MyCollection � addElement: x ”unguarded”
collection addLast: x.

When sending a message, if the type of the receiver is known, the code is

modified to directly invoke the unguarded method:

...
col addElement: i.
...

Otherwise, no transformation occurs, and hence the guarded method is called:

...
col addElement: i.
...

4.5.2 Microbenchmarks

Figure 4.3 shows the results of the microbenchmark for the hybrid strategy. We can

observe that the typed client runs faster than the untyped one: for 10M elements,

it takes 20.53 seconds with the untyped client, and 0.62 seconds with the typed

client. The difference reflects the code of the casts that are done repeatedly in the

case of the untyped client.

We now compare the three strategies first on the untyped client and then

on the typed client. In Figure 4.4 we show the execution times of the three cast

64

4.5 Hybrid strategy

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Execution

Call

Hybrid

Base ST

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 4.4: Running times of different cast strategies on the microbenchmark using
the untyped client.

insertion strategies for the microbenchmark using the untyped client. The figure

shows that for untyped code the call strategy is by far the slowest strategy, taking

57.46 seconds for 10M elements. The execution and hybrid strategies have what

amounts to the same level of performance: for 10M elements 20.75 seconds and

20.53 seconds, respectively. These however still take up to 33 times longer than

that of the time of base Smalltalk, which takes 0.63 seconds for 10M elements. The

reason for this slowdown is that each strategy needs to perform some runtime casts,

while the standard Smalltalk does not.

In Figure 4.5 we show the execution times of the three cast insertion strategies

for the microbenchmark using the typed client. As can be expected, the execution

strategy is the slowest, taking 20.73 seconds for 10M elements. The call and hybrid

strategies have the same performance, and are nominally as fast as base Smalltalk

(0.63 seconds for base Smalltalk and 0.62 seconds for both the hybrid and call

strategy). This remarkable similarity is because none of these strategies need to do

any cast. The execution strategy does perform such casts, which causes it to have

a lower performance.

To conclude, the microbenchmarks confirm that the hybrid strategy performs

as good as its best competitor in all cases.

65

4.6 Macrobenchmarks

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Execution

Call

Hybrid

Base ST

Size (per 100,000 elements)

T
im

e
 (

se
c)

Figure 4.5: Running times of different cast strategies on the microbenchmark using
the typed client.

4.6 Macrobenchmarks

In order to get an indication of whether the microbenchmark results carry over

to larger-scale and real-world scenarios, we designed and performed some initial

macrobenchmarks.

We have seen in the microbenchmarks that the call strategy is two orders of

magnitude slower with untyped code. Considering that Smalltalk code is mostly

untyped, the call strategy will be clearly outperformed in orders of magnitude by

the execution and hybrid strategies on macrobenchmarks. Therefore, in this section,

we only compare the performance of the execution and hybrid strategies.

4.6.1 Experimental Setup

We start with two scenarios that use untyped libraries:

� GZip: Compressing a 32MB XML file (adapted from a game project) to a

gzip file. This is a writing I/O intensive operation.

� SAX: Parsing the same XML file with a SAX parser. This is a reading I/O

intensive operation.

In order to measure how both strategies perform when type annotations are

added, we developed partially-typed variants of these libraries. GZip-T adds some

annotations to the GZip library. And for SAX, we developed two partially-typed

66

4.6 Macrobenchmarks

GZip-T SAX-T1 SAX-T2

typed classes 1 2 3
methods 23 62 116

fully typed 2 31 51
untyped 21 29 69
partially typed 0 2 3

Table 4.4: Characterization of the partially-typed libraries.

versions, SAX-T1 with few type annotations, and SAX-T2 with more annotations.

Note that even though the code in the image has no type annotations, some types

are implicitly deduced: self and literal values.

To characterize the extent to which each library is typed, we classify methods in

three categories: typed methods, partially-typed methods and untyped methods. A

fully-typed method specifies a static type for its return value and all its arguments.

An untyped method leaves all return and argument types unspecified. A method

that is neither typed nor untyped as we has defined is classified as partially typed

(e.g. A method that specifies a static type for all of its arguments but leaves its

return type unspecified). Table 4.4 shows the numbers of elements in each category,

for the different versions of the GZip and SAX libraries.

More precisely, for GZip we profiled the execution of the benchmark and typed

the two methods whose interaction was causing most overhead: methods nextPutAll:

and next:putAll:startingAt: of the DeflateStream class. For SAX-T1, we typed the

interface between the driver SAXDriver and the handler SAXHandler. In SAX-T2,

we also typed the interface between the driver and the tokenizer XMLTokenizer. We

decided to type the interface between those classes because they are part of the

core of a SAX Parser. Because of our expertise with this kind of parser, it was

relatively easy to type those methods.

Every macrobenchmark is repeated thirty times and the average time is cal-

culated. The benchmarks were run on a machine with an Intel Core i7 3.20 GHz

CPU, 4 GB RAM and 250 GB SSD disk, running Ubuntu 12.10.

67

4.6 Macrobenchmarks

Base ST Exec Hybrid Hybrid vs Exec
(sec) (sec) (sec) (%)

GZip 1.774 1.776 1.804 +1.58
GZip-T – 1.804 1.790 -0.80
SAX 7.681 9.003 9.075 +0.80
SAX-T1 – 14.468 13.184 -8.87
SAX-T2 – 35.667 22.528 -36.84

Table 4.5: Running times of the macrobenchmarks. Max relative error: ±0.75%

4.6.2 Results

Table 4.5 shows the results of the macrobenchmarks. The maximum measured

relative error in the macrobenchmarks is ±0.75%, with a confidence level of 95%.

For the GZip benchmark, we see that both strategies perform similarly in all

scenarios. With the untyped library, the hybrid strategy is slightly slower (2.98%),

and it is marginally faster with a version of the library with few type annotations

(0.80%). These factors are however negligible, and hence we did not pursue more

advanced typing for this scenario. The reason why GZip is fairly stable irrespective

of typing is that much of the time is spent in I/O and other primitives, which are

out of reach of the type system.

In the case of the untyped SAX benchmark, both approaches also exhibit the

same performance. Interestingly, in this case, as more type annotations are added

to the SAX library, the hybrid strategy becomes noticeably more competitive: it is

nearly 9% faster with SAX-T1, and almost 37% faster with SAX-T2.

Overall, these results are consistent with the microbenchmarks: available type

information allows the hybrid strategy to use unguarded methods, which are faster

than the cast-first methods used by the execution strategy.

Finally, we see that as type annotations are added to a library, the performance

tends to degrade, irrespective of the chosen cast insertion strategy. While this

phenomenon is not perceptible in the case of GZip, it is substantial for SAX. The

reason of the degradation is that, by adding type information, we create boundaries

with dynamically-typed sections of the program. At these boundaries, casts have

to be inserted to ensure that the static type assumptions are not violated when

this code is called from the dynamically typed world. Since casts are performed

eagerly, the entailed verification is costly compared to the default behavior of

68

4.7 Comparing Strategies beyond Performance

Smalltalk, which does not perform eager verification and only raises an exception

when a method is not found. Reflecting on this result and the results of the

microbenchmarks for the hybrid strategy (discussed in Section 4.5.2) suggests that

predicting the performance impact of adding static type information is not trivial.

Using only the results of the microbenchmark, we could assume that typing more

code in a language with a gradual type system would always improve performance.

However, this is generally not so. It remains to be studied whether there is a

tipping point beyond which adding more type annotations enables better absolute

performance, or at least does not degrade it. Unfortunately, because of the lack

of gradual typed programs or programmers practices with gradual typing, it is

not possible to validate the usefulness of such a study. If we stick to a relative

comparison between the execution and hybrid strategies, the results confirm that

hybrid is progressively more advantageous as more type annotations are added.

4.7 Comparing Strategies beyond Performance

Until now we have focused on the performance of cast insertion strategies. In

this section we discuss the impact of these strategies on memory consumption,

modularity, and the interaction with inheritance.

4.7.1 Memory

As stated in Section 4.5.1, the hybrid strategy trades memory for speed: for each

method in the source program, it generates both an unguarded version of the

method, whose body is the same as the original method, and a guarded version,

which additionally performs argument casts. Table 4.6 shows the memory usage of

the Smalltalk image—which includes 7,314 classes and 67,066 methods—compiled

with all three strategies, compared to the memory usage of the standard image.

Note that we also report on an alternative implementation of the hybrid strategy

(Hybrid-fwd), discussed below.

The results confirm that the hybrid strategy uses substantially more memory

than the other strategies. This is unsurprising: the high memory overhead comes

from the duplication of all methods. The overhead of the call strategy, on the

69

4.7 Comparing Strategies beyond Performance

Strategy Size (MB) Overhead vs. Base ST

Call 6.08 +56.8%
Execution 4.68 +21.3%
Hybrid 6.81 +75.9%
Hybrid-fwd 5.93 +53.9%

Base ST 3.88

Table 4.6: Memory footprint of Smalltalk images compiled using the different
strategies.

other hand, is entirely due to call site transformations (casting arguments and type

information retrieval at runtime), which turn out to be quite space consuming.

Different implementations of the hybrid strategy are possible, each with a

different tradeoff between performance and memory consumption. First, instead

of duplicating all methods, it is possible to make each guarded method call the

corresponding unguarded method. This approach, called Hybrid-fwd in Table 4.6,

avoids duplicating method bodies and clearly reduces the overhead down to +53.9%,

which is slightly better than the memory overhead of the call strategy. The relatively

high memory overhead of this particular implementation of the hybrid strategy

compared to the execution strategy (around 30% more when compared to the

baseline) can be explained by the fact that many methods are small. For a small

method, introducing an extra forwarder method (which is also small) is as consuming

as duplicating it.

Of course, the Hybrid-fwd approach saves some space at the expense of an

extra method call in each guarded method. Because Smalltalk does not support

statically-bound private methods, the added calls turn out to have a noticeable

overhead on the SAX macrobenchmarks (Table 4.7). In any case, the results show

that it is a viable alternative if memory consumption becomes an issue, for example,

when programming for an embedded system. We conjecture that this overhead

would be negligible in a language like Java where private method calls can be

aggressively optimized.

Other implementations can also be considered. For example, an implementa-

tion could use only one method and pass an additional boolean parameter that

determines whether casts should be performed or not. This would be fairly efficient

space-wise, but comes at the cost of passing an additional argument and adding a

70

4.7 Comparing Strategies beyond Performance

Hybrid Hybrid-fwd H-fwd vs H
(sec) (sec) (%)

GZip 1.804 1.839 +1.94
GZip-T 1.790 1.824 +1.90
SAX 9.075 10.980 +20.99
SAX-T1 13.184 14.174 +7.51
SAX-T2 22.528 25.423 +12.85

Table 4.7: Macrobenchmark running times of the duplication-based vs. forward-
based implementations of the hybrid strategy.

branch in the code. The optimal version would be to allow a single method to have

two entry points: one entry at the start of the method where the arguments are cast,

and another entry just after these casts. The translation would then insert calls

to the second entry point when casts can be safely skipped. This would however

require support at the level of the virtual machine. We have not fully explored

these different implementations so far.

4.7.2 Modularity

Suppose that we modify MyCollection (Listing 4.1) so that the type of elements

stored changes from Integer to Date, however we do not recompile Client. In the

case of the untyped client, all of the strategies would detect the mismatch and

their casts would fail. However, in the case of the typed client, only the casts in

the execution strategy would fail.

The reason for this is that the call strategy relies on the possibility to analyze all

call sites of a given method in order to introduce the casts of arguments, if needed.

If Client is not recompiled, then its implementation still assumes, wrongly, that

the argument to addElement: has to be of type Integer. Conversely, the execution

strategy casts arguments in the callee, and therefore does not need to re-check

callers after such a change. Gradualtalk addresses the need for analyzing all the

callers of a method when using the call strategy through a dependency tracking

mechanism (Section 3.6). It triggers recompilation of all call sites of a given method

when needed, causing required casts to be inserted accordingly.

To be able to introduce efficient calls to unguarded methods, the hybrid strategy

also needs to analyze all callers of a given method and may need to introduce

71

4.7 Comparing Strategies beyond Performance

casts in the callers. This being said, if the choice is to favor modular recompilation

instead of performance, it would be possible to configure the hybrid strategy so

that certain modules are not transformed, therefore calling guarded methods.

Note that the dependency between callers and callees that manifests itself when

using typed clients with the call or hybrid strategies is the same as the dependencies

between typed components in any typed language1. Put succinctly: when shared

assumptions are changed, both parties need to be rechecked. In contrast, the

execution strategy is inherently modular (though less performant) in such scenarios,

performing such rechecking dynamically.

4.7.3 Interaction with inheritance

The calculus of gradually-typed objects of Siek and Taha does not include any

form of inheritance, and therefore issues related to overriding are not considered. In

their work on gradual typing for first-class classes, Takikawa et al. observe that a

standard subtyping approach “would fail because a subclass may override a method

with a different type” [55]. Consequently, they use row polymorphism instead of

standard subtype polymorphism.

More precisely, if overriding a method is valid whenever the overriding method

is a consistent subtype of the overriden method, the call cast insertion strategy is

unsound. Consider the following example:

A � m: x ”superclass, untyped”

B � m: (Integer) x ”subclass overrides with typed argument”

and the following client:

|(A) a|
a = B new.
a m: 'hi'

The static type of a is A and the signature of m: in A does not specify any argument

type. Therefore the call strategy accepts the invocation of m: without inserting

any cast to Integer. Hence the use of the call strategy would result in an unsound

execution as the body of B.m executes with an argument of an invalid type.

1This is what Gilad Bracha calls the “anti-modularity” of types:
http://gbracha.blogspot.com/2011/06/types-are-anti-modular.html

72

http://gbracha.blogspot.com/2011/06/types-are-anti-modular.html

4.7 Comparing Strategies beyond Performance

A possibility to retain soundness is to simply restrict valid overridings to proper

subtyping, and not consistent subtyping. This however means that typed and

untyped hierarchies cannot be mixed: a typed method can never be overridden

by a untyped method, and vice versa. Remarkably, the execution strategy does

not suffer from this soundness issue at all. This is because casts are inserted in

the callees, the first thing B.m does is to cast its argument to Integer, which fails

as expected. Therefore it is possible to define valid overriding based on consistent

subtyping, but at the cost of sacrificing the efficiency benefits of the call strategy.

Again, the hybrid strategy provides the opportunity to achieve the best of

both worlds: retaining soundness while exploiting opportunities for optimizations.

To properly deal with the case above, the hybrid strategy needs to refrain from

using the unguarded method call in case the expected type of an argument is

Dyn. Nonetheless, it may still use the unguarded method when it is safe to do so.

Consider the following client:

|(B) b|
b = B new.
b m: 1

The invocation of m: can be performed efficiently without any cast, because the

static type of b specifies that the argument must be an Integer, which it is. In

order to deal with the dual case of overriding, i.e. , a typed method is overriden

by a dynamically-typed one, the guarded method must perform specific checks to

ensure that the dynamic method is used only in ways that are compatible with

the subtyping relation. More precisely, the arguments to the dynamic method

should be either supertypes or subtypes of the declared argument types in the

overriden method (supertypes are valid because of the contravariance in argument

types)1. Also, the value returned by the dynamic method should be a subtype of

the declared return type. Consider the following:

C � m: x ”subclass of B, untyped”

Then the untyped client code:

c = C new.
c m: 'hi'

1This corresponds to the valid assignment relationship ⇐⇒ in Dart [18, §15.4].

73

4.8 Conclusion

This invocation raises a cast error at runtime because C.m is used in a way that is

incompatible with any typed overriding of B.m: subtyping-wise, String is unrelated

to Integer. We leave the detailed, formal treatment of this approach for future work.

4.8 Conclusion

This chapter studies different cast insertion strategies for a gradually-typed lan-

guage with objects. Experiments are carried out in Gradualtalk, a gradually-typed

Smalltalk, and focus mainly on performance. Starting from the direct implementa-

tion of the semantics specified by Siek and Taha [51], which we refer to as the call

strategy, and present two alternative strategies: one that inserts casts at the callee

side, termed the execution strategy, and a hybrid strategy that combines ideas of

the call and execution strategies. The execution and hybrid strategies build upon

the fact that the language runtime is already safe, and therefore we can discharge

casts from their safety-bearing role as explained in [51].

Microbenchmarks exhibit the best and worst cases of the call and execution

strategy, and show that the hybrid strategy is effectively a best-of-both-worlds

approach, always exhibiting a performance similar to that of the fastest strategy. A

set of macrobenchmarks help us to further characterize the benefits of the hybrid

strategy, which manifest themselves more clearly as more type annotations as

added.

We also compare the three strategies on different qualities instead of only

execution time. We report on the extra memory cost of two different versions of the

hybrid strategy which we believe are reasonable in view of the associated benefits.

Considering modular compilation, the execution strategy is better, although the

hybrid strategy allows fine-tuning of the modularity/efficiency tradeoff. Finally,

we discuss the interaction of these strategies with inheritance: the call strategy is

unsound, the execution strategy is sound but sacrifices performance. We informally

describe a way to adapt the hybrid strategy to retain soundness and still exploit

static type information for optimization.

Overall, this suggests that the hybrid strategy is a promising approach to

implement gradual typing in an existing dynamic language with a safe runtime.

74

Chapter 5

Confined Gradual Typing

In the previous chapter, we presented three different cast insertion strategies and

demonstrated how they can affect performance. In this chapter1, we present Confined

Gradual Typing, an extension to Gradual typing that refines it with annotations

that allow programmers to explicitly prohibit certain boundary crossings. We

present the formal description, implementation and validation of Confined Gradual

Typing for two variants: Strict Confined Gradual Typing and Relaxed Confined

Gradual Typing.

5.1 Introduction

The semantics and implementation of a gradually-typed language typically proceed

by translation to an intermediate language with casts, i.e. runtime type checks that

control the boundaries between typed and untyped code. Casts are key to carrying

out the flexibility of gradual typing. However, these casts impact programs on

two fronts: reliability and efficiency. First, reliability is affected because casts may

fail at runtime. In particular, when higher-order values cross the typed/untyped

boundary, runtime checks may be delayed, and may eventually fail within the

context of typed code. Effectively, this means that the boundaries between typed

and untyped code are dynamic, and hence hard to reason about and predict,

1This chapter is based on the publication: ‘Confined Gradual Typing” [3].

75

5.1 Introduction

especially when integrating components from different parties. Second, efficiency

can be compromised if higher-order casts are executed repeatedly.

While the flexibility provided by gradual typing is certainly a strong asset,

reliability and efficiency are not to be taken lightly. The problem is that existing

gradually-typed languages allow any value to cross the typed/untyped boundaries.

As a result, the programmer has no direct control over which values may be

passed across boundaries, making it hard to predict the resulting behavior. For

instance, missing type annotations and an untyped third-party library can have

unexpected consequences. Of course, programming in a gradually-typed language

means embracing the possibility of runtime errors. But it is not necessary to give

up the possibility of ensuring that certain typed components never go into the wild,

or at least do so in a controlled manner.

To address this, we develop an extension of gradual typing that adds another

axis of control, so that programmers can explicitly adjust the tradeoff between

flexibility and predictability. Confined Gradual Typing (CGT) refines a gradual

type system with type qualifiers that restrict the flow of values between the typed

and untyped parts of a program. We develop two variants of CGT: i) a strict

variant that provides strong reliability and efficiency guarantees at the expense

of some rigidity; ii) a relaxed variant that defers some checking to runtime, but

still preserves interesting guarantees. We develop both the theory and practice of

Confined Gradual Typing, using Gradualtalk (Chapter 3) as a practical testbed.

This chapter is structured as follows: Section 5.2 illustrates the issues associated

with the implicitness of gradual typing, and informally describes Confined Gradual

Typing in its two variants. Sections 5.3 and 5.4 formalize Strict Confined Gradual

Typing and Relaxed Confined Gradual Typing respectively, establishing the key

properties of each approach. Section 5.5 briefly describes the implementation of

both variants in Gradualtalk. Section 5.6 reports on performance measurements of

CGT in Gradualtalk, highlighting the incurred cost of higher-order casts. Section 5.7

reviews related work, and Section 5.8 concludes.

All the proofs associated with the formalization are included in Appendix A.

The implementation and benchmark code are available online.1

1http://pleiad.cl/gradualtalk/cgt

76

5.2 Motivation

5.2 Motivation

In this section we present two concrete examples that motivate the need to control

the reliability and efficiency impact of gradual typing. We end this section by

informally introducing Confined Gradual Typing.

5.2.1 Reliability

We now describe an example where the flexibility of gradual typing produces a

reliability issue that is hard to track down.

The application. Consider the construction of a large, data-intensive application

written in Gradualtalk (see Chapter 3). One team is in charge of the statistics

functionality. The Stats object is responsible for running statistics on a subset of

the data, which it keeps as a typed instance variable data of type GTCollection

<Number>. The GTCollection generic class, provided by Gradualtalk, is part of

a new collection hierarchy that is fully typed. Of interest here is the inject:into:

method—the Smalltalk equivalent of a left fold—whose type signature is:

GTCollection<e> � (a) inject: (a)aVal into: (a e → a)aBlock

The block that computes the statistics is kept as an instance variable of Stats.

The accessors of this instance variable are typed, e.g., as follows:

Stats � (Self) statBlock: (Integer Integer → Integer)aBlock
statBlock := aBlock

However, due to an oversight, the instance variable statBlock itself is left

untyped (we do not show its declaration here). Lastly, the following method runs

the statistics:

Stats � (Integer) basicStats
ˆself data inject: 0 into: self statBlock

A separate development team is responsible for the user interface. A UIStats

class allows the user to choose which statistic is calculated by using a drop-down

list widget.

UIStats � (Self) setStat: (Symbol)statName
self stats statBlock: (self statBlocks at: statName)

77

5.2 Motivation

UIStats � (Self) getStats
self showStatResult: (self stats basicStats)

When the statistic to run is selected, the method setStat: is called, setting the

corresponding block in the Stats object. To calculate the statistics, the user presses

a button, which invokes getStats and displays the result to the user.

The problem. The careful reader will have noticed that the data collection is

declared to contain Number objects, while the statBlock: setter expects a function

that manipulates Integers. Because we are using a gradually-typed language, this

mismatch raises no static type error. Indeed, the statBlock instance variable was left

untyped, so when the argument block is assigned, it silently crosses the boundary to

the untyped world. When the statistics block is used in the body of basicStats, the

gradual type system implicitly casts it back to the type Integer Number → Integer.

As long as the contents of the data collection of Stats are integers, the implicit cast

succeeds and goes unnoticed. For instance, the UI team can test the application

with a block of type Integer Integer → Integer that sums all elements in data:

[:(Integer)sum :(Integer)next | sum + next]

However, suppose a floating point number occurs in the data set. When the

statistics are run, a cast exception is raised, halting the application. The cause of

the exception is that the statistics collection block expects an integer argument, but

receives a float. While this certainly points to the fact that there was a float in the

dataset, it does not pinpoint the source of the problem.1 The underlying problem

is that the statistics library was intended to be fully typed, yet an accidentally

missing type annotation opened a reliability hole. The UI team was hoping that

passing a well-typed value (the statistics block) to a typed library (the Stats object)

would never cause a runtime type error. Existing gradually-typed languages do not

offer such a guarantee, because all values can implicitly cross to the untyped world.

1With first-order values, casts can always be evaluated fully at the boundaries, so the error
messages are clear, and there is no need to use costly wrappers. Also, blame tracking [22, 58, 39, 62]
addresses traceability—by reporting the source of a runtime cast error—not reliability, the absence
of runtime cast errors.

78

5.2 Motivation

5.2.2 Efficiency

We now turn to an example that describes the efficiency impact of gradual typing.

The application. We consider a refinement of the above example: the statistics

are scheduled to run asynchronously in a delayed manner, instead of running

interactively. The scheduling functionality is realized by an external Scheduler

library whose code is untyped. The code below shows how a statistics run is

scheduled:

Stats � (Self) scheduleBasicStatsIn: (Scheduler)scheduler when: (Time)time
scheduler schedule: [:rcv :arg| rcv inject: 0 into: arg] on: self data
with: self statBlock when: time

The body of the method specifies that when it is time, the scheduler should

perform the fold operation specified in the first argument on the collection given as

a second argument. This uses the same data and statistics block as before.

The problem. Surprisingly, the efficiency of the system is greatly affected in

this setting. The reason for this is that the statistics block, which is typed, is

passed to untyped code as an argument of the scheduler method and back to typed

code—when the scheduler runs the job. Because there is a mismatch between the

original type and the target type, this travel through untyped code forces the

creation of a wrapper. As explained in Section 2.1, a function wrapper is a function

of the expected type that internally inserts casts to the arguments and the returned

value of the underlying function. As a result, the wrapper code (which never fails if

the data only contains integers) is executed every time the block is called. This

produces a non-negligible overhead, especially if the block is used frequently and

its computational content is brief. As we show in Section 5.6.1, a slowdown of up to

10x is incurred. Worse still, because the slowdown is caused by an external library

(the scheduler) that is untyped, there is no way to avoid this slowdown, apart from

reimplementing or typing the scheduler library.

Identifying the source of the slowdown is furthermore not trivial, because cast

insertion and wrapper creations are implicit in gradual typing (Section 2.2.4). We

were faced with exactly this problem when performing benchmarks as part of the

79

5.2 Motivation

validation of our work on cast insertion strategies (Chapter 4), and wished we had

a way to predict and control where wrappers are introduced.

5.2.3 Confined Gradual Typing

As we have seen, in a gradually-typed language the flexibility provided by gradual

typing can easily backfire and compromise reliability and efficiency. To address

this, we propose Confined Gradual Typing as a means to control the implicitness

of gradual typing.

The issues presented in the previous sections boil down to data flow issues: when

higher-order values cross boundaries between statically and dynamically-typed

portions of a program, casts cannot be performed immediately, so wrappers are

needed. Wrappers are expensive, and delay the detection of runtime type errors. In

essence, Confined Gradual Typing refines a gradual type system with annotations

that allow programmers to explicitly prohibit certain boundary crossings. This

chapter presents two flavors of CGT:

1. Strict Confined Gradual Typing (SCGT), which is resolved entirely statically,

provides strong guarantees with respect to reliability and performance, but

can be too restrictive at times.

2. Relaxed Confined Gradual Typing (RCGT), which defers some checks to

runtime, is more flexible but has weaker static reliability guarantees than

SCGT.

In both versions, two type qualifiers are introduced: ↑ and ↓. Intuitively, ↑ protects

the future flow of a typed value, while ↓ constrains the past flow of a typed value.

Their precise meaning differs, however, between variants, as discussed below.

5.2.3.1 Strict Confined Gradual Typing

In Strict Confined Gradual Typing, the ↑ qualifier, as in ↑T , expresses that an

expression has type T and, once reduced to a value, it cannot flow into the untyped

80

5.2 Motivation

world. This ensures that a typed value is used in a fully typed context and hence

immune to cast errors (Section 5.2.1).1

For instance, if the statistics block from the UI team is typed as ↑(Integer

Integer → Integer), assigning it to an untyped instance variable is a static type

error. More precisely, it cannot be passed as argument to the statBlock: method of

the Stats object, unless that method also qualifies the type of the argument block

with ↑. If that is the case, then the assignment in the body of statBlock: is a static

type error, pointing to the source of the issue—the untyped instance variable.

The ↓ qualifier, as in ↓T , expresses that an expression is of type T and that

its value has never flowed through the dynamic world. For a higher-order value,

this ensures that the value is not wrapped, thereby avoiding performance issues

(Section 5.2.2). For instance, the developer of the typed collection library can

provide a second fold operation inject:intoSafe: where the argument block is typed

with ↓:
GTCollection<e> �(a)inject: (a)aVal intoSafe: ↓(a e → a)aBlock

This means that aBlock should have never passed through dynamically typed code.

If in the scheduler code of Section 5.2.2 this operation is called instead of the more

permissively typed inject:into:, then the message send inject:intoSafe: is ill-typed.

This is because the block passed through the dynamic world and hence is potentially

wrapped.

5.2.3.2 Relaxed Confined Gradual Typing

Strict Confined Gradual Typing is effective in restoring predictability, but can be

limiting in practice, because it systematically prohibits interaction with untyped

code. Relaxed Confined Gradual Typing is a softer variant that trades the fully

static guarantees of SCGT for more flexibility, while preserving interesting reliability

and efficiency guarantees. Instead of focusing on whether values have flowed or will

flow through untyped code, RCGT focuses on whether values have been wrapped

or may be wrapped in the future.

1A programmer could explicitly wrap the function to get a dynamic version, but then that is
a conscious and manifestly visible decision.

81

5.2 Motivation

In RCGT, the ↑ qualifier, as in ↑T , expresses the constraint that the (higher-

order) value of type T will not be wrapped. The ↓ qualifier, in turn, expresses that

a (higher-order) value has not been wrapped. RCGT statically allows qualified

values to pass through untyped code, but finds a fault at runtime if wrappers

are introduced. To support RCGT, the runtime system must therefore be able to

recognize when a typed value is passed to untyped code and then projected out to

the same type (or a supertype), hence avoiding wrapping.

In the scheduler example, this means that a block typed ↓(Integer Integer →
Integer) can be passed to the untyped scheduler and then passed to the typed

collection method inject:intoSafe:, because no wrapping is necessary—hence perfor-

mance is unaffected. However, if the block was expected to have a different return

type, wrapping would be necessary, and a runtime error would be raised to prevent

the implicit creation of the wrapper.

To further illustrate the difference between SCGT and RCGT, consider a typed

function f of type F, the dynamically-typed identity function id of type Dyn → Dyn,

and the following program, statically legal in both SCGT and RCGT:

x: F' = id f

If we protect f with the ↑ qualifier, id f does not type check anymore in SCGT,

effectively protecting f from crossing the typed/untyped boundary. On the other

hand, the program does type check in RCGT: f is allowed to flow into the untyped

world, as long as no wrapper is created when it flows back to the typed world. So

at runtime, if F' is not the same as the declared type of f, an error is raised to

prevent the illegal wrapper creation.

Compared to SCGT, RCGT is more permissive and accepts more programs.

With respect to guarantees, RCGT introduces a new kind of runtime error that

denote unwanted wrapper creations. Arguably, this still improves reliability com-

pared to standard gradual typing because wrapper creations are avoided and hence

there are no delayed cast errors latent in wrappers. Put differently, these errors

are raised more eagerly than in gradual typing. In the above example, if no illegal

wrapper exception was raised, it means x is unwrapped and as such cannot be

the cause of future cast errors. On the efficiency side, RCGT makes it possible to

predict and control the implicit overhead of wrappers.

82

5.2 Motivation

5.2.4 Usage Scenarios of Confined Gradual Typing

The flow qualifiers introduced by Confined Gradual Typing can be helpful to

programmers following different possible methodologies. We envision three such

approaches:

post-hoc. The programmer uses gradual typing without qualifiers and, when

facing either a reliability or efficiency issue, she introduces qualifiers to track

down the sources of these issues. Note that, compared to a debugging tool,

this approach has the advantage that once the source of the problem is

identified, the programmer can leave the qualifiers in place, thereby ensuring

that the issue will not reappear later. The programmer can also build on the

experience to introduce preventive qualifiers in other places where similar

issues could appear.

upfront/provider. When developing a library that has critical components (either

performance- or reliability-wise), the programmer eagerly adds qualifiers in

the interface to make clear that the intention is to get static/unwrapped

arguments, hinting at the fact that these qualified arguments play key roles in

the overall behavior of the library. Performance-wise, examples include event

callbacks in GUI components, like mouse-over or repaint, which can be called

intensively. Reliability-wise, examples include error logging and exception

handling code, where one wants to avoid cast errors that eclipse the underlying

error, or essential system components, for instance the implementation of the

gradual type checker itself.

upfront/client. A programmer develops an application that imports a fully

statically-typed library, which is used in a critical manner (either performance-

or reliability-wise). The programmer can defensively use qualifiers on all the

callbacks of the application to make sure they do not accidentally cross the

static/dynamic boundary and then flow in the imported library, compromis-

ing performance or reliability. The programmer only removes qualifiers if a

specific boundary crossing is deemed harmless.

83

5.3 Strict Confined Gradual Typing

Note that the last usage scenario suggests a language design, dual to the one we

formulate in this paper, in which the language is by default fully statically typed,

and programmers have to explicitly introduce qualifiers that allow the introduction

of dynamic checking and boundary crossing.

5.3 Strict Confined Gradual Typing

To make the description of Confined Gradual Typing precise, we now formalize

CGT, starting with the strict variant (Section 5.2.3.1). We defer the presentation

of the relaxed variant (Section 5.2.3.2) to Section 5.4.

To ensure that CGT can be understood and applied regardless of the considered

host language, this formalization is independent of Smalltalk, and follows the

approach of Siek and Taha [50], which builds upon the simply-typed lambda-

calculus. We respect the pay-as-you-go motto of gradual typing, in that the runtime

semantics of the language does not assume tagged values: casts to the unknown

type are used to maintain source type information of untyped values only when

required.1

The semantics of the source language is given by a type-directed translation to

an internal language that makes runtime checks explicit by inserting casts. The

syntax and static semantics of the source language is described in Section 5.3.1.

Section 5.3.2 presents the internal language, and the translation is explained in

Section 5.3.3.

5.3.1 Source Language

Syntax. We start with a lambda-calculus with base types B (for simplicity we

support numbers and addition), the unknown type Dyn, and the type qualifiers ↑
and ↓ of CGT (Figure 5.1).

Subtyping. The ↑ and ↓ qualifiers induce a natural subtyping relation between

types (Figure 5.2). Since ↓ is a guarantee about the past of a value, it is possible

1The impact of using a host language whose runtime uses tagged values, as in any safe
dynamically-typed language like Smalltalk, is discussed in Section 5.5.

84

5.3 Strict Confined Gradual Typing

e ::= n | λx : T.e | e e | e+ e Expressions
P ::= B | Dyn Primitive Type
T ::= P | T → T | ↑T | ↓T Type

Note that we consider T up to the following equations:

↑↑T = ↑T ↓↓T = ↓T ↑↓T = ↓↑T
↑Dyn = ↓Dyn = Dyn

Figure 5.1: SCGT: Source language syntax

(SS-reflex)
T <: T

(SS-trans)
T1 <: T2 T2 <: T3

T1 <: T3

(SS-fun)
T3 <: T1 T2 <: T4
T1 → T2 <: T3 → T4

(SS-losedown) ↓T <: T

(SS-gainup)
T <: ↑T (SS-up)

T1 <: T2
↑T1 <: ↑T2

(SS-down)
T1 <: T2
↓T1 <: ↓T2

Figure 5.2: SCGT: Static subtyping

to lose it (SS-losedown), but not to gain it. Conversely, one can see a value of type

T as a ↑T (SS-gainup), because this adds a guarantee about the future usage of

the value; ↑ cannot be lost. Also, subtyping propagates below the qualifiers (SS-up,

SS-down). The other rules are standard.

Directed consistency. As Section 2.2.1 explained, the essence of gradual typing

lies in the consistency relation [50], which expresses the compatibility between typed

and untyped expressions. Because Confined Gradual Typing expresses constraints on

the flow of values with respect to the unknown type, we introduce a non-symmetric

variant of consistency, called directed consistency (Figure 5.3). Like consistency,

directed consistency is reflexive and non-transitive. The loss of symmetry is due

to the qualifiers ↑ and ↓; when not present, the relation is symmetric. Unqualified

base types are consistent with Dyn and vice versa (DC-rdyn, DC-ldyn). Unqualified

function types can only be consistent with Dyn, and vice-versa, if the type is

consistent with Dyn→ Dyn, and vice versa (DC-dynfun1, DC-dynfun2). Note that

85

5.3 Strict Confined Gradual Typing

(DC-rdyn)
B ; Dyn

(DC-ldyn)
Dyn ; B

(DC-dynfun1)
T1 → T2 ; Dyn→ Dyn

T1 → T2 ; Dyn
(DC-dynfun2)

Dyn→ Dyn ; T1 → T2
Dyn ; T1 → T2

(DC-fun)
T3 ; T1 T2 ; T4
T1 → T2 ; T3 → T4

(DC-losedown)
T1 ; T2
↓T1 ; T2

(DC-gainup)
T1 ; T2
T1 ; ↑T2

(DC-sub)
T1 <: T2
T1 ; T2

Figure 5.3: SCGT: Directed consistency

these last rules are new as such in the consistency relation of a gradually-typed

language; they reflect a restriction needed to preserve the guarantees of qualifiers.

The non-symmetry of the relation is used to guarantee that a ↓T value has never

passed through Dyn (DC-losedown), and that a ↑ T value will never pass to Dyn

(DC-gainup), but not the reverse. Finally, directed consistency subsumes subtyping

(DC-sub). This implies that ↓T ; ↑T , for every type T .

Typing. Equipped with directed consistency, we can now describe the typing

rules of SCGT (Figure 5.4). Literal values are typed with the ↓ qualifier to express

that they have not (yet) passed through Dyn. (T-var) is standard.

(T-app1) corresponds to the case where the function expression is of the unknown

type. In contrast to standard gradual typing [50], it is not sufficient for e2 to be

well-typed: it must also be consistent with Dyn. This may not be the case in CGT,

as ↑T ; Dyn never holds.

If the function expression is typed, then it ought to be a function type (T-app2).

The type of the argument expression must be consistent with the argument type of

the function. Since we do not care whether the function type is qualified, the rule

uses an auxiliary operator |·| to remove qualifiers:

|↑T | = |T |
|↓T | = |T |
|T | = T otherwise

86

5.3 Strict Confined Gradual Typing

(T-num)
Γ ` n : ↓Int

(T-abs)
Γ, x : T1 ` e : T2

Γ ` λx : T1.e : ↓(T1 → T2)

(T-var)
Γ(x) = T

Γ ` x : T
(T-app1)

Γ ` e1 : Dyn Γ ` e2 : T2 T2 ; Dyn

Γ ` e1 e2 : Dyn

(T-app2)
Γ ` e1 : T1 Γ ` e2 : T2 |T1| = T11 → T12 T2 ; T11

Γ ` e1 e2 : T12

(T-add)
Γ ` e1 : T1 Γ ` e2 : T2 T1 ; ↑Int T2 ; ↑Int

Γ ` e1 + e2 : ↓Int

Figure 5.4: SCGT: Typing

Finally, for addition, the sub-expressions must be consistent with Int (T-add).

We write ↑Int because addition consumes the number without any further casts.

The newly-produced number is qualified with ↓.

5.3.2 Internal Language

Syntax. Figure 5.7 presents the syntax of the internal language, which extends

the source language syntax with casts 〈T ⇐ T ′〉 and runtime cast errors. A value

v can be either a base value b or a tagged value 〈Dyn⇐ T 〉b (with T 6= Dyn). A

tagged value is a value (born typed) that was passed to Dyn. The cast to Dyn

plays the role of a type tag, keeping the information that the underlying value is

of type T. A base value is either a number or a function value, which is either a

plain function, or a function wrapper 〈F ⇐ F ′〉f . Function wrappers are interesting

because they embed higher-order casts, which are the source of the problems that

CGT addresses. The syntactic category F is specific to function types. Note that

we require F ′ 6<: F for 〈F ⇐ F ′〉f to be considered a value, because otherwise the

cast is eliminated by reduction (and the wrapper avoided). Evaluation frames E

are expressions with holes, and are single-frame analogues to evaluation contexts

from reduction semantics.

87

5.3 Strict Confined Gradual Typing

(IT-num)
Γ ` n : ↓Int

(IT-var)
Γ(x) = T

Γ ` x : T

(IT-abs)
Γ, x : T1 ` e : T2

Γ ` λx : T1.e : ↓(T1 → T2)
(IT-err)

Γ ` CastError : T

(IT-app)
Γ ` e1 : T1 Γ ` e2 : T2 |T1| = T11 → T12 T2 <: T12

Γ ` e1 e2 : T12

(IT-add)
Γ ` e1 : T1 Γ ` e2 : T2 T1 <: ↑Int T2 <: ↑Int

Γ ` e1 + e2 : ↓Int

(IT-cast)
Γ ` e : T1 T1 <: T2 T2 ; T3

Γ ` 〈T3 ⇐ T2〉e : T3

Figure 5.5: SCGT: Internal language typing

Typing. The typing rules of the internal language are straightforward (Figure 5.5).

Most instances of directed consistency from the source language are replaced

with static subtyping. This is because necessary instances of consistency in the

source language translate to casts in the intermediate language, as described below

(Section 5.3.3). The new rule (IT-cast) expresses that a cast is valid only if the

source type T2 is a supertype of the actual type T1, and is consistent with the

target type T3.

Dynamic semantics. The evaluation rules of the internal language are also

standard, except for a few key points. Rule (E-merge) compresses two successive

casts that go through Dyn if the source type T1 is compatible with the outer target

type T2. Note that in doing so, it strips qualifiers from T1 to reflect that the value

has gone through Dyn. If T1 is not compatible with T2, a runtime CastError is

raised (E-merge-err). Cast errors propagate outward (E-err). The evaluation rule

(E-fcastinv) describes the application of a function wrapper to a value. Regardless

of the qualifiers of F and F ′, it decomposes to cast the argument and result of the

application.

88

5.3 Strict Confined Gradual Typing

(E-congr)
e −→ e′

E[e] −→ E[e′]
(E-app)

(λx : T .e) v −→ e[v/x]

(E-add)
n3 = n1 + n2

n1 + n2 −→ n3

(E-merge)
T1 ; T2 T1 6= Dyn

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ 〈T2 ⇐ |T1|〉v

(E-merge-err)
T1 6; T2

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ CastError

(E-err)
E[CastError] −→ CastError

(E-remove)
T1 <: T2

〈T2 ⇐ T1〉 v −→ v

(E-fcastinv)
|F | = T1 → T2 |F ′| = T ′1 → T ′2 F ; F ′ F 6<: F ′

(〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

Figure 5.6: SCGT: Internal language dynamic semantics

5.3.3 Translating Source Programs to the Internal Lan-

guage

A source language program is translated to an internal language program through

cast insertion (Figure 5.8). Each typing rule of the source language (Figure 5.4) has

a corresponding cast insertion rule. Whenever directed consistency is needed, the

output program uses explicit casts to express the corresponding runtime checks.

We use the 〈〈·〉〉 operator to introduce casts only when necessary (i.e. , when

directed consistency holds but static subtyping does not):

〈〈T2 ⇐ T1〉〉e =

{
e if T1 <: T2,

〈T2 ⇐ T1〉e otherwise.

When the operator expression of an application has unknown type, it is cast to

a function that accepts the argument type (C-app1). The side condition T2 ; Dyn

ensures that it can use an argument of type T2 (in order to respect the ↑ qualifier).

In case the function expression is typed, a cast may be inserted for the argument

89

5.3 Strict Confined Gradual Typing

e ::= . . . | 〈T ⇐ T 〉 e | CastError Expressions
f ::= λx : T.e Function values

| 〈F ⇐ F ′〉f if F ′ 6<: F
b ::= n | f Base values
v ::= b | 〈Dyn⇐ T 〉b if T 6= Dyn Values
F ::= T → T | ↓F | ↑F Function type
E ::= � e | v � | �+ e | v +� Evaluation Frames

| 〈T ⇐ T 〉 �

Figure 5.7: SCGT: Internal language syntax

expression (C-app2). (C-add) is similar.

5.3.4 Type Safety and Correctness of Qualifiers

Type safety of the internal language is established in a standard manner via progress

and preservation:

Theorem 1. (Progress) If ∅ ` e : T , then e is a value, or e = CastError or ∃e′,
e −→ e′.

Proof. By induction on the typing rules for e (Appendix A.1).

Theorem 2. (Preservation) If ∅ ` e : T and e −→ e′, then ∅ ` e′ : T ′ and T ′ <: T .

Proof. By induction on the evaluation rules (Appendix A.1).

Also, the cast insertion translation preserves typing:

Theorem 3. (Cast insertion preserves typing)

If Γ ` e⇒ e′ : T in the source language, then Γ ` e′ : T in the internal language.

Proof. By induction on the cast insertion rules (Appendix A.2).

However, type safety is just a safety net that does not express the essence of

the guarantees that the qualifiers ↑ and ↓ are supposed to bring. We really want to

prove that the ↑ qualifier ensures that a value will not pass through the Dyn type,

and conversely that the ↓ qualifier ensures that a value has not passed through the

Dyn type.

90

5.3 Strict Confined Gradual Typing

(C-num)
Γ ` n⇒ n : ↓Int

(C-var)
Γ(x) = T

Γ ` x⇒ x : T

(C-abs)
Γ, x : T1 ` e⇒ e′ : T2

Γ ` λx : T1.e⇒ λx : T1.e
′ : ↓(T1 → T2)

(C-app1)
Γ ` e1 ⇒ e′1 : Dyn Γ ` e2 ⇒ e′2 : T2 T2 ; Dyn

Γ ` e1 e2 ⇒ (〈(T2 → Dyn)⇐ Dyn〉e′1)e′2 : Dyn

(C-app2)
Γ ` e1 ⇒ e′1 : T1 Γ ` e2 ⇒ e′2 : T2 |T1| = T11 → T12 T2 ; T11

Γ ` e1 e2 ⇒ e′1(〈〈T11 ⇐ T2〉〉e′2) : T12

(C-add)
Γ ` e1 ⇒ e′1 : T1 Γ ` e2 ⇒ e′2 : T2 T1 ; ↑Int T2 ; ↑Int

Γ ` e1 + e2 ⇒ (〈〈↑Int⇐ T1〉〉e′1) + (〈〈↑Int⇐ T2〉〉e′2) : ↓Int

Figure 5.8: SCGT: Cast insertion

The proof technique we use consists of formulating a variant of the semantics

of SCGT where values are marked.1 A value is tainted, denoted v•, if it has passed

through Dyn, otherwise it is untainted, denoted v◦. A value can additionally be

marked as untaintable, denoted v̂. Intuitively, values are born untainted, and are

tainted whenever a pair of casts through Dyn is merged (as in rule E-merge). A value

is marked untaintable when it is passed as parameter of a function whose argument

type has the ↑ qualifier, or when it is cast to an ↑-qualified type. The full static

and dynamic semantics of the taint-tracking language are given in Appendix A.3.

Once we establish type safety for the taint-tracking semantics, the main theorems

are the following:

Theorem 4. (↓ correctness) If ∅ ` v : ↓T , then v = v◦.

That is, a value of type ↓T is necessarily untainted.

Theorem 5. (↑ correctness) If ∅ ` 〈Dyn⇐ T 〉 v : Dyn, then v 6= v̂.

1The idea of using additional syntax to track the flow of values and be able to use syntactic
proofs was inspired by Syntactic Type Abstraction [28].

91

5.4 Relaxed Confined Gradual Typing

That is, a tagged value cannot be untaintable. Together with a lemma that

establishes that an untaintable value must have an ↑-qualified type (Appendix A.3),

this expresses that the stated guarantee of ↑ is correctly maintained by the semantics.

Proof. Both theorems directly follow from the Canonical Forms lemma of the

taint-tracking semantics (Appendix A.3).

Finally, we establish that the taint-tracking semantics is faithful to the semantics

presented in this section by defining a taint erasure function erase(e) that takes a

term e of the taint-tracking language to a term of the original language by removing

the taint, and proving the following result:

Theorem 6. (Tainting faithfulness)

If e −→ e′, then erase(e) −→ erase(e′).

Proof. By induction on the evaluation rules of the taint-tracking semantics (Ap-

pendix A.3).

5.4 Relaxed Confined Gradual Typing

We now present a variant of Confined Gradual Typing that is more flexible than

SCGT. Relaxed Confined Gradual Typing guarantees that unwanted and costly

function wrappers are not created. In RCGT, the ↓ qualifier indicates that a function

value has not been wrapped, although it may have crossed the typed/untyped

boundaries. Similarly, the ↑ qualifier imposes that a function value will not be

wrapped, although it is allowed to cross typed/untyped boundaries.

The overall semantic framework for RCGT is similar to that of SCGT: the

source language syntax is the same, but its semantics reinterpret the meaning of the

type qualifiers and loosens the constraints on directed consistency (Section 5.4.1).

Its semantics is given by translation (unchanged) to an internal language with

casts, for which only one evaluation rule is different (Section 5.4.2). The metatheory

is fairly different (Section 5.4.3) however, because the guarantees implied by the

qualifiers are different: ↑ and ↓ do not express guarantees about passing through

the Dyn type, but instead express guarantees about function wrappers.

92

5.4 Relaxed Confined Gradual Typing

In RCGT, the ↑ and ↓ qualifiers are meaningless for base types, since they

are not subject to function wrappers, so we impose an additional equation on the

syntax of types (Figure 5.1): ↑P = ↓P = P

5.4.1 Directed Consistency, Revisited

(DC-rdyn-R)
T ; Dyn

(DC-ldyn-R)
Dyn ; T

Figure 5.9: RCGT: Modified directed consistency. Rules (DC-dynfun1, DC-dynfun2)
are removed, all other rules are preserved.

In SCGT, directed consistency plays two roles: first, it ensures that the ↓ qualifier

cannot be forged, and that the ↑ qualifier cannot be lost; second, it prevents certain

types from being consistent with the unknown type Dyn and vice versa. In RCGT,

directed consistency is more permissive (Figure 5.9): only the first role is preserved;

any type is consistent with Dyn (DC-rdyn-R, DC-ldyn-R). As a result, RCGT

statically rejects fewer programs.

5.4.2 Dynamic Semantics, Revisited

All the evaluation rules of the internal language are preserved as is, except for

(E-merge), which is replaced by (E-merge-R), shown in Figure 5.10. The only

difference is that the qualifiers of the source type are not removed, because in

RCGT, going through Dyn is irrelevant; what matters are function wrappers.

(E-merge-R)
T1 ; T2

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ 〈T2 ⇐ T1〉v

Figure 5.10: RCGT: Modified dynamic semantics. All other rules are preserved.

While the rules are very similar, their behavior is quite different. In particular,

there are new instances of (E-merge-err) that amount to runtime checking where

wrappers do not get created, instead raising a runtime exception.

For instance consider a typed function f : F , the dynamically-typed identity

function, id = λx.x : Dyn→ Dyn, and the program let x : F ′ = id f (we assume

93

5.5 Implementation

F and F ′ are unqualified types). The program is statically legal in both SCGT and

RCGT.

Now consider that we protect f with the ↑ qualifier: f : ↑F . In SCGT id f

does not type check anymore, because ↑F 6; Dyn. This effectively protects f from

crossing the typed/untyped boundary. On the other hand, the program does type

check in RCGT: f is allowed to flow into the untyped world as long as no wrapper is

created when it flows back to the typed world. At runtime, when id returns and the

value is about to be assigned to x, the composed cast 〈F ′ ⇐ Dyn〉〈Dyn⇐ ↑F 〉f is

produced. By definition, ↑F 6; F ′—the ↑ qualifier cannot be lost. So, (E-merge-err)

applies, resulting in a CastError that states that the wrapper creation is illegal.

5.4.3 Type Safety and Correctness of Qualifiers

Progress and preservation also hold for Relaxed Confined Gradual Typing and

similarly, cast insertion preserves typing (Appendix A.4). Again, the most interesting

result is not type safety, but a notion of correctness for the ↑ and ↓ qualifiers. In

RCGT, the qualifiers provide guarantees with respect to function wrappers. Both

can be expressed in the following theorem, which states that no function wrapper

has an ↑-qualified type as source type or a ↓-qualified type as target type:

Theorem 7. (No wrapping with qualifiers)

If e = 〈F2 ⇐ F1〉 f , e is a value, then F1 6= ↑F ′1 and

F2 6= ↓F ′2

Proof. We first prove two lemmas that relate directed consistency from/to qualified

types with static subtyping, namely: T1 ; ↓T2 ⇒ T1 <: ↓T2 and ↑T1 ; T2 ⇒
↑T1 <: T2. Then, the proof proceeds by contradiction, exploiting the definition of a

wrapper value, i.e. T1 6<: T2 (Appendix A.5).

5.5 Implementation

We have implemented both variants of Confined Gradual Typing, SCGT and RCGT,

as an extension of Gradualtalk (Chapter 3), a gradually-typed dialect of Smalltalk.

The implementation can be configured to operate in one of three modes: original

94

5.5 Implementation

gradual typing (hereinafter GT), SCGT and RCGT. This section briefly describes

how to go from the theory of Confined Gradual Typing to its implementation in

Gradualtalk.

5.5.1 From Theory to Practice

Objects. One of the biggest differences between the formal presentation of Con-

fined Gradual Typing and the actual implementation is that Gradualtalk (Chapter 3)

is an object-oriented language, with subtyping. Gradualtalk is built on consistent

subtyping [51], a relation that combines consistency with traditional object subtyp-

ing. We first extend subtyping in Gradualtalk to include the subtyping rules for

qualifiers (Figure 5.2). Second, we make the consistent subtyping relation directed

(Figure 5.3). Third, because Smalltalk provides many primitive operations, we

require that the arguments to the primitives be consistent subtypes of ↑T instead

of T (similar to the case of addition in the theory).

Casts to Dyn and type safety. Following seminal work on gradual typing, the

formalization of CGT assumes an unsafe runtime system and relies on casts to Dyn

to tag values only when necessary. Because Smalltalk is a safe dynamic language,

its runtime already maintains a type tag for each value. In implementing CGT in

Gradualtalk, we do not need to re-tag all values: we can discharge casts from their

safety-bearing role. The only exception is closures, because we must keep track of

the semantics of qualifiers, as discussed below in Section 5.5.2.

Type system features. Gradualtalk supports several type system features

beyond nominal and function types, e.g., structural types and union types. As of

now, the implementation of SCGT and RCGT only supports nominal and function

types. Studying and implementing the semantics of qualifiers for the other features

is future work.

Live system. Nearly every Smalltalk environment is a live system: the developer

writes the code, runs it and debugs it all in the same execution environment.

To support this live environment, class definitions can change at runtime, and

95

5.5 Implementation

individual methods can be added to and removed from an existing class. Gradualtalk

already deals with this incremental and dynamic setting (Section 3.6), and CGT

does not introduce new challenges in this regard.

5.5.2 Confined Gradual Typing in Gradualtalk

In both SCGT and RCGT all syntactically created values automatically have ↓ as

part of their type. Furthermore the subtype rules SS-gainup, SS-losedown, SS-up,

and SS-down (Figure 5.2) establish how ↓ and ↑ are passed along, produced and

consumed, and guarantee that ↓ cannot be forged and ↑ cannot be lost. In contrast,

the default gradual typing semantics (GT) simply ignores qualifiers. SCGT has the

exact same runtime as GT: only the compile-time type checker differs, raising errors

related to misused qualifiers. RCGT has different static and dynamic semantics from

GT. Its type checker is less strict than that of SCGT, and its runtime semantics

differ from both GT and SCGT, because function casts and the type tags of closures

are managed differently. We now briefly expand on the differences in RCGT.

Tagged closures. A tagged closure is an extended Smalltalk closure that contain

an extra type tag. The tag is used to mark the closure with its source type when

it is cast to Dyn, and to mark when it acquires the ↑ property (i.e. it cannot be

wrapped). Tagged closures are instances of a subclass of the class of all blocks,

BlockClosure. To tag an existing closure, a new tagged closure is created and all

the instance variables of the original block are copied, along with the source type

when casting to Dyn, or the target type when casting to an ↑-qualified type.1

Function casts. To avoid repeating subtype tests, the implementation of function

casts in Gradualtalk is a union of the E-remove, E-merge-R and E-merge-err rules

(Figures 5.6 and 5.10):

1. If ↑ is present in the source type but not the target type a cast error is raised.

2. If the source type is not a subtype of the target type:

1Just like the implementation of function wrappers, this implementation is vulnerable to
reflective operations.

96

5.6 Performance Evaluation

(a) Throw a cast error if the source type has a ↑.

(b) Throw a cast error if the target type has a ↓.

(c) Wrap the closure object.

(d) If the target type has an ↑, produce a tagged closure.

3. If the source type is a subtype of the target type:

(a) If the target type has an ↑, produce a tagged closure.

(b) Otherwise return the value unaltered.

5.6 Performance Evaluation

An important goal of Relaxed Confined Gradual Typing is to obtain higher per-

formance. This gain results from the ability to avoid unwanted implicit wrapping

of closures and consequently avoid their overhead on closure application. This

of course supposes that wrappers have a noticeable overhead. To validate this

hypothesis, we have performed some micro and macrobenchmarks. For all practical

purposes, Strict Confined Gradual Typing has the same performance as an original

gradually typed system. This is because the difference between the two is in the

typechecker which runs at compile time, while the runtime is the same for both.

For this reason, it is ommited in the benchmarks.

The microbenchmarks establish the cost of boundary crossing from static to

dynamic and back, and, more importantly the cost of applying wrappers. The

macrobenchmarks focus on the cost of applying wrappers and also check to see if

the observations on microbenchmarks scale up to a more realistic scenario.

Both microbenchmarks and macrobenchmarks were run on a machine with

an Intel Core i7 3.20 GHz CPU, 4 GB RAM and 250 GB SATA drive, running

Windows 7. The VM used is Pharo.exe build number 14776 and base image is

Pharo 2.0 build number 20628.

97

5.6 Performance Evaluation

5.6.1 Microbenchmarks

We report on microbenchmarks that evaluate the overhead of function wrappers

in Gradualtalk and the impact of RCGT at runtime. The microbenchmarks reuse

the setting from Section 5.2. The first set of benchmarks determines the cost of a

closure crossing the boundary back into typed code, while the second set determines

the cost of applying wrappers. The closure used is the simple statistics block from

Section 5.2.1, with type Integer Integer → Integer, used to perform a left fold on a

collection of Number values.

Multiple runs of the benchmarks have been performed, with differing amounts

of closure creation and application: from 100,000 to one million, in increments of

100,000. For each iteration count, we take the average of 10 runs. Here we only

include the detailed results for one millon iterations. The detailed data shows that

the observed relative performance is similar on all iteration counts (Appendix B).

5.6.1.1 The Cost of Boundary Crossing

We evaluate the cost of boundary crossing by benchmarking three variants of a

small program that assigns a typed closure to a typed variable, after going through

an untyped variable. The basic template is as follows:

|block|
block := [:(Integer)acc :(Integer)i|acc + i].
[
1 to: self iterations do: [:i|
|(Integer Integer → Integer)tblock|
tblock := block.
tblock class. ”Cheap----prevents elimination of the loop body”

]
] timeToRun.

The typed closure is first assigned to the untyped local variable block. The

benchmark loop is then defined; it is run and measured in the last line. The number

of iterations in the loop is determined in the fourth line. The iteration body assigns

block to a typed variable tblock, and then performs a cheap operation on that

variable (basically, an instance variable access), which is necessary to prevent the

compiler from optimizing away the entire body of the loop. The variants we consider

are:

98

5.6 Performance Evaluation

� Fully Typed: To establish a base line, we benchmark a fully-typed version

of the program so that there is no boundary crossing at all. This means that

the block local variable is typed as Integer Integer → Integer.

� No Wrapping: This variant is the one presented in the code snippet above:

the blocked is assigned to a typed variable tblock of the same type as the

source type of the block; therefore, there is no need to create a wrapper.

� Wrapping: This variant changes the declaration of tblock to be of type

Number Number → Number. Because this is not a subtype of the original

type of the closure, a wrapper is created.

Note that for Fully Typed and No Wrapping, we also benchmark versions with

an ↑ qualifier added at the creation of the block, or a ↓ qualifier on the type of

tblock. This allows us to examine the assumption that adding qualifiers should

not introduce a noticeable penalty. Of course, because type qualifiers prevent the

creation of the wrapper, the Wrapping variant cannot be tested with qualifiers—a

runtime error is raised when the wrapper is deemed necessary.

Results. Table 5.1 presents the results for the three variants. In each case, we

compare the original gradual typing implementation (GT) with RCGT. For one

millon iterations, the Fully Typed variant takes about 0.1 seconds in all scenarios.

The No Wrapping variant takes about 11 seconds in GT, and 14 seconds in RCGT.

This amounts to around a 100X slowdown compared to the Fully Typed variant,

reflecting the cost of performing the function cast and associated subtyping tests.

Note that the use of the ↑ qualifier implies a light 5% overhead, due to the tagging

of the closure (Section 5.5.2). The Wrapping variant takes about 13 seconds in GT

and about 17 seconds in RCGT. This means that wrapper creation induces about

a 20% slowdown, which is still negligible compared to the overhead of the casting

logic.

RCGT turns out to be around 30% slower than GT, an observation that

stands across all iteration counts (Figure 5.11). This overhead is due to the extra

logic needed for function casts in RCGT compared to GT. We currently do not

understand the reason of the discontinuity in the graph between 500k and 700k

iterations, which is present in the data of all benchmarks.

99

5.6 Performance Evaluation

Fully Typed No Wrapping Wrapping
GT 115 10800 12768
RCGT 120 13972 16721
RCGT with ↓ 123 13761 -
RCGT with ↑ 114 14412 -

Table 5.1: Execution time in milliseconds for one millon boundary crossings back
into typed code. RCGT is about 30% slower than GT.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

GT
RCGT

Size (100,000 elements)

Ti
m

e
(s

ec
)

Figure 5.11: Running times for creating wrappers in GT and RCGT. RCGT is
systematically about 30% slower.

5.6.1.2 The Cost of Applying Wrappers

To evalute the cost of applying wrappers, we benchmark two variants of a small

program that repeatedly applies a block over a collection, after making it cross the

typed/untyped boundary:

| block (Number Number → Number)tblock
(TypedCollection<Number>)col |
block := [:(Integer)acc :(Integer)i|acc + i].
tblock := block.
col := self getCollection.
[col inject: 0 into: tblock] timeToRun

The third and fourth line create the block and perform the double boundary

crossing. The fifth line obtains a collection filled with repetitions of the number

1 that is used for the fold operation. Its size hence determines the number of

iterations in the benchmark loop. The last line performs the fold and measures the

time.

The variants we consider are:

100

5.6 Performance Evaluation

No Wrapping Wrapping
GT 2246 25458
RCGT 2648 26359
RCGT with ↓ 2694 -
RCGT with ↑ 2660 -

Table 5.2: Execution time in milliseconds for one million applications of the closure.
Wrapper evaluation implies about a 10X slowdown. The maximum measured
relative error in the microbenchmarks is ±13.48%, with a confidence level of 95%.

� No Wrapping: To establish a base line, this is the case where the block is

not wrapped. It is obtained by changing the declared types of tblock and col

to be over Integer instead of Number.

� Wrapping: This is the variant in the above code snippet. The block is

wrapped when assigning it to tblock, due to the mismatch of types.

Results. Table 5.2 reveals that, for 1 million iterations, application of a wrapped

closure suffers roughly a 10X slowdown, both in GT as in RCGT. This relative

overhead is preserved for all iteration counts (Figure 5.12). The reason of this

overhead is that casting the arguments and return is a very expensive and complex

action compared with the actual code to execute. Adding two numbers is faster

compared to checking the type of the two arguments, no matter the quality of

interpreter or JIT compiler. Also, the use of type qualifiers in the No Wrapping

variant does not affect the performance of RCGT.

5.6.2 Macrobenchmark

To establish if the advantages of Relaxed Confined Gradual Typing scale up to

a more real-world setting, we have performed a macrobenchmark using Spec [46].

Spec is the standard UI framework for Pharo Smalltalk, the language in which

Gradualtalk is implemented. The focus of Spec is on reuse and composition of

existing UI components, from basic widgets to complete user interfaces. Unfortu-

nately, we could not reuse the macrobenchmarks used in Cast Insertion Strategies

(Chapter 4) because these applications does not use blocks in their operation.

101

5.6 Performance Evaluation

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

GT-W
RCGT-W
GT-U
RCGT-U

Size (100,000 elements)

Ti
m

e
(s

ec
)

Figure 5.12: Running times for closure application when not wrapped (GT-U,
RCGT-U) and wrapped (GT-W, RCGT-W). Wrappers always implies about a 10X
slowdown.

Setup The external interface of the standard Spec widgets essentially boils down

to their configuration settings. In these widgets, a wide variety of settings are set

by providing a block closure, e.g. the action to perform when a button is pushed,

or how to obtain the string representation of an object for a list view (known as its

displayBlock). We have typed the external interface of these widgets to allow type

errors, e.g., in the configuration blocks, to be caught at compile time, instead of,

for example, when a user clicks on a button or a new item is added to the list and

painted.

The macrobenchmark establishes the cost of using a wrapped displayBlock,

compared to when it is not. This is done by showing a list of all 3,620 classes

present in the Gradualtalk image and programmatically scrolling down the entire

list as fast as possible. Scrolling is performed by programmatically selecting each

item in the list in succession. This scrolls the list down and whenever a new list

item is painted the displayBlock is executed. The slower the execution of the block,

the longer it will take to scroll through the entire list. The benchmark is run ten

times and the average time is taken. Complete code is available online 1.

Results The macrobenchmark has four different variants: GT and RCGT, both

with and without wrappers. The detailed results are in Table 5.3. When the block is

wrapped, GT and RCGT take about 1.6 seconds, compared to 1.1 seconds when the

1http://pleiad.cl/gradualtalk/cgt

102

5.7 Related Work

Not Wrapped Wrapped
GT 1113 1573
RCGT 1123 1608

Table 5.3: Execution time in milliseconds for the macrobenchmark. Wrapping
induces a 45% slowdown.

block is not wrapped. In both cases RCGT is only 1-2% slower than GT. Overall,

wrapping induces a 45% slowdown in scrolling speed, which is significant. Also, in

the context of the experiment, the difference is well above the typical noticeable

UI difference threshold of 0.2 seconds.

5.6.3 Summary

We have performed microbenchmarks that establish the cost of crossing the bound-

ary back into statically typed code, and the cost of applying wrappers. We assessed

both costs for GT and RCGT. Considering the boundary crossing, we found that

RCGT is about 30% slower than GT, which is not significant compared to the

100X slowdown imposed by the casting logic in any case. More significant is that

applying a wrapped closure is 10 times slower than an unwrapped one. The mac-

robenchmarks confirm that in a more real-life scenario the overhead of wrapped

closure remains significant (45% for displaying a list widget). We conclude that

avoiding unwanted wrapper creation through the use of ↑ and ↓ type qualifiers can

have valuable performance benefits.

5.7 Related Work

If a programming language is to combine typed and untyped code safely, some form

of casting is unavoidable. Prior work in this area has focused on decreasing the

overhead that casts introduce. The Typed Racket language [57] combines static and

dynamic code at a coarser granularity than the gradual typing approach. A Typed

Racket module is either fully typed or fully untyped. This approach emphasizes

program designs with fewer interaction points between static and dynamic code.

The Confined Gradual Typing technique restricts the dynamic flow of some typed

values into untyped code, regardless of how coarse or fine grained the borders

103

5.7 Related Work

between the two are. As such, we believe that this technique is perfectly compatible

with module-level approaches, and can be used to extend their expressive power.

Rastogi et al. [44], use local type inference to significantly reduce the amount

of untyped code in a program and decrease the number of casts needed at runtime.

This approach is automatic and effective. Confined Gradual Typing can extend

inference-based approaches with more explicit programmer control over which

values may ultimately be cast. Conversely, CGT could be extended with a form of

qualifier inference in order to ease the task of annotating code with the strongest

guarantees possible.

In addition to runtime cost, researchers have investigated techniques for reducing

the space cost of casts. Herman et al. [30] observed that higher-order casts can

accumulate at runtime and thereby compromise the space consumption of gradually

typed programs that appear to be tail-recursive in the source language. They

propose to use coercions to compress chains of casts dynamically. Going a step

further, Siek and Wadler develop threesomes as a data structure and algorithm to

represent and normalize coercions [52]. These space concerns are orthogonal to the

value-flow concerns addressed by Gradual Gradual Typing, and we believe that the

two can be easily integrated.

Recently, Swamy et al. [54] developed an alternative design for embedding

gradual typing securely in JavaScript. All values are tagged with their runtime

types. Performance and reliability issues are avoided by eagerly forbidding higher-

order casts that would require wrappers. The approach is effective for first-order

mutable objects, ensuring that there are no lazy cast errors in static code, but is

admittedly too restrictive for higher-order patterns. CGT may be an interesting

approach to recover some flexibility.

Finally, notions of blame and blame-tracking have been studied intently as

a means to track down the source of dynamic errors in the face of higher-order

casts [39, 58, 62, 49]. These techniques are complementary to the Confined Gradual

Typing approach, which gives the programer explicit control over which values or

value-flows could become subject to implicitly-introduced higher-order casts.

104

5.8 Conclusion

5.8 Conclusion

Gradual typing appeals to programmers because it seamlessly and automatically

combines typed and untyped code, while rejecting obvious type inconsistencies.

This convenience, however, has its costs. Type casts smooth the boundaries between

the typed and untyped worlds, but in higher-order languages these casts move

about as a program runs, making it hard to predict which values will be wrapped

and why. Confined Gradual Typing introduces type qualifiers to help programmers

control which values can flow through the untyped world and be wrapped with casts

in the process. Confined Gradual Typing can increase the predictability, reliability,

and performance of gradually-typed programs.

105

Chapter 6

Conclusion

The goal of this thesis is to improve the performance and reliability of gradually

typed applications. Our work reduced the performance hit of using gradual typing

by improving the cast insertion process and by performing removal of runtime

checks in specific cases. It also provided a solution to the reliability issue by

allowing programmers to specify using types which values cannot come from or go

to dynamically typed code. Although there is still a lot of work to do to solve both

problems, our work makes significant steps towards addressing them.

In this chapter, we present a summary of our contributions and provide per-

spectives on what are the next steps to follow.

6.1 Summary of the work

In this work, we make three contributions: Gradualtalk, Cast Insertion Strategies

and Confined Gradual Typing. Each of these contributions have resulted in the

following publications:

� Gradual Typing for Smalltalk [2]: This journal paper describes Gradualtalk

and its features, as well as a preliminary empirical validation of its design

(not included in this thesis).

� Cast Insertion Strategies for Gradually-Typed Objects [4]: This con-

ference paper describes the different cast insertion strategies and validates

them.

106

6.1 Summary of the work

� Confined Gradual Typing [3]: This conference paper presents Confined

Gradual Typing (CGT) in two variants. The paper provides a formal descrip-

tion and proof for each variant. Finally, it presents an implementation for

CGT and shows that there is no significant performance hit for using CGT.

In the following subsections, we provide a summary of each contribution.

6.1.1 Gradualtalk

Gradualtalk is a gradually typed Smalltalk. The type system of Gradualtalk

combines several state-of-the-art features, such as gradual typing, unified nominal

and structural subtyping, self type constructors for metaclasses, and blame tracking.

Gradualtalk is designed to ease the migration of existing, untyped Smalltalk to

typed Gradualtalk code. Gradualtalk was also developed to be the foundation of

our research about improving the performance of gradually typed applications.

The development of Gradualtalk and the typing of the corpus for the validation

provided valuable information of the problems that are addressed in both Cast

Insertion Strategies and Confined Gradual Typing. These problems are performance

degradation and reliability of being able to ensure that a statically typed code will

never throw a runtime type error.

6.1.2 Cast Insertion Strategies

When using a gradual type system, applications incur a performance degradation.

One of the reasons for this is the casts inserted to provide the guarantees of

gradual typing, especially the casts inserted in method invocations. We studied two

different cast insertion strategies for a gradually-typed language with objects: call

and execution. The call strategy inserts casts at call sites whenever needed. The

execution strategy inserts casts on arguments of a statically-typed method directly

at the beginning of the method. The call strategy is efficient for statically typed

code, but inefficient for dynamically typed code. In contrast, the execution strategy

is efficient for dynamically typed code, but inefficient for statically typed code.

We proposed the hybrid strategy, which merges the best of both strategies. This

is done by duplicating each method: one version is the original method code that

107

6.1 Summary of the work

does not cast its arguments, called the unguarded method, and the other method

starts by casting its arguments, called the guarded method. Then, the strategy

has two different scenarios for inserting casts. For statically-typed receivers, the

compiler modifies the call site to invoke the unguarded method. For dynamically-

typed receivers, the compiler leaves the call site intact, thereby calling the guarded

method.

We validated our claims about the performance of the call, execution and hybrid

strategy with both micro and macro benchmarks. The microbenchmarks exhibit the

best and worst cases of the call and execution strategy, and show that the hybrid

strategy is effectively a best-of-both-worlds approach. A set of macrobenchmarks

help us to further characterize the benefits of the hybrid strategy, which manifest

themselves more clearly as more type annotations are added. The hybrid strategy

goes from a 9% speedup to almost 37% speedup compared with the execution

strategy when more type annotations are added.

6.1.3 Confined Gradual Typing

There are at least two problems with gradual typing: reliability and performance.

The reliability problem corresponds to ensuring that statically typed code will not

throw a runtime type error. The performance problem is that execution of wrapped

closures is costly, and can be silently incurred in statically-typed code due to the

flow of higher-order values. These two problems can be addressed with Confined

Gradual Typing. Confined Gradual Typing refines a gradual type system with

annotations to allow programmers to explicitly prohibit certain boundary crossings

between statically typed code and dynamically typed code. Two type qualifiers are

introduced: ↑ and ↓. ↑ protects the future flow of a typed value, while ↓ constrains

the past flow of a typed value. Their precise meaning differs, however, between

variants.

There are two variants: Strict Confined Gradual Typing and Relaxed Confined

Gradual Typing. In Strict Confined Gradual Typing, the qualifiers express that

an expression, once reduced to a value, has never flowed from or cannot flow into

the untyped world, depending of the qualifier. In contrast, in Relaxed Confined

Gradual Typing, all values can flow from or into the untyped world. When closures

108

6.2 Perspectives

flow from or into the untyped world, they can be wrapped to check at runtime that

their arguments passed and the return value have the correct type. However, these

wrappers have a cost in performance. In Relaxed Confined Gradual Typing, the

qualifiers express that the reduced value has never been wrapped or it cannot be

wrapped.

We formally described both variants of Confined Gradual Typing and proved that

these variants are type sound and the qualifiers actually provide the guarantees

we expect. We also showed using both micro and macrobenchmarks that the

performance cost of implementing Relaxed Confined Gradual Typing is negligible

compared to the cost of wrapping.

6.2 Perspectives

6.2.1 Extensions

Confined Gradual Typing could be extended in two ways: mixing variants and

multiple kinds of dynamically typed code.

Mixing variants We presented two variants for Confined Gradual Typing: Strict

and Relaxed. We developed these two variants separately. However, we can see

the potentiality of having these two variants together. For example, one library

wants to prevent the wrapping of the objects it creates while another library wants

to enforce that all values passed to itself are statically typed. To guarantee that

this combination works as expected, there are two requirements needed: a formal

definition and formal proofs of type soundness and qualifier correctness.

Multiple kinds of Dyn The work of Swamy et al. [54] showed that there can be

different kinds of dynamically typed code. In the case of the work of Swamy et al.,

one kind of dynamically typed code was a checked one, still under control of the

typechecker, while the other kind was unchecked, never checked by the typechecker.

There are three questions that arise when trying to implement Confined Gradual

Typing when having more than one kind of dynamically typed code:

109

6.2 Perspectives

1. How can Confined Gradual Typing be defined when there are two kinds of

dynamically typed code?

2. Can it be useful to have more than two kinds of dynamically typed code?

What could a third category represent?

3. Who makes the decision of how many kinds of dynamically typed code there

are: The language designer or the application programmer?

Answering these three questions and exploring the ramifications of the answers

would provide a solution to the integration between Confined Gradual Typing and

multiple kinds of Dyn.

6.2.2 Formalization

We have proven that Confined Gradual Typing in its two variants is type sound

and the type qualifiers we presented actually provide the guarantees we expect. In

contrast, both the execution strategy and hybrid strategy presented as alternative

strategies to perform cast insertion lack a formal proof. To give this formal proof,

two steps are required. The first step is to formally describe the transformation

that each strategy realizes. For this, both a source and target formal language

where the transformation operates is required. The second step is to prove that the

transformation preserves the typing between the source and target expression.

6.2.3 Inheritance and Modularity

When describing the hybrid strategy, we mentioned how we can use this strategy

to provide standard subtyping polymorphism in a type sound manner. However,

this description is informal and lacks a proof that it is type sound. The description

was left informal because we have not rigorously looked at the interaction between

statically typed and dynamically typed code in presence of inheritance. This is an

open challenge for future work.

110

6.2 Perspectives

6.2.4 Case studies

We used both micro and macro benchmarks to validate our affirmations about the

cast insertion strategies and Confined Gradual Typing. However, in both cases the

benchmarks were designed by ourselves. This was because the Smalltalk community

lacks a standard set of benchmark suites. Hence, these benchmarks can still be

biased. Also, our benchmarks, in scope were relatively small and limited, compared

with standard benchmarks in the industry. To further validate our affirmations, a

different set of micro and macro benchmarks can be used.

Another issue with our case studies is that we were focused on performance.

Another area that still needs further validation is the impact of Confined Gradual

Typing on programmers. We need to study how Confined Gradual Typing is used.

For that, it is necessary to first realize empirical studies about gradual typing.

After that, it is needed to realize empirical studies that compare the usage between

Gradual Typing and Confined Gradual Typing.

111

Appendix A

Confined Gradual Typing: Formal
Proof

A.1 SCGT: Type Safety

Lemma 1. (Inversion)

1. ∅ ` n : T , then |T | = Int

2. ∅ ` λx : T ′.e : T , then |T | = T1 → T2

3. ∅ ` 〈F ⇐ F ′〉f : T , then |T | = T1 → T2

4. ∅ ` 〈Dyn⇐ T 〉b : T , then T = Dyn

Proof. By case analysis:

Case v=n

1. ∅ ` n : ↓Int, by (IT-num)

2. ∅ ` n : T , |T | = Int

Case v=λx : T.e

1. ∅ ` λx : T.e : ↓(T → T ′), by (IT-abs)

2. ∅ ` λx : T.e : T ′′, |T ′′| = T → T ′

Case v=〈F ⇐ F ′〉f
1. ∅ ` 〈F ⇐ F ′〉f : F , by (IT-cast)

2. ∅ ` 〈F ⇐ F ′〉f : F , |F | = T → T ′ by definition of F

112

A.1 SCGT: Type Safety

Case v=〈Dyn⇐ T 〉b
1. ∅ ` 〈Dyn⇐ T 〉b : Dyn, by (IT-cast)

Lemma 2. (Canonical forms)

1. ∅ ` v : T and |T | = Int, then ∃n, v = n

2. ∅ ` v : T and |T | = T1 → T2, then v = f

3. ∅ ` v : T and T = Dyn, then v = 〈Dyn⇐ T 〉b

Proof. By case analysis:

Case |T | = Int

1. v = n, by Lemma 1-1

Case |T | = T1 → T2

1. v = λx : T.e or v = 〈F ⇐ F ′〉f , by Lemma 1-2,3

2. v = f

Case T = Dyn

1. v = 〈Dyn⇐ T 〉b, by Lemma 1-4

Theorem 8. (Progress) If ∅ ` e : T , then e is a value or e = CastError or ∃e′, e −→ e′.

Proof. By induction on the type rules.

Case (IT-num), (IT-abs)

1. e is a value

Case (IT-err)

1. e is CastError

Case (IT-var)

1. Case impossible with an empty environment (Well-typed)

113

A.1 SCGT: Type Safety

Case (IT-app)

1. By assumption:

(a) ∅ ` e1 e2 : T12

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12

2. If e1 is not a value, use rule (E-congr) with E = � e2 to progress.

3. If e1 is CastError, use rule (E-err) with E = � e2 to progress.

4. If e1 is a value and e2 is not a value, use rule (E-congr) with E = e1 � to progress.

5. If e1 is a value and e2 is CastError, use rule (E-err) with E = e1 � to progress.

6. If e1 and e2 are both values, e1 = λx : T2.e or e1 = 〈F ⇐ F ′〉 f by Lemma 2-2. Use
(E-app) or (E-fcastinv) respectively to progress.

Case (IT-add)

1. By assumption:

(a) ∅ ` e1 + e2 : ↓Int

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, T1 <: ↑Int, T2 <: ↑Int

2. If e1 is not a value, use rule (E-congr) with E = �e2 to progress.

3. If e1 is CastError, use rule (E-err) with E = �e2 to progress.

4. If e1 is a value and e2 is not a value, use rule (E-congr) with E = e1 +� to progress.

5. If e1 is a value and e2 is CastError, use rule (E-err) with E = e1 +� to progress.

6. If e′1 and e2 are both values, then e1 = n1 and e2 = n2 by Lemma 2-1. Use (E-add) to
progress.

Case (IT-cast)

1. By assumption:

(a) ∅ ` 〈T3 ⇐ T2〉e : T3

(b) ∅ ` e : T1, T1 <: T2, T2 ; T3

2. If e is not a value, use rule (E-congr) with E = 〈T3 ⇐ T2〉 � to progress.

3. If e is CastError, use rule (E-err) with E = 〈T3 ⇐ T2〉 � to progress.

4. If e is a value and T2 <: T3, use rule (E-remove) to progress.

5. If e is a value and T2 ; T3 and T2 6<: T3, then ∃F2, F3 T2 = F2 and T3 = F3. Then
〈T3 ⇐ T2〉e is a value

Lemma 3. (Substitution) If Γ, x : T ` e : T ′ and ∅ ` v : T ′′, T ′′ <: T , then Γ ` e[v/x] : T ′′′ and
T ′′′ <: T ′′.

Proof. By induction on the type rules

114

A.1 SCGT: Type Safety

Case (IT-num)

1. By assumption:

(a) Γ, x : T ` n : ↓Int

2. n[v/x] = n by Substitution definition

3. Γ, x : T ` n[v/x] : ↓Int, replacing (2) in (1-a)

4. Γ ` n[v/x] : ↓Int, by environment reduction.

Case (IT-var), y = x

1. By assumption:

(a) Γ, x : T ` x : T , Γ(x) = T

(b) ∅ ` v : T ′, T ′ <: T

2. x[v/x] = v, by Substitution definition

3. Γ ` x[v/x] : T ′, T ′ <: T replacing (2) in (1-b)

Case (IT-var), y 6= x

1. By assumption:

(a) Γ, x : T ` y : T ′, Γ(y) = T ′

2. y[v/x] = y, by Substitution definition

3. Γ ` y[v/x] : T , replacing (2) in (1-a) and environment reduction.

Case (IT-abs)

1. By assumption:

(a) Γ, x : T ` λy : T ′.e : ↓(T ′ → T ′′)

(b) Γ, x : T, y : T ′ ` e : T ′′

2. Without loss of generality, y 6= x

3. Γ, y : T ′ ` e[v/x] : T ′′, by induction of (1-b)

4. Γ ` λy : T ′.(e[v/x]) : ↓(T ′ → T ′′), by (IT-abs)

5. Γ ` (λy : T ′.e)[v/x] : ↓(T ′ → T ′′), by Substitution definition

Case (IT-err)

1. By assumption:

(a) Γ, x : T ` CastError : T ′

2. Γ ` CastError : T ′ by (IT-err)

3. Γ ` CastError[v/x] : T ′ by Substitution definition

115

A.1 SCGT: Type Safety

Case (IT-app)

1. By assumption:

(a) Γ, x : T ` e1 e2 : T12

(b) Γ, x : T ` e1 : T1

(c) Γ, x : T ` e2 : T2

(d) |T1| = T11 → T12, T2 <: T11

2. Γ ` e1[v/x] : T1, by induction of (1-b)

3. Γ ` e2[v/x] : T2, by induction of (1-c)

4. Γ ` e1[v/x] e2[v/x] : T12, by (IT-app)

5. Γ ` (e1 e2)[v/x] : T ′, by Substitution definition

Case (IT-add)

1. By assumption:

(a) Γ, x : T ` e1 + e2 : ↓Int

(b) Γ, x : T ` e1 : T

(c) Γ, x : T ` e2 : T ′

(d) T <: ↑Int,T ′ <: ↑Int

2. Γ ` e1[v/x] : T , by induction of (1-b)

3. Γ ` e2[v/x] : T ′, by induction of (1-c)

4. Γ ` e1[v/x] + e2[v/x] : ↓Int, by (IT-add)

5. Γ ` (e1 + e2)[v/x] : ↓Int, by Substitution definition

Case (IT-cast)

1. By assumption:

(a) Γ, x : T ` 〈T ′′ ⇐ T ′〉 e : T

(b) Γ, x : T ` e : T

(c) T <: T ′, T ′ ; T

2. Γ ` e[v/x] : T ′, by induction of (1-b)

3. Γ ` 〈T ⇐ T ′〉 (e[v/x]) : T , by (IT-cast)

4. Γ ` (〈T ⇐ T ′〉 e)[v/x] : T , by Substitution definition

Theorem 9. (Preservation) If ∅ ` e : T and e −→ e′, then ∅ ` e′ : T ′ and T ′ <: T .

Proof. By induction on the evaluation rules.

116

A.1 SCGT: Type Safety

Case (E-congr)

Subcase E = � e

1. By assumption:

(a) e1 e2 −→ e′1 e2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12, T2 <: T11

(c) e1 −→ e′1

2. ∅ ` e′1 : T ′1, T ′1 <: T1, |T ′1| = T ′11 → T ′12, by induction on (1-c)

3. |T ′1| <: |T1|, by using either (SS-reflex), (SS-gainup), (SS-losedown), (SS-down) or (SS-up)

4. T11 <: T ′11 and T ′12 <: T12, by using (SS-fun)

5. T2 <: T ′11, by using (SS-trans)

6. ∅ ` e′1 e2 : T ′12, T ′12 <: T12 by using (IT-app) and (4)

Subcase E = v �

1. By assumption:

(a) e1 e2 −→ e1 e
′
2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12, T2 <: T11

(c) e2 −→ e′2

2. ∅ ` e2 : T ′2, T ′2 <: T2

3. T ′2 <: T ′11, by using (SS-trans)

4. ∅ ` e1 e′2 : T12, by using (IT-app)

Subcase E = �+ e

1. By assumption:

(a) e1 + e2 −→ e′1 + e2

(b) ∅ ` e1 + e2 : T3, ∅ ` e1 : T1, ∅ ` e2 : T2

(c) e1 −→ e′1

2. T1 <: ↑Int,T2 <: ↑Int,T3 = ↓Int (From IT-add)

3. T ′1 <: ↑Int, by induction on (1-c) and (SS-trans)

4. ∅ ` e′1 + e2 : T3, by using (IT-add)

Subcase E = v +� Analogous to E = �+ e

117

A.1 SCGT: Type Safety

Subcase E = 〈T ⇐ T 〉 �
1. By assumption:

(a) 〈T2 ⇐ T1〉 e −→ 〈T2 ⇐ T1〉 e′

(b) ∅ ` T2 ⇐ T1〉 e : T2, ∅ ` e : T ′, T ′ <: T

(c) e −→ e′

2. ∅ ` e′ : T ′′, T ′′ <: T ′ by induction of (1-c)

3. T ′′ <: T , by (SS-trans)

4. ∅ ` 〈T2 ⇐ T1〉 e′ : T2 (IT-cast)

Case (E-app)

1. By assumption:

(a) (λx : T.e) v −→ e[v/x]

(b) ∅ ` (λx : T.e) v : T ′, ∅ ` v : T

2. ∅ ` e[v/x] : T ′′,T ′′ <: T ′, by Substitution type preservation

Case (E-add)

1. By assumption:

(a) v1 + v2 −→ v3

(b) ∅ ` v1 + v2 : T , v3 = v1 + v2

2. T = ↓Int (From IT-add)

3. ∅ ` v3 : ↓Int (From IT-num)

4. ∅ ` v3 : T , replacing by T

Case (E-merge)

1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ |T1|〉 v
(b) T1 ; T2

2. ∅ ` 〈Dyn⇐ T1〉 v : Dyn, reverse (IT-cast) in (1-a)

3. ∅ ` v : T ′1, T ′1 <: T1 reverse (IT-cast) in (2)

4. T1 6= ↑T ′1, because ↑T ′′1 6; Dyn

5. T2 6= ↓T ′2, because Dyn 6; ↓T ′2
6. T1 = ↓T ′1 or T1 = |T ′1|
7. T2 = |T ′2| or T2 = ↑T ′2
8. |T1|; T2, (SS-losedown) and/or (SS-gainup)

9. T1 <: |T1|, by (SS-losedown) or (SS-reflex)

10. T ′1 <: |T1|, by (SS-trans) and (3)

11. ∅ ` 〈T2 ⇐ |T1|〉 v : T2 (IT-cast)

118

A.2 SCGT: Cast Insertion

Case (E-remove)

1. By assumption:

(a) 〈T2 ⇐ T1〉 v −→ v

(b) T1 <: T2

(c) ∅ ` v : T1

2. ∅ ` v : T1 and T1 <: T2

Case (E-fcastinv)

1. By assumption:

(a) (〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(b) |F | = T1 → T2, |F ′| = T ′1 → T ′2, F ; F ′, F 6<: F ′, T ′1 ; T1, T2 ; T ′2

(c) ∅ ` (〈F ′ ⇐ F 〉 f) v : T ′2, ∅ ` v : T

2. ∅ ` 〈F ′ ⇐ F 〉 f : F ′, (IT-cast)

3. ∅ ` f : F ′′, F ′′ <: F , |F ′′| = T ′′1 → T ′′2 inverse (IT-cast)

4. T1 <: T ′′1 , T ′′2 <: T2, by using (SS-fun)

5. T <: T ′1, inverse (IT-app) of (1-c) using (2)

6. ∅ ` 〈T1 ⇐ T ′1〉 v : T1, (IT-cast)

7. ∅ ` f 〈T1 ⇐ T ′1〉 v : T ′′2 , (IT-app)

8. ∅ ` 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)) : T ′2, (IT-cast)

Case (E-err)

1. By assumption:

(a) E[CastError] −→ CastError

(b) ∅ ` E[CastError] : T

2. ∅ ` CastError : T , by using (IT-err)

A.2 SCGT: Cast Insertion

Lemma 4. Γ ` 〈〈T ⇐ T ′〉〉 e : T ′′ and Γ ` e : T ′, then T ′′ <: T

Proof. By case analysis

119

A.2 SCGT: Cast Insertion

Case T ′ <: T

1. Assumptions:

(a) Γ ` e : T ′

(b) T ′ <: T

2. T ′ <: T , by (1-b)

Case T ′ 6<: T

1. Assumptions:

(a) Γ ` 〈T ⇐ T ′〉 e : T ′′

(b) Γ ` e : T ′

2. Γ ` 〈T ⇐ T ′〉 e : T , by (IT-cast)

Theorem 10. (Cast insertion preserves typing) if Γ ` e⇒ e′ : T in the source language, then
Γ ` e′ : T in the internal language.

Proof. By induction on the type rules.

Case (C-num)

1. By assumption:

(a) Γ ` n⇒ n : ↓Int

2. Γ ` n : ↓Int, by using (IT-num)

Case (C-var)

1. By assumption:

(a) Γ ` x⇒ x : T

(b) Γ(x) = T

2. Γ ` x : T , by using (IT-var)

Case (C-abs)

1. By assumption:

(a) Γ ` λx : T1.e⇒ λx : T1.e
′ : ↓(T1 → T2)

(b) Γ, x : T1 ` e⇒ e′ : T2

2. Γ, x : T1 ` e′ : T2, by induction of (1-b)

3. Γ ` λx : T1.e
′ : ↓(T1 → T2), by using (IT-abs)

120

A.2 SCGT: Cast Insertion

Case (C-app1)

1. By assumption:

(a) Γ ` e1 e2 ⇒ (〈(T2 → Dyn)⇐ Dyn〉e′1)e′2 : Dyn

(b) Γ ` e1 ⇒ e′1 : Dyn

(c) Γ ` e2 ⇒ e′2 : T2

(d) T2 ; Dyn

2. Dyn→ Dyn ; T2 → Dyn, by (DC-fun)

3. Dyn ; T2 → Dyn, by (DC-dynfun2)

4. Γ ` e′1 : Dyn and Γ ` e′2 : T2, by induction of (1-b) and (1-c)

5. Γ ` (〈(T2 → Dyn)⇐ Dyn〉e′1) : T2 → Dyn, by (IT-cast)

6. Γ ` (〈(T2 → Dyn)⇐ Dyn〉e′1)e′2 : Dyn, by (IT-app)

Case (C-app2)

1. By assumption:

(a) Γ ` e1 e2 ⇒ e′1(〈〈T11 ⇐ T2〉〉e′2) : T12

(b) Γ ` e1 ⇒ e′1 : T1

(c) Γ ` e2 ⇒ e′2 : T2

(d) |T1| = T11 → T12 and T2 ; T11

2. Γ ` e′1 : T1 and Γ ` e′2 : T2, by induction of (1-b) and (1-c)

3. Γ ` 〈〈T11 ⇐ T2〉〉e′2 : T ′ and T ′ <: T11, by Lemma 4

4. Γ ` e′1(〈〈T11 ⇐ T2〉〉e′2) : T12, by (IT-app)

Case (C-add)

1. By assumption:

(a) Γ ` e1 + e2 ⇒ (〈〈↑Int⇐ T1〉〉e′1) + (〈〈↑Int⇐ T2〉〉e′2) : ↓Int

(b) Γ ` e1 ⇒ e′1 : T1

(c) Γ ` e2 ⇒ e′2 : T2

(d) T1 ; ↑Int and T2 ; ↑Int

2. Γ ` e′1 : T1 and Γ ` e′2 : T2, by induction of (1-b) and (1-c)

3. Γ ` (〈〈↑Int⇐ T1〉〉e′1) : T ′1 and T ′1 <: ↑Int, by Lemma 4

4. Γ ` (〈〈↑Int⇐ T2〉〉e′2) : T ′2 and T ′2 <: ↑Int, by Lemma 4

5. Γ ` (〈〈↑Int⇐ T1〉〉e′1) + (〈〈↑Int⇐ T2〉〉e′2) : ↓Int, by (IT-add)

121

A.3 SCGT: Correctness of Qualifiers

e ::=n | λx : T.e | 〈T ⇐ T 〉 e | e e | e+ e Expressions
t ::=◦ | • Taint

m ::=t | t̂ Mark
sm ::=nm | λmx : T.e Marked primitive value
b ::=nm | f Base values
f ::=λmx : T.e | 〈F ⇐ F ′〉 f Function values (F ′ 6<: F)
v ::=b | 〈Dyn⇐ T 〉 b Values (T 6= Dyn)
P ::=B | Dyn Primitive Type
F ::=T → T | ↓F | ↑F Function type
T ::=P | T → T | ↑T | ↓T Type
E ::=� e | v � | �+ e | v +� | 〈T ⇐ T 〉 � Evaluation Frames

Figure A.1: SCGT taint-tracking: Syntax.

A.3 SCGT: Correctness of Qualifiers

Taint-tracking internal language definition:

� syntax: Figure A.1

� static semantics: Figure A.2

� dynamic semantics: Figure A.3

Note that the semantics (and the proofs) use the following notations to express predicates on
marked values:

1. v◦: Has never passed through Dyn (i.e. a value that underneath is marked with ◦)

2. v•: Has passed through Dyn (i.e. a value that underneath is marked with •)

3. v̂: Can never pass through Dyn (i.e. a value that underneath is marked with ˆ)

4. v: can be any of the above

Lemma 5. If T1 ; ↓T2, then T1 <: ↓T2.

Proof. There is only one rule in the direct consistency relationship that takes ↓T2 in the right
side(DC-down). And that rule requires that ∃T ′1, T1 = ↓T ′1 and T ′1 <: T2 to be able to use it.
Using (SS-down), T1 <: ↓T2

Lemma 6. (Inversion, taint tracking)

1. if ∅ ` n◦ : T , then T = ↓Int

2. if ∅ ` n◦̂ : T , then T = lInt

3. if ∅ ` n• : T , then T = Int

4. if ∅ ` n•̂ : T , then T = ↑Int

5. if ∅ ` λ◦x : T ′.e : T , then T = ↓(T1 → T2)

6. if ∅ ` λ◦̂x : T ′.e : T , then T = l(T1 → T2)

122

A.3 SCGT: Correctness of Qualifiers

(TTT-num1)
Γ ` n◦ : ↓Int

(TTT-num2)
Γ ` n• : Int

(TTT-var)
Γ(x) = T

Γ ` x : T
(TTT-err)

Γ ` CastError : T

(TTT-abs1)
Γ, x : T1 ` e : T2

Γ ` λ◦x : T1.e : ↓(T1 → T2)

(TTT-abs2)
Γ, x : T1 ` e : T2

Γ ` λ•x : T1.e : T1 → T2
(TTT-↑) Γ ` st : T

Γ ` st̂ : ↑T

(TTT-app)
Γ ` e1 : T1 Γ ` e2 : T2 |T1| = T11 → T12 T2 <: T11

Γ ` e1 e2 : T12

(TTT-add)
Γ ` e1 : T1 Γ ` e2 : T2 T1 <: ↑Int T2 <: ↑Int

Γ ` e1 + e2 : ↓Int

(TTT-cast)
Γ ` e : T1 T1 <: T2 T2 ; T3

Γ ` 〈T3 ⇐ T2〉 e : T3

Figure A.2: SCGT taint-tracking: Typing.

123

A.3 SCGT: Correctness of Qualifiers

(TTE-congr)
e −→ e′

E[e] −→ E[e′]
(TTE-app1)

T 6= ↑T ′

(λx : T .e) v −→ e[v/x]

(TTE-app2)
T = ↑T ′

(λx : T .e) v −→ e[v̂/x]
(TTE-add)

n3 = n1 + n2

n1 + n2 −→ n◦3

(TTE-merge1)
T1 ; T2 T 6= Dyn v 6= v̂′

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v◦ −→ 〈T2 ⇐ |T1|〉v•

(TTE-merge2)
T1 ; T2 T 6= Dyn v 6= v̂′

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v• −→ 〈T2 ⇐ T1〉v•

(TTE-remove1)
T1 <: T2 T2 6= ↑T ′

〈T2 ⇐ T1〉 v −→ v
(TTE-remove2)

T1 <: T2 T2 = ↑T ′

〈T2 ⇐ T1〉 v −→ v̂

(TTE-fcastinv)
|F | = T1 → T2 |F ′| = T ′1 → T ′2 F ; F ′ F 6<: F ′

(〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(TTE-err)
E[CastError] −→ CastError

(TTE-merge-err)
T1 6; T3

〈T3 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ CastError

Figure A.3: SCGT taint-tracking: Evaluation.

124

A.3 SCGT: Correctness of Qualifiers

7. if ∅ ` λ•x : T ′.e : T , then T = T1 → T2

8. if ∅ ` λ•̂x : T ′.e : T , then T = ↑(T1 → T2)

9. if ∅ ` 〈F ⇐ F ′〉 f : T , then T = T1 → T2 or T = ↑(T1 → T2)

10. if ∅ ` 〈Dyn⇐ T 〉b : T , then T = Dyn

Proof. By case analysis:

Case v=n◦

1. ∅ ` n◦ : ↓Int, by (TTT-num1)

Case v=n◦̂

1. ∅ ` n◦ : ↓Int, by (TTT-num1)

2. ∅ ` n◦̂ : lInt, by (TTT-↑)

Case v=n•

1. ∅ ` n• : Int, by (TTT-num2)

Case v=n•̂

1. ∅ ` n• : Int, by (TTT-num2)

2. ∅ ` n•̂ : ↑Int, by (TTT-↑)

Case v=λ◦x : T.e

1. ∅ ` λ◦x : T.e : ↓(T → T ′), by (TTT-abs1)

Case v=λ◦̂x : T.e

1. ∅ ` λ◦x : T.e : ↓(T → T ′), by (TTT-abs1)

2. ∅ ` λ◦̂x : T.e : l(T → T ′), by (TTT-↑)

Case v=λ•x : T.e

1. ∅ ` λ•x : T.e : T → T ′, by (TTT-abs2)

Case v=λ•̂x : T.e

1. ∅ ` λ•x : T.e : T → T ′, by (TTT-abs2)

2. ∅ ` λ•̂x : T.e : ↑(T → T ′), by (TTT-↑)

125

A.3 SCGT: Correctness of Qualifiers

Case v=〈F ⇐ F ′〉f
1. F ′ ; F , F ′ 6<: F , by Well-typed value

2. ∅ ` 〈F ⇐ F ′〉f : F , by (TTT-cast)

3. ∅ ` 〈F ⇐ F ′〉f : F , |F | = T → T ′ by definition of F

4. F 6<: ↓(T → T ′), by contradiction between assumptions and Lemma 5

5. ∅ ` 〈F ⇐ F ′〉f : F , F = T → T ′ or F = ↑(T → T ′)

Case v=〈Dyn⇐ T 〉b
1. ∅ ` 〈Dyn⇐ T 〉b : Dyn, by (TTT-cast)

Lemma 7. (Canonical forms, taint tracking)

1. ∅ ` v : T and T <: ↓Int, then ∃n, v = n◦

2. ∅ ` v : T and T <: Int, then ∃n, v = n◦ or v = n•

3. ∅ ` v : T and T <: ↑Int, then ∃n, v = n

4. ∅ ` v : T and T <: ↓(T1 → T2), then ∃T ′, x, e, v = λ◦x : T ′.e and T <: T ′

5. ∅ ` v : T and T <: T1 → T2, then v = λ◦x : T ′.e or v = λ•x : T ′.e or v = 〈T1 → T2 ⇐ F ′〉f

6. ∅ ` v : T and T <: ↑(T1 → T2), then v = f

7. ∅ ` v : Dyn, then v = 〈Dyn⇐ T 〉 b◦ or v = 〈Dyn⇐ T 〉 b•

Proof. By case analysis:

Case T <: ↓Int

1. v = n◦, by Lemma 6-1

Case T <: Int

1. v = n◦ or v = n•, by Lemma 6-1,3

Case T <: ↑Int

1. v = n◦ or v = n◦̂ or v = n• or v = n•̂, by Lemma 6-1,2,3,4

2. v = n

Case T <: ↓(T1 → T2)

1. v = λ◦x : T ′.e, by Lemma 6-5

Case T <: T1 → T2

1. v = λ◦x.e or v = λ•x.e or v = 〈F ⇐ F ′〉f , by Lemma 6-5,7,9

2. v = λ◦x.e or v = λ•x.e or v = 〈T1 → T2 ⇐ F ′〉f , by (TTT-cast)

126

A.3 SCGT: Correctness of Qualifiers

Case T <: ↑(T1 → T2)

1. v = λ◦x.e or v = λ◦̂x.e or v = λ•x.e or v = λ•̂x.e or v = 〈F ⇐ F ′〉f , by Lemma 6-5,6,7,8,9

2. v = f

Case T = Dyn

1. v = 〈Dyn⇐ T 〉b, by Lemma 6-10

2. T ; Dyn, by (TTT-cast)

3. T 6= ↑T ′

4. b 6= v̂, by Lemma 7-1,2,4,5

Lemma 8. If ∅ ` v : T and T <: ↑T , then ∅ ` v̂ : ↑T

Proof. By case analysis of values:

Case T = Int

1. v = n, by Lemma 7-3

2. ∅ ` n̂ : ↑Int, by (TTT-↑)

Case T = T1 → T2

1. v = f , by Lemma 7-6

2. v = λx : T1.e or v = 〈↑T ⇐ T ′〉 f

3. v = λx : T1.e:

(a) x : T1 ` e : T2, well typed value

(b) ∅ ` λ̂x : T1.e : ↑T , by (TTT-↑)

4. v = 〈↑T ⇐ T ′〉 f :

(a) ∅ ` f : T ′, well typed value

(b) ̂〈↑T ⇐ T ′〉 f : ↑T , by (TTT-cast)

Theorem 11. (Progress, taint tracking) If ∅ ` e : T , then e is a value or e = CastError or ∃e′,
e −→ e′.

Proof. By induction on the type rules.

Case (TTT-num1), (TTT-num2), (TTT-abs1), (TTT-abs2), (TTT-↑)
1. e is a value

127

A.3 SCGT: Correctness of Qualifiers

Case (TTT-err)

1. e is CastError

Case (TTT-var)

1. Case impossible with an empty environment (Well-typed)

Case (TTT-app)

1. By assumption:

(a) ∅ ` e1 e2 : T3

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12, T2 <: T11

2. If e1 is not a value, use rule (TTE-congr) with E = � e2 to progress.

3. If e1 is CastError, use rule (TTE-err) with E = � e2 to progress.

4. If e1 is a value and e2 is not a value, use rule (TTE-congr) with E = e1 � to progress.

5. If e1 is a value and e2 is CastError, use rule (TTE-err) with E = e1 � to progress.

6. If e1 and e2 are both values, e1 = λx : T ′.e or e1 = 〈F ⇐ F ′〉 f by Lemma 7-6. Use
(TTE-app1), or (TTE-app2) for the former or (TTE-fcastinv) for the latter to progress.

Case (TTT-add)

1. By assumption:

(a) ∅ ` e1 + e2 : ↓Int

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, T1 <: ↑Int, T2 <: ↑Int

2. If e1 is not a value, use rule (TTE-congr) with E = �+ e2 to progress.

3. If e1 is CastError, use rule (TTE-err) with E = �+ e2 to progress.

4. If e1 is a value and e2 is not a value, use rule (TTE-congr) with E = e1 +� to progress.

5. If e1 is a value and e2 is CastError, use rule (TTE-err) with E = e1 +� to progress.

6. If e1 and e2 are both values, then e1 = n1 and e2 = n2 by Lemma 7-3. Use (TTE-add) to
progress.

Case (TTT-cast)

1. By assumption:

(a) ∅ ` 〈T2 ⇐ T1〉e : T2

(b) ∅ ` e : T ′1, T ′1 <: T1, T1 ; T2

2. If e is not a value, use rule (TTE-congr) with E = 〈T2 ⇐ T1〉 � to progress.

3. If e is CastError, use rule (TTE-err) with E = 〈T2 ⇐ T1〉 � to progress.

4. If e is a value and T1 = Dyn, then e1 = 〈Dyn ⇐ T ′〉 v◦ or e1 = 〈Dyn ⇐ T ′〉 v• by
Lemma 7-7. Use rule (TTE-merge1), (TTE-merge2) or (TTE-merge-err) to progress.

128

A.3 SCGT: Correctness of Qualifiers

5. If e is a value and T1 <: T2, use rule (TTE-remove1) or (TTE-remove2) to progress.

6. If e is a value and T1 ; T2 and T1 6<: T2, then ∃F1, F2 T1 = F1 and T2 = F2. Then
〈T2 ⇐ T1〉e is a value

Lemma 9. (Substitution) If Γ, x : T ` e : T ′ and ∅ ` v : T ′′, T ′′ <: T , then Γ ` e[v/x] : T ′′′ and
T ′′′ <: T ′.

Proof. By induction on the type rules

Case (TTT-num1)

1. By assumption:

(a) Γ, x : T ` n◦ : ↓Int

2. n◦[v/x] = n◦ by Substitution definition

3. Γ, x : T ` n◦[v/x] : ↓Int, replacing (2) in (1-a)

4. Γ ` n◦[v/x] : ↓Int, by environment reduction.

Case (TTT-num2)

1. By assumption:

(a) Γ, x : T ` n• : Int

2. n•[v/x] = n• by Substitution definition

3. Γ, x : T ` n•[v/x] : Int, replacing (2) in (1-a)

4. Γ ` n•[v/x] : Int, by environment reduction.

Case (TTT-var), y = x

1. By assumption:

(a) Γ, x : T ` x : T , Γ(x) = T

(b) ∅ ` v : T ′, T ′ <: T

2. x[v/x] = v, by Substitution definition

3. Γ ` x[v/x] : T ′, T ′ <: T replacing (2) in (1-b)

Case (TTT-var), y 6= x

1. By assumption:

(a) Γ, x : T ` y : T ′, Γ(y) = T ′

2. y[v/x] = y, by Substitution definition

3. Γ ` y[v/x] : T ′, replacing (2) in (1-a) and environment reduction.

129

A.3 SCGT: Correctness of Qualifiers

Case (TTT-err)

1. By assumption:

(a) Γ, x : T ` CastError : T ′

2. Γ ` CastError : T ′, by using (TTT-err)

3. Γ ` CastError[v/x] : T ′, by Substitution definition

Case (TTT-abs1)

1. By assumption:

(a) Γ, x : T ` λ◦y : T ′.e : ↓(T ′ → T ′′)

(b) Γ, x : T, y : T ′ ` e : T ′′

2. Without loss of generality, y 6= x

3. Γ, y : T ′ ` e[v/x] : T ′′, by induction of (1-b)

4. Γ ` λ◦y : T ′.(e[v/x]) : ↓(T ′ → T ′′), by (TTT-abs1)

5. Γ ` (λ◦y : T ′.e)[v/x] : ↓(T ′ → T ′′), by Substitution definition

Case (TTT-abs2)

1. By assumption:

(a) Γ, x : T ` λ•y : T ′.e : T ′ → T ′′

(b) Γ, x : T, y : T ′ ` e : T ′′

2. Without loss of generality, y 6= x

3. Γ, y : T ′ ` e[v/x] : T ′′, by induction of (1-b)

4. Γ ` λ•y : T ′.(e[v/x]) : T ′ → T ′′, by (TTT-abs2)

5. Γ ` (λ•y : T ′.e)[v/x] : T ′ → T ′′, by Substitution definition

Case (TTT-↑)
1. By assumption:

(a) Γ, x : T ` st̂ : ↑T ′

(b) Γ, x : T ` st : T ′

2. st̂ = st̂[v/x], by Substitution definition

3. Γ ` st̂[v/x] : T ′, by (TTT-up)

130

A.3 SCGT: Correctness of Qualifiers

Case (TTT-app)

1. By assumption:

(a) Γ, x : T ` e1 e2 : T11

(b) Γ, x : T ` e1 : T1

(c) Γ, x : T ` e2 : T2

(d) |T1| = T11 → T12, T2 <: T11

2. Γ ` e1[v/x] : T1, by induction of (1-b)

3. Γ ` e2[v/x] : T2, by induction of (1-c)

4. Γ ` e1[v/x] e2[v/x] : T12, by (TTT-app)

5. Γ ` (e1 e2)[v/x] : T12, by Substitution definition

Case (TTT-add)

1. By assumption:

(a) Γ, x : T ` e1 + e2 : ↓Int

(b) Γ, x : T ` e1 : T

(c) Γ, x : T ` e2 : T ′

(d) T <: ↑Int,T ′ <: ↑Int

2. Γ ` e1[v/x] : T , by induction of (1-b)

3. Γ ` e2[v/x] : T ′, by induction of (1-c)

4. Γ ` e1[v/x] + e2[v/x] : ↓Int, by (TTT-add)

5. Γ ` (e1 + e2)[v/x] : ↓Int, by Substitution definition

Case (TTT-cast)

1. By assumption:

(a) Γ, x : T ` 〈T ⇐ T ′〉 e : T

(b) Γ, x : T ` e : T ′′

(c) T ′ ; T , T ′′ <: T ′

2. Γ ` e[v/x] : T ′′, by induction of (1-b)

3. Γ ` 〈T ⇐ T ′〉 (e[v/x]) : T , by (TTT-cast)

4. Γ ` (〈T ⇐ T ′〉 e)[v/x] : T , by Substitution definition

Theorem 12. (Preservation, taint tracking) If ∅ ` e : T and e −→ e′, then ∅ ` e′ : T ′ and
T ′ <: T .

Proof. By induction on the evaluation rules.

131

A.3 SCGT: Correctness of Qualifiers

Case (TTE-congr)

Subcase E = � e

1. By assumption:

(a) e1 e2 −→ e′1 e2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12, T2 <: T11

(c) e1 −→ e′1

2. ∅ ` e′1 : T ′1, T ′1 <: T1, |T ′1| = T ′11 → T ′12, by induction on (1-c)

3. |T ′1| <: |T1|, by using either (SS-reflex), (SS-gainup), (SS-losedown), (SS-down) or (SS-up)

4. T11 <: T ′11 and T ′12 <: T12, by using (SS-fun)

5. T2 <: T ′11, by using (SS-trans)

6. ∅ ` e′1 e2 : T ′12, T ′12 <: T12 by using (TTT-app) and (4)

Subcase E = v �

1. By assumption:

(a) e1 e2 −→ e1 e
′
2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12, T2 <: T11

(c) e2 −→ e′2

2. ∅ ` e2 : T ′2, T ′2 <: T2

3. T ′2 <: T ′11, by using (SS-trans)

4. ∅ ` e1 e′2 : T12, by using (TTT-app)

Subcase E = �+ e

1. By assumption:

(a) e1 + e2 −→ e′1 + e2

(b) ∅ ` e1 + e2 : T3, ∅ ` e1 : T1, ∅ ` e2 : T2

(c) e′1 −→ e′′1

2. T1 <: ↑Int,T2 <: ↑Int,T3 <: ↓Int (From TTT-add)

3. T ′1 <: T1, by induction on (1-c)

4. T ′1 <: ↑Int, by using (SS-trans)

5. ∅ ` e′1 + e2 : T3, by using (TTT-add)

Subcase E = v +� Analogous to subcase E = �+ e

132

A.3 SCGT: Correctness of Qualifiers

Subcase E = 〈T ⇐ T 〉 �
1. By assumption:

(a) 〈T2 ⇐ T1〉 e −→ 〈T2 ⇐ T1〉 e′

(b) ∅ ` T2 ⇐ T1〉 e : T2, ∅ ` e : T ′1, T ′1 <: T1

(c) e −→ e′

2. ∅ ` e′ : T ′′1 , T ′′1 <: T ′1 by induction of (1-c)

3. T ′′1 <: T1, by (SS-trans)

4. ∅ ` 〈T2 ⇐ T1〉 e′ : T2 (TTT-cast)

Case (TTE-app1)

1. By assumption:

(a) (λx : T.e) v −→ e[v/x]

(b) ∅ ` (λx : T.e) v : T ′, ∅ ` v : T , T 6= ↑T ′′

2. ∅ ` e[v/x] : T ′′, T ′′ <: T ′, by Substitution type preservation

Case (TTE-app2)

1. By assumption:

(a) (λx : T.e) v −→ e[v̂/x]

(b) ∅ ` (λx : T.e) v : T ′, ∅ ` v : T , T = ↑T ′′

2. ∅ ` v̂ : T , by Lemma 8

3. ∅ ` e[v̂/x] : T ′′, T ′′ <: T ′, by Substitution type preservation

Case (TTE-add)

1. By assumption:

(a) v1 + v2 −→ v◦3

(b) ∅ ` v1 + v2 : T ′, v3 = v1 + v2

2. T ′ = ↓Int (From TTT-add)

3. ∅ ` v◦3 : ↓Int (From TTT-num1)

4. ∅ ` v◦3 : T ′, replacing T ′

133

A.3 SCGT: Correctness of Qualifiers

Case (TTE-merge1)

1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v◦ −→ 〈T2 ⇐ |T1|〉 v•

(b) T1 ; T2

2. T2 6= ↓T ′2, because Dyn 6; ↓T ′2
3. ∅ ` 〈Dyn⇐ T1〉 v◦ : Dyn, reverse (TTT-cast) in (1-a)

4. ∅ ` v◦ : T ′1, T ′1 <: T1 reverse (TTT-cast) in (2)

5. ∅ ` v• : |T ′1|, by either (TTT-num2) or (TTT-abs2)

6. |T ′1| <: |T1|, either by (SS-losedown) or (SS-down)

7. |T1| <: T2, by either (SS-reflex), (SS-losedown) or (SS-gainup)

8. ∅ ` 〈T2 ⇐ |T1|〉 v• : T2 (TTT-cast)

Case (TTE-merge2)

1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v• −→ 〈T2 ⇐ T1〉 v•

(b) T1 ; T2

2. ∅ ` 〈Dyn⇐ T1〉 v• : Dyn, reverse (TTT-cast) in (1-a)

3. ∅ ` v• : T ′1, T ′1 <: T1 reverse (TTT-cast) in (2)

4. ∅ ` 〈T2 ⇐ T1〉 v• : T2 (TTT-cast)

Case (TTE-remove1)

1. By assumption:

(a) 〈T2 ⇐ T1〉 v −→ v

(b) T1 <: T2, T2 6= ↑T ′2
(c) ∅ ` v : T1

2. ∅ ` v : T1, T1 <: T2

Case (TTE-remove2)

1. By assumption:

(a) 〈T2 ⇐ T1〉 v −→ v̂

(b) T1 <: T2, T2 = ↑T ′2
(c) ∅ ` v : T1

2. ∅ ` v̂ : ↑T ′1, by Lemma 8

3. ↑T ′1 <: T2, (by SS-gainup)

134

A.3 SCGT: Correctness of Qualifiers

Case (TTE-fcastinv)

1. By assumption:

(a) (〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(b) |F | = T1 → T2, |F ′| = T ′1 → T ′2, F ; F ′, F 6<: F ′, T ′1 ; T1, T2 ; T ′2

(c) ∅ ` (〈F ′ ⇐ F 〉 f) v : T ′2, ∅ ` v : T

2. ∅ ` 〈F ′ ⇐ F 〉 f : F ′, (TTT-cast)

3. ∅ ` f : F ′′, F ′′ <: F , |F ′′| = T ′′1 → T ′′2 inverse (TTT-cast)

4. T1 <: T ′′1 , T ′′2 <: T2, by using (SS-fun)

5. T <: T ′1, inverse (TTT-app) of (1-c) using (2)

6. ∅ ` 〈T1 ⇐ T ′1〉 v : T1, (TTT-cast)

7. ∅ ` f 〈T1 ⇐ T ′1〉 v : T ′′2 , (TTT-app)

8. ∅ ` 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)) : T ′2, (TTT-cast)

Case (TTE-err)

1. By assumption:

(a) E[CastError] −→ CastError

(b) ∅ ` E[CastError] : T

2. ∅ ` CastError : T , by using (TTT-err)

Theorem 13. (↓ correctness) If ∅ ` v : ↓T , then v = v′◦.

Proof. Direct proof by using the Canonical form lemma.

Theorem 14. (↑ correctness) If ∅ ` 〈Dyn⇐ T 〉 v : Dyn, then v 6= v̂′.

Proof. Direct proof by using the Canonical form lemma.

Erasure. To define taint erasure, we use brown coloring to denote an expression that lives in
the original (non-taint-tracking) language.

Definition 1. (Erase)

1. erase(n) = n

2. erase(λx : T.e) = λx : T.e

3. erase(〈T2 ⇐ T1〉 e) = 〈T2 ⇐ T1〉 erase(e)

4. erase(e1 e2) = erase(e1) erase(e2)

5. erase(e1 + e2) = erase(e1)+erase(e2)

6. erase(e[v/x]) = erase(e)[erase(v)/x]

Lemma 10. erase(e) = e

Proof. By induction on the syntax:

135

A.3 SCGT: Correctness of Qualifiers

Case e = n

1. erase(n) = n, by Definition 1-1

Case e = λx : T.e

1. erase(λx : T.e) = λx : T.e, by Definition 1-2

Case e = 〈T2 ⇐ T1〉 e′

1. erase(〈T2 ⇐ T1〉 e′) = 〈T2 ⇐ T1〉 erase(e′), by Definition 1-3

2. erase(e′) = e′,by induction on e′

3. 〈T2 ⇐ T1〉 erase(e′) = 〈T2 ⇐ T1〉 e′, by 2

Case e = e1 e2

1. erase(e1 e2) = erase(e1) erase(e2), by Definition 1-4

2. erase(e1) = e1, erase(e2) = e2, by induction on e1 and e2

3. erase(e1) erase(e2) = e1 e2, by 2

Case e = e1 + e2

1. erase(e1 + e2) = erase(e1)+erase(e2), by Definition 1-5

2. erase(e1) = e1, erase(e2) = e2, by induction on e1 and e2

3. erase(e1)+erase(e2) = e1+e2, by 2

Corollary 1. erase(v) = v

Proof. Direct proof using Lemma 10

Theorem 15. (Tainting faithfulness) If e −→ e′, then erase(e) −→ erase(e′).

Proof. By induction on the evaluation rules.

Case (TTE-congr)

Subcase E = � e

1. By assumption:

(a) e = e1 e2, e′ = e′1 e2

(b) e1 −→ e′1

2. erase(e1 e2) = erase(e1) erase(e2), by Definition 1-4

3. erase(e1) −→ erase(e′1), by induction on (1-b)

4. erase(e1) erase(e2) −→ erase(e′1) erase(e2), by (E-congr) with E = � e

5. erase(e′1) erase(e2) = erase(e′1 e2), by Definition 1-4

136

A.3 SCGT: Correctness of Qualifiers

Subcase E = v � Analogous to subcase E = � e

Subcase E = �+ e

1. By assumption:

(a) e = e1 + e2, e′ = e′1 + e2

(b) e1 −→ e′1

2. erase(e1 + e2) = erase(e1)+erase(e2), by Definition 1-5

3. erase(e1) −→ erase(e′1), by induction on (1-b)

4. erase(e1)+erase(e2) −→ erase(e′1)+erase(e2), by (E-congr) with E = �+ e

5. erase(e′1)+erase(e2) = erase(e′1 + e2), ¿by Definition 1-5

Subcase E = v +� Analogous to subcase E = �+ e

Subcase E = 〈T ⇐ T 〉 �
1. By assumption:

(a) e = 〈T2 ⇐ T1〉 e′′, e′ = 〈T2 ⇐ T1〉 e′′′

(b) ∅ ` T2 ⇐ T1〉 e′ : T2, ∅ ` e′ : T1

(c) e′′ −→ e′′′

2. erase(〈T2 ⇐ T1〉 e′′) = 〈T2 ⇐ T1〉 erase(e′′), by Definition 1-3

3. erase(e′′) −→ erase(e′′′) by induction of (1-c)

4. 〈T2 ⇐ T1〉 erase(e′′) −→ 〈T2 ⇐ T1〉 erase(e′′′) by (E-congr) with E = 〈T ⇐ T 〉 �

5. 〈T2 ⇐ T1〉 erase(e′′′) = erase(〈T2 ⇐ T1〉 e′′′), by Definition 1-3

Case (TTE-app1)

1. By assumption:

(a) e = (λx : T.e′′) v, e′ = e′′[v/x]

(b) T 6= ↑T ′

2. erase((λx : T.e′′) v) = erase(λx : T.e′′) erase(v)

3. erase(λx : T.e′′) erase(v) = (λx : T.e′′) v, by Definition 1-2 and Lemma 10

4. (λx : T.e′′) v −→ e′′[v/x], by (E-app)

5. erase(e′′[v/x]) = erase(e′′)[erase(v)/x], by Definition 1-6

6. erase(e′′)[erase(v)/x] = e′′[v/x], by Lemma 10 on both e′′ and v

137

A.3 SCGT: Correctness of Qualifiers

Case (TTE-app2)

1. By assumption:

(a) e = (λx : T.e′′) v, e′ = e′′[v̂/x]

(b) (λx : T.e) v −→ e[v̂/x]

(c) T = ↑T ′

2. erase((λx : T.e′′) v) = erase(λx : T.e′′) erase(v)

3. erase(λx : T.e′′) erase(v) = (λx : T.e′′) v, by Definition 1-2 and Lemma 10

4. (λx : T.e′′) v −→ e′′[v/x], by (E-app)

5. erase(e′′[v̂/x]) = erase(e′′)[erase(v̂)/x], by Definition 1-6

6. erase(e′′)[erase(v̂)/x] = e′′[v/x], by Lemma 10 on both e′′ and v̂

Case (TTE-add)

1. By assumption:

(a) e = n1 + n2, e′ = n◦3

(b) n3 = n1 + n2

2. erase(n1 + n2) = erase(n1)+erase(n2), by Definition 1-5

3. erase(n1)+erase(n2) = n1+n2, by Definition 1-1

4. n1+n2 −→ n3, by (E-add)

5. erase(n◦3) = n3, by Definition 1-1

Case (TTE-merge1)

1. By assumption:

(a) e = 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v◦,e′ = 〈T2 ⇐ |T1|〉 v•

(b) T1 ; T2

2. erase(〈T2 ⇐ Dyn〉〈Dyn ⇐ T1〉 v◦) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v◦), by Definition 1-3

3. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v◦) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ |T1|〉 v, by (E-merge)

5. erase(〈T2 ⇐ |T1|〉 v•) = 〈T2 ⇐ |T1|〉 erase(v•), by Definition 1-3

6. 〈T2 ⇐ |T1|〉 erase(v•)
= 〈T2 ⇐ |T1|〉 v, by Lemma 10

138

A.3 SCGT: Correctness of Qualifiers

Case (TTE-merge2)

1. By assumption:

(a) e = 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v•,e′ = 〈T2 ⇐ T1〉 v•

(b) T1 ; T2

2. erase(〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v•) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v•), by Definition 1-3

3. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v•) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ |T1|〉 v, by (E-merge)

5. T1 6= ↑T ′1, because T1 6; Dyn

6. T1 = |T1|, by Lemma 2-7

7. erase(〈T2 ⇐ T1〉 v•) = erase(〈T2 ⇐ |T1|〉 v•), by replacing T1

8. erase(〈T2 ⇐ |T1|〉 v•) = 〈T2 ⇐ |T1|〉 erase(v•), by Definition 1-3

9. 〈T2 ⇐ |T1|〉 erase(v•) = 〈T2 ⇐ |T1|〉 v, by Lemma 10

Case (TTE-remove1)

1. By assumption:

(a) e = 〈T2 ⇐ T1〉 v, e′ = v

(b) T1 <: T2, T2 6= ↑T ′2

2. erase(〈T2 ⇐ T1〉 v) = 〈T2 ⇐ T1〉 erase(v), by Definition 1-3

3. 〈T2 ⇐ T1〉 erase(v) = 〈T2 ⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ T1〉 v −→ v, by (E-remove)

5. erase(v) = v, by Lemma 10

Case (TTE-remove2)

1. By assumption:

(a) e = 〈T2 ⇐ T1〉 v, e′ = v̂

(b) T1 <: T2, T2 = ↑T ′2

2. erase(〈T2 ⇐ T1〉 v) = 〈T2 ⇐ T1〉 erase(v), by Definition 1-3

3. 〈T2 ⇐ T1〉 erase(v) = 〈T2 ⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ T1〉 v −→ v, by (E-remove)

5. erase(v̂) = v, by Lemma 10

139

A.4 RCGT- Type Safety

Case (TTE-fcastinv)

1. By assumption:

(a) e = (〈F ′ ⇐ F 〉 f) v, e′ = 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(b) |F | = T1 → T2, |F ′| = T ′1 → T ′2, F ; F ′, F 6<: F ′

2. erase((〈F ′ ⇐ F 〉 f) v) = (〈F ′ ⇐ F 〉 f) v, by Lemma 10

3. (〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)), by (E-fcastinv)

4. erase(〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))) =
〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)), by Lemma 10

A.4 RCGT- Type Safety

Progress is the same as SCGT.

Theorem 16. (Preservation) If ∅ ` e : T and e −→ e′, then ∅ ` e′ : T ′ and T ′ <: T .

Proof. Same as SCGT, except:

Case (E-merge)

1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ T1〉 v
(b) T1 ; T2

2. ∅ ` 〈Dyn⇐ T1〉 v : Dyn, reverse (T-cast) in (1-a)

3. ∅ ` v : T1 reverse (T-cast) in (2)

4. ∅ ` 〈T2 ⇐ T1〉 v : T2 (T-cast)

A.5 RCGT- Correctness of Qualifiers

Lemma 11. If T1 ; ↓T2 and T1 6= Dyn, then T1 <: ↓T2.

Proof. By induction on the Directed consistency rules that can take T1 6= Dyn and T ′2 = ↓T2

Case (DC-losedown)

1. By assumption:

(a) T1 = ↓T ′1, T1 ; ↓T2
(b) T ′1 ; ↓T2

2. T1 <: T ′1, by (SS-losedown)

3. T ′1 <: ↓T2, by induction on (1-b)

4. T1 <: ↓T2, by (SS-trans)

140

A.5 RCGT- Correctness of Qualifiers

Case (DC-gainup)

1. By assumption:

(a) T2 = ↑T ′2, T1 ; ↓T2
(b) T1 ; ↓T ′2

2. T1 <: ↓T ′2, by induction on (1-b)by (SS-losedown)

3. ↓T ′2 <: ↓T2, by (SS-gainup)

4. T1 <: ↓T2, by (SS-trans)

Case (DC-sub) Direct from premise

Lemma 12. If ↑T1 ; T2 and T2 6= Dyn, then ↑T1 <: T2

Proof. By induction on the Directed consistency rules that can take T2 6= Dyn and T ′1 = ↑T1

Case (DC-losedown)

1. By assumption:

(a) T1 = ↓T ′1, ↑T1 ; T2

(b) ↑T ′1 ; T2

2. ↑T1 <: ↑T ′1, by (SS-losedown)

3. ↑T ′1 <: T2, by induction on (1-b)

4. ↑T1 <: T2, by (SS-trans)

Case (DC-gainup)

1. By assumption:

(a) T2 = ↑T ′2, ↑T1 ; T2

(b) ↑T1 ; T ′2

2. ↑T1 <: T ′2, by induction on (1-b)

3. T ′2 <: T2, by (SS-gainup)

4. ↑T1 <: T2, by (SS-trans)

Case (DC-sub) Direct from premise

We want to prove that a value typed as ↓T has never been wrapped or a value typed as ↑T
will never be wrapped.

Theorem 17. (No wrapping with qualifiers) If e = 〈T2 ⇐ T1〉 f is a value and T2 6= Dyn, then
T1 6= ↑T ′1 and T2 6= ↓T ′2

Proof. By contradiction

141

A.5 RCGT- Correctness of Qualifiers

Case T1 = ↑T ′1
1. By Lemma 12, T1 <: T2.

2. However, by definition of value, T1 6<: T2. ⇒⇐

Case T2 = ↓T ′2
1. By Lemma 11, T1 <: T2.

2. However, by definition of value, T1 6<: T2. ⇒⇐

142

Appendix B

Confined Gradual Typing:
Microbenchmark Results

In these tables, time taken is reported in milliseconds and size means multiples of 100,000 collection
elements. The maximum measured relative error in the microbenchmarks is ±13.48%, with a
confidence level of 95%.

Size GT RCGT RCGT with ↓ RCGT with ↑
1 9.7 9.9 10.7 10.0
2 21.3 22.0 24.5 22.0
3 30.7 32.5 36.8 33.4
4 45.5 48.1 49.5 47.4
5 58.3 61.0 64.1 50.1
6 67.7 66.5 77.5 67.4
7 81.0 86.1 89.5 83.5
8 91.6 93.8 103.0 97.3
9 100.9 109.3 118.6 109.4

10 114.5 120.3 122.6 114.1

Table B.1: Wrapper creation, Fully Typed benchmark.

143

Size GT RCGT RCGT with ↓ RCGT with ↑
1 442.1 584.6 586.5 642.8
2 1173.8 1541.7 1527.3 1639.5
3 1618.5 2282.8 2243.8 2429.5
4 3319.9 4367.3 4299.1 4550.0
5 3749.1 4981.4 4898.0 5215.3
6 3972.8 5654.3 5455.2 5762.1
7 9323.9 11899.2 11783.0 12331.8
8 9995.8 13016.5 12902.1 13404.6
9 10540.8 13853.1 13745.9 14194.0

10 10800.9 13971.5 13761.1 14411.5

Table B.2: Wrapper creation, No Wrapping benchmark.

GT RCGT
1 530.1 706.7
2 1479.5 1958.7
3 2175.0 3099.1
4 4094.7 5427.1
5 4803.9 6319.6
6 5394.6 7220.8
7 10742.6 13388.2
8 11535.6 14966.0
9 12329.2 16201.0

10 12767.7 16720.9

Table B.3: Wrapper creation, Wrapping benchmark.

Size GT RCGT RCGT with ↓ RCGT with ↑
1 120.2 119.3 119.5 120.2
2 298.5 279.8 301.7 310.0
3 423.2 467.1 477.9 499.2
4 745.8 799.1 832.1 834.5
5 848.4 1017.1 1036.8 1045.8
6 993.3 1207.0 1232.8 1231.6
7 1735.0 2065.4 2091.5 2115.0
8 1900.8 2328.7 2332.0 2321.0
9 2005.1 2514.4 2529.5 2511.1

10 2246.0 2648.0 2694.2 2660.3

Table B.4: Closure evaluation, No Wrapping benchmark.

144

Size GT RCGT
1 1360.5 1713.9
2 3590.5 4634.8
3 5434.9 5236.3
4 8632.5 8739.1
5 10282.7 10421.1
6 11638.5 11936.7
7 20605.5 20751.2
8 22417.3 23291.6
9 24179.6 25280.2

10 25458.3 26359.4

Table B.5: Closure evaluation, Wrapping benchmark.

145

List of Figures

3.1 Relationship diagram between classes and metaclasses in Smalltalk. 27
3.2 A common structural protocol. 34
3.3 A common structural protocol across projects. 38
3.4 Definition of the instance relation on types. 41
3.5 Definition of the class relation on types . 41

4.1 Running times of the call strategy for untyped and typed code, as well as of baseline
Smalltalk. 59

4.2 Running times of the execution strategy for untyped and typed code, as well as of
baseline Smalltalk. 61

4.3 Running times of the hybrid strategy for untyped and typed code, as well as of
baseline Smalltalk. 64

4.4 Running times of different cast strategies on the microbenchmark using the untyped
client. 65

4.5 Running times of different cast strategies on the microbenchmark using the typed
client. 66

5.1 SCGT: Source language syntax . 85
5.2 SCGT: Static subtyping . 85
5.3 SCGT: Directed consistency . 86
5.4 SCGT: Typing . 87
5.5 SCGT: Internal language typing . 88
5.6 SCGT: Internal language dynamic semantics . 89
5.7 SCGT: Internal language syntax . 90
5.8 SCGT: Cast insertion . 91
5.9 RCGT: Modified directed consistency. Rules (DC-dynfun1, DC-dynfun2) are re-

moved, all other rules are preserved. 93
5.10 RCGT: Modified dynamic semantics. All other rules are preserved. 93
5.11 Running times for creating wrappers in GT and RCGT. RCGT is systematically

about 30% slower. 100
5.12 Running times for closure application when not wrapped (GT-U, RCGT-U) and

wrapped (GT-W, RCGT-W). Wrappers always implies about a 10X slowdown. . 102

A.1 SCGT taint-tracking: Syntax. 122
A.2 SCGT taint-tracking: Typing. 123
A.3 SCGT taint-tracking: Evaluation. 124

146

Bibliography

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically typed
language. ACM Trans. Program. Lang. Syst., 13(2):237–268, 1991. 4

[2] E. Allende, O. Callaú, J. Fabry, É. Tanter, and M. Denker. Gradual typing for Smalltalk.
Science of Computer Programming, 96(1):52–69, Dec. 2014. 8, 22, 60, 106

[3] E. Allende, J. Fabry, R. Garcia, and É. Tanter. Confined gradual typing. In Proceedings of
the 29th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 2014), pages 251–270, Portland, OR, USA, Oct. 2014. ACM
Press. 8, 10, 75, 107

[4] E. Allende, J. Fabry, and É. Tanter. Cast insertion strategies for gradually-typed objects.
In Proceedings of the 9th ACM Dynamic Languages Symposium (DLS 2013), pages 27–36,
Indianapolis, IN, USA, Oct. 2013. ACM Press. ACM SIGPLAN Notices, 49(2). 8, 53, 106

[5] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. Rpython: a step towards reconciling
dynamically and statically typed oo languages. In Proceedings of the 2007 symposium on
Dynamic languages, DLS ’07, pages 53–64, 2007. 51

[6] C. Anderson, S. Drossopoulou, and P. Giannini. Towards type inference for javascript.
In A. P. Black, editor, Proceedings of the 19th European Conference on Object-Oriented
Programming (ECOOP 2005), number 3586 in Lecture Notes in Computer Science, pages
428–452, Glasgow, UK, July 2005. Springer-Verlag. 51

[7] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strnǐsa, J. Vitek, and T. Wrigstad.
Thorn: robust, concurrent, extensible scripting on the JVM. In Proceedings of the 24th
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2009), pages 117–136, Orlando, Florida, USA, Oct. 2009. ACM
Press. 20

[8] G. Bracha. The strongtalk type system for smalltalk. http://www.bracha.org/nwst.html. 49

[9] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic Languages,
pages 1–6, 2004. 20, 49

[10] G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a production environment.
In Proceedings of the 8th International Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 95), pages 215–230, Washington, D.C., USA, Oct.
1993. ACM Press. ACM SIGPLAN Notices, 28(10). 29, 49

[11] O. Callaú. Empirically-Driven Design and Implementation of Gradualtalk. PhD thesis,
University of Chile, 2014. 22

[12] O. Callaú and É. Tanter. Programming with ghosts. IEEE Software, 30(1):74–80, 2013. 46

147

BIBLIOGRAPHY

[13] L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and Engineering
Handbook, chapter 103, pages 2208–2236. CRC Press, 1997. 3, 41

[14] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the ACM SIGPLAN International
Conference on Programming Language Design and Implementation (PLDI), pages 278–292,
Toronto, Ontario, Canada, 1991. 19

[15] G. Castagna, editor. Proceedings of the 18th European Symposium on Programming Languages
and Systems (ESOP 2009), volume 5502 of Lecture Notes in Computer Science, York, UK,
2009. Springer-Verlag. 149, 150, 151

[16] M. Chang, B. Mathiske, E. Smith, A. Chaudhuri, A. Gal, M. Bebenita, C. Wimmer, and
M. Franz. The impact of optional type information on JIT compilation of dynamically-typed
languages. In Proceedings of the ACM Dynamic Languages Symposium (DLS 2007), pages
13–24, Montreal, Canada, Oct. 2007. ACM Press. 18

[17] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999. 1

[18] Dart Team. Dart programming language specification, May 2013. Version 0.41. 73

[19] É. P. F. de Lausanne (EPFL). Scala. http://www.scala-lang.org. 37

[20] D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml sys-
tem release 3.12. Institut National de Recherche en Informatique et en Automatique,
http://caml.inria.fr/pub/docs/manual-ocaml/index.html, Jul 2011. 37

[21] I. Figueroa, É. Tanter, and N. Tabareau. A practical monadic aspect weaver. In Proceedings
of the 11th Workshop on Foundations of Aspect-Oriented Languages (FOAL 2012), pages
21–26, Potsdam, Germany, Mar. 2012. ACM Press. 50

[22] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In Proceedings of the
7th ACM SIGPLAN International Conference on Functional Programming, pages 48–59,
Pittsburgh, PA, USA, 2002. ACM Press. 18, 31, 78

[23] T. Freeman and F. Pfenning. Refinement types for ml. In Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Implementation, PLDI ’91, pages
268–277, New York, NY, USA, 1991. ACM. 20

[24] M. Furr. Combining Static and Dynamic Typing in Ruby. PhD thesis, University of Maryland,
2009. 50

[25] R. Garcia. Calculating threesomes, with blame. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’13, pages 417–428, New York,
NY, USA, 2013. ACM. 19

[26] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 1983. 23

[27] J. O. Graver and R. E. Johnson. A type system for smalltalk. In POPL ’90: Proceedings
of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 136–150, 1990. 50, 51

[28] D. Grossman, G. Morrisett, and S. Zdancewic. Syntactic type abstraction. ACM Transactions
on Programming Languages and Systems, 22(6):1037–1080, Nov. 2000. 91

[29] N. Haldiman, M. Denker, and O. Nierstrasz. Practical, pluggable types for a dynamic
language. Comput. Lang. Syst. Struct., 35(1):48–62, 2009. 50, 51

148

BIBLIOGRAPHY

[30] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. Higher-Order and
Sympolic Computation, 23(2):167–189, June 2010. 17, 53, 104

[31] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, Oct. 1969. 1

[32] L. Ina and A. Igarashi. Gradual typing for generics. In Proceedings of the 26th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
2011), pages 609–624, Portland, Oregon, USA, Oct. 2011. ACM Press. 15, 32, 33, 41

[33] R. E. Johnson. Type-checking smalltalk. SIGPLAN Not., 21(11):315–321, 1986. 50, 51

[34] R. E. Johnson, J. O. Graver, and L. W. Zurawski. Ts: an optimizing compiler for smalltalk.
SIGPLAN Not., 23(11):18–26, 1988. 50, 51

[35] K. Knowles and C. Flanagan. Hybrid type checking. ACM Transactions on Programming
Languages and Systems, 32(2):Article n.6, Jan. 2010. 20

[36] S. Krishnamurthi. Programming Languages: Application and Interpretation. 2007. Version
2007-04-26. 3

[37] D. Malayeri and J. Aldrich. Integrating nominal and structural subtyping. In J. Vitek, editor,
Proceedings of the 22nd European Conference on Object-oriented Programming (ECOOP
2008), number 5142 in Lecture Notes in Computer Science, pages 260–284, Paphos, Cyprus,
July 2008. Springer-Verlag. 37

[38] D. Malayeri and J. Aldrich. Is structural subtyping useful? an empirical study. In Castagna
[15], pages 95–111. 37

[39] J. Matthews and R. B. Findler. Operational semantics for multi-language programs. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2007), pages 3–10, Nice, France, Jan. 2007. ACM Press. 78, 104

[40] B. C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002. 1

[41] B. C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002. 1,
2, 32, 34, 35, 36, 41

[42] F. Pluquet, A. Marot, and R. Wuyts. Fast type reconstruction for dynamically typed
programming languages. In DLS ’09: Proceedings of the 5th symposium on Dynamic
languages, pages 69–78, 2009. 50, 51

[43] Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL 2010), Madrid, Spain, Jan. 2010. ACM Press. 150, 151

[44] A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual type inference.
In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL 2012), pages 481–494, Philadelphia, USA, Jan. 2012. ACM
Press. 18, 51, 53, 104

[45] D. Rémy. Theoretical aspects of object-oriented programming. chapter Type Inference for
Records in Natural Extension of ML, pages 67–95. MIT Press, Cambridge, MA, USA, 1994.
16

[46] B. V. Ryseghem, S. Ducasse, and J. Fabry. Seamless composition and reuse of customizable
user interfaces with Spec. Science of Computer Programming, 96(1):34–51, Dec. 2014. 101

149

BIBLIOGRAPHY

[47] C. Saito and A. Igarashi. Self type constructors. In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and applications, OOPSLA
’09, pages 263–282, New York, NY, USA, 2009. ACM. 29, 33, 41

[48] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior.
In L. Cardelli, editor, Proceedings of the 17th European Conference on Object-Oriented
Programming (ECOOP 2003), number 2743 in Lecture Notes in Computer Science, pages
248–274, Darmstadt, Germany, July 2003. Springer-Verlag. 36

[49] J. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-order casts. In
Castagna [15], pages 17–31. 17, 18, 19, 31, 104

[50] J. Siek and W. Taha. Gradual typing for functional languages. In Proceedings of the Scheme
and Functional Programming Workshop, pages 81–92, Sept. 2006. 4, 5, 10, 11, 12, 13, 15, 57,
84, 85, 86

[51] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, editor, Proceedings of the
21st European Conference on Object-oriented Programming (ECOOP 2007), number 4609 in
Lecture Notes in Computer Science, pages 2–27, Berlin, Germany, July 2007. Springer-Verlag.
4, 5, 10, 12, 13, 15, 37, 39, 42, 54, 57, 58, 74, 95

[52] J. Siek and P. Wadler. Threesomes, with and without blame. In POPL 2010 [43], pages
365–376. 18, 19, 53, 104

[53] R. Smit. Pegon. http://sourceforge.net/projects/pegon/. 49

[54] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub, and G. Bierman.
Gradual typing embedded securely in JavaScript. In Proceedings of the 41st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL 2014), pages 425–437,
San Diego, CA, USA, Jan. 2014. ACM Press. 17, 104, 109

[55] A. Takikawa, T. S. Strickland, C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Gradual
typing for first-class classes. In Proceedings of the 27th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA 2012), pages
793–810, Tucson, AZ, USA, Oct. 2012. ACM Press. 16, 72

[56] R. D. Tennent. The denotational semantics of programming languages. Commun. ACM,
19(8):437–453, Aug. 1976. 1

[57] S. Tobin-Hochstadt. Typed Scheme: From Scripts to Programs. PhD thesis, Northeastern
University, Jan. 2010. 18, 23, 49, 103

[58] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: from scripts to programs.
In Proceedings of the ACM Dynamic Languages Symposium (DLS 2006), pages 964–974,
Portland, Oregon, USA, Oct. 2006. ACM Press. 18, 78, 104

[59] S. Tobin-Hochstadt and M. Felleisen. The design and implementation of Typed Scheme. In
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2008), pages 395–406, San Francisco, CA, USA, Jan. 2008. ACM Press.
53

[60] S. Tobin-Hochstadt and V. St-Amour. The typed racket guide. http://docs.racket-lang.org/ts-
guide/. 49

[61] L. Tratt. Dynamically typed languages. Advances in Computers, 77:149–184, Jul 2009. 2, 3,
5

150

BIBLIOGRAPHY

[62] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Castagna [15], pages
1–16. 18, 31, 39, 78, 104

[63] T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating typed
and untyped code in a scripting language. In POPL 2010 [43], pages 377–388. 4, 20, 53

151

	1 Introduction
	1.1 Introduction
	1.1.1 Static Type Systems
	1.1.2 Dynamic Type Systems
	1.1.3 Integrating Static and Dynamic Type Systems

	1.2 Problem statement
	1.3 Goals of this work
	1.4 Methodology
	1.5 Contributions
	1.6 Structure of this thesis

	2 Gradual Typing
	2.1 Gradual Typing in a Nutshell
	2.2 Implementation
	2.2.1 Consistency
	2.2.2 Consistent subtyping
	2.2.3 Gradual typing type checker
	2.2.4 Cast Insertion process

	2.3 Extensions to Gradual Typing
	2.3.1 Generics
	2.3.2 First-class classes
	2.3.3 More than one kind of dynamically typed code

	2.4 Performance related work
	2.5 Blame tracking
	2.6 Other type systems

	3 Gradualtalk
	3.1 Introduction
	3.2 Introduction to Smalltalk
	3.2.1 Programming in Smalltalk
	3.2.2 Classes and metaclasses

	3.3 Gradual Typing for Smalltalk
	3.3.1 From dynamically typed to gradually typed code
	3.3.2 Closures
	3.3.3 Self and metaclasses
	3.3.4 Casts
	3.3.5 Blame tracking

	3.4 Refining the Type System
	3.4.1 Parametric Polymorphism
	3.4.2 Union Types
	3.4.3 Structural Types
	3.4.4 Nominal Types
	3.4.5 Reconciling Nominal and Structural types
	3.4.6 Safety and Type Soundness
	3.4.7 Summary

	3.5 Type System Semantics
	3.5.1 Self types
	3.5.2 Subtyping
	3.5.3 Runtime Coercion

	3.6 Implementation
	3.6.1 Live system
	3.6.2 The Untouchables
	3.6.3 Fragile classes
	3.6.4 Performance

	3.7 Related Work
	3.8 Conclusion

	4 Cast Insertion Strategies for Gradually-Typed Objects
	4.1 Introduction
	4.2 Experimental Setting: Microbenchmarks
	4.3 Call strategy
	4.3.1 Description
	4.3.2 Microbenchmarks

	4.4 Execution strategy
	4.4.1 Description
	4.4.2 Microbenchmarks

	4.5 Hybrid strategy
	4.5.1 Description
	4.5.2 Microbenchmarks

	4.6 Macrobenchmarks
	4.6.1 Experimental Setup
	4.6.2 Results

	4.7 Comparing Strategies beyond Performance
	4.7.1 Memory
	4.7.2 Modularity
	4.7.3 Interaction with inheritance

	4.8 Conclusion

	5 Confined Gradual Typing
	5.1 Introduction
	5.2 Motivation
	5.2.1 Reliability
	5.2.2 Efficiency
	5.2.3 Confined Gradual Typing
	5.2.3.1 Strict Confined Gradual Typing
	5.2.3.2 Relaxed Confined Gradual Typing

	5.2.4 Usage Scenarios of Confined Gradual Typing

	5.3 Strict Confined Gradual Typing
	5.3.1 Source Language
	5.3.2 Internal Language
	5.3.3 Translating Source Programs to the Internal Language
	5.3.4 Type Safety and Correctness of Qualifiers

	5.4 Relaxed Confined Gradual Typing
	5.4.1 Directed Consistency, Revisited
	5.4.2 Dynamic Semantics, Revisited
	5.4.3 Type Safety and Correctness of Qualifiers

	5.5 Implementation
	5.5.1 From Theory to Practice
	5.5.2 Confined Gradual Typing in Gradualtalk

	5.6 Performance Evaluation
	5.6.1 Microbenchmarks
	5.6.1.1 The Cost of Boundary Crossing
	5.6.1.2 The Cost of Applying Wrappers

	5.6.2 Macrobenchmark
	5.6.3 Summary

	5.7 Related Work
	5.8 Conclusion

	6 Conclusion
	6.1 Summary of the work
	6.1.1 Gradualtalk
	6.1.2 Cast Insertion Strategies
	6.1.3 Confined Gradual Typing

	6.2 Perspectives
	6.2.1 Extensions
	6.2.2 Formalization
	6.2.3 Inheritance and Modularity
	6.2.4 Case studies

	A Confined Gradual Typing: Formal Proof
	A.1 SCGT: Type Safety
	A.2 SCGT: Cast Insertion
	A.3 SCGT: Correctness of Qualifiers
	A.4 RCGT- Type Safety
	A.5 RCGT- Correctness of Qualifiers

	B Confined Gradual Typing: Microbenchmark Results
	List of Figures
	Bibliography

