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On the Characterization of -Compressible
Ergodic Sequences
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Abstract—This work offers a necessary and sufficient condition
for a stationary and ergodic process to be -compressible in the
sense proposed byAmini, Unser andMarvasti [“Compressibility of
deterministic and random infinity sequences,” IEEE Trans. Signal
Process., vol. 59, no. 11, pp. 5193–5201, 2011, Def. 6]. The condition
reduces to check that the -moment of the invariant distribution
of the process is well defined, which contextualizes and extends the
result presented by Gribonval, Cevher and Davies in [“Compress-
ible distributions for high-dimensional statistics,” IEEE Trans. Inf.
Theory, vol. 58, no. 8, pp. 5016–5034, 2012, Prop. 1]. Furthermore,
for the scenario of non- -compressible ergodic sequences, we pro-
vide a closed-form expression for the best -term relative approx-
imation error (in the -norm sense) when only a fraction (rate) of
the most significant sequence coefficients are kept as the sequence-
length tends to infinity.We analyze basic properties of this rate-ap-
proximation error curve, which is again a function of the invariant
measure of the process. Revisiting the case of i.i.d. sequences, we
completely identify the family of -compressible processes, which
reduces to look at a polynomial order decay (heavy-tail) property
of the distribution.
Index Terms—Asymptotic analysis, best -term approximation

error analysis, compressed sensing, compressibility of infinite se-
quences, compressible priors, ergodic processes, heavy-tail distri-
butions.

I. INTRODUCTION

D EFINING notions of compressibility for a stochastic
process, meaning that with high probability realizations

of the process can be well-approximated in some sense by
its best -term sparse version [3], has been a recent topic of
active research [1], [2], [4]–[6]. Quantifying compressibility
for random sequences and the identification of compressible
and sparse distributions (priors) are relevant problems consid-
ering the recent development of the compressed sensing theory
[7]–[9] and its applications. These results can play an important
role in regression [10], signal reconstruction (for instance in
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the classical compressed sensing setting [2, Th. 2]), inference,
and decision-making problems [11], [12]. One important case
is defining such a compressibility notion for i.i.d. processes
where the probability measure is equipped with a density
function1 [1], [2]. In this context, realizations of the process are
non-sparse (almost surely), and conventional ways of defining
compressibility for finite dimensional signals, based on the
power-law decay of the best -term approximation error (or
sequences that belong to the weak- ball), are not applicable
either, as shown in [1], [2].
Motivated by this problem, Amini et al. [1] and Gribonval et

al. [2] have introduced new definitions for compressible random
sequences. These notions are not based on the typical absolute
approximation error decay pattern of the signals, but on a rela-
tive -best -term approximation error behavior. In particular,
Amini et al. [1] formally define the concept of -compressible
process (details in Section II below). This new definition pro-
vides a meaningful way of categorizing i.i.d. random sequences
(and their distributions), in terms of the probability that almost
all the -relative energy of the process is concentrated in an
arbitrarily small sub-dimension of the coordinate domain, as
the block-length tends to infinity. Under this context, they pro-
vide two important results using the theory of order statistics
[1]. First of all, [1, Theorem 3] shows that a concrete family of
i.i.d. heavy-tail distributions is -compressible (including the
generalized Pareto, Students’s and log-logistic), while on the
other side, [1, Theorem 1] demonstrates that families with expo-
nentially decaying tails (such as Gaussian, Laplace, generalized
Gaussian) are not -compressible. Therefore, it is interesting to
ask about the compressibility of i.i.d processes not considered
in that analysis. In this direction, we highlight the work of Gri-
bonval et al. [2], which under an alternative notion of relative
-compressibility (involving almost sure convergences instead

of convergence in measure, which was the criterion adopted in
[1]) and a different analysis setting (fixed-rate instead of the
variable rate used in [1]), elaborates an exact dichotomy be-
tween compressible and non-compressible i.i.d. sequences. This
raises the question of whether it is possible to connect Amini
et al. [1] -compressibility with the more refined almost sure
(a.s.) convergence analysis of the best -term relative approx-
imation error in [2, Prop. 1], with the idea of completing the
analysis of [1, Ths. 1 and 3].
To address this question, we extend the analysis from i.i.d.

sequences to stationary and ergodic processes. In this broader
setting, the main result (Theorem 1) provides a necessary and
sufficient condition for a stationary and ergodic process to be
-compressible (in the sense of Amini et al. [1, Def. 6]), for

1The probability is absolutely continuous with respect to the Lebesgue mea-
sure [13].
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any arbitrary . Furthermore, for the case of non -com-
pressible ergodic processes, we provide a closed-form expres-
sion for an achievable rate v/s -approximation error func-
tion. The key element in the proof is the application of the er-
godic theorem [14] and the derivation of intermediate almost
sure convergence results (Lemma 2 and 3 in Section IV) that
match and extend the approximation result presented by Gri-
bonval et al. [2, Prop. 1] developed for the i.i.d. case. A corol-
lary of Theorem 1 implies a necessary and sufficient condi-
tion to categorize i.i.d. random sequences in terms of -com-
pressibility, which completes the analysis presented in [1, Ths.
1 and 3]. In addition, for the class of non- -compressible er-
godic sequences, we provide an analysis of its rate-approxima-
tion error curve demonstrating that is continuous, differentiable
(Theorem 2) and is convex under some conditions (Theorem
3). Finally as an application, we revisit the interplay between
-compressible ergodic sequences and the performance of the

classical Gaussian compressed sensing (GCS) setting [15], in
the asymptotic regime when the block-length tends to infinity.
Using the well-known -instance optimality performance guar-
antee of the GCS scheme [3], [15], [16], we show (Theorem 4)
that an arbitrarily small number of linear measurements (zero-
rate) is needed to achieve zero distortion, in an -noise to signal
ratio (NSR) sense. A preliminary version of this work was pre-
sented in [17]. The current version extends the presentation and
analysis of the main result, provides further analysis of non-
compressible ergodic sequences and explores connections with
compressed sensing (CS).
The rest of the paper is organized as follows. Section II in-

troduces some preliminary elements and definitions.
Sections III and IV are devoted to the presentation of the main
result on the characterization of compressible ergodic processes
and its proof, respectively. Section V studies basic properties of
the the rate-approximation error curve for non -compressible
processes. Finally, Section VI elaborates an interplay between
-compressibility and compressed sensing. Some of the proofs

and derivations are presented in the Appendix sections.

II. PRELIMINARIES AND BASIC DEFINITIONS

For a finite dimensional vector in ,
let denote the ordered vector such that

. For some and
, let

(1)

denote the -norm of the best -term approximation of ,
where by definition . In addition,

(2)
denotes the best -term -approximation error of , in the
sense that if is the collection
of -sparse signals, then .
For the analysis of infinite sequences, Amini et al. [1] and
Gribonval et al. [2] have proposed the following relative best
-term -distortion indicator:

(3)

with the objective of extending notions of compressibility to
sequences that have infinite -norm.

A. Rate of Innovation vs. Distortion for Infinite Sequences
Definition 1: For a sequence , the rate-distor-

tion pair is -achievable for if, there is a se-
quence of positive integers such that
and

(4)

where is the finite-block version of
length of .
Note that the use of the relative best -term -distortion in

(4) allows the analysis of sequences with infinite -norm.
Definition 2: For a sequence and , we

define its rate-distortion - approximation function by

(5)

for all .
A simple consequence of these definitions is the following

result:
Proposition 1: For all such that

then .
(The proof is presented in Appendix IV-A)
Hence, can be seen as the critical asymptotic

rate of innovation of when a relative best -term -ap-
proximation error of magnitude is tolerated.
Alternatively, Amini, Unser andMarvasti [1] have introduced

a notion of critical dimension for finite length signals, and from
this, a notion of -compressibility for infinite sequences. We
revisit those notions here:
Definition 3: [1, Def. 4] For and , let us

define

(6)

Then, a sequence is called -compressible if,

(7)

where is the truncated finite-block vector of
.

This notion of compressibility says that when the
block-length tends to infinity, a negligible fraction of the coef-
ficients is needed to represent with an arbitrary small
-distortion in the sense of (3). Note that is

signal dependent and a variable-rate sequence. In addition, it
offers the critical number of terms needed to achieve a best
-term approximation error smaller or equal to in the sense of

(3). From this, it should be related with the critical rate (from a
fixed-rate analysis) described in Definition 2. That relationship
is presented in the following result result:
Lemma 1: Let and , then

(8)
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(The proof is presented in Appendix IV-B)
A corollary of this result implies that if the limit

of exists, then
. In particular from Lemma 1, if is -com-

pressible, then for all . We refer the
interested reader to Amini et al. [1] for further discussion and
examples of -compressible sequences.

B. Rate of Innovation vs. Distortion for Random Sequences
Analogous notions of rate of innovation vs. best -term
-distortion and compressibility can be stated for the case

of random sequences (or processes). Let be a
random sequence with values in and characterized
by its consistent family of finite-dimensional probabilities

[14], where
and denotes the space of probability measures for
the Borel measurable space . As a short-hand,
we denote by the process distribution of

.
Let us define the following measurable set:

(9)

where the equality is by (6). Then in analogy with Definition 3,
Amini et al. [1] proposed the following:
Definition 4: [1, Defs.5 and 6] Let be a random

sequence (equipped with ). Then for any and
,

(10)

is the critical number of terms that makes the set -typical
with respect to . The process (and , respectively)
is said to be -compressible, if , ,

(11)

Alternatively, we can consider the following fixed-rate no-
tions:
Definition 5: Let be a process characterized by ,

and let us consider , and . We say
that the rate-distortion pair (r,d) is -achievable for with
probability, if there exists a sequence of positive integers

such that and

(12)

Definition 6: The rate vs. best -term approximation error
function of (in short the rate-approximation error
function of ) with probability is given by2:

(13)
A simple relationship between and the critical

number of terms in (10) can be established in the asymptotic
regime when goes to infinity, showing that our fixed-rate
concept is a weaker one.

2Note that this rate-approximation error function (of ) is expressed
as a function of .

Proposition 2: For any and

(14)

(The proof is presented in Appendix IV-C)
In the next section, we will study the class of stationary and

ergodic processes [14], where the best -term approximation
properties measured in terms of will be characterized
in closed-form. Furthermore, it will be shown for this class of
random sequences that

for all and , refining the basic relationship
presented in Proposition 2.

III. ANALYSIS OF ERGODIC PROCESSES
Let be a stationary and ergodic process with distri-

bution , where denotes its mar-
ginal shift-invariant distribution [14]. For simplicity3, we as-
sume that where denotes the Lebesgue measure [14].
Then is equipped with a probability density function (pdf) and

.
For a measure on , a measurable function

is said to be integrable with respect
to if [14]

(15)

where denotes the collection of -integrable functions.
We are in the position to state the main result:
Theorem 1: Let be a stationary and ergodic process

with shift-invariant distribution such that .
Then for any , we have the following dichotomy:

i) If : then is -compressible,
i.e., ,

(16)

ii) If : then is not -compress-
ible. Furthermore, if we introduce the induced probability
measure in by:

(17)

then and

(18)

where

(19)

and is a solution of the identity:

(20)

3The general case when has atomic components can be extended from the
result presented here. This extension does not offer new insights, while it re-
quires the introduction of technicalities that make the statement and the proof
of the result more involved.
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The proof is presented in Section IV.

A. Discussion and Interpretation of Theorem 1
1: Theorem 1 offers a necessary and sufficient condition for

a stationary and ergodic process to be l -compressible in
the sense elaborated in Definition 4.

2: In the case of non -compressible processes, i.e., when
, Theorem 1 offers what we call the

achievable rate-distortion region for the process, given by
the set of critical rate-distortion pairs:

(21)

This region depends solely on the shift invariant measure
and its induced measure in (17).

More details on the characterization of this region will be
presented in Section V.

3: Under the assumption that and
, we have that any rate and distortion

are achievable (see proof in Section IV and more
details in Section V). This fact is used to derive a concrete
analytical expression for in (18). Furthermore,
from the characterization in (18) and (20), it can be shown
that is a continuous and differentiable function
with respect to (see Theorem 2 in Section V).

4: In both scenarios i) and ii), the critical rate for
a stationary and ergodic process is independent of . The
reason is that asymptotically as goes to infinity, the char-
acterization of implies to compute probabilities
on events that belong to the tail -field of the process,
which is known to be trivial (i.e., their events have zero
or one probability) for the case of ergodic processes [14],
[18], [19]. Therefore, we obtain almost sure convergence
results that make independent of the value of our object
of interest (see Section IV for details).

5: A natural order among stationary and ergodic process can
be established from Theorem 1.

Proposition 3: If is -compressible for some
, then is -compressible for all .
Proof: If , then for all
.

Proposition 4: If is not -compressible for
then is not -compressible for all .

Proof: If , then for all
.

6: Revisiting the i.i.d. scenario4, we want to highlight the re-
sults by Amini et al. [1] related to -compressibility in
the sense of (11). In particular, [1, Theorem 1] says that
if is such that for some ,
then the i.i.d. process is not -compressible. In contrast,
[1, Theorem 3] says that if belongs to the domain of
attraction of an -stable distribution [14, Chap. 9.11, pp.
207–213] with , then the process is -com-
pressible. First for , Theorem 1 provides a refined
result, revealing a richer (indeed, the complete) family of
i.i.d. distributions that are not -compressible. In fact,
in addition to distributions that go to zero exponentially,
and consequently , (Gaussian, Laplacian,

4It is well-known that i.i.d. processes are stationary and ergodic [14].

Gamma, etc.), heavy tail distributions whose density func-
tion are tail lower and upper dominated by a power law
decay of the form with are not -compress-
ible either5. On the other hand, concerning [1, Th. 3], it is
simple to verify that any that is in the domain of attrac-
tion of an -stable law with [14, Ch.9] satisfies that

(see Appendix IV-E for details), and
consequently, part i) of Theorem 1 covers this family of
-compressible i.i.d. processes.

7: Complementing the previous point, from Theorem 1 we
can state the following:

Corollary 1: Let be a stationary and ergodic
process, if where , then

Therefore, stationary and ergodic processes equipped with a
shift-invariant distribution that follows a Gaussian, generalized
Gaussian, Laplacian and Gamma are not -compressible in the
sense of Definition 4, for any . In addition, if is finitely
supported, i.e., where , then its process
is not -compressible for any .
Corollary 2: Let be a ergodic process with in-

variant distribution and density ,
. If decays as for some , then6

Therefore, for shift invariant distributions characterized by a
power-tail behavior, which belong to the category of heavy tail
distributions, a complete picture of the range in which its er-
godic process is -compressible is obtained.
8: For the proof of Theorem 1, we derive almost sure con-

vergence results (see Lemma 2 and 3 in Section IV).
In the case when : if is such
that for some , then

, . Fur-
thermore, for for some , it
follows that , . In the
case when : if , then

These results are con-
sistent and extend the result by Gribonval et al. [2, Prop.
1], which for the i.i.d. case shows the same almost-sure
convergence limit for the object . Their proof
was based on the Wald’s lemma of order statistics (see
details in [2, Th. 6]). In contrast, our proof is based on
the use of the tail events in (19), some induced empirical
distributions on those events, and the convergence of those
empirical measures through the application of the ergodic
theory (see Section IV for details). The idea adopted in
our proof was to look at the empirical distributions of
and as the objects of interest, instead of the partial

5A measure is tail lower and upper dominated by a no-negative func-
tion , if there exits and such that for any such
that then . Here denotes the
pdf of .

6We say that decays as if there exists and
and , where: if ,

then , ; if , then
, ; and otherwise,

then .
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Fig. 1. Graphical representation of the relationship between , and
in Theorem 1. Notice that is the total area under the bottom curve.

sums of the ordered statistics considered in [1], [2]. That
difference was essential to extend the mentioned almost
sure convergence results (in Lemma 2 and 3) to the family
of stationary and ergodic processes.

9: Under the assumption that , Theorem 1 shows an-
other interesting dichotomy:

Corollary 3: If for some and for some
it holds that

then the latter also holds for all and for all
. Likewise, if for some and some

then for all and all
.

B. Graphical Interpretation of
Note from (20) and (17) that and

, respectively.
The numerator in the last expression corresponds to the ex-
pected value of , for a random variable
where . Similarly, from (18), the optimal rate
equals the expected value of . Thus, cor-
responds to the area under the “tail” of , which denotes
the pdf of , depicted in Fig. 1 (top), while coincides with
the area under the curve to the left of , coloured
in Fig. 1 (below). This graphical representation allows for an
intuitive interpretation of the relationship between and the
compressibility of a given stationary ergodic process .
In order for this process to be compressible, must be
zero for every and for every . Equivalently,
(and recalling from (16) that is a limit), it must be
possible to achieve any while keeping an arbitrarily
small fraction of the elements of the process, as .
Such requirement is satisfied if and only if (i.e.,
if ), which implies that no matter how large is
chosen, the shaded area in Fig. 1 (bottom), being infinite, will
yield a zero .

IV. PROOF OF THE MAIN RESULT
Proof: Let us first consider the case when
. For the rest, it is important to note that given that
, then for all there exists such that

, and for all there exists such that
.7

For , we can define:

(22a)

where from the ergodic theorem [14, Th. 6.28], ,

(22b)

(22c)

The second almost sure convergence is from the assumption that
. Then, we can state the following:

Lemma 2: Let be a stationary and ergodic process
with distribution and . Then for any

and sequence such that ,
we have that

(23)

In addition, ,

(24)

where is a solution of . (The
proof is presented in Section IV-A)
In order to prove (18), let us fix . Then there exists
, such that (20) holds and from Lemma 2 if is such

that , then , .
Let us consider an arbitrary such that

, then again from Lemma 2, if a se-
quence is such that , then

, . Conse-
quently, convergences almost surely to a distortion
strictly less than , and then for all :

(25)

Hence from the definition of in (10), we have that
eventually in , which implies that

(26)

This upper bound is valid for any such that
, then

(27)

7In general, the achievability condition on for the rate ( )
and the distortion ( ) are not unique.
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The first inequality comes from Proposition 2 and the last
equality from the fact that the function is
continuous with respect to as .
To derive a lower bound, let us consider an arbitrary

. We know that there exists such that
. Again from Lemma 2, for all such that

, then ,
.. Therefore,

(28)

This result implies that eventually in , and,
consequently,

(29)

On the other hand from (28), we have that it is necessary that
. This last inequality and (29) are valid for any
, then and

, which from (27) proves (18).
Moving to the case where , we have that

, then from the ergodic theorem [14] ,

(30)

(31)

Equation (31) comes from
a.s., and

. In other words, (31) means that
, Furthermore,

we have the following:
Lemma 3: Let be a stationary and ergodic process

with distribution and . Let us consider
an arbitrary and such that ,
then

(32)

(The proof is presented in Section IV-B)
Let fix an arbitrary and where ,

then from Lemma 3 we have that :

(33)

Then for all and ,
and therefore eventually in . From

this, for all , which concludes
the result from Proposition 2.

A. Proof of Lemma 2
Proof: To begin let us prove the fixed-rate result in (23). It

is first important to concentrate in the case when and
to show that

(34)

For any , let us define the sets

(35)

where from (22b) and (22c), because

(36)

Let us fix an arbitrary and let and be such
that , which implies that .
Let us take an arbitrary . From the zero-
rate assumption on , the definition of and the fact that

, such that , ,
which implies that . There-
fore considering that ,

(37)

Performing the same steps for the sequence
and defining accordingly8, we have from (37) that

,

(38)

Then from the sigma additivity of , ,
which proves the result in (34).
Equipped with this result, for an arbitrary let us

consider such that . We know that there
exists such that , and for this we consider
the sets and as defined in (35). Then for any

it follows that

(39)

Furthermore, from definition of ordered sequences, it is simple
to verify that (see (1)):

(40)

This is where the zero-rate result in (34) is used. In particular,
if we consider ,
from (40), (38) and the fact that is in
(39), we have that

(41)

the last equality in (41) from definition of in (35). Finally f-
rom (22b) and (22c),
which proves (23).
Concerning the fixed-distortion result in (24), for

let be such that . Let us consider

8 is such that , .
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an arbitrary where and conse-
quently (note that and are mutually
absolutely continuous). Again for this , we use the sets in (35),
where for all , it follows that ,
such that , .

Considering , it follows by definition in (6)
that:

(42)

then .
We can do the same for the countable collection:

(43)

where for any ,

(44)

The first equality follows from the continuity of the function
with respect to as . Then from

the fact that , we have that,
, -a.s. Finally, proving

that -a.s. follows an
equivalent symmetric argument and we omit it.

B. Proof of Lemma 3

Proof: For let us consider and , such
that and such that . Con-
sidering the sets
and , we
have that from (30) and (31). Let us
fix an arbitrary . Considering that

, then eventually in , and therefore
eventually, which implies

from definition of that . Finally,
the fact the event happens -almost surely concludes
the result.

V. PROPERTIES OF THE RATE-APPROXIMATION ERROR CURVE
FOR NON -COMPRESSIBLE PROCESSES

For the family of non -compressible ergodic processes, in
this section we study two tail functions that characterize the
achievable rate-distortion region in (21). Let be sta-
tionary and ergodic with its invariant probability
measure. Here we focus on the case where ,
then the measure in (17) is well-defined and by

9The arguments are simple to verify and they are omitted for the space con-
straint.

10Note that for the fact that is non-increasing is guaran-
teed from (47). On the other hand, from this analysis, when , it is not abso-

lutely clear that is non-decreasing in the whole range ,

however it goes to zero as approaches 1 from below. This is formally analyzed
in Theorem 3.

construction , where the Radon-Nikodym (RN) deriva-
tive (or density) of with respect to is given by

for all . Furthermore, from the strict positivity of

on , it is clear that , where
and then these two measures a mutually absolutely continuous
[14], i.e.,

(45)
This implies a close interplay between the tail-probability func-
tions

(46)

that characterize in
(21). The following basic properties can be stated:
Proposition 5: 9

a) and are left-continuous.
b) . Then,

is continuous at , if and only if,
.

c) For any , is continuous at , if and only if,
is continuous at .

d) For any pair , , if and only if,
.

e) and
.

From these properties we can state the following:
Theorem 2: Assuming that , then for any :
1) is a continuous function with respect to

.
2) there is such that and

there exists such that . Then,
the collection of critical rates
achieves all the values in , and any distortion

is achieved in with a given rate.
3) For , then .
4) is a differentiable function in , and

(47)
where and denotes the
inverse of the auxiliary function
for .

The proof is presented in Appendix I.
In summary, the rate-distortion approximation function

is continuous, injective and achieves all
the rates, in the sense that for any there is only
one such that . In addition, it
is strictly decreasing and satisfies the following boundary
conditions: and . Further-
more, it is simple to verify that and

. Then from (47), it seems that
should be a non-increasing function as progress to 1 (consid-
ering that ), and consequently,
should present a convex dominating behavior10 eventually as
progresses to 1. The next section analyzes the convexity of

more formally.
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A. Convexity of
First in this section we show that is a convex func-

tion of . Then, we provide a necessary and sufficient
condition for to be a convex function of .
Proposition 6: For every , is a convex func-

tion of over .
(The proof is presented in Appendix IV-D)
Theorem 3: Let by a non -compressible stationary

and ergodic sequence equipped with . Then
1) if , is a convex function for all .
2) Otherwise, is convex, if and only if,

(48)

where is the pdf of , with , and
.

The proof is presented in Appendix II.
Remark 1: The condition in (48) is implicit and may be dif-

ficult to verify. A simple to check sufficient condition for the
convexity of is the following:11

(49)

where . In particular, a non increasing pdf (i.e.,
almost everywhere in ) characterizes a convex

rate-approximation error function.

B. Examples of Heavy Tail and Exponentially Decaying Tail
Distributions
We present few examples of rate-approximation error curves

of non -compressible i.i.d. processes. In particular following
[1], we consider the Gaussian (exponentially decaying distribu-
tion), which is non -compressible for any , from Corol-
lary 1, and the family of Student’s -distribution with parameter

12, whose pdf goes to cero as . From Corol-
lary 2, the i.i.d. process with a Student’s t-distribution ( )
is -compressible for any and non- -compressible for

.
To compute the rate-distortion function ,

we use the fact that

Then the problem reduces to compute and
, for all . For this we consider an es-

timation approach. Considering a sufficiently large set of i.i.d.
realizations of (let say ), the law of large numbers
[14] tells us that for any and ,

(50)

(51)

11The proof is omitted for the sake of space.
12The pdf of a Student’s -distribution with degrees of freedom is given by

, where is the gamma function.

Fig. 2. Numerically estimated rate approximation error curves for several non
-compressible i.i.d. processes and one -compressible i.i.d. process.

with probability one, assuming that and
the use of (17). Then, by sampling the space of thresholds

and considering a sufficiently large , we can esti-
mate with an arbitrary good precision the rate distortion region

. Following this path, Fig. 2 shows the estimated rate-ap-
proximation error curves for the Gaussian, and several Student’s
-distribution for . We verify that some Student’s -distri-
bution are -compressible (cases and ) and
others are non -compressible (cases , and

) as the Theorem 1 predicts. More interesting is to validate
in all the cases of non compressible priors, that the curves have a
convex behavior, which is justified from (49). Furthermore, the
density with the exponentially decaying tail is less compress-
ible than any prior with a power law decay, in the sense that
for achieving a distortion the Gaussian i.i.d. process
needs a higher rate. From these curves, as goes to infinity the
i.i.d. process with a heavy-tail distribution approaches the ap-
proximation error behavior of the Gaussian law.
Fig. 3 shows the rate-approximation error curves for the

Gaussian prior for different values of . It is interesting to
observe the increasing monotonic behavior of as
increases, for any fixed value of . Again all curves have
a convex behavior. To contrast, Fig. 4 shows a set of curves
for the Cauchy distribution (i.e., Student’s distribution with

), where no clear monotonic pattern is observed as a
function of .

VI. -COMPRESSIBILITY AND COMPRESSED SENSING
We conclude this work analyzing compressible stationary

and ergodic sequences, as characterized in Theorem 1, in terms
of their ability to be represented with an arbitrary small pro-
portion of linear measurements adopting for that the classical
compressed sensing (CS) measurement and reconstruction
setting. In particular, the focus is on -compressible pro-
cesses, as the standard Gaussian i.i.d. linear acquisition and
-minimization (sparsity promoting) decoder of CS [15], [16]

offer a well-known -instance optimality guarantee [3] (stated
below in Lemma 4) that matches the modeling assumption of
-compressible processes.
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Fig. 3. Numerically estimated rate approximation error curves for the Gaussian
i.i.d. process considering different -norms.

Fig. 4. Numerically estimated rate approximation error curves for the Cauchy
(Student’s -distribution with ) i.i.d. process considering different
-norms in the regime where the process is non -compressible (i.e.,

from Corollary 2).

A. Compressed Sensing in a Nutshell
In the finite dimensional setting, the analysis phase of the

CS is a linear operator , that given a signal
generates a measurement vector . The

case of interest is on the under-sampled regime, i.e., ,
where under sparse or compressible assumptions on , CS can
offer perfect or near-optimal reconstruction by the solution of
the following (linear programing) problem [16]:

(52)

Notably, the CS theory, based on the restricted isometry prop-
erty (RIP), establishes sufficient conditions over (and implic-
itly over the number of measurements ) in order that

, when for some . The next result, in
its original form stated in [9], shows that random measurements

offer a solution to that problem with a near optimal relationship
between and [3]13.
Lemma 4: ([15, Th. 5.2] and [16, Th. 1.2]) Let be a

random matrix14, , whose entries are driven by i.i.d
realizations of a Gaussian distribution or a binary
variable with uniform distribution over . For
any arbitrary and , we have that:

(53)

if
(54)

with a probability, over the sensing sampling space , at least
equal to . Here is the solution of
(52) and, , and are positive universal constants inde-
pendent of and .15
(The proof of this result derives directly from [15, Th. 5.2]

and [16, Th. 1.2])

B. Zero-Rate Reconstruction for -Compressible Processes
Here we formalize the reconstruction of infinite sequences

using CS. For this, we consider a finite-length
(or fixed-rate) approach, where the idea is to analyze consecu-
tive finite-block versions of the sequence, i.e., to sense and re-
construct for any , and study recon-
struction performances in the limit when the block-length tends
to infinity.
More precisely, let be a sequence of positive

integers such that . From this sequence, we
consider the family of Gaussian CS encoding-decoding
pairs where for any ,

is the random sensing matrix of generated
by i.i.d. entries as mentioned in Lemma 4, and is the
function from to that solves the -minimization
problem in (52). Given a sequence and any
finite block-length , we can apply the CS approach over

to recover , which is a random
reconstruction function of the matrix . In relation
with the -relative approximation error introduced in (3),
we consider as a fidelity indicator the -noise to signal ratio
(NSR) given by:

(55)

More generally, if we have a process with
distribution and a sequence of lengths

with its associated Gaussian CS finite-block
scheme , we can also analyze
the finite-block performance of the scheme by the object

, which is a random variable func-
tion of two independent random objects: the vector
and the random matrix . Therefore, it is important

13A systematic and lucid exposition of this CS theory can be found in the
work of Candes [16], Baraniuk et al. [15] and Cohen et al. [3].

14This result can be generalized to randommatrices satisfying a concentration
inequality, which is not reported here for space considerations. See more details
in [15].

15Refined results can be found in [3], [16], [20].
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to consider the average NSR with respect to the statistics of the
source (i.e., ) by,

(56)

Then the question we focus here is: for an -compress-
ible process that satisfies (16), what is the minimum rate of
measurements (i.e., , or more generally

) of the classical Gaussian CS scheme that
ensures that:

(57)

with probability one with respect to the statistics of the sequence
of random matrices ?
From Theorem 1 and the RIP-based -instance optimality

result of the Gaussian CS setting in Lemma 4, we can state the
following result:
Theorem 4: Let be a stationary ergodic process. If

is -compressible, then for any sequence such
that , it follows that

(58)

almost-surely with respect to the statistics of
and the joint statistics of and
, respectively.

The proof is presented in Appendix III.

C. Discussion and Interpretation of Theorem 4
1: This result states that in order to achieve zero distortion

in the reconstruction for an -compressible process, al-
most-surely in the NSR sense of (56), the CS scheme needs
an arbitrary small number of measurements per sample. In
other words, under the -compressibility model assump-
tion for the process, the minimum rate to achieve zero dis-
tortion is zero for the Gaussian CS scheme. Then, it is re-
markable to validate that CS is able to achieve the same
zero critical rate that it is obtained by the analysis of the
pure oracle best- -term approximation error of -com-
pressible process (see the result in Lemma 3).

2: This result shows that the lucid notion of -compress-
ibility proposed by Amini et al. [1]16 really translates in
a meaningful performance result for the classical Gaussian
CS (GCS) setting in the asymptotic regime when the block-
length goes to infinity. In other words, we can say that
-compressibility, meaning a sort of zero-rate of innova-

tion in the process, implies zero-rate of measurements (per
signal dimension) for perfect recovery (in the sense of NSR
distortion) for the CS scheme. This result closes a gap not
explored in [1] between their notion of -compressibility
and CS performance guarantee in the asymptotic regime.

3: Concerning compressibility of random sequences and CS
performance guarantee, we want to highlight the work of
Gribonval et al. [2] for the case of i.i.d. processes. They
show in [2, Theorem 2] that if then

(for distribu-
tion equipped with a pdf) and they enunciate a version

16This notion was motivated by the performance guarantees result of CS for
finite dimensional sparse and compressible signals.

of Theorem 4 for the i.i.d. case [2, Remark 1]. Then, we
want to give credit to this contribution to be the first result
that offers a connection between notions of compressibility
for i.i.d. processes (based on relative approximation errors)
and the performance (in the asymptotic regime) of the clas-
sical GCS scheme. In this context, Theorem 4 can be seen
as an extension of these results to the case of stationary
and ergodic sequences and, in the technical side, an exten-
sion on the use of the -instance optimality property of the
-minimization decoder17. On the other hand, focusing on

the i.i.d. context, Theorems 4 and 1 offer a way to verify
that Amini et al. [1] -compressible notion (variable rate
in nature) has a connection with the results in Gribonval et
al. [2, Th. 2 and Rem. 1] in terms of what GCS can achieves
for the case of -compressible processes.

VII. DISCUSSION AND FINAL REMARKS

The main result of this work (Theorem 1) provides a con-
nection between Gribonval et al. [2, Prop. 1] almost sure
convergence result of relative approximation errors, and Amini
et al. [1, Def. 6] notion of -compressibility for random se-
quences. More importantly, Theorem 1 offers new techniques
to extend that connection (and, consequently, a dichotomy
between being and non-being -compressible random se-
quences) to the family of stationary and ergodic processes. This
extension is constructed over the almost sure convergence of
the empirical distributions of and , respectively (see defini-
tions in the statement of Theorem 1) to the true probabilities on
the family of tail events (details in Section IV).
The idea of looking at specific empirical measures as the basic
object of interest, in (22b) and (22c), instead of the statistics of
the sum of the ordered sequence as considered in [2, Prop. 1]
and [1], was essential to extend the analysis from the i.i.d. case
to the case of stationary ergodic processes.
Finally, one can notice from the proof of Theorem 1 that this

result does not rely on a stationary property, as it is essentially
based on an almost sure convergence (asymptotic in nature) over
the family of indicator functions of the tail events
in (19). Then, we conjecture that the analysis of compressible
priors can be extended over a family of random sequences with
a specific ergodic property over the tail events, which is an in-
teresting direction for future work. This observation leads us to
put the attention on the general theory of (non-stationary) pro-
cesses with ergodic properties [14], [18], [22]–[24].

APPENDIX I
PROOF OF THEOREM 2

Proof: We first verify the second point to then move to the
rest of the points.

Point 2): (Achievability of all rates and distortions in ):
Using Proposition 5 b) and c) and the hypothesis that
, it follows that and are continuous functions

in . Then, adopting Proposition 5 e), we have that
achieves all the rates and distortions in the range .

Point 1): (Continuity of ):
First, it is important to verify that the implicit characterization

of presented in (18) and (20) offers a well-defined

17The argument in the proof of [2, Theorem 2] uses the -instance optimality
in probability of the -minimization decoder [21].
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function. By contradiction, let assume that such characterization
is not a function in the sense that for a given distortion
there are two values solution of (20) associated to
two different rates . This last condition implies
that from (45), which contradicts the fact
that and are solutions of (20).
Moving to the continuity, let us fix an arbitrary

and . Then by the achievability of the distortions,
such that . On the other hand, by the achiev-
ability of the rates, there exists , where

and (without loss of gen-
erality we assume that ). Then from mono-
tonicity of we have that for any ,

.18 At this point, we can obtain the distortions
, where the strict in-

equalities that relate them follow from the fact that by construc-
tion and (45). Then, we can define

, where for any
we have (by the monotonicity of the function ) that there
exists such that , and conse-
quently ,
the last set of equalities from (18) and (20). As
and are arbitrary numbers, this proves the continuity of

.
Point 3): (Strict monotonicity of ):

Let fix . By definition (13), we have that
. Furthermore, from the characteri-

zation given in (18) and (20), we have that there exists
such that and . This
implies that , and consequently from (45) we
have that .

Point 4: (Differentiability of ):
First, it is clear that both functions and are

differentiable by construction. In fact from (46), ,

(59)
where and

denote the pdf of and , respectively.

Furthermore, we can introduce the auxiliary function
that is differentiable, and

(60)
Finally, for a fix there exists such that

and, consequently,19

(61)

18 denotes the open ball of radius centered at
.
19Without loss of generality we assume that .

the first equality by the characterization of in (18)
and (20), and the third using that
and .

APPENDIX II
PROOF OF THEOREM 3

Proof: Considering that , let be its pdf. In
view of Theorem 1, for a fixed , there exists
such that can be expressed as:

(62)

where , for which we in-
troduce the short-hands and

. Then using (61),

(63)

By construction is non-decreasing with . Hence, when
, the middle term in (63) is negative and increases with

, proving the convexity for that case. For the case , from
the right hand side of (63) convexity will hold, if and only if,

for all . To check that, it is
useful first to note that

(64)

Then

(65)

where follows from (64). Hence, convexity will hold, if and
only if, for all .

APPENDIX III
PROOF OF THEOREM 4

Proof: Let fix and . Assuming that
is -compressible, from Theorem 1 we have that

and, consequently, it follows that:

(66)
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Then from the fact that , , such
that , , where

is the universal constant in (54). Then by the application of
the -instante optimality bound in (53), given the condition in
(54) (Lemma 4), we have that :

(67)

with probability with respect to the probability
of in . We can take the expected value with
respect to in (67) to obtain that :

(68)

where the first inequality is from the definition of the typical set
in (9) and the fact that is bounded by

1, and the second from definition of in (10). Again
this inequality is valid with probability over sam-
pling space of the random object . There-
fore taking the limit when goes to infinity, we have that

(69)

with probability one with respect to distribution of
20, which is valid for any arbitrary small

and . In other words, if we define the set
,

then , and . Finally,
from sigma additivity of , which

implies that

(70)

with probability one with respect to distribution of
.

For the almost-sure convergence result on the sequence
, we need a slightly different

argument. Under the assumption that ,
it is simple to verify that there exists a sequence of
positive integers such that and, more
importantly, it satisfies that

(71)

20The almost sure convergence with respect to the statistics of
derives from the Borel-Cantelli Lemma [14] and the

fact that as by hypothesis .

Following similar steps than before, there exists such
that we have that , and therefore,
from Lemma 4,

(72)

with probability in . It is important to de-
fine the set where
Lemma 4 tells us that . Furthermore, from
Lemma 3, we have that

(73)

with probability one with respect to the process distribu-
tion of . In other words, if we define the set

, we have that
from (73). Finally, we are interested in the set

where it is simple to show that , by (72)
and the definitions of and . Hence, the problem reduces to
evaluate,

(74)

the last equality from the fact that . Then
from the additivity and monotony of the measure ,
which concludes the result by the definition of .

APPENDIX IV
COMPLEMENTARY RESULTS

A. Proposition 1
Proof: From the definition of and the hy-

pothesis on , it follows that where
and . Conse-

quently eventually in , , which implies that eventually
. This concludes the result.

B. Lemma 1
Proof: As a short-hand, let for all .

By definition for all , and consequently,
. Then from (5) and Def. 1, it

follows that .
For the other inequality, we consider the nontrivial case

when . We prove it by contra-
diction assuming that . Then from (5),
there exists and a sequence such that

. Under the fact that ,
there exists such that , . Using this and
the definition of in (6), ,

(75)

where, consequently,
. Therefore,

(76)
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Definition 7: For , we define

.

Note that ,
therefore (76) implies that .
Then, considering that , and the fact that ,

and , ,
we have that:

(77)

This approach can be iterated a finite number of times (indepen-
dent of the length as ) to obtain that

(78)

which contradicts (75).

C. Proposition 2
Proof: Fixing and , let us define

, . Then by (10),
, where from (13) it follows that

.

D. Proof of Proposition 6
Proof: Using the arguments to prove Theorem 2 (Point 4),

if we consider , then for any there exists
such that . This last

auxiliary function is diferentiable (with respect to ) and we
have that:

(79)

the last equality by considering that

. Since is non-decreasing
with , it follows that is negative and increasing with
, i.e., is a convex function of .

E. Analysis of the Domain of Attraction of
-Stable Distributions
The family of stable laws is the class of non-degenerate prob-

abilities that are limit (in distribution) of sequences of random
objects of the form [14, Ch.9]:

(80)

where are i.i.d realizations of a random variable, and
and are a sequences of real numbers. For the well-

known scenario when , the Central Limit Theorem
tells us that the limit is a normal law. For the case ,

we have the less known family of -stable laws, whose charac-
teristic function is given by [14, Th.9.27]:

(81)

being the exponent of the law, and ,
and constants.
Definition 8: [14, Def. 9.33] The distribution is

said to be in the domain of attraction of an -stable law with
, which we denote by , if there exists

and such that: (in distribution)
and follows the -stable distribution in (81).
The collection is non-empty and is character-

ized by the following result:
Theorem 5: [14, Th.9.34 and Prop. 9.39] Let and

let us define21:

(82)

on . Then belongs to , if there exists and
with such that:

i) ,
ii) implies that is slowly changing22, and
iii) implies that is slowly changing.
Then we can state the following:
Proposition 7: If for some , then

.
Proof: Let and . Without loss of gen-

erality let us assume that is slowly changing. Then it is
simple to verify that , and such
that . Therefore

.
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