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This communication revisits previously reported results on froth depth profiling along a rougher flotation
bank. The optimization problem is reformulated as to maximize the overall bank Cu recovery subject to a
lower bound constraint on the overall Cu concentrate grade. This formulation differs from that originally
proposed in Maldonado et al. (2007) where the sum of the squared Cu tailing grade of each cell group was
minimized for a given target bank Cu concentrate grade. A semi-empirical steady-state mathematical
model of a bank of cells previously validated using industrial flotation data from Los Pelambres mine
in Chile was used to simulate the process. In order to improve resolution a genetic algorithm was imple-
mented to search for the optimal froth depth profile as opposed to the discrete dynamic programming
technique originally implemented. Results show that optimal froth depth profiling resulting from solving
the reformulated optimization problem produces an increase in the overall bank recovery for a given tar-
get Cu concentrate grade compared to that obtained when solving the original formulation. Moreover, the
resulting optimal mass-pull profile tends to be more balance in the first cells which partially agrees with
recent observations.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Flotation banks also known as rows or lines are serial
arrangement of cells where the tail stream of one cell is the feed
stream to the next cell down the bank. Bank optimization consists
of selecting the best operating conditions in each flotation cell such
that the overall bank metallurgical performance is optimized. Bank
optimization has received increasing attention as flotation stages
such as roughing, cleaning and scavenging are all made up of bank
of cells and their optimization is therefore an important step
toward the optimization of a whole flotation plant. In addition,
optimization of the roughing stage is particularly important as this
stage is commonly encountered in an open circuit configuration,
i.e., rougher tails being reported to the final tailing, therefore any
performance losses at this stage cannot be compensated else-
where. Moreover, current trend of having short banks of larger
cells demands for better operational practices as any poor perfor-
mance in any of these large cells will have a significant detrimental
effect on the overall bank performance. Several strategies have
been devised to improve bank performance such as: gas profiling
(Cooper et al., 2004; Aslan et al., 2010; Smith et al., 2010), froth-
depth profiling (Maldonado et al., 2007; Bergh and Yianatos,
2013), peak-air recovery profiling (Hadler and Cilliers 2009;
Hadler et al., 2012) and froth velocity (mass pull) profiling
(Supomo et al., 2008; Figueroa et al., 2009). Recently, a balance
recovery profiling has found to be optimal in the sense of maximiz-
ing the separation efficiency for a given target overall bank recov-
ery for the case of having only true floating materials involved
(Maldonado et al., 2011). This has been recently confirmed using
JKSimFloat simulations (Singh and Finch, 2014) and through an
optimization campaign conducted at a talc operation in Timmins,
Canada where improvements in both grade and yield were
achieved as recovery down the bank moves toward a balance pro-
file (Blonde et al., 2013). For the more general case involving
gangue entrainment, Singh and Finch (2014) have recently
suggested, using a mathematical analysis and simulations, that a
balanced mass-pull profile would be the optimal policy. This com-
munication revisits results on froth depth profiling along a simu-
lated rougher Cu flotation bank described in (Maldonado et al.,
2007) and its connection to mass-pull profiling. Specifically, the
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objective function originally proposed in Maldonado et al. (2007)
consisting of minimizing the sum of the squared Cu tailing grades
down the bank for a given target Cu concentrate grade is recast as
to maximizing the overall Cu recovery while satisfying a constraint
on the minimum allowed Cu concentrate grade. To improve res-
olution a genetic algorithm search method was used instead of
the discrete dynamic programming originally implemented. The
article is organized as follows: next section briefly describes the
flotation bank under study, Section 3 details the genetic algorithm
parameters utilized. Then, simulation results are presented in
Section 4 and finally discussion and concluding remarks are pro-
vided in Sections 5 and 6 respectively.

2. Rougher flotation modeling

A static model of a bank of nine self-aerated Wemco 4500 ft3

flotation cells previously validated using reconciled data obtained
from several sampling campaigns at Los Pelambres Mine in Chile
was used (Maldonado et al., 2007). The mathematical model is
included in Appendix. Samples were taken at the feed, concentrate
and tails of each group of cells as pointed out in Fig. 1 using dots.
Mass balance equations for copper, iron and gangue were imple-
mented. The bank of cells is arranged in a 1-2-2-2-2 configuration
(i.e., 1 single cell followed by 4 pairs of 2 cells) as shown in Fig. 1.
Froth depth was measured in the last cell of each group of cells, i.e.,
in cell 1, 3, 5, 7 and 9.

3. Optimization using genetic algorithm search method

Advances on computer technology have allowed the application
of new optimization algorithms. Genetic algorithm (GA) is a meta-
heuristic technique inspired by the Darwin’s theory of evolution by
natural selection and uses a direct analogy of its mechanisms such
as selection, reproduction, crossover and mutation. GA technique is
a population based approach that provides best population of
parameters after every generation based on a predefined objective
function (Goldberg, 1989). Due to their capability to explore a large
searching space GAs have been successfully applied in many fields.
Among applications of GA to mineral processing we have:
optimization of comminution processes (Svendensten and
Evertsson, 2005; Farzanegan et al., 2009; Wang et al., 2010), coal
preparation plants (Gupta et al., 2007) and flotation (Guria et al.,
2005). More recently, Ghobadi et al. (2011) proposed a GA oriented
process-based rules to find the optimum flotation circuit config-
uration for two and four-stage flotation circuits. In this communi-
cation GAs are used in conjunction with a mathematical model of a
rougher flotation bank to determine the froth depth profile that
optimizes the overall bank metallurgical performance. The
MatLab� optimization toolbox was used in order to run the genetic
algorithm searching method. The GA parameters chosen for sim-
ulation in MatLab are described below:

(a) Variable coding: In order to perform the Genetic Algorithm
and use the operators the independent variables located into
the chromosomes of every individual are codified into a
Double vector population type.
Fig. 1. Flotation bank confi
(b) Fitness function: the overall Cu bank recovery is selected as
the objective function and its maximization is represented
as the minimization of the negative overall Cu recovery, i.e.
guration
minimize� RCu
The independent variables selected for this purpose are the

froth heights (hFi). In this particular case the chromosomes
of each individual correspond to the froth depth in each
group of cells as shown in Fig. 2.
(c) Constraints: the overall Cu concentrate grade cannot be
lower than a certain minimum concentrate grade Gmin, i.e.

GCu � Gmin P 0
There are also physical constrains on the value of the froth

depth which were determined according to Los Pelambres
plant operational practice, i.e., from 10 to 400 [mm]. This
constraint is mathematically expressed as follows:
10 6 hF 6 400½mm�
(d) Initializing population: The common method is to create
randomly solutions (froth depth profiles). The default
population type (double vector) and size (20) were
selected while respecting the operational range described
above.

(e) Parent Selection: The roulette wheel method has been chosen
for the selection step. Roulette selection chooses parents by
simulating a roulette wheel, in which the area of the section
of the wheel corresponding to an individual is proportional
to the individual’s expectation (fitness). The algorithm uses
a random number to select one of the sections with a proba-
bility equal to its area. This elitist strategy is used to keep the
best individuals from the current generation to the next
generation.

(f) Reproduction operators (crossover and mutation): Offspring’s
are created by the action of the two operators, crossover and
mutation. The crossover and mutation operators are the two
most important space exploration operators.

Crossover: this option specifies how the genetic algorithm
combines two individuals, or parents, to form a crossover
child for the next generation. The crossover operator can
generate unfeasible chromosomes as in the initialisation
step. Arithmetic crossover was selected from the option
menu. This function creates children that are the weighted
arithmetic mean of two parents. If a chromosome violates
this constraint, it is repaired with permutations from parent
chromosomes. As a result children are always feasible with
respect to linear constraints and bounds.
Mutation: The mutation operator enables to introduce unex-
plored search space to the population. Mutation options
specify how the genetic algorithm makes small random
changes in the individuals in the population to create muta-
tion children.
(g) Stopping criteria: The stopping criterion used in this case was
the pre-defined number of generations. All others stoppings
criteria where disabled in order to accomplish the proposed
specification (see Table 1).
arrangement.



Fig. 2. Each individual is composed by 5 chromosomes. Each chromosome
corresponds to the froth depth of each cell group identified by a number i from 1
to 5.

Table 1
Summarizes the GA settings parameters used in MatLab� optimization toolbox.

Search parameters settings used in genetic algorithm toolbox

Parameter Setting

Population size 20
Initial range 10–400 mm
Population type Double vector
Fitness scaling Rank
Selection function Roulette
Reproduction elite count and crossover fraction 2; 0.8
Mutation function Constraint dependent
Crossover function Arithmetic
Migration direction, fraction and interval Forward; 0.2; 20
Stopping criteria Generations; 500

Table 2
Optimal froth depth profiles and metallurgical assessment variables for three scenarios of

Scenario Optimization formulation Froth depth (mm) in cell group

No. 1 No. 2 No. 3

1 OPT1 33.8 40.8 191.6
OPT2 174.6 40.1 23.7

2 OPT1 51.5 75.7 218.8
OPT2 138.8 58.8 44.9

3 OPT1 71.2 155.7 169.5
OPT2 147.1 57.4 146.6
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Fig. 3. Optimal profiles resulting from solving optimization problem OPT1 for different Cu
Cu cumulative recovery Maldonado et al. (2007).
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4. Simulation results

During simulations, feedrate was set to 1252 tonnes per hour
(dry solids) at 39% solids by weight and Cu and Fe feed grades were
set to 1.03% and 2.12% respectively. Table 2 compares the optimal
froth depth profiles and their resulting overall Cu recovery and
concentrate grade for two formulations of the optimization
problem:

� OPT1: corresponds to the original formulation proposed in
Maldonado et al. (2007), i.e., minimization of the sum of the
squared Cu tailings of each cell group for a given overall Cu con-
centrate grade (16%, 18% and 20%).
� OPT2: corresponds to the reformulated problem proposed in

this communication, i.e., maximization of the overall Cu recov-
ery while satisfying a minimum Cu concentrate grade (16%, 18%
and 20%).

From Table 2 it can be observed that the inequality constraint
imposed on the Cu concentrate grade in the formulation OPT2
turns into an active equality constraint, i.e., since there is a
trade-off between recovery and grade, maximizing the overall Cu
recovery pushes the overall concentrate grade to its lower bound,
as expected. It can also be observed that the higher resolution of
the implemented GA compared to the original discrete dynamic
programming method used makes the overall Cu concentrate
concentrate grade constraints (16%, 18% and 20%).

Overall bank Cu

Recovery (%) Concentrate grade (%)No. 4 No. 5

390.8 397.7 92.34 15.8
370.2 400.0 93.08 16.0
383.9 380.8 91.48 17.96
374.1 400.0 92.12 18.0
393.1 383.2 90.95 19.48
392.2 400.0 91.19 20.0
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concentrate grade. (a) Froth depth. (b) Cu cumulative grade. (c) Cu tailing grade. (d)
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Fig. 4. Optimal profiles resulting from solving optimization problem OPT2 for different Cu concentrate grade. (a) Froth depth. (b) Cu cumulative grade. (c) Cu tailing grade. (d)
Cu cumulative recovery.
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grade perfectly met the lower bound constraint (16%, 18% and
20%). In each scenario, the solution to the new problem formula-
tion OPT2 provides better metallurgical performance than that
obtained when solving OPT1, i.e., higher recovery and grade.

Fig. 3 shows the optimal profiles (froth depth, cumulative Cu
grade, Cu tailing grade and cumulative Cu recovery down the bank)
obtained from solving the original problem formulation OPT1 for
three target Cu concentrate grades, namely, 16%, 18% and 20%
(Maldonado et al., 2007). It can be observed that an increasing froth
depth profile is obtained, i.e., shallow froths in the first cells and
deeper froth depths down the bank. Shallow froths increase recov-
ery and therefore are in line with the objective of minimizing Cu
tailing grade in each cell group. However as the final concentrate
grade must meet a specific value froth depth are subsequently
increasing down the bank. Thus, the cumulative concentrate grade
reduces monotonically to its target final value as shown in Fig. 3(b).
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Fig. 5. Optimal mass-pull pro
Fig. 4 shows the optimal profiles obtained from solving the
reformulated problem OPT2. It can be observed that the optimal
froth depth profile is not increasing anymore but actually
decreases from the first cell down to the third cell group and then
increases rapidly. A deeper froth depth in the first cell produces a
higher Cu concentrate grade as shown in Fig. 4(b). Subsequently,
froth depth in cell groups 2 and 3 is reduced to maximize recovery.
Finally, froth depth in the last two cell groups is increased to
reduce concentrate degradation due to gangue entrainment.

Fig. 5 shows the concentrate mass-pull profile generated when
implementing the optimal froth depth profiles resulting from solv-
ing OPT1 and OPT2. Due to the uneven distribution of cells in the
bank, i.e., the first cell group consists of a single cell whereas the
others are made of two, the mass-pull of a given cell in a cell group
having two cells is assumed to be half of the mass-pull of the cell
group. It can be observed that the optimal froth depth profile
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obtained from solving OPT2 suggests a more balanced mass-pull
profile compared to that obtained from solving OPT1.
5. Discussion

In the original article of Maldonado et al. (2007) the optimiza-
tion problem was formulated as to minimize the sum of the
squared Cu tailing grade in each cell group for a given target con-
centrate grade. The origin of this formulation can be traced back to
the single unit case where for a given feed and target concentrate
grade minimizing the tailing grade is equivalent to maximizing
recovery. Results show that this rational is lost when optimizing
a bank, i.e., minimizing the tailing grades of each cell does not
directly translate into the maximization of the overall bank recov-
ery when a constraint on the overall concentrate grade is imposed.
The solution to this problem produced increasing froth depth pro-
files i.e., shallow froths in the first cells and deeper froth depths
down the bank, which causes the first cells to overpull producing
an unnecessary detrimental effect on the concentrate grade that
cannot be compensated by the subsequent cells down the bank.
This solution agreed with the operating policy in place at that
moment in Los Pelambres as reported in Maldonado et al. (2007).
On the other hand, the resulting optimal froth depth profile that
maximizes the overall recovery for a minimum concentrate grade
produces a U-shape profile, i.e., grade is increase in the first cells
by allowing the froth depth to become deeper, then froth depth
reduces in the subsequent cells to increase Cu recovery and finally
increasing again at the end of the bank to prevent concentrate
grade reduction due to entrained particles. With this policy in
place, an improvement in recovery and concentrate grade was
observed as compared to the original formulation. Moreover, the
resulting mass-pull profile tends to be more balance in the first
banks and then drops at the end of the bank. This suggests that
mass-pull in each cell can be used as the independent variable
and a balance mass-pull profile as a guideline toward bank
optimization. As more flotation plants are incorporating froth cam-
eras, froth velocity control can be used to modify mass-pull
profiling.
6. Concluding remarks

The problem of optimizing the operation of a bank of flotation
cells using froth depth profiling has been revisited. The optimiza-
tion problem has been recast as to maximizing the overall Cu bank
recovery while satisfying a lower bound constraint on the overall
Cu concentrate grade. The optimal froth depth to each cell group
was determined using a genetic algorithm search method imple-
mented in MatLab Optimization Toolbox. Results show that a U-
shape froth depth profile, i.e., initially decreasing froth depth to
subsequently increasing froth depth profile down the bank, turned
out to be optimal in the sense of maximizing recovery while
respecting a minimum concentrate grade. This optimal profile also
provides a more balanced mass-pull profile which partially agrees
with recent reports.
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Appendix A. Mathematical model of a flotation bank

Nomenclature
symbol
 description

m
 mass of solids in the cell

M
 dry solid mass flowrate

G
 grade

Q
 volumetric flow rate of slurry

hP
 pulp level

hF
 froth depth

Ac
 flotation cell cross-sectional area

eg
 collection zone gas hold-up

k
 overall flotation rate constant

H
 height of flotation cells

subscripts

i
 components (Cu, Fe, Gangue)

j
 cell number

F, C, T
 feed, concentrate, tails respectively

a, b, h
 constants
Mass of component i in cell j

mij ¼
MTj�1

� GTiðj�1Þ

kij þ
QTj

Acð1�eg ÞhPj

Volumetric flowrate of tails in cell j

QTj
¼ Q Tj�1

� Q Cj

Froth depth in cell j

hFj
¼ ðH � hPj

Þ � 1000

Overall flotation rate constant for component i in cell j

kij ¼ f ðhFj
;GTiðj�1Þ ;Q Tj�1

; hÞ

Numerical values of the fitting parameters h for each species in
each flotation cell can be found in Maldonado (2006).

Volumetric flow rate of concentrate in cell j

QCj
¼ aj � bj � hFj

Concentrate mass flow rate of component i in the concentrate
stream of cell j

MCij
¼ kij �mij

Concentrate mass flow rate of component i in the tailing stream of
cell j

MTij
¼

Q Tj

Acð1� egÞhPj

�mij

Concentrate grade of component i in cell j

GCij
¼ 100 �

MCij
P3

k¼1MCkj

Tailing grade of component i in cell j

GTij
¼ 100 �

MTij
P3

k¼1MTkj
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