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Abstract The generation of accurate terrain maps
while navigating over off-road, irregular terrains is a
complex challenge, due to the difficulties in the esti-
mation of the pose of the laser rangefinders, which is
required for the proper registration of the range mea-
surements. This paper addresses this problem. The
proposed methodology uses an Extended Kalman fil-
ter to estimate in real-time the instantaneous pose of
the vehicle and the laser rangefinders by considering
measurements acquired from an inertial measurement
unit, internal sensorial data of the vehicle and the esti-
mated heights of the four wheels, which are obtained
from the terrain map and allow determination of the
vehicle’s inclination. The estimated 6D pose of the
laser rangefinders is used to correctly project the laser
measurements onto the terrain map. The terrain map is
a 2.5D map that stores in each cell the mean value and
variance of the terrain height. In each map’s cell posi-
tion, new laser observations are fused with existing
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height estimations using a Kalman filter. The proposed
methodology is validated in the real world using an
autonomous vehicle. Field trials show that the use of
the proposed state estimation methodology produces
maps with much higher accuracy than the standard
approaches.

Keywords Terrain mapping · Off-road autonomous
vehicles · Kalman Filter · Information fusion · Laser
rangefinder pose estimation

1 Introduction

Terrain mapping is a relevant problem in autonomous
robot navigation; the accurate modeling of the terrain
is required for the robot in order to decide a safe path
to follow. In off-road applications, the generation of
accurate terrain maps while navigating is a difficult
challenge due to the difficulties in estimating the pose
of the laser rangefinders, which is required for the
proper registration of the range measurements. Even
small pose errors could be magnified onto large errors
in the projected positions of laser points, because the
laser rangefinders are aimed at the road up to several
meters in front of the vehicle [13].

We address the problem of real-time terrain map-
ping for autonomous vehicles such as cars and trucks
that move at low (<10[m/s]) and medium speeds
(<20[m/s]) for off-road terrain applications, as in the
case of the autonomous truck operation in open pit
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mines, where typical speeds are in the range of 5-14
[m/s]. We address the specific problem of building
coherent semi-local terrain maps with laser range find-
ers whose 6D pose changes due to the irregular surface
that the vehicle is traversing and the non-rigid char-
acteristics of the vehicle (vehicle suspension system).
We use the term semi-local map to denote a map that:
(1) is built without using GPS information, (2) uses a
global reference system that is defined at the begin-
ning of the map estimation, (3) has an extension of
several hundred meters, and (4) can be integrated onto
the global map using the GPS and inertial data. We use
semi-local maps because we are interested in achiev-
ing a very accurate 6D pose estimation of the laser
range finders; the use of standard GPS (no differential)
in this estimation process would produce inaccura-
cies that would be reflected in the generated map.
The semi-local map can be used for taking local deci-
sion (obstacle avoidance, decision about which path to
follow) and/or for building the global map.

The proposed methodology uses an Extended
Kalman filter for estimating in real-time the instanta-
neous pose of the vehicle and the laser rangefinders
by considering measurements (observations in the
Kalman filtering terminology) acquired from an iner-
tial measurement unit (3D angular pose and speed, and
3D linear acceleration), internal sensorial data of the
vehicle (vehicle speed and angle of the steering wheel)
and the estimated heights of each wheel, which are
obtained from the terrain map and allow determining
the vehicle’s inclination. The estimated 6D pose of the
laser rangefinders is used to correctly project the laser
measurements onto the terrain map. The terrain map
is a 2.5D map that stores the mean value and vari-
ance of the terrain height. In each map’s cell position,
new laser observations are fused with existing height
estimations using a Kalman filter.

The main contribution of this work is the proposal
of an integrated sensor-map estimation methodology
in which: (i) Kalman filters estimate the laser range
finder 6D pose and fuse past and new observations in
each cell of the terrain map and (ii) the estimated ter-
rain map is fed back and used for improving the 6D
pose estimation of the laser range finders (past esti-
mations of the terrain heights are used for determining
the current heights of the wheels and therefore the
inclination of the vehicle).

The methodology is validated in the real world
(O’Higgins Public Park, located near downtown area

in Santiago de Chile, Chile), using the AMTC’s
autonomous vehicle. Field trials show that the use of
the proposed state estimation methodology produces
maps with higher accuracy than approaches that use
the inertial data directly (without any state estimator)
for correcting the pose of the laser range finders.

The paper is organized as follows: Related work is
described in Section 2; The proposed Kalman-filtering
based methodology for terrain mapping is explained in
Section 3; Descriptions of experiments and results are
presented in Section 4 and Conclusions of this work
are given in Section 5.

2 Related Work

Terrain map estimation is an important component in
outdoor mobile robot navigation, and several authors
have addressed it ([2–13]). Some of them have con-
centrated their effort on the fusion problem [12] while
others have addressed the representation of the terrain
data within the map [5] or the use of elevation func-
tions over a 2D domain to represent the map [3]. Other
authors have tackled the filtering of the laser range
finder data to improve map quality [8], the assessment
of the traversability of the terrain [9], the accurate reg-
istration of the laser range finder data [10–13] or the
loop-closing problem when building a global map [5].
Some of these works use small rovers in the experi-
ments or cars moving at low speeds (<10 [m/s]) while
in some cases the map is built offline [5].

Different types of representations have been used to
map terrains (e.g., 2D occupancy grid, 3D occupancy
voxel), being the elevation or 2.5D height map one of
the preferred options in ground robot mapping appli-
cations (for example [10–12]) due to their compact-
ness, lower computation and insensitivity to height
discretization errors [12]. Elevation maps “store in
each cell of a discrete grid the height of the surface
at the corresponding place in the environment” [5]. In
some mapping systems the height’s variance is also
stored in each cell [10, 11].

The estimation of the terrain height in each cell
in a 2.5D map requires the correct fusion of mea-
surements obtained at multiple times while moving.
The uncertainty of the measurements and the uncer-
tainty of the sensor pose must be considered during the
fusion process. This is addressed in [10] by propos-
ing a mixture-model terrain estimation framework
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that incorporates both uncertainties, together with the
measurement-map association and the in-cell mea-
surement fusion into the map. The terrain mapping
and estimation algorithm uses a probabilistic analy-
sis of the errors, assuming their Gaussian distribution.
The system projects the sensors’s detections onto the
global coordinate frame using a tightly coupled model
of the sensors position, making the respective formal
error propagation. The vehicle localization is obtained
from a GPS, without the use of any state estimation
algorithm

In [11], three enhancements were proposed for
improving the real-time performance of the system
proposed in [10]: a selection window was used to
limit the probability distribution area of each mea-
surement, a clustering algorithm was used to simplify
the object detection tasks and a virtual point vector
was introduced to reduce the computational cost of
the algorithm. Despite these enhancements, no funda-
mental changes were made to the terrain estimation
framework proposed in [10].

In [12], a Markov Random Field (MRF) repre-
sentation of a sensor and terrain fusion model was
proposed. The MRF represents the model of 2.5D map
sensor uncertainties, enabling a probabilistic fusion
between the sensor and terrain information. This
approach is also based on [10], but it does not make the
assumption of independency among cells in the map.

In Thrun [13], a first-order Markov model is pro-
posed for modeling the drift of the pose estimation
error over time. The heights of the map points are
assumed Gaussian with a variance that scales lin-
early with the time difference of the points. Then,
a probabilistic test is used to detect the presence of
an obstacle. Thus, that work focuses on the detec-
tion of obstacles rather than on providing an accurate
map. The methodology proposed in this publication
addresses both problems; it is able to compute an accu-
rate semi-local map in real-time, which can be then
used for obstacle avoidance.

The main difference of the current methodology
compared with [10–13] is that in the methodology pro-
posed in this paper, a non-rigid sensor location and
vehicle suspension is assumed. Therefore, the noise in
the sensor pose associated with the sensor and vehi-
cle vibration is explicitly considered. This vibration is
estimated in real-time using the Inertial Measurement
Unit (IMU) measurements. Furthermore, the vehicle
pose is estimated using an Extended Kalman filter,

avoiding the extreme dependency upon the GPS that
most terrain map estimation systems have.

In [5], an approach that allows a mobile robot to
deal with vertical and overhanging objects in eleva-
tion maps is presented. The approach uses four classes
(traversable cells, vertical gaps, vertical structures and
locations sensed from above) for classifying loca-
tions in the environment and dealing with overhanging
structures. The map of elevations is updated using a
Kalman filtering fusion approach (in each cell new
data is fused with existing estimations by considering
their variances). In that work the loop closing in the
map is solved offline and the vehicle moves on paved
roads at low speeds.

In [6], a near real-time ground segmentation sys-
tem based on Gaussian Process for autonomous land
vehicle is proposed. Terrain is segmented into ground
and non-ground, and the average processing time is
74.93 [ms], being near real-time. Terrain mapping sys-
tems built using the methodology proposed in this
paper are able to process the data in real-time, having
a processing time of ∼3 [ms] (see Section 4.3).

In summary, one of the main contributions of this
work is the proposal of a real-time terrain map estima-
tion system enhanced by the estimation of the noise
produced by the sensors and vehicle vibration, its use
in the measurement fusion process, and the estima-
tion of the vehicle and sensors pose without the GPS
dependency.

3 A Kalman-Filtering Based Methodology
for Terrain Mapping

3.1 System Overview

The proposed methodology for terrain mapping
has three main stages: Vehicle State Estimation,
Laser Projection and Terrain Map Update (see block
diagram in Fig. 1). The first stage estimates the full 6D
pose of the vehicle using an Extended Kalman filter.
For correcting the predicted pose, it uses: (i) obser-
vations acquired from the IMU, (ii) vehicle internal
sensors whose measurements are available in the CAN
bus (Controller Area Network), and (iii) virtual obser-
vations obtained from the terrain map. The second
stage generates a projection of the laser rangefind-
ers measurements onto a global reference system
using the 6D pose of the laser rangefinders, which is
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Fig. 1 Block diagram of
the proposed estimation
system

computed from the vehicle’s pose. Finally, the Terrain
Map Update stage accumulates the laser observations
in the terrain map. The terrain map stores, in each cell,
the mean value and variance of the terrain height. A
Kalman filter is used in each cell for fusing new laser
observations with existing height estimations.

3.2 Vehicle Model

A simplified diagram of the vehicle model is shown
in Fig. 2. The vehicle model corresponds to a standard
four-wheel front-steering vehicle with laser rangefind-
ers and an IMU mounted on a roof rack. The dis-
tance between the front and rear axes is called the
wheelbase, while the distance between the steerable
wheels is known as the track. The vehicle kinematics
is given by the following variables (see reference sys-
tems in Fig. 2): global position

⇀
pt , 3D angular pose

⇀
qt , speed vt , instantaneous rotation radius rt , angular
speed ωt , and steer angle αt . The angle αt is defined
as the equivalent steer angle of a bicycle with both
the same wheelbase and rt as the actual vehicle. This
angle is related to the steer angles of the inner and
outer wheels, αi

t and αo
t respectively, as shown in

Eq. (1) [1],

cotαt = cotαo
t + cotαi

t

2
(1)

The variables
⇀
pt and

⇀
qt are measured in the global

reference system SG, with the x axis pointing towards
the east, the y axis point towards the north and the
z axis pointing upwards. θ, φ, and ψ denote rotation
angles around the x, y and z axes, respectively.

3.3 Sensor Models and Variables

The following information sources are used in the
vehicle: an IMU, laser rangefinders and internal

sensors data (e.g., speed) that is measured by the
vehicle itself and that is available in the CAN bus.

The IMU provides the following data: angular

pose
⇀

ϑ
imu

t ∈ R
3, angular speed ⇀

ω
imu

t ∈ R
3 and linear

acceleration
⇀
a

imu

t ∈ R
3

By considering a laser reference system Slaser (see
Fig. 2b), a laser rangefinder provides a sequence

of measurements in polar coordinates ⇀
ρ

laser

t,i
=

[
dt,i θt,i

]T ; i ∈ {
1, ..., Nsamples

}
, where: dt,i is

the measured distance, θt,i the measured angle and
Nsamples the number of samples at time step t. In case
that more than one laser rangefinder is used, the index
j will be used to identify laser rangefinder number j,
as in d

j
t,i

The data provided by the internal sensors of the
vehicle through the CAN bus interface are the angle of
the steering wheel αvehicle

t and the linear speed of the

wheels ⇀
v

vehicle

t ∈ R
4. This vector contains the speed

of the front-left, front-right, rear-left and rear-right
wheels.

3.4 Vehicle State Estimation

The state vector
⇀
xt includes all relevant variables that

define the state of the vehicle:

⇀
xt =

[
⇀
pt

⇀
qt vt αwheel

t ηt

]T
(2)

with
⇀
pt a 3D-vector representing the position of SL

relative to SG,
⇀
qt a quaternion representing the ori-

entation of SL relative to SG, vt a scalar representing
the speed, αwheel

t a scalar representing the angle of
the steering wheel, and ηt the variance of the vehicle’s
vibration in the z axis. The problem of state estimation
is solved in this case through the implementation of a
Kalman filter.
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Fig. 2 Geometry, reference
systems, and relevant
variables (see main text for
details): a Top and b lateral
views

(a)

(b)

3.4.1 Extended Kalman Filter: Prediction Step

For the prediction step of the Extended Kalman filter,
the following standard equations are used:

⇀
x

−
t = f

(
⇀
xt−1,

⇀
ut , 0
)

P −
t = At · Pt−1 · AT

t + Q
(3)

with At the Jacobian matrix of partial derivatives of
f with respect to

⇀
xt , Q the process noise covariance

and
⇀
ut the actuation order. The process noise is char-

acterized and Q is estimated by means of field trial
experiments.

In our model
⇀
ut is supposed unknown1 and f is

given by:

⇀
p

−
t = ⇀

pt−1 + ⇀
qt−1 · �⇀

pt · ⇀
q

∗
t−1

⇀
q

−
t = ⇀

qt−1 ◦ �
⇀
qt

v−
t = vt−1

αwheel −
t = αwheel

t−1
η−

t = ηt−1

(4)

1Even though,
⇀
ut is known when the vehicle operates

autonomously, we decided to estimate the pose change in order
to have a more general model and a more robust system; in
many situations, such as, vehicle slippage, there is a significant
difference between the given and executed orders.
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with �
⇀
pt and �

⇀
qt the 3D position and orientation

change, respectively; �
⇀
qt is a quaternion.

The change of the vehicle’s position, in the
local/vehicle reference system SL, is computed as:

�
⇀
pt =

∣
∣
∣∣
∣
∣∣
∣
∣∣
∣
∣

⎛

⎝
rt sin(ωt · �t)

rt (1 − cos(ωt · �t))

0

⎞

⎠ if αwheel
t �= 0

⎛

⎝
vt · �t

0
0

⎞

⎠ if αwheel
t = 0

(5)

with rt and ωt the estimated rotation radius and speed
and �t the time interval.

The trajectory of the vehicle in �t is approximated
as circular, and ωt and rt are approximated using the
estimated steering wheel angle and linear speed (see
derivation in Appendix 1) as:

ωt � vt · αwheel
t · γ

rt = vt
ωt

� 1
αwheel

t ·γ
(6)

with γ an adjusting factor that depends of the vehi-
cle. As mentioned, in case when αwheel

t = 0, ωt = 0
and rt = ∞, and the trajectory is approximated as a
straight line.

The angular pose difference is computed as:

�
⇀
qt = qYPR(ωt · �t, 0, 0) (7)

with qYPR given by:

qYPR (ψ, ϕ, θ)

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

cos
(

θ
2

)·cos(ϕ2
)·cos

(
ψ
2

)
+sin

(
θ
2

)·sin(ϕ2
)·sin
(

ψ
2

)

sin
(

θ
2

)·cos(ϕ2
)·cos

(
ψ
2

)
−cos

(
θ
2

)·sin(ϕ2
)·sin
(

ψ
2

)

cos
(

θ
2

)·sin(ϕ2
)·cos

(
ψ
2

)
+sin

(
θ
2

)·cos(ϕ2
)·sin
(

ψ
2

)

cos
(

θ
2

)·cos(ϕ2
)·sin
(

ψ
2

)
−sin

(
θ
2

)·sin(ϕ2
)·cos

(
ψ
2

)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

(8)

The estimation of the noise covariance matrix Q

considers the following elements: (i) it is assumed that
the noise components are not correlated and therefore
that Q is diagonal, (ii) the variance of the different
components is estimated using the technical speci-
fications of the sensors (IMU’s accelerometers and
gyroscopes, internal sensors of the vehicle) and the
vehicle’s speed range given by the application, and

(iii) a proper error projection of the angular errors to
the quaternion space.

3.4.2 Extended Kalman Filter: Correction Step

For the correction step of the Extended Kalman filter,
the following standard equations are used:

Kt = P −
t HT

t

(
HtP

−
t HT

t + Rt

)−1

⇀
xt = ⇀

x
−
t + Kt

(
zt − h(

⇀
x

−
t )
)

Pt = (I − KtHt)P
−
t

(9)

with Ht the Jacobian matrix of partial derivatives

of h with respect to
⇀
x

−
t , Rt the measurement noise

covariance matrix and Kt the Kalman gain.
The corrections are done sequentially using the per-

ceptual data obtained from the IMU and the vehicle
internal sensors as well as using virtual observations
obtained from the map of elevations, which is consid-
ered as a soft sensor.

In our modeling, we choose to transform the differ-
ent measured variables (e.g., angular speed around the
zaxis) from the sensor measurement space onto the fil-
ter state space by means of its exact linearization. In
this way, the resultant h is the identity function and Ht

is an identity matrix. This transformation preserves the
higher order statistical effects, improving the Kalman
filter performance [10]. Naturally, this means that
the Rt matrices corresponding to each information
sources must be estimated very accurately in order
to have a proper Kalman-filtering-based fusion. The
measurement noise covariance matrices correspond-
ing to the IMU and the vehicle measurements are
time invariant and are denoted as RIMU and Rvehicle,
respectively. The noise covariance matrix associated
with the virtual measurement, provided by the map of
elevations, is denoted as R

map
t and is time variant.

The IMU provides observations that allow updat-
ing the pose, steer angle and vibration’s variance

components of the observational vector
⇀
z

IMU

t . The
orientation measurements θIMU

t , φIMU
t , and ψIMU

t

are used directly to update
⇀
q

IMU

t :

⇀
q

IMU

t = qYPR

(
ψIMU

t , φIMU
t , θIMU

t

)
(10)

with qYPR given by Eq. (8)
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Fig. 3 Rotation angles
around the x and y axes

By using Eq. (6), the observation of the steering
wheel angle is obtained from the IMU angular speed
around the z axis, ωz

t , as:

αIMU
t = ωz

t

vt · γ
(11)

The quantification of the vehicle vibration in the
z axis is estimated as the variance of the IMU’s
acceleration in the z axis:

ηIMU
t =

Nf −1∑

i=0

(
az
t−i − āz

t

)2

Nf

(12)

with Nf the number of samples and āz
t the mean value

of the acceleration in the z axis in the same period.

Finally,
⇀
z

IMU

t is given by2:

⇀
z

IMU

t =

⎛

⎜
⎜
⎜⎜
⎜
⎝

∗
⇀
q

IMU

t

∗
αIMU

t

ηIMU
t

⎞

⎟
⎟
⎟⎟
⎟
⎠

(13)

The vehicle provides measurements that allow
updating the speed and steering wheel angle com-

ponents of the observational vector
⇀
z

vehicle

t . Given
that the vehicle’s internal sensors directly provide the
speed of the four wheels and the angle of the steering

wheel
⇀
z

vehicle

t has the following form:

⇀
z

vehicle

t =

⎛

⎜⎜
⎜
⎜
⎝

∗
∗

1/
2(v

vehicle,rl
t + v

vehicle,rr
t )

αvehicle
t

∗

⎞

⎟⎟
⎟
⎟
⎠

(14)

2We use “*” to indicate that this component of the observa-
tion vector does not exists and, therefore, it is not used in the
corrective stage.

with v
vehicle,rl
t /v

vehicle,rr
t the speed of the rear-left

/rear-right wheel.
The map of elevations provides virtual observations

that allow updating the vehicle pose components of
the observational vector

⇀
z

map

t . Let hrl
t , hrr

t , h
f l
t and

h
f r
t be the heights of the rear-left, rear-right, front-left

and front-right wheels, respectively. These heights are
obtained by evaluating the terrain map (mapheight [·][·]
array defined in Eq. (22)), with the normalized x and
y coordinates of the contact point of the wheels on the
ground (see details in Section 3.6). Then, the rotation
angles around the x and y axes are given by (see Fig. 3
for details):

φ
map
t = asin

(
h̄rear

t − h̄
f ront
t

wheelbase

)

θ
map
t = asin

(
h̄

lef t
t − h̄

right
t

track

) (15)

with h̄rear
t =

(
hrl

t + hrr
t

)/
2, h̄

f ront
t =(

h
f l
t + h

f r
t

)/
2, h̄

lef t
t =

(
h

f l
t + hrl

t

)/
2 and

h̄
right
t =

(
h

f r
t + hrr

t

)/
2.

Fig. 4 AMTC’s Autonomous Vehicle
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Table 1 Vehicle model
parameters
(Volkswagen®Tiguan)

E Petrol Engine 4-cylinders 2.0L 125KW (16V) Turbo FSI

M Mass 1590[Kg]

Izz Moment of Inertia with respect to z-axis 2695[Kg·m2]

lf Distance from front axle to CoG position (wrt. x-axis) 1.302[m]

lr Distance from rear axle to CoG position (wrt. x-axis) 1.302[m]

Cf Characteristic curves of the front tires 7791[Kg· m/s(rad)]

Cr Characteristic curves of the rear tires 7791[Kg· m/s(rad)]

ρ Atmospheric density 1.225[Kg/m3]

ε Aerodynamics coefficient 0.33

A Frontal area 3.049974[m2]

Spin rate steering wheel–tire 1/14.7

Acceleration 0-100 [km/h] 10.4[s]

µ Dry pavement friction coefficient 0.8

Finally,
⇀
z

map

t is given by:

⇀
z

map

t =

⎛

⎜⎜
⎜
⎜
⎝

∗
qYPR

(
ψt, φ

map
t , θ

map
t

)

∗
∗
∗

⎞

⎟⎟
⎟
⎟
⎠

(16)

with qYPRgiven by Eq. (8), and ψt the current estima-
tion of the rotation angle around z.

The noise covariance matrix associated to the vir-
tual measurement provide by the map of elevations
R

map
t , is computed as:

R
map
t =

⎡

⎢
⎢
⎢⎢
⎣

0 0 0 0 0
0 R

map
t,q 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎦

(17)

Table 2 AMTC’s Autonomous Vehicle sensors

Sensor Type Model

LIDAR SICK, LMS291-S05

LIDAR SICK, LMS151

LIDAR SICK, LD-MRS HD

IMU Crossbow, NAV440

CAMERA AVT, Manta G046C

CAMERA Sony, PlayStation®Eye Camera

RADAR Delphi, ESR

CAN Interface Kvaser, Leaf Light HS

with R
map
t,q =

⎡

⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎦ · max

(
χ

f l
t , χ

f r
t , χrl

t , χrr
t

)

(18)

where χ
f l
t , χf r

t , χrl
t and χrr

t are the variances associ-
ated to the heights of the rear-left, rear-right, front-left
and front-right wheels, respectively. These values are

Fig. 5 Example of measurements obtained by the LMS151
(green), LMS291 (red) and LD-MRS (blue) laser rangefinders
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(a) (b) (c)

Fig. 6 a Satellite view of the unpaved road, b Example of pictures of the road and c laser rangefinder data used as ground truth.
Source: Google Maps satellite image

obtained by evaluating the variances of the terrain map
(mapvar [·][·] array defined in Eq. (23)), with the nor-
malized x and y coordinates of the contact point of the
wheels on the floor (see details in Section 3.6).

The noise covariance matrices RIMU and Rvehicle

are estimated in a standard sensor calibration process.

3.5 Laser Projection

The laser measurements are acquired in polar coordi-
nates, relative to the laser rangefinder device (see Sub-
section 3.3). In order to integrate laser measurements
acquired at different times, by one or more different
laser rangefinders, measurements are first transformed
into Cartesian coordinates, then projected onto the
local reference system SL, and finally onto the global
reference system SG. For the first projection, it is nec-
essary to know the laser pose in SL, whichis given

by the 3D vector
⇀
p

SL

laser and the quaternion
⇀
q

SL

laser .
The vehicle’s pose is used for the second projection.

Table 3 Recording’s characteristics

Recording ID Ground Class Speed Range Weather Condition

1-2 Unpaved Low sunny/dry

3-6 Unpaved Medium sunny/dry

Thus, the laser measurements ⇀
ρ

SG

t,i
∈ R

3 are obtained
as:
⇀
ρ

laser

t,i
= [ dt,i · cos (θt,i

)
dt,i · sin (θt,i

)
0
]T ; (19)

i ∈ {1, ..., Nsamples

}

⇀
ρ

SG

t,i
=
(

x
SG

t,i y
SG

t,i z
SG

t,i

)T = ⇀
qt ·
(

⇀
q

SL

laser · ⇀
ρ

laser

t,i

·(⇀
q

SL

laser )
∗ + ⇀

p
SL

laser

)
· (

⇀
qt )

∗

+pt ; i ∈ {1, ..., Nsamples

}
(20)

For each laser measurement, the variance of the
measurement, χt,i , is computed. The two main factors
affecting this value are: the measured distance dt,i and
the variance of the vehicle’s vibration in the z axis.
Then, χt,i is given by:

χt,i = κd · d2
t,i + κη · ηt + κbase (21)

where: κd , κη, and κbaseare adjusting factors empiri-
cally set to 0.04, 0.5 and 0.1, respectively.

3.6 Terrain Map Update

The terrain map is organized as a 2.5D height map,
composed by cells of size Mx · My [m2]. The laser

measurements ⇀
ρ

SG

t,i
; i ∈ {1, ..., Nsamples

}
are stored

in the map. Since more than one laser measurement
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can be mapped onto the same cell and that laser mea-
surements corresponding to different time instants can
also be mapped onto the same cell, the variance of the
laser measurement is considered in the fusion process.
Hence, the map stores two values in each cell posi-
tion: the measured height, mapheight , and the variance

of the measurement, mapvar . By assuming that laser
measurements and map height estimation have Gaus-
sian distributions, they can be optimally fused using
a Kalman filtering approach [14]. Thus, in each map
cell position(Xt,i , Yt,i), a 1D Kalman filter estimates
the state variable (map height) and its variance as:

mapheight [Xt,i][Yt,i] = χt,i · mapheight [Xt,i][Yt,i] + mapvar [Xt,i][Yt,i] · z
SG

t,i

mapvar [Xt,i][Yt,i] + χt,i

; i ∈ {1, ..., Nsamples

}

(22)

mapvar [Xt,i][Yt,i] = mapvar [Xt,i][Yt,i] · χt,i

mapvar [Xt,i][Yt,i] + χt,i

; i ∈ {1, ..., Nsamples

}
(23)

where Xt,i = x
SG

t,i /Mxand Yt,i = y
SG

t,i /My are
normalized cell coordinates.

4 Experimental Results

4.1 AMTC Autonomous Vehicle

The Advanced Mining Technology Center (AMTC) of
University of Chile developed an autonomous vehicle
whose final goal is autonomous navigation inside open
pit mines. For this application typical truck speeds are
in the range of 5-14 [m/s] and navigation based on
pure GPS is not reliable, because insome deep sec-
tions of the pit GPS signal is not always available.
Therefore, robust terrain mapping systems are of high
interest.

The AMTC autonomous vehicle corresponds to
a standard Volkswagen Tiguan 2010 (see picture in
Fig. 4). The roof rack has aluminum-extruded profiles
installed for mounting sensors. The vehicle parame-
ters are presented in Table 1. A list of installed sensors
is presented in Table 2. The original Tiguan vehi-
cle was mechanically and electronically modified in
order to make it autonomous. The modifications can
be outlined as follow: the steering wheel is actuated
by a brushless motor connected by a chain to the
steering column therefore both rotate synchronously.
The brake pedal is pulled by a steel rope, which is
moved by a linear actuator, placed on the co-pilot’s
footrest. The control hardware of the accelerator pedal

and handbrake were modified, therefore both devices
are electronically controlled. The vehicle’s internal
sensors data is directly acquired from the CAN bus
interface. A rack with electronic controllers and com-
puters was installed in the vehicle’s trunk. The data
acquisition and control routines run on an automo-
tive standard Intel i7 610E @2.53GHz (4GB RAM)
computer running ROS-Fuerte on Ubuntu 12.04. More
details on the control modules used in this vehicle can
be found in [15, 16].

4.2 Evaluation Dataset

Evaluation data was recorded inside O’Higgins Pub-
lic Park, located near downtown area in Santiago de
Chile, Chile. The aforementioned data were captured
while the vehicle was driven on unpaved, rough terrain
at low (<10 [m/s]) and medium speeds (<20[m/s]).
Each recording have measurements from three laser
rangefinders, one IMU, one radar, two cameras, one
GPS and the vehicle’s CAN bus data (see device’s
models in Table 2).

As explained previously, the terrain map is built
using the laser measurements. The SICK LMS291 and
LMS151 rangefinders have one scanning plane while
the SICK LD-MRS HD has four scanning planes. The
three laser rangefinders are placed with different and
fixed pitch angles, thus are capable of taking mea-
surements at different distances in front of the vehicle.
The SICK LMS291’s scanning plane touches the floor
at 16 [m] in front of the vehicle, while the SICK
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Fig. 7 Percentage of the total traveled distance versus the vehicle’s speed for recordings 1-2 and 3-6

LD-MRS’s inferior scanning plane touches the floor
at 19[m] in front of the vehicle. The SICK LMS151
is mounted vertically pointing to the floor. This sen-
sor is used as ground truth for the map’s integration.
An example of the laser measurements is shown on
Fig. 5.

The unpaved area is formed by a very irregular
road having a length of about 800 [m] with posi-
tive and negative slopes (see Fig. 6a). The road is
a track made of ground surrounded with grass and
some trees. The height difference between the low-
est and the highest point of the track is about 4
meters. In this area six recordings with different speed
ranges and driving directions were taken as shown in
Table 3. Figure 7 shows the speed distribution of those
recordings. The average speed for recordings 1-2 is
2.91 [m/s] while the average speed for recordings 3-6
is 5.40 [m/s].

4.3 Experiments

The proposed Kalman-based terrain estimation
methodology is compared against a baseline method-
ology, which does not use any state estimator but the
IMU and speed information. In addition, the use of
the terrain map as virtual observations in the state

estimator is analyzed. Thus, the following systems are
compared:

– S1 “baseline”. The IMU measurements and the
vehicle’s speed information sources are used in
order to obtain the displacement of the vehicle and
the pose’s change of the laser rangefinders. No
Kalman filter is used for estimating the pose of the
laser rangefinders or for data fusion in the terrain
map.

– S2 “full state estimator”. The S2 system is built
using the here-proposed methodology, using all
information sources.

– S3 “full without map feedback”. Same as S2, but
without using the feedback of the map as virtual
observations in the Kalman filter.

As already mentioned, the measurements obtained by
a laser rangefinder mounted vertically on the front of
the vehicle are used to build the ground truth. The
measurements of this sensor are compared with the
corresponding values of mapheight . Naturally these
values are compared using the terrain coordinates.

In order to quantify the map estimation errors, the
root square error is measured in each map cell. Then,
two quality measures are computed: (i) the Root Mean

Table 4 Experiment results for recordings 1-2 (low speed), normalized by the number of samples (11,602)

S1 S2 S3

RMSEsample 41.5877 10−3[m] 14.7799 10−3[m] 14.8113 10−3[m]

% Cases better than baseline system – 81.21% 80.26%
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Fig. 8 ROC curves for recording 1-2. % of cells whose root mean square error is lower than a given threshold

Square Error (RMSE) over the whole map, normal-
ized by the number of samples (RMSEsample) and (ii)
the percentage of map cells which root square error
is lower than a given threshold value. Using several
different threshold values, Receiver Operating Curves
(ROCs) are built. In addition, the percentage of cases
in which the proposed system (S2) or a variant (S3)
has a lower RMSEsample, than the baseline system
(S1) is calculated.

In the first experiment, the systems were compared
using recording 1 and 2 (low speed). Table 4 shows
the obtained RMSEsample and Fig. 8 shows the ROC
curves of the error. It can be observed that the systems
that use the state estimators (S2 and S3) obtained a
much lower error in the map compared to the baseline
system (S1); the RMSEsample of systems S2 and S3
is 35 % of the one of S1. Table 4 also shows that in
approximately 80 % of the map cells (81.21 % for S2
and 80.26 % for S3), the height estimations of the sys-
tems that use the state estimators (S2 and S3) have a
lower error than the ones of the baseline system. Fur-
thermore, in Table 4 it can be observed that best results
are obtained when all information sources are used in
the state estimator (S2); a slightly higher RMSEsample

is obtained when the terrain map data is not used in
the state estimation.

In the second experiment, the systems were com-
pared using recordings 3-6 (medium speed). Table 5
shows the obtained RMSEsample and Fig. 9 displays
the ROC curves of the error. As in the first experiment,

it can be observed that the systems that use the state
estimators (S2 and S3) obtained a much lower RMSE
in the map compared to the baseline system (S1). In
fact, the RMSE is reduced by approximately one third
Table 5 shows that in about 60 % of the map cells
(63.18 % for S2 and 59.95 % for S3), the height esti-
mations of the systems that use the state estimators
(S2 and S3) have a lower error that the ones of the
baseline system. As in experiment 1, in Table 5 it can
be observed that the best results are obtained when
all information sources are used in the state estimator
(S2); a 10 % higher RMSEsample is obtained when the
terrain map data is not used in the state estimation.

It is worth to mention that in addition to the
reported experiments in unpaved, rough terrain, sev-
eral experiments were carried out in paved roads at
different speeds, in order to estimate the minimal error
that the terrain map estimation system can have. The
minimal RMSE is 10.1 10−3[m], which is of the same
order of the RMSE obtained in recordings 1-2. This
value is also very close to the theoretical minimum
RMSE that can be obtained by such a system, which
is given by the angular projections of the laser range
finder variance:

E [RMSE] =
√√
√√

N∑

i=1

cos(αi)2 · σ 2
sensor

/

N (24)

with αi the sweep angle of the sensor and N the
number of measurements.

Table 5 Experiment results for recordings 3-6 (medium speed) normalized by the number of samples (11,904)

S1 S2 S3

RMSEsample 78.990 10−3[m] 52.4298 10−3[m] 57.8229 10−3[m]

% Cases better than baseline system – 63.18% 59.95%
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Fig. 9 ROC curves for recording 3-6. % of cells whose root square error is lower than a given threshold

Finally, it is important to stress that the two esti-
mation systems derived from the application of the
proposed methodology (S2 and S3) work on-line and
in real-time. Table 6 shows the processing time of each
stage, when it is executed. These processing times
were measured using the main computer of the AMTC
autonomous vehicle (See Section 4.1).

The prediction step of the Vehicle Estimation Stage
is executed at a framerate of 200 [Hz]. The correction
step is executed asynchronously everytime the IMU
the internal sensors of the vehicle or the map updating
process generate new data. The IMU and the inter-
nal sensors generate data at the following rates: IMU
at 100 [Hz], angle of the steering wheel at 50 [Hz],
and linear speed of the wheels at 50 [Hz]. The map
updating process generates data at a framerate of 10
[Hz].

The Laser Projection Stage and the Terrain Map
Update are also executed asynchronously everytime
the laser range finders generate new data. These sen-
sors generate data at the following rates: LMS 291
laser range finder at 75 [Hz] and LD-MRS laser range
finder at 50 [Hz].

Table 6 Processing time of the estimation process

Processing Time Number of times

[10−6 s] that the module is

called in a second

Vehicle State Estimation 0.5 200

(Prediction Step)

Vehicle State Estimation 122.6 210

(Correction Step)

Laser Projection 87.1 125

Terrain Map Update 104.0 125

5 Conclusions

The accurate and real-time generation of terrain maps
in off-road, irregular terrains is addressed in this work.
The proposed methodology is based on the use of
an Extended Kalman filter for estimating in real-time
the instantaneous pose of the vehicle and the laser
rangefinders by considering measurements taken from
an inertial measurement unit, internal sensorial data
of the vehicle and the estimated heights of the four
wheels, which are obtained from the terrain map and
allow determining the vehicle’s inclination. The esti-
mated 6D pose of the laser rangefinders is used to
correctly project the laser measurements onto the ter-
rain map. The terrain map is a 2.5D map that stores the
mean value and variance of the terrain height. In each
map’s cell position, new laser observations are fused
with existing height estimations using a Kalman filter.

The methodology is validated in the real world
(O’Higgins Public Park, located near downtown area
in Santiago de Chile, Chile), using an autonomous
vehicle. The evaluation dataset was captured while the
vehicle was moving on unpaved, rough terrain at low
and medium speeds, for 4.8 [km].

Experiments show that the use of the proposed
methodology allow to increase the quality of the
obtained maps; the RMSE is reduced to one third in
the case that the vehicle is moving at low speeds, and
reduced to two thirds when the vehicle is moving at
medium speeds. Furthermore, it can be observed that
in most of the map’s cells (80 %/60 % in case the
vehicle is moving at low/medium speeds), the height
estimations are more accurate when the Kalman-filter-
based methodology is used.

In addition, experiments show that the use of
the map heights for the estimation of the pose of
the laser rangefinders allow obtaining more accurate
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maps. When the map heights are not used, the RMSE
increases by approximately 10 %, when the vehicle is
moving at medium speeds.
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Appendix 1

From Fig. 2a, it can be observed that:

sin (αt ) = wheelbase

rt
(25)

Then, given that vt = ωt · rt , the following expres-
sion for wt is obtained:

wt = vt sin (αt )

wheelbase
(26)

The following linear approximation between the
steer angle αt and the angle of the steering wheel
αwheel

t is used:

αt � β · αwheel
t (27)

with β a real number. Figure 10 shows the linear rela-
tionship obtained for the Volkswagen Tiguan used in
this work.

Finally, from Eqs. (26) and (27), and considering
that αt is small, the final expression for wt is defined
as:

wt � vt · β · αwheel
t

wheelbase
� vt · αwheel

t · γ (28)

with γ a real number. For the Volkswagen Tiguan,

γ = 0.02359
[
1
m

]
is obtained by a linear regression.

Fig. 10 Relationship
between the steer angle and
the angle of the steering
wheel, for the Volkswagen
Tiguan vehicle
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