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Abstract. Consider a two-player normal-form game repeated over time. We introduce an
adaptive learning procedure, where the players only observe their own realized payoff at each stage.
We assume that agents do not know their own payoff function and have no information on the other
player. Furthermore, we assume that they have restrictions on their own actions such that, at each
stage, their choice is limited to a subset of their action set. We prove that the empirical distributions
of play converge to the set of Nash equilibria for zero-sum and potential games, and games where
one player has two actions.
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1. Introduction. First introduced by Brown [12] to compute the value of zero-
sum games, fictitious play is one of the most intensely studied and debated procedures
in game theory. Consider an N -player normal form game which is repeated in discrete
time. At each time, players compute a best response to the opponent’s empirical
average play.

A major issue in fictitious play is identifying classes of games where the empirical
frequencies of play converge to the set of Nash equilibria of the underlying game.
A large body of literature has been devoted to this question. Convergence for two-
player zero-sum games was obtained by Robinson [34] and for general (nondegenerate)
2× 2 games by Miyasawa [31]. Monderer and Shapley [32] proved the same result for
potential games, and Berger [9] for two-player games where one of the players has only
two actions. Recently, a large proportion of these results has been reexplored using the
stochastic approximation theory (see, for example, Benäım [3], Benveniste, Métivier,
and Priouret [8], and Kushner and Yin [28]), where the asymptotic behavior of the
fictitious play procedure can be analyzed through related dynamics. For instance,
Hofbauer and Sorin [24] obtain more general convergence results for zero-sum games,
while Benäım, Hofbauer, and Sorin [6] extend Monderer and Shapley’s result to a
general class of potential games, with nonlinear payoff functions on compact convex
action sets.

Most of these convergence properties also hold for smooth fictitious play, intro-
duced by Fudenberg and Kreps [16] (see also Fudenberg and Levine [17]), where agents
use a fictitious play strategy in a game where payoff functions are perturbed by ran-
dom variables, in the spirit of Harsanyi [20]. For this adaptive procedure, convergence
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288 MARIO BRAVO AND MATHIEU FAURE

holds in 2×2 games (see Benäım and Hirsch [5]), zero-sum, potential games (see Hof-
bauer and Sandholm [23]), and supermodular games (see Benäım and Faure [4]).

As defined above, in fictitious play or smooth fictitious play, players compute best
responses to their opponents’ empirical frequencies of play. Three main assumptions
are made here: (i) each player knows the structure of the game, i.e., she knows her own
payoff function; (ii) each player is informed of the action selected by her opponents at
each stage, and thus she can compute the empirical frequencies; and (iii) each player
is allowed to choose any action at each time, so that she can actually play a best
response.

The next question is usually what happens if assumptions (i) and (ii) are re-
laxed. One approach is to assume that the agents observe only their realized payoff at
each stage. This is the minimal information framework of the so-called reinforcement
learning procedures. (See Börgers and Sarin [10] or Erev and Roth [14] for pioneering
work on this topic.) Most work in this direction proceeds as follows: (a) construct
a sequence of mixed strategies which is updated taking into account the payoff they
receive (which is the only information agents have access to) and (b) study the con-
vergence (or nonconvergence) of this sequence. It is supposed that players are given
a rule of behavior (a decision rule) which depends on a state variable constructed by
means of the aggregate information they gather and their own history of play.

It is noteworthy that most of the decision rules considered in the literature are
stationary in the sense that they are defined through a time-independent function of
the state variable. This kind of rule has proved useful in the analysis of simple cases,
e.g., 2× 2 games (see Posch [33]), two-player games with positive payoff (see Börgers
and Sarin [10], Beggs [2], Hopkins [26], and Hopkins and Posch [27]) or in establishing
convergence to perturbed equilibria in two-player games (see Leslie and Collins [29]) or
multiplayer games (see Cominetti, Melo, and Sorin [13] and Bravo [11]). An example
of a nonhomogeneous (time-dependent) decision rule is proposed by Leslie and Collins
[30] where, via stochastic approximation techniques, convergence of mixed actions
is shown for zero-sum games and multiplayer potential games. Another interesting
example that implements a nonhomogeneous decision rule is proposed by Hart and
Mas-Colell [22]. Using techniques based on consistent procedures (see Hart and Mas-
Colell [21]), the authors show that, for any game, the joint empirical frequency of
play converges to the set of correlated equilibria. To our knowledge, this is the only
reinforcement learning procedure that uses a decision rule depending explicitly on
the last action played (i.e., it is Markovian). However, in all the examples described
above, assumption (iii) holds; in other words, players can use any action at any time.

A different idea, that of releasing assumption (iii), comes from Benäım and Rai-
mond [7], who introduced the Markovian fictitious play MFP procedure, where players
have restrictions on their action set, due to limited computational capacity or even to
physical restrictions. Players know the structure of the game and, at each time, they
are informed of opponents’ actions, as in the fictitious play framework. Under the
appropriate conditions regarding payers’ ability to explore their action set, it is shown
that this adaptive procedure converges to Nash equilibria for zero-sum and potential
games.

Here, we drop all three assumptions (i), (ii), and (iii). The main novelty of this
work is that we construct a sophisticated, nonstationary learning procedure in two-
player games with minimal information and restrictions on players’ action sets. We
assume that players do not anticipate opponents’ behavior and that they have no
information on the structure of the game (in particular, they do not know their own
payoff function) nor on opponents’ actions at each stage. This means that the only
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REINFORCEMENT LEARNING WITH RESTRICTIONS 289

information allowing agents to react to the environment is their past realized payoffs;
the adaptive procedure presented in this work thus belongs to the class of reinforce-
ment learning algorithms. In addition (and in the spirit of the MFP procedure), we
suppose that at each stage the agents are restricted to a subset of their action set,
which depends on the action they chose at the previous stage. The decision rule we
implement is fully explicit, and it is easy for each agent to compute the mixed action
which dictates her next action. She actually chooses an action through a nonhomo-
geneous Markovian rule which depends on a meaningful state variable.

One of the main differences between this procedure and standard reinforcement
learning is that the sequence of mixed strategies is no longer a natural choice of
state variable. Indeed, the set of mixed strategies available to a given agent at time
n + 1 depends on the action he chose at time n. As a consequence, it is unrealistic
to expect good asymptotic behavior from the sequence of mixed strategies, and we
turn our attention to the sequence of empirical moves. Our main finding is that the
empirical frequencies of play converge to Nash equilibria in zero-sum and potential
games, including convergence of the average scored payoffs. We also show convergence
in the case where at least one player has only two actions.

This paper is organized as follows. In section 2 we describe the setting and present
our model, along with our main result. Section 3 introduces the general framework
in which we analyze our procedure. The related MFP procedure is also presented
to help the reader better grasp our adaptive procedure. Section 4 gives the proof of
our main result, presented as an extended sketch, while the remaining results and
technical comments are left to the appendix.

2. The model.

2.1. Setting. Let G = (N, (Si)i∈N , (Gi)i∈N ) be a given finite normal form game
and S =

∏
i S

i be the set of action profiles. We call Δ(Si) the mixed action set,

i.e., Δ(Si) = {σi ∈ R
|Si| :

∑
si∈Si σi(si) = 1, σi(si) ≥ 0, for all si ∈ Si}, and

Δ =
∏

i Δ(Si). More generally, given a finite set S, Δ(S) denotes the set of probability
distributions over S.

In the whole paper, for any agent i, we denote δsi the pure action si seen as an
element of Δ(Si). As usual, we use the notation −i to exclude player i, namely, S−i

denotes the set
∏

j �=i S
j and Δ−i the set

∏
j �=i Δ(Si).

Definition 2.1. The best-response correspondence for player i ∈ N , BRi :
Δ−i ⇒ Δ(Si), is defined as BRi(σ−i) = argmaxσi∈Δ(Si) G

i(σi, σ−i) for any σ−i ∈
Δ−i. The best-response correspondence BR : Δ ⇒ Δ is given by

BR(σ) =
∏
i∈N

BRi(σ−i)

for σ ∈ Δ.
Recall that a Nash equilibrium of the game G is a fixed point of the set-valued

map BR, namely, a mixed action profile σ∗ ∈ Δ such that σ∗ ∈ BR(σ∗).

2.2. Payoff-based Markovian procedure. We consider a situation where the
game G described above is repeated in discrete time. Let sin ∈ Si be the action
played by player i at time n. We assume that players do not know the game that
they are playing, i.e., they know neither their own payoff functions nor opponents’.
Also, we assume that the information that a player can gather at any stage of the
game is given by her payoff, i.e., at each time n each player i ∈ N is informed of
gin = Gi(s1n, s

2
n, . . . , s

N
n ). Players are not able to observe opponents’ actions.

D
ow

nl
oa

de
d 

06
/2

6/
15

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

290 MARIO BRAVO AND MATHIEU FAURE

In this framework, a reinforcement learning procedure can be defined in the fol-
lowing manner. Let us assume that, at the end of stage n ∈ N, player i has constructed
a state variable X i

n. Then
(a) at stage n+1, player i selects a mixed action σi

n according to a decision rule,
which can depend on state variable X i

n and time n;
(b) player i’s action sin+1 is randomly drawn according to σi

n;
(c) she only observes gin+1, as a consequence of the realized action profile

(s1n+1, . . . , s
N
n+1);

(d) finally, this observation allows her to update her state variable to X i
n+1

through an updating rule, which can depend on observation gin+1, state vari-
able X i

n, and time n.
In this work we assume that, in addition, players have restrictions on their action

set. This idea was introduced by Benäım and Raimond [7] through the definition of
the MFP procedure (see section 3.2 for details). Suppose that when an agent i plays
an action s ∈ Si at stage n ∈ N, her available actions at stage n+ 1 are reduced to a
subset of Si. This can be due to physical restrictions, computational limitations, or a
large number of available actions. The subset of actions available to player i depends
on her last action and is defined through an exploration graph Gi whose vertices are
the actions of player i, which is nondirected and strongly connected (that is, for any
pair of actions s, r ∈ Si, there exists a path from s to r). Then, if at stage n player
i plays s ∈ Si, she can switch to action r �= s at stage n + 1 if and only if there is
an edge between s and r. The connectedness assumption guarantees that agents have
access to any of their actions.

In order to incorporate the restriction structure into our reinforcement proce-
dure, we associate an exploration matrix M i

0 to the exploration graph introduced in
the model. Namely, we choose a stochastic matrix M i

0 which is compatible with the
exploration graph Gi, in the sense that M i

0(s, r) > 0 if and only if there is an edge be-
tween r and s. Of course, this matrix is irreducible due to the fact that the exploration
graph is strongly connected. We also choose it reversible with respect to its unique
invariant measure πi

0, i.e., the detailed balance equation πi
0(s)M

i
0(s, r) = πi

0(r)M
i
0(r, s)

holds for every s, r ∈ Si.
Remark 2.2. Recall that a stochastic matrix M over a finite set S is said to be

irreducible if it has a unique recurrent class which is given by S. The reversibility
condition is a natural assumption for an exploration matrix. An interpretation is
that the distribution of the associated process is invariant by time-reversal. More
importantly, it will prove to be very convenient to have a nice explicit expression for
the invariant distributions of the stochastic matrices M i[β,R] (see below).

For β > 0 and a vector R ∈ R
|Si|, we define the stochastic matrix M i[β,R] as

(2.1) M i[β,R](s, r) =

⎧⎨
⎩
M i

0(s, r) exp(−β|R(s)−R(r)|+), s �= r,

1− ∑
s′ �=s

M i[β,R](s, s′), s = r,

where, for a number a ∈ R, |a|+ = max{a, 0}.
From the irreducibility of the exploration matrix M i

0, we have that M i[β,R] is
also irreducible and its unique invariant measure is given by

(2.2) πi[β,R](s) =
πi
0(s) exp(βR(s))∑

r∈Si

πi
0(r) exp(βR(r))

for any β > 0, R ∈ R
|Si| and s ∈ Si.
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Let (βi
n)n be a deterministic sequence and let Fn be the σ-algebra generated by

the history of play up to time n. Let Ri
0 = 0. (We choose to initialize the procedure

at zero for the sake of simplicity; however, any choice of Ri
0 would work.) We suppose

that, at the end of stage n ≥ 1, player i has a state variable Ri
n ∈ R

|Si|. Let
M i

n = M i[βi
n, R

i
n] and πi

n = πi
n[β

i
n, R

i
n]. For n ≥ 0, Player i selects her action at time

n+ 1 through the following choice rule:

(CR)

σi
n(s) = P(sin+1 = s | Fn)

= M i
n(s

i
n, s)

=

⎧⎨
⎩
M i

0(s
i
n, s) exp(−βi

n|Ri
n(s

i
n)−Ri

n(s)|+), s �= sin,

1− ∑
s′ �=s

M i
n(s

i
n, s

′), s = sin

for every s ∈ Si. As we will see, variable Ri
n will be defined so as to be an estimator

of the time-average payoff vector.
At time n + 1, player i observes her realized action sin+1, as well as her realized

payoff gin+1. The updating rule chosen by player i is defined as follows. Agent i updates

the vectorRi
n ∈ R

|Si|, only on the component associated to the action selected at stage
n. For every action s ∈ Si,

(UR) Ri
n+1(s) = Ri

n(s) + γi
n+1(s)

(
gin+1 −Ri

n(s)
)
1{sin+1=s},

where

γi
n+1(s) = min

{
1 ,

1

(n+ 1)πi
n(s)

}
,

and 1E is the indicator of the event E.
Remark 2.3. For the sake of simplicity, we refer to Ri

n as the state variable
of player i even if, strictly speaking, the actual state variable is of the form X i

n =
(Ri

n, s
i
n), given that the choice rule (CR) is Markovian.

Note that the step size γi
n+1(s) depends only on πi

0, β
i
n and Ri

n. Also, as we will
see later on, (γi

n(s))
−1 = nπi

n−1(s) for sufficiently large n (cf. section A.2).
While choosing this step size might appear surprising, we believe that it is actually

very natural, as it takes advantage of the fact that the invariant distribution πi
n is

known by player i. To put it another way: a natural candidate for step size γi
n(s) in

(UR) is γi
n(s) = 1/θin(s), where θ

i
n(s) is equal to the number of times agent i actually

played action s during the n first steps. If the Markov process was homogeneous and
ergodic, with invariant measure πi, then the expected value of θin would be exactly
nπi(s).

Consequently, our stochastic approximation scheme (UR) can be interpreted as
follows. Assume that, at time n+ 1, action s is played by agent i. Then Ri

n+1(s) is
updated by taking a convex combination of Ri

n(s) and of the realized payoff playing
s at time n+1; additionally, the weight that is put on the realized payoff is inversely
proportional to the number of times this action should have been played (and not the
number of times it has actually been played).

Let us denote by (vin)n the sequence of empirical distribution of moves of agent
i, i.e., vin = n−1

∑n
m=1 δsim , and vn = (vin)i∈N ∈ Δ. Note that, given the physical

restrictions on the action set, one cannot expect convergence results on the mixed
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actions of players σi
n. Therefore, the empirical frequencies of play become the natural

focus of our analysis.
Definition 2.4. We call the payoff-based Markovian procedure the adaptive

process where, for any i ∈ N , agent i plays according to the choice rule (CR) and
updates Ri

n through the updating rule (UR).

2.3. Main results. In the case of a two-player game, we introduce our major
assumption on the sequence (βi

n)n.
Assumption 2.5. For i ∈ {1, 2}, the sequence (βi

n)n is positive and verifies
(i) βi

n −→ +∞,
(ii) βi

n = Ai
n ln(n), where Ai

n is nonincreasing and Ai
n −→ 0 as n → +∞.

For a sequence (zn)n, we call L((zn)n) its limit set, i.e.,

L((zn)n) =
{
z : there exists a subsequence (znk

)k such that lim
k→+∞

znk
= z

}
.

We say that the sequence (zn)n converges to a set A if L((zn)n) ⊆ A. In the case
where A is a closed set, this amounts to having limn→+∞ d(zn, A) = 0.

First, we establish a relationship between the limit set of the sequence (v1n, v
2
n)n

and the attractors (more precisely the internally chain transitive (ICT) sets, defined
below) of the well-known best-response dynamics (BRD), introduced by Gilboa and
Matsui [18],

(BRD) v̇ ∈ −v +BR(v).

For this purpose, we need to introduce some notions that will be useful in what follows.
Let Σ ⊆ R

d be a convex compact set and let us consider a set-valued map with
nonempty convex values C : Σ ⇒ Σ. Let us suppose that its graph

Gr(C) = {(z, μ) : z ∈ Σ, μ ∈ C(z)}
is a closed set in Σ× Σ.

Under these assumptions, it is well known (see, e.g., Aubin and Cellina [1]) that
the differential inclusion

(DI) ż ∈ −z + C(z)

admits at least one solution (i.e., an absolutely continuous mapping z : R → R
d such

that ż(t) ∈ −z(t) + C(z(t)) for almost every t) through any initial point.
Definition 2.6. A nonempty compact set A ⊆ Σ is called an attractor for (DI),

provided
(i) it is invariant, i.e., for all v ∈ A, there exists a solution z to (DI) with

z(0) = v and such that z(R) ⊆ A,
(ii) there exists an open neighborhood U of A such that, for every ε > 0, there

exists tε > 0 such that z(t) ⊆ N ε(A) for any solution z starting in U and
all t > tε, where Nε(A) is the ε-neighborhood of A. An open set U with this
property is called a fundamental neighborhood of A.

A compact set D ⊆ Σ is ICT if it is invariant and connected and has no proper
attractors.

Now we can state our first result.
Theorem 2.7. Under Assumption 2.5, assume that players follow the payoff-

based adaptive Markovian procedure. Then the limit set of the sequence (vn)n is an
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ICT set of the best-response dynamics (BRD). In particular, if (BRD) admits a global
attractor A, then L((vn)n) ⊆ A.

As a consequence of Theorem 2.7 as well as some known results (see section 4
for details), we now characterize the asymptotic behavior of the sequence (vn)n in
several classes of two-player games The most interesting aspect here is that we can
also prove convergence results for the actual average payoff scored by the players along
the trajectories.

Let us denote by gin the average payoff obtained by player i, i.e.,

gin = n−1
n∑

m=1

Gi(s1m, s2m),

and gn = (g1n, g
2
n).

Recall that G is a potential game with potential Φ if, for all i = 1, 2, and s−i ∈ S−i,
we have Gi(si, s−i)−Gi(ti, s−i) = Φ(si, s−i)− Φ(ti, s−i) for all si, ti ∈ Si.

Theorem 2.8. Under Assumption 2.5, the payoff-based Markovian procedure
enjoys the following properties:

(a) In a zero-sum game, (v1n, v
2
n)n converges almost surely to the set of Nash

equilibria and the average payoff (g1n)n converges almost surely to the value
of the game.

(b) In a potential game with potential Φ, (v1n, v
2
n)n converges almost surely to a

connected subset of the set of Nash equilibria on which Φ is constant, and
n−1

∑n
m=1 Φ(s

1
m, s2m) converges to this constant.

In the particular case G1 = G2, (v1n, v
2
n)n converges almost surely to a con-

nected subset of the set of Nash equilibria on which G1 is constant; moreover,
(g1n)n converges almost surely to this constant.

(c) If either |S1| = 2 or |S2| = 2, then (v1n, v
2
n)n converges almost surely to the

set of Nash equilibria.
Comments on Theorem 2.8. For potential games, in the general case, the

potential is constant on the limit set of (vn)n, almost surely. Unfortunately, our
result does not allow us to know if this is also true for the payoff of a given player.
However, we conjecture that it is not necessarily the case.

Consider the game G with payoff function G and potential Φ:

(G) G =

a b c
A 1,1 9,0 1,0
B 0,9 6,6 0,8
C 0,1 8,0 2,2

and Φ =

a b c
A 4 3 3
B 3 0 2
C 3 2 4

.

There is a mixed Nash equilibrium, and two strict Nash equilibria (A, a) and (C, c),
with same potential value (equal to 4). However,

P [L((vn)n) = {(A, a), (C, c)}] = 0,

because this set is not connected.
Now consider the following modified version G′:

(G′) G′ =

a b c
A 1,1 9,0 1,0
B 0,9 6,6 0,8
C 1,2 8,0 2,2

and Φ′ =

a b c
A 4 3 3
B 3 0 2
C 4 2 4
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Here, we see that the set of Nash equilibria is connected and equal to

NE = {((x, 0, 1− x), a), x ∈ [0, 1]} ∪ {(C, (y, 0, 1− y)), y ∈ [0, 1]} .

Consequently, there is no reason to rule out the possibility that the limit set of (vn)n
is equal to the whole set of Nash equilibria. Therefore, the payoff is not necessarily
constant on L((vn)n).

Remark 2.9. As pointed out by Jérôme Renault and an anonymous referee, we say
nothing about the convergence or nonconvergence of the empirical joint distributions,
that is, the random sequence n−1

∑n
m=1 δsm . This is undoubtedly an interesting

and challenging question. The answer is trivial (and positive) when the set of Nash
equilibria is restricted to a single pure Nash equilibrium. However, in the general
case, this is an open problem.

Remark 2.10. Obviously, when the players are allowed to play any action at any
time, our results are still valid. However, in such a scenario, a natural state variable
is given by the sequence of mixed actions instead of the sequence of average moves. In
[30], this is done by relating the asymptotic behavior of the day-to-day strategy with
the attractors of the best-response dynamics (BRD), similarly as in our work. This
shows that a Markovian procedure is no longer necessary to reach the same results
(now on the sequence of mixed actions). Moreover, convergence for N -player potential
games (N ≥ 3) can be obtained.

Comments on the assumptions. Assumption 2.5 supposes that the sequence
βi
n increases to infinity as o(ln(n)). This assumption is necessary due to the informa-

tional constraints on players. For instance, it is not possible to know a priori how far
the variables Ri

0 are from the set of feasible payoffs.
As we will see later on, in the MFP procedure, sequence βi

n is supposed to grow
more slowly than Ai ln(n), where Ai is smaller than a quantity which is related to
the energy barrier of the payoff matrix Gi (see Benäım and Raimond [7] for details).
This quantity is in turn related to the freezing schedule of the simulated annealing
algorithm (see, for example, Holley and Stroock [25] and Hajek [19], and references
therein).

We believe it is worth reformulating our result in this spirit. However, this requires
players to have more information about the game. For each i ∈ {1, 2}, suppose that
the initial state variable Ri

0 belongs to the set of feasible payoffs. Also, let us define
the quantity

ωi = max
s∈Si

max
s−i,r−i∈S−i

|Gi(s, s−i)−Gi(s, r−i)|,

and let us consider the following assumption.
Assumption 2.11. Each player i ∈ {1, 2} can choose a positive constant Ai such

that
(i) βi

n −→ +∞,
(ii) βi

n ≤ Ai ln(n), where 2Aiωi < 1.
Then, we have the following version of our main result.
Theorem 2.12. Under Assumption 2.11, the conclusions of Theorem 2.8 hold.
The proof of this result runs along the same lines as the proof of Theorem 2.8

and is therefore omitted.

2.4. Examples. The following simple examples show the scope of Theorem 2.8.
In every case presented in this section, we performed a maximum of 5×105 iterations.
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R S P

Fig. 1. Graph representing players’ restrictions for the (RSP ) game (every state has a loop).

Blind-restricted RSP. Consider the rock-scissor-paper (RSP) game defined by
the payoff matrix G1:

(RSP )

R S P
R 0 1 −1
S −1 0 1
P 1 −1 0

.

Then the optimal strategies are given by ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)) ∈ Δ,
and the value of the game is 0. Players’ exploration matrices and their invariant
measures are given by

(2.3) M1
0 = M2

0 =

⎛
⎝1/2 1/2 0
1/3 1/3 1/3
0 1/2 1/2

⎞
⎠ and π1

0 = π2
0 =

⎛
⎝2/7
3/7
2/7

⎞
⎠ .

Figure 1 means that if a player’s action is rock at some time, she cannot select paper
immediately afterward, and inversely. In Figure 2, we present a realization of (vn)n,
as well as (g1n)n.

3× 3 potential game. Consider the potential game with payoff matrix G′ and
potential Φ′ (see (G′)). We assume that players’ exploration matrices are also given by
(2.3). Therefore, the graph representing the restriction of players is given by Figure 1
if R,S, and P are replaced by A,B, and C, respectively.

Figure 3 shows a realization of our procedure for the game (G′). On the left,
we plot the evolution of v1n. On the right, we present the corresponding trajectory of

Φ
′
n = n−1

∑n
m=1 Φ

′(s1m, s2m), the average value of the potential Φ′ along the realization
of (s1n, s

2
n)n. Note that our results do not stipulate that (vn)n converges (which is an

open question; see our comments on Theorem 2.8), and that our simulation tends
towards nonconvergence of v1n. We choose not to display v2n here (which seems to
converge to the action a).

5 × 5 identical interests game. Consider the game with identical interests
where both players have five actions and the common payoff matrix is given by

(C)

A B C D E
A 2 0 0 0 0
B 0 1 0 0 0
C 0 0 0 0 0
D 0 0 0 1 0
E 0 0 0 0 2

.

Assume that players’ exploration matrices are

M1
0 = M2

0 =

⎛
⎜⎜⎜⎜⎝
1/2 0 1/2 0 0
0 1/2 1/2 0 0

1/5 1/5 1/5 1/5 1/5
0 0 1/2 1/2 0
0 0 1/2 0 1/2

⎞
⎟⎟⎟⎟⎠ with π1

0 = π2
0 =

⎛
⎜⎜⎜⎜⎝
2/13
2/13
5/13
2/13
2/13

⎞
⎟⎟⎟⎟⎠ ,

which corresponds to the graph displayed in Figure 4.
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R

P

S

v1n

(a)

R

P

S

v2n

(b)

-0.2

-0.1

0

0.1

0.2

0.3

time

g1n

(c)

Fig. 2. At the top, a realization of vn. At the bottom, g1n.

Note that, even if the center action C is bad for both players, the restrictions
force them to play C every time they switch to another action.

In Figure 5, on the left, we present a realization where (v1n, v
2
n) converges to the

NE (B,B). On the right, a trajectory where (v1n, v
2
n) converges to the NE (E,E) is

displayed. Note that, in both cases, the average realized payoff gn converges to the
payoff of the corresponding equilibrium. For simplicity, we only plot the component
that converges to one for the first player. This is consistent with the recent finding
that the four strict Nash equilibria have a positive probability of being the limit of
the random process (vn)n. (See Faure and Roth [15] for details.)

3. Preliminaries to the proof, related work. The aim of this section is
twofold: we introduce the general framework in which we analyze our procedure, and
we present the related MFP procedure, where the idea of restrictions on the action
set was first introduced.

3.1. A general framework. Let S be a finite set and let M(S) be the set of
Markov matrices over S. We consider a discrete time stochastic process (sn,Mn)n
defined on the probability space (Ω,F ,P) and taking values in S ×M(S). The space
(Ω,F ,P) is equipped with a nondecreasing sequence of σ-algebras (Fn)n.

Let us assume the following on the sequence (sn,Mn)n.
Assumption 3.1. The process (sn,Mn)n satisfies the following:
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A

C

B

v1n

(a)

3.5

3.6

3.7

3.8

3.9

4

time

Φ
′
n

(b)

Fig. 3. Simulation results for the potential game (G′).

C

A B

D E

Fig. 4. Graph representing players’ restrictions for the game (C) (every state has a loop).

(i) For all n ∈ N, (sn,Mn) is Fn-measurable.
(ii) For all s ∈ S and n ∈ N, P(sn+1 = s | Fn) = Mn(sn, s).
(iii) For all n ∈ N, the matrixMn is irreducible with invariant measure πn ∈ Δ(S).
Let Σ be again a compact convex subset of an euclidean space Rd and H : S → Σ.

For all n ∈ N, let Vn = H(sn) ∈ Σ. We are interested in the asymptotic behavior of
the random sequence zn = n−1

∑n
m=1 Vm. Let us call

(3.1) μn =
∑
s∈S

πn(s)H(s) ∈ Σ.

Remark 3.2. This setting is a simplification of that considered by Benäım and
Raimond [7], where a more general observation term Vn is treated. For instance, Vn

may depend on other nonobservable variables or explicitly on time.
In order to maintain the original terminology, we introduce the following defini-

tion, which is stated in a slightly different form (see [7, Definition 2.4]).
Definition 3.3. A set-valued map with nonempty convex values C : Σ ⇒ Σ is

adapted to the random sequence (zn, μn)n if
(i) its graph Gr(C) is closed in Σ× Σ,
(ii) almost surely, for any limit point (z, μ) of (zn, μn)n, we have (z, μ) ∈ Gr(C).
Given a set-valued map C : Σ ⇒ Σ adapted to a random sequence (zn, μn)n,

recall that (DI) is the differential inclusion ż ∈ −z + C(z).
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0.4

0.6

0.8

1

time

v1n(B)

(a)

0.4

0.6

0.8

1

time

v1n(E)

(b)

0

0.5

1

1.5

2

time

g1n

(a) At the top, v1
n(B) → 1. At the bottom, g1

n → 1.

0

0.5

1

1.5

2

time

g1n

(b) At the top, v1
n(E) → 1. At the bottom, g1

n → 2.

Fig. 5. Two realizations of the procedure for the game (C).

Let m(t) = sup{m ≥ 0 : t ≥ τm}, where τm =
∑m

j=1 1/j. For a sequence (un)n
and a number T > 0, we define ε(un, T ) by

ε(un, T ) = sup

⎧⎨
⎩

∥∥∥∥∥∥
l−1∑
j=n

uj+1

∥∥∥∥∥∥ ; l ∈ {n+ 1, . . . ,m(τn + T )}
⎫⎬
⎭ .

Let us denote by (Wn)n the random sequence defined by Wn+1 = H(sn+1)− μn.
The evolution of zn can be recast as

(3.2) zn+1 − zn =
1

n+ 1
(μn − zn +Wn+1).

A consequence of [7, Theorem 2.6] in this particular framework is the following
result.

Theorem 3.4. Under Assumption 3.1, assume that the set-valued map C is
adapted to (zn, μn)n and that for all T > 0

(3.3) lim
n→+∞ ε

(
1

n+ 1
Wn+1, T

)
= 0

almost surely. Then, the limit set of (zn)n is, almost surely, an ICT set of the
differential inclusion (DI). In particular, if A is a global attractor for (DI), then the
limit set of (zn)n is almost surely contained in A.
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Remark 3.5. Roughly speaking, the fact that the set-valued map C is adapted
to (zn, μn) means that (3.2) can be recast as

zn+1 − zn ∈ 1

n+ 1
(−zn + C(zn) +Wn+1).

In turn, this recursive form can be seen as a Cauchy–Euler scheme to approximate
the solutions of the differential inclusion (DI) with decreasing step sizes and added
noise term (Wn)n. Assumption (3.3) guarantees that, on any given time horizon, the
noise term asymptotically vanishes. As a consequence, the limit set of (zn)n can be
described through the deterministic dynamics (DI), in the sense that it needs to be
internally chain transitive. If the differential inclusion admits a global attractor, then
any ICT set is contained in it. This implies the second point of the theorem. (See
Benäım, Hofbauer, and Sorin [6] for a full discussion on stochastic approximations for
differential inclusions.)

3.2. Markovian fictitious play. As in section 2, we consider that players have
constraints on their action set, i.e., each player has an exploration matrix M i

0 which is
supposed to be irreducible and reversible with respect to its unique invariant measure
πi
0.

The crucial difference between MFP and the procedure introduced in section 2.2
is that players know their own payoff function. Also, at the end of each stage, each
player is informed of the opponent’s action. The MFP procedure is defined as follows.
A player’s i action at time n+ 1 is chosen according to the nonhomogeneous Markov
matrix

(3.4)

P(sin+1 = s | Fn) = M i[βi
n, U

i
n](s

i
n, s)

=

⎧⎨
⎩
M i

0(s
1
n, s) exp(−βi

n|U i
n(s

i
n)− U i

n(s)|+), s �= s1n,

1− ∑
s′ �=s

M i[βi
n, U

i
n](s

i
n, s

′), s = s1n,

where U i
n is taken as the vector payoffs of player i, against the average moves of the

opponent

U i
n = Gi(·, v−i

n ) =
1

n

n∑
m=1

Gi(·, s−i
m )

for all s ∈ Si, and the function M i[·, ·] is defined by (2.1). Let M̃ i
n = M i[βi

n, U
i
n].

Observe that again, from the irreducibility of M i
0, the matrix M̃ i

n is also irreducible.
Also, π̃i

n = πi[βi
n, G

i(·, v−i
n )] (where πi[·, ·] is defined in (2.2)) is the unique invariant

measure of M̃ i
n, i.e.,

π̃n(s) =
πi
0(s) exp(β

i
nU

i
n(s))∑

s′∈Si

πi
0(s

′) exp(βi
nU

i
n(s

′))

for every s ∈ Si.
Benäım and Raimond [7] obtain the following result.
Theorem 3.6. If both players follow the MFP procedure, defined by (3.4), then

the limit set of the sequence vn = (v1n, v
2
n) is an ICT set of the best-response dynamics

(BRD), provided that for i ∈ {1, 2} the positive sequence (βi
n)n satisfies

(i) βi
n → +∞ as n → +∞,
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(ii) βi
n ≤ Ai log(n) for a sufficiently small positive constant Ai.

As a consequence, we have the following:
(a) In a zero-sum game, (v1n, v

2
n)n converges almost surely to the set of Nash

equilibria.
(b) If G1 = G2, then (v1n, v

2
n)n converges almost surely to a connected subset of

the set of Nash equilibria on which G1 is constant.
Observe that Theorems 2.7 and 2.8 imply that all the conclusions of Theorem 3.6

above hold for our procedure.

Some insights on the proof of Theorem 3.6. We believe that it is interesting
to sketch the proof of Theorem 3.6. For that purpose, we need to introduce some
notions that will be useful later on.

Let S be a finite set and M an irreducible stochastic matrix over S with invariant
measure π. For a function f : S → R, the variance and the energy of f are defined,
respectively, as

var(f) =
∑
s∈S

π(s)f2(s)−
(∑

s∈S

π(s)f(s)

)2

,

E(f, f) = 1

2

∑
s,r∈S

(f(s)− f(r))2M(s, r)π(s).

Definition 3.7. Let M be a stochastic irreducible matrix over the finite set S
and π be its unique invariant measure.

(i) The spectral gap of M is defined by

χ(M) = min

{E(f, f)
var(f)

: var(f) �= 0

}
.

(ii) The pseudoinverse matrix of M is the unique matrix Q ∈ R
|S|×|S| such that∑

r∈S Q(s, r) = 0 for every s ∈ S, which satisfies the Poisson’s equation

(3.5) Q(I −M) = (I −M)Q = I −Π,

where Π is the matrix defined as Π(s, r) = π(r) for every s, r ∈ S and I
denotes the identity matrix.

For a matrix Q ∈ R
|S|×|S| and a vector U ∈ R

|S|, set |Q| = maxs,r |Q(s, r)| and
|U | = maxs |U(s)|.

We want to apply Theorem 3.4 with H(s) = (δs1 , δs2). Recall that vin is the
empirical frequency of play of player i. Thus, the random variable zn = vn is given
by

vn =
1

n

n∑
m=1

(
δs1n , δs2n

)
=

(
v1n, v

2
n

)
.

Therefore, the evolution of vn is described by

vn+1 − vn =
1

n+ 1
(μn − vn +Wn+1),

where μn =
∑

s∈S π̃n(s)H(s) = (π̃1
n, π̃

2
n) and

W̃n+1 = (δs1n , δs2n)− μn =
(
δs1n − π̃1

n, δs2n − π̃2
n

)
.
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We first provide a sketch of the proof that (3.3) holds for the sequence (W̃n)n.
Afterward, we will verify that the set-valued map BR is adapted to (vn, μn)n and will
conclude by applying Theorem 3.4.

Consequences (a) and (b) for games follow from the fact that the set of Nash
equilibria is an attractor for the best-response dynamics in the relevant classes of
games. We will omit this part of the proof, since the same argument will be used in
section 4.2.

Let Q̃i
n be the pseudoinverse of M̃ i

n. Benäım and Raimond prove that if, for
i ∈ {1, 2},

(3.6)

lim
n→+∞

|Q̃i
n|2 ln(n)
n

= 0,

lim
n→+∞ |Q̃i

n+1 − Q̃i
n| = 0,

lim
n→+∞ |π̃i

n+1 − π̃i
n| = 0

almost surely, then (3.3) holds for (W̃n)n.
Proposition 3.4 in Benäım and Raimond [7] shows that the norm of Q̃i

n can be
controlled as a function of the spectral gap χ(M̃ i

n). If in addition the constants Ai

are sufficiently small, then (3.6) holds.
Finally, since βi

n → +∞, we have that if (v1n, v
2
n) → (v1, v2), then π̃i

n → πi[v−i],
where, for all s ∈ Si

πi[v−i](s) =
πi
0(s)1{s∈argmaxr Gi(r,v−i)}∑

s′∈Si

πi
0(s

′)1{s′∈argmaxr Gi(r,v−i)}
∈ BRi(v−i).

This implies that map BR is adapted to (vn, μn)n, and the proof is finished.

4. Proof of the main results. There are two key aspects which highlight the
difference between the proof of Theorem 2.7 and the proof of Theorem 3.6. First,
to show that the noise sequence (defined in (4.1) below) satisfies condition (3.3), we
cannot directly use condition (3.6). Second, the proof that BR is adapted to (vn, μn)n
is considerably more involved. In contrast to the approach for the MFP procedure, the
invariant measure πi

n of matrix M i
n depends on state variable Ri

n, which is updated, in
turn, using πi

n−1. To overcome these difficulties, we develop a more general approach,
which is presented in the appendix.

In what follows, we present an extended sketch of the proof of Theorem 2.7. The
proof of Theorem 2.8 will follow as a consequence.

4.1. Proof of Theorem 2.7. We aim to apply Theorem 3.4. Let Σ = Δ(S1)×
Δ(S2). We take Vn = (δs1n , δs2n) and μn = (π1

n, π
2
n). As before, let vn = (v1n, v

2
n). Then

we have

vn+1 − vn =
1

n+ 1

(
μn − vn +Wn+1

)
,

where

(4.1) Wn+1 =
(
W

1

n+1,W
2

n+1

)
= (δs1n+1

− π1
n, δs2n+1

− π2
n).

We need to verify that two conditions hold. First, we have to prove that

ε
(
Wn+1/(n+ 1), T

) → 0

almost surely for all T > 0. Proposition A.6(ii) provides proof of this.
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Second, we need to verify that the best-response correspondence BR is adapted
to (vn, μn)n. As we will see, this problem basically amounts to showing that vector
Ri

n becomes a good asymptotic estimator of vector Gi(·, v−i
n ).

Fix i ∈ {1, 2} and s ∈ Si. Lemma A.3 shows that for a sufficiently large n,
(γi

n+1(s))
−1 = (n + 1)πi

n(s) for any s ∈ Si. Therefore, from the definition of Ri
n and

without any loss of generality, we have

Ri
n+1(s)−Ri

n(s) =
1

(n+ 1)πi
n(s)

[
1{sin+1=s}G

i(s, s−i
n+1)− 1{sin+1=s}R

i
n(s)

]
,

=
1

(n+ 1)πi
n(s)

[
πi
n(s)

(
Gi(s, π−i

n )−Ri
n(s)

)
+

(
1{sin+1=s}G

i(s, s−i
n+1)− πi

n(s)G
i(s, π−i

n )
)

+ Ri
n(s)

(
πi
n(s)− 1{sin+1=s}

)]
.

Hence,

(4.2) Ri
n+1(s)−Ri

n(s) =
1

n+ 1

[
Gi(s, π−i

n )−Ri
n(s) +W i

n+1(s)
]
,

where for convenience we set W i
n+1(s) = W i,1

n+1(s) +W i,2
n+1(s) with

W i,1
n+1(s) =

Ri
n(s)

πi
n(s)

(
πi
n(s)− 1{sin+1=s}

)
and(4.3)

W i,2
n+1(s) =

1

πi
n(s)

(
1{sin+1=s}G

i(s1n+1, s
2
n+1)− πi

n(s)G
i(s, π−i

n )
)
.(4.4)

Propositions A.6(i) and A.7 prove that, almost surely and for any T > 0,
ε(W i,1

n+1(s)/(n+ 1), T ) → 0 and ε(W i,2
n+1(s)/(n+ 1), T ) → 0, respectively.

Recall that U i
n = Gi(·, v−i

n ). Naturally, the evolution of vector U i
n can be written

as

(4.5) U i
n+1 − U i

n =
1

n+ 1

(
Gi(·, π−i

n )− U i
n +W i,3

n+1

)
,

where W i,3
n+1 = Gi(·, s−i

n+1)−Gi(·, π−i
n ). Again, Proposition A.6(iii) shows that for all

T > 0, ε(W i,3
n+1/(n+ 1), T ) → 0 almost surely.

Remark 4.1. Note that (4.5) does not hold if there are three players or more,
since the maps v−i 
→ Gi(si, v−i) are no longer linear in that case.

We define ζin = Ri
n −Gi(·, v−i

n ) = Ri
n − U i

n. Equations (4.2) and (4.5) show that
the evolution of the sequence (ζin)n can be recast as

ζin+1 − ζin =
1

n+ 1

[− ζin +W i
n+1

]
,

where W i
n+1 = W i,1

n+1 + W i,2
n+1 − W i,3

n+1, and each component of W i,1
n+1 and W i,2

n+1 is
defined by (4.3) and (4.4), respectively.

Collecting all the analysis above, we conclude that ε(W i
n+1/(n+1), T ) → 0 almost

surely for all T > 0.
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Based on the fact that sequence (ζin)n is bounded (see Lemma A.3) and on stan-
dard results from stochastic approximation theory, the limit set of the sequence (ζin)n
is almost surely an ICT set of the ordinary differential equation ζ̇ = −ζ which admits
the set {0} as a global attractor.

Therefore, for i ∈ {1, 2}, Ri
n −Gi(·, v−i

n ) → 0 as n → +∞ almost surely.
Now let us assume that

(v1nk
, v2nk

) → (v1, v2) ∈ Σ, and (π1
nk
, π2

nk
) → (π1, π2) ∈ Σ

for a subsequence (nk)k.
For i ∈ {1, 2}, let r /∈ argmaxs′ G

i(s′, v−i) and take ŝ ∈ Si such that Gi(r, v−i) <
Gi(ŝ, v−i). Since Ri

n − Gi(·, v−i
n ) → 0, there exists ε > 0 and k0 ∈ N such that, for

any k ≥ k0, R
i
nk
(r) < Ri

nk
(ŝ)− ε, so that, for k sufficiently large,

πi
nk
(r) ≤ πi

0(r)

πi
0(ŝ)

exp
[
βi
nk
(Ri

nk
(r) −Ri

nk
(ŝ))

] ≤ πi
0(r)

πi
0(ŝ)

exp(−βi
nk
ε).

Then, πi(r) = 0 and we have proved that πi ∈ BRi(v−i), which implies that the
set-valued map BR is adapted to (vn, μn)n.

4.2. Proof of Theorem 2.8. For all three points, the result follows from an
application of Theorem 2.7.

Consider the variable zn = (v1n, v
2
n, g

1
n, g

2
n), where gin = n−1

∑n
m=1 g

i
m is the

average realized payoff for player i ∈ {1, 2}. Recall that the evolution of gin can be
written as

gin+1 − gin+1 =
1

n+ 1

(
gin+1 − gin

)
=

1

n+ 1

(
Gi(πi

n, π
−i
n )− gin +W i,4

n+1

)
,

where W i,4
n+1 = Gi(sin+1, s

−i
n+1)−Gi(πi

n, π
−i
n ).

Let G be the convex hull in R
2 of the set

{(G1(s, r), G2(s, r)) : s ∈ S1 , r ∈ S2}

and let Σ = Δ(S1)×Δ(S2)×G. We define the set-valued map C : Σ → Σ such that
C(z) is given by

{
(α1, α2, γ) : α1 ∈ BR1(v2), α2 ∈ BR2(v1), γ = (G1(α1, α2), G2(α1, α2))

}
for z = (v1, v2, g1, g2) ∈ Σ, and we consider the differential inclusion

(4.6) ż ∈ −z +C(z).

Let μn = (π1
n, π

2
n, (G

1(π1
n, π

2
n), G

2(π1
n, π

2
n)). From Theorem 2.7, the map C is

adapted to (zn, μn). Proposition A.7(ii) shows that ε(W i,4
n+1/(n+ 1), T ) goes to zero

almost surely for all fixed T > 0. Therefore, by writing the evolution of zn in the same
manner as for vn before, we can conclude that the limit set of the sequence (zn)n is
an ICT set of the differential inclusion (4.6).
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Zero-sum games. Hofbauer and Sorin [24] (by exhibiting an explicit Lyapunov
function) show that the set of Nash equilibria is a global attractor for the differential
inclusion (BRD). Hence, if we denote by g∗ the value of the game, a direct consequence
is that

{(v1, v2, g1, g2) : v1 ∈ BR1(v2) , v2 ∈ BR2(v1) , (g1, g2) = (g∗,−g∗))}

is a global attractor for (4.6). Therefore, (vn)n converges to the set of Nash equilibria
and g1n converges to the value of the game.

Potential games. In the same spirit as above, Φ is a Lyapunov function for
the differential inclusion (4.6) (see [6, Theorem 5.5]). Since, in our case, the payoff
functions are linear in all variables, Propositions 3.27 and 3.28 in Benäım, Hofbauer,
and Sorin [6] imply that (vn)n converges almost surely to a connected component of
Nash equilibria on which the potential Φ is constant. In particular, if G1 = G2, let
G∗ be the value of G on the limit set of (vn)n. Then, limn G(v1n, v

2
n) = G∗. Therefore,

by definition of C, we also have limn g
1
n = G∗.

2 × N games. Our result follows from the fact that any trajectory of the best-
response dynamics converges to the set of Nash equilibria in this case (see Berger
[9]).

Appendix A. Technical results. While Assumption 2.5 is used here, in fact,
the proofs are written in such a way that they can be easily extended to the case
where the less stringent Assumption 2.11 is considered on the sequences (βi

n)n.

A.1. A general result. Returning to the framework of section 3.1, we consider a
discrete time stochastic process (sn,Mn)n, defined on the probability space (Ω,F ,P),
which is equipped with a nondecreasing sequence of σ-algebras (Fn)n. The process
(sn,Mn)n takes values in S×M(S) and satisfies Assumption 3.1. Let Σ be a compact
convex nonempty set which is assumed, for simplicity, to be contained in R

|S|. It will
become clear that the argument extends to the case of arbitrary euclidean spaces.

As before, let H : S → Σ, Vn = H(sn) and μn be defined by (3.1). The pseudoin-
verse matrix of Mn is denoted by Qn (see (3.5)). The following technical proposition
will be key to our main result.

Proposition A.1. Let (εn)n be a real random process which is adapted to (Fn)n.
Let us assume that, almost surely,

(i) |εn||Qn| ≤ na for a < 1/2 and n large,
(ii) |Qn||εn − εn−1| → 0 ,
(iii) |εn| (|Qn+1 −Qn|+ |πn+1 − πn|) → 0.

Let Wn+1 = εn (Vn+1 − μn) . Then, for all T > 0, ε (Wn+1/(n+ 1), T ) → 0, almost
surely as n goes to infinity.

Proof. Let c be a positive constant that may change from line to line. In a similar
manner as in the proof of [7, Theorem 2.6], we can decompose the noise term as
follows:

1

n+ 1
Wn+1 =

εn
n+ 1

(Vn+1 − μn),

=
εn

n+ 1
(H(sn+1)− μn),

=
εn

n+ 1

(
H(sn+1)−

∑
s∈S

πn(s)H(s)

)
.
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For a matrix A ∈ R
|S|×|S| and for any r ∈ S, let A[r] be the rth line of A. Let

us identify the function H with the matrix H where, for each r ∈ S, H[r] = H(r).
Notice that, by definition of the matrix Πn (see (3.5)), we have that ΠnH[r] = μn for
every r ∈ S. Therefore, we can write

1

n+ 1
Wn+1 =

εn
n+ 1

((I −Πn)H) [sn+1]

=
εn

n+ 1
((Qn −MnQn)H) [sn+1],

=
εn

n+ 1
((QnH)[sn+1]− (MnQnH)[sn+1]) ,

=
4∑

j=1

uj
n,

where the second identity follows from the definition of the pseudoinverse matrix, and

u1
n =

εn
n+ 1

((QnH)[sn+1]− (MnQnH)[sn]) ,

u2
n =

εn
n+ 1

(MnQnH)[sn]− εn−1

n
(MnQnH)[sn],

u3
n =

εn−1

n
(MnQnH)[sn]− εn

n+ 1
(Mn+1Qn+1H)[sn+1],

u4
n =

εn
n+ 1

(Mn+1Qn+1H)[sn+1]− εn
n+ 1

(MnQnH)[sn+1],

=
εn

n+ 1
(Mn+1Qn+1 −MnQn)H[sn+1].

Since E((QnH)[sn+1] | Fn) = (MnQnH)[sn], the random process u1
n is a martin-

gale difference and

∥∥u1
n

∥∥ ≤ c
|εn||Qn|
n+ 1

.

The exponential martingale inequality (see equation (18) in Benäım [3]) gives that,
for all K > 0,

P(ε(u1
n, T ) ≥ K) ≤ c exp

(
−K2

c
∑m(τn+T )

j=n ε2j |Qj |2/j2

)
.

By assumption we have that, almost surely and for j large enough, |εj||Qj | ≤ ja for
a < 1/2, so that

c

m(τn+T )∑
j=n

ε2j |Qj|2
j2

≤ c
1

n1−2a

m(τn+T )∑
j=n

1

j
≤ c

T + 1

n1−2a
,

by definition of m(t). Therefore,

P(ε(u1
n, T ) ≥ K) ≤ c exp

(
− K2

T + 1
n1−2a

)
.

Finally, from the fact that a < 1/2, we have
∑

n≥1 P(ε(u
1
k, T ) ≥ K) < +∞ for all

K > 0, and the Borel–Cantelli lemma implies that ε(u1
n, T ) → 0 almost surely.
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For the second term,

ε(u2
n, T ) ≤ c

m(τn+T )∑
j=n

|Qj |
∣∣∣∣εj−1

j
− εj

j + 1

∣∣∣∣ ,

= c

m(τn+T )∑
j=n

|Qj |
∣∣∣∣ (j + 1)εj−1 − jεj

j(j + 1)

∣∣∣∣ ,

= c

m(τn+T )∑
j=n

|Qj |
∣∣∣∣εj−1 − εj

j
+

εj
j(j + 1)

∣∣∣∣ ,

≤ c

[
sup
j≥n

|Qj ||εj − εj−1|+ sup
j≥n

|Qj ||εj |
j + 1

]m(τn+T )∑
j=n

1

j
,

≤ c

[
sup
j≥n

|Qj ||εj − εj−1|+ sup
j≥n

|Qj ||εj |
j + 1

]
(T + 1),

by definition of m(t). Hence, from assumptions (i) and (ii), we conclude that ε(u2
n, T )

goes to zero almost surely.
Now for u3

n, by cancellation of successive terms,

ε(u3
n, T ) =

εn−1

n
(MnQnH)[sn]−

εm(τn+T )−1

m(τn + T )
(Mm(τn+T )Qm(τn+T )H)[sm(τn+T )],

≤ 2 sup
j≥n

|Qj ||εj−1|
j

,

which implies, by (i), that ε(u3
n, T ) → 0 almost surely.

For the fourth term, recall that MnQn = Qn − I + Πn for all n ∈ N. Therefore,
we can write

u4
n =

εn
n+ 1

(Qn+1 −Qn − (Πn+1 −Πn))H[sn+1].

Hence,

ε(u4
n, T ) ≤ c

m(τn+T )∑
j=n

1

j

[
sup
j≥n

|εj ||Qj+1 −Qj |+ |εj ||πj+1 − πj |
]
,

≤ c(T + 1)

[
sup
j≥n

|εj ||Qj+1 −Qj |+ |εj||πj+1 − πj |
]
.

Assumption (iii) implies that ε(u4
n, T ) → 0 almost surely, as n goes to infinity.

A.2. Stability. The following lemma is a trivial consequence of the recursive
definition of the vector Ri

n and the fact that γi
n(s) ∈]0, 1].

Lemma A.2. For any i ∈ {1, 2}, s ∈ Si, n ∈ N, we have Ri
n(s) ∈ [−Ki,Ki],

where

(A.1) Ki = max

{
max
s,r∈Si

|Ri
0(s)−Ri

0(r)|,max
s∈Si

max
s−i,r−i∈S−i

|Gi(s, s−i)−Gi(s, r−i)|
}
.

The following result states that, without loss of generality, we can suppose that
the step size γi

n(s) is equal to (nπi
n−1(s))

−1 for all s ∈ Si.
Lemma A.3. Let α ∈]0, 1[. There exists n0(α) ∈ N (which only depends on α,

Ri
0, the payoff functions Gi, and the vanishing sequence (Ai

n)n) such that, for any
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n ≥ n0(α) and s ∈ Si, πi
n(s) ≥ n−α. In particular, there exists n0 ∈ N such that, for

any n ≥ n0 and s ∈ Si, (γi
n(s))

−1 = nπi
n−1(s).

Proof. Let α ∈]0, 1[ and α′ ∈]0, α[. Choose n0 ∈ N such that, for any n ≥ n0,
2KiAi

n ≤ α′, where Ki is defined in (A.1), and take rn ∈ Si such that Ri
n(rn) =

maxr R
i
n(r). Then, for any s ∈ Si,

πi
n(s) =

πi
0(s) exp

(
Ai

n ln(n)(Ri
n(s)−Ri

n(rn))
)

πi
0(rn) +

∑
r �=rn

πi
0(r) exp (A

i
n ln(n)(R

i
n(r) −Ri

n(rn))

≥ πi
0(s) exp

(−2Ai
n ln(n)K

i
) ≥ min

r
πi
0(r) exp(−α′ ln(n)) ≥ min

r
πi
0(r)n

−α′
.

Without loss of generality, we can assume that n0 is large enough so that minr π
i
0(r)

n−α′ ≥ n−α. This concludes the proof of the first point. In particular, there exists
n0 ∈ N such that, for any n ≥ n0, (n + 1)πi

n(s) > 1, which proves the second
point.

A.3. Analysis of the noise sequences. Let us fix i ∈ {1, 2} and let χi
n be the

spectral gap of the matrix M i
n = M [βi

n, R
i
n], i.e.,

χi
n = min

{E i
n(f, f)

varin(f)
: varin(f) �= 0

}
,

where

varin(f) =
∑
s∈Si

πi
n(s)f

2(s)−
(∑

s∈Si

πi
n(s)f(s)

)2

,

E i
n(f, f) =

1

2

∑
s,r∈Si

(f(s)− f(r))2M i
n(s, r)π

i
n(s).

The following result is a direct consequence of results of Holley and Stroock [25].
Lemma A.4. There exists a positive constant c such that, for a sufficiently large

n ∈ N

c exp(−2Kiβi
n) ≤ χi

n,

where Ki is defined in Lemma A.2.
Proof. By [25, Lemma 2.7], for sufficiently large n, χi

n ≥ c exp(−βi
nmn), where

mn = max
s,r∈Si

{
min
γ∈Γ

max
s′∈γ

Ri
n(s

′)−Ri
n(s)−Ri

n(r) + min
s′∈Si

Ri
n(s

′)
}
,

and Γ is the set of every path from s to r on the graph that represents the action set
of player i. Now it is clear that mn ≤ 2Ki, by Lemma A.2.

Lemma A.5. Under Assumption 2.5, the following holds, almost surely, as n →
+∞. Given s ∈ Si,

(i)
|Qi

n|
naπi

n(s)
b
−→ 0 for any a > 0, b > 0,

(ii)
|Qi

n+1 −Qi
n|n1−α

πi
n(s)

−→ 0 and
|πi

n+1 − πi
n|n1−α

πi
n(s)

−→ 0 for any α > 0.

Proof. Let c be a general positive constant that may change from line to line.
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(i) The first inequality in [7, Proposition 3.4] (based on estimations obtained by
Saloff-Coste [35]) reads in this case, for n ∈ N and s, s′ ∈ Si,

(A.2) |Qi
n(s, s

′)| ≤ 1

χi
n

(
πi
n(s

′)
πi
n(s)

)1/2

≤ 1

χi
n

(πi
n(s))

−1/2.

Let a > 0 and b > 0. By Lemma A.4, (χi
n)

−1 ≤ c−1n2KiAi
n . Pick a

b+1/2 > α >

0. There exists n0(α) such that, for any n ≥ n0, for any s ∈ Si, πi
n(s) ≥ n−α.

Therefore, for sufficiently large n,

|Qi
n|

naπi
n(s)

b
≤ c−1n

2KiAi
n+α/2

nan−bα
= c−1n2KiAi

n+α(1/2+b)−a.

Thus, the conclusion follows from the fact that α(1/2 + b) − a < 0 and
limn A

i
n = 0.

(ii) Let α > 0. Recall that M i
n = M i[βi

n, R
i
n]. Therefore,

|M i
n+1 −M i

n| ≤
∣∣M i[βi

n+1, R
i
n+1]−M i[βi

n, R
i
n+1]

∣∣
+

∣∣M i[βi
n, R

i
n+1]−M i[βi

n, R
i
n]
∣∣ .

A simple application of the mean value theorem on the functions

β → M i[β,R] and R → M i[β,R]

yields, respectively,

∣∣M i[βi
n+1, R

i
n+1]−M i[βi

n, R
i
n+1]

∣∣ ≤ c
Ai

n

n

and ∣∣M i[βi
n, R

i
n+1]−M i[βi

n, R
i
n]
∣∣ ≤ cβi

n|Ri
n+1 −Ri

n|,
By Lemma A.3, and since |Ri

n+1 −Ri
n| ≤ maxs∈Si cγi

n+1(s), we have that

∣∣M i
n+1 −M i

n

∣∣ ≤ 1

n1−α/4

for sufficiently large n. Analogously, recalling that πi
n = πi[βi

n, R
i
n], we have

(A.3) |πi
n+1 − πi

n| ≤
1

n1−α/4

for sufficiently large n. Recall that, from part (i), |Qi
n| ≤ nα/8 for sufficiently

large n. Also, πi
n(s) ≥ n−α/4. Using the last inequality in the proof of [7,

Proposition 3.3],

|Qi
n+1 −Qi

n| ≤ c
(|Qi

n+1||Qi
n||M i

n+1 −M i
n|+ |Qi

n||πi
n+1 − πi

n|
)
,

we have that

|Qi
n+1 −Qi

n|n1−α

πi
n(s)

≤ c
n1−α

n−α/4

(|Qi
n+1||Qi

n||M i
n+1 −M i

n|+ |Qi
n||πi

n+1 − πi
n|
)

≤ 1

nα/8
,

almost surely for sufficiently large n.
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The following two propositions establish all the results on the noise terms that
we need in the proof of Theorem 2.7 (cf. section 4).

Proposition A.6. Suppose that Assumption 2.5 holds and let i ∈ {1, 2}.
(i) For s ∈ Si, let

W i,1
n+1(s) =

Ri
n(s)

πi
n(s)

(
1{sin+1=s} − πi

n(s)
)
∈ R.

Then, for all T > 0, ε(W i,1
n+1(s)/(n + 1), T ) → 0 almost surely as n goes to

infinity.
(ii) Let

W
i

n+1 = δsin+1
− πi

n ∈ R
|Si|.

Then, for all T > 0, ε(W
i,1

n+1/(n + 1), T ) → 0 almost surely as n goes to
infinity.

(iii) Let

W i,3
n+1 = Gi(·, s−i

n+1)−Gi(·, π−i
n ) ∈ R

|Si|.

Then, for all T > 0, ε(W i,3
n+1/(n + 1), T ) → 0 almost surely as n goes to

infinity.
Proof. We prove part (i) in detail. Given that the arguments are very similar,

the remaining proofs are omitted.
We apply Proposition A.1 with S = Si, Σ = Δ(Si), sn = sin, Mn = M i

n, πn = πi
n

and H(r) = δr for all r ∈ Si. Therefore, in this case μn = πi
n and Vn+1 = δsin+1

. We

also put εn = Ri
n(s)/π

i
n(s).

From the fact that Ri
n is bounded, it is easy to see that points (i) and (ii) of

Lemma A.5, respectively, imply assumptions (i) and (iii) of Proposition A.1. To
confirm that assumption (ii) holds, it suffices to compute

|Qi
n||εn − εn−1| = |Qi

n||πi
n(s)(R

i
n(s)−Ri

n−1(s)) + Ri
n(s)(π

i
n−1(s)− πi

n(s))|
πi
n(s)π

i
n−1(s)

≤ c|Qi
n|n−1+α

by definition of Ri
n, Lemma A.3, and (A.3) for sufficiently large n and any α > 0.

Hence, by Lemma A.5, |Qi
n||εn−εn−1| goes to zero almost surely as n goes to infinity.

By using Proposition A.1, we show that ε(U i
n+1/(n+1), T ) goes to zero almost surely

for any T > 0, where

U i
n+1 =

Ri
n(s)

πi
n(s)

(
δsin+1

− πi
n

)
∈ R

|Si|.

The result follows from the fact that the sth component of the vector U i
n+1 is equal

to W i,1
n+1(s).
Proposition A.7. Suppose that Assumption 2.5 holds and let us fix i ∈ {1, 2}.
(i) For s ∈ Si, let

W i,2
n+1(s) =

1

πi
n(s)

(
1{sin+1=s}G

i(s1n+1, s
2
n+1)− πi

n(s)G
i(s, π−i

n )
)
∈ R.

Then, for all T > 0, ε(W i,2
n+1/(n + 1), T ) → 0 almost surely as n goes to

infinity.
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(ii) Let

W i,4
n+1 = Gi(sin+1, s

−i
n+1)−Gi(πi

n, π
−i
n ) ∈ R.

Then, for all T > 0, ε(W i,4
n+1/(n + 1), T ) → 0 almost surely as n goes to

infinity.
Proof.
(i) For the sake of clarity, let us set i = 1. Again, we use Proposition A.1, where

in this case, S = S1 × S2, Σ ⊆ R
|S1| is defined by{ ∑

s2∈S2

σ2(s2)G1(·, s2) :
∑

s2∈S2

σ2(s2) = 1 and σ2(s2) ≥ 0 for all s2 ∈ S2

}
.

Also, sn = (s1n, s
2
n), Mn = M1

n⊗M2
n, πn = π1

n⊗π2
n andH : S1×S2 → Σ, where

H(s1, s2) = δs1G
1(s1, s2) for all (s1, s2) ∈ S1 × S2. Notice that in this case

δ is the Kronecker’s delta function taking values in Δ(S1). Therefore, μn =
(μn(s

1))s1∈S1 with μn(s
1) = π1

n(s
1)G1(s1, π2

n) and Vn+1 = (Vn+1(s
1))s1∈S1 ,

where

Vn+1(s
1) = 1{s1n+1=s1}G

1(s1n+1, s
2
n+1) = 1{s1n+1=s1}G

1(s1, s2n+1).

We also set in this case εn = 1/π1
n(s). Let Qn be the pseudoinverse matrix

of the stochastic matrix Mn. It is easy to see that the spectral gap of Mn

verifies that

χ(Mn) = χ(M1
n ⊗M2

n) = min{χ(M1
n), χ(M

2
n)} = min{χ1

n, χ
2
n}.

By using inequality (A.2) for the matrix Qn and the fact that πn(s
1, s2) =

π1
n(s

1)π2
n(s

2) ≥ n−α for any α > 0 and sufficiently large n, we can obtain
exactly the same conclusions as in Lemma A.5 for Qn and πn. Hence, as
in the proof of Proposition A.6, we deduce that sequences (εn)n and (Qn)n
verify assumptions (i)–(iii) of Proposition A.1.
Therefore, we have that ε(U i

n+1/(n+1), T ) goes to zero almost surely for any
T > 0 where, for s1 ∈ S1,

U i
n+1(s

1) =
1

π1
n(s)

(
1{s1n+1=s1}G

1(s1, s2n+1)− π1
n(s

1)G1(s1, π2
n)

)

=
1

π1
n(s)

(
1{s1n+1=s1}G

1(s1n+1, s
2
n+1)− π1

n(s
1)G1(s1, π2

n)
)
.

The conclusion follows taking s1 = s in the equation above.
(ii) The proof of this part also follows from Proposition A.1, taking as Σ a suf-

ficiently large compact set in R, sn = (s1n, s
2
n), Mn = M1

n ⊗ M2
n, πn =

π1
n ⊗ π2

n and H : S1 × S2 → Σ, where H(s1, s2) = Gi(s1, s2). Therefore,
μn = Gi(πi

n, π
−i
n ) and εn = 1 for all n ∈ N. Finally, using the same argu-

ment as in part (i), we prove that the assumptions (i)–(iii) hold and we can
conclude.
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