This article was downloaded by: [200.89.68.74] On: 28 July 2015, At: 07:57
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

ﬁ Transportation Science

TRANSPORTATION SCIENCE Publication details, including instructions for authors and subscription information:
. http://pubsonline.informs.org

A Methodology Based on Evolutionary Algorithms to Solve
a Dynamic Pickup and Delivery Problem Under a Hybrid
Predictive Control Approach

Diego Mufioz-Carpintero, Doris Saez, Cristian E. Cortés, Alfredo Nufiez

To cite this article:

Diego Mufioz-Carpintero, Doris Saez, Cristian E. Cortés, Alfredo Nufiez (2015) A Methodology Based on Evolutionary Algorithms
to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach. Transportation Science
49(2):239-253. http://dx.doi.org/10.1287/trsc.2014.0569

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fithess
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2015, INFORMS

Please scroll down for article—it is on subsequent pages

inf]

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

RIGHTSE LI MN iy

http://pubsonline.informs.org
http://dx.doi.org/10.1287/trsc.2014.0569
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

TRANSPORTATION SCIENCE

Vol. 49, No. 2, May 2015, pp. 239-253
ISSN 0041-1655 (print) | ISSN 1526-5447 (online)

1 liorms |

http://dx.doi.org/10.1287 / trsc.2014.0569
©2015 INFORMS

A Methodology Based on Evolutionary Algorithms to
Solve a Dynamic Pickup and Delivery Problem Under

a Hybrid Predictive Control Approach

Diego Munoz-Carpintero, Doris Sdez
Electrical Engineering Department, Universidad de Chile, 8370451 Santiago, Chile {dimunoz@ing.uchile.cl, dsaez@ing.uchile.cl}

Cristian E. Cortés
Civil Engineering Department, Universidad de Chile, 8370449 Santiago, Chile, ccortes@ing.uchile.cl

Alfredo Nunez

Section of Road and Railway Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands,
a.a.nunezvicencio@tudelft.nl

his paper presents a methodology based on generic evolutionary algorithms to solve a dynamic pickup and

delivery problem formulated under a hybrid predictive control approach. The solution scheme is designed
to support the dispatcher of a dial-a-ride service, where quick and efficient real-time solutions are needed.
The scheme considers different configurations of particle swarm optimization and genetic algorithms within a
proposed ad-hoc methodology to solve in real time the nonlinear mixed-integer optimization problem related
with the hybrid predictive control approach. These consist of different techniques to handle the operational
constraints (penalization, Baldwinian, and Lamarckian repair) and encodings (continuous and integer). For
parameter tuning, a new approach based on multiobjective optimization is proposed and used to select and
study some of the evolutionary algorithms. The multiobjective feature arises when deciding the parameters with
the best trade-off between performance and computational effort. Simulation results are presented to compare
the different schemes proposed and to advise conditions for the application of the method in real instances.

Keywords: predictive control; dynamic pickup and delivery problem; evolutionary algorithms
History: Received: May 2010; revision received: October 2013; accepted: June 2014. Published online in Articles

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

in Advance March 10, 2015.

1. Introduction and Background

The dynamic pickup and delivery problem (DPDP)
can be formulated as a set of transportation requests
(identified by pickup and delivery locations) that are
served by a fleet of vehicles initially located at sev-
eral depots. The dynamic dimension appears when a
subset of the requests is not known in advance; there-
fore, such requests have to be scheduled for service in
real time, at the instant they call. The DPDP is now of
great interest for practitioners and researchers because
of the development and implementation of efficient
online optimization tools; this fact is crucial for the
emerging improvement in the quality of the formula-
tion solutions. The DPDP has been intensely studied
over the last 20 years (Psaraftis 1980, 1988; Bertsimas
and Van Ryzin 1991; Bertsimas and Van Ryzin 1993a,
b; Kleywegt and Papastavrou 1998; Gendreau et al.
1999; Swihart and Papastavrou 1999; Larsen 2000;
Thomas and White 2004). The output of such a prob-
lem should be a set of routes for all of the vehicles,
which change dynamically over time. The solution of
a DPDP can be linked with the control of a typical
dial-a-ride system (DRS), where the dispatcher has

RIGHTS L

239

to make routing decisions for a fixed fleet of vehi-
cles with limited capacity, operating in a real-time ser-
vice where the demand (represented by passengers) is
unknown in advance. Eksioglu, Volkan, and Reisman
(2009) and Berbeglia, Cordeau, and Laporte (2010)
presented comprehensive reviews of DPDP, dial-a-
ride applications, and solution methods.

Xiang, Chu, and Chen (2008) studied a DRS by
considering a complex set of constraints on a time-
dependent network. With regard to real applications,
Madsen, Raven, and Rygaard (1995) adapted the inser-
tion heuristics by Jaw et al. (1986) to solve a real-
life problem for moving elderly and handicapped
people in Copenhagen, and Dial (1995) proposed
an approach to the many-to-few dial-a-ride transit
operation ADART (Autonomous Dial-a-Ride Transit),
which is currently implemented in Corpus Christi,
Texas. Gendreau et al. (1999) modified the tabu-search
heuristics to solve the dynamic vehicle routing prob-
lem (DVRP) with soft time windows in an effort to find
a solution method that will handle different DVRPs.
More sophisticated tabu-search methods were recently
developed, such as granular tabu search (Toth and

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

240

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

Vigo 2003) and adaptive memory based on tabu search
(Tarantilis 2005). Xiang, Chu, and Chen (2008) devel-
oped a heuristic local search strategy that uses a sec-
ondary objective function to drive the search out of
local optima. In the context of DPDP, Mitrovic-Minic,
Krishnamurti, and Laporte (2004) introduced the con-
cept of double-horizon based heuristics for solving the
DPDP with time windows, showing that the method
can yield gains in route costs when compared with
classical (single) rolling horizon methods, but the
improvement tends to decrease as instances become
larger. Mitrovic-Minic and Laporte (2004) presented
four waiting strategies for vehicles (drive-first, wait-
first, dynamic waiting, and the advanced dynamic
waiting). They concluded that in terms of total route
length, the proposed strategies outperform the com-
monly used drive-first waiting strategy, making the
advanced dynamic waiting strategy the most efficient.

The dial-a-ride system can be modeled for designing
a hybrid predictive control (HPC) scheme, consider-
ing that potential rerouting of vehicles could affect the
current decisions, by analyzing the extra cost of insert-
ing real-time service requests into predefined vehicle
routes while the vehicles are in service. In previous
works of our group, a formulation of the DPDP in
an HPC by specifying the state space variables and
models was presented (Séez, Cortés, and Nufiez 2008;
Cortés, Saez, and Nunez 2008; Cortés et al. 2009). In
those works, two solution algorithms using genetic
algorithms (GA) and particle swarm optimization
(PSO) were developed to solve real-time instances. To
the best of our knowledge, no other hybrid predictive
control approaches for solving DPDP have been pro-
posed in the literature using PSO and GA that can per-
form real-time control on a dial-a-ride type of system.

In the literature, most of the applications using
such methods (namely, PSO and GA) solve static
cases, or vehicle routing problems (VRP) that nei-
ther include explicitly the dynamic behavior of the
system, nor a reasonable set of future realizations
of the stochastic demand. Specifically, GAs have
been applied for various VRPs, considering different
chromosome representations and genetic operators
depending on the particular problem: Skrlec, Filipec,
and Krajcar (1997), for the single vehicle capacitated
VRP; Haghani and Jung (2005), for the multivehi-
cle DVRP with time-dependent travel time and soft
time windows. Zhu et al. (2006) proposed an adapted
PSO algorithm to solve a static VRP with time win-
dows. Jih and Hsu (1999) and Osman, Abo-Sinna,
and Mousa (2005) presented a successful comparison
of the GA against dynamic programming in terms
of computation time; the former solved the DVRP
with time windows and capacity constraints and the
latter solved a multiobjective VRP. Ant colony meth-
ods, a metaheuristic inspired by the behavior of real

RIGHTS L

ant colonies, have also been applied to solve DVRP
(Montemanni et al. 2005; Dréo et al. 2006).

In the current work, the main objective is to present
an efficient and systematic ad-hoc methodology to
solve the HPC formulation of the DPDP based on
generic evolutionary algorithms. The solution scheme
will help dispatchers of the dial-a-ride service, where
efficient real-time solutions are needed quickly to
make the system work. Specific implementations of
GA and PSO will result in several variants of the
generic evolutionary algorithms. In addition, a mul-
tiobjective approach for tuning the parameters of the
proposed evolutionary algorithms is presented. The
multiobjective feature arises for deciding the parame-
ters with the best trade-off between performance and
computation time required for real applications. A
detailed analysis of the accuracy and computational
time is conducted, which can be extended to other
complex nonlinear engineering problems containing
mixed integers and continuous variables.

In §2, a summary of the problem statement pro-
posed by Cortés et al. (2009) is presented, which is the
starting point for the methodology based on generic
evolutionary algorithms proposed in this work. In §3
we present the ad-hoc methodology, the PSO and GA
configurations used within, and the parameter tun-
ing based on multiobjective optimization. Next, in §4
a detailed computational analysis and comparison of
the configurations of PSO and GA are carried out
based on simulations. Finally, conclusions, remarks,
and further research are presented in §5.

2. Problem Statement

2.1. General Description

In the context of control theory, the notion of hybrid
systems arises when the problem conditions are char-
acterized by both continuous and discrete/integer
variables. In the last two decades, hybrid systems
have been studied more intensely by researchers from
several study areas, such as computer science and
automatic control (see for example Bemporad and
Morari 1999; Hegyi, De Schutter, and Hellendoorn
2005; Karer et al. 2007a, b; Nufiez et al. 2009). Specifi-
cally, hybrid systems can be expressed as a nonlinear
state space model given by

x(k+1) = f(x(k), u(k)),
y(k) =g (x(k), u(k)),

where x(k) are the continuous and/or discrete (inte-
ger) state space variables, u(k) are the continuous
and/or discrete input or manipulated variables, y(k)
define the continuous and/or discrete system outputs
and f(-,-), g(-, -) are piecewise nonlinear functions. In

1)

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

241

general, a hybrid predictive control controller mini-
mizes the following generic objective function:

' —1),2(k+1),...
u(k>,..f?<1krlwu71>](”(k)' yu(k+N,—1), x(k+1),...,

2k+N), 9(k+1),...,9k+N)), (2

where] is an objective function, k is the current time,
N is the prediction horizon, N, is the control hori-
zon, X(k+1), j(k +t) are the expected state space vec-
tor and the expected system output at instant k + ¢,
respectively, and [u(k)?, ..., u(k + N, — 1)T]" repre-
sents the control sequence, which corresponds to the
set of optimization variables. Once expression (2) is
optimized, only the first element of the control vector
u(k) is used to update the system conditions, based
on the receding horizon methodology.

Conceptually, the HPC framework to model the
DPDP incorporates stochasticity into the routing dis-
patch rules by considering the impact of future reas-
signments on the performance of already-scheduled
customers (Cortés et al. 2009). The stochastic predic-
tion allows the dispatcher to incorporate a more real-
istic and robust measure of effective travel (waiting)
time experienced by the users into the decision objec-
tive function.

We consider a fleet of F vehicles, which are dynam-
ically routed over an influence area A. The demand
for service is unknown and is revealed in real time.
Quick routing and scheduling decisions are required
to handle the demand with the available vehicles. At
any time k, each vehicle j is assigned to follow a
sequence of pickups and deliveries (control action),
and can be represented by the function S;(k), where
the ith element of the sequence represents the ith stop
of vehicle j along its route, and w;(k) is the total num-
ber of stops. A stop is defined by a user who requires
the service (it could be its pickup or delivery). The
initial condition S?(k) corresponds to the position of
vehicle j at instant time k. The set of sequences
S(k) =[S, (K)T,...,S; k)T, ..., Sp(k)T]" associated with
the fleet of vehicles correspond to the control (manip-
ulated) variable u(k). The sequence of stops assigned
to vehicle j at instant k, S;(k), is given by

s? (k)
s; (k)
Si(k) =
57" (k)
Tk 1-r (k) rj}(k) label}(k)]

_ r/_i(.k) 1_};‘(1() F;'kk) label} (k))

%) 11" k) T (k) labet (k)

RIGHTS L

where r]?(k) is a binary variable defined as follows:

rik) = 1 if stop i belonging to S;(k) is a pick-up
7710 if stop i belonging to S;(k) is a delivery.

The first and second columns represent a pair iden-
tifying if stop i is either a pickup [1 0] or a deliv-
ery [0 1], respectively. The third column of the S;(k)
matrix represents the external travel time function,
where F]f(k) is the expected total travel time between
points i — 1 and i plus the transfer operation delay
at node i. For simulation purposes, we assume that
the position of the vehicles can be measured or esti-
mated at any moment. The last column label; keeps
the passenger identifier, which is needed to check the
feasibility of the sequence in terms of precedence (the
pickup must occur before the delivery of the same
client).

When the dispatcher makes a decision, first the pas-
sengers are assigned to a certain vehicle, and then
they are inserted within the sequence of task that
the vehicle follows. Figure 1 shows an example of
a sequence for a vehicle j. Users labeled as “1,”
“2, and “3” are assigned to vehicle j. The sequence
assigned considers to pickup user ”labeljl-(k) =1
(coordinate 1%), then to pickup user ”labeljz.(k) =3
(coordinate 3%), then to delivery user ”label]s»(k) =1"
(coordinate 17) and so on.

Vehicles will travel according to the predefined
sequence vector S(k—1) while no new calls are
received. When a new service request is received, the
dispatcher calculates the control sequence in the next
step S(k) for the fleet of vehicles, adding the stops
indicated by the new customer. Then, each sequence
Sj(k) remains fixed during the whole time interval
(k, k+1), unless a vehicle reaches a predefined pickup
or delivery stop during such an interval, in which case
its sequence will decrease in size showing that the
scheduled task has been accomplished. Thus, in this
scheme the problem is formulated in terms of a vari-
able time step (triggered by events), which represents
the time interval between two consecutive requests,

Sik=-1)=[1">3">1">2"— 27— 3]
=

Vi

Figure 1 (Color online) Representation of a Sequence of Vehicle
and Its Stops

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

242

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

that is to say, the predictive controller takes a routing
decision when a new call enters the system.

2.2. Predictive Dynamic Model and Objective
Function

In the DPDP the state space variables include the

clock time of departure Tf(k) and the vehicle load

L;(k), after vehicle j leaves stop i, both computed at

instant k. At this point, let us define, for each vehicle

j €V, the load and departure time vectors as follows:

L= LI(k) L(k) ... L}”f""”(k)]T)

(w;(k=1)+1)x1”

©)

Thus, the set of state space variables for the entire
system at instant k can be written as x(k) =
[L(k)T, T(k)T]", where L(k) and T(k) represent the
set of load and departure time vectors, respectively,
Lk) = [Li(k)", ..., Li(K)", ..., Le(k)"]" and T(k) =
[Ti(K)T, ..., T(k)", ..., Te(k)"]". The output set y(k) is
represented by the vector of observed departure times
of vehicles at stops, T (k).

In the HPC approach, a dynamic model based
on state space representation for both the vehicle
load and the departure time at stops (as a func-
tion of segment travel times) is considered (Cortés
et al. 2009). Both the clock time of departure Tji (k)
and the vehicle load L;(k) are stochastic variables,
because they depend on the evolution of the system
affected by uncertain demand. Therefore, and in order
to work with deterministic values, reasonable estima-
tions of the load and departure time vectors have
to be obtained. The prediction when a new request
occurred is given by the expected value of the state
space vector for vehicle j, X;(k +1). Analytically,

=] 1oy T Pk
T (k) [T] (k) T (k) ... T, ()](w]-(k—l)Jrl)xl'

) |:E{Lj(k+1)/k}} Lik+1)
E{T;(k+1)/k} T(k+1)
L.(k), S;(k
Z[fL((k) S5))} Vil F.
fr(T;(k), S;(k))

where the functions f; and f; are the state space
model defined in Appendix A.

Once the optimization is conducted, the proposed
vehicle sequences and state space variables must sat-
isfy a set of constraints given by the real conditions
of the dial-a-ride system. Specifically, we must con-
sider precedence and consistency constraints (pickup
location goes before the delivery for the same client)
in the solution of the HPC problem to generate only
feasible sequences.

The central dispatcher (controller) computes the
control decisions, by means of the minimization of
an objective function and predictions, for the entire
control horizon N, =N (N is the prediction horizon),

RIGHTS L

ie,Sf™N =[S(k)T,...,S(k+N —1)T]", and applies the
updated sequence set S(k) based on a receding hori-
zon strategy. The optimization variables are the cur-
rent sequence that incorporate the new request, and
the future sequences that incorporate the prediction
of future requests. Thus, the objective function com-
prises all of the scenarios & that consists of the sequen-
tial occurrence of N —1 estimated future request, with
a probability p,. The scenarios are obtained from his-
torical data. Therefore, a reasonable prediction hori-
zon N can be defined depending on the intensity of
unknown events that enter the system in real time
and on how good the prediction model is. If the pre-
diction horizon is longer than one, the controller will
add the future behavior of the system into the cur-
rent decision. The performance of the vehicle routing
scheme will depend on how well the objective func-
tion can predict the impact of possible rerouting due
to insertions caused by unknown service requests.
Analytically, a mono-objective function for a predic-
tion horizon N, can be written as follows:

N F H(k+t)
min YY" 3 py(k+H(Clk+8) - Clk+t-1) (7)
S t=1j=1 h=1
where
wj(k+t)

Clh+h= Y [ﬁ;ifl(k+t)(f;(k+t)—f;‘*l(k+t))

i=1

+ 2+ (T k+) = Tk +1)

®)

where k + t is the instant at which the tth request
enters the system, measured from instant k, H(k + t)
is the number of requests’ patterns at instant k + ¢,
pu(k +t) is the probability of occurrence of the hth
request pattern, associated with a trip pattern related
to a specific pair of zones. The patterns and p, (k +¢)
are calculated based on real-time or historical data,
or a combination of both. This formulation is robust
in the sense that different realizations of the stochas-
tic demands are considered in the objective function.
In Saez, Cortés, and Ntfiez (2008) a zoning based on
fuzzy clustering is designed, in which the estimation
of trip patterns is systematized. The first term of (8) is
related with the travel time of users, and the second
term with the waiting time.

In Figure 2, the scheme for the HPC of the dial-
a-ride system is presented. Note that the optimiza-
tion problem associated with the HPC strategy will be
solved using evolutionary algorithms as we explain
in §3.

7
h

3. Solution Algorithms

For solving the optimization problem given by the
objective function defined in (7) within the pro-
posed HPC strategy applied to the dial-a-ride system

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

243

putk+ 1), H(k + 1) Demand

. —
predictor e

l

> Xi(k+1)

HPC based on S/ k) Dial-a-ride - Tjk |
evolutionary > system > Ttk)
algorithms > Li(k+1)

Figure 2 HPC Scheme for Controlling the Dial-a-Ride System

described in §2, we propose a new ad-hoc method-
ology based on generic evolutionary algorithms.
The generic evolutionary algorithms to be used are
described in Figure 3.

Evolutionary algorithms consist of a population
where each member represents or encodes a solution
of a given problem, and the quality of a solution (and
indeed the member) is evaluated with a fitness func-
tion, which is directly related to the objective func-
tion. The members of the population evolve over the
different iterations according to the operators of the
algorithm (evolutionary stage). At the end of the algo-
rithm, which, for instance, can be decided by reaching
a maximum number of iterations, the solution to the
problem is the one stored as the best member of the
population (which may be the optimal or a subopti-
mal solution). In this work, PSO and GA evolutionary
optimization algorithms are considered.

These evolutionary algorithms are used inside the
ad-hoc methodology to solve the HPC of the dial-
a-ride system (HPC-EA-DRS), and as such, they are
used to find good insertion positions of the requests.

Initialize
parameters

Initialize
population

v

Obtain solutions

v

Evaluate fitness

v

Evolutionary stage

End
condition?

(Sub) optimal solution

Figure 3 Generic Evolutionary Algorithm

RIGHTS L

The ad-hoc methodology for the HPC of the dial-a-
ride system has been designed based on the particular
structure of the problem, and is presented next.

3.1. Methodology Based on Evolutionary
Algorithms (EA)

In this section, we present the developed methodol-

ogy based on evolutionary algorithms to solve the

hybrid predictive control for the dial-a-ride system

for the two-steps ahead prediction problem within the

HPC formulation described in §2.

As shown in expression (7), the objective function
of the optimization problem depends not only on the
current assignment for pickup and delivery but also
on the expected future requests. Then, in order to find
a good assignment for a given incoming request, it is
necessary to compute optimal or near-optimal assign-
ments for expected future requests in the next pre-
diction step, assuming the sequence in the previous
step is known. Thus, a two-level algorithm is consid-
ered; at each level, an evolutionary algorithm as that
schematically presented in Figure 3 is executed, where
the solutions represent the insertion positions (or the
sequence) for the incoming request.

The first level solves the optimization for the inser-
tion positions of the incoming call based on the pro-
posed objective function shown in (7). The second
level determines the positions associated with the
expected future requests, using the sequences gen-
erated in the first level. The two-level procedure is
conducted for every vehicle to determine the vehicle
experiencing the lowest insertion cost (based on the
objective function). The main reason for running the
procedure separately for each vehicle is because dif-
ferent vehicles have different sequence lengths, which
makes a consistent design of the solutions’ encoding
difficult when applied to different vehicles.

Each member of the population of the chosen evo-
lutionary algorithm represents a candidate solution
for the insertion positions of a request for a given
vehicle j. The insertion positions are defined as ¥ =
(pu, de), where pu represents the position of the
pickup, and de is the position of the delivery. The
decoded sequence based on (3) is

s}’(k) =

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

244

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

k) 1=r2k) TY(k) label)(k)]
rik) 1=rl(k) T}k) label; (k)

r;’“'(k) 1— r}’”(k) F;’”.(k) labelé’“(k)
rﬁ".(k) 1—r{F’“(k) F;"’.(k) label?e(k)

0 1= k) 17 k) 1abel "™ k)

w;(k
o 7 (k)
The particular encodings of the insertion positions
associated with each method, as well as the repair
strategies designed to handle unfeasible solutions, are
defined in §3.2.

For a specific vehicle, the first level considers the
insertion positions of the incoming call; the fitness
function for the first level figevei(k) is given by the
objective function associated with the whole opti-
mization problem, as defined in (7). As this objective
function considers the insertion costs of the expected
future requests, the second level of the algorithm
must be run inside the objective function compu-
tation step of the first level in order to find near-
optimal insertion positions for every expected future
request, assuming that the candidate solution for the
incoming request being evaluated at the first level is
assigned to such a vehicle. In addition, as the sec-
ond level considers only the insertion positions of
one of the expected requests () provided a candidate
solution for the incoming request S (k), the second
level fitness, namely, f,.qevel(k), considers the follow-
ing objective function for every candidate solution:

F

fondieva (k) =D _(Ci(k +2) = C;i(k+1)) |50, - (10)

j=1

Next, we describe the two-level HPC-EA-DRS algo-
rithm that uses modules (see Figure 3) that in general
will be different depending on the chosen evolution-
ary algorithm (these modules are described in Online
Appendix B (available as supplemental material at
http://dx.doi.org/10.1287 / trsc.2014.0569).

The HPC-EA-DRS is as follows:

Step (0). Call function InitializeParameters of the
selected evolutionary algorithm.

Step (1). Suppose that the predefined sequence set
S(k —1) is known. A new service request (call) enters
the system. The first level of the algorithm then starts
and the first level counter is set to g; = 0. The modules
InitPopulation and ObtainSequence are used to generate
a set of n potential sequences S (k), with I: 1,2, ..., n.
Note that [n/F] candidate solutions are associated
with each vehicle, which means that the insertion of
the new call falls in the specific vehicle sequence (F is
the fleet size).

RIGHTS L

Step (2). For each candidate sequence SY(k),
H(k +1) probable requests are considered. Then, the
second level of the algorithm starts and the second
level counter is set to g, =0. InitPopulation and then
ObtainSequence are applied to generate n potential
sequences S (k+1)|,, m: 1,2,...,n, for each proba-
ble request pattern h: 1,2, ..., H(k+1).

Step (3). Provided that S¥(k) is known, evaluate
the fitness function f,.qeve(k), defined in (10), for all
potential feasible sequences S” (k+1)|,. If % (k +1)],,
or SY(k) are unfeasible in terms of the capacity of
the vehicle or precedence, penalize its fitness (if a
repair method is considered, the unfeasible solutions
in terms of precedence constraints are repaired using
ObtainSequence; thus, at this point the sequence is fea-
sible, at least in precedence).

Step (4). If an ending criterion (maximum num-
ber of iterations) is satisfied, then proceed to Step 5,
and return best solutions for every probable request.
Otherwise, use the function EvolutionaryStage to
update the particles or individuals. By using the
function ObtainSequence, the sequences S (k + 1),
m:1,2,...,n for h: 1,2,...,H(k + 1) are generated
8> =g, +1. Go back to Step 3.

Step (5). At this step, the second level ends and we
go back to the first level. Given that S” (k) is known
and the solutions for S%(k+1)|,, h: 1, ..., H(k+1) are
obtained in Step 3, the objective function fiyeve(k),
in this case considering two steps ahead, is evaluated
and used as the fitness function. If $% (k) is unfeasible,
penalize it.

Step (6). If a termination criterion (maximum num-
ber of iterations of Steps 2-6) is satisfied, then STOP,
and return the best solution found. Otherwise, by
using the function EvolutionaryStage, the positions and
the velocities of all particles for I: 1,2,...,n are
updated. Using ObtainSequence, S"(k), I: 1,2,...,n,
are generated g; = ¢, +1. Go back to Step 2.

Next, we present the different evolutionary algo-
rithm strategies, which are used as a part of this ad-
hoc algorithm.

3.2. Evolutionary Algorithms for the
HPC-EA-DRS

The evolutionary algorithms used in the HPC-EA-

DRS are described in this section, including its basics

and the actual operators according to the HPC formu-

lation for the DPDP.

First, we highlight the PSO algorithm, which is
based on a particle swarm that represents a popu-
lation of candidate solutions (Kennedy and Eberhart
2001). The particles are initialized randomly, and then
they move iteratively within the search space in order
to find new solutions. The particles have a fitness asso-
ciated with the solution quality, usually given by the
objective function to be optimized. Each particle i is

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

245

characterized by a position, a velocity, its best previ-
ous position, and the best position among all of the
particles belonging to the swarm. The particles are
updated (they move) according to their cognitive and
social behavior. The above description of PSO was
originally conceived to solve continuous problems. In
this work, we adapted the standard PSO configura-
tion in order to add integer variables in the solution.

The second solver we explore is GA (Man, Tang,
and Kwong 1998). It is based on biological evolu-
tion, and uses inherited operators such as mutation,
selection, and crossover. In particular, the optimiza-
tion variables in the HPC formulation of DPDP are
discrete, and therefore the binary encoding is not nec-
essary. In other words, the genes of the individuals
(feasible solutions) are given directly by the integer
optimization variables. In addition, gradient compu-
tations are not necessary as in conventional nonlinear
optimization solvers, which saves significant compu-
tation time. Pseudocodes of both GA and PSO algo-
rithms are presented in Online Appendix C.

Based on the standard PSO and GA methods, nine
different cases are considered in this work, depend-
ing on the encoding and constraint handling methods.
Two of these cases were previously proposed in Séez,
Cortés, and Nunez (2008) and Cortés et al. (2009), and
the other seven are new ad-hoc implementations.

In these algorithms, each member of the popula-
tion represents a candidate solution for the insertion
positions of a request for a given vehicle. Each parti-
cle or individual (particle and individual are the typ-
ical nomenclature for candidate solutions in the PSO
and GA literature, respectively) has two coordinates;
the first represents the pickup position and the sec-
ond represents the delivery position of insertion in the
sequence of a single vehicle (no-swapping of stops is
assumed as in Sdez, Cortés, and Nufez 2008; Cortés,
Saez, and Nurnez 2008; Cortés et al. 2009). Particles or
individuals are encoded by x = (x;, x,), which repre-
sent a candidate solution. PSO algorithms can be used
with continuous or discrete particles whose coordi-
nates are of the form x = (x;, x,) € R or x = (xy, x,) €
N, respectively. In the case of GA, the coordinates of
each individual are directly discrete, and therefore in
such a case we considered x = (x;, x,) € N. Hereafter
in the paper, R and N represent the sets of real and
integer numbers, respectively.

Recall that the insertion positions are defined as
¥ = (pu, de), where pu represents the position of
the pickup, and de is the position of the delivery.
A feasible insertion requires three conditions. First,
the pickup and delivery positions have to be con-
sistent with the length of the sequence; second, the
pickup position in the sequence will always precede
the delivery position; and third, the capacity con-
straint must be satisfied.

RIGHTS L

For instance, if we use a real-valued particle rep-
resentation for vehicle j, a particle is encoded as x =
(x1,x,) = (0.7, 3.8). To decode such a particle, we sim-
ply approximate each coordinate to the upper integer
to obtain the insertion positions ¢ = (pu, de) = (1, 4).

In this paper, three strategies are used for dealing
with solutions that do not satisfy the precedence con-
straint (pickup before delivery) that appear by the
generation of individuals/particles of GA and PSO:

—Penalty approach (called P). In this case, a
penalization term is added to the objective function
when some solutions (individuals/particles) generate
unfeasible sequences. Specifically, a hard penalization
is used by including a very high weighing factor
in computing the fitness of the unfeasible solutions,
regardless of the distance to the feasible region.

—Repair strategy (R1). The Baldwinian evolution
(Hinton and Nowlan 1987) is considered to repair
unfeasible individuals just for evaluation purposes,
although they are not modified in the population.
Then, the population is a mix of feasible and unfeasi-
ble individuals.

—Repair strategy (R2). Lamarckian evolution
(Ackley and Littman 1994) is used to repair an unfea-
sible solution into a feasible one, which replaces the
original unfeasible option in the population. Then, all
members of the population are feasible.

The details of the entire repair procedure are
presented in Online Appendix B, function Obtain-
Sequence. Candidate solutions that do not satisfy the
capacity constraint are always penalized.

According to the encoding and handling options of
unfeasible solutions, six versions of PSO and three
versions of GA are used: P-PSO-R, R1-PSO-R, R2-
PSO-R, P-PSO-N, R1-PSO-N, R2-PSO-N, P-GA, R1-
GA, and R2-GA. The prefixes P, R1, and R2 indicate
the handling technique for unfeasible solutions based
on penalization P, R1 for Baldwinian repair, and R2
Lamarckian repair, respectively. The suffixes R and N
indicate that solutions are encoded in a continuous
or integer domain, respectively. R2-GA was proposed
in Sdez, Cortés, and Nuriez (2008) and R1-PSO-R was
proposed in Cortés et al. (2009).

3.3. Parameter Tuning for the HPC-EA-DRS

Several studies have reported the optimization of
parameter tuning for PSO and GA. Most of these
studies cover cognitive, social parameters, and iner-
tia weights in case of PSO; mutation, crossover rates,
and selective pressure parameters for GA. These stud-
ies offer recommended parameter sets, recognizing
that these are problem dependent. Then, we perform
a sensitivity analysis of these parameters; however,
the obtained standard deviations turned out to be
too large in order to draw any conclusions. Because
of that, we decided to use a manually tuned set of

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

246

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

parameters for GA and a set of recommended param-
eters for PSO.

With regard to the remaining parameters, namely,
population size and number of generations, in the lit-
erature we found studies that solve static problems
(off-line mode, with no strict requirement on compu-
tation time), where the number of iterations is chosen
large enough for the algorithm to converge. Besides,
the population size is chosen large enough to per-
form a global search, without making the algorithm
excessively slow. The problem faced here is dynamic,
so the computational burden is very relevant. In gen-
eral, because of the complexity of the system, there is
no time to let the algorithms converge, and then the
number of particles and maximum number of itera-
tions are critical to the algorithm performance.

In this section, we propose a methodology to tune
the remaining two parameters: the population size
and the number of generations, by means of a mul-
tiobjective approach. The goal of this approach is to
find the best set of combinations of these parame-
ters in terms of quality of the solutions and computa-
tion time. Since accuracy and computation resources
are clearly opposite, a multiobjective approach is pro-
posed to set the value of these parameters. The mul-
tiobjective problem we solve is the following:

min {tn,g,]Pn,g}
"8 (11)
s.t. (n,8)eP,

where n is the population size, g is the number of
generations, P is the search domain of n and g. The
mean computation time required for the optimiza-
tion problem of each incoming request is ¢, ,, using a
population size n and number of generations g. The
mean total cost of the system is JP, , (which is a mea-
sure of the performance of the system), comprising
the effective travel and waiting times for users and
operational costs of the operator during the whole
period of simulation, using a population size n and
number of generations g. Given the stochastic nature
of the algorithms, several replications are conducted
considering every combination of parameters to find
the mean values of the total cost JP, , and computa-
tion time ¢, ,.

The solution of the multiobjective problem is a
region Ps; called Pareto optimal set. The set of all
objective function values corresponding to solutions
in the Pareto optimal set is known as Pareto opti-
mal front P = {(t, g, JP,) (n', g') € Ps). Figure 4
shows a graphical example of the multiobjective prob-
lem presented above, where the Pareto front is high-
lighted.

In Figure 4, any solution X' = {n’, ¢'} that belongs
to the Pareto optimal set is not dominated by any
other X/ = {n/, ¢/}. For example, X' = {n', g'} does

RIGHTS L

0.8

x X Pareto front

0.7 t

0.6 |

0.5t

04

Mean total cost JP,, ,

03}

02+t

0.1 I I I
0.2 0.4 0.6 0.8 1.0

Mean computation time £, ,

Figure 4 (Color online) Pareto Front Including Mean Total Cost and
Computation Time

not belong to the Pareto optimal set as it is dominated
by X? = {n?, ¢*}. Notice that the number of function
evaluations (n-g) is not the only determining factor
for the quality of the solutions. It also depends on
the design of the algorithms. In fact, larger popula-
tion sizes are chosen to favor a global search, while
more generations are used to get solutions that are
more refined. Then, there might be combinations of
population sizes and number of generations that eval-
uate few objective functions and reach better quality
solutions than other combinations that evaluate more
candidate solutions. The former are optimal configu-
rations in the Pareto set, and the latter are dominated
solutions. Then, with the multiobjective approach, we
can find the optimal configurations that allow finding
the best solutions in the least possible computational
time.

Once the Pareto set has been found, a single combi-
nation must be chosen according to some criterion. A
natural one is to define a bound for the computation,
and then the chosen combination of population size
and number of generations is the one that finds the
best solutions in the allowed time.

4. Simulation Experiments

4.1. Comparison of HPC-EA-DRS Methodologies

A discrete-event system simulation for a two-hour
period is conducted in order to evaluate the per-
formance of the proposed control methodology to
dynamically decide the best route of vehicles accord-
ing to the incoming demand, and in particular, to
compare the different configurations of the consid-
ered evolutionary algorithms (GA and PSO). The
scheme considers a fleet of nine small vehicles, each
with space for four passengers. Dispatch and rout-
ing decisions are made by the controller in real time.

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

247

7:00-7:59 aA.m.

0,9) (3.9 (6,9) 9.9) [Km]

2 4

0,9) (3.9) (6,9) 9,9) [Km]

P\D 2 4
1 0, 15 0,4
3 0,15 0,3

Figure 5 (Color online) Origin-Destination Demand Patterns

Although service requests are unknown, the aver-
age system pattern is assumed known from historical
data, obtained from the average demand measured
over the preceding week.

In the case study, four different future requests
are considered between 7:00 and 7:59 A.M., and four
more between 8:00 and 8:59 a.m. Each of these
future requests triggers the discrete event model at an
instant 7, and corresponds to the request that is opti-
mized during the second level optimization (two-step
ahead). Because the generated requests are just pre-
dictions, the calculated “near-optimal” sequences for
such requests are not used for the dispatcher, meaning
that only the sequence S(k) for the effective current
call is applied to the system.

The demand patterns and their probabilities are
shown in Figure 5 and were determined by the zon-
ing method used in Cortés et al. (2009).

We consider an urban service area of approximately
81 km?. The vehicles are assumed to travel straight
between stops at an average speed of 20 km/hr over

8:00-8:59 a.m.
0,9 3,9 6,9 (9,9) [Km]
3 4
1 2
0,9) 3,9 6,9 (9,9) [Km]
P\D 1 3 4
1 0, 00 0, 00 0,23
3 0, 14 0,12 0,51

the region. The experiment is repeated 30 times for
each case of analysis (each configuration or PSO and
GA), testing different demand requests that follow the
pattern in Figure 5. The relevant indicators we mea-
sure are the average total cost in terms of waiting
time, travel time, and operational cost for the entire
two-hour period and the average computation time
for solving the optimization problem associated with
the insertion decision of every incoming request, as
shown in Table 1. These tests were conducted using
10 generations and 10 individuals in the evolution-
ary algorithms used within the HPC-EA-DRS method.
The considered configurations of evolutionary algo-
rithms are (as introduced in §3.2): P-PSO-R, R1-PSO-
R, R2-PSO-R, P-PSO-N, R1-PSO-N, R2-PSO-N, P-GA,
R1-GA, and R2-GA.

Our routines for all proposed algorithms based on
PSO and GA were coded in Matlab, including the dif-
ferent configurations explained above. The equipment
utilized for the implementation of the routines is an
iMac CPU Intel Core i3 (3.2 GHz, 4 GB).

Table 1 Simulation Statistics for the Proposed Algorithms for Control the Dial-a-Ride System

Total cost statistics

Computation time statistics

EA Mean Worst case Best case Standard Mean Worst case Best case Standard
configuration [min] [min] [min] deviation [min] [s] [s] [s] deviation [s]
P-PSO-N 6,818.9 7,214.6 6,378.6 171.39 7.522 8.218 7.032 0.303
R1-PSO-N 6,809.0 7,136.1 6,487.8 132.79 12.509 14.291 11.686 0.515
R2-PSO-N 6,800.1 7,041.3 6,536.4 119.27 11.530 12.399 10.845 0.335
P-PSO-R 6,846.5 7,123.5 6,544.3 129.52 8.378 9.336 7.700 0.310
R1-PSO-R 6,823.6 7,168.8 6,510.5 156.27 13.468 14.868 12.888 0.455
R2-PSO-R 6,810.6 7,078.2 6,523.0 119.27 11.763 12.495 10.820 0.335
P-GA 6,787.3 7,022.4 6,582.0 90.81 27.010 28.551 24.897 0.956
R1-GA 6,803.0 7,039.4 6,581.0 107.63 24.764 26.064 23.413 0.643
R2-GA 6,796.8 6,898.5 6,689.8 43.38 31.751 33.353 30.330 0.548

RIGHTS L1 N Hig

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

248

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

Table 2 Comparison Between PSO-N and PSO-R Strategies

Table 3 Comparison Between Penalty and Repair Strategies

Performance change when shifting from a PSO-N to a PSO-R strategy

Performance change when shifting from a penalty to a repair configuration

Extra computation Total cost
Method time [%] increase [%]
P-PSO 11.38 0.40
R1-PSO 7.67 0.21
R2-PSO 2.02 0.15

We observe that in terms of performance, the
GA strategies provide better solutions than the PSO
strategies. Nevertheless, GA takes twice as much
time as PSO does, which supports our preference
for PSO-based algorithms, mainly in case of project-
ing this methodology to potential real implementa-
tions. In fact, a real-time application might not justify
the marginal increase in the quality of the solutions
(Table 1) when considering the trade-off between
solution quality and computational burden.

In Table 2 a comparison of the encoding method for
PSO is presented. This table shows that the PSO-N
configurations reach better solutions in shorter times
than those obtained in the tests for PSO-R, under
the same constraint handling technique. Thus, for the
studied system, with 10 individuals and 10 gener-
ations, we conclude that PSO-N configurations per-
form better than PSO-R configurations. This result is
reasonable considering the discrete nature of the opti-
mization problem. In that sense, one might expect GA
to perform well for this problem given its discrete
encoding, although as mentioned above the compu-
tation time required for PSO is significantly less than
that required for GA, which can be a determinant in
the context of a real-time dispatch scheme where deci-
sions need to be made fast enough in order to make
the system work.

In Table 3, a comparison between the constraint
handling techniques for PSO and GA is presented. We
observe that for the PSO configurations, the schemes
with repair result in better solutions than those with
penalty, although they require longer computation
times (Table 3). This happens because the stages
involved in procedures with repair are capable of test-
ing more candidate solutions than those with penalty.
It is not clear then which strategy is better, consid-
ering the observed trade-off between computational
time and objective function values. Note that this
behavior does not apply to GA. The GA configuration
with penalty is the best in terms of objective function.
In this case, this approach seems to guide the popula-
tion toward the optimum in a better fashion than the
other constraint handling techniques, which result in
better solutions.

For this combination of population size and gener-
ations, the previous results suggest that PSO strate-
gies are more suitable for real-time application than

RIGHTS L

Extra computation Total cost
Method time [%] decrease [%]
R1-PSO-N 66.30 0.15
R1-PSO-R 60.75 0.33
R2-PSO-N 53.28 0.28
R2-PSO-R 40.40 0.31
R1-GA -8.32 -0.23
R2-GA 17.55 -0.14

GA mostly because they run faster. In addition, dis-
crete encoding seems to be the best approach, and
Lamarckian evolution shows better performance than
Baldwinian evolution.

In §4.2, the results of an optimal parameter tuning
based on multiobjective optimization are presented
for the evolutionary algorithms used within the HPC-
EA-DRS methodology. For illustrative purposes, we
chose the R2-PSO-N and R2-GA to show the tuning
methodology. R2-PSO-N was used because it showed
the best performance in quality solution among the
PSO options for the original parameters, and R2-GA
was chosen since it is the analog to R2-PSO-N among
the GA approaches.

4.2, Parameter Tuning for PSO and GA in the
HPC-EA-DRS Methodology

As stated before, R2-PSO-N and R2-GA have been
chosen for parameter tuning. The parameters con-
sidered are the population size and number of gen-
erations. We consider 50 replications of each case,
in order to find the mean computation time and
mean total cost for each combination of the param-
eters. Both population size and number of genera-
tions vary in the range between 5 and 20. The Pareto
front and other suboptimal combinations of popula-
tion sizes and generations for both methods are pre-
sented graphically in Figure 6 and in detail in Table 4.

From Table 4 we appreciate that five out of the 11
points in the Pareto set associated with the R2-PSO-N
configuration correspond to the smallest tested pop-
ulation size 5. The quality of the solutions for these
points increases very fast with respect to the computa-
tion time, whereas in combinations with larger popu-
lations it increases very slowly. Moreover, the solution
with 8 individuals and 11 iterations looks like a knee
point. Note that the influence of the demand predic-
tion, which is inherently stochastic, could cause some
results not to follow the expected behavior. For exam-
ple, the combination of 20 individuals and 20 genera-
tions should result in the best performance, which is
not the case as it does not appear in the Pareto front
(Table 4).

For the R2-GA strategy, we cannot observe a clear
knee point as before. In addition, the points in the

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

Transportation Science 49(2), pp. 239253, ©2015 INFORMS 249
Pareto fronts—9 vehicles Table 5 Optimal Parameters Found for R2-GA
7,200 .
R2-PSO-N Pareto optimal set for R2-GA (9 Vehicles)
ZQ 7,100 Population Number of Mean computation Mean total
o5 size generations time per request [s] cost [min]
= 7,000

2 5 5 10.846 6,958.3

% 8 5 16.150 6,874.9

g 06900 8 11 32.039 6,787.2

g 8 14 38.128 6,785.7

= 6800 8 17 43661 6,760.1

11 5 20.849 6,837.3

11 14 43.776 6,759.7

6,700 0 14 5 24.007 6,799.2

Mean computation time ¢, ¢ [s] 14 1 40.042 6,769.2

' 17 14 48.910 6,758.6

Figure 6 Comparison of the Pareto Fronts and Dominated Solutions 7 7 53.824 6,756.5

{ Each Strat 9 Vehicl 17 20 58.124 6,756.4

of Each Strategy (3 Vehicles) 20 5 29.215 6.790.2

20 14 50.362 6,757.9

Pareto optimal set are uniformly distributed for dif- 20 17 55.171 6,756.4

ferent population sizes (Table 5). This is very differ-
ent from the case of R2-PSO-N, where almost half of
the points correspond to the shortest population size
available.

R2-PSO-N is faster than R2-GA for equal popu-
lations and generations. This is because R2-PSO-N
evaluates fewer candidate solutions than R2-GA. To
understand this, note that the fitness of tested solu-
tions are stored so that it is not necessary to compute
them again when a solution is repeated. Besides, it is
known that PSO converges faster than GA (Nedjah
and Macedo-Mourelle 2006), implying that some can-
didate solutions are more likely to be repeated (as the
problem is discrete). Then, for a given population size
and number of generations, PSO evaluates fewer can-
didate solutions, and therefore it runs faster.

From Figure 6, we can also notice that for a given
computation time value, we always find a R2-PSO-N
case that performs better than any R2-GA case. Con-
versely, for a given total cost value, we always find a
R2-PSO-N case that is faster than any R2-GA imple-
mentation. Finally, for any R2-GA case, we can always

Table 4 Optimal Parameters Found for R2-PS0-N

Pareto optimal set for R2-PSO-N (9 Vehicles)

Population Number of Mean computation Mean total
size generations time per request [s] cost [min]
5 5 3.543 7,181.9
5 8 5.047 6,964.8
5 11 6.374 6,905.3
5 14 7.312 6,852.2
5 17 8.177 6,782.7
8 11 10.240 6,751.8
1 20 18.201 6,738.1
14 20 21.693 6,734.0
17 11 18.141 6,746.3
17 17 22.658 6,726.4
20 11 20.404 6,736.0

RIGHTS L

find a R2-PSO-N case that runs faster and find a better
performance as well. From these observations, we can
say that the R2-PSO heuristic is more efficient than
R2-GA-N for the described problem.

Finally, we have to say that in real implementa-
tions of a dial-a-ride system, one necessary condition
is that the solution must be obtained quick enough
to become acceptable for the service provider. In this
case, we can easily choose the parameters that reach
the best solutions in a reasonably short time. Thus,
for example, in PSO, if we use a maximum decision
time of 10 seconds for every request as a criterion, we
can choose five individuals and 17 generations, which
reaches the best mean total cost (6,782 min) among
those reachable in a computation time that is less than
10 seconds (8.18 s).

4.3. HPC-EA-DRS with Different Fleet Size

Next, in order to see how extendable the results to
other configurations of dial-a-ride systems are, we
conduct some tests under different scenarios. The
experiment considers different fleet sizes. A total of
seven and 11 vehicles were tested to verify the prop-
erties of the algorithms R2-GA and R2-PSO-N. Fig-
ure 7 with the corresponding Tables 6 and 7 are the
results for the case study with seven vehicles, and
Figure 8 with Tables 8 and 9 comprises the results of
11 vehicles.

As can be seen in the results, in all cases the sys-
tematic better performances of R2-PSO-N in terms
of Pareto optimal solutions with respect to R2-GA
remains. The case study selected in the previous sec-
tion represents a good example to show the character-
istics of the algorithms. We can expect similar results
under different fleet sizes for dial-a-ride set ups.

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

250 Transportation Science 49(2), pp. 239-253, ©2015 INFORMS
Pareto fronts—7 vehicles Pareto fronts—11 vehicles
10,400 T T T 5,500
| R2-PSO-N
m 10200 F oo mo oo A I R%—GA H — 5450
= : ! E
Qs 10,000 f-t-----7m----- - TTTTT T T i 1 <5400
= : : 5
g 9800 f--Fe-\--"--------- i N - %
s 9 - ; ; S 5350
E . ‘ ‘ =
S S S b B <]
g 000 T ! ; = 5300
2 X : : B
9.400 ; < RBOCHR X = 5050
9,200 ' s s s ‘ ‘ ‘ ‘ ‘
> 5,200
0 20 40 60 80 100 0 10 20 30 40 50 60

Mean computation time 7, , [s]

Figure 7 Comparison of the Pareto Fronts and Dominated Solutions
of Each Strategy (7 Vehicles)

44. Comparison of HPC-EA-DRS with a
Double-Horizon Heuristic

In this section, the proposed HPC-EA-DRS strategy
is compared with a state-of-the-art heuristic method
based on a double-horizon-based strategy (Mitrovic-
Minic, Krishnamurti, and Laporte 2004) for solving
the dynamic pickup and delivery problem. A double-
horizon heuristic solves a dynamic problem assuming

Table 6 Optimal Parameters Found for R2-PSO-N

Pareto optimal set for R2-PSO-N (7 vehicles)

Population Number of Mean computation Mean total
size generations time per request [s] cost [min]
5 5 3.403 10,343.0
5 8 5.100 9,894.7
5 11 6.546 9,775.6
5 14 7.742 9,708.1
5 17 8.614 9,505.7
8 14 13.185 9,503.8
8 17 14.755 9,476.5
14 11 19.352 9,428.3
14 17 24.430 9,381.5
Table 7 Optimal Parameters Found for R2-GA
Pareto optimal set for R2-GA (7 vehicles)

Population Number of Mean computation Mean total
size generations time per request [s] cost [min]
5 5 11.133 9,889.4
5 20.680 9,587.8
5 11 29.734 9,479.7
8 5 18.153 9,603.7
8 14 50.666 9,380.1
11 5 25.234 9,486.0
11 14 62.077 9,350.0
14 5 30.260 9,459.9
14 8 45.711 9,395.7
14 11 57.105 9,372.7
17 5 35.917 9,398.5

Mean computation time #, , [s]

Figure 8 Comparison of the Pareto Fronts and Dominated Solutions
of Each Strategy (11 Vehicles)

that the distribution of the probable future requests is
unknown. The heuristic method considers the neces-
sity of making good short-term decisions without
experiencing adverse long-term effects. At the short-
term stage, a static optimization is performed with
the objective of minimizing the cost of serving the
incoming request (coming up in real time). At the
long-term stage, the aim is to provide enough room
(slack) for making future insertions easier. The heuris-
tic originally is designed for solving a DPDP version
with time windows, and therefore, in the long-term
the goal is to maximize the slack time to make inser-
tion easier. In our formulation however, there are no
explicit time windows; in this case the most impor-
tant constraint is given by the capacity in the vehicles;
therefore, our aim is in providing enough room to
satisfy future requests at a good level of service. The

Table 8 Optimal Parameters Found for R2-PS0-N

Pareto optimal set for R2-PSO-N (11 vehicles)

Population Number of Mean computation Mean total
size generations time per request [s] cost [min]
5 5 4.648 5,473.9
5 8 6.419 5,359.1
5 14 9.020 5,341.8
5 17 9.979 5,304.9
8 11 11.815 5,300.3
8 17 14.610 5,270.6
11 5 9.626 5,320.7
11 20 19.112 5,251.1
14 14 18.809 5,259.8
14 17 20.083 5,242.9
14 20 21.524 5,234.7
17 11 18.791 5,269.8
17 17 21.944 5,230.8
17 20 23.492 5,229.8
20 11 20.019 5,245.4
20 14 21.923 5,234.3
20 20 24.961 5,227.0

RIGHTS L

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

251

Table 9 Optimal Parameters Found for R2-GA

Table 10 Optimal Parameters Found for the Double-Horizon Heuristic

Pareto optimal set for R2-GA (11 vehicles)

Parameter tuning for a double-horizon heuristic

Population Number of Mean computation Mean total
size generations time per request [s] cost [min]
5 5 13.643 5,383.1
5 8 21.363 5,359.6
8 5 18.313 5,372.2
11 5 22.067 5,336.7
14 5 24.149 5,315.7
14 8 31.001 5,262.6
14 14 40.579 5,233.1
17 5 26.067 5,278.9
17 8 32.338 5,239.6
17 11 37.468 5,237.2
17 20 49.976 5,232.8
20 5 27.157 5,268.2
20 11 38.227 5,233.7
20 14 42.585 5,232.8
20 17 46.725 5,232.8
20 20 50.698 5,232.8

long-term optimization stage then will aim at penal-
izing sequences where the vehicle load is beyond a
certain threshold.

Based on preliminary testing, we realized that the
best results are obtained when the static problem is
solved for the entire horizon, and the long-term goal
acts as a penalization. In such a case, the objective
function for the double-horizon heuristic is given by

min 3 (Cy(k +1) - (k) (12)
e j=1

with
y w; (k+1)
Clk+1)=Ckk+1)+ >

i:wj, long—term

- Lmin + 11 0)/ (13)

Kmax(lz;'.’l(k +1)

where C;(k + 1) is the same specification as that
defined in (8). The first term of (13) implies a static
optimization of the incoming request and the sec-
ond term penalizes the case of vehicle loads equal or
greater than a parameter L ;,, proportionally to both
K and Li(k+1) = Loy, + 1.

For comparing this heuristic method with our
implementation, we run the case with nine vehicles
based on the results of §4.2 corresponding to R2-PSO-
N with eight individuals and 11 iterations (the knee
point). For the double-horizon heuristic penalty, the
parameter factor K and load threshold L, are prop-
erly tuned; the long-term horizon starts at the 2nd
half (rounded up) of the stops sequence. Table 10
shows the different parameters (K and L) tuned
with 2,000 randomly generated sequences. From the
table, the best parameters for the heuristic are given
by K=10, L;, =4.

min

RIGHTS L

Mean total cost [min]

K\Lnin 3 4

8 7,271.0 7,236.1
10 7,262.1 7,226.1
12 7,263.5 7,263.0
15 7,304.9 7,427.0
20 7,488.4 7,903.8

Table 11 Methods Comparison

Performances and computational times for the one-step-ahead method,
R2-PS0-N and the double-horizon heuristic

Mean total cost Improvement Mean computation

Method [min] [%] time per request [s]
One-step-ahead 7,274.8 0 0.034
R2-PSO-N 6,580.7 9.54 10.17
Double horizon 7177.2 1.34 0.039

The mean performances and computational times
for 2,000 randomly generated sequences are pre-
sented in Table 11, considering that the one-step-
ahead method, R2-PSO-N and the double-horizon
heuristic with their optimal settings (by tuning the
different parameters of each specification) are used
to control the system. We can observe that both
R2-PSO-N and the double-horizon heuristic offer
an improvement over the (myopic) one-step-ahead
method; however, it is clear that the R2-PSO-N imple-
mentation gain is considerably larger than that of the
double-horizon heuristic (almost 10% against 1.34%).
The extra improvement requires of course more com-
putation resources mainly involved in the prediction
of future events phase, as shown in the table. How-
ever, the computation time spent by R2-PSO-N is
still within reasonable ranges for a real-time imple-
mentation, which remains bounded and under con-
trol because of the nature of the EA algorithms we
implemented.

5. Conclusions and Final Remarks

In this paper, we develop an ad-hoc methodology
(HPC-EA-DRS) to solve the HPC formulation for
the dial-a-ride system based on generic evolutionary
algorithms. The formalization of the methodology is
valid for a large variety of evolutionary algorithms
as well as other heuristics of similar characteris-
tics, and is based on generic operations performed
by the evolutionary algorithms. In this work, we
show nine specific implementations of the evolution-
ary algorithms (PSO and GA), including repair and
penalty approaches that result in several variants of

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

252

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

the generic operations in the HPC-EA-DRS to handle
the specific constraints of the problem behind the real-
time operation of a dial-a-ride service provider. Using
a first combination of population size and number of
generations, we found that PSO with integer encod-
ing and Lamarckian repair performs the best for the
studied applications. The results are reasonable con-
sidering the embedded integral nature of most of the
variables that describe a dial-a-ride system under an
HPC scheme, such as that previously proposed by the
authors.

With regard to the studied evolutionary algorithms
(PSO and GA), we identified some configurations that
run faster than others although they lose accuracy in
performance. Thus, the strategy that is suitable for a
specific application will strongly depend on the final
objective pursued by the dispatcher. For instance, if
decisions have to be made in a very short time (real
time), we probably will choose the fastest available
option regardless of the accuracy of the obtained solu-
tion (with different encoding and constraint handling
methods).

With regard to the observed trade-off between accu-
racy and computation, we proposed a multiobjective
approach for tuning the parameters of any strategy
implementation, considering computation time and
performance as the conflicting objectives. The output
of the analysis is the set of combination of parameters
that belong to the Pareto optimal set. This approach is
applied to the R2-PSO-N and R2-GA-based solution
methods. The analysis allows comparing both strate-
gies, as well as defining the optimal parameter setting
according to a predefined criterion, such as the pres-
ence of a knee point or a maximum allowed compu-
tation time. It is shown that PSO strategies are more
efficient than those based on GA, because the former
are faster and more accurate. We believe that PSO
performs better than GA because the search heuris-
tic of PSO is more suitable to the analyzed prob-
lem, which is clearly reflected by the fact that PSO
finds better solutions, even evaluating fewer candi-
dates. In addition, we tested our best implementation
against a well-known heuristic method from the lit-
erature, obtaining much better performance from our
method in case of adding prediction to the optimiza-
tion scheme, at the expense of a higher (although con-
trollable) computational cost.

In further research, we expect to test the method-
ology and calibrate the parameters for real-size dial-
a-ride configurations. Other methods and heuristics,
such as differential evolution, will also be developed
and contrasted with the best PSO implementations.
Possible extensions in the way the continuous solu-
tions are converted into an integer version are also
topics to be investigated in the future.

RIGHTS L

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /trsc.2014.0569.

Acknowledgments
The authors thank the financial support of CONICYT/
FONDECYT/REGULAR/N°1141313, and the Millennium
Institute “Complex Engineering Systems (ICM: P-05-004-F,
CONICYT: FBO16).”

Appendix A
The vehicle load behavior is obtained using the following
state space model:

E{L;(k+1)/k} =L;(k+1) = A, L;(k) + B,(S(k)),
where the corresponding matrices in (7) are

BL(Sj(k))(wj(k)+l)><l = Bi : (Sj(k) ’ BD"

10 0
10 0
A = .
1o (w;j (k)+1) x (wj (k—=1)+1);
00 0 -0
1 10 0 0
0 Do 0
b 11 -~ 1 0

(wj(k)+1) x (wj(k)+1).
Both the vehicle sequence matrix S;(k) and the expected
load vector tj(k + 1), change their dimension dynamically
by adding two rows when a new request occurs. There-
fore, the matrix dimensions of A;, B}, B? are variable. The
matrix B} is designed to remove the last two columns of the
sequence vector, which are not necessary for representing
load changes from step k to step k+ 1. On the other hand,
when a request is satisfied, the first row of the sequence
is eliminated. In fact, the adaptive behavior is captured by
these techniques of expansion and reduction of matrix size.
The vehicle departure time behavior is obtained by using
the same methodology. Analytically,

E{T,(k +1)/k} = T;(k +1) = Ay - T;(k) + Br(S;(k)),

where
Br(S; (k) wj k4161 = B7 - (S (k) - By);

1 0 --- 0
1 0 --- 0
Ar = i
o (wj(k)+1) x (wj (k—1)+1);
00 0 -0
0 01 0 0
Bl — (1) ; B=|0 0 1 0
0 Do -0
o 00 -~ 0 1

(wj(k)+1) x (wj(k)+1).

As in the load state space model, the matrices Ay, Bk, B2
change their dimensions dynamically.

Downloaded from informs.org by [200.89.68.74] on 28 July 2015, at 07:57 . For personal use only, all rights reserved.

Munoz-Carpintero et al.: Methodology Based on Evolutionary Algorithms to Solve DPDP

Transportation Science 49(2), pp. 239-253, ©2015 INFORMS

253

References

Ackley DH, Littman ML (1994) A case for Lamarckian evolution.
Langton CG, ed. Artificial Life III (Addison-Wesley, Reading,
MA), 3-10.

Bemporad A, Morari M (1999) Control of systems integrating logic,
dynamics and constraints. Automatica 35:407-427.

Berbeglia G, Cordeau JF, Laporte G (2010) Dynamic pickup and
delivery problems. Eur. J. Oper. Res. 202(1):8-15.

Bertsimas D, Van Ryzin G (1991) A stochastic and dynamic vehi-
cle routing problem in the Euclidean plane. Oper. Res. 39(4):
601-615.

Bertsimas D, Van Ryzin G (1993a) Stochastic and dynamic vehicle
routing problem in the Euclidean plane with multiple capaci-
tated vehicles. Oper. Res. 41(1):60-76.

Bertsimas D, Van Ryzin G (1993b) Stochastic and dynamic vehicle
routing with general demand and interarrival time distribu-
tions. Appl. Probability 25:947-978.

Cortés CE, Sdez D, Nufez A (2008) Hybrid adaptive predictive
control for a dynamic pickup and delivery problem including
traffic congestion. Internat.]. Adapt. Control Signal Processing
22(2):103-123.

Cortés CE, Sdez D, Nufnez A, Munoz-Carpintero D (2009) Hybrid
adaptive predictive control for a dynamic pickup and delivery
problem. Transportation Sci. 43(1):27-42.

Dial R (1995) Autonomous dial-a-ride transit—Introductory over-
view. Transportation Res. Part C 3:261-275.

Dréo], Pétrowski A, Siarry P, Taillard E (2006) Metaheuristics for
Hard Optimization Methods and Case Studies (Springer-Verlag,
Berlin).

Eksioglu B, Volkan A, Reisman A (2009) The vehicle routing
problem: A taxonomic review. Computers Indust. Engrg. 57(4):
1472-1483.

Gendreau M, Guertin F, Potvin J, Taillard E (1999) Parallel tabu
search for real-time vehicle routing and dispatching. Trans-
portation Sci. 33(4):381-390.

Haghani A, Jung S (2005) A dynamic vehicle routing prob-
lem with time-dependent travel times. Comput. Oper. Res. 32:
2959-2986.

Hegyi A, De Schutter B, Hellendoorn H (2005) Model predictive
control for optimal coordination of ramp metering and variable
speed limits. Transportation Res. Part C 13:185-209.

Hinton G, Nowlan S (1987) How learning can guide evolution.
Complex Systems 1:495-502.

Jaw J, Odoni A, Psaraftis H, Wilson N (1986) A heuristic algorithm
for the multivehicle many-to-many advance-request dial-a-ride
problem. Transportation Res. Part B 20:243-257.

Jih W-R, Hsu JY]J (1999) Dynamic vehicle routing using hybrid
genetic algorithms. Proc. 1999 IEEE Internat. Conf. Robotics and
Automation (IEEE, Detroit), 453—-458.

Karer G, Musi¢ G, ékrjanc I, Zupanci¢ B (2007a) Hybrid fuzzy mod-
eling for model predictive control. J. Intelligent Robotic Systems
50:297-319.

Karer G, Skrjanc I, Mugi¢ G, Zupandi¢ B (2007b) Hybrid fuzzy
model-based predictive control of temperature in a batch reac-
tor. Comput. Chemical Engrg. 31:1552-1564.

Kennedy J, Eberhart R (2001) Swarm Intelligence (Morgan Kaufmann
Publishers, Burlington, MA).

RIGHTS L1 N Hig

Kleywegt A, Papastavrou] (1998) The dynamic and stochastic
knapsack problem. Oper. Res. 46(1):17-35.

Larsen A (2000) The dynamic vehicle routing problem. Unpub-
lished doctoral thesis, Technical University of Denmark, Lyn-
gby, Denmark.

Madsen O, Raven H, Rygaard J (1995) A heuristics algorithm for
a dial-a-ride problem with time windows, multiple capacities,
and multiple objectives. Ann. Oper. Res. 60:193-208.

Man K, Tang K, Kwong S (1998) Genetic Algorithms, Concepts and
Designs (Springer-Verlag, Berlin).

Mitrovic-Minic S, Laporte G (2004) Waiting strategies for the
dynamic pickup and delivery problem with time windows.
Transportation Res. Part B 38:635-655.

Mitrovic-Minic S, Krishnamurti R, Laporte G (2004) Double-horizon
based heuristics for the dynamic pickup and delivery problem
with time windows. Transportation Res. Part B 38:669—685.

Montemanni R, Gambardella L, Rizzoli A, Donati A (2005) Ant
colony system for a dynamic vehicle routing problem. J. Com-
binatorial Optim. 10(4):327-343.

Nedjah N, Macedo-Mourelle L (2006) Swarm Intelligent Systems
(Springer-Verlag, Berlin).

Nunez A, Sdez D, Oblak S, gkljanc I (2009) Fuzzy-model-based
hybrid predictive control. ISA Transactions 48(1):24-31.

Osman M, Abo-Sinna M, Mousa A (2005) An effective genetic algo-
rithm approach to multiobjective routing problems (MORPs).
Appl. Math. Computation 163:769-781.

Psaraftis H (1980) A dynamic programming solution to the single
many-to-many immediate request dial-a-ride problem. Trans-
portation Sci. 14(2):130-154.

Psaraftis H (1988) Dynamic vehicle routing problems. Golden BL,
Assad AA, eds. Vehicle Routing Methods and Studies (North Hol-
land, Amsterdam), 223-248.

Séez D, Cortés CE, Nufiez A (2008) Hybrid adaptive predictive con-
trol for the multi-vehicle dynamic pickup and delivery prob-
lem based on genetic algorithms and fuzzy clustering. Comput.
Oper. Res. 35:3412-3438.

Skrlec D, Filipec M, Krajcar S (1997) A heuristic modification of
genetic algorithm used for solving the single depot capacitated
vehicle routing problem. Proc. Intelligent Inform. Systems (IEEE,
Los Alamitos, CA), 184-188.

Swihart M, Papastavrou] (1999) A stochastic and dynamic model
for the single-vehicle pick-up and delivery problem. Eur.].
Oper. Res. 114:447-464.

Tarantilis C (2005) Solving the vehicle routing problem with adap-
tive memory programming methodology. Comput. Oper. Res.
32:2309-2327.

Thomas B, White C III (2004) Anticipatory route selection. Trans-
portation Sci. 38(4):473-487.

Toth P, Vigo D (2003) The granular tabu search and its applica-
tion to the vehicle-routing problem. INFORMS |. Comput. 15(4):
333-346.

Xiang Z, Chu C, Chen H (2008) The study of a dynamic dial a ride
problem under time-dependent and stochastic environments.
Eur.]. Oper. Res. 185:534-551.

Zhu Q, Qian L, Li Y, Zhu S (2006) An improved particle swarm
optimization algorithm for vehicle routing problem with time
windows. Proc. IEEE Congress on Evolutionary Comput. Internat.
(IEEE, Vancouver), 1386-1390.

