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In this work a new set of principal axis invariants is proposed in order to study the problem of
considering large magneto-elastic deformations, for bodies that are isotropic in the un-deformed
configuration when no external magnetic induction is applied. The new set of invariants has clear
physical meanings and may have an experimental advantage over the standard invariants used in many
previous works in this area. The principal axis invariant formulation is also shown to be more general.
Some simple boundary value problems are solved, such as the simple shear, and the biaxial extension of a
slab, where with the use of these new invariants, it is possible to study in a much simpler manner the
effect of different types of deformations on the response of the material. An illustrated simple specific
constitutive equation is proposed which compares well with experiment.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Magneto-sensitive elastomers correspond to a class of rubber-
like material filled with magneto-active particles, which can react
to the presence of magnetic fields, see for example (Bednarek,1999;
Boczkowska and Awietjan, 2009; Boczkowska et al., 2012; B€ose,
2007; Ginder et al., 2002; Gordaninejad et al., 2012; Jolly et al.,
1996; Lokander and Stenberg, 2003; Mitsumata, 2009; Mitsumata
and Ohori, 2011; Varga et al., 2006). These materials have attrac-
ted the attention of different researchers due to the possible ap-
plications, for example, in vibration control and in the design of
flexible robots, see, for example (Albanese et al., 2003; B€ose et al.,
2012; Deng and Gong, 2008; Farshad and Le Roux, 2004;
Ghafoorianfar et al., 2013; Ginder et al., 1999, 2000, 2001;
Kashima et al., 2012; Li and Zhang, 2008; Yalcintas and Dai, 2004;
Zhu et al., 2012). The theory of nonlinear magneto-elastic in-
teractions was developed many decades ago, we can mention, for
example, the monograph by Brown (1966) and Maugin (1988) and
Eringen andMaugin (1990); Hutter et al. (2006); Tiersten (1964). In
the recent years several new communications have been published
in this area, presenting some new theoretical formulations
(Brigadnov and Dorfmann, 2003; Bustamante et al., 2008;
Chatzigeorgiou et al., 2014; Dorfmann and Ogden, 2003;
ante).

served.
Dorfmann et al., 2004a, 2004b; Dorfmann and Ogden, 2005;
Galipeau and Ponte-Casta~neda, 2013; Kankanala and
Triantafyllidis, 2004; Ponte-Casta~neda and Galipeau, 2011; Saxena
et al., 2014a, 2014b; Steigmann, 2004; Vu and Steinmann, 2010,
Ogden and Steigmann, 2010.), some numerical results
(Bustamante et al., 2011; Salas and Bustamante, 2014) and some
experimental works (Bellan and Bossis, 2002; Danas et al., 2003;
Ginder et al., 1999). We mention, in particular the formulation by
Dorfmann and Ogden (Dorfmann and Ogden, 2003; Dorfmann
et al., 2004a, 2004b; Dorfmann and Ogden, 2005), which due to
its mathematical simplicity is used as a basis of the present work.
That formulation is based on the concept of the total energy
function, which is a scalar function depending on the deformation
gradient and one of the magnetic variables, from where we can
obtain the stresses and the other magnetic variable in a rather
simple manner (Dorfmann et al., 2004b).

At the present moment, there is a need for more experimental
work and also for better numerical methods to solve more realistic
boundary value problems (see, for example, the final remarks in
Salas and Bustamante, 2014). In several of the theoretical formu-
lations presented in the literature the standard set of invariants by
Rivlin and Spencer (see, for example, Spencer and Eringen, 1971;
Zheng, 1994) have been used in order to model the behaviour of
isotropic (Dorfmann and Ogden, 2003; Dorfmann et al., 2004a,
2004b; Dorfmann and Ogden, 2005) and transversely isotropic
magneto-sensitives bodies (Bustamante, 2010; Saxena et al., 2014b,
2014a). Such set of invariants may not be convenient in order to try
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to fit experimental data to obtain more realistic expressions for the
total energy function, due to the lack of clear physical meaning of
some of them (see, for example, Shariff, 2008); additionally, the
standard set of invariants may create some problems for the fitting
when working with small strains, due to error propagation from
experimental measurements (see, for example, Criscione, 2014 and
the works cited therein).

Isotropic magneto-active bodies behave as transversely
isotropic bodies when an external magnetic field is applied,
because such field creates magnetic bodies forces in the direction of
the field, therefore, in the deformed configuration such materials
behave as if they have a preferred direction. In the case of magneto-
sensitive elastomers, if the particles are randomly distributed in-
side the elastomeric matrix, it is said that is an isotropic magneto-
sensitive (MS) elastomer.

Considering the above remarks, in this communication a set of
principal axis invariants is presented in order to model the
behaviour of isotropic MS bodies. This new set is based on the
principal axis invariants considered by Shariff (2008) for purely
elastic deformations in transversely isotropic materials. The new
invariants proposed for isotropic MS bodies have clear physical
meanings, as a result, these invariants can be more attractive in
order to look for expressions for the total energy function by fitting
experimental data, and also in order to design a rational program of
experiments for MS elastomers. In addition to this, the classical
invariants (andmost of their variants) can be explicitly expressed in
terms of the principal axis invariants, and hence if the constitutive
equation is initially written in terms of the classical invariants, the
relevant formulations can be easily obtained in terms of both
classical and principal axis invariants. However, if on the onset the
constitutive equation is written in terms of principal axis invariants
it is generally impossible to convert it explicitly in terms of classical
invariants and we cannot write the relevant formulations in terms
of the classical invariants. Hence, expressing the energy function in
terms of the principal axis invariants is more general and the need
to have principal formulations in MS elastomer problems is crucial,
and we do this here. A numerical procedure, such as the finite
element method, can be easily constructed based on the principal
axis formulations developed in this paper.

This work is divided in 7 sections: In Section 2 some relations for
the kinematics of the deformation of a body are presented, and
some of the basic expressions of the theory of Dorfmann and Ogden
(Dorfmann et al., 2004b) for nonlinear MS solids are shown. In
Section 3 the new set of invariants for isotropic MS bodies is pre-
sented, and the expressions for the stresses and the magnetic
variable are derived. In Section 4 some simple boundary value
problems are solved using the expressions for the stresses and field
in terms of the new set of invariants. In Section 5 an alternative
constitutive equation is given, where the magnetic field (instead of
the magnetic flux) is treated as an independent variable. In Section
6, we make some comments on constitutive equations and
compare our theory with an experimental data using a simple
constitutive form. The conclusion is given in Section 7.
2. Basic equations

2.1. Kinematics

Let B denotes the MS body, x2B t denotes the position of a
particle X2B in the current configuration B t . The position of the
same particle in the reference configuration is denoted as X2B r ,
where B r is the body in the reference configuration, which we
assume is undeformed. It is assumed that there exists a one-to-one
mapping c ¼ cðX; tÞ such that x ¼ cðX; tÞ for any time t> 0. The
deformation gradient and the left b and right C CauchyeGreen
deformation tensors are defined, respectively, by

F ¼ vx
vX

; b ¼ FFT ¼ V2; C ¼ FTF ¼ U2; (1)

where we assume c is such that J¼ det F> 0, ð ÞT is the transpose
of a second order tensor and, V and U are the left and the right
stretch tensors, respectively. We have used small case characters in
order to denote the left CauchyeGreen deformation tensor, in order
to avoid problems with the notation used in magnetostatics. More
details about kinematics can be found, for example, in Ogden
(1997); Truesdell and Toupin (1960). In this work we only
consider quasi-statics deformations. The principal values for the
deformation are

li ¼ ei$Uei; i ¼ 1;2;3; no sum in i; (2)

where ei is the principal direction of U. In this communication all
subscripts i, j and k take the values 1, 2 and 3, unless stated
otherwise.
2.2. The equations of magnetostatics and the balance equations

In this section we review briefly some elements of the theory of
magnetostatics (Kovetz, 2000) and of the theory for nonlinear MS
bodies by Dorfmann and Ogden (Dorfmann et al., 2004b and Ogden
and Steigmann, 2010).

Let H and B denote the magnetic field and the magnetic in-
duction in the current configuration. In the absence of electric in-
teractions and time effects, the magnetic field and the magnetic
induction have to satisfy the simplified form of the Maxwell
equations.

div B ¼ 0; curl H ¼ 0: (3)

Using the global form of (3), it is possible to define the following
Lagrangian counterparts in the reference configuration of the mag-
netic field and the magnetic induction Hl and Bl (see, for example,
Dorfmann and Ogden, 2003; Dorfmann et al., 2004a, 2004b):

Hl ¼ FTH; Bl ¼ JF�1B: (4)

In vacuum, the magnetic field and the magnetic induction are
related by the equation

B ¼ m0H; (5)

where m0 is the magnetic permeability in vacuo. For condensed
matter an additional field is required, which is the magnetization
field M, which is related to B and H through

B ¼ m0H þM: (6)

The presence of a magnetic field in a MS body creates magnetic
body loads and as a result the mechanical Cauchy stress tensor is
not symmetric (Maugin, 1988). One of the key points of the theory
of Dorfmann and Ogden (Dorfmann et al., 2004b) was to define a
total Cauchy-like stress tensor, which is denoted as t that in-
corporates in its definition the body forces, which arewritten as the
divergence of a tensor field. Since from the practical point of view it
is not possible to differentiate the different loads inside a MS body,
the above assumption would be valid.

Let T denote the total nominal stress tensor, which is related to t

through (Dorfmann et al., 2004b):

T ¼ JF�1t: (7)



R. Bustamante, M.H.B.M. Shariff / European Journal of Mechanics A/Solids 50 (2015) 17e27 19
Another key ingredient of the theory of Dorfmann and Ogden
(Dorfmann et al., 2004b) was the assumption that there exists a
total energy function UM ¼ UFðF;BlÞ, which incorporates in its
definitions the elastic and magnetic energy stored by the MS body.1

It has been proved that (see Eqs. (3.11) and (3.13) of Dorfmann et al.,
2004b)

T ¼ vUF

vF
; Hl ¼

vUF

vBl
: (8)

Using (7) and (4)1 we have

t ¼ J�1F
vUF

vF
; H ¼ F�TvUF

vBl
; (9)

and for incompressible bodies Eq. (9)1 becomes

t ¼ F
vUF

vF
� pI: (10)

The total stress tensor t must satisfy the balance equation (in
absence of mechanical body forces)

div t ¼ 0: (11)

Through the surface vB t of the bodyB t, the magnetic variables
and the total stress tensor must satisfy the following continuity
conditions (see, for example, Kovetz, 2000; Dorfmann et al.,
2004b):

n$EBF ¼ 0; n� EHF ¼ 0; tn ¼ bt þ tMn; (12)

where n is the unit outward normal vector to vB t , bt is the external
mechanical traction, EF denotes the difference of a quantity from
outside and inside a body, and tM is the Maxwell stress tensor
defined as (Kovetz, 2000)

tM ¼ H5B� 1
2
ðH$BÞI: (13)

3. A new set of invariants for isotropic magneto-sensitive
bodies

The function UF must satisfy the objectivity condition, therefore
that function is usually written as U(C,Bl) ¼ UF(F,Bl). In order to use
some of the concepts presented in Shariff (2008), let us define the
unit vector a as

a ¼ 1
B
Bl if Bs0: (14)

where we have defined B ¼ jBlj.
As in Shariff (2008), we define the invariant zi as

zi ¼ ða$eiÞ2: (15)

We propose the following set fl1; l2; l3; z1; z2; z3;Bg of 7 in-
variants for U (of which only 6 are independent) for isotropic MS
solids. We note that only two of the scalars zi are independent,
since z3 ¼ 1� z1 � z2. Therefore, for an isotropic MS body we can
express.

UðC;BlÞ ¼ bUðB; l1; l2; l3; z1; z2; z3Þ: (16)
1 For simplicity and brevity in most of this work we only consider Bl as the in-
dependent magnetic variable, but it is possible to reformulate everything consid-
ering instead Hl as the independent magnetic variable, see x3.7 of Dorfmann et al.
(2004b) and Section 5 of the present work.
We list the connections of these invariants with the set of in-
variants normally considered in the literature2:

I1 ¼ trðCÞ ¼
X3
i¼1

l2i ; I2 ¼ I21 � tr
�
C2�

2
¼ l21l

2
2 þ l21l

2
3 þ l22l

2
3;

I3 ¼ detðCÞ ¼ J2 ¼ ðl1l2l3Þ2; I4 ¼ Bl$Bl ¼ B2;

I5 ¼ Bl$CBl ¼ B2
X3
i¼1

zil
2
i ; I6 ¼ Bl$C

2Bl ¼ B2
X3
i¼1

zil
4
i : (17)

From (9)1 and (10) if we haveUM¼U(C,Bl) then for compressible
and incompressible bodies we have, respectively:

t ¼ 2J�1F
vU

vC
FT; t ¼ 2F

vU

vC
FT � pI: (18)

From (16) it is possible to obtain the following relations (Shariff,
2008)�
vU

vC

�
ii
¼ 1

2li

vbU
vli

ði not summedÞ (19)

and

�
vU

vC

�
ij
¼

 
vbU
vzi

� vbU
vzj

!
�
l2i � l2j

� ei$Aej isj; (20)

where ðvU=vCÞij are the components of vU=vC relative to the basis
{ei} and A ¼ a5a. It is assumed that U has sufficient regularity to
ensure that, as li approaches lj, isj, equation (20) has a limit.

Using (19), (20) in (18)1 we obtain the principal axis components
for the total stress t tensor for a compressible solid

tii ¼
li

J
vbU
vli

ði not summedÞ; (21)

tij ¼
2lilj
J

 
vbU
vzi

� vbU
vzj

!
�
l2i � l2j

� ei$Aej; (22)

while for an incompressible solid since J¼ 1, from (18)2, the com-
ponents take the form

tii ¼ li
vbU
vli

� p; i not summed; (23)

tij ¼ 2lilj

 
vbU
vzi

� vbU
vzj

!
�
l2i � l2j

� ei$Aej; isj; (24)

where l1l2l3¼1.
Regarding (8)2 for Hl it is possible to prove that

Hl ¼
vU

vBl
¼ vbU

vB
aþ 2

B

X3
k¼1

vbU
vzk

½ða$ekÞek � zka�; (25)
2 See, for example: Eqs. (4.4) and (4.9) of Brigadnov and Dorfmann (2003); Eq.
(4.9) of Dorfmann and Ogden (2003); Eqs. (16) and (17) of Dorfmann et al. (2004a);
Eqs. (3.21) and (3.22) of Dorfmann et al. (2004b) and Eq. (88) of Steigmann (2004).
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and from (9)2 the expression for H is given as

H ¼
X3
i¼1

(
1
li

"
vbU
vB

þ 2
B

 
vbU
vzi

�
X3
k¼1

vbU
vzk

zk

!#
ða$eiÞvi

)
; (26)

where vi is the principal direction of the left stretch tensor V. It is
possible to show that (21), (22) and (26) are equivalent to the ex-
pressions for the total stress and magnetic field considering the
usual invariants (17); such connections are presented in the
Appendix A.

3.1. The undeformed configuration

An interesting special case to consider is when there is an
external magnetic induction applied on a body, but there is no
deformation, i.e. F¼ I, which implies l1¼l2¼l3¼1. Let us assume
that Bl is constant and that a¼ e3 such that z3 ¼ 1, z1 ¼ z2 ¼ 0.
From (21), (22) for compressible bodies and for incompressible
bodies (23), (24) we can see that is necessary to apply an external
traction such that the body remains undeformed. For example,
from (23)e(25) for incompressible bodies we have

t0 ¼
X3
i¼1

vbU
vli

ðB;1;1;1;0;0;1Þei5ei � pI; (27)

H0 ¼ U0
0ðBÞe3; (28)

where

U0
0ðBÞ ¼

vbU
vB

ðB;1;1;1;0;0;1Þ: (29)

4. Solution of some boundary value problems

In this section we solve some boundary value problems
considering the expressions for the constitutive equations using the
principal axis invariants. For brevity we only look for solutions for
incompressible bodies. Three problems are studied: the triaxial
uniform extension of a slab, the uniform shear and the extension
and inflation of a thick-walled tube. These three problems have
been treated in the literature using the classical set of invariants
given in3 (17), see for example, x3.1, 3.2 and 4 of Dorfmann and
Ogden (2005).

4.1. Triaxial extension of a slab

We consider the pure homogeneous deformation defined by

x1 ¼ l1X1; x2 ¼ l2X2; x3 ¼ l3X3; (30)

where xi and Xi are the Cartesian components of x and X,
respectively.

For this deformation F ¼ U≡diagðl1; l2; l3Þ and the principal
axes of the deformation coincide with the Cartesian coordinate
directions and are fixed as the values of the stretches change. Here
we consider a slab of material of uniform finite thickness h, with
(plane) faces normal to the X3 direction and very large in the X1 and
3 See additionally, for example: Pucci and Saccomandi (1993); x5 of Brigadnov
and Dorfmann (2003) for some results on the shear problem; x5 of Dorfmann
and Ogden (2003); Dorfmann et al. (2004a) and x4 of Dorfmann et al. (2004b)
for some problems considering cylindrical geometries.
X2 directions, i.e. the slab is defined by �h=2 � X3 � h=2,
�L � X1 � L, �L � X2 � L, where h≪L. We assume the slab is sub-
ject to a magnetic induction field Bl, where, for simplicity, we
consider only when both B and a are independent of X so that (3)
are satisfied automatically.

For an incompressible MS body we define

~U
�
B;l1;l2;z1;z2;z3

�¼ bU�B;l1;l2;l3¼1
��

l1l2
�
;z1;z2;z3

�
; (31)

with the symmetrical property ~UðB; l1; l2; z1; z2; z3Þ ¼
~UðB; l2; l1; z2; z1; z3Þ.

From (23), (24) it is possible to show that the stress components
take the form (see, for example, Shariff, 2008)

t11 � t33 ¼ l1
v~U

vl1
; t22 � t33 ¼ l2

v~U

vl2
; (32)

t12 ¼
2
�

v~U
vz1

� v~U
vz2

�
�
l21 � l22

� l1l2e1$Ae2;

t13 ¼
2
�

v~U
vz1

� v~U
vz3

�
�
l21 � l23

� l1l3e1$Ae3; t23 ¼
2
�

v~U
vz2

� v~U
vz3

�
�
l22 � l23

� l2l3e2$Ae3:

(33)

The components of the total stress tensor are constant and so
(11) is satisfied automatically.

A special case: When the direction of the magnetic induction is
such that a¼ e3 (i.e. the field is applied in the direction of the
thickness of the plate), from (15) we have z3 ¼ 1, z1 ¼ z2 ¼ 0, and
from (32)e(33) we obtain

t11 � t33 ¼ l1
v~U

vl1
; t22 � t33 ¼ l2

v~U

vl2
; t12 ¼ t23 ¼ t13 ¼ 0

(34)
while from (14), (4)1, (6) and (26) we have

B ¼ l3Be3; H ¼ 1
l3

v~U

vB
e3; M ¼

�
l3B� m0

l3

v~U

vB

�
e3: (35)

We assume the slab is surrounded by vacuum, considering the
continuity conditions (12)1,2 for the surfaces X3 ¼ ±h=2, the mag-
netic induction in vacuummust be the same as within the slab (see
Eq. (12)1), therefore from (5) and (13) the non-zero Cartesian
components of the Maxwell stress tensor are

tM11
¼ tM22

¼ � 1
2m0

B2l23 ¼ �tM33
: (36)

If no mechanical traction is supplied to the plane faces of the
slab X3 ¼ ±h=2, then from (12)3 we have t33 ¼ tM33

and from (34)
we have

t11 ¼ 1
2m0

B2l23 þ l1
v~U

vl1
; t22 ¼ 1

2m0
B2l23 þ l1

v~U

vl2
: (37)

Since L[h as an approximation we do not require (12) to be
satisfied across the surfaces X1 ¼ ±L and X2 ¼ ±L, i.e. for a very
large plate in the directions 1 and 2 we are neglecting ‘edge’ effects,
and assuming then that the uniform field (30), (35) is a solution of
the boundary value problem.

Let us specialize to the case of equibiaxial deformation, where
l1 ¼ l2 ¼ l and l3 ¼ l�2, from (37) we obtain

t11 ¼ t22 ¼ 1
2m0l

4B
2 þ l

v~U

vl1
ðB; l; l;0;0;1Þ; (38)

taking note that due the symmetry in ~U
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v~U

vl1
ðB; l; l;0;0;1Þ ¼ v~U

vl2
ðB; l; l;0;0;1Þ: (39)

In the reference configuration we have

t11 ¼ t22 ¼ 1
2m0

B2 þ v~U

vl1
ðB;1;1;0;0;1Þ (40)

which is the initial lateral stress needed to prevent deformation due
to the magnetic field.

4.2. Simple shear

In this section we present some results for a simple shear
deformation, in this case for the slab�L � X1 � L,�h=2 � X2 � h=2,
�L � X3 � Lwith h≪L. In this problem the principal directions of U
change continuously during deformation. Let the axes of x and X to
coincide such that the deformation can be described by the
equations:

x1 ¼ X1 þ gX2; x2 ¼ X2; x3 ¼ X3; (41)

where 0 � g is commonly called the amount of shear. Let q denote
the orientation (in the anticlockwise sense relative to the X1 axis) of
the in plane Lagrangian principal axes. The angle q is restricted
according by the following

p

4
� q<

p

2
: (42)

The Cartesian matrix for the deformation tensor F is

F≡

0@1 g 0
0 1 0
0 0 1

1A: (43)

The principal directions have components:

e1≡

0@ c
s
0

1A e2≡

0@�s
c
0

1A e3≡

0@0
0
1

1A; (44)

where c¼ cos(q) and s¼ sin(q). It can be easily shown that the
principal stretches take the values

l1 ¼
gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4

p
2

� 1; l2 ¼
1
l1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4

p
�g

2
� 1; l3 ¼ 1; (45)

where we have the connections

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l21

q ; s ¼ l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l21

q ; c2 � s2 ¼ �gcs: (46)

Without loss of generality, we consider t33¼ 0, since incom-
pressibility allows the superposition of an arbitrary hydrostatic
stress without effecting the deformation.

From (21), (22) the Cartesian components of the total stress take
the form:

t11 ¼ 2
h
l1c

2 þ l2s
2 � 2l4csþ 2g

�
ðl1 � l2Þcsþ l4

�
c2 � s2

��
þg2

�
l1s

2 þ l2c
2 þ 2l4cs

�
� l3

i
;

t12 ¼ 2
�
ðl1 � l2Þcsþ l4

�
c2 � s2

�
þ g

�
l1s

2 þ l2c
2 þ 2l4cs

��
;

t22 ¼ 2
�
l1s

2 þ l2c
2 þ 2l4cs� l3

�
;

t13 ¼ 2ðl5c� l6sþ gðl5sþ l6cÞÞ;
t23 ¼ 2ðl5sþ l6cÞ; (47)
where

l1 ¼ 1
2l1

vbU
vl1

; l2 ¼ 1
2l2

vbU
vl2

; l3 ¼ 1
2l3

vbU
vl3

;

l4 ¼

 
vbU
vz1

� vbU
vz2

!
�
l21 � l22

� e1$Ae2; l5 ¼

 
vbU
vz1

� vbU
vz3

!
�
l21 � l23

� e1$Ae3;

l6 ¼

 
vbU
vz2

� vbU
vz3

!
�
l22 � l23

� e2$Ae3: (48)

In general, the Poynting relation of the isotropic theory, i.e.
t11�t22 ¼ gt12, does not hold, however, when a is parallel to e3
(fixed), we have, l4¼ l5¼ l6¼ 0, the Cauchy stress is coaxial with the
left stretch tensor V and the response of the transversely strain
energy is similar to an isotropic material, and we can easily show
that the Poynting relation holds.

In the case when the direction of the magnetic induction is
perpendicular to the direction4 e3, from (47) the shear components
of the total stress tensor are t13 ¼ t23¼ 0, and from (44), (45) and
(46) we have the relations

vl1
vg

¼ s2;
vl2
vg

¼ �c2;
vz1
vg

¼ 2l1sc
3ða$e1Þða$e2Þ;

vz2
vg

¼ �vz1
vg

:

(49)

In, general, the Poynting relation does not hold.
Since a simple shear deformation depends on g, the strain en-

ergy function can be considered as a function of g and B,
i.e. UM ¼ US(g,B). We can easily deduce that, for a�e3¼ 0 we have

t12 ¼ vUS

vg
: (50)

It is important to discuss about the magnetic field produced in
this deformation and the continuity conditions (12). For this
problem, as an approximation, we only consider (12) for the sur-
faces X2 ¼ ±h=2. Since Bl¼ Bawith a�e3¼ 0, from (4)2 and (43) we
have for the normal component of the magnetic induction to the
surfaces X2 ¼ ±h=2 in the current configuration, which we denote
B⊥, is given as B⊥ ¼ Ba2. On the other hand, from (26) we have for
the components of the magnetic field that are tangent to the sur-
face X2 ¼ ±h=2 are given as

H1 ¼P2
i¼1

( ffiffiffi
zi

p
li

"
vbU
vB þ 2

B

 
vbU
vzi

�P3
k¼1

vbU
vzk

zk

!#
vi1

)
, and

H3 ¼P2
i¼1

( ffiffiffi
zi

p
li

"
vbU
vB þ 2

B

 
vbU
vzi

�P3
k¼1

vbU
vzk

zk

!#
vi3

)
, where vi1 and vi3 ,

i¼ 1,2 are the components of vi in the directions 1, 3, respectively. If
B(o) denotes the magnetic field in vacuum, considering the previous
results and (12)1,2, the components of B(o) are given as

BðoÞ1 ¼ 1
m0

H1; BðoÞ2 ¼ Ba2; BðoÞ3 ¼ 1
m0

H3: (51)

For the previous external magnetic induction from (5), (13) for
the Maxwell stress tensor we have the components:



R. Bustamante, M.H.B.M. Shariff / European Journal of Mechanics A/Solids 50 (2015) 17e2722
tM11
¼ 1

2m0

�
BðoÞ21 � BðoÞ22

�
; tM22

¼ 1
2m0

�
BðoÞ22 � BðoÞ21

�
; (52)

tM33
¼ � 1

2m0

�
BðoÞ21 þ BðoÞ22

�
; tM12

¼ 1
m0

BðoÞ1 BðoÞ2 : (53)

Now, as mentioned previously, for the case a�e3¼ 0 we have
t13¼t23¼ 0, then for the surface X2 ¼ ±h=2 considering (12)3, (52)2
and (53)2 we have

t12 ¼ tM12
þ bt1; t22 ¼ tM22

þ bt2: (54)

As a summary, for given g, B and a (such that a�e3¼ 0), Eqs. (51)
and (54) give the expressions for the external magnetic field B(o)

and the external mechanical traction bt , which are necessary to
produce the deformation (41). This is only valid if h≪L, i.e.
neglecting the continuity conditions (12) for the surfaces X1 ¼ ±L
and X2 ¼ ±L. This point is very important in order to apply these
results when fitting experimental data, since in reality we can only
work with finite size blocks.
5 In this problem the base vector for R, Q, Z is the same as for r, q, z.
4.3. Extension and inflation of a thick-walled tube

In this last example we study the problem of an incompressible
MS thick-walled circular cylindrical tube, under inflation and
extension. The tube initial geometry is defined by

Ri � R � Ro; 0 � Q � 2p; 0 � Z � L; (55)

where Ri, Ro, L are positive constants and R,Q, Z are cylindrical polar
coordinates. We assume the tube is deformed as

r2 � r2i ¼ 1
lz

�
R2 � R2i

�
; q ¼ Q; z ¼ lzZ; (56)

where ri is the internal radius of the deformed tube, r, q and z are
cylindrical polar coordinates in the deformed configuration and
lz> 0 (constant) is the axial stretch.

The principal stretches for this deformation are given by (see, for
example, Shariff, 2008)

l1 ¼ 1
llz

; l2 ¼ l ¼ r
R
; l3 ¼ lz: (57)

It can be easily shown that F≡diagð1=ðllzÞ; l; lzÞ and the prin-
cipal directions are

e1 ¼ ER; e2 ¼ EQ; e3 ¼ EZ ; (58)

where ER, EQ, EZ are the base vectors for the R, Q, Z cylindrical
coordinate system.

Consider the case when the magnetic induction Bl¼ Ba is such
that

a ¼ cosðaÞEQ þ sinðaÞEZ ¼ cosðaÞe2 þ sinðaÞe3; (59)

where 0 � a � p=2 and z1 ¼ 0 and let us assume that in general
B¼ B(r).

Considering that l and lz are the independent variables, the
strain energy function bU can be written as

UEðB; l; lz; z2Þ ¼ bUðB;1=ðllzÞ; l; lz;0; z2;1� z2Þ: (60)

From (23) and (24) it is possible to prove that the components of
the total stress t in the cylindrical coordinate system are given by:
tqq � trr ¼ l
vUE

vl
; tzz � trr ¼ lz

vUE

vlz
; (61)

tqz ¼
2 vUE

vz2�
l2 � l2z

� llzcs; trq ¼ trz ¼ 0; (62)

where c¼ cos(a) and s¼ sin(a). It is clear that when a¼0 or a¼p/2
the shear stress tqz is zero.

By considering the symmetry of the problem, the equation of
equilibrium (11) with negligible body forces reduces to

dtrr
dr

þ 1
r
ðtrr � tqqÞ ¼ 0; (63)

and from (63) and (61) we have the solution

trr ¼
Zr
ri

lðxÞ vUE

vl
ðxÞdxþ trri ; (64)

where l(x)¼ x/R(x), where R(x) is obtained from (56)1 replacing r by
the auxiliary variable x, and trri is the value of trr at r¼ ri.

Let us discuss now about the magnetic variables and the con-
tinuity conditions (12). Using the expression for F and Bl from (56)
and (59) we obtain

B≡B

0@ 0
l cos a
lz sin a

1A; H≡

0@ 0
HqðrÞ
HzðrÞ

1A; (65)

where, unlike the problems presented in Sections 4.1 and 4.2, here
B is not constant and it can depend on r. For brevity we do not
present the full expressions for the components of H, but for this
problems from (26) it is easy to see that they depend on r and
B¼ B(r). For this expression for B Eq. (3)1 (in cylindrical co-
ordinates) is satisfied automatically, but (3)2 becomes
1=rðdðrHqÞ=drÞ ¼ 0 and dHz/dr¼ 0. In general both equations
cannot be satisfied at the same time for the same B¼ B(r). As an
illustration let us assume in (59) two cases: a ¼ 0 and a ¼ p/2.

4.3.1. Case a ¼ 0
In the first case a ¼ 0 from (15) we have that z2¼1 and z3¼ 0,

therefore from (26) we have HqðrÞ ¼ 1=lðvUE=vBÞ, and B must be
found by solving the in general nonlinear equation

d
dr

�
R
r
vUE

vB

�
¼ 0⇔

R
r
vUE

vB
¼ co; (66)

where co is a constant. Since5 B¼ BEQ and H ¼ 1
l
vUE
vB EQ, the conti-

nuity conditions (12)1,2, which in the case Ro≪L we consider them
only for the surfaces R¼ Ri, R¼ Ro, are satisfied if

BðoÞq ðroÞ ¼ m0
RðroÞ
ro

vUE

vB
ðr ¼ roÞ; BðoÞq ðriÞ ¼ m0

RðriÞ
ri

vUE

vB
ðr ¼ riÞ;

(67)

where BðoÞq ðrÞ is the q component of the magnetic induction in
vacuum, which for continuity is the only nonzero component of the
magnetic induction outside the tube. For vacuum, since

HðoÞ
q ðrÞ ¼ m0B

ðoÞ
q ðrÞ, BðoÞq ðrÞ should be found from solving

dðrBðoÞq ðrÞÞ=dr ¼ 0, fromwhere we have BðoÞq ðrÞ ¼ c1=r, where c1 is a
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constant. Two different such expressions can be found for the
vacuum space for r� ri and r� ro, and we have two constants that
can be determined from the aforementioned continuity conditions
(67).

Regarding the continuity condition (12)3, let us assume at the
surface r¼ ri (R¼ Ri) there is a pressure P being applied, while on
the surface r¼ ro (R¼ Ro) there is no mechanical load. From (67)
and (13) for the radial component of the Maxwell stress tensor
evaluated at r¼ ri and r¼ ro we have

tMrr

�
r ¼ ri

� ¼ �m0
2



RðriÞ
ri

vUE

vB

�
r ¼ ri

��2
tMrr

�
r ¼ ro

� ¼ �m0
2



RðroÞ
ro

vUE

vB

�
r ¼ ro

��2
;

(68)

then from (64) and (68)1 for the surface r¼ ri we obtain
trri ¼ �P � m0=2½ðRðriÞ=riÞðvUE=vBÞðr ¼ riÞ�2, and from above and
(68)2 and (64) for the surface r¼ ro we obtain the relation

Zro
ri

l
�
x
�vUE

vl

�
x
�
dx� P � m0

2



RðriÞ
ri

v~U

vB
ðr ¼ riÞ

�2

¼ �m0
2



RðroÞ
ro

vUE

vB
ðr ¼ roÞ

�2
: (69)

As a summary, given Ri, Ro, lz, P and6 c1 we need to solve in
parallel the, in general nonlinear algebraic equations (66)2 and (69),
in order to find ri and B¼ B(r). Using the above results, from (64) we
can obtain tzz and the total traction to stretch the tube N can be
obtained from N ¼ 2p

R ro
ri

rtzzðrÞ dr.

4.3.2. Case a ¼ p/2
When a ¼ p/2 from (59) and (15) we have that z2¼ 0 and z3¼1

and the only nonzero components of B and H are components in
the axial direction Bz(r)¼lzB(r) and from (26) HzðrÞ ¼ 1=lzðvUE=vBÞ.
Eq. (3)2 is satisfied if

d
dr

�
vUE

vB

�
¼ 0⇔

vUE

vB
¼ co; (70)

where co is a constant. In this case (70)2 would be an in general
nonlinear algebraic equation for B. From (12)1 we obtain the ex-
pressions for B(o) for the exterior vacuum space near the surfaces
r¼ ri and r¼ ro, which can be used to obtain tM from (13).
Considering the same boundary conditions for trr mentioned in the
previous section, we can obtain an expression similar to (69) to be
used, for example, to find ri for a given pressure P and constant co.
For brevity we do not show details for those expressions.

5. An alternative formulation

In the above formulations, we use Bl as the independent mag-
netic variable and the dependent variable Hl is obtained from (8.2).
However, treating Hl as the independent variable instead of Bl has
certain advantages, especially in variational principal formulations
and tackling some boundary value problems. Hence, it is conve-
nient to write the energy function U in the form

U�ðC;HlÞ ¼ UðC;BlÞ � Hl$Bl; (71)
6 The constant c1 is associated to the magnetic induction outside the body
through BðoÞq ¼ c1=r for either the exterior r� ro or the interior vacuum space r� ri.
where the above is obtained via the partial Legendre trans-
formation (Dorfmann and Ogden 2004a,2004b, 2005) and it is
assumed that for every C there is a one-to-one relationship be-
tween Hl and Bl. The total stress for an incompressible solid takes
the form

t ¼ 2F
vU�

vC
FT � p�I; (72)

where p* is the associated Lagrange multiplier due to the incom-
pressibility constraint. From (71) we then have

Bl ¼ �vU�

vHl
: (73)

For the formulation in this section we let

a ¼ 1
H
Hl; Hs0; (74)

where H ¼ jHlj. In terms of the principal axis invariants, the energy
function is of the form

UM ¼ UHðl1; l2; l3; z1; z2; z3;HÞ; (75)

where zi, i¼ 1,2,3 are calculated as in (15) using in this case a from
(74). The rest of the formulations are similar to the formulations
where Bl is treated as an independent variable; hence we will omit
them in this section.

6. On the constitutive equation of an isotropic MS elastomer

If the energy function is written explicitly in terms of the clas-
sical in invariants, in view of (17) we can also expressed it explicitly
in terms of principal axis invariants; hence, isotropic MS problems
can be formulated using both classical and principal axis invariants.
However, explicit expressions for principal axis invariants in terms
of classical invariants are not straightforward, especially when two
or three of the principal stretches have the same value (Shariff,
2008). Hence, if on the onset, we write the energy function in
terms of the principal axis invariants, we can only formulate MS
problems using principal axis formulations as given in this paper. In
view of this, writing the energy function in terms of principal axis
invariants is more general (this is evident in dealing with non MS
purely isotropic materials (Ogden, 1997)) than writing in terms of
classical invariants.

In the past, when a transversely isotropic material was
modelled7, due to an unclear physical meaning of most of the
classical invariants and the complexity in including all the in-
variants, only a subset of the full invariants had usually been
included in the strain energy function. For example, a strain energy
of the formW(I1,I4) for an incompressible solid has been commonly
presented in the literature (see, for example, Dorfmann and Ogden,
2003; Dorfmann et al., 2004a). However, the authors are not sure
whether this form can fully characterise a transversely isotropic
material. Discussions onwhich classical invariants should or should
not be included in the strain energy function is ongoing and the
outcome is not clear. In addition to this, a strain energy function
written in terms of the classical invariants is not experimentally
attractive. For example, a simple isochoric deformation, such as a
uniaxial stretch in the preferred direction, perturbs the invariants
I1, I2, I4 and I5 and a pure dilatation deformation perturbs all the
7 Here by transversely isotropic body we mean the magneto-active isotropic
elastomer, which shows a behaviour similar to a transversely isotropic material
considering only elastic deformations (no coupling with magnetic fields).



Fig. 1. Bellan and Bossis (2002) uniaxial experiment. m ¼ 110, c0 ¼ �100, c1¼�.0011.

Fig. 2. Theoretical uniaxial stress strain curves for H0¼ 0, 200, 300 kA/m. Note that for
H0 s 0, a positive traction is needed to prevent magnetostriction at l ¼ 1. m ¼ 110,
c0¼�100, c1¼�0.0011.
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invariants. These deformations are not ideal in obtaining a specific
form of the strain energy if the specific form is determined by doing
rigorous tests, which hold four out of five invariants constant so
that the dependence in the remaining invariant can be identified.
However, using principal axis invariants, it is shown in Shariff
(2008) that it is possible to conduct a test can vary a single
invariant while keeping the remaining invariants fixed.

Because of their immediate physical meaning it is clear that we
should include all the principal axis invariants in the energy func-
tion; for example, I5¼ I5(l1,l2,l3,z1,z2,z3,B) itself depends on all the
principal axis invariants. By writing the energy function in terms of
the principal axis invariants directly we avoid its indirect principal
axis representation via the restricted forms of classical invariants.
The authors believe that these restricted forms maybe one of the
reasons that there is no clear and general methodology on how to
choose which classical invariants are suitable. Since, all the prin-
cipal axis invariants in the energy function have to be included,
future principal axis invariant workers will not waste their valuable
time and energy discussing which invariants should or should not
be included in the energy function as in the case of the classical
invariants. Until recently, energy functions written directly in terms
of principal axis invariants did not exist in the literature. Here,
based on the recent work of Shariff (2008), a general incompress-
ible energy function for an MS isotropic body could be written as

UM ¼
X3
i¼1

rðli; zi; bÞ þ bgðl1; l2; z1; z2; bÞ þ bgðl1; l3; z1; z3; bÞ
þ bgðl2; l3; z2; z3; bÞ;

(76)

where b ¼ B or H and zi depends on Bl or Hl. The function bg has the
symmetry bgðx; y;f;j;BÞ ¼ bgðy; x;j;f;BÞ and bU should be inde-
pendent of zi and zj, is jwhen li ¼ lj, and independent of z1, z2, z3,
when l1 ¼ l2 ¼ l3. Below, as an example, we give a simple specific
form for r and bg (for moderate strain values), i.e.

rðli; zi;HÞ ¼mlnðliÞ2 þ c0

�����l2i2 � 2li þ lnðliÞ þ 1:5

�����þ c1
zin0ðHÞ
l2i þ li

� m0
ziH2

2l2i
þ m0n0ðHÞe

1
H2

zi

2l2i
(77)

and bg ¼ 0. For simplicity we let n0(H)¼ H2. We note that this is just
an illustrative example, a more sophisticated specific form could
easily be constructed if required. It is clear from the above that the
energy U has a unique value if two or more of the principal
stretches have the same value. We note that m is the ground state
shear modulus of the isotropic body and m0¼1.2566�10�3 kN/
kA2. All the other constants are ground state constants and hence
we could easily put restrictions on their values for physically
reasonable responses; however, we shall not do it here. Shariff
(2013b) have used a form similar to (77) in biomechanics. In
general, the constitutive equation (77) cannot be simply and
explicitly expressed in terms of classical invariants and, hence, are
not suitable for classical invariant formulations. Using the above
simple form, we show in Fig. 1, that the function (77) compares
well with the uniaxial experimental data of Bellan and Bossis
(2002) (See Appendix B for uniaxial deformation theoretical re-
sults when b ¼ H0). The stressestrain behaviour depicted in Fig. 2
for different values of H is similar to that of Kankanala and
Triantafyllidis (2004). Fig. 2 indicates that to maintain a zero
strain under an external magnetic field, a tensile stress is required
to overcome the attractive interparticle forces and for some range
of compressive strains the magnitude of the compressive traction
increases with increasing applied magnetic field; indicating
repulsive forces when the particle distance is considerably
diminished. The tensile stress is given by

tZZ ¼ lsðlÞ � l�
1
2S
�
l�

1
2

�
� c1H

2
0

2l2 þ l�
l2 þ l

�2 þ m0H2
0

2l2

2641� 2e
�
�

1
H2
0

�375
(78)

where

sðxÞ ¼ 2mlnðxÞ þ c0ðx� 1Þ2 : (79)



Fig. 3. Magnetization M vs. magnetic field H0 for the cylindrical body for n0 ¼ H2
0 and

n0¼ 1� cosh�1(H0). For extension (l> 1) the particle distance increases thus lowering
the specimen's magnetization compared to l ¼ 1. The opposite is true for compression
(l< 1) due to shorter distances among the magnetic particles. m ¼ 110, c0 ¼ �100,
c1¼�0.0011.
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It is evident from (78) that the influence of H0 on the tensile
stress tzz diminishes as l increases. This is due to the average
interparticle distance increases and the interparticle forces are
weaker for the same imposed H0, hence the influence of H0 on the
tensile stress tzz diminishes. In Fig. 3 we depict the behaviour of
the magnetization M with respect to Hl for several uniaxial strain
values and it shows that for extension (l> 1) the particle distance
increases thus lowering the specimen's magnetization compared
to l¼1. The opposite is true for compression (l< 1) due to shorter
distances among the magnetic particles. For illustrative purposes
the behaviour for n0 ¼ H2

0 and n0¼1� cosh�1(H0) is shown in
Fig. 3. In view of the above illustrations, we note that a construc-
tion of more sophisticated specific constitutive equation is trivial
and we will do this in the future when the appropriate experi-
mental data is available.
7. Conclusions

In this work we have proposed a principal set of invariants in
order to study problems in nonlinear magneto-elasticity. This new
set of invariants which can characterise a more general MS elas-
tomer is based on the recent work by Shariff (2008), where the case
of purely elastic deformations was treated considering transversely
isotropic bodies. The invariants used in this work can be more
attractive than the standard invariants presented in the literature
(see Eq. (17)), because a clearer physical meaning can be attached to
each one of them, and because when solving boundary value
problems, the different expressions for the stresses in terms of the
deformation and the magnetic induction are simpler than when
considering the standard theory, see, for example, Eqs. (32), (33)
and (61), (62) for the problems of biaxial extension, simple shear
and inflation and extension of a tube, and compare, for example,
with the results presented in x3.1, 3.2 and 4 of Dorfmann and Ogden
(2005).
In future works, the case of transversely isotropic MS bodies
will be treated. Such materials are produced, for example, if a
magnetic field or magnetic induction is applied on the matrix
rubber during the curing process, when MS particles are being
added to the matrix (Bica, 2012). Because of the magnetic in-
duction field, the particles align in a preferred direction, and the
resultant solid behaves as an orthotropic body, because it has
already a preferred direction due to the chain of particles, plus the
additional preferred direction caused by the external field. This
complex problem, which requires the use of several invariants
(see Bustamante, 2010) will be treated in a future work using as a
basis the recent works of Shariff (2011, 2013a). Another problem
to be treated following the same procedure to define invariant as
presented here, will be the case of considering electroeelastic
interactions, for a body which has two families of fibres when
there is no electric field (Bustamante and Merodio, 2011); that
problem could be of interests in biomechanics.
Appendix A. Relations with the standard set of invariants

In this section we explore the connections of (21), (22) and (26)
with the expressions for the stresses and the magnetic field,
considering the total energy function expressed in terms of the set
of invariants (17).

Let us study first the case of the expression for the magnetic
field. From (14), (15) we have

zi ¼
ðBl$aÞ2

B2
; (A1)

therefore

vzi
vBl

¼ 2
B

ða$eiÞei � zia
�
:: (A2)

Now, considering the notation U ¼ bUðB; l1; l2; l3; z1; z2; z3Þ, we
have

vU

vBl
¼ vbU

vB
aþ 2

B

X3
i¼1

vbU
vzi

½ða$eiÞei � zia�: (A3)

For bUðB; l1; l2; l3; z1; z2; z3Þ ¼ UðI1; I2; I3; I4; I5; I6Þ, where Ii,
i¼ 1,2,3,4,5,6 are defined in (17). From (25) we have

Hl ¼
vU

vBl
¼ a

X6
k¼4

vU

vIk

vIk
vB

þ
X3
i¼1



vU

vI5

vI5
vzi

þ vU

vI6

vI6
vzi

�
vzi
vBl

;

¼ 2
vU

vI4
Bl þ 2B

vU

vI5

X3
i¼1

l2i ða$eiÞei þ 2B
vU

vI6

X3
i¼1

l4i ða$eiÞei;

¼ 2
vU

vI4
Bl þ 2B

vU

vI5
FTFaþ 2B

vU

vI6
C2a;

(A4)

hence from (4)1 we obtain

H ¼ F�THl ¼ 2
vU

vI4
b�1Bþ 2

vU

vI5
Bþ 2

vU

vI6
bB; (A5)

which can be compared with the results presented, for example, in
Dorfmann et al. (2004b).

Let us consider the expressions for the total stress tensor. For a
compressible body the Total Cauchy stress tensor is given by (18)1
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t ¼ 2
J
F
vU

vC
FT : (A6)

Using again the notation UM ¼ bUðB; l1; l2; l3; z1; z2; z3Þ, we have

vU

vC
¼
X3
i¼1

1
2li

vbU
vli

ei5ei þ
X3
isj

vbU
vzi

� vbU
vzj�

l2i � l2j

� �ei$Aej�ei5ej: (A7)

Consider the tensors Gi, i¼ 1, 2, 3, 4, 5 defined as:

G1 ¼ 2F
J

 X
i¼1

1
2li

vI1
vli

ei5ei

!
FT ¼ 2

J
b; (A8)

G2 ¼ 2F
J

 X
i¼1

1
2li

vI2
vli

ei5ei

!
FT ¼ 2

J
F

 
I1I �

X3
i¼1

l2i ei5ei

!
FT

¼ 2
J

�
I1b� b2

�
;

(A9)

G3 ¼ 2F
J

 X
i¼1

1
2li

vI3
vli

ei5ei

!
FT ¼ 2JI; (A10)

G4 ¼ 2F
J

0BB@X
i¼1

1
2li

vI4
vli

ei5ei þ
X3
isj

vI4
vzi

� vI4
vzj�

l2i � l2j

� �ei$Aej�ei5ej

1CCAFT ;

¼ 2B2

J
FT

0@X3
i¼1

ziei5ei þ
X3
isj

ei$Aejei5ej

1AFT ¼ 2
J
B5B;

(A11)

G5 ¼ 2F
J

0BB@X
i¼1

1
2li

vI5
vli

ei5ei þ
X3
isj

vI5
vzi

� vI5
vzj�

l2i � l2j

� �ei$Aej�ei5ej

1CCAFT ;

¼ 2B2

J
F

0@X3
i¼1

l2i ziei5ei þ
X3
isj

�
l2i þ l2j

��
ei$Aej

�
ei5ej

1A;

¼ 2
J
ðB5bBþ bB5BÞ:

(A12)

Consider again UM ¼ bUðB; l1; l2; l3; z1; z2; z3Þ and the relations

vbU
vli

¼
X6

k¼1;ks4

vU

vIk

vIk
vli

; (A13)

vbU
vzi

¼ vU

vI5

vI5
vzi

þ vU

vI6

vI6
vzi

: (A14)

In view of (A6)e(A14), in (A6) we finally obtain

t ¼ 2
J



vU

vI1
bþ vU

vI2

�
I1b� b2

�
þ I3

vU

vI3
I þ vU

vI5
B5B

þ vU

vI6
ðB5bBþ bB5BÞ

�
; (A15)

which can be compared with the expressions presented in
Dorfmann et al. (2004b).
Appendix B. Uniaxial Deformation using UH

The homogeneous deformation of an incompressible circular
cylindrical bar is described by

r ¼ l�
1
2R ; q ¼ Q ; z ¼ lZ ; (B1)

where (R,Q,Z) are cylindrical polar coordinates in the reference
configuration and (r,q,z) the corresponding coordinates in the
deformed configuration and 0 < l is the axial stretch. This type of
deformation was used by Bellan and Bossis (2002) to obtain
experimental results depicted in Section 5. In this case
F ≡ (l�½,l�½,l). Here we only consider Hl¼H0a ≡ (0,0,H0)T and,
hence H ≡ (0,0,l�1H0)T, z1 ¼ z2¼ 0 and z3¼1. In view of (73), (4.2)
and (6), we have

Bl ¼ �vUH

vH0
a; B ¼ �l

vUH

vH0
a; M ¼ Ma ¼ �

0BB@l vUH
vH0

n0
þ H0

l

1CCAa:

(B2)

For the special form of the constitutive equation given in (77),
the axial stress is given by

tzz ¼ lr0ðl;1;H0Þ � l�
1
2r0
�
l�

1
2;0;H0

�
� m0H2

0

2l2
: (B3)

The derivation of the above equation takes into account the
Maxwell stress

tMrr
¼ tMqq

¼ �tMzz
¼ �m0H2

0

2l2
(B4)

exterior to the cylinder.
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