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Abstract—This paper analyses and compares the performance
of a number of approaches implemented for the detection of
capacity regeneration phenomena (measured in ampere-hours)
in the degradation trend of energy storage devices, particularly
Lithium-Ion battery cells. All implemented approaches are based
on a combination of information-theoretic measures and se-
quential Monte Carlo methods for state estimation in nonlinear,
non-Gaussian dynamic systems. Properties of information mea-
sures are conveniently used to quantify the impact of process
measurements on the posterior probability density function of the
state, assuming that sub-optimal Bayesian estimation algorithms
(such as classic or risk-sensitive particle filters) are to be used to
obtain an empirical representation of the system uncertainty. The
proposed anomaly detection strategies are tested and evaluated
both in terms of (i) detection time (early detection) and (ii) false
alarm rates. Verification of detection schemes is performed using
simulated data for battery State-Of-Health accelerated degrada-
tion tests, to ensure absolute knowledge on the time instant where
a regeneration phenomenon occurs.
Index Terms—Capacity regeneration, information theoretic

measures, lithium-ion battery, particle filters, state-of-health.

ACRONYMS AND ABBREVIATIONS:
FP False Positive
KL Kullback-Leibler
MSE Mean Squared Error
N Negative detection result
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P Positive detection result
PDF Probability Density Function
PF Particle Filter
ROC Receiver Operating Characteristic
RSPF Risk-Sensitive Particle Filter
SOH State-Of-Health
TP True Positive
TN True Negative

NOTATION:
Estimate of the battery State-Of-Health at time
.

Estimate of minor differences with respect to
the nominal degradation trend at time .
Estimate, at time , of the additional
available State-Of-Health due to regeneration
phenomena.
External input associated with the apparition of
regeneration phenomena.
Measurement at time .
Delta of Kronecker function.
Weight related to the particle in the
posterior probability density at time .
Weight related to the particle in the prior
probability density at time .
Realization of the state vector, associated with
the particle at time .
True state vector probability density function
at time .
Posterior probability density function of the
state vector .
Importance sampling distribution.
Entropy of a probability equipped with its
probability mass function .
Entropy difference between posterior and prior
probability density functions.
Kullback-Leibler divergence between
probability distributions and .
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I. INTRODUCTION

T HE development of optimal energy storage devices has
been an issue of study in the main scientific communi-

ties around the world. This issue is a consequence of the ex-
ponential growth shown by the electric and hybrid vehicle in-
dustry, and the general proliferation of electronic devices. Re-
gardless of the main purpose for which an energy storage device
is needed, it is critical that battery management systems are able
to determine in a reliable manner the battery State-Of-Health
(SOH), which is a measure that is associated to the degrada-
tion that the battery has suffered over the course of its life [1].
This task can only be accomplished through precise estima-
tion algorithms that allow incorporating real online measure-
ments of the process, and ambient variables, to determine the
amount of remaining charge cycles. Online estimation algo-
rithms, more specifically Sequential Monte Carlo methods such
as Particle Filters (PFs) [2], [3], are especially suited to solve the
aforementioned problem, given their capacity to combine the
available system's measures of information and analytic or em-
piric models. However, some energy storage devices suffer from
sudden, momentary, and occasionally considerable regenera-
tion of their capacity. These changes, related to physicochem-
ical aspects and temperature-loading conditions during charge
and discharge cycles, are particularly important in the case of
Lithium-Ion batteries because they often alter the trend of the
SOH prediction curve, thus affecting the performance of esti-
mation and prognosis modules based on Bayesian algorithms
[3]. Here lies the importance of considering a detection module
for these regeneration phenomena of the SOH, which allows us
to correctly isolate them in the SOH modelling.
This paper presents a solution to the aforementioned

problem, which provides a framework capable of estimating
the SOH while simultaneously detecting and isolating the
effect of self-recharge phenomena through different detection
techniques. The anomaly detection modules are based on a
combination of PF-based state estimators and information-the-
oretic measures that allows detecting rare events within the
evolution of the battery degradation process under analysis.
The selection criteria for the best suitable detection module
are based on the performance obtained when comparing type
I vs. type II errors [3], considering the impact they have over
the SOH estimation in the Mean Squared Error (MSE) sense.
Frequency analysis approaches, such as Fourier based methods,
are discarded due to the non-stationary, asynchronous, and
random nature of the phenomenon to be analyzed.

II. PROBLEM FORMULATION

Capacity regeneration in energy storage devices has been
only briefly mentioned in literature [3]. Specifically in the case
of Lithium-Ion batteries, this phenomenon has been repre-
sented as a self-charging in the logger, where certain operating
conditions facilitate a sudden (and temporary) increment in the
available capacity of the energy storage device at the next cycle
(see Fig. 1(a)). These phenomena may significantly affect the
accuracy and precision of SOH prognosis algorithms, if not
properly isolated, because they directly alter both the initial
condition and the uncertainty that are associated with the

Fig. 1. a) Actual capacity degradation of a Lithium-Ion battery cell, where re-
generation phenomena are conveniently marked; b) output signal from the de-
tection module; and c) output of the PF-based capacity regeneration phenomena
detector.

prediction stage [3], incorporating a bias in the estimate of the
battery remaining useful life.
This paper analyses a solution for this problem considering

an anomaly detection module that includes a PF-based SOH es-
timation framework; see Fig. 1(b), which illustrates the output
of such a detection module when processing data as shown in
Fig. 1(a). The main focus of this research is to compare several
detection methods, determining their performance in terms of
type I and type II errors, and their effect in the SOH estimation
bias. All detectionmethods used in the design of hypothesis tests
are based on PF algorithms, including classic and risk-sensitive
versions [4]. These methods are complemented by the utiliza-
tion of information-theoretic measures (e.g., entropy, mutual in-
formation, and divergence) to generate a detection indicator that
characterizes the PF-based estimate of the state probability den-
sity function. We characterize the battery degradation process
by the nonlinear state-space stochastic model (1)–(2) [3] be-
cause this particular model structure has proven to effectively
combine empirical and phenomenological knowledge for a sta-
tistical characterization of self-recharge phenomena within the
structure of the life cycle model.
State transition model

(1)
Measurement equation

(2)

is the cycle index, is a state representing the battery SOH,
is a state associated with an unknownmodel parameter that is

required to explain minor differences with respect to the nom-
inal degradation trend (for example manufacturing defects
that are specific to each Lithium-Ion battery cell), is a state
associated with the additional available SOH due to regenera-
tion phenomena, and is the measured SOH. Noises , ,
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, , and are non-Gaussian sources of uncertainty, and
is an external input associated with the apparition of regener-
ation phenomena. More specifically, the external system input
is defined as a ternary signal, computed as a function of the

output of online PF-based detection modules [5]:
if self-recharge does not exist.
if either self-recharge is detected at cycle ,
or self-recharge phenomenon is fading.
if additional self-recharge phenomena are
detected before the latest one fades.

Thus, the implementation of different strategies for the detection
of regeneration phenomena also affects the performance of the
state estimator.
The state transition model (1) & (2) enables the implemen-

tation of Bayesian filtering techniques to monitor degradation
processes in Lithium-Ion batteries, but it requires the implemen-
tation of an efficient detection module for the detection of re-
generation phenomena. This fact motivates the development of
anomaly detection modules, either based on PF-algorithms as in
[5], [6], or information-theoretic measures [7]. This module per-
forms a test for a null hypothesis that affirms that self-recharge
phenomena either do not exist or are fading in time. The frame-
work considers a PF-based state estimator for model (1) & (2)
that uses the output of the detection stage, where input is used
to indicate if a regeneration phenomenon has occurred. The se-
lected detection measure must enable isolating events where the
SOH estimation algorithm is unable to track the process mea-
surements using a predetermined state transition model. The
main aspects associated to the formulation of this type of de-
tection modules are described next, in Section III.

III. ANOMALY DETECTION BASED ON PARTICLE
FILTERING ALGORITHMS

Nonlinear filtering is defined as the process of using noisy
observation data to estimate at least the first
two moments of a state vector governed
by a dynamic, nonlinear, non-Gaussian state-space model [7].
From a Bayesian standpoint, filtering procedures intend to gen-
erate an estimate of the posterior probability density function

for the state, based on the set of received measure-
ments. Particle Filters are a class of algorithms that intend to
solve this estimation problem by efficiently selecting a set of

particles , and weights , such
that the state Probability Density Function (PDF) may be ap-
proximated [8] by the empirical distribution

(3)

and the values of the particles weights can be
computed by

(4)
where denotes the importance sampling density func-
tion [9]. The choice of this importance density function

is critical for the performance of the particle filter

scheme. In the particular case of classical PF, the value of
the particle weights is computed by setting the impor-
tance density function equal to the prior PDF for the state,
i.e., [9]. Although this choice
of importance density is appropriate for estimating the most
likely probability distribution according to a particular set of
measurement data, it does not offer a good estimate of the
probability of events associated to high-risk conditions and low
likelihood. Indeed, the Risk-Sensitive Particle Filter (RSPF)
seeks to solve this issue.
This paper uses the PF- and RSPF-based state PDF estimates

to implement detection modules. In addition, it explores the pos-
sibility of using information-theoretic measures to analyze those
estimates, to perform early detection of SOH regeneration phe-
nomena that may take place in energy storage devices.

A. Anomaly Detection Based on Classic Particle Filtering
Algorithms
PF-based anomaly detection modules [5]–[7], [10], [11]

have been used in the past to identify abnormal conditions in
nonlinear, non-Gaussian dynamic systems. The objective in this
type of implementations is to fuse the information that is avail-
able at a feature vector (measurements) to generate estimates
of the prior state PDF that could be helpful when determining
either the operating condition (mode) of a system or deviations
from desired behavioral patterns. This compromise between
model-based and data-driven techniques is accomplished by
the use of a PF-based module built upon the nonlinear dynamic
state model. PF-based detection modules provide a framework
where customer specifications (such as false alarm rate and
desired probability of detection) can be easily managed and
incorporated within the algorithm design parameters.
This paper uses the PF-based detection module presented

in [3] as the baseline to compare other detection approaches.
This module applies a hypothesis testing procedure, where the
a priori PF-based PDF estimate at time is used to compute
a time-varying threshold , which is defined as the largest
scalar such that the sum of the weights , for all particles
that satisfy , is greater than the desired false
alarm rate [5]. Therefore, the threshold at each time cycle
depends on both the PF-based PDF estimate and the false

alarm rate. Fig. 2 illustrates this point. As a result, the detection
module performs a hypothesis test (with a false alarm rate
determined by the user) for the measurement , considering
the prior one-step ahead prediction of the system output as the
PDF that characterizes the null hypothesis (the self-recharge
phenomena either does not exist or is fading in time). In other
words, if the null hypothesis is rejected at cycle , it means that
the measurement is larger than the detection threshold (for

statistical confidence) that is computed from the predicted
(one-step) state PDF.

B. Anomaly Detection Based on Risk-Sensitive Particle
Filtering
The problem of early detection using PF-based approaches

has been discussed in [12]. The method therein proposed uses
a RSPF framework to represent the probability of rare events
(in this particular case, the capacity regeneration phenomena
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Fig. 2. Illustration of a time-varying threshold that is computed from a priori
PF-based PDF estimates.

in energy storage devices) within the formulation of an impor-
tance density function that aims at generating more particles in
high-risk regions of the state-space. However, [12] only pro-
vided a qualitative analysis of the trend in a problem of model
parameter estimation, without establishing a formal procedure
to implement a decision-making process.
Mathematically, RSPF considers an importance distribution

that is set as

(5)

where is a set of discrete-valued states representing a fault
mode, is a set of continuous-valued states that describe the
evolution of the system given those operating conditions,
is a positive risk function that is dependent on the fault mode,
and is a normalizing constant. Thus, a RSPF-based detection
module should define a risk importance sampling distribution
that ensures the existence of particles in the tails of the state
PDF, to help represent the event of unlikely regeneration phe-
nomena. In situations where effectively the data show no signs
of these events, the weights of the particles located at the tails of
the PDF should decrease over time. The formulation of the hy-
pothesis test and its corresponding threshold is similar to what
has been already discussed in the case of PF-based detection
modules.
The use of information-theoretic measures for the implemen-

tation anomaly detection modules is motivated by the assump-
tion that any anomaly should qualitatively affect the PDF esti-
mates. In this regard, the following section focuses on the most

important concepts that need to be taken into account when im-
plementing these measures (in this case, entropy) to analyze and
characterize sampled versions of the posterior distribution.

IV. INFORMATION-THEORETIC MEASURES
FOR PARTICLE FILTERING ESTIMATES

Several examples that incorporate information-theoretic
measures to analyze the outputs of particle filtering algorithms
can be found in [13]–[16]. This article aims at the formulation
of anomaly detection modules based on PF, which are combined
with the use of information measures, particularly focused on
the widely known information indicators like Shannon entropy
[17], and Kullback-Leibler (KL) divergence.

A. Entropy
Entropy is a measure of uncertainty for a discrete random

variable that is associated to its discrete probability measure.
In particular, the entropy of a probability equipped with its
probability mass function is given by

(6)

Few additional considerations are required when trying to
compute the entropy in the case of PF-based estimates of the
conditional state PDF. Indeed, the entropy of PF-based esti-
mates of the posterior state PDF, given a set of measurements
, , , is computed as shown in (7) [18] at the bottom of

the page, where and are the par-
ticle weights of the prior PDF at time , and is the number of
particles. The latter expression will be of use when evaluating
the uncertainty associated to online estimates in dynamic pro-
cesses. More details can be found in [18].
Entropy-related applications for PF algorithms generally aim

at evaluating how many statistically independent identically
distributed samples the filtering algorithm requires to represent
regions of the state space that accumulate the majority of the
probability mass, for a given state PDF estimate . This
approach is useful because the entropy indicator should remain
stable around a particular value while no regenerations of the
SOH are detected. On the contrary, the entropy should suddenly
increase when these phenomena are present, allowing us to set
a threshold to determine if an increment of the SOH is detected
as a regeneration of its capacity. In this regard, the proposed
anomaly detection scheme uses the fact that any sudden ab-
normal condition in the battery degradation process should
affect the distribution of the PF-based posterior state estimate.
This effect on the posterior estimate is caused by the fact that,

(7)
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under abnormal operating conditions, the system model no
longer represents the best choice for the importance sampling
distribution [19]. As a consequence, the weights associated
to particles with low-likelihood undergo strong corrections,
increasing the entropy of the conditional state PDF.

B. Entropy Difference
Another anomaly detection method that we have included

in the analysis corresponds to the entropy difference. In this
scheme, the discrete entropy is calculated for both the prior
and the posterior state PDF estimates. The detection measure is
obtained by subtracting the entropy of the posterior state PDF

to the entropy of the prior state PDF ,
as in (8).

(8)

This measure uses the fact that the entropy is at a maximum
when all the particle weights are equal, and conversely is min-
imal when the particle population has degenerated [5] (i.e., one
particle has a weight equal to one). As a result, the entropy of
the posterior PDF should decrease, with respect to the value
associated with the prior PDF estimate, when only a reduced
number of particles offer high likelihood to the measured data,
as in the case of unexpected capacity regeneration phenomena in
Lithium-Ion batteries. Thus, when this event occurs, the entropy
difference measure should increase. If an appropriate threshold
is selected, this measure can be used to detect the moment when
a specific increment in the SOH value is related to a capacity re-
generation event.

C. Kullback-leibler Divergence
The KL divergence is an information-theoretic mea-

sure that quantifies the inefficiency associated with assuming
that a random variable has a probability distribution ,
when the true PDF is [17]. The KL divergence for discrete
distributions is defined as

(9)

An anomaly detection module based on this measure con-
siders how much information is gained by updating the weights
of the prior distribution to generate the posterior PDF state es-
timate, and using for this purpose recently acquired measure-
ments. Considering this idea, the Kullback-Leibler divergence
can be used as in (10).

(10)

In the implementation of detection modules based on this
measure, a one-step PF-based estimate of the prior state PDF
is computed assuming that regeneration phenomenon have not
occurred. If this assumption is valid, the posterior state PDF
should differ minimally from the prior, and thus the Kull-
back-Leibler divergence between both PDFs should provide a
value close to zero. Conversely, if a capacity regeneration event

occurs, then the difference between the two PDF estimates
(prior and posterior) should be significant, thus helping to
detect the phenomenon of interest by using a pre-determined
threshold.

V. ANOMALY DETECTION MODULES BASED
ON INFORMATION-THEORETIC MEASURES
AND PARTICLE FILTERING ALGORITHMS

Self-recharge phenomena detection in Lithium-Ion batteries
has been selected as a case study to compare the different afore-
mentioned detection modules. Verification of the proposed de-
tection schemes is performed using simulated data for SOH ac-
celerated degradation tests, and following the method proposed
in [3]. Simulated data are required to ensure absolute knowl-
edge on the time instant where a regeneration phenomenon oc-
curs. Performance is evaluated by computing several realiza-
tions of the stochastic process that defines each one of the pro-
posed PF-based detectionmodules, and estimating the type I and
II errors. Also, the impact that each detection scheme has on the
Bayesian processor that estimates the battery SOH is measured
in terms of the mean-squared error MSE for the posterior esti-
mate, precision, and detection accuracy indices. Also, the im-
pact that each detection scheme has on the Bayesian processor
that estimates the battery SOH is measured in terms of the MSE:

(11)

where is the number of battery SOH measurements, cor-
responds to the actual battery SOH measured at time , and is
the posterior SOH estimate.
The precision index is defined as the ratio between the

number of correctly detected events, also known as the True
Positives (TPs), and the total number of detections performed.
The total number of detections is computed as the sum of the
TPs and False Positives (FPs). The precision index is a measure
that helps to determine the veracity of a result that has been
classified as positive. The expression for the precision is

(12)

The accuracy index, on the other hand, is computed as the
ratio between all correctly classified results and the total number
of classified results. The former is computed as the sum of the
TPs and True Negatives (TNs), while the latter is the sum of all
Positive (P) and Negative (N) detection results.

(13)

As previouslymentioned, the analysis considered 10 different
simulated data sets to properly capture the behavior of an accel-
erated degradation process for Lithium-Ion batteries. The use of
simulated data is necessary to reliably compute the number of
true and false positives, provided that there is absolute knowl-
edge about the time where regeneration phenomena occur. Nev-
ertheless, the presented methods can also be applied to actual
degradation data.
This section presents the results obtained after the implemen-

tation of the detection methods described in Sections III and
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Fig. 3. ROC curve for detection modules based on PF- and RSPF-based hy-
pothesis testing procedures.

IV. First, hypothesis testing procedures based on classic and
risk-sensitive [3] versions of PF algorithms are shown. Second,
the emphasis is focused on detection modules based on informa-
tion-theoretic measures, and both the classic version and risk-
sensitive versions of PF algorithms [19]. Considering the sto-
chastic nature of particle filtering algorithms, a fair comparison
between all detection schemes cannot be made in terms of just
one realization. For this reason, for each one of the 10 afore-
mentioned data sets, 40 realizations of the PF estimator were
computed. Thus, each data point in Fig. 3 through Fig. 9 aver-
ages the performance of the detector over 400 realizations of the
state estimator.

A. Hypothesis Testing Procedures

Hypothesis testing procedures assume that the posterior state
PDF for the previous time instant is computed by using the
classic version of the PF algorithm and model (1) & (2). Nev-
ertheless, two different implementations of anomaly detection
modules are hereby compared. On the one hand, the method
denominated as Hypothesis Test & PF uses the classic PF al-
gorithm to generate the prior state PDF within the detection
module at time . On the other hand, the method denominated as
Hypothesis Test & RSPF uses a RSPF algorithm to generate the
aforementioned prior PDF. Both approaches perform the proce-
dure described in Section III, using the prior PDF estimates as
null hypotheses for the SOH measurement . Fig. 3 shows the
Receiver Operating Characteristic (ROC) curves for each one
of the proposed detection schemes, characterizing their perfor-
mance in terms of the false alarm rate , and the detection
probability .
The PF-based detection module shows better performance

than the RSPF-based module for values of under 17%. For
values above that threshold, the RSPF algorithm improves its
performance against the classic PF algorithm, achieving better
detection rates for the same values of . These results could
help to promote the idea of choosing Hypothesis Test & RSPF
as the most adequate method because the model (1) & (2) can
easily compensate the effect of false positives through an ade-
quate estimation of the state , while misdetections could rep-
resent an important issue for the implementation of SOH prog-
nosticators (because implies that , and
thus the estimate of state will suffer a significant, but unnec-
essary, update) [3]. However, it should be also noted that RSPF
tends to increase the bias of the PDF estimate as the detection
rate (and the false positives rate) increases. However, the MSE

Fig. 4. ROC curve for detection modules based on entropy of the posterior PDF
estimate.

Fig. 5. Difference between performance indices related to Entropy & PF and
Entropy & RSPF methods.

obtained by the two approaches shows a negligible difference
(on the order of 1e-5) due to the fast adaptation of the samples
in methods of sequential Monte Carlo. This result confirms that,
for higher detection rates, theHypothesis Test & RSPF approach
has better performance.

B. Theoretical Information Measures

1) Entropy of the Posterior PDF Estimate: We implemented
two anomaly detection approaches based on a threshold for the
entropy of posterior PDF estimates. Similar to what was de-
scribed in Section V-A, the posterior state PDF for the previous
time instant is computed by using the classic version of
the PF algorithm and model (1) & (2). On the one hand, Entropy
& PF uses the classic PF algorithm to compute the posterior
state PDF at time , whereas Entropy & RSPF utilizes a RSPF
version. Fig. 4 shows the ROC curves for each one of these en-
tropy-based detection modules.
Fig. 4 shows better performance for the Entropy & RSPF

scheme because it provides improved detection probability for
any given false positive rate. These results are justified by the
fact that the RSPF algorithm allocates samples in areas of the
state space that are related to high-risk events, such as SOH re-
generation phenomena, thus easing the incorporation of these
events in the posterior PDF.
To quantitatively confirm this statement, Fig. 5 shows the dif-

ference between precision, accuracy, and MSE indicators for
Entropy & PF versus Entropy & RSPF for a range of entropy de-
tection thresholds. The difference between the aforementioned
indicators for both approaches shows that Entropy & RSPF ob-
tains higher values than Entropy & PF, both in terms of preci-
sion and accuracy in detection.
Furthermore, if the detection module uses Entropy & RSPF to

generate the input signal in model (1) & (2), then the battery
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Fig. 6. ROC curve for detection modules based on the difference of entropy
between prior and posterior PDF estimates.

Fig. 7. Difference between performance indices related to Entropy Difference
& PF and Entropy Difference & RSPF methods.

SOH posterior estimate exhibits lower MSE with respect to the
ground truth SOH than in the case of Entropy & PF. As an addi-
tional outcome of this analysis, Fig. 5 also provides useful infor-
mation to determine the most appropriate threshold to maximize
the precision and accuracy of the detector module as deemed ap-
propriate.
2) Entropy Difference Between Prior and Posterior PDF Es-

timates: Two approaches implemented for the detection of bat-
tery SOH regeneration use the difference between the prior and
posterior state PDF estimates. On the one hand, Entropy Differ-
ence & PF utilizes the classic PF algorithm to estimate each one
of the aforementioned distributions. On the other hand, Entropy
Difference & RSPF uses a RSPF version. Results, in terms of
type I and type II errors for both approaches, are presented in
Fig. 6.
According to what Fig. 6 shows, ROC curves for both de-

tection modules are quite similar. The same conclusions can be
made when analyzing the difference between precision, accu-
racy, andMSE indicators for a range of entropy detection thresh-
olds, as shown in Fig. 7.
Fig. 7 allows us to distinguish slight differences between PF-

and RSPF-based algorithms. In terms of precision and accuracy,
the use of the classic PF exhibits a small advantage over RSPF.
However, regarding the MSE of the posterior battery SOH es-
timate that is obtained when these methods are used to generate
the input signal in model (1) & (2), it can be seen that there
are no significant differences between these two approaches.
3) Kullback-Leibler Divergence: Finally, two approaches

were implemented for detection of battery SOH regeneration
phenomena based on the Kullback-Leibler divergence between
prior and posterior state PDF estimates. KL-Divergence & PF
utilizes the classic PF algorithm to estimate each one of the
aforementioned distributions, while KL-Divergence & RSPF

Fig. 8. ROC curve for detection modules based on KL Divergence.

Fig. 9. Difference between performance indices related to KL-Divergence &
PF and KL-Divergence & RSPF methods.

uses a RSPF version. Results, in terms of type I and type II
errors for both approaches, are presented in Fig. 8.
Fig. 8 shows that, corresponding to what happened in the case

of entropy difference, the ROC curves exhibit comparable re-
sults for both algorithms. Thus, the analysis of performance in-
dices (see Fig. 9) is central when comparing the two approaches.
In this regard, Fig. 9 shows that both accuracy and precision

indices for KL-Divergence & PF are better than the ones
obtained by the KL-Divergence & RSPF detection module. The
MSE presents similar behavior in both cases, being slightly
lower for KL-Divergence & PF, which leads to the conclusion
that the PF-based algorithm performs better than its RSPF
counterpart in this case.

VI. PERFORMANCE ANALYSIS OF THE PROPOSED DETECTION
MODULES FOR BATTERY SOH REGENERATION

The main concept behind the proposed anomaly detection
schemes is that any sudden abnormal behavior in the system
should affect the posterior PDF estimate that is computed by
the Bayesian processor. This idea is based on the fact that, under
abnormal operating conditions, the system model cannot be ap-
propriately represented by the proposed importance sampling
distribution. In this regard, the methods that were presented in
this work offer reasonable performance in terms of their ability
to detect capacity regeneration phenomena. However, a more
in-depth analysis of the results obtained in terms of the ROC
curves, accuracy, and precision indices allows us to make some
distinctions.
All methods based on information-theoretic measures exhibit

similar performance in terms of their ROC curves (see Figs. 4,
6, and 8). It is interesting to note that the RSPF-based entropy
method outperforms other measures of information, particularly
in areas with higher detection rates, due to a better character-
ization of high-risk events (such as regeneration phenomena)
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within the importance sampling distribution that this method
utilizes. As for the detection modules that are based on hypoth-
esis testing procedures, both alternatives (PF- or RSPF-based)
perform notoriously better than the one based on information
theoretic measures, achieving a higher detection rate for every
value of (false positive rate). These results are consistent with
the intuitive idea that a hypothesis test in this case is the closest
alternative to a Neyman-Pearson test, which would be the op-
timal decision rule for a simple two-class decision problem.
Depending on the desired rate of false positive, the user can
choose between a module based on the classic PF algorithm or
a RSPF version. While the first approach achieves better per-
formance for lower rates of false positives, it is important to
consider that the RSPF-based detection modules show improve-
ments over the classic PF scheme, in terms of maximum prob-
ability of detection. Evidence, in this case, supports this state-
ment mainly because these approaches incorporate the regener-
ation phenomena effect in the importance sampling distribution,
allowing better detection rates and early detection. Given that
prognostic methods based on model (1) & (2) are unaffected by
false positives, but highly sensitive to the misdetection of regen-
eration phenomena due to the state , [3], we recommend the
implementation of RSPF.
Regarding the selection of the detection module that shows

a better performance considering measures of precision and ac-
curacy, it is not possible to reach a conclusive answer. In terms
of accuracy, the results of the Kullback-Leibler divergence be-
tween prior and posterior state PDF estimates show a slight im-
provement when using the classic version of PF algorithms.

VII. CONCLUSION

This paper presented the development and evaluation of
different methods for the detection of capacity regeneration
phenomena in Lithium-Ion battery cells. A total of eight
different methods were implemented, considering different
measures of the quality of state PDF estimates, and two ver-
sions of sequential Monte Carlo algorithms: classic PF, and
RSPF. A throughout performance analysis that considered type
I and type II detection errors, precision, detection accuracy,
and MSE of the state estimator was conducted to evaluate the
contribution of information-measurement-based detectors with
respect to hypothesis testing procedures based on both the
classic PF and risk-sensitive algorithms.
From the obtained results, we surmise that the implementa-

tion of hypothesis testing procedures outperforms information-
measurement-based approaches for detection of capacity regen-
eration, although the choice of classic PF algorithms versus
risk-sensitive variants depends on the desired probability of de-
tection. The latter, because a detector that computes a fault in-
dicator, from the posterior state PDF estimate, is more capable
of isolating regeneration phenomena in the degradation curve
if the a priori PDF incorporates those phenomena in the impor-
tance sampling distribution.
Future work will focus on the implementation of Neyman-

Pearson tests based on a proper characterization of the prob-
ability distribution associated with capacity regeneration phe-
nomena. Although this is a very complex task, we believe it

could help to significantly increase the probability of detec-
tion of these events through the implementation of a simple
two-class hypothesis testing procedure.
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