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Abstract—This paper first provides a brief survey on existing
traffic offloading techniques in wireless networks. Particularly as
a case study, we put forward an online reinforcement learning
framework for the problem of traffic offloading in a stochastic
heterogeneous cellular network (HCN), where the time-varying
traffic in the network can be offloaded to nearby small cells. Our
aim is to minimize the total discounted energy consumption of the
HCN while maintaining the quality-of-service (QoS) experienced
by mobile users. For each cell (i.e., a macro cell or a small cell),
the energy consumption is determined by its system load, which
is coupled with system loads in other cells due to the sharing
over a common frequency band. We model the energy-aware
traffic offloading problem in such HCNs as a discrete-time Markov
decision process (DTMDP). Based on the traffic observations and
the traffic offloading operations, the network controller gradually
optimizes the traffic offloading strategy with no prior knowledge
of the DTMDP statistics. Such a model-free learning framework
is important, particularly when the state space is huge. In or-
der to solve the curse of dimensionality, we design a centralized
Q-learning with compact state representation algorithm, which
is named QC-learning. Moreover, a decentralized version of the
QC-learning is developed based on the fact the macro base
stations (BSs) can independently manage the operations of local
small-cell BSs through making use of the global network state
information obtained from the network controller. Simulations are
conducted to show the effectiveness of the derived centralized and
decentralized QC-learning algorithms in balancing the tradeoff
between energy saving and QoS satisfaction.

Index Terms—Wireless networks, heterogeneous cellular net-
works, traffic offloading, energy saving, traffic load balancing,
discrete-time Markov decision process, reinforcement learning,
compact state representation, team Markov game.
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I. INTRODUCTION

OVER the past few decades, wireless cellular networks
have been developing fast with the introduction of smart

phones, tablet computers and other new mobile devices. Ac-
cording to a study by Cisco [1], the number of mobile devices
is predicted to exceed the population on earth by the end of
2014, and by 2018, there will be nearly 1.4 mobile devices
per capita. Accompanied by more data-intensive services, the
global mobile data traffic is expected to increase 11-fold be-
tween 2013 and 2018, reaching 15.9 exabytes per month. The
ever increasing mobile data traffic is creating challenges for
current cellular network operators (CNOs). One of the promis-
ing solutions is to deploy traffic offloading with the help of
complementary networks where the traffics originally targeted
for mobile users (MUs) are intentionally delivered wherever
and whenever possible [2], [3]. The primary objective of traffic
offloading is to support more capacity-hungry services while
simultaneously preserve satisfactory Quality-of-Service (QoS)
for the MUs. Small cells, WiFi networks and opportunistic
communications have recently emerged as the main traffic
offloading technologies [2].

In this paper, we pay our attention to the problem of energy-
aware traffic offloading in wireless cellular networks. As a
case study, in heterogeneous cellular networks (HCNs), traffic
offloading through small cells obviously alleviates much data
pressure from cellular networks. Without careful designs, on
the other hand, simply offloading traffic from macro cells to
small cells not only may not reduce traffic congestions, but
also may increase the energy consumption across the whole
network. There exist some efforts on energy-aware traffic of-
floading in HCNs. In [5], Saker et al. studied the impacts
of implementing femto cells with a sleep/wakeup mechanism
on energy efficiency (EE). In [6], Chiang and Liao presented
a reinforcement learning (RL) based scheme to intelligently
offload traffic in a stochastic macro cell. These works shed
lights on addressing the relation between energy saving and
traffic offloading. However, none of them took into account the
coupling of interference across different cells (i.e., the macro
cells and the active small cells), which greatly influences the
network planning and operations. The system load of a cell is
referred to as the average utilization level of radio resources
in both time and frequency domains [7], and is thus dependent
on the system loads of other cells. In [3], Ho et al. provided
a theoretical model for analyzing traffic offloading in load
coupled heterogeneous wireless networks. In this work, we
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try to explore the energy saving aspect of traffic offloading
for a load coupled HCN, which is involved with the mutual
interactions of various cells with one another. Meanwhile, to
protect QoS for the MUs, load balancing among the cells has to
be performed along with traffic offloading.

Several measurement campaigns have shown the temporal
variations in mobile data traffic [4], [8], [9]. In HCNs, macro
base stations (BSs) are centrally controlled by a radio network
controller (or a BS controller) and manage the small cells
implemented in the network. The network controller is able
to obtain complete traffic information about how many MUs
are associated with different macro cells and small cells given
the current network state. The network state of a stochastic
HCN can be hence characterized by the number of MUs in
locations associated with different cells. The network state
evolves according to a discrete-time Markov decision process
(DTMDP), whose statistics depends on the traffic offloading
strategy [5]. Hereby, a traffic offloading strategy is defined
as a sequence of actions, and each action takes the form of
small-cell operations (e.g., switching on a small cell to offload
the traffic demands within its respective coverage or switching
off a small cell to save energy). Our task is to minimize the
overall energy consumption in the network while satisfying the
constraint of flow-level QoS requirement in each cell such as
the transmission delay [10]. In order to quantify the energy
consumption and the flow-level performance, a cost criteria and
the system load of each cell are associated with each state-
action pair. Such a minimization problem naturally falls within
the realm of a DTMDP. However, the huge number of network
states hinders the application of a model-based algorithm.

We choose a model-free RL technique to solve the opti-
mal traffic offloading strategy for a HCN with time-varying
traffic. As a main contribution of this paper, we design an on-
line learning framework, Q-learning with compact state rep-
resentation (named as QC-learning), with which the network
controller and the macro BSs learn to decide where and when
to offload the traffic demands from MUs for the purpose of
saving energy in a plausible way. The proposed approach allows
computationally efficient learning in a stochastic HCN with a
large network state space that cannot be handled by model-
based algorithms. The remainder of this paper is organized as
follows. In next section, we review the state-of-art techniques of
traffic offloading in wireless cellular networks. After the brief
survey, we describe the considered system model for the case
study. The energy-aware traffic offloading in a stochastic load
coupled HCN is formulated as a DTMDP in Section IV. In
Section V, we propose a centralized QC-learning algorithm to
achieve the optimal traffic offloading strategy for the network
controller. A decentralized QC-learning is further developed in
Section VI for each macro BS to manage the local small-cell
BSs based on the global network state information obtained
from the network controller. Section VII numerically evaluates
the proposed studies. Finally, Section VIII concludes this paper.

II. A BRIEF SURVEY ON TRAFFIC OFFLOADING

IN WIRELESS NETWORKS

This section provides a brief literature survey of main traffic
offloading solutions for wireless networks, including traffic

offloading through small cells, traffic offloading through WiFi
networks and traffic offloading through opportunistic com-
munications. Particularly, the energy-aware traffic offloading
techniques are addressed in Section II-B.

A. Traffic Offloading Solutions

1) Traffic Offloading Through Small Cells: One of the most
promising trends of emerging conventional cellular technology
is the small cells [11]. Small cells are small cellular BSs which
deliver wireless services to a small coverage area and are most
likely to be user-installed without CNO supervision. In small-
cell environments, the mobile data traffic flows over the air
interface to a small-cell BS and is connected to the CNO’s core
network through wired backhaul connections. Compared with
the macro-cell deployments, the small cells can be implemented
in a much more convenient and economical way. Additionally,
existing studies have shown that most of the mobile data traffic
is generated indoors (homes or offices) [1], [8], [9]. The CNOs
thus have the opportunities to offload heavy data MUs to small
cells and provide them with seamless Quality-of-Experience.
For all these reasons, the small cell is viewed as an attrac-
tive and cost-effective technology of offloading traffic from
macro cells.

In literature, a huge number of research works on small
cells have been carried out. However, two aspects of small-
cell BSs lead to serious cross- and co-tier interference issues
which greatly degrade the network performance of a HCN:
(a) spectrum sharing among small cells and macro cells, and
(b) unplanned installment of small-cell BSs. According to the
type of access control policy, small cells can be classified into
two categories: open access and closed access [12]. Small cells
with closed access only provide wireless services to the pre-
registered MUs. To ensure satisfactory QoS, previous works
have proposed such as power control and spectrum alloca-
tion approaches to control the malicious interferences. For
the uplink transmissions in a two-tier HCN, Chandrasekhar
and Andrews proposed a distributed utility-based signal-to-
interference-plus-noise ratio (SINR) adaptation algorithm to
alleviate the cross-tier interference at the macro cell received
from the co-channel femto cells [13]. A Stackelberg game
was formulated to study the resource allocation in a two-
tier HCN, where the macro BS protects itself by pricing the
interference from femto-cell MUs [14]. Regarding the downlink
transmissions, Guruacharya et al. modeled the power allocation
problem as a Stackelberg game to maximize the capacity of
each BS [15]. A decentralized spectrum allocation strategy was
proposed to achieve the optimal area spectral efficiency in a
two-tier HCN [16]. A macro-cell beam subset selection strategy
was used in [17] to reduce the cross-tier interference in two-tier
femto-cell networks.

On the contrary, open access based small cells allow arbitrary
nearby MUs to access the small-cell BS. From a CNO’s point
of view, open access policy provides an inexpensive way to im-
prove the capacity-density across the network. Chandrasekhar
and Andrews developed in [18] an uplink capacity analysis
and interference avoidance strategy for a two-tier femto-cell
network. The authors showed that the proposed open access
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scheme can help achieve higher network-wide area spectral ef-
ficiency which is defined as the feasible number of active femto
cells and MUs per cell-site. Lu et al. investigated spectrum
allocation in an open access femto-cell network, and the pro-
posed algorithms achieved significant performance improve-
ments over the previous works [19]. In order to protect the QoS
for neighboring macro-cell MUs in the dead zone, Li et al. de-
veloped a cognitive radio enhanced resource allocation method
which was shown to provide transmission rate gains for both
existing femto-cell and macro-cell MUs [20]. The problem of
motivating small cells to admit MUs which are originally asso-
ciated with macro cells has been recently studied in [21]–[23].

In practice, the number and the locations of small cells are
generally unknown, which results in unpredictable interference
patterns. For such dynamic networking environments, the small
cells tend to behave autonomously. A real-time multi-agent RL
algorithm that optimizes the network performance by manag-
ing the interference in femto-cell networks was addressed by
Giupponi et al. in [24]. Bennis et al. presented a distributed
learning scheme based on the well-known Q-learning to alle-
viate the femto-to-macro cell cross-tier interference in femto-
cell networks [25]. Inspired by evolutionary game theory and
machine learning, Nazir et al. proposed two intelligent mech-
anisms for interference mitigation to support the coexistence
of macro cell and femto cells [26]. A Stackelberg learning and
a combined learning algorithms were developed to solve the
optimal resource allocation policy for an autonomous HCN in
[27] and [28], respectively.

2) Traffic Offloading Through WiFi Networks: Compared
with cellular technology, WiFi provides much higher data rates
but with limited service coverage and mobility. Nowadays,
more and more people access wireless services via WiFi con-
nection. WiFi seems a natural solution to traffic offloading
due to the built-in WiFi functionality of mobile devices. From
the wireless service provider’s (WSP’s) perspective, WiFi is
attractive because it allows data transmission to be shifted from
expensive licensed spectrum bands to free unlicensed bands.
Typically, there are two types of traffic offloading via WiFi
networks: on-the-spot and delayed [4]. In on-the-spot offload-
ing, the traffic demand is transmitted over the cellular network
if the MU is not within the coverage of a WiFi access point
(AP). While delayed offloading has been proposed that if the
WiFi AP becomes unavailable, the unfinished traffic demand
can be delayed up to some pre-chosen time deadline. The data
transmission is completed using cellular networks, if no WiFi
is detected before the deadline. Undoubtedly, WiFi offloading
reduces traffic load in cellular networks [29], [30]. However,
the drawback of WiFi based traffic offloading is that the CNOs
completely lose visibility of the subscribed MUs whenever they
are on the WiFi networks.

A lot of work has been done on traffic offloading through
WiFi networks. Mehmeti and Spyropoulos used a queueing
analytical model to evaluate the performance gains achieved
by the on-the-spot traffic offloading, which was expressed as
a function of WiFi availability and performance, and user
mobility and traffic load [31]. The benefits can be extended if
MUs are willing to delay their data traffic. The same authors
further analyzed the case of delayed offloading in [32], where

based on the queueing analytical model, the mean delay and
offloading efficiency were derived as a function of the user’s
“patience” and some other environment parameters. A similar
work was done by Lee et al. in [4].

However, these works failed to capture the coordination
between CNOs and the owners of WiFi networks. Several
recent works addressed the network economics of traffic of-
floading through WiFi networks using game theory [33]–[36].
Specifically, in [33], Gao et al. applied a general one-to-
many bargaining framework to study the economic incentive
issues in the problem of traffic offloading via third party APs.
Lee et al. investigated economic benefits gained by delayed
WiFi offloading, by modelling a market based on a two-stage
sequential game between a monopoly WSP and MUs [34]. In
[35], Paris et al. formulated the problem of traffic offloading
through third party WiFi APs as a combinatorial auction and
designed an innovative payment rule to preserve both individual
rationality and truthfulness for those realistic scenario in which
only part of the traffic can be offloaded. Zhuo et al. provided
in [36] a reverse auction based incentive framework to motivate
MUs to leverage their delay tolerance for cellular traffic offload-
ing. Kang et al. investigated the problem of traffic offloading
through WiFi network from a CNO’s perspective, and derived
corresponding traffic offloading schemes [37].

Remark 1: Small cells and WiFi networks both are viable
traffic offloading solutions, we have briefly summarized their
advantages and disadvantages. CNOs are able to have much
larger free band for arbitrary WiFi deployments, since WiFi
networks operate over unlicensed spectrum bands. On the other
hand, implementing small cells requires careful planning as
they operate in expensive, licensed and limited spectrum bands.
But CNOs capture complete visibility of traffic flows through
small cells, which is usually impossible if using WiFi networks
for traffic offloading.

3) Traffic Offloading Through Opportunistic Communica-
tions: Opportunistic communications have been lately consid-
ered as an important way for offloading mobile data traffic
[38]. The data to be delivered in wireless cellular networks
may come from content WSPs, such as sport news, weather
forecasts, movie trailers, and so on. The WSPs can benefit from
the delay-tolerant nature of the non-real time applications and
may deliver the data to only a small group of selected MUs, i.e.,
the target MUs. The target MUs then further propagate the data
to other subscribed MUs if the mobile devices are within the
proximity and can communicate opportunistically using WiFi
or Bluetooth technology.

Device-to-device (D2D) communication which utilizes li-
censed band can also be employed for facilitating opportunistic
communications [39], [40]. The majority of advantage of such
a traffic offloading approach is that there is very little or no
monetary cost associated with opportunistic communications.
In [38], Han et al. exploited opportunistic communications
to enable traffic offloading in the mobile social networks.
As a special case, the authors studied the target-set selection
problem for data delivery. The similar topic was addressed in
D2D scenarios, where Zhang et al. proposed a novel approach
to improve the performance of D2D communications under-
laid over a cellular system, through exploring the social ties
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and influence among individuals [41]. Al-Kanj et al. investi-
gated the problem of offloading traffic in cellular networks by
reducing the required number of long-distance channels to
distribute common content to a group of MUs [42]. The op-
timal solution was achieved by forming D2D communication
networks in which the BS sends different chunks of content to
some MUs that in turn, multicast to other local MUs.

However, traffic offloading through opportunistic commu-
nications is challenging due to the factors, such as the het-
erogeneity of data content from WSPs, the varied demands
and preferences for content from MUs, and the incentives
for target MUs. In [43], Li et al. preliminarily established a
theoretical framework to study the problem of multiple-type
mobile data offloading, taking into account the heterogeneity
of data content, MUs’ preference and several realistic concerns
from the target MUs.

B. Energy Awareness in Traffic Offloading

Basically, we may evaluate the performance of traffic of-
floading from either the CNOs’ or the MUs’ perspectives,
and the ultimate goal is to achieve benefits for both. Most of
the related works aforementioned have investigated the traffic
offloading efficiency, that is, offloading as much traffic as
possible is of high priority. How to improve the EE and how to
satisfy the ever increasing appetite for mobile data services are
currently two critical challenges faced by the CNOs [44], [45].
EE is always an important issue in wireless communication
networks. It was shown in [4] that a considerable amount of
power can be saved through WiFi offloading without using any
delayed transmissions. The reason is that WiFi networks can
provide a higher data rate than cellular networks, and need
a shorter transmission time for the required traffic demands
and thus lower power consumption. In the context of delayed
offloading, Nicholson and Noble studied energy saving with
the assumption that MUs can tolerate a delay for their data
traffic [46]. For HCNs, the problem of energy-efficient spec-
trum sharing and power allocation in cognitive radio femto
cells was studied in [47], where a three-stage Stackelberg game
model was formulated to improve the EE. In [48], Ashraf et al.
proposed a novel energy saving procedure for the femto BS to
decide when to switch on/off.

As most mobile devices are battery-powered with limited
energy capacity, several works on traffic offloading with the aim
of improving EE for the MUs can be found in [29], [49], [50].
A prediction-based traffic offloading protocol was presented in
[29] for offloading large and socially recommended contents
from cellular networks to save energy of MUs. The CNO cre-
ates user mobility profile (UMP) for its subscribers and deploys
WiFi networks in the locations that are most visited. The set of
most visited locations along with the UMP is sent to the MUs so
that they can predict WiFi availability. In such a way, significant
amount of energy can be saved. Ra et al. made an effort in [49]
to reduce the energy consumption in the scenario of transferring
large volume of data from the phone to the infrastructure. In
order to minimize the energy consumption as well as keep the
average queue length finite, a stable and adaptive link selection
algorithm was proposed to decide whether and when to defer a

Fig. 1. An illustration example of traffic offloading in a 3-tier HCN. A macro
BS can serve a MU directly or offload a MU’s traffic to a nearby small cell.

transmission. Through real-world traces and experiments on a
smartphone, the derived algorithm can save 10–40% of battery
capacity for some workloads. To improve the EE for MUs, a
traffic offloading algorithm based on the metropolitan advanced
delivery network architecture was proposed in [50]. The data
traffic is offloaded to a WiFi AP as long as transmitting the same
volume of data consumes less energy in the WiFi transmission
than using the cellular network.

III. SYSTEM DESCRIPTION

A. Network Model

As shown in Fig. 1, this paper addresses downlink commu-
nication scenarios in a spectrum sharing HCN with multiple
tiers of BSs, where each tier models a typical type of BSs. The
HCN under consideration operates over discrete time epochs,
each with constant time duration. The service region is rep-
resented by a set L of locations or small areas, each being
characterized by uniform signal propagation conditions [3], [7].
At each location l ∈ L in each epoch t (t = 1, 2, · · ·), the
service requests follow a Poisson arrival process with arrival
rate λ(l, t). The size of requested traffic demand is assumed
to be an exponentially distributed variable with mean 1/μ(l, t)
(in bits) [51]. Therefore, the network is Markovian [5]. A set

J Δ
= {1, · · · , J} of macro BSs ensure complete coverage, while

within the coverage area of each macro BS j ∈ J , Kj small-
cell BSs1 are implemented by the same CNO and are connected
to the macro BS via a logical interface. Kj is used to denote

the set of small-cell BSs in macro cell j and K Δ
= ∪j∈JKj .

In addition, we choose L(m)
j and L(s)

k to designate the sets of
locations covered by macro BS j and a small-cell BS k ∈ K,
respectively. It is obvious that L(s)

k ⊂ L(m)
j , if k ∈ Kj .

The small cells are configured to be in open access policy for
the purpose of offloading traffic from the macro cells. If a small-
cell BS in a macro cell is activated, the MUs appearing within
the small-cell can thus sense the presence of both a macro BS
and a small-cell BS, and are associated with the one that offers
satisfactory QoS. The MUs connected with the macro BS will

1Throughout this paper, we would refer small-cell BSs to BSs of other tiers,
rather than the macro BSs.
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experience new source of interference but share radio resources
with less users, and the MUs in other macro cells will be inter-
fered by the active small-cell BS as well. Under this context,
we aim to investigate in this paper the energy-aware traffic
offloading strategy. When a macro cell is with light system load,
the macro BS can serve the associated MUs alone and the small-
cell BSs are switched off to save energy. For a heavily loaded
macro cell, some of the small-cell BSs need to be switched
on for traffic offloading [5], and the macro BS handles traffic
demands from the remaining MUs that are not offloaded [52].
The working mode of a small-cell BS in each macro cell is con-
trolled by the macro BS in a locally centralized way, based on
the information of system loads in different cells. In the follow-
ing discussions, we shall use interchangeably a BS and a cell.

B. Load Coupling

Traffic offloading is taken place in a particular network state
at the beginning of every epoch. Let x(t) ∈ X be a controlled
stochastic process describing the evolution of the network state
across time epochs t = 1, 2, · · ·. Generally, the x(t) can be
extracted from the number of MUs of different BS at different
location. To ease understanding, we rearrange the locations of
all MUs served in the network. Every BS in each macro cell
j ∈ J is labeled with jk, where k = 0, 1, · · · ,Kj (0 for the
macro BS). And the locations covered by BS jk are numbered
from 1 to Ljk . We then choose a state descriptor for x(t),

x(t) = (x1(t), · · · ,xJ (t)) . (1)

In (1), the xj(t) describes the configuration of a local macro
cell j, and is given by

xj(t) =

⎛
⎜⎝x1

j0
(t), · · · , xLj0

j0
(t)︸ ︷︷ ︸

macro BS j0

, x1
j1
(t), · · · , xLj1

j1
(t)︸ ︷︷ ︸

small−cell BS j1

, · · · ,

x1
jKj

(t), · · · , x
LjKj

jKj
(t)︸ ︷︷ ︸

small−cell BSjKj

⎞
⎟⎠, (2)

where each element means the number of associated MUs at a
location covered by a BS in macro cell j during epoch t. The
subscript jk is the label of the BS, and the superscript l (1 ≤
l ≤ Ljk) is the index of its serving location. By knowing x(t),
a traffic offloading action is selected for epoch t+ 1. An action
performed in each epoch t is defined as

y(t) = (y1(t), · · · ,yJ (t)) , (3)

where each yj(t) = (yj1(t), · · · , yjKj
(t)) ∈ Yj represents the

working modes of small-cell BSs within macro cell j, with
yjk(t) = 1 if small-cell BS jk is switched on and yjk(t) = 0
otherwise, for all k ∈ {1, · · · ,Kj}. We denote the action space
by Y =

∏
j∈J Yj , then y(t) ∈ Y .

Given the network state x = x(t) and the traffic offloading
action y = y(t) in epoch t, transmissions are scheduled for
delivering the traffic demands to arriving MUs. Let d(m)

j (x,y)

and d
(s)
k (x,y) be the levels of resource utilization for macro BS

j ∈ J and small-cell BS k ∈ K. The average SINR achieved
by MUs located at l ∈ L(m)

j associated with macro BS j is
modeled by [7]

γ
(m)
jl (x,y) =

h
(m)
jl P

(m)
tx∑

i∈J \{j} h
(m)
il P

(m)
tx d

(m)
i (x,y) + I

(m)
jl

, (4)

where I
(m)
jl =

∑
k∈K h

(s)
kl P

(s)
tx,kd

(s)
k (x,y) + δ2 denotes the total

interference from small-cell BSs plus the background noise
power, h(m)

jl and h
(s)
kl are the average channel gains from macro

BS j and small-cell BS k to location l, and P
(m)
tx and P

(s)
tx,k

are the transmit powers of a macro BS and small-cell BS k.
Similarly, the received average SINR of MUs at location l ∈
L(s)
k , which is associated with an active small-cell BS k, can be

expressed as

γ
(s)
kl (x,y) =

h
(s)
kl P

(s)
tx,k∑

i∈K\{k} h
(s)
il P

(s)
tx,id

(s)
i (x,y) + I

(s)
kl

, (5)

where I(s)kl =
∑

j∈J h
(m)
jl P

(m)
tx d

(m)
j (x,y) + δ2. The achievable

data rates for these MUs are written as

R
(m)
jl (x,y) =B log2

(
1 + γ

(m)
jl (x,y)

)
, (6)

R
(s)
kl (x,y) =B log2

(
1 + γ

(s)
kl (x,y)

)
, (7)

in bits/second, where B is the system frequency bandwidth.
To serve the aggregated traffic demand ϑ(l, t) from MUs at

location l in epoch t, the macro BS j ∈ J or the small-cell BS

k ∈ K thus needs a total of τ
(m)
jl (x,y)

Δ
= ϑ(l, t)/R

(m)
jl (x,y)

or τ
(s)
kl (x,y)

Δ
= ϑ(l, t)/R

(s)
kl (x,y) seconds. Providing that C

seconds constitute one epoch in question, we obtain the system
loads in macro cell j and small-cell k during epoch t by putting
together the previously derived equations,

d
(m)
j (x,y) =

∑
l∈L̄(m)

j
(t)

τ
(m)
jl (x,y)

C
, (8)

d
(s)
k (x,y) =

∑
l∈L̄(s)

k
(t)

τ
(s)
kl (x,y)

C
, (9)

where L̄(m)
j (t) = L(m)

j \ ∪k∈Kj
L̄(s)
k (t) and L̄(s)

k (t) are the sets
of locations that are associated with macro BS j and small-cell
BS k during the epoch. Note that for an active small-cell BS
k ∈ Kj , L̄(s)

k (t) = L(s)
k ⊂ L(m)

j . And L̄(s)
k (t) = ∅ if small-cell

BS k is switched-off, i.e., an inactive small-cell BS does not
undertake any system load. From both (8) and (9), it is clear
that the system load of a cell is a function of the load levels in
other cells. The system load can be interpreted as the fraction of
time scheduled for serving the requested traffic demands or the
probability of causing interference to on-going transmissions
in other cells.
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IV. PROBLEM FORMULATION

This section formulates the traffic offloading problem to be
discussed. The MUs arrive in the network over epochs and
generate service requests, and the BSs serve the requested
traffic demands subject to the network conditions. A heavily
loaded macro cell provides poor QoS for the associated MUs.
In this case, some of the deployed small-cell BSs need to be
activated. The traffic demands within the coverage of active
small cells are then offloaded to the small-cell BSs. Meanwhile,
new interference will be caused by the activated small-cell BSs
due to spectrum sharing. At later time, the BSs finish delivering
traffic demands and the MUs depart from the network. Accord-
ingly, the energy-aware traffic offloading operation in HCNs
can be described by the MU arrival and departure processes,
system load coupling among different cells, the network energy
consumption and the QoS requirements from MUs.

The energy consumption over a HCN depends on the system
loads in different cells. In each epoch t, if a traffic offloading
action y = y(t) is executed in a network state x = x(t), the
average energy consumption of a BS during the epoch is given
by [53]

e
(m)
j (x,y) =

1

C

(
CP

(m)
cst + α(m)d

(m)
j (x,y)CP

(m)
tx

)
=P

(m)
cst + α(m)d

(m)
j (x,y)P

(m)
tx , (10)

for each macro BS j ∈ J , where P
(m)
cst is the constant power

consumption due to the signal processing unit, and α(m) is
a linear transmission power dependence factor. An inactive
small-cell BS with no system load consumes no power, thus
the energy consumption model in (10) is changed to be

e
(s)
k (x,y) =

(
P

(s)
cst,k + α

(s)
k d

(s)
k (x,y)P

(s)
tx,k

)
1l{yk=1}, (11)

for each small-cell BS k ∈ K, where P
(s)
cst,k and α

(s)
k are the

constant power consumption and the transmission power de-
pendence factor of small-cell BS k, and 1l{Θ} is an indicator
function that equals 1 if condition Θ is met and 0, otherwise.
We cast the total network energy consumption in epoch t as

e(x,y) =
∑
j∈J

⎛
⎝e

(m)
j (x,y) +

∑
k∈Kj

e
(s)
k (x,y)

⎞
⎠ , (12)

which is accumulated over all macro cells.
One important metric for measuring QoS is the local

system load d
(υ)
u (x(t),y(t)), where u ∈ J ∪ K, υ ∈ {m, s}

and t = 1, 2, · · ·. Based on the analysis in Section III-B, the
value of d

(υ)
u (x(t),y(t)) grows with the traffic demand and

the amount of inter-cell interference from other active cells.
Intuitively, a low system load suggests that the BS works
with large sparse throughput and is able to offer the associ-
ated MUs with good capacity to meet the traffic demands,
whilst a high system load indicates poor QoS in terms of
congestion and potential service outage. For the latter case,
the network controller should revise the network operation,
through activating or deactivating small-cell BSs. Our overar-

ching goal is to find a traffic offloading strategy ω : X → Y
that chooses the correct working modes y(t) for all small-
cell BSs in every network state x(t), such that the energy
consumption of the whole network is minimized subject to
the QoS constraints. Formally, we consider the following op-
timization problem of finding a traffic offloading strategy ω that

min
ω∈Ω

V (ω) (13a)

s.t. d(υ)u (x(t),y(t)) ≤ dthu , ∀u, υ, t. (13b)

Here Ω is the set of all available traffic offloading strategies.
V (ω) defines the long-term expected energy consumption of
the network under strategy ω. A predefined threshold dthu is
introduced for each cell’s system load in each epoch, the
incentive of which is to incorporate the flow-level performance
when transmission delay is a concern [10]. For example, with a
small threshold value, the BS operates with a low level of radio
resource consumption on average. As a result, the associated
MUs would experience better throughput and thus less delay.
On the other hand, a large threshold value might achieve more
energy saving but leads to QoS reduction for the MUs [51].

In order to solve the optimal traffic offloading strategy, we
define a DTMDP that associates to every network state an
action, a corresponding state transition and a cost function. The
state transitions and actions are taken place at discrete time
epochs. The network controller observes in current epoch t the
network state x(t) associated an action y(t), which is defined
as the traffic offloading operation. The action y(t) is chosen
from previous state and is performed on the arrival to current
state. A feedback of cost is generated for the network controller
in the end of the epoch. The cost function is selected to be the
e(x(t),y(t)), as defined in (12). The formal expression for the
DTMDP is given by 〈X ,Y, T, e〉, where T : X × Y × X →
[0, 1] is a state transition probability function. However, with
the state descriptor as in (1), the size of X creates dramatic
implementation difficulty. From the definitions given in (8)
and (9), the system load in a cell depends on the network
state. Inversely, the state space X can be defined by the QoS
constraint in (13b) as,

X = {x : Constraint (13b) holds.} . (14)

Further, we may notice that the actions available during an
epoch also depend on the network state. For example, if there
are no MUs coming in all small cells, then all the small-cell
BSs should be switched off. By eliminating the states with only
one available action, we have a new reduced state space X̃ . The
DTMDP is updated to 〈X̃ ,Y, T, e〉.

Ultimately, the objective of a DTMDP learner is then to find
an optimal traffic offloading action ω∗(x) ∈ Y for each x ∈ X̃ ,
such that a certain cumulative measure of costs e(x(t),y(t))
received over time epochs is minimized. A particular measure,
which is referred to as the total expected discounted energy
consumption over an infinite time horizon conditioned on initial
network state x(1), is given by

Vω(x(1)) = Eω

{ ∞∑
t=1

βt−1e (x(t), ω(x(t)))

∣∣∣∣∣x(1)
}
, (15)
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for a traffic offloading strategy ω ∈ Ω, where the expectation
Eω is over different actions in different network states for
t = 1, 2, · · ·, and β ∈ [0, 1) is the discount factor. (15) is gener-
ally called the value function of state x(1).

V. LEARNING STRATEGY WITH COORDINATION

From this section, we proceed to discuss how to come up
with an optimal traffic offloading strategy in order to minimize
the long-term energy consumption over the network. We first
suppose that the traffic offloading is performed by the network
controller in a centralized way.

A. Reinforcement Learning

When the network is in state x(t) ∈ X̃ in epoch t, a finite
number of possible actions which are elements of the action
space Y can be selected to perform. Let y(t) be the action
chosen by the network controller in epoch t. For a given traffic
offloading strategy ω ∈ Ω, the evolution of the DTMDP is
Markovian with state transition probability

T (x,y,x′) = Pr (x(t+ 1) = x′|x(t) = x,y(t) = y) , (16)

for x′ ∈ X̃ and t = 1, 2, · · ·. Theoretically, the state transition
probabilities, T (x,y,x′), can be derived in a similar way as
in [5], which depends on the arrival and departure rates of
MUs. But an exact model of T (x,y,x′) is often infeasible for
the considered traffic offloading problem due to three technical
reasons. First, the arrival rate of service requests from MUs,
λ(l, t), is not only location dependent, but also constrained
by the traffic load situation of the network (as indicated in
(13b)). Second, even for a HCN with reasonable area size, it
is impossible to explicitly list all the (x,y,x′) pairs. Finally, it
is not always a good option to predefine a state transition model
for the problem solving, the actual traffic condition deviates
from the model due to the bursty nature of MU behaviors. For
all these reasons, it would be really challenging to determine
an exact state transition model for a practical DTMDP with
large state space to compute the optimal traffic offloading strat-
egy through applying a model-based dynamic programming
algorithm. This motivates us to study in this paper a model-
free solution, such as RL. RL is based on the principle that an
intelligent agent tries different actions in different states infinite
number of times so it can gradually adapt to the dynamically
changing environment according to the received feedbacks.

Among different kinds of RL implementations, we choose
the commonly used Q-learning [54] in this work. The network
controller learns an optimal traffic offloading strategy by adopt-
ing the Q-learning algorithm. That is, given optimal Q-values,
Q∗(x,y), the strategy ω∗ defined by

ω∗(x) = argmin
y∈Y

Q∗(x,y), (17)

is optimal. In particular, the definition in (17) implies the
following procedures: when a MU arrives, the Q-value of
an optimal traffic offloading action is determined. To learn

Q∗(x,y), we update the Q-value function on a transition from
state x to state x′ under action y in epoch t

Qt+1(x,y) = Qt(x,y) + ζtδt, (18)

where ζt ∈ (0, 1] is the learning rate and

δt = e(x,y) + β min
y′∈Y

Qt(x′,y′)−Qt(x,y), (19)

is the temporal difference in epoch t. The initial values
of Q(x,y), for all (x,y) ∈ X̃ × Y , could be arbitrary. The
Q-learning is a Robbins–Monro stochastic approximation
method that solves the so-called Bellman’s optimality equa-
tion associated with the DTMDP. It is clear that Q-learning
does not require the explicit state transition probability model,
T (x,y,x′). For a finite DTMDP, Q-learning algorithm ensures
convergence with probability (w.p.) one to the optimal solution
as t → ∞ if

∑∞
t=1 ζ

t is infinite,
∑∞

t=1(ζ
t)2 is finite and all

state-action pairs are visited infinitely often [54]. The last con-
dition can be satisfied if the probability of choosing any action
in any state is non-zero (exploration). Meanwhile, the controller
has to exploit the current knowledge in order to perform well
(exploitation). A classical way to balance the trade-off between
exploration and exploitation is the ε-greedy strategy [55].

B. Learning With Compact State Representation

The Q-learning algorithm deals with the curse of model-
ing effectively, i.e., a state transition model is not required
during evolution of the DTMDP. Another challenging issue
with DTMDP is the curse of dimensionality, which means the
computational complexity increases along with the sizes of
the state and action spaces. In above treatment, it is supposed
that the state space is small enough so that we can apply a
simple lookup table, where a separate Q(x,y) is kept for each
state-action pair (x,y). Obviously, when the number of state-
action pairs becomes extremely large, explicitly representing
each Q(x,y) becomes impossible, and a form of compact rep-
resentation where the Q-values are approximated as a function
of a much smaller set of variables is needed. We restrict our
attention to the case where the reduced state space X̃ is count-
able, and consider compact representations of Q : X̃ × Y → R

using a function Q̄ : X̃ × Y × R
N → R which is referred to

as a function approximator. To approximate the Q-functions, a
parameter vector ϕ = [{ϕn}Nn=1] ∈ R

N is usually adopted so
as to minimize a certain metric of difference between functions
Q∗(x,y) and Q̄(x,y,ϕ), for all (x,y) ∈ X̃ × Y . In the special
case of linear representation, the approximated function Q̄ takes
the form of

Q̄(x,y,ϕ) =
N∑

n=1

ϕnφn(x,y) = ϕφ�(x,y), (20)

where � denotes a transpose operator and the vector φ(x,y) =
[{φn(x,y)}Nn=1] with each φn(x,y) denoting a fixed scalar
function defined over X̃ × Y . The functions φn(x,y) (n =
1, · · · , N) can be viewed as the basis functions (BFs), and the
ϕn (n = 1, · · · , N) as the associated weights.
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The Q-learning introduced in Section V-A can be combined
with linearly parameterized compact state representation via
using gradient-based updates, which is named as QC-learning.
The QC-learning algorithm updates the parameter vector with

ϕt+1 = ϕt + ζtδ̃t∇Q̄t(x,y,ϕt), (21)

over epochs, where ϕt = [{ϕt
n}Nn=1] is the vector of parameter

value in epoch t, δ̃t is a generic temporal difference in the epoch
and is defined by the following approximation of the temporal
difference in traditional Q-learning (19),

δ̃t = e(x,y) + β min
y′∈Y

ϕtφ�(x′,y′)−ϕtφ�(x,y), (22)

and the gradient is a vector of partial derivatives with respect to
the elements of ϕt and is expressed by

∇Q̄t(x,y,ϕt) = φ(x,y). (23)

Notice that the updating rule in (21) is performed on a vector
basis. In general, the obtained QC-learning does not converge
[56]. To ensure the convergence, we will resort to an ordinary
differential equation (ODE) in the following section to acquire
the necessary conditions.

C. Convergence Properties

In this section, we establish the necessary conditions that
ensure the convergence of QC-learning. We begin by introduc-
ing some notation that will make our discussion below more
concise. We first define a matrix Φ as

Φ = Eω

{
φ�(x,y)φ(x,y)

}
. (24)

For a given parameter vector ϕ and a particular network state
x ∈ X̃ , we then define a vector φ(x;ϕ) = [{φn(x,y)}Nn=1],
where y ∈ Yϕ

x with

Yϕ
x =

{
y ∈ Y

∣∣∣∣y = arg min
y′∈Y

ϕφ�(x,y′)

}
, (25)

denoting the set of optimal traffic offloading actions in x. We
now further define a ϕ-dependent matrix

Φϕ = Eω

{
φ�(x;ϕ)φ(x;ϕ)

}
. (26)

From definitions, we can find that both Φ and Φϕ are positive
definite. Finally, we introduce the required assumptions.

Assumption 1: The BFs {φn(x,y)}Nn=1 are linearly inde-
pendent, for all (x,y) ∈ X̃ × Y .

Assumption 2: For every n ∈ {1, · · · , N}, the BF φn(x,y)
is bounded, i.e., E{φ2

n(x,y)} < ∞; moreover, the cost e(x,y)
satisfies E{e2(x,y)} < ∞ as well.

Assumption 3: The learning rate sequence {ζt}∞t=1 satisfies∑∞
t=1 ζ

t = ∞ and
∑∞

t=1(ζ
t)2 < ∞.

One of the main results in this paper accordingly follows.
Theorem 1: Under Assumptions 1–3, the QC-learning algo-

rithm converges w.p. one, if

Φϕ < Φ, for all ϕ ∈ R
N . (27)

Proof: The convergence of the QC-learning algorithm
can be analyzed in terms of the stability of the fixed points of
the associated ODE, which can be written as [57]

ϕ̇t=Eω

{(
e(x,y)+βϕtφ�(x′;ϕt

)
−ϕtφ�(x,y)

)
φ(x,y)

}
.

(28)
If there exist a globally asymptotically stable point in the ODE
defined by (28), the QC-learning algorithm converges w.p. one.
Denote then by ϕt

1 and ϕt
2 two distinct trajectories of the ODE

possibly starting with different initial conditions, and designate
ϕt

0 = ϕt
1 −ϕt

2, we have

∂ ‖ϕt
0‖

2
2

∂t
=2

(
ϕ̇t

1−ϕ̇t
2

) (
ϕt

0

)�
=2βEω

{
ϕt

1φ
� (x′;ϕt

1

)
φ(x,y)

(
ϕt

0

)�
−ϕt

2φ
� (x′;ϕt

2

)
φ(x,y)

(
ϕt

0

)�}−2ϕt
0Φ
(
ϕt

0

)�
.

(29)

From the definition of φ(x;ϕ) given in (29), it is straightfor-
ward to state that

ϕt
1φ

� (x′;ϕt
1

)
≤ϕt

1φ
� (x′;ϕt

2

)
, (30)

ϕt
2φ

� (x′;ϕt
2

)
≤ϕt

2φ
� (x′;ϕt

1

)
. (31)

Since the expectation Eω in (29) is taken over different traffic
offloading actions in different network states, we would define
the sets W+={(x,y) ∈ X̃ ×Y | ϕt

0φ
�(x,y)>0} and W−=

X̃ ×Y−W+. Combining (30) and (31), (29) can then be rewrit-
ten as

∂ ‖ϕt
0‖

2
2

∂t
≤ 2β

(
Eω

{
ϕt

0φ
� (x′;ϕt

2

)
φ(x,y)

(
ϕt

0

)�∣∣∣W+

}
+ Eω

{
ϕt

0φ
� (x′;ϕt

1

)
φ(x,y)

(
ϕt

0

)�∣∣∣W−
})

− 2ϕt
0Φ
(
ϕt

0

)�
. (32)

After applying Hölder’s inequality [58] to each expectation on
right hand side of (32), we have

∂ ‖ϕt
0‖

2
2

∂t
≤ 2β

(√
Eω

{(
ϕt

0φ
� (x′;ϕt

2)
)2∣∣∣W+

}

×
√
Eω

{(
φ(x,y) (ϕt

0)
�
)2∣∣∣∣W+

}

+

√
Eω

{(
ϕt

0φ
� (x′;ϕt

1)
)2∣∣∣W−

}

×
√
Eω

{(
φ(x,y)(ϕt

0)
�
)2∣∣∣∣W−

})
−2ϕt

0Φ
(
ϕt

0

)�
≤ 2β

(√
Eω

{(
ϕt

0φ
� (x′;ϕt

2)
)2}

×
√
Eω

{(
φ(x,y) (ϕt

0)
�
)2∣∣∣∣W+

}
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+

√
Eω

{(
ϕt

0φ
� (x′;ϕt

1)
)2}

×
√

Eω

{(
φ(x,y)(ϕt

0)
�
)2∣∣∣∣W−

})
−2ϕt

0Φ
(
ϕt

0

)�
≤ 2β

√
max

{
ϕt

0Φ
ϕt

1 (ϕt
0)

�
,ϕt

0Φ
ϕt

2 (ϕt
0)

�
}

×
(√

Eω

{(
φ(x,y) (ϕt

0)
�
)2∣∣∣∣W+

}

+

√
Eω

{(
φ(x,y) (ϕt

0)
�
)2∣∣∣∣W−

})
−2ϕt

0Φ
(
ϕt

0

)�
= 2β

√
max

{
ϕt

0Φ
ϕt

1(ϕt
0)

�
, ϕt

0Φ
ϕt

2(ϕt
0)

�
}

×
√
Eω

{(
φ(x,y) (ϕt

0)
�
)2}

− 2ϕt
0Φ
(
ϕt

0

)�
.

(33)

If condition in (27) is satisfied, we have

∂ ‖ϕt
0‖

2
2

∂t
< 2βϕt

0Φ
(
ϕt

0

)� − 2ϕt
0Φ
(
ϕt

0

)�
= − (2− β)ϕt

0Φ
(
ϕt

0

)�
< 0, (34)

which means that ϕt
0 asymptotically converges to the origin.

Thus there exists one stable point of the ODE given by (28).
Therefore, we conclude that the QC-learning converges w.p.

one. This completes the proof. �
Remark 2: Theorem 1 shows that there exists a globally

asymptotically stable point ϕ∗ of (28), which indicates that

0=Eω

{(
e(x,y)+βϕ∗φ�(x′;ϕt

)
−ϕ∗φ�(x,y)

)
φ(x,y)

}
.

(35)
That is,

ϕ∗ = Eω

{(
e(x,y) + βϕ∗φ� (x′;ϕ∗)

)
φ(x,y)

}
Φ−1. (36)

Then the optimal approximated Q-functions verify that

Q̄ (x,y,ϕ∗) = Eω

{(
e(x,y) + βϕ∗φ� (x′;ϕ∗)

)
φ(x,y)

}
× Φ−1φ(x,y), (37)

for all (x,y) ∈ X̃ × Y .

VI. DECENTRALIZED MULTI-AGENT LEARNING

Up to now, we have discussed the feasibility of applying
the derived centralized QC-learning to energy-aware traffic
offloading. Even with a compact representation of the Q-value
lookup table, the number of actions grows exponentially with
the number of small-cell BSs implemented in the network,
potentially creating practical challenges in facilitating a totally
centralized traffic offloading mechanism. From a macro cell’s
point of view, the operations of small-cell BSs in the coverage
can be managed by the local macro BS, which provides the
possibility of executing a decentralized scheme. All macro

BSs learn in a cooperative way to make local decisions for
controlling the small-cell BSs in the service area. Therefore, the
centralized traffic offloading problem in previous section turns
out to be a decentralized multi-agent learning task.

In this section, we assume that all macro BSs learn co-
operatively in a team Markov game, which is defined by a
tuple G = 〈J , X̃ ,Y, T, e〉, with the common goal of finding
a joint traffic offloading strategy ω ∈ Ω so as to minimize the
total expected discounted energy consumption over the network
which is given by (15). The optimal Q-function, Q∗(x,y) for
all (x,y) ∈ X̃ × Y , defines the optimal joint traffic offloading
strategy and captures the team Markov game structure. Under
each network state x ∈ X̃ , the macro BSs play a team stage
game Gx = 〈J ,Y, Q∗(x, ·)〉 and consider the Q∗(x, ·) to be
independent. It is worth mentioning that different from previous
discussions, the action in the team Markov game is jointly
generated by the J independent macro BSs in a distributed
manner. A joint traffic offloading action y is optimal in network
state x, if Q∗(x,y) ≤ Q∗(x,y′) for all y′ ∈ Y . In the case with
a quite large number of network states, it is impossible to have a
particular state visited infinitely often. Instead, each macro BS
learns according to (21).

Corollary 1: For the team Markov game G, the decentralized
multi-agent QC-learning algorithm converges w.p. one, if the
conditions in Theorem 1 hold.

Proof: Consider the J macro BSs as a single controller
that follows a stationary traffic offloading strategy ω ∈ Ω. Then
the team Markov game G is essentially an DTMDP as in
previous section. The rest of the proof follows the proof of
Theorem 1 and is omitted for brevity. �

The decentralized multi-agent learning problem then boils
down to learning to coordinate. We assume that:

Assumption 4: The offloading strategies of different macro
BSs do not change significantly in similar network states;

Assumption 5: The initial network state process {x(t)}
evolves following a φ-irreducible and Harris recurrent Markov
chain [59].

The similarity between two network states x and x′ (∈ X̃ )
can be measured in terms of Hamming distance [60], which
is denoted as DH(x,x′). With Assumption 4, each macro BS
can thus conjecture the traffic offloading strategies employed
by other macro BSs for current network state through making
use of the knowledge from the past. The historical knowledge
up to time epoch t is then given by the σ-algebra

F(t) = σ
(
{x(s),y(s)}ts=1 , {e (x(s),y(s))}

t−1
s=1

)
, (38)

where the information of each experienced network state x(s),
each performed joint action y(s) and network energy consump-
tion e(x(s),y(s)) can be obtained from the network controller.
In each epoch t, every macro BS checks the Hamming distance
between current network state x(t) and state x(s) in F(t),
and then obtains a sample set X̂F (x(t),F(t)) which includes
F different most recent observations from F(t) that minimize∑F

f=1 DH(x(t),x(sf )).
Next, we set up a virtual game VGx(t) = 〈J ,Y, E(x(t), ·)〉

for a network state x(t) in epoch t, where E(x(t),y) is the
common payoff that all macro BSs receive after performing



636 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 4, APRIL 2015

a joint traffic offloading action y ∈ Y and is set to be 1 if
y = argminy′∈Y Q̄(x(t),y′,ϕ∗) and 0, otherwise. Since the
macro BSs learn in a distributed manner, we choose Ỹj(x(t)),
for each macro BS j, to denote the set of joint actions that give
the payoff 1 in state x(t). Suppose two integers, a and S, satisfy
1 ≤ a ≤ F ≤ S. When t ≤ S, all macro BSs randomly control
the working modes of small-cell BSs in their coverage. From
epoch t = S + 1, each macro BS j randomly picks a records
Ŷj,a(X̂F (x(t),F(t))) from the F joint actions with respect to
X̂F (x(t),F(t)). Let −j denote all the other macro BSs in set
J except macro BS j. If

1) there exists a joint offloading action y = (yj ,y−j) ∈
Ỹj(x(t)) such that y′

−j = y−j , for all y′ = (y′
j ,y

′
−j) ∈

Ŷj,a(X̂F (x(t),F(t)));
2) there exists at least one joint action y such that y ∈

Ŷj,a(X̂F (x(t),F(t))) ∩ Ỹj(x(t)),

then macro BS j selects an offloading action yj(s
∗) where

s∗ = maxs{s|y(s) ∈ Ŷj,a(X̂F (x(t),F(t))) ∩ Ỹj(x(t))}. On
the other hand, if the above 1) and 2) are not satisfied, macro

BS j randomly selects an action from Y̆j(x(t))
Δ
= {yj |yj =

argminy′
j
Ēj(x(t),y

′
j)}, where

Ēj (x(t),yj) =
∑
y−j

E (x(t),y)
At

j(x(t),y−j)

a
, (39)

is calculated using a records randomly drawn from the F most
recently performed actions. Herein, At

j(x(t),y−j) denotes the
number of times that other macro BSs perform joint action y−j

in state x(t).
The basic decentralized multi-agent QC-learning for each

macro BS j ∈ J is accordingly described as follows.

Algorithm 1 Decentralized QC-learning for Traffic
Offloading

Initialization: set t = 1, ϕt
n ← 0, for all n = 1 · · · , N .

Learning: given current network state x(t).
1. If t < S + 1, Then

1.1. Randomly select a traffic offloading action.
2. Else

2.1. Update Ỹj(x(t)) = {y|E(x(t),y) = 1} for x(t).
2.2. With an exploitation probability 1− ε,

2.2.1. randomly select Ŷj,a(X̂F (x(t),F(t))) out of F
joint actions associated with X̂F (x(t),F(t));
2.2.2. calculate Ēj(x(t),yj) according to (39), and
construct Y̆j(x(t));
2.2.3. if 1) and 2) are met, choose the most recent ac-
tion from Ŷj,a(X̂F (x(t),F(t)))∩Ỹj(x(t)); otherwise,
randomly choose an action from Y̆j(x(t)).

2.3. With an exploration probability ε, randomly select a
traffic offloading action.

3. End If
4. Observe transition x(t) → x(t+ 1) and e(x(t),y(t)).
5. Update ϕt according to (21).
6. Set t ← t+ 1.

Fig. 2. A network layout: Macro BSs, small-cell BSs, MUs are, respectively,
shown with blue squares, red circles and green crosses.

The following Theorem 2 ensures that the proposed decen-
tralized multi-agent QC-learning algorithm converges to an
optimal joint traffic offloading strategy.

Theorem 2: With Assumptions 1–5, the decentralized multi-
agent QC-learning, described by Algorithm 1, converges w.p.
one to the optimal joint traffic offloading strategy as long as
for each x ∈ X̃ , a ≤ F/(ΓGx

+ 2), where ΓGx
is the length of

shortest path in the best response graph of team stage game
Gx [61].

Proof: The convergence of sequence {ϕt} to the opti-
mal ϕ∗ arises as an immediate consequence of Corollary 1.
Therefore, the virtual games {VGx(t)} based on {ϕt} evolve
to the virtual games VGx that are built upon ϕ∗, for x ∈ X̃ .
On the other hand, with Assumptions 4 and 5, the team stage
game Gx(t) is reduced to a team game under network states

X̂F (x(t),F(t)) around x(t). From the result in [61, Theorem
1], the J macro BSs thus coordinate an optimal traffic offload-
ing strategy for all x(t) as long as a ≤ F/(ΓGx(t)

+ 2). This
suggests that the decentralized multi-agent QC-learning will
converge to the optimal joint traffic offloading strategy w.p. one.

�

VII. NUMERICAL RESULTS

In order to examine the performance gains from the cen-
tralized and decentralized QC-learning algorithms, numerical
simulations are going to be conducted.

A. Simulation Parameters

We build up a relatively simple but representative two-tier
HCN which is composed of 4 macro cells and 8 small-cells
in a 2× 2 Km2 square area. The network layout is depicted
in Fig. 2. The macro BSs are positioned at equal distance
apart, while the small-cell BSs are at fixed locations which are
assumed to be within the hotspots during simulations. Without
loss of generality, only femto cells are implemented in the
network for traffic offloading. Each BS is placed in the centre
of a cell. The radiuses of each macro cell and each femto cell
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TABLE I
PARAMETER VALUES USED IN SIMULATIONS

are supposed to be
√
2/2 Km and 0.1 Km. The entire service

area of the network scenario is divided into 1600 locations, i.e.,
each location represents a small area with a resolution of 50×
50 m2. The channel propagation in each location is considered
uniform, that is, MUs in the same small area are assumed
to have the same channel gains. The channel gains are fixed
as hul = z−κ

ul for all u ∈ J ∪ K and l ∈ L, where zul is the
physical distance between BS u and the centre of location l, and
κ is the path loss exponent and is set to be 4 in all simulations.
The values of other parameters used in simulations are listed
in Table I, where the values concerning power consumption
are obtained from [62]. Each time epoch is supposed to be of
60 seconds to avoid frequent switching on/off of the femto cells.
Notice that P (s)

tx , P (s)
cst and α(s) are parameters chosen for all

femto BSs. The BF vector is constructed as follows. Given the
network state x(t) and the selected traffic offloading action y(t)
in epoch t, we assume that the number of BFs is equal to the
number of locations that are within the coverage of all femto
BSs, namely, N = | ∪k∈K L(s)

k | = 128 for the network setup.
We number the locations covered by all femto cells from 1 to
N . Then the value of each BF can be given by

φn(x(t),y(t)) = xln
jk
(t)yjk(t)1l

{
ln∈L(s)

k

}, (40)

for n ∈ {1, · · · , N}, where k ∈ Kj and j ∈ J . That is, one BF
corresponds to each location in the femto cells.

B. Performance Comparisons

We begin with demonstrating the performances that the cen-
tralized and decentralized QC-learning algorithms can achieve.
In simulations, the hotspots are highly loaded with an identical
arrival rate λ = 6λ0, where λ0 = 0.3 MUs/epoch is the arrival
rate in areas that are not covered by the femto cells. The average
file size for MUs is chosen to be a constant, 1/μ(l, t) = 6×
106 bits, for all locations l ∈ L and time epochs t = 1, 2, · · ·.
And we predefine a common threshold for the system loads
in all cells dthu = 0.3, for all u ∈ J ∪ K. The additional pa-
rameters concerning decentralized QC-learning are given as:
a = 10, F = 50 and S = F . Fig. 3 shows the achieved total
traffic load which is the system loads over all cells during
the learning process. The results are compared with two non-
learning strategies:

1) Without traffic offloading—all femto BSs in the network
are switched off and only the macro BSs serve the arriv-
ing MUs;

Fig. 3. Comparison of achieved system loads with respect to different traffic
offloading schemes.

2) Traffic offloading without learning—all femto BSs are
kept active all the time, such that all arriving MUs within
the coverage of every femto cell are offloaded.

Without a traffic offloading implementation or offloading
traffic without learning in a HCN, the evolution of the stochastic
network state is given by [63]. When a learning strategy is
implemented for traffic offloading, the system load in a cell
depends on the network state, which reversely influences state
transition probabilities. The first observation from the figure
is that all curves reporting the learning processes converge
within less than 3× 103 epochs. Secondly, we may find that
when all femto BSs are switched on, the achieved total system
load in the network is much higher than that of when all
femto BSs are switched off and those achieved by the cen-
tralized and decentralized QC-learning algorithms. This can
be easily explained by the fact that activating all femto BSs
for traffic offloading creates more interference in the network
even when there are no MUs coming into the femto cells,
thus increases traffic congestions and deteriorates the MUs’
QoS. The second observation obtained from this simulation
assures the necessity of designing an effective traffic offloading
strategy.

To gain further insights of the proposed learning algorithms,
we move on to simulate the total energy consumption over the
network in each epoch during the stochastic learning process.
Since keeping all femto BSs switched-on cannot ensure MUs’
satisfactory QoS, we compare the energy saving performance
of the centralized and decentralized QC-learning algorithms
only with that of the scheme that no traffic offloading is
performed. The simulation environment is the same as that
used in Fig. 3. As illustrated in Fig. 4, both the centralized
and decentralized QC-learning algorithms reduce total network
energy consumption significantly. Another observation from
the simulation results, which can also be seen from Fig. 3, is
that the learning trajectories of total traffic load and total energy
consumption achieved by the decentralized and centralized
QC-learning algorithms are comparable. Intuitively, a locally
learning macro BS obtains the global network state information
from the network controller, and is thus able to asymptotically
play an optimal traffic offloading action in a team Markov
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Fig. 4. Comparison of total energy consumptions in each epoch with respect
to different traffic offloading schemes.

Fig. 5. Impacts of a and F on performance achieved by decentralized
QC-learning.

game through making use of its historical experience. But
the computational complexity of decentralized QC-learning
algorithm is linear in the number of macro BSs. The exponential
computational complexity of centralized QC-learning makes it
infeasible for a practical scenario where the number of small-
cell BSs is especially large.

The next experimental simulation studies the impacts of the
parameters used in decentralized QC-learning, a and F , on the
learning performance. We use similar simulation environment
as in previous simulation activities except that the constant av-
erage file size for MUs is chosen to be 1/μ(l, t) = 2× 106 bits,
for all locations l ∈ L over time epochs t = 1, 2, · · ·. From the
plot in Fig. 5, we can identify that for a same F , worse energy
saving performance is achieved if choosing a smaller value
for a. The reason behind this is that each macro BS deliber-
ately explores suboptimal traffic offloading actions during the
learning process, and a smaller a increases the probability of
exploring such actions. When a bigger value of F is taken, each
macro BS keeps out-of-date network state information which
increases the chance of exploring a suboptimal traffic offloading
action.

VIII. CONCLUSION

In this paper, we first have presented a brief state-of-art
literature review of the traffic offloading techniques that have
been applied to wireless networks. Then we have focused our
main emphasis on investigating a specific problem of energy-
aware traffic offloading in stochastic load-coupled HCNs, the
goal of which is to minimize the overall energy consumption
of a network as well as to simultaneously preserve satisfac-
tory QoS for the arriving MUs. A DTMDP was formulated
to characterize the network dynamics, based on which we
proposed an on-line model-free learning framework with state
aggregation, i.e., the QC-learning, to solve the optimal traffic
offloading strategy when the network state space is huge. More-
over, we designed a decentralized version of the centralized
QC-learning algorithm for macro BSs to locally learn an op-
timal joint traffic offloading strategy. The convergence property
of both centralized and decentralized learning algorithms was
theoretically analyzed. Several experimental simulations based
on a representative HCN scenario were provided in this paper
to validate the proposed studies.
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