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Geographic and socioeconomic characteristics of rural zones in Chile have made schools located in these
areas present inefficiencies such long travel times and multi-degree courses1 that affect the academic
performance of their students. In this paper, a model of location and modification of school capacity is
presented as an alternative to reduce these inequalities. In Chile a student school choice is a process that
depends not only on the time and income constraints but also on the decisions made by other students
(segregation). This behavior is modeled using a microeconomic approach; thereby a constrained multino-
mial logit discrete choice model is derived. By incorporating the student’s school choice in an optimization
model, it becomes nonlinear. A Tabu Search metaheuristic is proposed, which unlike other implementations
requires solving a fixed point system of equations to evaluate each solution. A computing experience for
instances of 10 and 45 zones is developed; in the first the quality of the solution is evaluated compared
to the optimum obtained by enumeration and in the second different scenarios are analyzed.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Geographic and socioeconomic characteristics in rural zones in
Chile and many Latin American countries have made that rural
education present inefficiency. The schools located in these zones
have a very low teacher-student ratio and many of their courses
are multi-degree. According with SIGER (2009) Report, in Chile in
2007, 59.26% of rural establishments had less than 4 teachers
and 69% of the courses were multigrade.

Another important aspect is that students are affected by long
travel times to attend their schools. In SIGER (2009) it is shown
that about 36% of the high school students (segundo medio) using
public transportation indicated that they travel more than 60 min.
With respect to the students’ socioeconomic status (SES), more
than a half belong to the poorest group, so that the financial
resources they have for education are quite low. The above ineffi-
ciencies definitely affect school performance. 12% of rural schools
have a poor performance on math state tests.

Furthermore, since 1981 the Chilean educational system is open
for private providers to enter the market of education. This allowed
that all families can freely choose the school where their children
will attend, only restricted by the time and income they have. This
deepened inefficiencies of rural education. Cordova (2006) indi-
cates that between 1992 and 2006 enrollment in rural zones fell
by 16%, which shows that many students are willing to sacrifice
themselves doing long travels and attending urban schools in
search of a better education.

An alternative to reduce the rural education inequalities could
be the location and modification of schools. A new configuration
that improves the school’s structural variables that affect the stu-
dents’ performance could lead to a higher quality education.

Thus, this paper proposes a location and modification school
capacity model. In Chile as well as in other countries, a student
school choice is a process that depends not only on the time and
income constraints but also on the decisions made by other stu-
dents (segregation). This behavior is modeled using a microeco-
nomic approach; thereby a constrained multinomial logit
discrete choice model is derived. By incorporating the student’s
school choice in an optimization model, it becomes nonlinear. A
Tabu Search metaheuristic is proposed, which unlike other imple-
mentations requires solving a fixed point system of equations to
evaluate each solution.

The other part of this paper is organized as follows: In Section 2
a literature review of schools location works is presented and it is
established the context in which this research is conducted. In Sec-
tion 3 the behavior of students and the optimization model is
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described. Section 4 is devoted to the heuristic of solution. In Sec-
tion 5 computational and evidence is reported, applied to a test
zone. Finally, Section 6 describes the conclusions and final remarks.
2. Literary review

The models used in the location of schools have been developed
in parallel with those that locate other facilities such as hospitals,
households, firms, etc. Two contexts in which these models have
been developed are: mathematical programming or optimization
and the urban economy.

Optimization models seek the most efficient location with
respect to a profit measure as distance, time, cost, etc. subject to
different constraints such as security, resources availability, and
time. The location of schools in this context was studied initially
as a problem of students’ allocation and known in the literature
as the school (re)districting problem. The two features that distin-
guish the problem are that students in a geographic zone must
be allocated to a school according to some criterion, for example
distance, and that this allocation should not exceed the available
capacity. In this sense, in the work of Caro, Shirabe, Weintraub,
and Guignard (2004), the properties of a good allocation are estab-
lished, they formulate an MIP with the aim of reducing the distance
traveled by students and they make an application using a GIS, it is
proved that imposing maximum impedance to travel generates
more compact allocations.

Later, models of location and allocation were developed. While
locating schools, students are allocated to them, with the aim of
optimizing the distance. Early works only considered the opening
and closing of schools. Tewary and Jena (1987) use a maximum cov-
erage model to locate a fixed number of schools and maximize the
population covered within a maximum travel distance. These mod-
els do not explicitly consider the capacity and only locate schools of
the same size. Pizzolato and Silva (1997) use a p-median model to
make a population clustering, each cluster is analyzed by compar-
ing the educational supply and demand, so that, the opening or
closing of schools in areas of shortage or oversupply is considered.

The works described previously do not consider the capacity
explicitly and therefore they only locate schools of a same size.
For that reason, Teixeira and Antunes (2008) use a p-median model
with capacities, so that the allocation is performed to the nearest
school with available capacity. In those works, the authors present
a discrete hierarchical location model for the public facilities plan-
ning (schools). The main features of the model are: accessibility
maximizing, several levels of demand and facilities, and capacity
constraints. However, the authors assume that the system has
the capacity to meet the demand. Pizzolato, Broseghini, and
Nogueira (2001) also use a p-median model with insert capacities
in a GIS to re-locate schools of different sizes in zones with short-
ages and oversupply of these ones, however, the authors assume
that the system has the capacity to meet the demand.

The works described above do not take into account that it is
financially appropriate to amend the current schools than opening
new ones. Thus, Cohen, Martinez, Donoso, and Aguirre (2003) and
SIGER (2009) develop models that locate new schools and modify
the existing ones. The latter uses an MIP within a GIS for determin-
ing which schools should be opened, closed or modified. The model
allocates students to the nearest school with available capacity to
minimize transportation cost, operation and investment costs.

Antunes and Peeters (2000, 2001) describe a dynamic optimiza-
tion model to formulate planning proposals for the school
networks development based on an extension of the capacitated
p-median model. The model allows the facility closure or downsiz-
ing, as well as the facility opening and its size expansion. The costs
of the facilities are divided into a fixed component and two
variable components, which depend, respectively, on the capacity
and attendance. In Antunes, Berman, Bigotte, and Krass (2009) a
model that seeks to maximize the total accessibility of the popula-
tion to all different kinds of facilities is presented, considering that
the location decisions influence the spatial distribution of the pop-
ulation growth.

Delmelle, Thill, Peeters, and Thomas (2014) develop a multi-
period capacitated p-median model for the facility location plan-
ning that minimizes transportation costs, whereas the functional
and operational costs of the education system are subject to a bud-
get constraint. Furthermore, the allocations which are considered
impractical because of the distance are penalized with a parameter
associated with travel time.

The works described above assume that the students attend the
nearest school. However, today’s competitive markets allow a stu-
dent to choose freely the service provider. Thus, a line of research
that incorporates user behavior through discrete choice models in
location models emerged.

The application of this methodology in other industries for
example the location of airline hubs proposed by Eiselt and
Marianov (2009), where the user’s choice is defined by a gravita-
tional function that considers travel time and fares; the problem
is solved using a heuristic concentration method.

Marianov, Ríos, and Icaza (2008) propose a model for locating
facilities, so that the market capture is maximized under the
assumption that customers choose the facility where they want
to be assisted according to the travel time and the waiting time,
such choice is represented by a multinomial logit model. The
authors demonstrate that under certain conditions there is an
equilibrium demand and the problem is solved through a
metaheuristic.

Colomé and Serra (2001) define several ways to incorporate the
user’s behavior in the context of location models and coverage.
Such paper analyzes the optimal location from a competitive view-
point including consumer’s behavior aspects such as distance and
transportation costs. To solve their formulations metaheuristics
based on GRASP and tabu search are used.

With respect to the schools location, Gac, Martinez, and
Weintraub (2009) develop a linear optimization model in which
the students’ preferences are introduced through a utility function
whose variables are the characteristics of each school, travel and
school costs. The bidders’ utility is defined as the difference
between revenue minus operating costs. The model seeks to max-
imize the profit of the bidders and applicants in the education sys-
tem. However, the solution found does not involve a balance in
prices, so this could get away from optimality.

A recent work is Hasse and Müller (2013), a model of location
planning of the school network is proposed, seeking to maximize
the expected utility of all students taking into account capacity
constraints and a given budget. The utility value of each student
is derived from a random utility model thus obtaining an endoge-
nous demand. However the existences of externalities are not con-
sidered neither the impact of endogenous constraints in the
students’ utility.

Another context in which location models are developed is the
urban economy. These models mainly seek to balance in the loca-
tion of facilities (supply) and customer allocation (demand), the
type of solutions generated are of a macro level and are mainly
used for urban planning. School location methodologies were also
developed in this context. Martínez, Tamblay, and Weintraub
(2011) develop two models, one of equilibrium and another of
optimization. The first one considers that households are agents
who choose to attend school in accordance with each school char-
acteristics, distance and price, and supply acts as an agent that
maximizes its profit. The behavior of all the agents is modeled by
logit constrained models. The second model seeks an optimal
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solution, understood as the equilibrium which maximizes the
whole system utility.

2.1. Variables that affect academic performance and school choice

In the Chilean context, Zuñiga (2009) researched the variables
that influence the academic performance of students in rural
zones. Starting from 21 variables (from school, family, and teach-
ers) and using econometric models with different segmentations,
the author found the influence of these variables on school perfor-
mance. Although the models found present low adjustments,
which according to the author, were mainly due to the presence
of not-easy-to-measure subjective variables, those variables that
are significant in the models are identified, from which, we con-
clude that reasonable travel times and large schools without mul-
tigrade classes will positively influence school performance. One of
the conclusions of the previous research is that the school is 18%
responsible for school performance and low SES students are the
most affected by therein. Therefore, taking into account that in
rural zones a majority of students belong to the lowest SES, mod-
ifications in the schools structure and location would be very ben-
eficial to improve the quality of education.

Zuñiga (2009) also conducted a study on the variables affecting
the schools choice in rural zones of Chile. The research was based
on the revealed preferences of the parents. She concludes that the
structural variables affecting parent’s choices are: the SIMCE
school score, the presence of secondary education, the enrollment,
the number of combined grades and the socioeconomic status of
students. These variables can be classified into two types: endoge-
nous and exogenous. The first, also called externalities consist of
those ones that depend on the decision made by other students.

Thus, this work contributes to the location modeling as follows:
First, a school location model close to reality is developed, since it
considers that a student not only chooses his/her school but also
the mode transport, action that was not included in any school
location model before. Second, several facility location models that
incorporate a discrete choice model in its formulation, since the
beginning, include a utility function with the variables that the
authors consider relevant and ignore the presence of externalities
in the choice process. In this paper, similarly to Martínez et al.
(2011), a justification for the existence of externalities in the choice
process is provided and a new scheme for its introduction into an
optimal location model is proposed.
3. Formulation and development of the model

Due to the complexity of the problem, the analytical treatment
is developed in two stages: the first one develops a microeconomic
model that describes the student’s behavior, and solutions which
are characterized by the lack of incentive to change choice unilat-
erally are obtained (Nash Equilibrium); in the second, an optimiza-
tion model to improve those structural variables of schools that
affect the academic performance of students is developed.

3.1. Students’ behavior modeling

Just as in the works by Martínez et al. (2011) it will be supposed
that the students are rational agents who choose their school by
maximizing a utility function under income and time constraints.
A logit constrained model will be used to modeling this behavior,
which is based on a microeconomic approach of discrete choices
(Martinez, Aguila, & Hurtubia, 2009).

Based on the microeconomic approach by Jara-Diaz (2007) and
defined in the Chilean school choice context (Zuñiga, 2009), the
following variables will be considered in the utility function of a
student: continuous consumption goods, travel time from home,
and hedonic attributes like school academic performance and
externalities associated with the quantity and socioeconomic sta-
tus of students attending the school.

Therefore, a utility function is postulated for a student belong-
ing to the SES h located in the zone i is

Uhið�x;�zjk; tijmÞ ð1Þ

where �x is the vector of goods, �zjk the vector of hedonic attributes of
the school type k located in j, and tijm is the travel time from the
zone of residence i to the zone where the school j is located in
the transport mode m. It is assumed that each student will maxi-
mize his/her utility (1) under budget and time constraints, and will
know the transportation costs and the price of attending school.

Using the discrete choice approach, utility is maximized in two
stages, in the first the utility function is maximized, conditional on
an alternative ðj; k;mÞ (school type k, located in j, which is accessi-
ble by the transport mode m) thus the conditional indirect utility
function in the chosen alternative Vjkm. In the second stage, the stu-
dent simply selects the choice ðj; k;mÞ that generates the highest
utility among all possible discrete alternatives. The problem is for-
mulated analytically as:

Max
j;k;m
½Max

�x
Uhið�x;�zjk; tijmÞ�

s:t:
ð2Þ

X
l

plxl þ rjk þ cijm 6 Ih 8h; i; j; k;m ð3Þ

tijm 6 sm 8i; j;m ð4Þ
xl P 0 8l

h: Index for socio-economic cluster to which the student
belongs
i: zone index for the student’s home location
j: zone index for school location
k: index to shool type
m: index to mode transport
�zjk: vector of hedonic attributes of type school k located in zone j,
tijm: travel time from home located at the zone i to school
located in zone j in transport m
sm: maximum time that a student would be willing to ride the
transport mode m
pl; xl: goods consumption and their respective prices
rkj: Tariff of school type k located in the zone j
cijm: cost of transport mode m from origin zone i to destination
zone j
Ih: average income of a student h

The income constraint (3) states that the expense of a student in
a period consists of three items: consumption of goods (clothing,
school supplies, etc.), school fees (tariff) and transportation costs.
The total cost should be less than average revenue per student in
the same period. The time constraint (4) states that a school which
is infeasible due to travel time cannot be chosen.

Thus, assuming quasi-linear direct utility function, then,
conditional indirect utility function is obtained

Vhijkm ¼
X

n

bn
hzn

jk þ ch � tijm þ hhðIh � qijkmÞ ð5Þ

where bn
h is the parameter that indicates the student’s assessment

for the n-th attribute of the school, ch is the attribute of the travel
time, hh parameter indicating the impact of money in the utility
level achieved and qijkm is the sum of the cost of education and
transportation.

According to the random utility theory, McFadden (1978), it is
assumed that the utility has a stochastic component that specifies
the idiosyncratic user’s behavior, namely:
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Vhijkm ¼ Vhijkm þ ehijkm

where Vhijkm is the deterministic part, established by (5) and ehijkm is
the error stochastic term associated with the level of ignorance,
which in this model it is assumed equally and identically Gumbel
distributed, with scale factors l. Therefore, given a school type k
located in a zone j and which is accessible in the mode m, an SES stu-
dent h will attend it and in that mode, if this option generates a
greater utility over the other alternatives. Therefore, the choice prob-
ability for an SES student h located in i for a school ðj; k;mÞ will be:

Pjkm=hi ¼ Prob Vhijkm > Vhij0k0m0 ; 8h; i; j0; k0;m0
� �

Or equivalently

Pjkm=hi ¼
exp lðVhijkmÞ

� �
P

j0k0m02X exp l Vhij0k0m0
� �� � 8h; i ð6Þ

This choice ðj; k;mÞ offers the maximum utility compared to other
alternatives where X is the set of alternatives (school-zone-mode)
available for an SES student h located in the zone i

The following sections describe how to include constraints and
externalities within the stochastic discrete choice model (6).

3.1.1. Choice alternatives set constraint
A student does not consider all the schools of the system as

choice alternatives; therefore, it is needed to delimit this set. The
first condition to consider a school as an alternative is that if must
exist. Thus, the probability of choice is:

Pjkm=hi ¼
xjk exp lðVhijkmÞ

� �
P

j0k0m02Xxj0k0 exp l Vhij0k0m0
� �� � 8h; i ð7Þ

where the variable xjk is obtained from an external model of the dis-
crete choice associated with an optimization model and takes the
value 1 if in the zone j there is a school type k or zero otherwise.

This optimization model will be described in Section 3.2.
Strictly speaking, Eq. (7) corresponds to a multinomial logit model
with supply correction.

3.1.2. Travel time and income constraints
In addition a student cannot make long travel times nor spend

on transport and tariff more than his/her income allows. Hence, a
school must meet these time (4) and income (3) constraints to
become a choice alternative. These constraints are considered using
the constrained logit model (CMNL) by Martinez et al. (2009). In
this model, individuals impose thresholds to the attributes directly
in the utility function, by penalties specifications in the binomial
logit form, in order to greatly reduce the utility of those alternatives
that do not meet any restrictions. In Castro, Martinez, and Munizaga
(2013) analyzed the parameters estimation of CMNL model using
real data. The authors conclude that the model CMNL is more suit-
able in some applications, having better fit than the Multinomial
Logit model. Besides, there are significant differences in the value
of time and elasticity values, showing that these differences
increase as the attribute thresholds are triggered.

Thus, the following terms are joint to the indirect utility
function

1
l

ln wijm ð8Þ

1
l

ln uhijm ð9Þ

wijm ¼
1

1þ exp xwðtijm � sm þuwÞ
� � ¼ ! 1 if tijm < sm

gw if tijm ¼ sm

�

uhijm ¼
1

1þ exp xuðqhijm � Ih þuuÞ
� � ¼ ! 1 if qhijm < Ih

gu if qhijm ¼ Ih

(

gw;gu are parameters that indicate the population proportion that
do not meet the constraints of time and income respectively, and
in this research it is assumed that their values are equal to 0.05.
As well as, xw;xu are binomial scale parameters and determine
how fast wijm or uhijm take extreme values 1 and g. It is known that
very large values of xw;xu will make wijm;uhijm behave in a deter-
ministic way, wherefore it will be assumed they have the value 1.
With respect to uw;uu, these are adjustment parameters and are
defined as:

uw ¼
1

xw
ln

1� gw

gw

� �

uu ¼
1
xu

ln
1� gu

gu

� �

Thus, the utility associated with schools that do not comply with a
particular constraint will be diminished, making the alternative
show a less choice probability.

Thus the utility function would be described as:

Vhijkm ¼
X

n

bn
hzn

jk þ ch � tijm þ hhðIh � qijkmÞ þ
1
l

ln wijm þ
1
l

ln uhijm

And the choice probability with the time and income con-
straints is formulated as follows:

Pjkm=hi ¼
wijm � uhijm � xjk exp lðVhijkmÞ

� �
P

j0k0m02Xwij0m0 � uhij0m0 � xj0k0 exp l Vhij0k0m0
� �� � 8h; i
3.1.3. Capacity constraint
Finally, there is a capacity constraint which states that the num-

ber of students attending a school must not exceed its capacity.
Therefore, when the capacity use of a school is 100%, it will cease
to be a choice alternative for other students. This constraint is also
included through a constrained logit model (CMNL), in which the
same previous values can be assumed for the parameters g/ and
x/. However it should be noted that in this case, the number of stu-
dents attending a school (enrollment) is an externality of choice.

1
l

ln /jk ð10Þ

/jk¼
1

1þexp w/ðmatjk�capjkþu/Þ
h i¼ !1 if matjk < capjk

g/ if matjk¼ capjk

(

matjk ¼
X
him

Hhi � Pjkm=hi

matjk: Number of students who attend school type k, located in
zone j.
capjk: Capacity of the school type k, located in zone j.

Thus incorporating the capacity restriction in the utility func-
tion, we have

Vhijkm ¼
X

n

bn
hzn

jk þ ch � tijm þ hhðIh � qijkmÞ þ
1
l

ln wijm þ
1
l

ln uhijm

þ 1
l

ln /jk

And the choice probability with these constraints is formulated
as follows:

Pjkm=hi ¼
/jk �wijm � uhijm � xjk exp lðVhijkmÞ

� �
P

j0k0m02X/j0k0 �wij0m0 � uhij0m0 � xj0k0 exp l Vhij0k0m0
� �� � 8h; i

ð11Þ
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where the system of equations described by (11) represents a fixed
point system of equations, given that the capacity of each school
generates an externality associated with the competition for some
options. That is, the school choice decision is conditioned to the fact
that other students choose it too.
3.1.4. Socioeconomic and size externalities
With regard to the choice externalities, it follows that the vector

�zjk collects the school hedonic attributes. This implies that there are
endogenous and exogenous attributes within the choice process.

The number of enrolled students and the school SES are endog-
enous attributes and constitute choice externalities. The way to
introduce them into the students’ behavior modeling is as attri-
butes of the indirect utility function, because depending on the
value they take they can make an alternative more or less
attractive.

The number of students who enroll in a school is an attribute
valued by the students when choosing the school. However, it
must be considered that schools will not necessarily be at 100%
capacity. Hence, schools will also be classified in k̂ 2 K types
because of the number of students enrolled. Thus, the following
term is added to the utility function:X

k̂

gĥ � tamjk̂ðPjkm=hi;8m;h; iÞ ð12Þ
ghk̂: parameter indicating the assessment of an SES student h by
a school type k̂
tamjk̂ðPjkm=hi;8m;h; iÞ: 1 if the school located in j is type k̂ and 0
otherwise.

Another important assumption is that each student values,
when choosing a school, the attribute associated with the other
students’ SES who attend this school. The following expression is
introduced into the utility function when considering this
externality:

X
h0

khh0 � nsjh0 ðPjkm=hi;8m; iÞ ð13Þ
khh0 : parameter indicating the assessment of an SES student h,
for a school where most students are SES h0

nsjh0 ðPjkm=hi;8m; iÞ: 1 if in the school located in j the majority of
students are SES h0 and 0 otherwise.

Then, the utility function with all the considerations previously
described is of the form

Vhijkm ¼
X

n

bn
hzn

jk þ ch � tijm þ hhðIh � qijkmÞ þ
1
l

ln wijm þ
1
l

ln uhijm

þ 1
l

ln /jk þ
X

k0
ghk0 � tamjk0 þ

X
h0

khh0 � nsjh ð14Þ

Thus, we have that the new probability of attending to a school
type k, located in j, in the mode m is given by:

Pjkm=hi ¼
/jk �wijm � uhijm � xjk exp l � Vhijkm

� �
P

j0k0m02X/j0k0 �wij0m0 � uhij0m0 � xj0k0 exp l � Vhij0k0m0
� � 8h; i

ð15Þ

Note that /jk as well as Vhijkm depend on Pjkm=hi then (15) generates a
fixed point system of equations. The solution of this system is a con-
dition for the existence of a static equilibrium. In Martinez et al.
(2009) its convergence has been demonstrated for similar choice
probabilities
3.2. Optimization model

After the students’ behavior modeling, the constrained logit
model (15) must be introduced into an optimization model that
seeks to find a configuration (location, size) of schools with lower
average travel times, improving the average number of students
per school, and the number of schools with multigrade classes.
However, considering only such kind of objectives can lead to
financially infeasible solutions; for this reason the objective of
minimizing the investment and operational costs is included.

Due to the fact that a problem can consider different types of
schools, then to explain the problem modeling it is assumed that
k; k0 2 {0 = closed; 1 = multigrade; 2 = small; 3 medium; 4 = large}

Min a
CT1�CT0

CT0

� �
�ð1�aÞ

� t1
Tv0�Tv1

Tv1

� �
þt2

Tcol1�Tcol0

Tcol0

� �
þt3

Nm0�Nm1

Nm1

� �	 

ð16Þ

Hhijkm¼Hhi �Pjkm=hi 8h; i; j;k;m ð17ÞX
k

xjkcapk¼
X

k

yjkcapkþajk� sjk 8j ð18Þ

ajk6M �addjk 8j;k ð19Þ
ajk P addjk 8j;k ð20Þ
sjk6M � subjk 8j;k ð21Þ
sjk P subjk 8j;k ð22ÞX

k

xjk¼1 8j ð23Þ

addjkþ subjk61 8j;k ð24Þ
subj0¼0 8j ð25Þ
addj4¼0 8j ð26Þ
CT0¼

X
j;k

C1jkyjk ð27Þ

CT1¼
X
j;k;k0

C1jk �xjkþC2jkk0 �yjk �xjk0
� �

ð28Þ

Tv1¼
P

h;i;j;k;mHhijkm � tijmP
hiHhi

ð29Þ

Tcol1¼
P

hiHhiP
j;k–0xjk

ð30Þ

Nm1¼
X
j;k¼1

xjk ð31Þ

t1þt2þt3¼1 ð32Þ
xjk;addjk;subjk 2f0;1g; ajk;sjk P 0; Pjkm=hi 2 ½0;1� ð33Þ

The parameters are

yjk
 1 if currently there is a school type k in the zone j

Hhi
 number of students in the group h in the zone i

capk
 school type k capacity

C1jk
 annual operating cost of school type k located in

the zone j [$]; which considers only the teachers
and principals’ salaries
C2jkk0
 annualized modifying cost of a school located in
the zone j, from the type k to the type k0 [$]; this
parameter includes (when it corresponds) the
costs of increasing or decreasing the capacity or
opening a new one
Decision variables

xjk
 1 if a school type k is installed in the zone j, 0

otherwise

addjk
 1 if to the school type k in the zone j the capacity

is increased, 0 otherwise
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subjk
 1 if to the school type k in the zone j the capacity
is decreased, 0 otherwise
ajk
 size in which the school type k capacity increases
in the zone j (students)
sjk
 size in which the school type k capacity decreases
in the zone j (students)
Pjkm=hi
 probability that a student located in a zone i, and
belonging to a group h, attends a school type k
located in the area j in the transport mode m.
Note that this variable depends on xjk as
explained in Section 3.1
Hhijkm
 Number of students in the group h, located in the
zone i attending the school type k located in zone
j in the transport mode m
Auxiliary variables

CT1;CT0
 total cost of schools operation with and without

intervention plus subsidy cost as appropriate [$]

Tv1; Tv0
 average travel time per student with and without

intervention (min)

Tcol1; Tcol0
 Average number of students enrolled per school

with and without intervention (students)

Nm1;Nm0
 Number of multigrade schools with and without

intervention (schools)
The model (16)–(33) is multi-objective optimization since it
seeks to improve the student’s performance and reduce system
costs. The objectives are not similar or comparable each other, so
that these are converted to indexes. Thus, the percent variation
of each objective in the new configuration is optimized regarding
the one that was initially had.

The objective function (16) indicates operating costs and invest-
ment in the education system are minimized simultaneously, and
in turn the average travel time is minimized too, maximizing the
average amount of enrolled students per school, and minimizing
the number of schools with multigrade classes. The planner must
establish the importance of each objective by modifying the
parameters a and t.

Eq. (17) shows the relationship between the number of students
attending a particular school with the choice probability.

With respect to the constraints, Eq. (18) establishes a balance
between the final situation of a school size and the current one,
such that the capacity of each school must increase and decrease
when it corresponds. Constraints (19)–(22) provide that when a
school capacity is increased or decreased there will be a binary var-
iable respectively that should take a value of one, and zero other-
wise. These constraints consider a value M, which corresponds to
a very large value that can be the maximum capacity of the
schools. Eq. (23) states that there must be only one school per
zone; this implies that the zoning was done considering this
assumption. Eq. (24) shows that a school can be increased o
reduced in capacity, but not both simultaneously. The constraints
(25) and (26) indicate that capacity cannot be reduced in a closed
school and in a large school cannot be increased respectively. The
constraints (27)–(32) are equations that determine the value of
auxiliary variables used in the objective function. Eq. (33) indicates
the nature of the decision variables.

4. Solution method

Due to the combinatorial nature of the problem, the nonlinear-
ity of the model and the need to solve fixed point systems of equa-
tions, there is no exact method for its solution, except for the
exhaustive enumeration which for combinatorial optimization
problems is very inefficient. For this reason the use of a metaheu-
ristic to find a good solution is proposed.

Heuristics used in location problems are Genetic Algorithms (GA)
(Jia, Ordoñez, & Dessouky, 2007; Song, Morrison, & Ko, 2013;
Toro-Díaz, Mayorga, Chanta, & McLay, 2013), Tabu Search (TS)
(Cura, 2010; Diaz, Ferland, Ribeiro, Vera, & Weintraub, 2007),
Simulated Annealing (SA) (Karaoglan, Altiparmak, Kara, & Dengiz,
2012; Taheri & Zomaya, 2007; Yu, Lin, Lee, & Ting, 2010), Heuristic
Concentration (HC) (Eiselt & Marianov, 2009), Greedy Randomized
Adaptative Search Procedure (GRASP) (Bautista & Pereira, 2006;
Marianov et al., 2008), particle swarm optimization (Samarghandi,
Taabayan, & Jahantigh, 2010). Unlike other problems, in this a fixed
point problem should be solved every time the objective function
is evaluated, therefore a heuristic that is efficient in this sense
and evaluates the objective the least amount of times is needed
while a good solution is being found simultaneously. In this paper,
the use of Tabu search is proposed (Glover, 1989, 1990, 1994).

Tabu Search is a meta-heuristic developed by Glover (1990). It
is an iterative process starting with an initial solution in search
of a better one. In each iteration a neighborhood is defined, which
is composed of solutions that are accessible from a movement from
the current one, then the best of these solutions is selected even if
this does not improve the current solution. To avoid returning to
the same solution the procedure maintains a list of constrained
items, called tabu list. Likewise, the procedure applies criteria to
leave local optima and make more intensive searches.

The form in which the use of meta-heuristics is proposed in the
problem is as follows: it considers that in each candidate area j 2 J
a school type k 2 K can be found, where k 2 {0 = closed, 1 = multi-
grade, 2 = small, 3 = medium, 4 = large}. Therefore, a feasible solu-
tion is of the form x ¼ fx1; x2; . . . ; xjJjg. From which a local search is
made, it is a procedure that permits to move to a neighboring solu-
tion x0. The elements (solutions) of the neighborhood are obtained
by making modifications m 2 M to the current solution. A neighbor
can be denoted as:

x0 ¼ x�m m 2 M

Therefore, a neighbor is obtained when making a modification
m 2 M to the solution x, hence the neighborhood NðxÞ can be
specified as follows:

NðxÞ ¼ fx0 : x0 ¼ x�m=m 2 Mg

In this problem a modification is defined as follows:
1-opt: Set of modifications where in any area j 2 J the size of

the school increases or decreases. Therefore, let x0 ¼ x�m for
m 2 1� opt and any area j 2 J, then: if xj ¼ k x0j ¼ k� 2 K=
ðk� ¼ kþ 1 [ k� ¼ k� 1Þ.

This means if for example a school is of medium size, in a
modification that school can only be large or small.

The number of neighbors (neighborhood) that are caused by a
movement 1-opt is sized jJj � 2, considering that for each one a
complex fixed point system of equations must be solved a strategy
to reduce the neighborhood is needed to be used. The proposed
strategy is as follows: not to consider movements that a priori will
not improve the solution, so only if a school is with some use of its
capacity its size will increase or decrease. For example if the
students attending a school are less than half the capacity of the
school, it would not be advisable to increase its size. Therefore, if
a current solution is xj ¼ k�, the neighboring solution for that
school will be given by: x0j ¼ k� þ 1() enrollmentj P T3 � Capk or
x0j ¼ k� � 1() enrollmentj 6 T4 � Capk. Where T3 and T4 are
parameters to be specified. With this strategy, the number of
neighbors decreases to a maximum jJj.

In each iteration, the best solution x0 is selected, it could happen
that in some iterations the best solution x0 is worse than the
current solution. However this movement is permitted because it



Table 1
Comparison of results with and without consideration of postulate.

Type of modification Postulate F.O. Time (seg.) Num. iter.

Open small school Yes �0.169 13 58
Not �0.169 4 30

Close small school Yes �0.181 11 44
Not �0.181 3 24
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is a strategy to avoid local optima. In this application, the elements
of the tabu list (TL) include the zones where schools were opened
or where interventions were performed to the existing schools,
that is to say if x0 ¼ x�m for m 2 1� opt in any area j 2 J, then
j 2 LT. A school will be on the list for a maximum number of T1

iterations, also called tabu ternure. The stopping criterion of the
heuristic is a maximum number of iterations without improve-
ment (ITER_MAX).

In addition to the basic tabu procedure described, it is drawn on
aspiration, intensification and diversification strategies that use
the short and long term memory structures of heuristic. In this
way, more intensive searches in promising regions are done and
searches in unvisited regions.

Every time the objective function is evaluated, it must be calcu-
lated Pjkm=hi (probability that a student of SES h located in the area i
attend a school of size k, located in j in mode m), for which it is
required to solve a complex fixed point system of equations, with
jHj � jIj � jJj � jKj � jMj equations.

When a school is resized, the choice probabilities of the whole
system should be re-calculated, which requires too much compu-
tational effort. But this change only affects some zones, because a
student may only attend schools that are within a maximum travel
time (Tmax), therefore the following postulate is formulated:

Postulate: Whenever a school that is located in the area j prod-
uct of a 1-opt move is modified, only the choice probabilities of the
zones that are within a time Rmax of the zone j (region of influence
Zj) will change, whereas the rest of probabilities will remain
unalterable.

To understand the postulate, the following figure must be con-
sidered (Fig. 1): the circles correspond to zones where students are
located and the squares are schools. For example, if school A is
modified, a region of influence ZA is generated. Then, according
to the postulate only the choice probabilities of the students from
zones belonging to the region of influence (1, 2, 3, 4 and 5) would
change, whereas the rest of probabilities of other zones will remain
unalterable.

The above is justified because when the school A is modified,
those directly affected are the students of the zones that can access
it at a maximum travel time Tmax (2 and 4) but due to the pres-
ence of externalities students from other zones would also be
affected (1, 3, 5, 8, etc.). However, it has been verified that the
enrollment of the schools closest to A are the ones that suffer the
most changes, and as schools are further away from A, their enroll-
ment varies less. Hence, the choice probabilities variations will also
be decreasing according the zones move away from A. Therefore,
since the modification made to school A in each iteration is con-
trolled and as product of this modification the variation of the
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Fig. 1. Influence region for school A.
other schools enrollment gradually decreases according the zones
move away from A; and furthermore an Rmax greater than a Tmax
is used, it can be ensured the postulate accomplishment. In conclu-
sion, when a modification in a school located in the area j is made,
only the probabilities Pjkm=hi 8i 2 Zj will change whereas the rest
of the probabilities will remain unalterable.

In Table 1, the results of comparing the postulate with different
modifications made in an instance are shown (see Section 5). The
first column indicates the modification description made to a
school; the second column indicates whether or not the postulate
is considered; the third column shows if there are differences in
the solutions from the objective function value of the optimization
model; the last two columns show the calculation time and the
number of iterations with and without the postulate for a specific
modification type. It can be seen that, after modifying a school, the
results obtained with and without the postulate are the same. The
objective function value obtained from each solution indicates that
the average travel time and the average number of students per
school are the same. In turn, the calculation times and the number
of iterations to find the solutions change. Therefore, if the heuristic
considers the postulate, the same solution would be obtained as
that obtained without it, but instead a saving in calculation time
would be achieved. This result is very important and will help
resolve larger problems.

With respect to the fixed point problem (15), it can be shown
that it converges and has a unique solution, therefore it becomes
an unconstrained nonlinear programming problem and solved by
commercial software.
5. Application and computational experience

The application will be made to locate secondary schools. The
students at this level are characterized by greater freedom for
longer trips; on the other hand as the quality the students receive
at this level is critical to achieve a good result in the PSU2 they are
willing to sacrifice more resources to attend good quality schools.

The application is performed in two networks of 10 and 45
zones, in which four scenarios are analyzed: The first consists of
locating and modifying schools without any constraint, in the sec-
ond it is constrained the fact that there must be at least a school
30 min away, the third scenario assumes a grant to school trans-
port for the lowest SES students and the latter constrains the num-
ber of schools that can be closed.

The application seeks to locate schools in the rural area, which
is modeled as a network whose nodes correspond to zones
i 2 f1;2; . . . ; Ig and the arcs represent the existing road network.
The students in each area differ in homogeneous groups by their
families’ SES h 2¼ f1;2;3g, differentiated mainly by their income
level Ih. It is assumed that each area is made up by the same per-
centage of students from each SES. Furthermore it is considered
that depending on the SES, each household allocates a percentage
of their income to their children education. Since each family has
an average number of children, the necessary annual income for
education that a student belonging to a particular SES is obtained.
2 Standardized test given to students in high school (cuarto medio) to start college.



Table 2
Solution quality and time resolution (Instance of 10 zones).

Sce Cost
parameter
(a)

Quality
parameter
(1 � a)

Constraint of
maximum
time

Transport
subsidy

Constraint of
schools closed

F.O.
Enumeration

F.O.
heuristic

GAP
(%)

Time resolution for
enumeration
(hh:mm:ss)

Time resolution for
heuristic (hh:mm:ss)

1 0.5 0.5 No No No �0.0202 �0.0202 0.0% 20:45:12 00:10:18
2 0.5 0.5 Yes (30 min) No No �0.0981 �0.0981 0.0% 12:35:18 00:00:59
3 0.5 0.5 No yes No 0.0825 0.0825 0.0% 32:12:33 00:18:20
4 0.50 0.50 No No Yes (1 school.) �0.0202 �0.0202 0.0% 15:23:54 00:10:05

Table 4
Variation in the costs and quality of the system compared with the initial solution.

Scenarios Costs (%) Quality Global (%)a

Travel time (%) Schools size (%) Total quality (%)

Assigns �1.54 1.09 �42.19 �21.64 �10.05
1 �2.68 �1.29 53.13 27.21 14.94
2 4.73 0.04 12.50 6.23 0.75
3 �4.55 4.86 89.06 42.10 23.32
5 2.89 �0.86 26.56 13.71 5.41

a Value corresponding to the objective function of the respective scenario.

Table 3
Solution of location and modification of schools (instance 45 zones).

Esc. Sized Closed
schoolsa

Opened
schools

Modified
schoolsd

Average travel
timeb (min)

% utilizationc Socioeconomic
status

Performance SIMCE Costs (million
Chilean pesos)d

Small Med Large Total Low Medium High Def. Good Outstan-ding

Initial 29 (48%) 4 (0%) 1 (0%) 34 – – – 23.5 (14.1%) 77% (108) 30 4 0 14 (40%) 14 (40%) 6 (20%) 0
Asig 32 (34%) 1 (0%) 0 (0%) 33 5 (60%) 4 0 23.8 (14.7%) 88% (111) 31 2 0 11 (33%) 17 (51%) 5 (15%) �26
1 13 (23%) 11 (36%) 2 (0%) 26 8 (88%) 0 11 23.2 (12.2%) 80% (141) 22 4 0 7 (27%) 13 (50%) 6 (23%) �45.2
2 27 (48%) 6 (17%) 1 (0%) 34 0 0 6 23.5 (14.0%) 75% (108) 30 4 0 14 (40%) 14 (40%) 6 (20%) 80
3 1 (0%) 12 (42%) 4 (0%) 17 17 (53%) 0 17 24.7 (10%) 81% (216) 16 1 0 5 (30%) 6 (35%) 6 (35%) �77.5
5 21 (33%) 9 (44%) 1 (0%) 31 3 (100%) 0 9 23.3 (14%) 76% (119) 28 3 0 11 (31%) 14 (45%) 6 (19%) 48.8

a The values in parentheses correspond to the percentage of schools with low performance in mathematics test: SIMCE.
b The values in parentheses correspond to the percentage of students who exceed the threshold of 45 min.
c The values in parentheses are the average number of students per school.
d Difference between the cost of the system once the changes have been made and the system’s initial configuration (1 US dollar is approximately 500 Chilean pesos).

3 The number of solutions for a problem is jk where j is the number of zones and k is
the school type.

I. Castillo-López, H.A. López-Ospina / Computers & Industrial Engineering 80 (2015) 284–294 291
The schools can be located in each of the zones j 2 f1;2; . . . ; Jg
assuming that in each course there can be at most 30 students,
schools are classified into 4 types k 2 f1;2;3;4g, closed, small,
medium and large respectively, all of municipal dependence. These
are located using a maximum coverage model (Location Set Cover-
ing Problem, see for example El-Darzi & Mitra, 1990; Farahani,
Asgari, Heidari, Hosseininia, & Goh, 2012) so that all students are
covered by at least one school within a maximum travel time. A
score will be randomly allocated to the existing schools, so that
40% have a poor performance, 40% good and 20% excellent. The
new settled schools will only be municipal and it will be assumed
that they will have an outstanding performance. With regard to the
costs, 3 types are only considered: operating, investment and clo-
sure costs.

Regarding the mode of transportation, there are 4 alternatives:
on foot, by bicycle, public and private transport m 2 f1;2;3;4g
respectively, the travel time is estimated from the average speed
in each of the modes. The cost of a walking trip is zero, the cycling
cost has an annualized cost because of the bike purchase, and the
cost in private and public transport varies depending on the trav-
eled stretches.

The multinomial logit function parameters are built such that
they reasonably reflect the students’ choice, ensure consistent
results and facilitate the calculation of the fixed-point systems.
The heuristic was programmed in MATLAB 7.6.0, the fixed-point
systems are solved with GAMS/ MINOS 3.5, all in a notebook with
AMD Turion 64 � 2 Dual Core, 2 GB RAM, OS Windows Vista.

The optimal solution of the instance of 10 zones is obtained by
complete enumeration.3 However because of the combinatorial nat-
ure of the problem, this method cannot be used to obtain the optimal
solution for the instance of 45 zones. Thus, the first instance will
evaluate the quality of the solutions, whereas the second will be
an analysis of the solutions.

In Table 2 the scenarios are described and the values of the
objective function are compared as well as the computation times
in the scenarios of the instances of 10 zones. In this table, the
results obtained by numbering are the same obtained by using
the heuristic; therefore the GAP in each of the scenarios is 0%.
The times used for obtaining the optimal solution by numbering
become between 12 and 32 h, whereas the heuristic finds them
in minutes. In this way the efficiency of the heuristic used is
verified.

In Table 3 different indicators obtained from the found solu-
tions for the instance of 45 zones are shown. The first column iden-
tifies the scenario. The second column shows the size of the
schools, specifying the number of small, medium and large schools.



Fig. 4. Real situation with the hypothetical solution that students attend to the
nearest school. M Small school, � Medium school, r Large school, Poor
performance, Good performance, Outstanding Performance, � Zone, ——- If at
least 2 students traveling from one zone to a school.

Fig. 3. Situation assuming that students attend to the nearest school. M Small
school, � Medium school, r Large school, Poor performance, Good
performance, Outstanding Performance, � Zone, ——- If at least 2 students
traveling from one zone to a school.
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The third, fourth and fifth columns indicate the number of closed,
open and modified schools respectively. The sixth column shows
the average travel time and the percentage of students traveling
above the permitted threshold. The seventh column shows the per-
centage of the schools capacity use and the average number of stu-
dents per school. The eighth and ninth columns show the number
of schools by SES and SIMCE performance respectively. Finally the
last column shows the difference between the system cost with the
modifications and the initial situation.

Table 4 shows the variation between the costs and the quality
variables compared to the initial situation. The first column identi-
fies the scenario, the second column shows how much the system
total costs vary including as appropriate the grant, the third col-
umn shows the variation in the quality of the system, specifying
the percentage change in each quality variable, the last column
indicates the global system variation.

The initial solution of the system, obtained from a maximum
coverage model, has 34 schools (29 small, 4 medium and 1 large).
The average travel time is 23.5 min and 14.1% of students travel
above the threshold. The percentage of the schools capacity use
is 77%, with an average of 108 students per school. The perfor-
mance of each school is randomly obtained. Fig. 2 shows the initial
situation.

If the solution of a model that allocates students to the closest
school such a way to minimize the travel time is used, it is evi-
denced with respect to the initial situation, the average travel time
increases 1.1% (23.8 min) and the percentage of students who tra-
vel above the trip threshold increases from 14% to 14.7%. 97% of
schools are small and schools with an outstanding performance
are closed. Therefore, in this application the solution of a model
that allocates students to the nearest school does not improve
the educational system quality and generally it worsens it at
21.6%. Fig. 3 shows the hypothetical allocations and Fig. 4 what
would happen in reality.

Scenario 1, which does not consider any constraint on the mod-
ification and location of schools, has a solution, with respect to the
initial configuration the number of schools is reduced to 26 (13
small, 11 medium and 2 large). The average travel time decreases
a 1.3% and the percentage of students exceeding the threshold is
reduced from 14% to 12.2%. There are on average 141 students
per school. The number of schools with poor performance halves
and the system annual costs decrease a 2.7%. Clearly this solution
improves the quality of education; the quality variables show an
improvement of 27.2%. The number of small schools decreases
and medium and large schools are increased, demonstrating a con-
solidation of institutions. There are also a smaller number of
Fig. 2. Initial situation. M Small school, � Medium school, r Large school,
Poor performance, Good performance, Outstanding Performance, � Zone, ——-
If at least 2 students traveling from one zone to a school.
schools with poor performance, because 88% of the closed schools
are of this type. Depending on the objective function value this sce-
nario achieves an overall improvement of 15% compared to the ini-
tial solution and with respect to the rest of scenarios is the second
best solution. Fig. 5 shows this Scenario.

The solution of scenario 2, which requires the existence of at
least one school 30 min away, shows that schools are kept at 34,
but with different sizes (27 small, 6 medium and 1 large). The aver-
age travel time and the percentage of students who exceed the
threshold are almost the same. This solution increases the annual
cost of the educational system in 4.7% and the quality variables
improve a 6.2%.

Scenario 3, which simulates a possible 100% grant for the
transport of low SES students, has as solution that the number
of schools is reduced to 17 (1 small, 12 medium and 4 large). This
new configuration significantly reduces the number of small
schools and increases the amount of medium and large schools.
As a result of the grant, the average travel time increases a
4.86%, but the percentage of students exceeding the threshold is
reduced from 14% to 10%. The use of the installed capacity also
increases to 81% having on average 216 students per school.
The number of schools with poor performance decreases by more
than a half. For this, it is necessary a grant that reaches $ 190 mil-
lion per year and benefits the 45% of the student population. The
system annual costs (including the grant) decrease a 4.5%. This



Fig. 7. Optimization scenario 4. M Small school, � Medium school, r Large
school, Poor performance, Good performance, Outstanding Performance,
� Zone, ——- If at least 2 students traveling from one zone to a school.

Fig. 5. optimization scenario 1. M Small school, � Medium school, r Large
school, Poor performance, Good performance, Outstanding Performance,
� Zone, ——- If at least 2 students traveling from one zone to a school.
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solution greatly improves the quality of education. The quality
variables show a 42.1% improvement. In addition the poor perfor-
mance schools decrease from 14 to 5. The objective function
value indicates that the system is globally improved a 23.3%.
Fig. 6 shows this solution.

Scenario 4, which constraints the number of schools that can be
close to 3, has as solution: a configuration with respect to the ini-
tial solution the number of schools is reduced to 31 (21 small, 9
medium and 1 large). The average travel time is reduced a 0.86%.
The capacity use decreases to 76% having on average 119 students
per school. The three closed schools have a poor performance. And
the system annual cost increases a 2.9%. This solution only
improves the quality a 13.7%. And globally the system a 5.4%.
Fig. 7 shows this solution.

The scenario that gets greater reduction in the system costs is 3.
This solution achieves an annual reduction (including the transpor-
tation grant) of 4.5%. Also, this scenario is the one that achieves
better results in terms of quality, the solution improves the quality
variables a 42.1%. This solution is characterized by closing almost
all small schools and greatly increasing the number of medium
and large schools. Due to the possibility of doing longer trips, the
average travel time increases a 4.9%, but the percentage of students
who exceed the travel threshold decreases from 14% to 10%. The
number of poor performance schools is reduced to more than a
half, having a greater number of outstanding than deficient
schools.
Fig. 6. Optimization scenario 3. M Small school, � Medium school, r Large
school, Poor performance, Good performance, Outstanding Performance, �
Zone, ——- If at least 2 students traveling from one zone to a school.
The scenarios that impose constraints on the modifications are
the ones which get fewer improvements to the system. Scenario 2,
which constraints the solution to the existence of at least one
school 30 min away, is the one with the worst results. In almost
all scenarios the opening of schools is not considered, although it
is assumed that the new schools will have a good performance.
This is because the initial solution installs enough schools, thus
increasing the amount increases the system costs. There are not
any high SES schools either, because the percentage of the popula-
tion belonging to this SES is very small and scattered as to form a
school of this level.
6. Conclusions

This research presents a mathematical model to determine the
location and size of new schools and the intervention type that
must be made in the current ones, so that the investment and oper-
ating costs and the schools structural variables that influence on
academic performance are optimized. The model incorporates
two modeling approaches: the discrete choice theory by which
the students’ behavior is modeled and the mathematical program-
ming which optimizes the variables that influence the school per-
formance. The need to incorporate the time in the modeling is
achieved by introducing the modal choice problem. Also using a
suitable microeconomic model, the choice variables and the exter-
nalities presence within the election process are justified. Because
a student has constraints that limit the set of choice alternatives, a
constrained multinomial logit model (CMNL) arises.

By incorporating the constrained logit model within an optimi-
zation model, it becomes an endogenous nonlinear problem and
solving it requires using a Tabu Search heuristic procedure. Even
so the problem is different from typical applications of the heuris-
tic since each time the objective function is to evaluate it is needed
to solve a fixed point system of equations. Given this complexity,
the heuristic incorporates reduction strategies of the neighborhood
size and efficient probabilities calculation. Precisely because of
these strategies, this methodology can be applied to solve larger
problems.

The model is applied to the location of secondary schools in
instances of 10 and 45 zones, in the first the solution quality is
evaluated by comparing it with the optimal solution obtained by
enumeration. The best heuristic solutions for 10 zones are obtained
in a few minutes and compared with those obtained by enumera-
tion it is verified that they are optimal, which demonstrates the
efficiency of the heuristic used. In the instance of 45 zones,
the optimal solution cannot be obtained by enumeration due to
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the combinatorial nature, but these demonstrate significant
improvements in the educational system compared to the initial sit-
uation. The solution obtained from a model that allocates students to
the nearest school shows that with respect to the initial solution the
costs decrease a 2.7%, but the quality also decreases a 21.6%. There-
fore, doing interventions in the schools, obtained from an allocation
model, would not improve the quality of education. The scenario
that achieves better results in terms of costs and quality is the one
that grants transportation for low SES students. This solution
achieves an annual reduction in costs of 4.5% (including transporta-
tion grant) and improves the quality variables a 42.1%.

In general the methodology is very flexible and can be used to
analyze different scenarios, depending on the policies expected
to be implemented. In addition it can be used to locate other facil-
ities in which the choice depends not only on the location but also
on the cost, time, or the choices made by others (externalities).

As future research it is expected to test the model in real
instances, finding the characteristic parameters of the discrete
choice problem as well as adding or deleting some of the postu-
lates used in this research or using other heuristics to solve the
same problem.
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