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Interplay of disorder and PT symmetry in one-dimensional optical lattices
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We study a one-dimensional binary optical lattice in the presence of diagonal disorder and alternating gain
and loss, and examine the light transport phenomena for localized and extended input beams. In the pure
PT -symmetric case, we derive an exact expression for the behavior of light localization in terms of typical
parameters of the system. Within the PT -symmetric region light localization becomes constant as a function of
the strength of the gain and loss parameter, but outside the PT -symmetric window, light localization increases
as the gain and loss parameter increases. When disorder is added, we observe that the presence of gain and loss
inhibits (favors) the transport for localized (extended) excitations.
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I. INTRODUCTION

In 1958 Anderson showed, within the independent electron
framework, that the presence of a finite concentration of linear
uncorrelated disorder completely inhibits the quasiparticle
propagation in one and two dimensions, giving rise to a
saturation of its mean-square displacement and an exponential
decrease of the transmissivity of plane waves with system
size [1–3]. Proposed originally for electrons and one-particle
excitations in solids [1,4–6], it was soon extended to many
other fields such as acoustics [7,8], Bose-Einstein conden-
sates [9], and optics [10–16].

A different and novel concept that has gained much recent
attention is that of PT symmetry. It is based on the seminal
work of Bender and co-workers [17,18], who showed that non-
Hermitian Hamiltonians are capable of displaying a purely
real eigenvalue spectrum, provided the system is invariant
with respect to the combined operations of parity (P) and
time-reversal (T ) symmetry. For one-dimensional systems the
PT requirement leads to the condition that the imaginary part
of the potential term in the Hamiltonian be an odd function,
while its real part be even. In a PT -symmetric system, the
effects of loss and gain can balance each other and, as a
result, give rise to a bounded dynamics. The system thus
described can experience a spontaneous symmetry breaking
from a PT -symmetric phase (all eigenvalues real) to a broken
phase (at least two complex eigenvalues), as the imaginary
part of the potential is increased. In the case of optics, the
paraxial wave equation has the form of a Schrödinger equation
and, as a consequence, the potential is proportional to the
index of refraction. The PT -symmetry requirements lead
to the condition that the real part of the refractive index
be an even function, while the imaginary part be an odd
function in space. To date, numerous PT -symmetric systems
have been explored in several fields, from optics [19–26],
electronic circuits [27], solid-state, and atomic physics [28,29],
to magnetic metamaterials [30], among others. The PT -
symmetry-breaking phenomenon has been observed in several
experiments [22,23,31,32]. Recently, it has been observed that
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the presence of PT symmetry in a (discrete) one-dimensional
(1D) waveguide array with binary coupling gives rise to light
localization, i.e., “emulates” disorder [33].

It is known that a 1D simple periodic lattice with homoge-
neous couplings and endowed with gain and loss, displaying in
this way PT symmetry, is always in the broken phase of this
symmetry and does not have a stable parameter window [34].
For finite PT -symmetrical lattices, it has been shown that PT
symmetry is preserved inside a parameter window whose size
shrinks with the number of lattice sites [35–39]. If one breaks
the homogeneity of the couplings, and considers a binary
lattice, it was shown that there is a well-defined parameter
window where PT symmetry is preserved [40].

A previous study of the effect of PT symmetry on
Anderson localization, carried out on a (continuous) 2D square
optical lattice, suggests that the system is always in the PT -
symmetric broken phase and, consequently, light localization
is enhanced [41]. However, in Ref. [42] Bendix et al. found
that for sufficiently long 1D chains, the system remains in
the exact PT -symmetric phase only inside an exponentially
small parameter region. On the other hand, in Ref. [43], West
et al. developed a theory for the critical gain or loss parameter
separating unbroken from brokenPT symmetry. They showed
that chaos assists the unbroken PT phase.

In this work we are interested in examining the interplay
between the simultaneous presence of disorder and PT
symmetry, and how this affects the transport properties of
extended excitations (plane waves) and the dynamical evolu-
tion of a completely localized excitation across a 1D binary
lattice. Contrary to the conclusions suggested in [41], we will
show that the presence of PT symmetry does not always
assist localization. More specifically we will show that, for a
disordered binary lattice, the presence of gain and loss tends to
favor (inhibit) the transport of extended (localized) excitations.

II. MODEL

Let us consider a weakly coupled array of optical waveg-
uides with binary couplings (cf. Fig. 1). In addition, each
guide possesses a propagation constant whose real part can
be random, and whose imaginary part is distributed across
the array in a manner that satisfies the requirements of PT
symmetry, that is, the gain [yellow (light gray) circles] or
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FIG. 1. (Color online) Sketch of the 1D linear binary lattice with
alternating gain [yellow (light gray) filled circles] and loss [orange
(dark gray) filled circles].

loss [orange (dark gray) circles] coefficient alternates in sign
from site to site. Such a system can be modeled by a set of
coupled, discrete linear Schrödinger equations. Considering
only coupling between nearest-neighbor waveguides, the
model is described by

i
d ψn,1

d z
+ C1ψn−1,2 + C2ψn,2 + (γn,1 + iρn,1)ψn,1 = 0,

(1)

i
d ψn,2

d z
+ C1ψn+1,1 + C2ψn,1 + (γn,2 + iρn,2)ψn,2 = 0,

with γn,1(2) = 1 + εn,1(2). Here εn,1(2) is a real random number
and εn,1(2) ∈ [−W/2,W/2] where W is the disorder width. A
possible choice for the gain and loss coefficient ρn,1(2) is to set
ρn,1 = +ρ and ρn,2 = −ρ.

The optical power content for such a system is defined as

P =
∑

n

|ψn,1|2 + |ψn,2|2 (2)

and in the absence of gain and loss, P is a conserved quantity.
Model (1) is a Hamiltonian system, where idzψn,1(2) =
∂H/∂ψ∗

n,1(2). The (non-Hermitian) Hamiltonian is given by

H =
∑

n

[iρ(|ψn,1|2 − |ψn,2|2) + C2ψ
∗
n,1ψn,2

+C1ψ
∗
n,1ψn−1,2 + C2ψ

∗
n,2ψn,1 + C1ψ

∗
n,2ψn+1,1]. (3)

In order to distinguish the spatial distribution (structure) of
various solutions, a useful quantity called the participation rate
of a solution ψn,1(2) is defined as

R = P 2∑
n |ψn,1|4 + |ψn,2|4 , (4)

which indicates how many sites are effectively excited in the
lattice. Here n runs over a half of the total number of sites (N ).
For a completely extended state, R = N , while in the presence
of complete localization, R = 1.

We begin by looking at the structure of the modes of the
corresponding eigenvalue problem. As a first, and very rough
preliminary view, we collapse the whole lattice to only two
sites, i.e., a dimer, and examine the behavior of the instability
gain of the modes as a function of the gain and loss parameter,
and also as a function of the disorder width.

III. SIMPLIFIED DIMER MODEL

The corresponding equations for the dimer model in our
system are

i
d ψ1

d z
+ (ε1 + iρ)ψ1 + Cψ2 = 0,

(5)
i
d ψ2

d z
+ (ε2 − iρ)ψ2 + Cψ1 = 0.

We look for stationary solutions ψ1(2)(z) ∼ ψ1(2) exp (iλz).
This leads to the eigenvalue equation

(−λ + ε1 + iρ)ψ1 + Cψ2 = 0,
(6)

(−λ + ε2 − iρ)ψ2 + Cψ1 = 0.

After solving the eigenvalue problem, one obtains the propa-
gation constant

λ = (ε1 + ε2)

2
± 1

2

√
(ε1 − ε2)2 − 4ρ2 + 4C2 + 4i(ε1 − ε2)ρ.

(7)

In this oversimplified model, the disorder width is given by
|ε1 − ε2|.

We note that λ is in general a complex number, but in the
absence of “disorder,” i.e., when ε1 = ε2, the system is PT
symmetric and there is a parameter window where λ ∈ Re:
ρ < C. We conclude that the presence of any amount of
disorder gives rise to a complex propagation constant. Now, let
us look at the behavior of the imaginary part of λ as a function
of ρ, keeping the coupling constant, C = 1. From Eq. (7) we
obtain the imaginary part of λ, or instability gain, as

g = 1√
2

(−a +
√

a2 + b2)1/2, (8)

where a = (ε1 − ε2)2 − 4ρ2 + 4C2, b = 4(ε1 − ε2)ρ. Fig-
ure 2(a) shows the behavior of g as a function of ρ for several
values of disorder width W .

Perhaps the most interesting feature of this graph is the fact
that the instability gain increases as a function of disorder,
for a fixed gain and loss parameter. At large enough ρ values,
all the curves fall eventually on the W = 0 case: g = �(ρ −
1)

√
ρ2 − 1, where �(x) is the step function: �(x) = 0 for

x < 0, or �(x) = 1 for x > 0.
Now, let us look at the behavior of the participation ratio R

for our dimer system:

R = (1 + α2)2

1 + α4
, (9)

where α ≡ |ψ2|2/|ψ1|2. Now, R ranges between 1 and 2; when
R approaches either 1 on any of the sites, we are in the
“localized regime,” while a value of 2 indicates an “extended
regime.” From Eq. (6) one obtains

α = ψ2

ψ1
= λ − ε1 − iρ

C
, (10)

where λ is given explicitly by Eq. (7). Figure 2(b) shows R vs ρ

for several “disorder widths.” For a given disorder an increase
in gain and loss reduces R, while for a fixed gain and loss, an
increase in disorder also decreases R. It would seem that the
presence of gain and loss is effectively increasing the disorder,
which reduces the spatial extent of the stationary mode.

Thus, from the results of the dimer model, we conclude that
the interplay of PT symmetry and disorder tends to enhance
the action of disorder, while at the same time it leads the
system into the broken PT -symmetry regime, for any amount
of disorder.
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FIG. 2. (Color online) (a) Instability gain g and (b) participation ratio R in the dimer model, as a function of the gain and loss parameter
ρ, both for several “disorder widths” labeled in the inset. C = 1.

IV. LONG WAVEGUIDE ARRAY

A. Gain and loss only

Now we consider a long waveguide array with N sites,
with N � 2, described by model (1). We consider first the
case of absence of disorder (W = 0), but in the presence of
the gain and loss. We look for stationary modes of the form
ψn,1(2)(z) = ψn,1(2)e

ikn+iλz. This leads to the linear equations

(−λ + iρ)ψn,1 + (C1e
−ik + C2)ψn,2 = 0,

(11)
(C2 + C1e

ik)ψn,1 + (−λ − iρ)ψn,2 = 0;

after imposing the condition that the determinant of the system
be zero, in order for nontrivial solutions to exist, we arrive at
the dispersion relation

λ±(k,ρ) = ±
√


, (12)

where 
 ≡ C2
1 + C2

2 − ρ2 + 2C1C2 cos k. With this result we
obtain the eigensolutions:[

ψ±
1 ,

ψ±
2

]
=

[
δ±,

1

]
, where, δ± = iρ ± √




C2 + C1eik
.

Stability domains or regions where the PT symmetry is
preserved correspond to values of λ that are purely real. Inside
the parameter window where this occurs, there is balance
between gain and losses in the system.

Fixing C1 = 1, and defining C ≡ C2/C1, we can rewrite
the dispersion relation as

λ±(k,ρ) = ±
√

−ρ2 + 1 + C2 + 2C cos k. (13)

In order to guarantee that λ ∈ Re, the relation ρ2 � 1 + C2 +
2C cos k must be fulfilled for all wave number k. Figure 3(a)
shows the stability regions in parameters space, the ρ − C
plane, for several wave vectors k. The different shaded areas
represent stability domains for several k values. In particular
there is a stability region valid for all k values, shown as
the darkest region in Fig. 3(a). This is the most important
case, since when one considers the dynamical evolution of a
general optical excitation, each Fourier component will evolve
according to one of the eigenvalues; if one or several of some
of them are imaginary, the dynamics will be unstable. Thus,
for stability it is necessary to stay inside the darkest region in
Fig. 3(a). It is also worth pointing out that for the case of a
homogeneous array, i.e., C = 1, there is no absolute stability
window for any choice of parameters [40]. Figure 3(b) shows
the instability gain defined as the maximum of the absolute
value of all the imaginary parts of the eigenvalues. This
instability gain will dominate the dynamics at long propagation
distances. Under the curve we have indicated the character
of the eigenvalues in different sectors of ρ values. For our
normalization choice, the first region with real eigenvalues

ρ

C
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FIG. 3. (Color online) (a) Stability regions as function of gain and loss parameter ρ and coupling ratio C, for several wave vectors k.
Darkness increases with k. Stable modes for all k (λ ∈ Re) can only exist within the darkest region. (b) Instability gain g (log scale) as a
function of gain and loss ρ, in the absence of disorder. The character of the eigenvalues changes with ρ.
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only extends from C = 0 up to C = 1. Between C = 1 and
C = 3, the eigenvalues are either real or imaginary, and finally
for C > 3 the eigenvalues are all imaginary.

Let us now go deeper into the localization of the light for
systems that exhibit a dispersion relation as from Eq. (12). We
start by calculating the power content P of the corresponding
eigenmodes,

P± =
N∑
n

(1 + |δ±|2) =
N∑

odd

1 +
N∑

even

|δ±|2 = 1 + |δ±|2
2

N.

(14)

Therefore, the participation ratio R of an eigenmode is

R± = (1 + |δ±|2)2

1 + |δ±|4
N

2
. (15)

We have two cases to consider. The first one corresponds to

 � 0, that is, inside the stable window. In that case, we have

R± =
[
1 + (

iρ±√



C2+C1eik

)( −iρ±√



C2+C1e−ik

)]2

1 + [(
iρ±√




C2+C1eik

)( −iρ±√



C2+C1e−ik

)]2

N

2
= N. (16)

In order to have an idea of the localization tendency of
the whole system, we proceed to take an average over all
eigenmodes, that is, an average over all wave vectors k:

〈R±〉k = 1

2π

∫ 2π

0
R± d k = N. (17)

This means that the eigenmodes display complete delocaliza-
tion in the PT -symmetry phase. For the case 
 < 0, we are
in broken PT -symmetry phase. The participation ratio is now

R± =
[
1 + (

iρ±i
√−


C2+C1eik

)(−iρ∓i
√−


C2+C1e−ik

)]2

1 + [(
iρ±i

√−


C2+C1eik

)(−iρ∓i
√−


C2+C1e−ik

)]4

N

2
,

= −Nρ2

C2
1 + C2

2 − 2ρ2 + 2C1C2 cos k
, (18)

and the mean participation ratio will be given by

〈R±〉k = N

2π

∫ 2π

0
d k

−ρ2

C2
1 + C2

2 − 2ρ2 + 2C1C2 cos k
. (19)

Equation (19) establishes, in a closed form, the evolution
of the participation rate for a binary lattice in terms of the
strength of gain and loss parameter, as well as a function of
the strength of its couplings. Figure 4(b) (upper curve) shows
〈R〉k as a function of ρ, in the absence of disorder. As ρ

increases, 〈R〉k decreases, indicating a greater localization.
This is reminiscent of Anderson localization with ρ playing
the part of the disorder width, which is in qualitative agreement
with recent experiments [33].

B. Gain and loss plus disorder

Let us now add disorder into the picture. The presence
of disorder makes the system no longer PT symmetric, and
some eigenvalues will be complex. Disorder also destroys
the periodicity of the system and the computation of its
eigenvalues and eigensolutions must proceed numerically. The
instability gain, g ≡ Im(λ)max, will dominate the dynamics at
long propagation distances. Figure 4(a) shows this instability
gain as a function of the gain and loss parameter, for several
disorder widths labeled in the inset, and a coupling ratio
of C = 2. In general, for a given disorder width, the gain
increases monotonically with ρ, converging eventually to the
curve g(ρ) =

√
ρ2 − 1. On the other hand, for a fixed ρ, the

gain also increases with disorder. This behavior of the gain
suggests that the presence of disorder and gain and loss tends
to destabilize the system. In Fig. 4(b) we show the participation
ratio, this time averaged over all eigenstates and over a number
of disorder realizations (Nr = 100). This double-averaged
parameter serves as an estimator for the localization tendency
of the system. As we can see, for a fixed gain and loss value,
an increase in disorder decreases 〈R〉kW , indicating an increase
in localization, as expected on general grounds. On the other
hand, for a fixed disorder, 〈R〉kW first increases with ρ, reaches a
maximum, and finally decreases steadily with further increase
in ρ. Note that the maximum occurs at |C1 − C2| = 1, and
that there is an inflection point at |C1 + C2| = 3. We have seen
these two special points before when examining the instability
gain in the absence of disorder [Fig. 3(b)]. Now, the initial
increase of 〈R〉kW with ρ indicates that, as ρ is increased, the
optical power content of the modes becomes more uniformly
distributed in space. A very similar phenomenon has been
observed in lattices with disorder and nonlinearity [44].
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FIG. 4. (Color online) (a) Averaged instability gain 〈g〉W and (b) participation ratio R in a 1D binary array with disorder, gain, and loss, as
a function of the gain and loss parameter ρ, both for several disorder widths labeled in the inset. C = 2.
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FIG. 5. (Color online) Dynamical wave-packet evolution in 1D binary array with disorder, gain, and loss. (a) 〈R(z)〉W and 〈M2(z)〉W (inset)
are displayed for several gain and loss values in the range 0 � ρ � 0.1, and (b) 〈M2〉W and 〈R〉W (inset) as a function of W for several gain
and loss values in the range 0 � ρ � 0.3. C = 2.

V. TRANSPORT PROPERTIES

Let us now consider the problem of the transport of optical
power in this binary waveguide array modeled by Eq. (1),
originally PT symmetric, and then slightly perturbed by
introducing disorder into their propagation constants, that is
by imposing a random distribution of indices of refraction. We
will focus on two cases: the propagation of initially localized
(δ-function-like) and of extended (plane wave) excitations.

A. δ-like beam excitation

We start by analyzing the dynamical evolution of a narrow
input beam focused on the central guide of the array. For that
we integrate numerically the model (1), for a binary waveguide
array in the presence of alternating gain and losses and linear
disorder. We will focus on the mean size of the wave packet
upon the beam propagation, measured by the mean-square
displacement,

M2 =
∑N

i=1(n − nc)2 |ψi |2∑N
i=1 |ψi |2

. (20)

In our simulations, we take N = 1200, and nc = N/2 is
the initially excited waveguide. It is worth mentioning that
model (1) (for ρ �= 0) is a non-Hermitian system, then,
there is no conserved quantities (integrals of motion) during
propagation. For instance, the optical power P = ∑

n |ψn|2 is
not a dynamical constant and we expect that, in the absence
of disorder, its value will oscillate. However, in the presence
of disorder the PT symmetry could be broken leading to the
growth of the optical power.

Since we are dealing with disordered arrays, we must
collect information from a number Nr of different disorder
realizations, and then take the average over them. Quanti-
ties (2) and (4) are also useful in that they tell us how the
light is distributing along the array upon propagation. In the
following numerical analysis, we have set a coupling ratio of
C = 2 and, for each case, we perform 100 disorder realizations
(Nr = 100). In the absence of disorder, the PT symmetry will
hold for ρ � 1 [see white dotted line in Fig. 3(a)]. However,
the interplay between gain and losses with disorder breaks

the PT symmetry, which could lead to the emergence of
eigenfunctions with complex eigenvalues.

Figure 5(a) displays four cases of 〈R(z)〉W evolution for
disordered binary arrays of length z = 300. Each of them
corresponds to a different value of ρ parameter, but keeping
the same width of disorder W = 0.3. The brightest line stands
for ρ = 0, i.e., in the absence of gain and losses. The other
lines correspond to ρ = 0.05, 0.08, and 0.1, respectively.
From here, we clearly see how 〈R(z)〉W tends to saturate due
to wave-packet localization, in agreement with the thesis of
Anderson. Nevertheless, the number of effectively excited sites
diminishes with the increment of ρ values, i.e., the presence
of alternate gain and losses contributes to localize the wave
packet further. Similarly, from the inset in Fig. 5(a) we observe
that 〈M2(z)〉W also evolves towards a saturation as expected
from Anderson localization. It is worth pointing out here that
the behavior described above is invariant against a spatial
permutation that exchanges the sites with gain and loss. In
other words, it does not matter whether the initial δ excitation
is placed on a “gain” site or on a “loss” site.

Figure 5(b) shows the effect of disorder on the width of
the wave packet 〈M2(z)〉W at the output of an array of length
z = 100, for several values of the gain and loss parameter.
In all cases, as the width of the disorder increases, 〈M2(z)〉W
decreases steadily, as a power law. This decrease is faster for
larger values of ρ. The behavior of the average participation
ratio as a function of disorder, displayed as an inset in Fig. 5(b),
is the same behavior, except at small disorder widths where R

increases with W , for all ρ. We have noticed a similar behavior
for R when we discussed Fig. 3. In other words, for small disor-
der widths there is a tendency to redistribute the optical power
content in a more uniform manner among the guides [44].

B. Extended beam excitation

Finally, we analyze the averaged transmission 〈T 〉kW of a
plane wave across a disordered segment of length L containing
gain and losses, as well as disorder. We assume the segment
embedded in a large homogeneous 1D lattice (black filled
circles). A sketch of the system is shown in Fig. 6, where
orange and yellow (light gray and dark gray) filled circles
represent those sites with losses and gain, respectively.
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L

FIG. 6. (Color online) Sketch of a disordered segment, of length
L, with alternating gain [yellow (light gray) filled circles] and
losses [orange (dark gray) filled circles], embedded in a 1D linear
homogeneous lattice (black filled circles).

We are interested in knowing how the transmissivity, as a
function of L, is affected by the interplay of disorder and the
presence of gain and loss. In the absence of gain and loss, it is
well known that the transmission would decay exponentially
with the size of the disordered segment [45]. When disorder
and nonlinearity are present, the transmission decays as a
power law [46].

Outside the “impurity” segment, the system is modeled by
the discrete Schrödinger equation,

d ψn

d z
+ V (ψn−1 + ψn+1) = 0, (21)

which has stationary solutions of the form ψn = φne
iλz,

leading to the dispersion relation λ = 2V cos k. On the other
hand, inside the segment, the field is governed by model (1),
which can be rewritten in the following way:

i
d ψn

d z
+ Cn,n−1ψn−1 + Cn,n+1ψn+1 + γnψn = 0, (22)

where now γn = 1 + εn ± iρn, with ρn = ρ (−ρ) for n even
(odd). Its stationary version is given by

λφn + Cn,n−1ψn−1 + Cn,n+1ψn+1 + γnψn = 0. (23)

Let us now consider the transmission of an extended excitation,
i.e., a plane wave across the segment:

ψn =
{

R0e
ikn + R1e

−ikn, n � 0,

R2e
ikn, n � L.

(24)

From Eq. (23), we obtain the recurrence relation

ψn−1 = (λ − γn)ψn − Cn,n+1ψn+1

Cn,n−1
, (25)

which we will use to compute the transmission: for a given
wave vector k, one starts at the end of the segment n = L and

assumes a given value for R2. For example R2 = 1. Therefore,
from Eq. (24), at N = L and n = L + 1, ψL = exp(ikL)
and ψL+1 = exp[ik(L + 1)], respectively. Then we iterate
backwards using the above recurrence relation, Eq. (25), until
we reach the beginning of the segment where R0 is computed.
The transmissivity is then given by T = |R2|2/|R0|2.

Figure 7 shows the average transmission (log scale) across a
disordered segment of length L, with gain and losses. We have
averaged over 100 disorder realizations, and also over all wave
vectors k. In general, we see that 〈T 〉kW decreases with L, and
this tendency is stronger when the width of disorder increases.
This is shown in Fig. 7(b), where light gray (gray and dark
gray) lines correspond with W = 0.1 (W = 0.2 and 0.3).

Figure 7(a) shows something interesting: as the gain and
loss coefficient is increased (for fixed disorder and fixed L), the
transmission increases with ρ. This is in marked contrast to the
case of the δ-like beam excitation where the opposite tendency
occurred. We also observe the presence of fluctuations in the
transmission, some of them becoming quite strong (T � 1),
for a specific impurity length. We point out here that this
kind of fluctuation also appears in the absence of disorder.
For those values of ρ within the stability zone [Fig. 3(a)], but
not so close to the boundary, the total transmission slightly
oscillates around values lower than unity. However, values of
ρ close to the boundary and beyond, lead to strong fluctuations
around specific system lengths. Therefore, the system leaves
the PT -symmetric regime as soon as disorder is imprinted in
the system. To these fluctuations correspond regimes of very
strong amplification.

VI. DISCUSSION

We have examined the transport of excitations across a 1D
binary lattice, in the presence of disorder, plus the presence
of gain and loss. In the absence of disorder, the system
is PT symmetric. As a first approach to the problem we
studied a dimer reduction, observing that the interplay of PT
symmetry and disorder tends to enhance the action of disorder,
while at the same time it leads the system into the broken
PT -symmetry regime, for any amount of disorder. Next, we
examine the case of a long binary lattice, finding that as soon
as disorder is introduced, the system goes into the broken
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FIG. 7. (Color online) Averaged transmission 〈T 〉k
W of a plane wave across a disordered segment containing gain and loss, as a function of

the length of the segment L. (a) ρ = 0.0 (ρ = 0.2 and ρ = 0.4) lower (middle and upper) curve for fixed W = 0.1, and (b) W = 0.1 (W = 0.2
and W = 0.3) upper (middle and lower) line for fixed ρ = 0.1.
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PT -symmetry phase, and that the presence of gain and loss
tends to reinforce the action of disorder.

Next we consider the propagation of localized and extended
excitations inside the binary system. For the case of the δ-like
initial beam, we observe that its propagation is somewhat
inhibited by an increase in gain and loss. Surprisingly, the
opposite happens when examining the transmission of plane
waves across a binary lattice segment with disorder and gain
and loss: in that case, the presence of gain and loss tends to
increase the transmission. This transmission experiments ro-
bust fluctuations over imposed over its well-defined decaying
behavior as the segment length increases. These fluctuations
appear independent of the width of disorder or the strength
of gain and loss parameter. Moreover, we have observed
fluctuations for the case of a fixed ρ and L and varying disorder
W . We believe that the origin of these fluctuations with L

or W have their origin in the complex eigenvalue spectra of
the system. For a fixed ρ and L, the set of eigenvalues will
change from random realization to realization, introducing
new instability gains which might cause the transmission to

change abruptly. On the other hand, for a system with fixed
disorder and gain and loss, a change in L, generates a different
set of complex eigenvalues where, again, the instability gain
might change, even for as small a change as one site. The
fluctuations can become so strong as to generate transmissions
greater than unity (see Fig. 7).

We conclude that, for a binary chain, the interplay of
disorder and gain and loss tends to reduce the spatial extent
of the eigenmodes and that it favors (inhibits) the dynamical
propagation of extended (localized) excitations, giving also
rise to strong fluctuations in the transmission of plane waves
across the system.
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CRISTIAN MEJÍA-CORTÉS AND MARIO I. MOLINA PHYSICAL REVIEW A 91, 033815 (2015)

[34] G. Tsironis and N. Lazarides, Appl. Phys. A 115, 449
(2014).

[35] D. D. Scott and Y. N. Joglekar, Phys. Rev. A 83, 050102
(2011).

[36] I. V. Barashenkov, L. Baker, and N. V. Alexeeva, Phys. Rev. A
87, 033819 (2013).

[37] M. I. Molina, Phys. Rev. E 89, 033201 (2014).
[38] P. Kevrekidis, D. Pelinovsky, and D. Tyugin, SIAM J. Appl.

Dyn. Syst. 12, 1210 (2013).
[39] D. E. Pelinovsky, D. A. Zezyulin, and V. V. Konotop, J. Phys.

A: Math. Theor. 47, 085204 (2014).
[40] S. V. Dmitriev, A. A. Sukhorukov, and Y. S. Kivshar, Opt. Lett.

35, 2976 (2010).
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