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Abstract This work deals with the joint simulation of copper grade (as a continuous
regionalized variable) and rock type (as a categorical variable) in Lince–Estefanía
deposit, located in northern Chile. The region under study is heterogeneous, con-
taining three main rock types (intrusive, andesite and breccia bodies) with different
copper grade distributions. To perform joint simulation, the multi-Gaussian and pluri-
Gaussian models are used in a combined form. To this end, three auxiliary Gaussian
random fields are considered, one for simulating copper grade, up to a monotonic
transformation, and two for simulating rock types according to a given truncation
rule. Furthermore, the dependence between copper grade and rock types is repro-
duced by considering cross correlations between these Gaussian random fields. To
investigate the benefits of the joint simulation algorithm, copper grade and rock types
are also simulated by the traditional cascade approach and the results are compared.
It is shown that the cascade approach produces hard boundaries, that is, abrupt tran-
sitions of copper grades when crossing rock-type boundaries, a condition that does
not exist in the study area according to the contact analysis held on the available data.
In contrast, the joint simulation approach produces gradual transitions of the copper
grade near the rock-type boundaries and is more suited to the actual data.
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1 Introduction

In ore body modeling, it is often of interest to assess the spatial variability of geolog-
ical parameters such as rock types and grades of elements of interest, which is a key
factor in downstream processes, such asmine planning andmanagement, and provides
information on geological heterogeneity at multiple scales. Because the spatial distrib-
utions of grades and rock types are often interdependent, a separate modeling of these
two parameters is inadequate. Instead, it is more natural to consider a joint modeling
of grades and rock types. Nowadays, a hierarchical approach (or cascade approach)
is usually applied for this purpose. It means that, first of all, the layout of each rock
type is delimited in the study area. In this respect, one can use a deterministic model
based on geological knowledge and available exploration data (Duke and Hanna 2001;
Mackenzie and Wilson 2001), or a stochastic model based on simulating the occur-
rence of each rock type in the study area (Journel and Alabert 1990; Armstrong et al.
2011; Chilès and Delfiner 2012; Strebelle 2002, to name a few). After delimitating the
rock-type layouts, the grades are simulated in each rock type separately using only
the data that belong to this rock type, leading to a piecewise grade model (Alabert and
Massonnat 1990; Roldão et al. 2012; Boucher and Dimitrakopoulos 2012; Jones et al.
2013). Although this cascade approach is simple, it has some substantial drawbacks.
For instance, it does not take into account the dependence between the grades across
rock-type boundaries; therefore, except for the case of a hard boundary for which
there exists a sudden change in the grade distribution when crossing the boundary
(Kim et al. 2005), it does not properly reflect the spatial relationship between the
grades and the occurrence of given rock types (Wilde and Deutsch 2012; Rossi and
Deutsch 2014). In addition, when using a deterministic rock-type model, one works
with a single interpretation of the deposit and does not account for any uncertainty in
the rock-type layout.

To account for the spatial dependence of grade across rock-type boundaries,
Larrondo et al. (2004) and Ortiz and Emery (2006) suggest modeling not only the
direct, but also the cross-correlation functions of the grades variables defined sepa-
rately within each rock type, while Vargas-Guzman (2008) proposes a stepwise mod-
eling of these grade variables using successive conditional covariance functions. In
all cases, a piecewise grade model is still considered, insofar as the grade is split into
as many variables as rock types, which does not allow for smooth transitions across
rock types. An alternative approach that avoids such a piecewise modeling is to jointly
simulate the grades and rock types. This approach is more complex because of the
different natures of these two parameters: grades are measured on a continuous quan-
titative scale, whereas rock types are measured on a nominal scale. To overcome this
difficulty, one can integrate two well-known geostatistical models, as proposed by
Emery and Silva (2009) and Cáceres and Emery (2010): the multi-Gaussian model for
simulating grades and the truncated pluriGaussian model for simulating rock types.
This approach allows a flexible modeling of the contact relationships between rock
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types and the dependence relationships between grades and rock types, but, to the best
of the authors’ knowledge, so far it has been applied only to disseminated deposits.

The objective of this paper is to apply the joint simulation approach to a stratabound
copper deposit, to quantify the uncertainty in the copper grades and prevailing rock
types, and to compare this approach with the aforementioned cascade approach. The
outline is as follows: after a brief recall on the methodology, the case study will be
presented, consisting of exploratory data analysis, contact analysis, joint modeling of
grade and rock type, joint simulation and analysis of results.

2 Methodology

2.1 Multi-Gaussian Simulation of Grades

The multi-Gaussian model is widespread for simulating mineral grades (Journel and
Huijbregts 1978). The implementation consists of the following steps. First, one has to
transform the grade data into normal scores and fit a variogram to the transformed data.
Then, a Gaussian random field is simulated by use of algorithms such as the turning
bands, sequential or spectral simulation (Deutsch and Journel 1998; Lantuéjoul 2002;
Chilès andDelfiner 2012). Finally, the simulatedGaussian values are back transformed
to grade values.

2.2 PluriGaussian Simulation of Rock Types

PluriGaussian simulation aims at constructing realizations of a categorical variable (a
rock type in the present case), represented by the truncation of one or more Gaussian
random fields. First, according to the spatial relationships and contacts between rock
types, one has to define a number of Gaussian random fields and a truncation rule
(Lantuéjoul 2002; Dowd et al. 2003; Armstrong et al. 2011). Afterwards, the spatial
correlation structure of the Gaussian random fields is modeled, to fit the rock-type
indicator variograms. With respect to simulation, a set of Gaussian values are first
generated at the data locations, conditionally to the rock-type data, by Gibbs sampling.
Then, multi-Gaussian simulation is performed over the study area. Finally, using the
truncation rule, the simulated Gaussian values are converted into rock types.

2.3 Joint Simulation of Grade and Rock Type

The joint simulation approach uses the multi-Gaussian model to simulate the grades
and the pluriGaussian model to simulate the rock types. The novelty is that the under-
lying Gaussian random fields are supposed to be spatially cross-correlated, which
allows introducing a spatial dependence between rock types and grades. When all the
Gaussian random fields have been jointly simulated, using the back-transformation
and truncation rule, one can obtain the simulated grades and rock types. Details of the
approach can be found in Emery and Silva (2009). Figure 1 illustrates the main steps
of the approach.
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Fig. 1 Steps of joint simulation approach

3 Case Study: Lince–Estefanía Deposit

The case study under consideration corresponds to a stratabound manto-type copper
deposit located in northern Chile and operated byMineraMichilla. Mining is achieved
through underground (Estefanía) and open pit (Lince) operations.

3.1 Geological Description

The Lince–Estefanía deposit Michilla is located 130 km north–northeast of Antofa-
gasta city, Chile. The host sequence comprises andesitic basaltic lava flows of the La
Negra Formation (Oliveros et al. 2008). This sequence has been intruded by diorite
to granite bodies, dykes, as well as breccia bodies with volcanic clasts and an intru-
sive matrix. Breccia bodies are generally located around the dioritic intrusions and
extend laterally from the intrusions into stratabound manto bodies. Breccias with high
copper content are believed to be pre- or syn-mineralization. The main ore minerals
are copper oxides (predominantly atacamite and chrysocolla), which dominate near
the surface (above 500 m a.m.s.l.), and copper sulfides (chalcocite, bornite, covel-
lite and chalcopyrite), which dominate at elevations below 250 m a.m.s.l. From 250
to 500 m a.m.s.l., a mixed sulfide-oxide transition is found. Chemical analyses of
the ores, as well as field and petrographic observations, indicate that copper sulfides
in stratabound-manto and breccia ore bodies were formed by the same processes,
which suggests that one may observe a correlation of copper grades across these rock
types.
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3.2 Presentation of the Data Set

The case study will be developed on the basis of an exploration data set from diamond
and reversed-circulation drill holes. For the sake of simplicity, the data have been
restricted to a small portion of the deposit and the grade values have been multiplied
by a constant factor to preserve data confidentiality. Concerning rock types, three main
types will be considered for modeling:

• Intrusive bodies (code 1), consisting of dioritic bodies with thicknesses from 20
to 450 m, associated with small dykes that crosscut all the other rock types. Their
boundary with the surrounding rocks is irregular.

• Andesite (code 2), composed of aphanitic andesites, porphyritic andesites, ocoites
and metandesites that are unlikely to contain economic copper mineralization due
to their low permeability. It is widely distributed in the deposit, with a monoclinal
structure that strikes at N65◦E and dips at 35–40◦NW, and is part of the volcanic
sequence known as La Negra Formation.

• Volcanic breccias bodies (code 3), composed of amygdaloidal andesites and vol-
canic breccias that are likely to hold coppermineralization due to their high porosity.
As for andesites, it is part of the La Negra Formation. It extends into stratabound
manto bodies and occupies a monoclinal structure that strikes at N65◦E and dips at
35–40◦NW.

A cross section showing the data is presented in Fig. 2, which uses local coordinates
(abscissa axis oriented along the direction N65◦E). A summary of descriptive statistics
and a visualization of the copper grade distribution is given in Table 1 and Fig. 3,
showing a dependence between grade and rock type, with volcanic breccias (rock
type 3) having the highest average copper grade and intrusive bodies (rock type 1)

Fig. 2 Location of copper grade and rock-type data over a cross section of the deposit
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Table 1 Statistics of grade data (in %), globally and per rock type

Global Rock type 1 Rock type 2 Rock type 3

Count 7,173 619 3,680 2,874

Minimum 0.00 0.00 0.00 0.00

Maximum 17.07 2.38 14.51 17.07

Mean 0.49 0.136 0.352 0.746

Standard deviation 1.14 0.187 0.709 1.576

Median 0.18 0.09 0.18 0.20

Fig. 3 Histograms of copper grade data, overall (a) and per rock type (b, c, d)

the lowest average copper grade. To better understand the dependence relationships
between grade and rock type, a contact analysis is performed next.

3.3 Contact Analysis

The analysis aims at determining the behavior of the copper grade in the neighborhood
of the boundary between two rock types (Glacken and Snowden 2001; Wilde and
Deutsch 2012). In practice, two kinds of analysis can be performed. The first one is
a mean value contact analysis, consisting in grouping the data of one rock type into
classes of distance from the boundary with another rock type (as an approximation,
one often considers the distance to the closest data of this second rock type in the same
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Fig. 4 Contact analysis between rock types: a, c, e mean grade graphs; b, d, f cross-correlation functions
calculated along main anisotropy directions (greenN25◦W, redN115◦E dip−60◦, blueN25◦Wdip−30◦)

drill hole), then plotting the mean grade of each group as a function of the distance
to the boundary (Rossi and Deutsch 2014). The resulting plot shows how the mean
grade varies when getting closer or farther to a boundary. The second analysis is a
cross-correlation contact analysis, which consists in identifying pairs of data with a
given lag separation distance that belong to two different rock types and plotting the
correlation coefficient between such data pairs as a function of the lag separation
distance. The plot indicates how much correlated are the grade values between both
sides of the boundary. As a result, one observes a soft contact between all rock types,
characterized by a rather smooth transition of the mean grade (Fig. 4a, c, e) and a
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Fig. 5 Sample (dashed lines) and modeled (solid lines) variograms of normal scores data associated with
grade, calculated along main anisotropy directions (greenN25◦W, redN115◦E dip −60◦, blueN25◦Wdip
−30◦)

correlation that does not vanish at small lag separation distances (Fig. 4b, d, f). The
width of the transition zone is limited to 10 to 20m, which makes a difference between
this deposit (a high-variability stratabound deposit) and disseminated porphyry copper
deposits with thicker transition zones.

3.4 Copper Grade Modeling

The grade data are transformed into normal scores (associatedwith a Gaussian random
field Y0) prior to performing variogram analysis. The modeled variogram (denoted as
g00) consists of a nugget effect and four nested anisotropic spherical structures (Fig. 5)

g00 = 0.1nugget + 0.29sph(20, 10, 5) + 0.26sph(175, 95, 60)

+0.17sph(195,∞, 195) + 0.18sph(500,∞,∞). (1)

In the above formula, the distances into brackets indicate the ranges (expressed in
meters) along the main anisotropy directions.

3.5 Rock-Type Modeling

3.5.1 Truncation Rule

The examination of the drill hole data indicates that all the rock types are in contact. If
one considers two independent Gaussian random fields (Y1 and Y2) for pluriGaussian
simulation, then three simple truncation rules can be considered to reproduce the
contacts between rock types (Fig. 6). To determine which of these truncation rules is
best suited to the data, a simple way is to examine the direct and cross variograms of
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Fig. 7 Cross versus direct variograms of rock-type indicators, calculated along main anisotropy direc-
tions (green N25◦W, red N115◦E dip −60◦, blue N25◦W dip −30◦). Straight lines indicating perfect
proportionality are superimposed

rock-type indicators. More specifically, if γi j represents the cross variogram between
the indicators of rock types i and j , then (proof in Appendix A)

• γ12
γ11

and γ13
γ11

do not vary with the lag separation vector in the model of Fig. 6a

• γ12
γ22

and γ23
γ22

do not vary with the lag separation vector in the model of Fig. 6b

• γ13
γ33

and γ23
γ33

do not vary with the lag separation vector in the model of Fig. 6c.

Experimentally, one observes that γ12 and γ13 are practically proportional to γ11
(Fig. 7a, b), but not to γ22 (Fig. 7c) or γ33 (Fig. 7e). Accordingly, the ratios γ12/γ11
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and γ13/γ11 can be considered as independent of the lag separation vector, whereas
the ratios γ12/γ22 and γ13/γ33 cannot. This suggests that Fig. 6a is the best trunca-
tion rule to describe the contact relationships between rock types. Such a truncation
rule, in which rock type 1 (intrusive bodies) appears to crosscut the other two rock
types, furthermore agrees with the geology of the deposit, insofar as rock type 1 is the
youngest one (dated between 168 and 112 Ma) and intruded both andesite and breccia
bodies, which pertain to the Jurassic La Negra Formation (Oliveros et al. 2008).

The truncation rule will therefore be defined on the basis of two thresholds, asso-
ciated with two independent Gaussian random fields Y1 and Y2, as follows:

• Location x belongs to rock type 1 if Y1(x) ≤ y1
• Location x belongs to rock type 2 if Y1(x) > y1 and Y2(x) ≤ y2
• Location x belongs to rock type 3 if Y1(x) > y1 and Y2(x) > y2.

The truncation thresholds y1 and y2 can be defined according to the rock-type
proportions (Armstrong et al. 2011). This leads to the following threshold values:
y1 = −1.405 and y2 = 0.137.

3.5.2 Variogram Analysis

To complete the pluriGaussian model, it remains to fit the variograms of the two
underlyingGaussian randomfieldsY1 andY2.Because these randomfields are assumed
independent, their cross variogram is zero. As for the direct variograms, a trial-and-
error procedure is used, to fit the variograms of rock-type indicators (Emery 2007;
Emery and Silva 2009). At this stage, an important practical aspect to consider is that,
in the following section, we will be interested in cross-correlating the two Gaussian
random fields used in the pluriGaussian model with the Gaussian random field already
used in the multi-Gaussian model [Eq. (1)]. Therefore, it is advisable to consider all
or part of the basic nested structures used for grade modeling (Sect. 3.4). Following
this recommendation, the variograms of Gaussian random fields associated with the
pluriGaussian model (denoted by g11 and g22) are found to be

g11 = 0.07sph(20, 10, 5) + 0.161sph(175, 95, 60)

+0.197sph(195,∞, 195) + 0.572sph(500,∞,∞) (2)

g22 = 0.50sph(20, 10, 5) + 0.50sph(30, 20, 10). (3)

In these formulae, the distances into brackets indicate the ranges along the same
directions as for the grade data. The sample and modeled indicator direct and cross
variograms are shown in Fig. 8. The cross variograms are negative due to the compo-
sitional nature of the rock-type indicators: the increase of an indicator (from 0 to 1) is
necessarily associated with the decrease of another indicator (from 1 to 0).

3.6 Modeling the Spatial Dependence Between Grade and Rock Type

Up to now, six nested structures (a nugget effect and five spherical structures) have
been introduced. The first spherical structure is common for the Gaussian random
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Fig. 8 Sample (dashed lines) and modeled (solid lines) direct and cross variograms of indicator data
associated with rock types, calculated along main anisotropy directions (green N25◦W, red N115◦E dip
−60◦, blue N25◦W dip −30◦)

fields associated with the grade (Y0) and with the rock type (Y1 and Y2). The next
three spherical models are common for Y0 and Y1, the last spherical model only per-
tains to Y2, whereas the nugget effect only pertains to Y0. To cross-correlate grade
and rock type, we will now propose a linear model of coregionalization for Y0, Y1 and
Y2. From the previous steps, some entries of the coregionalization matrices associated
with the aforementioned nested structures are already specified: the diagonal entries
correspond to the direct variograms of Y0, Y1 and Y2, while the off-diagonal entries
between Y1 and Y2 are equal to zero because Y1 and Y2 are independent. Also, the entry
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Fig. 9 Sample (dashed lines) and modeled (solid lines) cross variograms between indicators data and
transformed grade data, calculated along main anisotropy directions (greenN25◦W, redN115◦E dip−60◦,
blue N25◦W dip −30◦)

associated with a cross variogram gi j between Yi and Y j (with i , j = 0, 1 or 2) is zero
when the entry associated with the direct variogram gii or g j j is zero (Wackernagel
2003). Accordingly, it only remains to determine four entries (a, b, c, d)

⎛
⎜⎝
g00 g01 g02
g01 g11 g12
g02 g12 g22

⎞
⎟⎠ =

⎛
⎜⎝
0.1 0 0

0 0 0

0 0 0

⎞
⎟⎠ nugget +

⎛
⎜⎝
0.29 a b

a 0.07 0

b 0 0.50

⎞
⎟⎠ sph(20, 10, 5)

+
⎛
⎜⎝
0.26 c 0

c 0.161 0

0 0 0

⎞
⎟⎠ sph(175, 95, 60) +

⎛
⎜⎝
0.17 d 0

d 0.197 0

0 0 0

⎞
⎟⎠ sph(195,∞, 195)

+
⎛
⎜⎝
0.18 e 0

e 0.572 0

0 0 0

⎞
⎟⎠ sph(500,∞,∞) +

⎛
⎜⎝
0 0 0

0 0 0

0 0 0.50

⎞
⎟⎠ sph(30, 20, 10). (4)

For the fitting, one has to be aware of which Gaussian random field is modeling
each rock type. For instance, the indicator of rock-type 1 only depends on random
field Y1, while the indicators of rock types 2 and 3 depend on both random fields Y1
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and Y2. Accordingly, the cross variogram between the transformed grade (Y0) and the
indicator of rock type 1 only depends on the cross variogram between Y0 and Y1, while
the cross variograms between the transformed grade and the indicator of rock type 2
or rock type 3 also depend on the cross variogram between Y0 and Y2. Based on the
previous statements, the unknown coefficients (a, c, d, e) are first chosen (by trial-
and-error) to fit the cross variogram between the transformed grade and the indicator
of rock type 1. Once done, the last coefficient (b) is chosen in order to fit the cross
variograms between the transformed grade and the indicators of rock types 2 and 3.
The following values represent the best coincidence between sample and modeled
cross variograms (Fig. 9)

a = 0.01; b = 0.2; c = 0.15; d = 0.1; e = 0.15. (5)

To ensure the mathematical consistency of the proposed coregionalization model,
one can check that all the defined coregionalizationmatrices are positive semi-definite,
that is, their eigenvalues are nonnegative (Wackernagel 2003).

3.7 Joint Simulation Results

Provided with the model fitted in Sects. 3.4–3.6, one can construct realizations of
grade and rock type. Simulation first consists in simulating the Gaussian random
fields Y1 and Y2 at the data locations, conditionally to the grade and rock-type data,
for which an iterative algorithm (Gibbs sampler) is necessary. Then, one performs a
joint multi-Gaussian simulation of Y0, Y1 and Y2; this is done by decomposing these
random fields into spatially non-correlated factors using coregionalization analysis

Fig. 10 One realization of copper grade and rock type (joint simulation)
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Fig. 11 Probabilities of occurrence of each rock type and expected copper grade, calculated over 100
realizations (joint simulation)

and by independently simulating the factors via the turning bands method (Emery
2008). Figure 10 shows one joint realization of grade and rock type over the same
cross section as in Fig. 2, and Fig. 11 displays the probability of occurrence of each
rock type and the expected copper grade calculated over 100 realizations. The drill
hole locations are perceptible on the probability maps and correspond to the locations
where the probability is close to zero or to one.

3.8 Cascade Simulation of Grade and Rock Type

The results of the joint simulation approach will now be compared to those of the
more traditional cascade approach. The cascade approach consists in first simulating
the layout of the rock types, then in simulating the copper grade in each rock type
separately using only the data that belong to the rock type under consideration. The
steps are the following.

1. For each rock type: transformation of the copper grade data into normal scores
and variogram analysis of the normal scores data.

2. PluriGaussian simulation of each rock type, using themodel presented in Sect. 3.5.
3. For each pluriGaussian realization and each rock type

(a) Identify the nodes belonging to the rock type
(b) Simulate copper grade conditionally to the grade data belonging to the rock

type. At this stage, turning bands simulation is used (Emery and Lantuéjoul
2006).

4. Obtain copper grade realizations by juxtaposing the simulated grades in rock types
1, 2 and 3 (a single grade realization is associated with each rock type realization).

Figures 12 and 13 illustrate the results of the cascade simulation approach. The prob-
ability maps are similar to those obtained with the joint simulation approach, which
is explained because the rock type is represented by the same pluriGaussian model
in both approaches. In contrast, the map of expected copper grade shows stronger
differences with the joint simulation approach, which can be observed by comparing
Figs. 11 and 13.
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Fig. 12 One realization of copper grade and rock type (cascade simulation)

Fig. 13 Probabilities of occurrence of each rock type and expected copper grade, calculated over 100
realizations (cascade simulation)

3.9 Comparison of Results

3.9.1 Distribution of Copper Grade Conditioned to Rock Type

Since it accounts for cross correlations between grade and rock type through coeffi-
cients a, b, c, d and e in Eq. (4), the joint simulation model fitted in Sects. 3.4–3.6
yields a marginal grade distribution that differs from one rock type to another.
Such a distribution of grade conditioned to the rock type can be assessed analyti-
cally using expansions into Hermite polynomials (Appendix B), or numerically by
co-simulating the three Gaussian random fields (Y0,Y1,Y2), converting the simulated
Gaussian values into grades and rock types, and finally calculating the distributions of
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the simulated grades after separating by rock type. The resulting distributions prove
to agree with the distributions observed on the data, within each rock type and overall
(Fig. 14a, b). Concerning the cascade approach, as the copper grade is simulatedwithin
each rock type separately, the distribution in each rock type is also well reproduced
when compared to the original data (Fig. 14a, c).

3.9.2 Spatial Correlation of Copper Grade Conditioned to Rock Type

In addition to marginal distributions, one can assess the spatial correlation of the
simulated grade in each rock type and compare it with the experimental correlation
observed in the data. It is seen (Fig. 15) that the correlation functions are generally
well reproduced with both approaches (joint and cascade simulation), with a slightly
better performance of one approach in some cases and of the other approach in other
cases.

3.9.3 Rock-Type Boundaries

Thedifferences between the two simulation approaches aremore strikingwhen looking
at the behavior of the copper grade in the vicinity of a rock-type boundary. In particular,
a look at the realizations indicates that the joint simulation tends to produce soft
boundaries, with smooth transitions in the copper grade values (Fig. 10b, d), while the
cascade simulation tends to produce hard boundaries, with abrupt changes in copper
grade (Fig. 12b, d).

This is confirmed by examining the variations of mean grade when getting closer
to a rock type boundary and by assessing the correlation of copper grade across a
boundary, through mean graphs and correlation graphs similar to the ones used for
contact analysis. Figures 16 and 17 show such graphs for the grades simulated with the
two approaches. In the cascade approach, the mean grade shows an abrupt transition
near the rock type boundaries (Fig. 16) and the simulated grades on either side of the
boundaries are practically not correlated (Fig. 17). In contrast, with the joint simulation
approach, the variations of mean grade are smoother and the simulated grades between
both sides of the boundaries are correlated, as what is observed in the data (Fig. 4)
(the more irregular profile of the data curves shown in Fig. 4 can be attributed to
experimental fluctuations due to scarcity of data, rather than to a genuine behavior of
the copper grade). The realizations obtained with the joint simulation approach are
therefore more realistic in the neighborhood of rock-type boundaries and better suited
to the description of the copper grade in the deposit.

4 Conclusions

Obtaining uncertainty models is a cumbersome process when one deals with region-
alized variables of different natures that are cross-correlated, such as grades and rock
types. In this study, two well-known geostatistical models are combined: the multi-
Gaussianmodel to describe grades and the pluriGaussianmodel to describe rock types.
The benefits of jointly simulating the grades and rock types with the proposed method
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Fig. 16 Mean grade graphs for joint simulation (a, c, e) and cascade simulation (b, d, f)

are threefold. First, as opposed to deterministic rock-type modeling, one can measure
the uncertainty in the rock-type layout, for example, through probability maps. Sec-
ond, the spatial dependence between grade and rock type can be reproduced. Third,
the spatial correlation of grade across rock-type boundaries is also reproduced, while
this correlation is ignored using the cascade simulation approach.

The co-simulation approach is suitable when grades exhibit gradual transitions
across rock-type boundaries. This happens in most ore deposits, in which there is no
clear-cut discontinuity in the grade distribution when crossing a geological bound-
ary, which can be explained because the physicochemical properties of the rock (pH,
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Fig. 17 Correlation graphs for joint simulation (a, c, e) and cascade simulation (b, d, f), calculated along
main anisotropy directions (green N25◦W, red N115◦E dip −60◦, blue N25◦W dip −30◦)

reduction potential, porosity, permeability, etc.) usually have transitional spatial vari-
ations. In contrast, the cascade approach consisting in simulating the rock types first,
then the grades within each rock type, is adequate in the presence of hard boundaries.
Such boundaries could be associated with faults or with geological gaps (vacuities or
stratigraphic hiatii), among others.

Acknowledgments This researchwas fundedby theChileanCommission for Scientific andTechnological
Research, through Project CONICYT/FONDECYT/REGULAR/N◦1130085, and by a student research
grant from the International Association forMathematical Geosciences (Mathematical Geosciences Student

123



492 Math Geosci (2015) 47:471–495

Award). The authors also acknowledge the support of Minera Michilla for providing the data set used in
this work.

Appendix A: Relations Between Indicator Direct and Cross Variograms

In this study, three possible truncation rules that differ by the ordering of the rock
types are under consideration (Fig. 6). A simple way to determine the most suitable
truncation rule is to examine the direct and cross variograms of rock-type indicators
(R1, R2 and R3). In the model shown in Fig. 6a, the rock-type indicators are defined
by truncating the Gaussian random fields Y1 and Y2 as follows

⎧⎨
⎩
R1(x) = 1Y1(x)<y1
R2(x) = [1 − 1Y1(x)<y1] 1Y2(x)<y2
R3(x) = [1 − 1Y1(x)<y1] [1 − 1Y2(x)<y2 ].

(6)

Let us calculate the cross variogram between R1 and R2 for a given lag separation
vector h

2γ12(h) = E{[R1(x + h) − R1(x)] [R2(x + h) − R2(x)]}
= E{[1Y1(x+h)<y1 − 1Y1(x)<y1] [1 − 1Y1(x+h)<y1] 1Y2(x+h)<y2}

−E{[1Y1(x+h)<y1 − 1Y1(x)<y1] [1 − 1Y1(x)<y1] 1Y2(x)<y2}. (7)

Since Y1 and Y2 are independent, one obtains

2γ12(h) = E{[1Y1(x+h)<y1 − 1Y1(x)<y1] [1 − 1Y1(x+h)<y1]} E{ 1Y2(x+h)<y2}
−E{[1Y1(x+h)<y1 − 1Y1(x)<y1] [1 − 1Y1(x)<y1]} E{ 1Y2(x)<y2}. (8)

Because Y2 is stationary, E{1Y2(x+h)<y2} = E{1Y2(x)<y2} = G(y2), where G is the
standard Gaussian cumulative distribution function. Therefore,

2γ12(h) = E{[1Y1(x+h)<y1 − 1Y1(x)<y1] [1Y1(x)<y1 − 1Y1(x+h)<y1]}G(y2),

= −2G(y2) γ11(h), (9)

where γ11(h) is the direct variogram of R1 for lag separation vector h. Similarly, one
finds that the cross variogram between R1 and R3 is proportional to γ11

γ13(h) = [G(y2) − 1] γ11(h). (10)

Accordingly, the ratios of cross-to-direct variograms,γ12(h)/γ11(h) andγ13(h)/γ11(h),
do not depend on h. This property implies the absence of preferential contacts (edge
effects) between rock type 1 and rock type 2, and between rock type 1 and rock type
3 (Rivoirard 1994; Séguret 2013).

The results concerning the flags shown in Fig. 6b, c are obtained by permuting the
components of vector (R1, R2, R3).
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Appendix B: Distributions of Grade Conditional to Rock Type

In this appendix, it is of interest to determine, in the model fitted in Sects. 3.4–3.6, the
distribution of grade conditional to the rock type, that is

G(y0|rock 1) = P{Y0(x) < y0|Y1(x) < y1}
G(y0|rock 2) = P{Y0(x) < y0|Y1(x) ≥ y1,Y2(x) < y2} (11)

G(y0|rock 3) = P{Y0(x) < y0|Y1(x) ≥ y1,Y2(x) ≥ y2}

for any real value y0 (cut-off on the transformed copper grade).
To this end, let us expand the joint density of {Y0(x),Y1(x)} as follows (Lantuéjoul

2002)

gρ01(y, y
′) = g(y)g(y′)

+∞∑
p=0

ρ
p
01

p ! Hp(y) Hp(y
′), (12)

with g the standard Gaussian probability density function, ρ01 the correlation coeffi-
cient between Y0(x) and Y1(x), and Hp the Hermite polynomial of degree p, defined as

Hp(y) = 1

g(y)

dpg(y)

dy p
. (13)

By integrating term by term, one obtains the bivariate cumulative distribution function

Gρ01(y0, y1) =
+∞∑
p=0

ρ
p
01

p !
∫ y0

−∞

∫ y1

−∞
g(y)g(y′) Hp(y) Hp(y

′) dy dy′

= G(y0)G(y1) + g(y0)g(y1)
+∞∑
p=1

ρ
p
01

p ! Hp−1(y0) Hp−1(y1). (14)

Likewise, the joint density of {Y0(x),Y1(x),Y2(x)} can be expanded as follows
(Lantuéjoul 2002)

gρ01,ρ02,ρ12
(y, y′, y′′) = g(y)g(y′)g(y′′)

+∞∑
p,q,r=0

ρ
p
01 ρ

q
02ρ

r
12

p ! q! r !
×Hp+q(y) Hp+r (y

′) Hq+r (y
′′). (15)

A term-by-term integration leads to the trivariate cumulative distribution function

Gρ01,ρ02,ρ12(y0, y1, y2) = G(y0)G(y1)G(y2)

+g(y0)g(y1)
+∞∑
p=0

ρ
p
01

p! Hp−1(y0) Hp−1(y1)
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+g(y0)g(y2)
+∞∑
q=0

ρ
q
02

q! Hq−1(y0) Hq−1(y2)

+g(y1)g(y2)
+∞∑
r=0

ρr
12

r ! Hr−1(y1) Hr−1(y2)

+
+∞∑

p,q,r=0

ρ
p
01 ρ

q
02ρ

r
12

p ! q! r ! g(y0)g(y1)g(y2) Hp+q−1(y0) Hp+r−1(y1) Hq+r−1(y2)

(16)

Accordingly, using the inclusion–exclusion principle, the distribution of grade con-
ditional to the rock type [Eq. (11)] can be expressed as

G(y0|rock 1) = Gρ01(y0, y1)

G(y1)
(17)

G(y0|rock 2) = Gρ02(y0, y2) − Gρ01,ρ02,ρ12(y0, y1, y2)

G(y2) − Gρ12(y1, y2)
(18)

G(y0|rock 3) = G(y0) − Gρ01(y0, y1) − Gρ02(y0, y2) + Gρ01,ρ02,ρ12(y0, y1, y2)

1 − G(y1) − G(y2) + Gρ12(y1, y2)
.

(19)
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