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Abstract We provide a brief introduction to the basic models used to describe traffic
on congested networks, both in urban transport and telecommunications. We dis-
cuss traffic equilibrium models, covering atomic and non-atomic routing games, with
emphasis on situations where the travel times are subject to random fluctuations. We
use convex optimization to present the models in a unified framework that stresses
the common underlying structures. As a prototypical example of traffic equilibrium
with elastic demands, we discuss some models for routing and congestion control in
telecommunications. We also describe a class of stochastic dynamics that model the
adaptive behavior of agents and which provides a plausible micro-foundation for the
equilibrium. Finally we present some recent ideas on how risk-averse behavior might
be incorporated in the equilibrium models.

Keywords Routing games · Network congestion · Repeated games ·
Adaptive dynamics · Stochastic travel times · Risk aversion

Mathematics Subject Classification 90B18 · 90B20 · 68M12 · 91A13 · 91A20 ·
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1 Introduction

Congestion is a recurring phenomenon in large urban areas as well as in telecommu-
nication networks, especially during peak hours when transport demands approach
the saturation capacities of the links. Traffic equilibrium models provide a static
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118 R. Cominetti

description of how the flows circulate in such congested networks. Equilibrium is
usually described as a steady state that emerges from the adaptive behavior of selfish
agents who strive to minimize their own travel time while competing for the limited
capacity of the routes. These models can be used to forecast flows in order to evaluate
network performance under different scenarios of demand as well as under alternative
traffic management policies.

The literature on traffic congestion and equilibrium models is extensive, and there
exist excellent surveys both for urban traffic [15,45,46,85,104] as well as telecom-
munications [27,58]. In this paper we offer a personal view on these topics based on
some of our recent work, emphasizing models that take into account the stochastic
nature of travel times and how this feature affects the traffic flows. Our main goals,
which roughly correspond to the three main sections of the paper, are:

(a) to provide a brief introduction to the basic atomic and non-atomic traffic equilib-
rium models,

(b) to describe a plausible model of adaptive dynamics which provides a micro-
foundation for steady state traffic equilibrium models,

(c) to present some preliminary ideas on how risk-averse behavior of the agents may
be incorporated to the traffic equilibrium models.

We use convex optimization to develop a unifying framework that stresses the
common structures of the different equilibriummodels, and highlights the connections
between urban traffic and telecommunications. Thus, we just consider equilibrium
models that admit an equivalent convex programming formulation, restricting to link
travel times that depend only on the flow over that particular link and disregarding
the case of non-separable costs that lead to models described by general variational
inequalities.

The emphasis of the paper ismethodological and presupposes aworking knowledge
in mathematical programming and operations research, including some familiar-
ity with convex duality and basic concepts of stochastic processes. The results are
presented without proofs, though we provide an informal discussion of the basic tech-
niques and ideas involved in the analysis. We hope that the presentation provides
enough clues so that an interested reader may either work out the details on his own
or refer to the original sources.

Along the paper we provide additional references for further reading. We apol-
ogize for any involuntary omissions, and we refer to the existing surveys for more
comprehensive accounts of the huge literature in the fields of traffic equilibrium and
telecommunications, including other relevant topics not covered in this paper such
as transit networks, dynamic equilibria, or the study of the price of anarchy and the
efficiency of equilibria.

Summary of the paper

A more detailed summary of the topics covered in the paper is as follows. Section 2
focuses on the non-atomic traffic equilibrium models that describe a large population
of players each of which has a negligible effect on the congestion. The agents behave
rationally by selecting shortest paths according to the prevailing traffic conditions,
while congestion is modeled by travel times that increase with the total flow on each
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Equilibrium routing under uncertainty 119

route. Equilibrium is defined as a consistent traffic pattern in which the routes that are
actually used are the shortest ones according to the induced congestion.

We begin by briefly recalling the classical deterministic model ofWardrop [122] for
a homogeneous population of agents that share the same perceptions of travel times,
and then we review the concept of stochastic user equilibrium (SUE) which introduces
heterogeneity by combining the idea of stochastic assignment introduced by Dial [37]
with an equilibrium model as described in Daganzo and Sheffi [34]. For a more com-
plete account of these classical models and relevant historical notes the reader is
referred to the books by Ben-Akiva and Lermann [15] and Patriksson [104], as well as
the surveys by Marcotte and Patriksson [85] and Florian and Hearn [45,46]. In large
networks, the assumption that drivers are able to compare all possible routes becomes
less and less plausible and route-based models become computationally intractable.
Methods to circumvent path enumeration were developed in [2,3,14,78,84]. These
ideas evolved into the notion of Markovian traffic equilibrium (MTE) [10] which is a
special case of SUEwith an extra additive structure of route travel times. In this model,
described in Sect. 2.3, route choice is conceived as a stochastic dynamic programming
process in which the route is no longer chosen at the origin but it is the outcome of a
sequential process of arc selection at every intermediate node. In this setting, driver
movements are governed by a Markov chain and the network flows are the corre-
sponding invariant measures. Beckmann et al. [12] realized that Wardrop equilibrium
could be characterized as an optimal solution of an equivalent convex minimization
problem.1 A similar characterization for SUEwas later established by Fisk [44], while
in the 1980’s the results were supplemented by Daganzo [33] and Fukushima [54] who
investigated the corresponding dual formulations. An analog primal-dual characteri-
zation holds for MTE. These variational formulations are very similar and provide a
common framework that connects and unifies the different models.

In Sect. 2.5 we turn to the case of endogenous demands, a relevant feature in
telecommunications where the traffic rate of each source is controlled by a congestion
sensitive protocol. The situation is similar to models of urban traffic with elastic
demands, though this connection has not been fully exploited. As a matter of fact, the
standard transmission protocols in telecommunications use single path connections
and the current research in multipath routing could benefit from combining the ideas
of urban traffic and telecommunications. One possible approach to multipath routing
that exploits the ideas of Wardrop equilibrium was presented in [74]. In Sect. 2.5
we describe an alternative approach proposed in [29] which combines a congestion
control protocol with a Markovian multipath routing scheme based on MTE.

In Sect. 3 we move to a discrete setting by considering the routing game introduced
by Rosenthal [110] in which drivers are considered as individual atomic players. In
analyzing this model, Rosenthal discovered a potential function that allowed him to
establish the existence of a Nash equilibrium in pure strategies. This discrete potential,
which can be seen as a discrete analog of Beckmann et al.’s, provides a bridge to
connect the continuous and discrete models. In this framework of atomic routing
games, we discuss a simple stochastic process that provides a plausible model for the

1 We thank Michael Patriksson for pointing out the earlier paper [105] which already formulated an equiv-
alent optimization problem for equilibrium.

123



120 R. Cominetti

adaptive behavior of drivers and which provides a micro-foundation for equilibrium:
equilibrium is not assumed from the outset but it is derived from basic assumptions
on the behavior of individual drivers. We analyze the conditions under which these
dynamics converge, and we show that the limit is indeed a Nash equilibrium for a
perturbed routing game.

In the final Sect. 4 we present some preliminary ideas on how the standard theories
of choice under risk may apply in the context of risk-averse routing. As a matter of
fact, while all the previous models are based on the assumption that players are risk-
neutral and evaluate routes by their expected travel times, a rather natural question is
how traffic equilibrium might change in the presence of risk-averse players that are
concerned with travel time reliability.

Standing assumptions

Throughout the paperwe consider a fixed traffic network consisting of a directed graph
G = (N , A) together with a set of traffic demands gk > 0 indexed by k ∈ K , each one
from a given origin ok ∈ N to a corresponding destination dk ∈ N . Without loss of
generality we assume that the pairs (ok, dk) are all distinct. We also suppose that the
set Rk of simple paths (i.e. paths without cycles) connecting ok to dk is nonempty, and
we denote by R their union. The time required to traverse an arc a ∈ A is modeled as a
random variable t̃a whose expected value ta = sa(wa) is a non-negative and increasing
continuous function of the arc loadwa . For simplicity, and unless otherwise stated, we
assume that all random variables have continuous distributions and that the functions
sa : [0,∞) → [0,∞) are strictly increasing.

2 Network equilibrium with a continuum of players

2.1 Wardrop equilibrium

Traffic equilibrium models aim to describe how the demands gk flow through the net-
work under the effects of congestion. In his seminal paper, Wardrop [122] introduced
a deterministic model for a continuous population of rational agents that travel along
shortest paths. In this model, the demands gk are split into non-negative path-flows
hr ≥ 0 so that gk = ∑

r∈Rk
hr . These path-flows induce the arc-loads wa = ∑

r�a hr
which determine the link travel times ta = sa(wa) and corresponding path travel times
cr = ∑

a∈r ta . Denoting by H the polytope of all pairs (h, w) satisfying the previous
flow conservation constraints, a Wardrop equilibrium is any (h, w) ∈ H that uses
shortest paths only. Formally,

(∀k ∈ K ) (∀r ∈ Rk) hr > 0 ⇒ cr = τk, (1)

where τk = minr∈Rk cr is the minimum time for the origin-destination pair k.
Wardrop equilibrium can be stated in a number of equivalent forms as a variational

inequality or a fixed point of a suitable map (see e.g. [1,32] and the more recent survey
[85]). However, the most powerful characterization was discovered by Beckmann et
al. [12] who realized that (1) are the first order optimality conditions for the convex
program
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Equilibrium routing under uncertainty 121

(P-WE) min
(h,w)∈H S(w)

where S(w) = ∑
a∈A

∫ wa
0 sa(z)dz. Indeed, a pair (w, h) ∈ H is optimal iff it satisfies

the first order optimality condition

∑

a∈A

sa(wa)(w
′
a − wa) ≥ 0 ∀ (w′, h′) ∈ H.

Replacing the expressions w′
a = ∑

r�a h′
r and wa = ∑

r�a hr into this equation,
and rearranging the summation, this may be equivalently stated as

∑

k∈K

∑

r∈Rk

cr (h
′
r − hr ) ≥ 0 ∀ (w′, h′) ∈ H

and then the flow conservation constraints satisfied by h′ and h imply that this is
equivalent to the fact that for each k ∈ K and each route r ∈ Rk the total expected
time cr must be minimal whenever hr > 0. These are precisely Wardrop’s conditions.

Using convex duality (see [109]) it turns out that the variables (t, τ ) are dual optimal
solutions and correspond to Lagrange multipliers for the constraints that define H.
Specifically, inverting ta = sa(wa) gives wa = s−1

a (ta) which can be written as
w = ∇S∗(t) where S∗(t) = ∑

a∈A

∫ ta
t0a
s−1
a (z) dz with t0a = sa(0) is the so-called

Fenchel conjugate of S. It turns out that (t, τ ) is an optimal solution for the dual
problem

min
(t,τ )∈T S∗(t) −

∑

k∈K
gkτk,

where T is defined by the constraints τk ≤ ∑
a∈r ta for all k ∈ K and r ∈ Rk .

For any fixed t, the optimal τk is τ̄k(t) = minr∈Rk

∑
a∈r ta which gives theminimum

delay from ok to sk . These polyhedral concave functions can be efficiently computed
by any shortest path algorithm and allow to write the dual as an unconstrained convex
problem in the variables t = (ta)a∈A, namely

(D-WE) min
t

S∗(t) −
∑

k∈K
gk τ̄k(t).

The optimal solutions for the primal and dual are related as ta = sa(wa). Since
the feasible set in (P-WE) is compact it follows that Wardrop equilibria always exist.
Moreover, since sa(·) is strictly increasing, the function S is strictly convex and the
vector of equilibrium arc loadsw is unique. Since S∗ is also strictly convex, t = ∇S(w)

is the unique optimal solution of (D-WE).
Note that the primal objective function S(w) does not depend on h. Thus, although

the model is stated using path flows and requires path enumeration, (P-WE) admits
an equivalent arc-flow formulation by expressing wa = ∑

k∈K vka where each
vk = (vka)a∈A satisfies flow conservation for the pair k ∈ K . Since travel times
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122 R. Cominetti

are non-negative, flows along cycles are excluded in any optimal solution and then vk

may be decomposed into path-flows hr . Any such decomposition gives an equilibrium
and every equilibrium is of this form.

2.2 Stochastic user equilibrium

Wardrop equilibrium assumes implicitly that all users perceive the same path delays.
This was signaled as a possible explanation for the relatively poor agreement between
the predictions of the model and the flows observed in real networks. Actually, travel
times have some inherent variability so that perceptions are likely to differ depending
on the past experience of each driver. This called for extending the concept of equilib-
rium to a stochastic setting in which the travel times are modeled as random variables,
representing the variability of the perceptions of travel times across an heterogeneous
population.

The idea was formalized by looking at route selection as a discrete choice based
on random utility theory. Route travel times are modeled as c̃r = cr + εr where
cr = ∑

a∈r ta as before and εr is a continuous random variable with E[εr ] = 0 that
accounts for the variability in the perceptions of travel times across the population.
The equilibrium conditions (1) are replaced by a stochastic assignment where each
demand gk splits among the paths r ∈ Rk according to the probability that this path is
optimal, that is

(∀r ∈ Rk) hr = gk P
(
c̃r ≤ c̃p ∀p ∈ Rk

)
, (2)

with ta = sa(wa) and wa = ∑
r�a hr . Such a pair (h, w) is called a SUE. Note that

(2) implies that (h, w) ∈ H .
As forWardrop equilibrium,SUEadmits a variational characterization.This follows

from a basic fact in discrete choice theory (see e.g. [15]): if j ∈ J represents a finite
set of alternatives with random costs x̃ j = x j + ε j where x j ∈ R and ε j is a random
variable with E(ε j ) = 0, the probability that any given j ∈ J attains the minimum
cost is given by P(x̃ j ≤ x̃i ∀i ∈ J ) = ∂ϕ

∂x j
(x) where ϕ(x) is the smooth concave

expected utility function

ϕ(x) = E

[

min
j∈J

{
x j + ε j

}
]

.

Thus, the probability in (2) of choosing path r can be expressed as the partial
derivatives ∂ϕk

∂cr
of the expected travel time functions

ϕk((cr )r∈Rk ) = E

[

min
r∈Rk

{cr + εr }
]

.
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Hence, by considering the composite concave functions

τk(t) = ϕk

((∑

a∈r ta
)

r∈Rk

)

,

a direct application of the chain rule gives

s−1
a (ta) = wa =

∑

r�a
hr =

∑

k∈K
gk

∂τk

∂ta
(t),

which shows that t must be an optimal solution of the strictly convex program

(D-SUE) min
t

S∗(t) −
∑

k∈K
gkτk(t).

By Fenchel’s duality, if ψk denotes the conjugate of the convex function −ϕk , we
get a corresponding primal problem that characterizes the SUE flows

(P-SUE) min
(h,w)∈H S(w) +

∑

k∈K
gk ψk

((
hr
gk

)

r∈Rk

)

.

These are the stochastic analogs of the characterizations of Wardrop equilibrium,
to which they reduce in the deterministic case when the random variables εr are
concentrated at 0. The objective function in (D-SUE) has bounded level sets and is
strictly convex so there is a unique optimal t, from which we get unique equilibrium
arc-loads wa = s−1

a (ta) which give the solution of (P-SUE).

Examples Dial [37] considered a Logit model with route travel times c̃r given by
independent Gumbel random variables, which yields the stochastic assignment

hr = gk
exp (−βkcr )

∑
p∈Rk

exp
(−βkcp

) .

The parameter βk controls the repartition of flows: for βk ∼ 0 every path gets an
approximately equal share of the flow, while for βk large the flow concentrates on the
shorter paths. Logit assignment was used by Fisk [44] to develop a SUE model for
which (P-SUE) and (D-SUE) take the explicit forms

(P-SUE) min
(w,h)∈H S(w) +

∑

k∈K

1

βk

∑

r∈Rk

hr ln

(
hr
gk

)

,

(D-SUE) min
t

S∗(t) +
∑

k∈K

gk
βk

ln

⎛

⎝
∑

r∈Rk

e−βcr

⎞

⎠ .

While these require path enumeration, when βk ≡ β is constant across the net-
work, an equivalent formulation in the space of arc flows was given in [3,14,78,84]

123



124 R. Cominetti

o d

i

1

1 −

Fig. 1 Path choice v/s arc choice on a small network

by exploiting a Markovian property of the Logit assignment. Note that a constant βk

conveys the assumption that the travel time variance is constant and does not scale with
distance, which seems somewhat restrictive. In a different direction, since indepen-
dence of route travel times is an unlikely assumption when dealing with overlapping
routes, Daganzo and Sheffi [34] proposed an alternative model based on a Probit sto-
chastic assignment inwhich ε = (εr )r∈R hasNormal distributionN (0, �). In this case
there is no close form expression for the probabilities in (2), which must be estimated
using Monte Carlo simulation. Note that the noises εr in both Logit and Probit models
are supported on R so that c̃r takes negative values with positive probability and flow
is assigned to every route no matter how large its expected travel time is. This does
not occur if the random terms εr have bounded support. Dual formulations of the type
(D-SUE) were first considered by Fukushima [54], Daganzo [33] and Miyagi [88].

2.3 Markovian traffic equilibrium

On largenetworks onemayargue that agents are unable to compare exponentiallymany
paths, whereas the task is much simpler if route choice is conceived as a sequential
process of arc choices. In this view, the path is not fixed a priori but is built along
the way: drivers move towards their destination by sequentially choosing the next arc
at each node visited. Such dynamics are naturally modeled as Markov processes that
determine how flows are distributed across the network. As an informal motivation
for the basic idea, consider the simple network in Fig. 1 with 3 routes from o to d,
all of which have expected travel time cr = 1. A route-based Logit model would
assign one third of the demand to each path, whereas a recursive scheme based on
arc-choices would lead to a repartition close to ( 12 ,

1
4 ,

1
4 ). Indeed, at the origin o there

are only two options (upper and lower), both offering the same expected travel time
to the destination so one might expect that each should get approximately half of the
demand. The half taking the lower arc faces a second choice at node i where it splits
again giving roughly 1

4 on both lower routes. Since these lower routes have a significant
overlap and are highly correlated, an arc-based approach seems more appropriate.

This idea is captured by the notion of MTE which was introduced in [10] and
further extended in [28,29]. The description below differs slightly as it is presented as
a particular case of SUE in which the travel time of each route r ∈ Rk is given by a
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ok i ja dk
t̃ka τ̃ kja

t̃kb

Fig. 2 Variables for dynamic programming equations

a∈A−
i

vka

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

a∈A+
i

vka
yki P(Ek

a)

gki

yki

Fig. 3 Flow distribution diagram

sum c̃r = ∑
a∈r t̃ ka of random arc-delays t̃ ka = ta + εka with E[εka ] = 0.2 This additive

structure has implicit the fact that flows are governed by some underlying Markov
chains. Indeed, let τ̃ ki be the random variable giving the minimum travel time among
all paths from i to dk , and denote z̃ka = t̃ ka + τ̃ kja the cost-to-go for destination dk when
taking arc a (see Fig. 2).

Bellman’s equations give τ̃ ki = mina∈A+
i
z̃ka which is interpreted by the fact that a

driver of type k traveling on a shortest path and reaching i, chooses the outgoing link
a ∈ A+

i with smallest z̃ka and moves to the next node ja where the process repeats.
Thus, denoting Ek

a the event {z̃ka ≤ z̃kb ∀b ∈ A+
i }, the demand k ∈ K moves across

the network following a Markov chain with transition probabilities Pk
i j = P(Ek

a) for
i j = a, i �= dk , whereas the destination dk is an absorbing state.

The expected flows correspond to the invariant measures of these Markov chains,
so that the route-based assignment (2) is replaced by an arc-based recursive scheme
in which the total inflow yki that enters each node i �= dk is distributed among the
outgoing links a ∈ A+

i according to vka = yki P(Ek
a). The inflow is given by the sum

yki = gki + ∑
a∈A−

i
vka where the first term describes the demand with gki = 0 for

i �= ok and equal to the demand gk for i = ok , while the second summation represents
the flows that enter node i through the incoming links a ∈ A−

i (see Fig. 3).
The model admits a concise description using expected utility maps. Namely, let

us write z̃ka = zka + νka as a sum of its expected value zka plus a random term νka with
E[νka ] = 0. Assuming that the distribution of νka is not affected by a change in the
expected value zka and denoting

2 The εka ’s are allowed to depend on k, whichmay capture differences in travel time perceptions for different
classes of agents. However, they are not required to be independent and may be taken the same for all k,
allowing even for correlations among arcs.
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ϕk
i (z

k) � E

[

min
a∈A+

i

{
zka + νka

}
]

we may express the transition probabilities as P(Ek
a) = ∂ϕk

i
∂zka

(zk) and the equilibrium

flows yki , v
k
a are characterized by the set of linear equations

⎧
⎨

⎩

yki = gki + ∑
a∈A−

i
vka ∀i �= dk,

vka = yki
∂ϕk

i
∂zka

(zk) ∀a ∈ A+
i .

(3)

Taking expectation in Bellman’s equations, the expected values τ ki = E[τ̃ ki ] of the
travel times are characterized by the nonlinear system.3

{
zka = ta + τ kja ∀a ∈ A,

τ ki = ϕk
i (z

k) ∀i ∈ N .
(4)

A MTE is any solution of (3)–(4) with ta = sa(wa) and wa = ∑
k∈K vka . In words,

the link flowswa determine expected link delays ta = sa(wa)which in turn determine
the expected travel times τ ki as well as the expected flows vka . An equilibrium is then a
fixed point in which the total induced flows

∑
k∈K vka coincide with the original link

flows wa .
Note that the maps ϕk

i convey all the information required to state the model. In the
sequel we assume that the model is formulated directly by prescribing these maps. It
is worth noting that while the ϕk

i ’s are determined by the random variables νka , which
in turn depend on the noise εka , they can also be characterized (see [10]) as the maps
ϕ : Rd → R that are smooth, concave, component-wise nondecreasing, with

(a) ϕ(x1 + c, . . . , xd + c) = ϕ(x1, . . . , xd) + c for every constant c
(b) ϕ(x) → xi when x j → ∞ for all j �= i
(c) for xi fixed,

∂ϕ
∂xi

is a cumulative distribution on the remaining variables.

The formulas (3) and (4) avoid path enumeration and facilitate the computation of
equilibria. In particular they give the minimum expected time function τk(t) = τ kok
from ok to dk appearing in (D-SUE). These equations uniquely define the flows vka, y

k
i

and the times τ ki , zka as implicit functions of the link travel times ta , and are defined
over the domain D composed by all the vectors t = (ta)a∈A for which

∃ τ̂ = (τ̂ ki )i∈N ,k∈K with τ̂ ki ≤ ϕk
i

((
ta + τ̂ kja

)

a∈A

)
for all i �= dk, k ∈ K . (5)

3 Since τ kdk
≡ 0 we adopt the convention ϕkdk

(·) ≡ 0. Note that ϕki is a smooth and concave lower

approximation of the polyhedral function ϕ̄ki (zk ) = mina∈A+
i
zka , so that (4) is a smoothed version of the

standard shortest path equations τ̄ ki = mina∈A+
i
ta + τ̄ kja

.
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Note that the latter is obviously a necessary condition for the existence of solutions
for (4). Since the maps ϕk

i are continuous, concave and component-wise nondecreas-
ing, the domainD is closed and convex and for each t ∈ Dwehave t ′ ∈ D for all t ′ ≥ t .
As in Sect. 2.1, we denote τ̄ ki (t) the minimum time from i to dk with deterministic
link costs ta .

Proposition 1 ([10,28,29])

(a) The Eq. (4) uniquely define zka = zka(t) and τ ki = τ ki (t) as implicit functions for
t ∈ D. These maps are concave, component-wise nondecreasing, and we have
τ ki (t) ≤ τ̄ ki (t). The maps τ ki (t) can be computed as the limit of the nonincreasing
sequence generated from τ k,0 = τ̄ k by the iteration

τ
k,n+1
i = ϕk

i

((
ta + τ

k,n
ja

)

a∈A

)
n = 0, 1, 2, . . .

(b) Let t ∈ D and let zka = zka(t) the unique solution of (4). Then the equations (3)
uniquely define yki = yki (t) and vka = vka(t) as implicit functions of t ∈ D.

(c) The previous implicit maps are smooth at each t ∈ int(D), namely, at every t for
which there exists τ̂ = (τ̂ ki )i∈N ,k∈K satisfying (5) with strict inequalities.

These implicit maps allow to rewrite the conditions for MTE as s−1
a (ta) =

∑
k∈K vka(t).Moreover, an implicit differentiation of (4) gives vka(t) = gk

∂τk
∂ta

(t)where

τk(t) = τ kok (t) which turn the MTE equations into s−1
a (ta) = ∑

k∈K gk
∂τk
∂ta

. These are
precisely the optimality conditions for the strictly convex program (D-SUE), which
yields the following characterization for the MTE.

Theorem 1 ([10,28,29]) Let t0 = (t0a )a∈A denote the vector of uncongested travel
times t0a = sa(0) and assume the Slater-type constraint qualification t0 ∈ int(D).
Then the following strictly convex program has a unique optimal solution

(D − MTE) min
t∈D

S∗(t) −
∑

k∈K
gkτk(t).

The optimal solution t belongs to int(D) and gives a unique MTE wa = s−1
a (ta)

which decomposes into per-destination flows wa = ∑
k∈K vka(t). These equilibrium

flows can be characterized as the optimal solution of the strictly convex primal problem

(P − MTE) min
(w,(vk )k∈K )∈V

S(w) +
∑

k∈K

∑

i∈N
χk
i

((
vka

)

a∈A+
i

,
∑

b∈A+
i

vkb

)

,

where χk
i (v, y) = y (−ϕk

i )
∗(− v

y ) and the feasible set V is defined by the constraints

wa = ∑
k∈K vka with each vk satisfying flow conservation for the demand k ∈ K.

Although (D-MTE) includes the constraint t ∈ D, it is essentially unconstrained
since the optimum is attained in the interior. Observe also that, in contrast with the
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deterministic case, for MTE not only the aggregated link flows w but also the per-
destination link flows vka are uniquely determined.

Example A Markovian Logit model may be defined by considering the maps

ϕk
i (z

k) = − 1

βk
i

ln

(∑

a∈A+
i

e−βk
i z

k
a

)

.

This extends the case βk
i ≡ β analyzed by Akamatsu [2]. The corresponding dual

functionals are in this case

χk
i (v, y) = 1

βk
i

[∑

a∈A+
i

va ln va − y ln y

]

.

2.4 Extensions

Non-decreasing travel times: The equilibrium models WE, SUE and MTE, can be
extended to nondecreasing functions sa(·). In this case the primal objective function
S(w) is still convex though not strictly convex, and the equilibrium flows w are no
longer unique. However, the dual functional S∗(t) remains strictly convex so that
the equilibrium times t are unique. Any link flow wa with ta = sa(wa) constitute
equilibrium flows. For details we refer to [10].

Arc capacities and saturation: When arcs have a maximal capacity one must deal
with increasing continuous functions sa : [0, ca) → [0,∞) such that sa(wa) → ∞
as wa approaches the capacity ca . To ensure feasibility the capacities must be large
enough to support the demands. Theorem 1 for MTE remains valid as long as there
exist feasible flows (ŵ, v̂) ∈ V satisfying ŵa < ca for all a ∈ A. The proof of this
fact is based on general results in convex analysis. For details we refer to [10,28,29].

General random variables: The SUE and MTE models can be adapted to deal with
random variables εka that may have atoms. In this case the maps τ k(·) are still concave
but no longer smooth. The characterizations as well as the results on existence and
uniqueness remain true by replacing the derivatives of these functions with their sub-
differentials. In particular, when εka are Dirac masses at 0, we recover the concept of
Wardrop equilibrium.

Mixed choice models:MTE allows different discrete choice models at every node.
This can be exploited to model more complex decision processes such as the simul-
taneous choice of transportation mode and route. It suffices to consider a multi-modal
network that combines the subgraphs of the basic modes (car, bus, metro, walk, etc.)
which are connected among them as well as with origins and destinations through
transfer arcs. At origins one may adopt a distribution rule based on a Logit or Probit
model, while at other nodes (e.g. themetro subgraph) onemay use a deterministic rule.

2.5 Traffic equilibrium with elastic demands

So far we considered a set of fixed traffic demands gk . This is inadequate when
demands are endogenous and depend on congestion. As a relevant case let us con-
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sider packet-switched communication networks where the transmission rate gk of a
source is controlled by a congestion sensitive protocol such as TCP. Namely, each
source dynamically adjusts its transmission rate based on a feedback signal of the
aggregate congestion along the route to its destination, so that the higher the con-
gestion the smaller the rate. The predominant TCP protocols in use are Tahoe and
Reno which use packet losses to measure congestion, and Vegas which is based on
queueing delays. We refer to [27,81] for a detailed description of current protocols
and their models, including other related techniques such as random early drop (RED)
and random exponential marking (REM) which anticipate congestion and react before
packet losses actually occur.

The routing of traffic in packet-switched networks is performed by routers in a
decentralized manner using routing tables that determine the next hop for each desti-
nation. These routing tables are updated periodically by an asynchronous distributed
shortest path iteration that finds optimal paths according to some metric such as hop
count, delay, or bandwidth. Updates occur on a much slower time scale compared with
TCP rate control, so that in first approximation one may assume that all the traffic for
any given source is routed along a single and fixed path. This ensures that packets
arrive to the destination in the same order as they were sent, an important feature that
allows to detect when a packet was lost and is not simply delayed. We refer again to
[27] for a more detailed description of routing protocols.

The interaction of many sources performing a decentralized congestion control
based on feedback signals that are subject to estimation errors and communication
delays, gives rise to very complex dynamics. Assuming that the system stabilizes,
the steady state can be characterized as an optimal solution of a network utility max-
imization (NUM) problem [72,80,127]. The TCP mechanism may then be viewed
as a decentralized algorithm that seeks to optimize an aggregate utility function. To
describe NUMwe assume that each source routes its flow along a single path rk ∈ Rk ,
so that the arc-loads are given by wa = ∑

k�a gk where the summation is over all
the sources k whose route rk contains the link a. These loads induce link conges-
tion measures λa = ρa(wa) where ρa : [0, ca) → [0,∞) is continuous and strictly
increasing with maximal link capacity ca . Then, each source k observes the aggre-
gate congestion along its path μk = ∑

a∈rk λa and adjusts its rate as gk = fk(μk)

where fk : (0,∞) → (0,∞) is a continuous and strictly decreasing function. These
equations may be written as

f −1
k (gk) = μk =

∑

a∈rk
λa =

∑

a∈rk
ρa(wa) =

∑

a∈rk
ρa

(∑

s�a gs
)

,

so that denoting Pa(·) a primitive of ρa(·) it follows that the rates gk can be charac-
terized as the unique optimal solution of the strictly convex program.4

4 Note that the common usage in telecommunications is to state the model as themaximization of a network
utility function. Here we follow the convention in traffic equilibrium by stating the model in the form of a
convex minimization problem. This choice also facilitates the use of the convex duality theory.
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(P-NUM) min
g∈RK

∑

a∈A

Pa
(∑

s�a gs
)

−
∑

k∈K

∫ gk

0
f −1
k (z)dz.

Alternatively, the equations may also be stated in terms of the link congestion
variables as

ρ−1
a (λa) = wa =

∑

k�a
gk =

∑

k�a
fk(μk) =

∑

k�a
fk
(∑

b∈rk
λb

)
,

which are the optimality conditions for the strictly convex dual program

(D-NUM) min
λ∈RA

∑

a∈A

∫ λa

0
ρ−1
a (y) dy −

∑

k∈K
Fk

(∑

b∈rk
λb

)
,

where Fk(·) is a primitive of fk(·). This setting has been used to model different
protocols each one characterized by specific maps fk and ρa (see [39,57,72,76,81,
101]).

Examples A model for Vegas might take λa = ρa(wa) = wa
ca(ca−wa)

which are the
queuing delays for links considered as M/M/1 queues with service rates ca . The rate
functions can be modeled as gk = fk(μk) = αk Dk/μk where αk is a parameter
and Dk denotes the uncongested round trip time between ok an dk (see [80,82]). For
protocols based on packet losses (Reno, Tahoe, RED, REM), if pa = ψa(wa) denotes
the probability that a packet is lost on link a, then the probability of traversing the
path successfully is

∏
a∈rk (1− pa). This product may be transformed into an additive

congestion measure by taking logarithms and considering λa = − ln(1 − pa) which
leads to ρa(wa) = − ln(1 − ψa(wa)).

Although NUM is restricted to single path routing, the idea of multipath routing
protocols that seek to increase throughput by exploiting the available transmission
capacity on a set of alternative paths has been considered since the seminal papers
by Gallager [55] and Kelly et al. [72]. For general surveys and discussions of the
challenges involved in multipath routing we refer to Gojmerac [58], He and Rexford
[65] and Lee and Choi [79]. A few multipath techniques are available in today’s
Internet (e.g. MPLS tunnels [119], overlay TCP protocol [60], or the multipath TCP
(MPTCP) developed by the IETF working group, the main Internet standardization
body (see http://www.multipath-tcp.org/). Two important papers that provide support
to the IETF initiative are Kelly and Voice [73] and Key et al. [74].

An additional advantage of multipath routing is its ability to redirect flows in case
of link failures which improves the reliability of the communications. Moreover it
also contributes to stability. Indeed, when route choice is based on metrics that are
affected by congestion, such as queueing delays or latencies, routing and rate control
become mutually inter-dependent and equilibrium must consider both aspects jointly:
routing affects the rate control through the induced congestion signals, while rate
control induces flows that determine in turn which routes are optimal.

A simple way to capture the interactions between routing and congestion control
is to combine the NUMmodel for rate control with a stochastic routing such as MTE.
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Note that congestionmetrics are subject to estimation errors and random effects, which
fits naturally into the framework of stochastic equilibrium. The idea mixes a NUM
rate control with a decentralized routing scheme in which routers do not use routing
tables but rather split the flow over its outgoing links taking into account the time
to destination variables z̃ka . These random variables may incorporate for instance the
current queue length of the outgoing links. Instead of using hop count, queuing delays,
or bandwidth, we evaluate routes using the total delays ta = sa(wa) so that packets
are routed along paths with smaller travel times. The rationale is that the earlier each
packet is delivered, the higher the transmission rate. At the same time, this contributes
to ensure that packets reach the destination in the same order as they are sent, reducing
the conflicts with the duplicate ack mechanism for detecting packet losses.

The model, as described in [29], assumes that packets are routed according to an
MTE strategy characterized by a family of maps ϕk

i , while sources adjust their rates as
a function gk = fk(μk) of the total queueing delay μk = τk(t)− τ 0k where τk(t) is the
end-to-end expected delay defined by (4) and τ̄ 0k is the cost of a shorter path considering
the uncongested travel times t0a . Informally, the source rates gk induce flows vka and
total link loads wa . These loads determine link expected delays ta = sa(wa) that
yield end-to-end expected optimal delays τk(t) and corresponding queueing delays
μk . At equilibrium, these queueing delays must be consistent with the original rates
gk = fk(μk).More precisely, a pair (g, w) is aMarkovianNUMequilibrium (MNUM)
iff ta = sa(wa) with wa = ∑

k∈K vka(t) where vk(t) are the implicit functions defined
by (3) with gk = fk(μk) and μk = τk(t) − τ 0k . These equations can be written in
condensed form as

s−1
a (ta) =

∑

k∈K
vka(t),

which turn out to be the optimality conditions for the strictly convex program

(D-MNUM) min
t∈D

S∗(t) −
∑

k∈K
Fk(q

k(t)),

where as before Fk(·) denotes a primitive of fk(·). Assuming that t0 ∈ D the problem
(D-MNUM) is coercive so that it has a unique optimal solution and therefore there
exists a uniqueMNUM equilibrium (see [29]). This model can be seen as an extension
of the MTE model in which the second term of the objective function incorporates the
effect of elastic demands.

For a comparison of MNUM with other multipath routing protocols, particularly
Paganini [102] and Paganini and Mallada [103] who consider a similar idea in which
routers split the traffic among the outgoing links using dynamically adjusted ratios, we
refer to [29]. That paper also describes how MNUM can be used to design a packet-
level protocol, although the convergence of these packet-level dynamics towards the
steady state described by MNUM is not yet understood. Promising results along this
line can be found in [71,121].
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3 Routing equilibrium with atomic players

3.1 Atomic routing games

An alternative to Wardrop’s model in which drivers are considered as individual play-
ers in a game was introduced by Rosenthal [110]. In this framework each k ∈ K
corresponds to a single player that has to route a unit demand gk = 1 from ok to
dk . The flow cannot be split among routes so that the strategy for player k consists
in choosing a single path rk ∈ Rk . Given a strategy profile p = (rk)k∈K giving the
choices of every player, the load of an arc a ∈ A is simplywa(p) = |{k ∈ K : a ∈ rk}|
which determines the time ta = sa(wa(p)) and then the total delay experienced by
player k is given by

uk(p) =
∑

a∈rk
sa (wa(p)) .

These delays and strategy sets define a finite game: a Nash equilibrium is a strategy
profile p = (rk)k∈K such that for each player k the route rk yields the minimum delay
among all paths in Rk , given the strategies r−k = (ri )i �=k chosen by the other players,
namely, uk(p) ≤ uk(sk, r−k) for each sk ∈ Rk .

The potential
∑

a∈A

∫ wa
0 sa(z)dz that characterizes Wardrop’s equilibrium has the

following discrete analog discovered by Rosenthal [110]

V (p) =
∑

a∈A

wa(p)∑

i=1

sa(i). (6)

The crucial observation is that, given the strategies r−k of his opponents, player k
can evaluate the difference between two paths rk, sk ∈ Rk as

uk(rk, r−k) − uk(sk, r−k) = V (rk, r−k) − V (sk, r−k).

This equality, which can be readily checked by direct computation, implies that
the minimizers of uk(·, r−k) coincide with those of V (·, r−k). It follows that Nash
equilibria are precisely the profiles p thatminimizeV (·)with respect to each coordinate
rk . In particular, a Nash equilibrium in pure strategies can be found by solving the
discrete optimization problem

(P − N) min
p

{
V (p) : p ∈

∏

k∈K Rk

}
.

The existence of the potential function V has relevant consequences. It implies
for instance that an iteration in which players update cyclically their route rk as a
best response to the current choices of his opponents will monotonically decrease the
potential V (·) and then, since the set of strategy profiles is finite, after finitely many
steps the process must stop at a fixed point which is precisely a Nash equilibrium. In
particular this proves the existence of equilibria.
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3.2 Adaptive dynamics in traffic games

Themodels discussed so far assume implicitly the existence of an adaptive mechanism
by which traffic flows stabilize on a steady state equilibrium. Empirical evidence of
some form of adaptive behavior has been reported in [9,38,69,87,117,123], though
the steady states observed differ from the standard equilibria. Also, continuous time
dynamics describing plausible adaptive mechanisms that converge to Wardrop equi-
librium have been studied in [52,114,118], while a class of finite-lag adjustment
procedures was considered in [24,25,35,64]. All these dynamics are of an aggregate
nature and are not directly tied to the behavior of individual drivers, so that the infor-
mational and strategic aspects are ignored. The latter features are taken into account
in the study of learning and adaptation in repeated games (see e.g. Fudenberg and
Levine [53] and Young [128]). The most prominent procedure is fictitious play which
assumes that at every stage players choose a best reply to the empirical distribution
of past moves by their opponents [23,108]. A variant called smooth fictitious play
for games with perturbed payoffs and reminiscent of Logit random choice was stud-
ied in [53,67]. However, these models assume that players are able to observe the
moves of their opponents which might be very stringent for games involving many
players. A milder assumption requires players to observe only the payoffs at every
stage, including those that would have been obtained if a different move had been
played. Procedures such as no-regret [61,62], exponential weight [51], reinforcement
[7,13,21,41,63], and calibration [50], deal with limited information contexts in which
players adjust their behavior based on rough statistics of past performance. A general
overview of learning dynamics in games with application in routing can be found in
Sandholm [115]. Also in the context of repeated congestion games, and specifically
for single origin-destination routing games with bounded rationality and partial moni-
toring, Scarsini and Tomala [116] studies the efficiency of a class of adaptive strategies
that can be implemented by finite automata.

An alternative approach is considered in this section. We study the emergence
of steady states from some specific dynamics that describe the adaptive behavior of
drivers [22,30], with the aim of providing a micro-foundation for equilibrium. The
approach proceeds bottom-up: a discrete time stochastic model for individual behavior
gives rise to an associated deterministic dynamic which leads to an equilibrium of a
particular limit game. Equilibrium is not postulated a priori but it is rather derived from
basic assumptions on player behavior. Specifically, each player has a prior estimate of
the average payoff of each route and selects a path based on this rough information.
The payoff of the chosen route is then observed and is used to update the perception
for that particular move. This procedure is repeated day after day, generating a discrete
time stochastic process that progressively reveals to each player the congestion on all
the routes. Under suitable conditions the dynamics converge to a steady state which
turns out to be a Nash equilibrium for a specific limit game. The idea is similar to
reinforcement but the resulting dynamics are structurally different.

We describe the dynamics in the framework of routing games, though the basic idea
apply to any finite game (see [30]). We denote Δ = ∏

k∈K Δk where Δk is the set of
mixed strategies or probability distributions over Rk . The game is played repeatedly.
At every stage, each driver k selects a route rk ∈ Rk at random using a mixed strategy
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πk = (πkr )r∈Rk ∈ Δk . The vector π = (πk)k∈K ∈ Δ induces a product distribution
on the set of strategy profiles p = (rk)k∈K , which in turn determine random arc
loads wa(p) and route travel times uk(p) as in the previous section. At the end of the
stage each player observes the payoff obtained for his chosen route. We suppose that
the mixed strategy πk = σk(xk) derives from a discrete choice model that depends
on a vector xk = (xkr )r∈Rk where xkr is an estimate of the travel time of route
r that player k has built from his prior observations. Namely, σk(xk) = ∇ϕk(xk)
where ϕk(xk) = E[minr∈Rk {xkr + εkr }] is a smooth and concave map defined by the
continuous random variables εkr . The map σk : R

Rk → Δk is continuous and we
assume that σkr (xk) > 0 for all r ∈ Rk .

The perceptions evolve along discrete stages n = 0, 1, 2, . . . as follows. The only
information available to player k after stage n is the travel time uk(pn) for the route
rnk that was chosen on that day. Based on this minimal piece of information, player k
updates the perception for that route keeping the others unchanged, namely

xn+1
kr =

{
(1 − γn) xnkr + γnuk(pn) if r = rnk ,

xnkr otherwise ,

where γn ∈ (0, 1) is a fixed sequence of averaging factors with
∑

n γn = ∞ and∑
n γ 2

n < ∞. In contrast with other dynamics such as fictitious play or reinforcement,
which give rise to evolution dynamics in the space of mixed strategies or correlated
strategies (see e.g. [50]), the above dynamics describe the evolution of perceptions.
The iteration may be written in vector form

xn+1 − xn = γn[wn − xn], (7)

with wn
kr = uk(pn) for r = rnk and wn

kr = xnkr otherwise. The distribution of the
random vector wn is determined by the current xn , so that (7) yields a stochastic
process for the evolution of perceptions. It is interpreted as a process in which drivers
probe the different routes to learn their payoffs, and adapt their behavior according to
the accumulated information. The information gathered at every stage is very limited—
only the travel time of the specific route chosen on that day—but it conveys implicit
information on the behavior of the rest of the players. A basic question is whether this
procedure can lead players to coordinate on a steady state.

Dividing (7) by the small parameter γn the iteration may be interpreted as a finite
difference scheme for a related differential equation, except that the right hand side
is a random field. Using the techniques from stochastic algorithms (see e.g. Kushner
and Yin [77] as well as [16–19]), the long term behavior of the discrete time random
process (7) is related to the asymptotics as t → ∞ of the continuous-time deterministic
averaged dynamics

ẋ = Ex (w) − x (8)

where w = (wkr )k∈K ,r∈R is a random vector whose distribution is determined as
above by the mixed strategies πk = σk(xk). The expectation here is with respect to
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the distribution induced by the mixed strategies π = �(x), where � : B → Δ is the
map �(x) = (σk(xk))k∈K with B = ∏

k∈K R
Rk the space of perceptions.

In order to give a more explicit description of (8), let us consider the functions
Uk(π) = Eπ [uk(p)] and define the map F : Δ → B by setting Fkr (π) = Uk(δr , π-k)
with δr theDiracmass. This is simply the expected travel time for player k when he/she
chooses route r ∈ Rk while the other players use mixed strategies π-k = (π j ) j �=k . By
conditioning on player k’s move we have

Ex [wkr ] = πkr Fkr (π) + (1 − πkr ) xkr ,

so that considering the composed map C : B → B given by C(x) = F(�(x)), (8)
may be expressed as

(∀k ∈ K ) (∀r ∈ Rk) ẋkr = σkr (xk) [Ckr (x) − xkr ] . (9)

These evolution equations are interpreted as a process in which driver k’s estimate
xkr dynamically tracks the expected valueCkr (x) of the travel time of route r, which is
determined by the other player’s behavior (π j ) j �=k . We stress that (9) is not postulated
as a mechanism of adaptive behavior, but it is just an auxiliary tool for analyzing (7).

3.2.1 Convergence of the dynamics: rest points and perturbed game

From general results on stochastic approximation we know that the attractors of (9)
capture all limit points of the stochastic process (7). For our current purposes it suffices
to mention that if (9) has a unique rest point x̄ which is a global attractor for the
dynamics, then xn converges to x̄ almost surely (see e.g. [16, Corollary 5.4]). It isworth
noting that the convergence of the state variables xn → x̄ entails the convergence of
the corresponding mixed strategies πn

k = σk(xnk ) and therefore of the behavior of
players.

Clearly, the rest points of (9) are the fixed points of C. When C is a contraction the
fixed point is unique and it is a global attractor. More precisely,

Theorem 2 ([30]) If C : B → B is a ‖ · ‖∞-contraction then its unique fixed point
x̄ ∈ B is a global attractor for the adaptive dynamics (9) and the sequence xn generated
by the learning process (7) converges almost surely towards x̄ .

In general, since C is continuous with bounded range we may use Brouwer’s the-
orem to deduce that rest points exist, though they may not be unique and are not
necessarily attractors. These rest points can be characterized in terms of an associated
perturbed routing game. Namely, let F be the set of solutions of x = C(x) and E the
corresponding set of equilibrium probabilities π = �(x). The fixed point equation
can be written as a coupled system x = F(π) and π = �(x), which shows that the
map x �→ �(x) is a bijection from F to E with inverse π �→ F(π). Moreover, the
equilibrium probabilities π ∈ E are characterized by the equation π = �(F(π)),
namely πk = ∇ϕk(Fk(π)) for all k ∈ K . The latter are the optimality conditions
saying that each πk minimizes the function
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Gk(πk, π-k) = 〈πk, Fk(π)〉 + ψk(−πk),

with ψk = (−ϕk)
∗. Recall that Fk(π) depends only on π-k . Hence π is a Nash

equilibrium for an underlying game which is a perturbation of the original routing
game with payoffs 〈πk, Fk(π)〉.
Proposition 2 ([30]) E is the set of Nash equilibria for the perturbed game G with
strategy sets Δk and payoffs Gk.

This result is somewhat surprising since the adaptive dynamics (7) assumed very
little in terms of rationality of the drivers. They need not even be aware that they
are playing a game, yet their long term behavior can be described as a fully rational
equilibrium for an underlying game G.
Example To illustrate how the previous results can be used, let us consider the case
where �(x) is given by a Logit discrete choice

σkr (xk) = exp (−βk xkr )
∑

p∈Rk
exp

(−βk xkp
) . (10)

In this case the perturbed game in Proposition 2 is defined by the payoffs

Gk(π) = 〈πk, Fk(π)〉 + 1

βk

∑

r∈Rk
πkr [ln πkr − 1] ,

and the points π ∈ E correspond to the so-called quantal response equilibria studied
in [87]. Note that in the limit when βk → ∞ the model becomes deterministic and we
get back to Rosenthal’s model. The conditions under which C is a ‖ · ‖∞-contraction
can be worked out explicitly. To this end we denote ω = maxk∈K

∑
j �=k β j and

θ = maxr∈R
∑

a∈r δa where δa measures the increment in the congestion of link a as
a result of an additional user, namely

δa = max
u=2,...,|K | sa(u) − sa(u − 1).

The parameter θ allows to estimate the impact over a player’s payoff when another
player changes hermove. It turns out thatC is ‖·‖∞-Lipschitz with constant L = 2wθ .
Thus, if 2ωθ < 1 we conclude that C is a ‖ · ‖∞-contraction and (7) converges almost
surely towards the unique rest point x̄ . The corresponding probabilities π̄ = �(x̄) are
the unique quantal response equilibrium.

3.3 Parallel link networks: a potential function

Let us now consider a more specific situation in which player choices are described
by the Logit rule (10), and the network consists of a single origin destination pair
connected by a set of parallel links as shown in Fig. 4. In this case we have ok = o
and dk = d for all k ∈ K , and also Rk ≡ A = {a1, . . . , am}.
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o d...

a1

a2

am

Fig. 4 Parallel link network

In this setting, the vector payoff map F(·) can be expressed as the gradient of a
potential function which is inspired from Rosenthal [110]. Namely, consider the map
H : [0, 1]K×A → R defined by

H(π) = E
B
π

[∑

a∈A

∑w̃a

i=1
sa(i)

]

,

where w̃a = ∑
k∈K Xka is a sum of independent Bernoullis with P(Xka = 1) = πka .

Denoting w̃-k
a = ∑

i �=k Xia we have for all π ∈ Δ

Fka(π) = E
B
π

[
sa(w̃

-k
a + 1)

]
= ∂H

∂πka
(π). (11)

Hence F(π) = ∇H(π), which yields an alternative characterization of equilibria
as stationary points of the perturbed potential function

Ψ (π) = H(π) +
∑

k∈K
1

βk

∑

a∈A
πka [ln(πka) − 1] .

and its associated Lagrangian

L(π, μ) = Ψ (π) +
∑

k∈Kμk

[∑

a∈A
πka − 1

]
.

Theorem 3 ([30]) For each x ∈ B and π = �(x) the following are equivalent:

(a) x ∈ F ,
(b) π is a Nash equilibrium of the perturbed game G,
(c) there exist multipliers μk ≥ 0 such that ∇πL(π, μ) = 0,
(d) π is a critical point of Ψ , i.e. ∇Ψ (π) is orthogonal to the tangent set TΔ(π).

The potential function H can be used to improve the convergence results for the
learning process (7). To this end we note that Fka(π) is a symmetric polynomial in
the variables (π ja) j �=k only, and does not depend on the probabilities π ja′ for a′ �= a.

Hence the second derivatives of H are all zero except for ∂2H
∂πka∂π ja

for a ∈ A and
k �= j . Using (11) one can prove that the latter belong to the interval [0, θ ], from
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which it follows that C is ‖ · ‖∞-Lipschitz with constant L = 1
2ωθ . This improves by

a factor four the estimate in the example at the end of the previous section, namely

Theorem 4 ([30]) If ωθ < 2 then C is a ‖ · ‖∞-contraction. Its unique fixed point x̄
is a global attractor of (9) and the process (7) converges almost surely to x̄ .

To interpret this result we note that the coefficients βk are inversely proportional to
the standard deviation of the random terms in the Logit choice model. Thus, the con-
dition ωθ < 2 requires either a weak congestion effect (small θ ) or a sufficiently large
noise (smallω). At lower noise levels (large βk) player behavior becomes increasingly
deterministic and multiple equilibria coexist just as in Rosenthal’s game [110]. The
case of small noise was studied by Duffy and Hopkins [38] in the context of a market
entry game,5 by considering two alternative dynamics: proportional reinforcement and
hypothetical reinforcement.

The parameter ω involves sums of βk’s so the condition becomes more and more
stringent as the number of players increases. The following results show that unique-
ness of the rest point still holds under the much weaker conditions in which ω is
replaced by β = maxk∈K βk . As a matter of fact, these conditions ensure that the per-
turbed potential Ψ is strongly convex so that the equilibrium is its unique minimizer.

Proposition 3 ([30]) If βθ < 1 then Ψ is strongly convex with parameter ( 1
β

− θ).
Also, if βθ < 2 and the arc travel times are linear, then Ψ is quadratic and strongly
convex with parameter ( 2

β
− θ) over the set Δ. In both cases Ψ attains its minimum

at a unique point π̄ ∈ Δ. This point is the only Nash equilibrium of the game G while
x̄ = F(π̄) is the corresponding unique rest point of the adaptive dynamics (9).

In the symmetric case where all players have the same Logit parameter βk ≡ β,
one might expect that rest points are also symmetric with all players sharing the same
perceptions: x̄k = x̄ j for all k, j ∈ K . This is indeed the case when βθ is small, but
beyond a certain threshold there is a multiplicity of rest points all of which except for
one are non-symmetric.

Theorem 5 ([30]) For identical players the adaptive dynamics (9) has exactly one
symmetric rest point x̂ = (ŷ, . . . , ŷ). When βθ < 2 this is the unique rest point and is
a local attractor for (9). As a consequence, the game G has a unique symmetric Nash
equilibrium which is the only equilibrium when βθ < 2.

The assumption βθ < 2 above is much weaker than the condition in Theorem 4
which for identical players becomes βθ < 2

N−1 . However, since βθ < 2 already
guarantees a unique rest point x̂ , one may hope that it remains a global attractor under
this weaker condition. Although numerical experiments confirm this conjecture, we
have only been able to prove that x̂ is a local attractor. Unfortunately this does not allow
to conclude the almost sure convergence of the learning process (7). The numerical
simulations also show that convergence to an equilibrium still holds for βθ > 2,
but there is a bifurcation value beyond which the symmetric equilibrium becomes
unstable (in the sense of dynamical systems) and the dynamics converge towards one

5 This corresponds to the case of 2 parallel links with linear costs and identical players.
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of the multiple non-symmetric equilibria. The structure of this bifurcation seems quite
intricate and is not well understood.

3.4 State dependent adaptive dynamics

The dynamics (7) use an exogenous sequence of averaging factors γn which depend
only on the stage n and not on the history of the process. A meaningful variant studied
by Bravo [22] considers a state dependent factor γn = 1/(1 + θnkrnk

) where θnkr counts

the number of times that each route r ∈ Rk has been observed up to stage n. This
yields again a Markov process which can be analyzed using stochastic approximation.
Under very mild conditions, Bravo [22] shows that this process converges to an equi-
librium with positive probability, while almost sure convergence holds under the same
assumptions as in the state independent case (see Propositions 4.2 and 5.1 in [22]).
Additionaly, [22, Theorem 5.1 and Proposition 5.2] show that the state-dependent
dynamics exhibit a much faster convergence rate. To provide some intuition, we note
that the continuous expected dynamics associated with the state-dependent process
are given by the following coupled dynamics, for each k ∈ K and r ∈ Rk

{
ẋkr = σkr (xk)

θkr (t)
[Ckr (x) − xkr ] ,

θ̇kr = σkr (xk) − θkr ,

whose rest points are the same as for (9). The second equation implies that θkr tends
to σkr (xk) very fast, so that in the first equation we have σkr (xk)

θkr (t)
∼ 1. In contrast, the

multiplicative factor in (9) is σkr (xk) which slows down the convergence for routes
with large travel times and small probabilities σkr (xk).

4 Risk-aversion and traffic equilibrium

The models discussed in the previous sections evaluate routes by their expected travel
times. While this might be appropriate for a risk neutral agent, a risk-averse driver
will be more concerned with travel time reliability.

Risk-sensitive route choice is a relatively young research area. General discussions
on risk evaluation in route choice can be found in Bates et al. [11], Noland [97],
Hollander [68]. Also, the literature review in Nikolova and Stier-Moses [96] describes
a number of alternative approaches that have been recently proposed to model risk in
the context of network traffic models. In Sect. 4.4 we briefly discuss some of these
risk-averse route choice models.

A basic question here is to understand the mechanisms of route choice under risk
and how risk-aversionmay affect congestion and equilibrium.While this calls formod-
eling the actual behavior of agents, it can also be approached from a normative angle
by asking which properties characterize a rational route choice under risk. General
theories of choice under risk provide a natural framework to address these questions.
For a recent and complete account of these theories we refer to Föllmer and Schied
[49].
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In what follows we present an overview of the general approaches that have been
proposed to measure risk, and how these measures and postulates are interpreted in
the context of risk-averse routing. Within these classical frameworks in the theory of
choice, we show that the so-called entropic risk measures emerge as the only ones
that satisfy additive consistency, an intuitive axiom for route choice. This axiom is
relevant since it allows to formulate risk averse equilibrium in the standard frameworks
of Wardop, SUE, and Rosenthal.

4.1 Risk valuations: axioms and examples

In the sequel we consider a fixed probability space (Ω,F ,P). A risk valuation is a
map ρ : L∞(Ω,F ,P) → R which associates to each bounded random variable X a
scalar risk value ρ(X) satisfying the two following postulates

Normalization: ρ(0) = 0,
Monotonicity: if X ≤ Y almost surely then ρ(X) ≤ ρ(Y ).

Such a map induces a preference relation:6 X � Y iff ρ(X) ≤ ρ(Y ). Against
common usage, in our context where random variables represent travel times, we read
this as “X is preferred to Y”. Normalization is not restrictive as one can always replace
ρ(X) by ρ(X) − ρ(0), while monotonicity has a clear intuitive meaning: routes with
smaller travel times are preferred.

A particular class of risk valuations, the so-called risk measures introduced in the
area of finance by Artzner et al. ([8]), assume as a third postulate

Translation invariance: ρ(X + m) = ρ(X) + m for all m ∈ R.

Among these, Artzner [8] distinguishes the subclass of coherent risk measures which
are moreover sub-additivite and positively homogeneous.

Under the normalization axiom, traslation invariance is equivalent to requiring
simultaneously

Normalization on constants: ρ(m) = m for all m ∈ R.
Translation consistency: ρ(X) ≤ ρ(Y ) ⇒ ρ(X + m) ≤ ρ(Y + m).

Normalization on constants is a mild requirement: it suffices to have m �→ ρ(m)

strictly increasing and continuous, since then this function has an inverse σ and we
may substitute ρ by σ ◦ρ. Translation consistency is a plausible condition stating that
the preference between X and Y is not altered when we add a constant. While this
postulate has been contested in finance (risk attitudes may change after receiving a
heritage), it seems very likely for route choice. As a matter of fact we will consider
the stronger axiom

Additive consistency: if ρ(X) ≤ ρ(Y ) then ρ(X + Z) ≤ ρ(Y + Z) for all Z
independent of (X,Y ).

It is an easy exercise to check that under translation consistency and normalization
on constants, this is equivalent to

6 Not all preference relations can be represented in this form, though this is not too restrictive (see e.g. [47,
Proposition 2.13]).
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o j d

X

Y

Z

Fig. 5 The additive consistency axiom for route choice

Additivity: if ρ(X + Y ) = ρ(X) + ρ(Y ) for all independent variables X,Y .

The meaning of additive consistency is illustrated in Fig. 5. Suppose that the pre-
ferred choice to go from o to j is the upper link. Then, if we extend our trip to d we
should still prefer the upper link: since the arc ( j, d) is compulsory and one must
inevitably incur in the cost Z, the decision at o should not depend on Z. This seems all
the more plausible since, due to independence, even if one observes Z this reveals no
information that could affect the choice between X and Y. A change of preference to
the lower arc would appear as paradoxical!

4.1.1 Examples

Themean-stdev maps ρstd
γ (X) = E(X)+γ σ(X) quantify risk by the sum of the mean

plus a multiple of the standard deviation, or some other variability index [86,98,99].
These maps satisfy normalization and translation invariance, but monotonicity fails:
take X ∼ U [0, 1] a uniform variable and Y = (1+ X)/2 so that X ≤ Y almost surely,
yet for γ large we have ρstd

γ (Y ) < ρstd
γ (X). They also lack additive consistency: for

independent normals X ∼ N (11, 1), Y ∼ N (10, 5), Z ∼ N (10, 2) and γ = 1 we
have ρstd

γ (X) < ρstd
γ (Y ), but ρstd

γ (X + Z) > ρstd
γ (Y + Z). Truncating these normals

we get an example in L∞(Ω,F ,P). Similar examples can be built for each γ > 0.
A popular risk measure is Value-at-Risk defined as the p-percentile

VaRp(X) = inf {m ∈ R : P(X ≤ m) ≥ 1 − p} .

This map is positively homogeneous but not convex nor sub-additive (see [8]). The
best known coherent risk measure is Average Value-at-Risk, introduced in [8] and
defined for a level p ∈ (0, 1) by

AVaRp(X) = 1

p

∫ p

0
VaRq(X)dq.

For continuous variables it coincides with the Tail Conditional Expectation
E(X |X ≥ VaRp(X)). When restricted to normal random variables both VaRp and
AVaRp coincide with ρstd

γ for appropriate corresponding constants γ . In particular
they do not satisfy additive consistency either.

A family of convex (but not coherent) risk measures are the entropic measures
defined as (cf. [47–49,113])
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ρent
β (X) = 1

β
ln

(
E

(
eβX

))
.

These measures are clearly additive and thus satisfy additive consistency. They can
be derived from additive premium principles [56], as well as from expected utilities
with constant absolute risk aversion CARA ([6,106]). The case β > 0 characterizes
risk-averse behavior while β < 0 corresponds to a risk-prone agent. The limit β → 0
gives ρent

0 (X) = E(X) which reflects risk neutrality.7

4.2 Additive consistency and risk-averse equilibrium

As noted above, a risk valuation which is normalized on constants and additive con-
sistent, is automatically additive. This has useful consequences for risk-averse route
choice and equilibrium. Namely, suppose that the random travel times t̃a are indepen-
dent across arcs a ∈ A. Let c̃r = ∑

a∈r t̃a denote the route travel times, and consider
the problem of finding a risk-minimizing path

min
r∈Rk

ρ(c̃r ). (12)

When ρ is additive the objective function separates as ρ(c̃r ) = ∑
a∈r ρ(t̃a) and (12)

reduces to a standard shortest path problem with arc lengths da = ρ(t̃a). This can be
efficiently solved using standard algorithms.

Consider next a risk-averse equilibrium model with traffic demands gk ≥ 0. As in
Sect. 2.1 the demands gk = ∑

r∈Rk
hr are decomposed into path-flows hr ≥ 0, which

induce arc loads wa = ∑
r�a hr . Suppose that the distribution t̃a ∼ Fa(wa) depends

on the total link flow wa . We may then define a risk-averse equilibrium as a path-flow
vector h which uses only risk-minimizing paths, namely, for each OD pair k ∈ K and
every path r ∈ Rk we must have

hr > 0 ⇒ ρ(c̃r ) = min
p∈Rk

ρ(c̃p).

If ρ is additive and the function sa(wa) � ρ(t̃a) increases with wa , the situation
falls into the standard framework of Wardrop equilibrium.

Similarly, in an atomic setting where each player k ∈ K selects a path r ∈ Rk that
minimizes the risk ρ(c̃r ) and the distribution t̃a ∼ Fa(wa) depends on the number of
players on the link, denoting sa(wa) = ρ(t̃a) we get a congestion game of the type
treated in Sect. 3.1.

The situation seems much more difficult when the link travel times t̃a are not inde-
pendent. A possible approach is to use dynamic risk measures which are specifically
designed to deal with time-inconsistency in multi-stage decision processes [111–113].
However, in a routing context the notion of stage is unclear and may even depend on

7 The limit cases β → ±∞ can also be considered as extreme attitudes toward risk with ρent∞ (X) =
ess sup X and ρent−∞(X) = ess inf X . In this paper we only consider finite β’s.
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the representation of the network. A short discussion of this issue is presented in the
final section of [31].

The models should also be changed if drivers are not homogeneous with respect
to their valuation of risk. In the next section we show that additive consistency limits
the choice to entropic risk measures. Thus, some homogeneity among users might be
expected, though they can still differ in their risk aversion index β. This case leads to
an equilibrium model with multiple user classes. One might still get the existence of
equilibria, but a simple variational characterization such as (P-WE) or the existence
of a potential function like (6) seems unlikely.

4.3 Additive consistency for classical theories of choice

The roots of the theories of choice can be traced back to Bernoulli [20] who argued that
preferences among random variables could be expressed in terms of an expected utility
index E(c(X)) with c : R → R strictly increasing and continuous. Such expected
utility preferences hold an intuitive appeal for route choice. Imagine for instance a
fire truck rushing to an emergency so that reaching the destination quickly is critical
since the damage by fire increases nonlinearly with time. A route with small expected
time but affected by events of high congestion might be too risky, and a longer but
more reliable route could be a better choice. Expected utility captures the nonlinear
relation between “time” and “cost”, and minimizing expected cost is a natural goal. A
convex c(·) characterizes a risk-averse agent who always prefers the expected value
E(X) over the uncertain outcome X.

Cearly, expected utility preferences may also be expressed using the so-called cer-
tainty equivalent

ρc(X) = c−1 (E (c(X))) .

This map is normalized on constants and monotone so that it is a risk valua-
tion, though in general it is not a risk measure since translation invariance may fail.
Axiomatic characterizations of the preferences that can be represented in this form
were given by Kolmogorov [75], Nagumo [89], de Finetti [42], and von Neumann
and Morgenstern [90]. For a thorough discussion on expected utilities we refer to
[36,43,49]. In particular, a risk valuation ρ is of the form ρc, with c unique up to a
positive affine transformation, if and only if it satisfies

• Law invariance: FX = FY ⇒ ρ(X) = ρ(Y ),
• Strict monotonicity: if X < Y almost surely then ρ(X) < ρ(Y ),

• Weak continuity: if Xn
D→ X in distribution then ρ(Xn) → ρ(X),

• Independence: if ρ(X) ≤ ρ(Y ) then ρ(L(p; X; Z)) ≤ ρ(L(p; Y ; Z)).

Here L(p; X; Z) denotes the lottery with distribution pFX (x) + (1 − p)FZ (x) for
all x ∈ R. To interpret this condition, imagine a driver who has two options X,Y to
travel from j to d of which he prefers X (see Fig. 6). Suppose now that he is actually
at a point o on the other side of a river, and to reach the intermediate node j he
must first cross a bridge which is open with probability p. Otherwise he must take a
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Fig. 6 The independence axiom
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long detour Z. Thus, our driver faces a choice between the lotteries L(p; X; Z) and
L(p; Y ; Z) and the independence axiom requires that the first should be preferred.
Although this independence axiom seems quite plausible for route choice, it has not
been without critics. The paradoxes of Allais [4] and Ellsberg [40] show specific
situations in which the axiom is violated and agents do not behave consistently with
the predictions of this theory. Further empirical evidence by Kahneman and Tversky
[70] motivated alternative independence axioms that lead to theories of choice based
on other representations. These include the dual theory of choice [126] and the rank-
dependent utilities [26,107,120].

Namely,while expected utility introduces risk-aversion bymagnifying the effects of
bad outcomes through a nonlinear transformation of the cost c(X), Yaari’s dual theory
of choice [126] uses the idea that a risk-averse agent tends to overstate the probability of
bad outcomes.An agent is then characterized by a continuous nondecreasing distortion
map h : [0, 1] → [0, 1]with h(0) = 0 and h(1) = 1, so that the probability P(X > x)
is distorted as θhX (x) = h(P(X > x)). Risk-aversion corresponds to h(x) ≥ x for
all x ∈ [0, 1], while a risk-prone agent satisfies the reverse inequality. The function
θhX (·) is a decumulative distribution so we may find a random variable Xh such that
P(Xh > x) = θhX (x). The agent’s preferences are then described by the map8

ρh(X) = E(Xh) =
∫ 0

−∞

[
θhX (x) − 1

]
dx +

∫ ∞

0
θhX (x)dx .

This is clearly a law invariant risk measure which is also positively homogeneous
and normalized on constants. It is called a distortion risk measure. Axiomatic charac-
terizations of the preferences that can be represented in this form are given in [36,126].

The two previous ideas for modeling risk-aversion are complementary and can be
combined by considering preference functionals of the form

ρh
c (X) = c−1

(
E

(
c(Xh)

))
= c−1

(
E

(
c(X)h

))
,

where c is a utility function and h is a distortion map. These maps are normalized on
constants but they need not be translation invariant nor additive consistent. For h(x) =
x we recover expected utilities, while c(x) = x gives the distortion risk measures. The

8 As a technical remark, we note that in order to properly define a random variable Xh from its distribution,
we need (Ω,F ,P) to be a standard non-atomic probability space. However the explicit integral formula
for ρh(X) does not require this.
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functionals ρh
c are called rank-dependent expected utilities and have been considered

by several authors including Quiggin [107],Wakker [120], and Chateauneuf [26], who
provide axiomatic characterizations of the preferences that can be represented in this
form.

It turns out among these standard theories of choice, the only preferences that satisfy
additive consistency are the entropic risk measures.

Theorem 6 ([31]) A rank dependent expected utility ρh
c is translation invariant iff

c(·) is an exponential function or the identity. Moreover, the only measures of form ρh
c

which satisfy additive consistency are the entropic risk measures: h is the identity and
c is either an exponential function or the identity.

This result drastically narrows down the options for modeling route choice under
risk, unless we give up additive consistency. Note however that beyond the standard
theories there exist other additive consistent maps. In particular this holds for mixtures
of entropic risk measures. Namely, for each probability distribution F : R → [0, 1]
the following gives an additive risk measure9

ρent
F (X) =

∫

R

ρent
β (X) dF(β).

Theorem 6 was proved in Luan [83] assuming c and h twice differentiable and
increasing, with h concave and c convex. An alternative proof was given in Goovaerts
et al. ([59]) assuming in addition that c has aMcLaurin expansion. Previous results for
ρc and ρh , always under additional concavity and/or smoothness assumptions, were
presented in Gerber [56] and Heilpern [66]. The proof without any a priori regularity
assumptions is found in Cominetti and Torrico [31]. Note however that regularity of
c(·) as well as additivity of ρc follow as a consequence.

4.4 Recent work on risk-averse routing

The use of mean-stdev risk maps ρstd
γ (see Sect. 4.1.1) in the context of risk-averse

routing were investigated by Nikolova and Stier-Moses [96], including the case when
both the expected value and the variance of travel times depend on traffic intensity.
Algorithms to compute optimal routes for the mean-stdev objective were studied by
Nikolova [94] and Nikolova et al. [95], giving an exact algorithmwith sub-exponential
complexity as well as a PTAS. A similar model in which risk-aversion is measured by
expected value plus a variability index was considered in Ordoñez and Stier-Moses
[100] together with other alternative models based on robust optimization and α-
percentiles. Percentile equilibria in route choice were also investigated by Nie [92].
A different approach to risk-averse path choice considers user preferences based on
the on-time arrival probability. This was studied by Nie and Wu [93], addressing the
question of whether or not route optimality is inherited by subpaths. An algorithm for
this objective function was also given by Nikolova et al. [95]. A related approach by

9 A simple entropic risk measure corresponds to the case of a Dirac distribution F.
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Nie et al. [91,124] reconsiders the route choice question under stochastic dominance
constraints. Some further recent papers are [5,125,129].

Except for the approach based on stochastic dominance, all the other involve risk
maps that do not satisfy additive consistency.While this raises a concern whether these
models describe a fully rational behavior in route choice, it does not invalidate them.
From a practical viewpoint, all these models may plausibly describe the behavior
of some agents and there is no firm empirical evidence to assert that drivers make
consistent choices. Furthermore, Theorem 6 deals with preferences defined over all
of L∞(Ω,F ,P) which might be asking too much as one could argue that drivers
make choices in a much narrower subset, e.g. a set of uniformly bounded nonnegative
variables. In summary, although additive consistency is a natural axiom for route
choice, there is still work to be done before one can tell which is the most appropriate
model for route choice under risk.
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