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Applications of linear stability via Lyapunov exponents in high dimensional test systems are presented.
The stochastic disturbance model is given by a bounded Markov diffusion process, as it appears in the
description of load or generation uncertainties of power systems, for example. For such systems, the
Lyapunov exponents describe necessary and sufficient conditions for almost sure asymptotic stability.
The present article reports results obtained by applying the proposed methodology to four-machine
ten-bus, ten-machine thirty-nine-bus, and sixteen-machine sixty-eight-bus international test systems.
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Introduction

At present, electric power systems are subjected to a variety of
random disturbances that affect the behavior of the system, includ-
ing small disturbance and transient analysis. Techniques have been
reported that allow describing the indicated phenomena, with
probabilistic analysis as one of the main contributions to the study
of stability. This approach is oriented at the analysis of contingen-
cies and safety/reliability, where the main argument is to assign a
probability value to the occurrence of certain events that are of
interest for the study that may be made. In this way, the probabil-
ity that the system will be stable is calculated using the distribu-
tion functions of the elements that represent the random
behavior of the system.

Within the context of transient stability, the random behavior
of the systems has been approached considering different system
scenarios and parameters which are associated with an occurrence
probability [1–10]. In terms of quantitative assessment, reference
[11] presents an index that allows determining the vulnerability
when facing a voltage collapse, establishing that consumption
has a random behavior. This stability index corresponds to the time
for leaving a stable operation zone.

Stability studies of small probabilistic disturbances are pro-
posed in references [12–20]. One of the main approaches is to
assign a probability distribution of the real parts of the eigenvalues
obtained from the linear equivalent model of the electric system,
and then determine the probability that the real parts will be
located in the left half-plane. In this context, applications are also
presented in which the PSS (Power System Stabilizer) controllers
are used to decrease the effect of the disturbances that affect the
operation but occur in a single instant of time. Moreover, applica-
tions are included in which indicators are defined that allow the
evaluation of the behavior of the electric system subjected to dis-
turbances that are defined by the system’s operator. However,
one strategy for analyzing the conditions under which the distur-
bance is sustained in time has not been proposed.

To account for the random and permanent effect over time,
Lyapunov exponents have been used as stability indices to analyze
power systems [21]. Reference [22] gives a theoretical description
of the calculation of Lyapunov exponents in structures, considering
low dimension systems as applications. However, these studies are
still in a theoretical stage and no numerical methods for estimating
them are shown. With respect to the disturbance model, white
noise has been considered traditionally to characterize the random
and sustained in time effect that affects the permanent regime
operation of electric systems [23]. That model is a stochastic pro-
cess that has nonbounded trajectories and considers microscopic
time scales in its dynamics. On the other hand, the phenomena
of interest in stability correspond to load variations, power fluctu-
ations in the generators, unforeseen line dropping out, etc., which
have bounded magnitudes and take place in much greater time
scales than those of Brownian motion.
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In brief, the specialized literature shows important progress in
the study of stability considering random disturbances, but it is
necessary to model those phenomena with dynamics sustained
over time. In this paper a methodology is presented to generalize
the analysis of small disturbances through the calculation of
Lyapunov exponents, considering the presence random and self-
sustained time disturbances. Results are given for the four- and
ten-machine systems described in the international literature.

The paper is structured as follows: Section ‘System model’ gives
the mathematical model used to represent an electric power sys-
tem as a stochastic linear system. Section ‘Numerical methods for
estimating the Lyapunov exponent in stochastic linear systems’
presents the numerical methods that were implemented in inter-
national test systems. Section ‘Case studies’ shows the results
obtained for the cases analyzed and the analyses made. Finally,
Section ‘Conclusions’ includes the conclusions and future work.
System model

Previous mathematical concepts

The general model for studying a linear system subjected to sto-
chastic disturbances is detailed in this section.

To begin, let us consider an electric power system represented
by a nonlinear system of the form

_y ¼ f ðy; pÞ ð1Þ

The system is defined in the state space RN , where N1 ¼ 2n
corresponds to the relative angles of the rotors ðd1; . . . ; dnÞ and
velocities ðx1; . . . ;xnÞ, and N2 corresponds to the rest of the state
variables ðN1 þ N2 ¼ NÞ. The vector p 2 R corresponds to the vari-
ables that can be fitted to guarantee the optimum operation of
the system.

Let us also consider y� 2 R as a set point (operation point) of
system (1) and the equivalent linear system at that point, given by

D _x ¼ AðpÞDx ð2Þ

The classical small disturbance stability study is based on get-
ting the eigenvalues of the linear system of Eq. (2). If the real parts
are negative, the system will be stable [28]. However, at the time of
considering random and self-sustained in time disturbances, the
classical approach stops being practical for the following reasons:

� The state matrix A will be variant in time and for every instant t
there will be a different set of eigenvalues, making this
approach impracticable due to the number of elements to be
analyzed.
� On the other hand, there are examples in which the time-vari-

ant system has eigenvalues with negative real parts, but it is
not stable [24]. To illustrate this idea, let us consider the follow-
ing linear system:
D _x¼
�1�9cos2 6tþ6sin12t 12cos2 6tþ 9

2 sin12t

�12sin2 6tþ9
2 sin12t �ð1þ9cos2 6tþ6sin12tÞ

 !
Dx

In this case, x 2 R and for every t 2 R the characteristic polyno-
mial is k2 þ 11kþ 10 ¼ 0, which has roots �1 and �10. From the
traditional standpoint, the system is stable. However, the sys-
tem’s fundamental matrix is given by

e2tðcos 6t þ 2 sin 6tÞ e�13tð�2 cos 6t þ sin 6tÞ
e2tðcos 6t � 2 sin 6tÞ e�13tð2 cos 6t þ 2 sin 6tÞ

 !

The components do not tend to zero as time increases to infinity,
so the system is not stable [31]. This shows that when the
system is time-variant, the classical analysis of eigenvalues is
not sufficient.

The linear system of Eq. (2), when subjected to random and sus-
tained in time disturbances, can be described by the following
model [26]:

D _x ¼ Aðp; ntÞDx ð3Þ

where

� nt is a random process that takes values in some set U � Rm and
describes the way in which the disturbance affects the states of
the system and
� p is the set of control parameters (the gains of the machine con-

trollers, for example).

Denoting the solution of Eq. (3) at time P 0 with an initial value
x0 2 Rd by /ðt; x; ntÞ, the exponential behavior is given by the
Lyapunov exponents

kðx; mÞ ¼ lim sup
t!1

1
t

logðk/ðt; x; ntðmÞÞkÞ ð4Þ

where m is an element that represents a realization of the stochastic
process that models random disturbance self-sustained in time.

In general, the stochastic system of Eq. (3) with ergodic distur-
bance nt can have a number d of Lyapunov exponents. Under the
conditions indicated in [25] there is a unique exponent with prob-
ability 1 given by the following expression:

kðx; mÞ ¼ lim
t!1

1
t

logðk/ðt; x; ntðmÞÞkÞ ð5Þ

According to [26], the stochastic linear system of Eq. (3) would
be exponentially stable if and only if k < 0.

Electric power system disturbance models

Random and sustained in time variations that affect the opera-
tion of electric power systems can be found at the generation,
transmission and distribution levels. Unconventional renewable
energy sources, distributed generation, and sustained consumption
increase introduce nondeterministic components that must be
modeled and considered to evaluate the system’s response in per-
manent and dynamic regime.

In this paper we present the results obtained when considering
two sources of uncertainty in the operation of electric systems:

Excitation system subjected to stochastic disturbances
To illustrate the model, let us consider that the currents in the

generators in dq coordinate axes vary as a function of time due
to bounded disturbances around the system’s stable operation
point. In that case it is possible to represent the current compo-
nents as follows:

Idi ¼ Iss
di � ð1þ q � sinðntÞÞ

Iqi ¼ Iss
qi � ð1þ q � sinðntÞÞ

SEðEfdÞi ¼ SEðEfdÞ � ð1þ q � sinðntÞÞ; i ¼ 1; . . . ;n:

ð6Þ

where

� Idi: current component along axis d in machine i,
� Iqi: current component along axis q in machine i,
� SEðEfdÞi: represents the excitation system’s saturation in

machine i [29],
� ss: the operating conditions in permanent deterministic regime,
� n: the number of machines in the system, and
� q: the size of the disturbance that affects the system.
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Random variations in the system’s consumption
To represent the random and self-sustained in time variations

that can be experienced by the consumption of an electric system,
let us consider that the voltages in the load busbars have a time
dynamic given by Eq. (7).

hLoadi ¼ hss
Loadi � ð1þ q � sinðntÞÞ ð7Þ

VLoadi ¼ VLoadi � ð1þ q � sinðntÞÞ; i ¼ 1; . . . ; n: ð8Þ

where

� hLoadi : denotes the angle of the voltages in the load busbar i,
� VLoadi : denotes the voltage angle in the load busbar i,
� ss: the operating conditions in permanent deterministic regime,
� m: the number of load busbars in the system, and
� q: the size of the disturbance that affects the system.

Considering the representations of the disturbances according
to Eqs. (6)–(8), the electric system is described by the stochastic
linear system of Eq. (3).

To model disturbance nt we use the results of Refs. [15,25,27],
where it is stated that the Ornstein–Uhlenbeck process can be used
to model random phenomena present in the electric power sys-
tems. Based on the above, we model nt according to

nt ¼ q � sinðgtÞ; q P 0 ð9Þ

where

� nt: corresponds to the solution of the following stochastic differ-
ential equation of the Ornstein–Uhlenbeck model:

dgt ¼ �cgtdt þ wdWt ð10Þ

Parameters c and w are estimated from the real measurements
of the phenomenon that it is desired to model. Here we specify
c ¼ 1 and w ¼ 1 as a particular case of what is reported in reference
[15].

Numerical methods for estimating the Lyapunov exponent in
stochastic linear systems

This section summarizes three numericals methods reported in
[26] that allow the estimation of the Lyapunov exponent for sto-
chastic linear systems.

Let us consider the system of Eq. (3) and the following
parameters:

� a: number of initial conditions,
� b: number of realizations of disturbance nt , which represents

the random and self-sustained in time disturbances, and
� T: simulation time for calculating the Lyapunov exponent.

According to the definition given in Eq. (5), three numerical
methods are presented in reference [26]:

Method 1: Trajectory averages in the linear system

For simulation time T, trajectory i of disturbance nt , and initial
condition xj

0 we have solution xj
nðiÞ of Eq. (3), from which the fol-

lowing calculation is made:

kjðiÞ ¼ 1
T
�
XT

n¼1

log kxj
nðiÞk ð11Þ

Averaging the value obtained in Eq. (10) over the number of
realizations and initial conditions a and b, respectively, we get
k ¼ 1
a
� 1
b

Xa

j¼1

Xb

i¼1

kjðiÞ ð12Þ

For the stochastic linear system of Eq. (3), the Lyapunov expo-
nent is obtained considering that T !1. However, it is possible
to get approximate results in a fixed time T considering a large
number of realizations of the disturbance and the initial conditions
of the linear system [26]. Furthermore, due to the numerical errors
of the first iterations, it is convenient to eliminate the initial time
period of the simulation, so Eq. (11) is fitted as follows:

kjðiÞ ¼ 1
T � T1

�
XT

n¼T1

log kxj
nðiÞk ð13Þ

where T1 indicates the simulation period in which the numerical
method presents numerical errors.

Method 2: Averages of projected trajectories

For every trajectory of disturbance nt , initial condition xj
0 and

simulation time T, the linear system of Eq. (3) is solved, getting
the solution xj

nðiÞ. Then the normalization sj
nðiÞ ¼ xj

nðiÞ
kxj

nðiÞk
is made to

calculate the expression of Eq. (13) (see [25]):

kjðiÞ ¼ 1
T � Ti

�
Z T

T1

sj
tðiÞ

T AðntÞsj
tðiÞdt ð14Þ

Finally, we get the average over that realizations and initial con-
ditions according to Eq. (12).

Method 3: Averages of trajectories in a sphere

In this case we solve the nonlinear system of Eq. (15), which
represents the dynamics of the system projected on a sphere, see
[26].

_s ¼ hðAðntÞ; sÞ; s 2 Sd�1

hðA; sÞ ¼ ðA� sT As � IÞs
ð15Þ

where

� I is the identity matrix, with dimensions given by matrix and
� Sd�1 indicates the sphere of dimension d� 1.

Case studies

As an application of the numerical methods presented, the fol-
lowing test systems were considered as case studies:

� System I: Four-machine ten-bus system. The unilinear diagram
is shown in Fig. 1, and it corresponds to the classical test system
used for stability analysis. The system’s operating parameters
and conditions can be found in [29].
� System II: Ten-machine thirty-nine-bus system. The unilinear

diagram is shown in Fig. 2, and it corresponds to one of the stan-
dard test systems used for stability analysis in multi-machine
systems. The system’s operating parameters and conditions
can be found in [30].
In both systems the disturbance that affects the dynamics of the
machines is modeled according to Eq. (6). The results of apply-
ing the proposed numerical methods to the test systems are
given below.
� System III: Sixteen-machine sixty-eight-bus system.

This example also corresponds to one of the classical test sys-
tems used for stability analysis in multi-machine systems. The
parameters can be found in [33].



Fig. 1. Four-machine ten-bus system.

Fig. 2. Ten-machine thirty-nine-bus system.
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In this case the disturbance models the variations that the sys-
tem’s load bus consumption can experience. Calculating the
Lyapunov exponents it is possible to determine the maximum
value by which the consumption can increase or decrease, with-
out having to make a new economic dispatch to respond to the
existing variations, which are inherent in the operation of the
system.

Four-machine ten-bus system

Table 1 shows the values of the Lyapunov exponents for differ-
ent disturbance sizes q according to the disturbance model indi-
cated in Eq. (6).
In the three methods presented, parameter T1 (see Eq. (13) is
fitted to eliminate the numerical errors of the first iterations. In
our work its value was determined considering that in the absence
of disturbance ðq ¼ 0Þ the calculated Lyapunov exponent would be
the same as that of the real part closest to the origin of the deter-
ministic linear system (�0.0032).

From the results indicated in Table 1, in the disturbance range
of 0 6 q 6 0:2 the three numerical methods showed similar behav-
iors. In fact, using Methods 1 and 2, the Lyapunov exponent
obtained for q ¼ 0 turns out to be the same as the real part closest
to the origin of the deterministic system. With respect to Method 3,
there is a slight difference due to numerical problems whose origin
is found in the solution of the nonlinear associated system [26].



Table 1
Lyapunov exponents four-machine system.

q Method 1 Method 2 Method 3

0 �0.0032 �0.0032 �0.0019
0.1 �0.0039 �0.0054 �0.0043
0.2 �0.0040 �0.0044 �0.0038
0.3 �0.0012 0.0002 0.0002
0.4 0.0044 0.0035 0.0038
0.5 0.0092 0.0099 0.0102

Table 3
Lyapunov exponents sixteen-machine system.

q Method 3

0 �0.0436
0.02 �0.0440
0.04 �0.0458
0.06 �0.0453
0.08 �0.0445
0.10 �0.0440
0.12 �0.0437
0.14 �0.0437
0.16 �0.0430
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The results of Table 1 also indicate that for a disturbance size
range of 0:2 < q < 0:3 the system loses stability.

It can also be stated safely that up to a disturbance value of
q ¼ 0:2 the system will be stable. The theorem that justifies this
statement is found in [32].

Based on the control parameters p of Eq. (3) it is possible to
modify the value of the Lyapunov exponent as a function of the size
of disturbance q, opening an interesting exploration field for con-
trolling the stability of these systems. This idea will be developed
and presented in a future publication.
Ten-machine thirty-nine-bus system

According to the tests carried out on the systems of Figs. 1 and
2, it is verified that Method 1 is the most efficient, as it requires less
time and memory for the calculation process. Moreover, Methods 2
and 3 present discontinuities when initial conditions that are very
close to the origin are evaluated [26].

Based on the arguments given above, Table 2 shows the values
of the Lyapunov exponent calculated by Method 1, to analyze the
stability of the ten-machine system. Different disturbance sizes
were considered to determine the maximum disturbance size q
at which the system will be stable.

The same as for the four-machine system, parameter T1 was fit-
ted in such a way that the estimated Lyapunov exponent had the
same value as the real part closest to the origin of the deterministic
system.

Similarly to the four-machine system, it is possible to determine
the maximum disturbance size at which the system is stable [32].
For the ten-machine system the value that ensures stability is
q ¼ 0:3.
Sixteen-machine sixty-eight-bus system

Table 3 shows the values obtained by calculating the Lyapunov
exponents for different disturbance sizes. In this case, modeling the
load bus voltage variations has been considered, representing the
random behavior of the consumption existing in the system.

From the above it is possible to determine the maximum distur-
bance size q at which the system will be stable [32]. For the six-
teen-machine system the maximum voltage variation on the load
busses corresponds to q ¼ 0:16. Note that an important fact result-
ing from this analysis is that as the power systems become more
Table 2
Lyapunov exponents ten-machine system.

q Method 2

0 �0.025406
0.1 �0.026820
0.2 �0.036681
0.3 �0.021520
0.4 0.151920
0.45 0.28131
complex (larger size), the maximum disturbance size that they
can support without losing stability is increasingly smaller.

The results obtained from the implementation of the proposed
numerical methods show that it is possible to estimate the Lyapu-
nov exponent for systems with a large number of state variables.
This allows quantifying and generalizing the classical linear analy-
sis to the study of the behavior of a stochastic system. However,
there are differences based mainly on the required computer time
and memory for the calculation process, and Method 1 turns out to
be the most efficient one.

With respect to the application in electric systems, we have a
potential field for study and research, especially considering that
the phenomena that affect the dynamics of current systems have
a pronounced random nature. This can be seen, for example, in
the analysis of networks with distributed generation and high
wind penetration.
Conclusions

The results obtained from the application of the proposed meth-
odology to power systems with a large number of state variables
are presented, showing the potential of the proposed numerical
methods by allowing the evaluation of the stability of electric sys-
tems subjected to random and sustained in time disturbances.

The methodology consists in characterizing the random and
self-sustained in time disturbances by means of a Markov-type sto-
chastic process, ensuring the existence and uniqueness of the solu-
tion of the methods used. The analysis of stability consists in
comparing the Lyapunov exponent obtained for the system with-
out disturbance with the real part closest to the origin in the deter-
ministic system.

The results of the international test systems show that the
numerical methods implemented are coherent. Specifically, in rela-
tion to the precision of Methods 1 and 2, they give highly reliable
results, but the accuracy of Method 3 is reduced due to numerical
errors originating in the solution of the associated nonlinear
system.

Also, from the tests and simulations made it is verified that
Method 1 is the most effective, since it requires less computer sim-
ulation effort and time. This aspect is very important for systems
that have a large number of state variables, as real systems gener-
ally do.

In the future we intend to develop a methodology to control the
value of the Lyapunov exponent as a function of the parameters
that can be tuned in the control systems of the machines, for exam-
ple using the gains of the voltage regulators and power stabilizers,
time constants, etc. Another development line has to do with the
calibration of the disturbance model of Ornstein–Uhlenbeck with
real measurements of the disturbances that affect the generators’
excitation systems, which is being approached by the authors of
the present paper.
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