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Mejoras por Fusión de Características, Selección y Modelo de Forma Activo para
Reconocimiento de Rostros Frontal y de Variación de Pose

Resumen:
Reconocimiento de rostros es una de las áreas más activas en visión computacional debido

a la amplia variedad de aplicaciones posibles en identificación de personas, control de acceso,
interfaces hombre-computador, búsqueda en video, entre otras. Identificación de rostros es un
problema de de búsqueda de uno a n, donde el la imagen de rostro capturada es comparada
con n muestras en una base de datos. En este trabajo se propone un nuevo método para un
reconocimiento de rostro robusto. La metodología está dividida en dos partes, la primera se
enfoca a reconocimiento robusto a iluminación, gesticulación y pequeñas variaciones en edad y
la segunda en variación de pose. El algoritmo propuesto está basado en características Gabor;
las cuales han sido ampliamente estudiadas en identificación de rostros debido a sus buenos
resultados y robustez. En la primera parte se propone un nuevo método para identificación de
rostros que combina normalización local (local normalization) para la etapa de compensación
de iluminación, ponderación de las características Gabor basada en entropía en la etapa de
extracción de características, y mejoras en el clasificación por Borda count a través de un
umbral que elimina los bajos puntajes de los jets en el proceso de votación. Para probar y
comparar los resultados del método propuesto se usaron las bases de datos FERET, AR y
FRGC 2.0. Los resultados en estas bases de datos muestran mejoras significantes respecto
a los previamente publicados, alcanzando el mejor desempeño en FERET y AR. El método
propuesto muestra una robustez significante a pequeñas variaciones de pose. El método fue
probado asumiendo ruido en la detección de ojos para probar el desempeño a alineaciones de
cara inexactas. Los resultados muestran que el método propuesto es rubusto hasta errores de
3 pixeles en detección de ojo para una cara en una imagen de 251× 203 pixeles. Sin embargo,
la identificación de rostros es fuertemente afectada cuando las imágenes de prueba son muy
diferentes de las enroladas, como sucede cuando existe variación de pose. En la segunda parte
de este trabajo se propone un nuevo método 2D basado en características Gabor el cual modifica
la grilla en que las características Gabor son extraidas usando un modelo de mallas que modela
las deformaciones producidas en el rostro al variar la pose. El método fue probado en las bases
de datos FERET y CMU-PIE. El método propuesto logra el la taza de clasificación más alta
en la base de datos FERET con un método de reconocimiento de rostros en 2D. El desempeño
en CMU-PIE está entre los más altos publicados. Se realizaron exaustivos experimentos para
distintas combinaciones del método, incluyendo pruebas rostros en dos poses enrolados.

Palabras clave: Reconocimiento de rostros, identificacion de rostros, Borda count, pon-
deración por entropía, Gabor, LBP, FERET, AR, FRGC 2.0.
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ENHANCEMENTS BY WEIGHTED FEATURE FUSION, SELECTION AND
ACTIVE SHAPE MODEL FOR FRONTAL AND POSE VARIATION FACE

RECOGNITION

Abstract:
Face recognition is one of the most active areas of research in computer vision because of

its wide range of possible applications in person identification, access control, human computer
interfaces, and video search, among many others. Face identification is a one-to-n matching
problem where a captured face is compared to n samples in a database. In this work a new
method for robust face recognition is proposed. The methodology is divided in two parts, the
first one focuses in face recognition robust to illumination, expression and small age variation
and the second part focuses in pose variation. The proposed algorithm is based on Gabor
features; which have been widely studied in face identification because of their good results and
robustness. In the first part, a new method for face identification is proposed that combines lo-
cal normalization for an illumination compensation stage, entropy-like weighted Gabor features
for a feature extraction stage, and improvements in the Borda count classification through a
threshold to eliminate low-score Gabor jets from the voting process. The FERET, AR, and
FRGC 2.0 databases were used to test and compare the proposed method results with those
previously published. Results on these databases show significant improvements relative to pre-
viously published results, reaching the best performance on the FERET and AR databases. Our
proposed method also showed significant robustness to slight pose variations. The method was
tested assuming noisy eye detection to check its robustness to inexact face alignment. Results
show that the proposed method is robust to errors of up to three pixels in eye detection. How-
ever, face identification is strongly affected when the test images are very different from those
of the gallery, as is the case in varying face pose. The second part of this work proposes a new
2D Gabor-based method which modifies the grid from which the Gabor features are extracted
using a mesh to model face deformations produced by varying pose. Also, a statistical model
of the Borda count scores computed by using the Gabor features is used to improve recognition
performance across pose. The method was tested on the FERET and CMU-PIE databases,
and the performance improvement provided by each block was assessed. The proposed method
achieved the highest classification accuracy ever published on the FERET database with 2D
face recognition methods. The performance obtained in the CMU-PIE database is among those
obtained by the best published methods. Extensive experimental results are provided for dif-
ferent combinations of the proposed method, including results with two poses enrolled as a
gallery.

Keywords: Face recognition, face identification, Borda count, entropy-like weighting, Ga-
bor, LBP, FERET, AR, FRGC 2.0.
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Chapter 1

Introduction

Contents
1.1 Definition of the Problem . . . . . . . . . . . . . . . . . . 1
1.2 Face Recognition Approaches . . . . . . . . . . . . . . . . 2

1.2.1 Holistic Approaches . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Local Approaches . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Sparse Code . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Face Recognition under Pose Variation . . . . . . . . . . . 4
1.2.5 Proposed method . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure of the Document . . . . . . . . . . . . . . . . . 6

1.1 Definition of the Problem
Face identification is a one-to-n matching problem where the goal is to iden-
tify a person based on the face image, i.e., the captured face needs to be
compared to n samples in the database [Phillips 2000]. Typical applications
for face identification are used in immigration, access control, and law en-
forcement, agencies that try to answer the question, “Who is this person?”.
Face recognition is one of the most popularly studied topics in image anal-
ysis because of its wide range of possible applications, such as in surveil-
lance, access control, information security, content-based video search, hu-
man computer interfaces, electronic marketing and advertising, and entertain-
ment [Zhao 2003, Sharkas 2008, Serrano 2009, Chellappa 2011]. In spite of more
than twenty years of intense research in face recognition, many real world
situations are still a challenge. Uncontrolled conditions such as illumination
changes, varying gestures, pose, and occlusions still present unsolved prob-
lems [Chellappa 2011].
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Chapter 1. Introduction

1.2 Face Recognition Approaches
Face recognition has been approached in many different modalities. This work
centers the literature review on those methods that are more popular and have
yielded the highest face recognition performance on available face databases. The
approaches covered in this section are Holistic methods, Local methods, Sparse
methods and 3D methods.

1.2.1 Holistic Approaches
Holistic approaches use the image as a vector data and in some cases they
reduce the data dimension by feature selection and by frequency component
discrimination. Among the most widely used methods for face recognition
based on feature extraction are Eigenfaces [Turk 1991], a holistic method that
uses Principal Component Analysis (PCA) to project the image data vec-
tor into a reduced space, maximizing the variance of the data; and Fisher-
faces [Belhumeur 1997], which is based on Linear Discriminant Analysis (LDA),
maximizes the distance between classes and minimizes the distance between pro-
totypes within each class; and methods based on Independent Component Anal-
ysis (ICA) [Bartlett 2002, Sharkas 2008]. Other methods for face recognition are
based on frequency space as a discrete cosine transform (DCT) [Podilchuk 1996,
Hafed 2001], that compares DCT–based feature vectors from different images,
and the Walsh–Hadamard transform (WHT) [Faundez-Zanuy 2007], a low com-
plexity algorithm that compares WHT-based feature vectors.

1.2.2 Local Approaches
Local feature-based methods for face recognition have shown improved robustness
to changes in illumination, expression and occlusion. The Local binary pattern
(LBP) method was proposed in [Ahonen 2006] where the face image is divided
into square windows and a binary 1 is generated in the code whenever a pixel
exceeds the value of the central pixel; otherwise a 0 is generated into the code.

Local Gabor methods are the widest used Local approaches. 2D Gabor
wavelets [Bianconi 2007, Gabor 1946, Kyrki 2004, Lades 1993] (see details in
section 2.1.3) have been used to extract local features achieving outstanding
results in face recognition. Among the methods based on Gabor Wavelets
are the Elastic Bunch Graph Matching (EBGM) method [Wiskott 1997], Ga-
bor Fisher Classifier (GFC) [Liu 2002], Local Gabor Binary Pattern His-
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Chapter 1. Introduction

togram Sequence (LGBPHS) [Zhang 2005], Histogram of Gabor Phase Patterns
(HGPP) [Zhang 2007], Local Gabor Textons (LGT) [Lei 2007], Learned Local
Gabor Pattern (LLGP) [Xie 2009], Local Gabor Binary Pattern Whitening PCA
(LGBPWP) [Nguyen 2009], Local Matching Gabor method (LMG) [Zou 2007],
Hierarchical Ensemble Classifiers (HEC) [Su 2009] and Fusing Local Patterns
(FLP) [Xie 2010].

LMG is a simple but effective method for face recognition that extracts Ga-
bor features from a grid of points, in which the distance between point is the
wavelength of the Gabor filter. LMG treats each local features as an indepen-
dent weak classifier combining the classification scores with Borda count voting
system [Ho 1994].

In [Su 2009] the face was divided into patches without overlap, and then
the best patches were selected and weighted with an LDA strategy in a greedy
search. Finally, the local scores of the patches were combined with a global
score obtained from the low frequency components of the FFT (Fast Fourier
Transform) applied to the whole face, including its external boundary. Magni-
tude and phase Gabor features were combined in [Xie 2010]. The LBP operator
was used on the Gabor magnitude features and the LXP operator (Local XOR
Pattern) on the Gabor phase features. Then the face was divided into regions,
and histograms of each region were computed on LGBP and LGXP features.
Every region dimensionality was reduced using LDA, and finally the regions
were compared with cosine distance.

1.2.3 Sparse Code
Sparse representation (SRC) methods [Wright 2009, Wagner 2009] characterize
the testing image as a sparse linear combination of the training images, usually
solving an optimization function with L1 or L2 norms. This method is very
robust to occlusions and noise. Another important aspect of this method is that
no information is lost as in the case of methods based on feature extraction,
although it can be combined with PCA, LDA, Gabor or others. Nevertheless
this method [Wright 2009, Wagner 2009] requires several enrolled images with
different pose which may not be available in practical applications. A sparse
Correntropy method which shows more robustness and efficiency with recognition
of occluded and corrupted face images is proposed in [He 2011].

3



Chapter 1. Introduction

1.2.4 Face Recognition under Pose Variation
Face recognition under varying pose continues to be an area of active research.
There are various approaches to solving this problem using 2D as well as 3D
methods. The literature review of this work is focused on 2D methods because
they are widely used and are applicable in real time.

1.2.4.1 Active Shape Models (ASM)

There are several methods that use 2D techniques to perform face recog-
nition across pose. A method that performs frontalization by divid-
ing the face into different components is presented in [Du 2009]. Sev-
eral methods use Active Appearance Models (AAM) to frontalize the
face [González-Jiménez 2007, Heo 2008, Gao 2009] and perform the match
with a frontal face from a gallery set.

1.2.4.2 Statistic and Change of Space

In [Ashraf 2008] the image is divided into non-overlapping patches and then
a statistically aligned model is built for each patch to perform a warping
in the region. Using the same idea of patches, the image is divided into
non-overlapping patches and a statistical model is constructed on each one at
the score level [Vu 2009]. This method models how the matching score varies
when the input face pose is at a certain angle. A face recognition Gabor-based
method using a regressor with a coupled bias-variance trade-off is proposed
in [Li 2012]. In this method, a statistical model is built at the score level, as
in [Vu 2009]. A method that finds the sets of projection directions for different
poses in the latent space is proposed in [Sharma 2012].

1.2.4.3 3D Approaches

Some methods use a single face as input and build a 3D model called the
3D Morphable Model [Blanz 2003, Romdhani 2005, Paysan 2009]. The 3D
Morphable Model is based on a vector space representation of faces built using
vectors of shape and texture. The parameters of the models are computed
using a set of Eigen vectors obtained previously by training with images from
3D scans. A fully automatic face frontalization method using a 3D model was

4



Chapter 1. Introduction

introduced in [Asthana 2011b]. It works for poses varying up to ±45◦ on the
yaw axis and ±30◦ on the tilt axis. In [Ding 2012] an automatic method was
developed to find correspondences between 2D facial feature points and a 3D
face model. The 3D face model built was then rotated to generate the frontal
view.

1.2.5 Proposed method
This work takes as a starting point the local matching Gabor (LMG)
method [Zou 2007], because of the simplicity, flexibility, robustness and perfor-
mance of the method. The work is divided in two principal parts. The first
part focuses on improving frontal face recognition. The second part takes the
frontal face recognition and extends the methodology to a pose face recognition.
The work was evaluated in FERET [Phillips 1998], AR [Martinez 1998], FRGC
2.0 [Phillips 2005, Phillips 2006] and PIE [Sim 2003].

A number of improvements to the LMG method [Zou 2007] are pro-
posed [Perez 2011a, Perez 2011b, Cament 2014]. One is by using local
normalization (LN) as a preprocessing stage of the LMG. Another is based on
weighting Gabor jets by an entropy-like measure between the given face and the
enrolled faces. An additional improvement is in the Borda count classification
stage where it is proposed to use a threshold to eliminate low score jets that act
as noisy inputs to the classifier. Also a combination of entropy weighting jets
and threshold Borda count is assessed. Results are compared to recently pub-
lished papers in FERET, AR, and FRGC 2.0 [Phillips 2005, Phillips 2006] face
databases. Results are excellent in frontal and near frontal images, illumination
changes and small occlusions.

The proposed pose face recognition method performed competitively with
other published methods on face occlusions and in the presence of noise. Nev-
ertheless, for face poses with increasing angles out of the face plane, the face
normalization step loses the correction effect and, as in most 2D face recogni-
tion methods, performance declines significantly. For example, methods reaching
near 100% for frontal face recognition may drop by up to 40% with pose vari-
ations ±60◦ [Ashraf 2008]. The proposed method modified the LMG alignment
by including a type of ASM [Cootes 1992] called CLM [Saragih 2011]. A de-
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Chapter 1. Introduction

formation field is built using the mesh obtained with CLM and Gabor jets are
repositioned according to a face mesh. Because of local changes in the 2D face
image with varying pose, a local statistical model [Vu 2009] is added to com-
pensate deformations. The face is divided in non-overlapping patches, where a
Borda count is computed in each one instead the whole image. Then a statis-
tical model of each Borda count patch is obtained using a training database.
The FERET database has pose variation between ±60◦, and has been used in
many recent publications of face recognition across pose [Vu 2009, Paysan 2009,
Sarfraz 2010, Asthana 2011b, Ding 2012, Li 2012, Sharma 2012]. The proposed
method reached the highest classification performance published to date in the
FERET database with 2D face recognition methods. The CMU-PIE database
has pose variations near ±90◦ and also has been used in most recent publica-
tions of face recognition across pose [Paysan 2009, Sarfraz 2010, Asthana 2011b,
Asthana 2011a, Castillo 2011, Ding 2012, Sharma 2012, Li 2012]. The perfor-
mance of the proposed method on the CMU-PIE database is among those that
reached the highest classification performance.

1.3 Structure of the Document
The thesis is organized as follows. Methodology is presented in chapter 2, and
it is divided in two parts. The first part focuses on frontal face recognition in
section 2.1 and the second part focuses on face recognition across pose variations
in 2.2. Results are presented in chapter 3, divided in frontal face recognition in
section 3.2 and face recognition under pose variation in section 3.3. Finally a
discussion and conclusions of the work can be found in chapter 4.
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LMG face recognition method [Zou 2007, Perez 2011a, Cament 2014] is
mainly composed of:

• Image alignment (section 2.1.1).

• Gabor feature extraction (section 2.1.3).

• Classification (section 2.1.4).

The description of the method is presented in the following sections.

7



Chapter 2. Methodology

2.1 Frontal Face Recognition

2.1.1 Image Alignment
Image alignment is an important stage for face recognition. A significant number
of papers have focused directly on face recognition on the assumption that the
face has already been localized [Perez 2003, Perez 2005, Zhang 2005, Zhang 2007,
Zou 2007, Xie 2009, Nguyen 2009]. Others have focused on face and eye local-
ization in which faces are cropped and aligned [Campadelli 2009, Perez 2007,
Perez 2010a].

The alignment module on this work performs face normalization through
image rotation, displacement, and resizing to locate the eyes at a fixed po-
sition. The normalized image has the eyes fixed at positions (67, 125)
and (135, 125) within a 203 × 251 pixels image. In this work as well as
in [Zhang 2005, Zhang 2007, Xie 2009, Nguyen 2009, Zou 2007] it is assumed
that eye detection is performed previously and classification performance de-
pends mainly on feature extraction and classification modules. Nevertheless, eye
localization for frontal faces such as those present in the FERET database have
reached very precise results [Campadelli 2009, Perez 2010a].

2.1.2 Illumination Compensation through Local
Normalization

The image with Local Normalization features (LN) is used as a preprocessing
stage to the input image in the LMG method. The local normalization [Xie 2006]
is an illumination compensation method that makes uniform the mean and vari-
ance of an image around a local neighborhood. Let I (x, y) the image, its LN
image In×nLN (x, y) using an n× n window neighborhood is given by (2.1),

In×nLN (x, y) = I (x, y)− In×nmean (x, y)
In×nstd (x, y) + 0.01 . (2.1)

In×nmean (x, y) denotes the mean of a n×n neighborhood around the pixel (x, y),
and In×nstd (x, y) is the standard deviation in the n×n neighborhood. Figure 2.1(a)
shows a face image and Figure 2.1(b) shows the LN of the image. In this work a
9× 9 neighborhood is used, because of its performance compared to others.

8



Chapter 2. Methodology

Figure 2.1: (a) Original image, (b) local normalization image.

2.1.3 Gabor Feature Extraction
2.1.3.1 Gabor Wavelet

Gabor wavelets have proved to be a very successful tool for face recognition
purposes, as previously mentioned in the introduction section. It has been
shown that 2D Gabor functions model simple cells in the visual cortex in mam-
malian brains [Lee 1996, Marc̆elja 1980, Daugman 1980, Daugman 1985]. Gabor
wavelets are capable of extract lines or borders (features) at different orienta-
tions and also different sizes or scales. The Gabor kernel is given by Ψµ,ν in
equation (2.2). ~z represents the pixel coordinate, µ is the orientation (columns
on Figure 2.2), ν the scale (rows on Figure 2.2), f the step in frequency, and kmax
is the maximum spatial frequency. Figure 2.2 shows 2D Gabor filters for eight
orientations (0 ≤ µ ≤ 7) and five scales (0 ≤ ν ≤ 4).

Ψµ,ν (~z) = |
~k|2
σ2 exp

(
−|

~k|2|~z|2
2σ2

) [
exp

(
i~k · ~z

)
− exp

(
−σ2

2

)]
~z = (x, y)T , ~k = kmax

fν

[
cos

(
π µ8

)
, sin

(
π µ8

)]T
.

(2.2)

2.1.3.2 Gabor Features

A Gabor feature is obtained by finding the convolution between the image I (~z)
and the kernel Ψµ,ν (~z), i.e. Gµ,ν (~z) = I (~z) ∗Ψµ,ν (~z). A Gabor feature has both
a real and an imaginary part, and in this work the magnitude and phase features
are used separately. MagnitudeMµ,ν (~z) and phase Pµ,ν (~z) are computed by (2.3)
and (2.4),

9



Chapter 2. Methodology

Figure 2.2: Imaginary part of Gabor filters for five scales (0 ≤ ν ≤ 4) and eight orientations
(0 ≤ µ ≤ 7). Each row shows a determined scale, from ν = 0 to ν = 4 and each column shows
a fixed angle, from µ = 0 to µ = 7.

Mµ,ν (~z) =
√
Im (Gµ,ν (~z))2 +Re (Gµ,ν (~z))2, (2.3)

Pµ,ν (~z) = arctan
(
Im (Gµ,ν (~z))
Re (Gµ,ν (~z))

)
. (2.4)

2.1.3.3 Gabor Feature Grids

Gabor features are not extracted on the whole image, because it is computation-
ally expensive and it is not necessary for the similarity between continuous pixels
and Gabor robustness to small spatial variations [Zou 2007, Perez 2011a]. Gabor
features are computed on a grid of points, in which each point is separated from
the next one by the wavelength of the filter frequency [Zou 2007]. In this work
five scales (0 ≤ ν ≤ 4) and eight orientations (0 ≤ µ ≤ 7) for the Gabor filters
are used as in [Zou 2007, Su 2009, Xie 2010]. For the five scales used in this work
the wavelengths are 4, 4

√
2, 8, 8

√
2, 16, and the location points where the Gabor

features are computed can be seen in Figure 2.3. LMG uses the magnitude of the
Gabor feature (2.3). A jet is defined as a vector of a Gabor feature magnitude
in which each element represents one of the eight orientations, that is normalized
to euclidean norm equal to one (2.5),

~Jν (~z) =
 M0,ν(~z)√

7∑
µ=0

Mµ,ν(~z)2

, ..., M7,ν(~z)√
7∑

µ=0
Mµ,ν(~z)2

T . (2.5)
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Therefore, 5 sets of jets corresponding to different scales are computed for each
image, making a total of N jets. The spatial information is preserved implicitly
because the image was transformed to locate the eyes in a fixed position and the
jets are computed in the same positions in every image. The jet computation is
the same as was previously used in [Zou 2007, Cament 2014], and it results in a
total of 4,172 jets.

(a) (b) (c) (d) (e)

Figure 2.3: Image from the FERET database showing the grids used to compute the Gabor
jets. The five grids correspond to five spatial scales (a) ν = 0, (b) ν = 1, (c) ν = 2, (d) ν = 3
and (e) ν = 4. The + signs represent the spatial position on the grid where the Gabor jet is
computed. The white squares represent the size of the Gabor kernel for each spatial scale in
pixels of (a) 25×25, (b) 37×37, (c) 51×51, (d) 71×71 and (e) 101×101.

2.1.4 Classification
Local Matching Gabor classification is performed in two stages; a comparison of
jets, in which each jet of the target image is compared to each jet of the gallery
image and a classification stage using Borda count voting [Ho 1994].

2.1.4.1 Gabor jet comparison

The jets of the target image are compared with the N jets of theM gallery images
in the database, creating an M × N comparison matrix C. The comparison of
a pair of jets is performed by cosine distance Ci,j = JTj ·J

G
i,j

‖JTj ‖·‖JGi,j‖
, where JTj is the

j-th jet of the test image, and JGi,j is the j-th jet of the i-th gallery image.
Each jet is considered as an independent classifier that is combined using the

voting method Borda count [Ho 1994, Kittler 1998]. Borda count is applied on
all vectors formed with every column of matrix C. The Borda count consists of
ranking the comparison values, assigning 0 to the lowest value, 1 to the second
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lowest value, up to M − 1 for the highest value. This ranking matrix is denoted
as O, and in the Borda count, the score of each candidate is given by the sum of
rankings of all classifiers, Bi = ∑N

j=1 Oi,j.
The cosine distance is employed to compare a Gabor jet of a test image

with the corresponding Gabor jet from the database image. Thus, an N ×M

comparison matrix is built, where N is the number of enrolled images and M is
the number of Gabor jets. Gabor jet comparison is called the score of the jet Si,j.

2.1.4.2 Borda count classification scheme

Borda count is a voting method where every voter ranks all the candidates in
order of preference. Then, a sum of all voter ranks is performed to obtain the
candidates scores. Table 2.1 shows an example of a voting where voter ranks all
candidates and the last column shows the final score obtained for each candidate.
Borda count has been used in face recognition as a method that combines weak
classifiers such as Gabor jets, i.e., each Gabor jet is a voter. A total of 4,172 jets
are used in [Zou 2007, Perez 2011a], where every jet is considered an individual
classifier. The combination of jet scores is carried out with Borda count. In this
context, for a given jet, every subject score is a voter. Borda count score yields
values between 0 to N-1 to each subject jet, in order to score value (0 for minimum
and N-1 to maximum). Then the jets are sorted, and the sorted indexes Oi,j are
added for every subject Bi = ∑M

j=1 Oi,j, and the subject with the highest score
Bi is the test image identity, as shown in Figure 2.4. Table 2.1 shows an example
of a voting where the voter ranks all candidates and the last column shows the
final score obtained for each candidate.

Table 2.1: Example of Borda count voting method.

Voters
Candidates V1 V2 V3 V4 V5 Sum
Candidate 1 0 3 2 1 0 6
Candidate 2 2 2 3 2 1 10
Candidate 3 1 0 1 3 2 7
Candidate 4 3 1 0 0 3 7
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Figure 2.4: Illustration of Borda count computation method. (a) Matrix S with dimensions
N × M , where Si,j is the score of the jth Gabor jet comparison with the ith image of the
gallery. (b) Matrix with sorted columns O with dimension N ×M with values N − 1 to 0 in
each column. (c) Borda count score for the ith gallery element as the sum of all column in the
ith rows of O

2.1.5 Local matching Gabor entropy-like weighted with
LN features (LMGEW//LN-BTH)

There are two parallel stages in LMGEW//LN-BTH [Perez 2011a, Cament 2014].
The first stage computes the entropy-like weighted vector (Figure 2.5(a)). The
second stage computes the Borda count from the LN input image ILN (Fig-
ure 2.5(b)). A Borda count threshold (BTH) is used to eliminate from Gabor jet
comparison matrix with low values that act as noise in the identification proce-
dure. A block diagram of LMGEW//LN-BTH is shown in Figure 2.5.

2.1.5.1 Entropy-like weighted vector

The proposed entropy-like measure estimates the variability of the similarity of
the Gabor feature in the position (x, y, λ) of the target image with respect to
the same feature in the whole gallery set. Each Gabor feature is represented
by a jet. Entropy has its maximum value when probabilities of different states
are the same, and lower values when probabilities are different. The states are
the comparison values between jets from the target image and the gallery set.
Therefore, entropy provides quantitative information to determine if a jet can be
used to distinguish faces in the database. Jets located in the face regions with
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Figure 2.5: Block diagram of LMGEW//LN-BTH. (a) Computation of the entropy-like
weighted vector. (b) Computation of the Borda count using LN in a preprocessing stage.

low entropy should be given greater weight in the final face recognition score.
Probabilities are estimated using the histogram of the values resulting from the
jets comparisons (C matrix). The values of C are quantized in K bins and the
histogram for each jet along the database (rows of C) is computed. The values
of the histograms are normalized by the number, N , of faces in the gallery, and
are used as the probability Pj,k that the comparison value Ci,j of the j-th jet is
within the bin k.

The entropy-like value of the j-th jet Ej is computed for each jet as shown
in (2.6). Because jets with lower entropy-like value must be emphasized, the
inverse of this value (E−1

j = 1/Ej) is computed and normalized to the range
[0,1]. Finally, E−1

j is equalized to distribute the values uniformly, calling Eeq the
equalized vector.

Ej = −
K∑
k=1

Pj,k · log2 Pj,k (2.6)

Figure 2.6 (a-e) shows an example of entropy weights, Eeq, computed for each
spatial frequency. The example shows that features around the face, near the
mouth and ears, have lower weights while features around the nose and eyes have
higher weights, in this way indicating features that contribute most in the face
identification process.

In order to visualize the entropy-like values the following experiment is per-
formed. Ēeq is computed for each target image of a train set, and an average Eeq
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is computed. Then using a threshold, those jets with 25% of the highest value
were selected An example of the selection is shown in Figure 2.6 (f-j).

It can be observed that the most important selected features are located
around the eyes and nose. At lower spatial scales, features around the mouth are
also selected. At higher spatial scales the chin and the lower part of the cheeks
are selected. It can also be seen that features on the forehead and external area
around the face are not selected.

Figure 2.6: (a-e) Computed equalized weights for jets at five spatial frequencies (a) ν =0, (b)
ν =1, (c) ν =2, (d) ν =3 and (e) ν =4. The intensity color is proportional to the jet weight,
i.e., a 0 weight is assigned to gray intensity 0, and a weight of 1 to the gray intensity 255. (f-j)
Jets selected by the highest weight values (25%) for each spatial frequency; (f) ν =0, (g) ν =1,
(h) ν =2, (i) ν =3 and (j) ν =4.

2.1.5.2 Borda count enhancement by threshold (BTH)

In the standard Borda count [Zou 2007], all jets contribute to the final score
even for jets with very low inner product value. By using a threshold Th, over
the inner product value between the candidate face and the gallery image, it
is possible to eliminate very small scores which may act as noise for the Borda
count computation. In this proposal the jet scores under the threshold are set to
zero. If Cij < Th, then Oi,j = 0, otherwise the score value is maintained. Using
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a training set from any database it is possible to obtain an optimum Th. The
rank-1 identification rate must be computed varying the Th threshold and the
value that produces the maximum rate is selected.

2.1.5.3 Borda count ranking matrix for LN images

In this stage, Gabor features of ILN (x, y) are computed using 5 scales and 8
orientations, and a comparison matrix CLN and ranking matrix OLN are obtained.
A modified ranking matrix QLN is created by (2.7), where Th is a threshold that
eliminates noisy values. The BTH suffix is added to the method name when the
matrix Q is used instead of O,

QLN
i,j =

 OLN
i,j ,

0,
CLN
i,j ≥ Th

CLN
i,j < Th.

(2.7)

Finally, QLN is weighted with the entropy-like vector Eeq. An identification
score Bi = ∑N

j=1 E
eq
j ·QLN

i,j is obtained, and the highest score represents the per-
son’s identity.

2.1.6 Fusion of LMGEW//LN-BTH with LGBP and
LGXP

2.1.6.1 Review of LGBP and LGXP

The method proposed in [Xie 2010] combines local binary pattern (LBP) applied
to the magnitude component of the Gabor features (LGBP), and the local XOR
operator (LXP) applied to the phase component of the Gabor features (LGXP)
for face recognition. As shown in Figure 2.7 the method consists of the extraction
of LGBP and LGXP [Xie 2010] features from the image. The image is divided
into blocks and each block into sub-blocks. For every sub-block a histogram is
computed and for each block the sub-block histograms are concatenated. Then
LDA is applied to reduce the histogram dimensionality, selecting the most signif-
icant features. LGBP and LGXP are combined at the score or feature level using
S = w · SLGBP + (1− w) · SLGXP , where SLGBP is the LGBP score, SLGXP the
LGXP score, and w the weight relation between LGBP and LGXP features.
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Figure 2.7: Division of blocks and sub-blocks of LGBP.

2.1.6.2 Fusion with LMG

Fusion of different methods is performed at the score level as follows. In the
HEC algorithm [Su 2009] global features CG are combined with local features
CL at the score level as HEC = w · CG + (1− w) · CL. In [Xie 2010] LGBP and
LGXP features are combined at the score level in the same way as HEC as shown
in section 2.1.6.1. A combination between LMGEW//LN-BTH and LGBP or
LGXP [Cament 2014] is done in the same way as in previous methods as shown
in (2.8), where S1 denotes the identification score of LMGEW//LN-BTH, and S2
the score of LGBP or LGXP, depending on which kind of feature is used,

S = w · S1 + (1− w) · S2. (2.8)

The simulated example shown in Table 2.2 has matching scores for two meth-
ods (Method 1 and Method 2) of three matches: AA (comparing two individuals
of the same class match), AB (comparing one individual to another), and AC
(comparing one individual to another). It can be observed that match AA is
not the best for both methods, but nevertheless reaches the highest score in the
fusion of both methods. This result can be explained when each different method
(method 1 and method 2) uses different features to reach the score. Then both
methods can combine the best features to reach the score for their fusion. In this
case they will be combined synergistically reaching the highest scores because
each method solves different features better.
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Table 2.2: A simulated example to illustrate the benefit of the fusion of two different methods.
The scores are shown for two methods and their fusion for the comparison of one individual
with him/herself (AA), with individual B (AB) or with individual C (AC).

Match AA AB AC
Method 1 0.6 0.7 0.4
Method 2 0.6 0.3 0.7
Fusion 0.6 0.5 0.55

2.2 Pose Variation Face Recognition
As for frontal face recognition, this model consists of three main mod-
ules [Cament 2014]: image alignment, feature extraction through Gabor jets
computation, and classification using a statistical model, as shown in Figure 2.8.

In the first module, an ASM is used to align the face and to determine its
shape with the goal of extracting features from corresponding points relative to
the gallery image. Also, LN is used in the normalized image, as was shown in
frontal face recognition section.

The second module performs the Gabor jet computation to extract face fea-
tures. The spatial position for the computation of each Gabor jet is defined
using the ASM adjusted to the face pose. A grid of Gabor jets is placed over the
face using the eye positions as references as described in [Zou 2007]. The grid is
deformed using the ASM adjusted to the face. In this way, the position of the
Gabor jets with respect to the face features (eyes, nose, mouth, etc.) is closer to
the original position in the frontal face (see Figure 2.11).

The third module carries out face classification. At this stage, entropy weights
are used to weight each jet. A Borda count method is used for classification and
a local statistical model is employed to address pose change [Vu 2009]. This
local statistical model learns how the face texture varies as the face changes in
pose. The model divides the face into several regions and the texture variation
is computed for each region as the pose changes.

2.2.1 Alignment and Facial Shape Adjustment
2.2.1.1 Active Shape Model Adjustment

A deformable model is adjusted to the face in order to take pose changes into
account. A linear shape model is used [Matthews 2004]. This type of deformable
model uses a linear transformation in a vector space, which takes the main con-
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Figure 2.8: The proposed method consists of three main modules: image alignment based
on ASM, feature extraction through Gabor jets computation, and classification using entropy
weights and statistical model matching.

figurations of the model in a set of examples into account. In particular, a linear
model called ASM is used [Cootes 1992] as reported in this study. This model
uses a Point Distribution Model (PDM), where the shape of the object is defined
by a vector with the coordinates of a set of points:

S = [x1, y1, z1, x2, y2, z2 . . . , xl, yl, xl]T . (2.9)

The shape S of a new object can be expressed as a mean shape S0 linearly
deformed by an affine transformation and by the linear combination of basis
vectors that represent the principal modes of variation of the object in a set of
examples:

S = T (s, R, T ;S0 + Ψip). (2.10)

where p is a vector of parameters for the basis Ψ = [S1|S2| . . . |Sn] of n vectors,
and T (s, R, T ; ·) is a rigid transformation that performs a rotation by the rotation
matrix R(α, φ), scaling s, and translation by the vector T = [tx, ty]T , i.e., if
T (s, R, T ; ·) is applied to a point [x, y]T :

T (s, R, T ; [x, y]T ) = sR

[
x

y

]
+ T. (2.11)
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The basis Ψ is built by a PCA of a set of training shapes. Before performing
the PCA, the training shapes are normalized by an iterative Procrustes analy-
sis [Goodall 1991] to remove global variations, such as translation and rotation,
and therefore taking into account only the non-rigid local variations in the PCA.
The PCA provides a set of orthogonal modes of variation or eigenvectors, and
its eigenvalues. The eigenvalues represent the importance of the corresponding
eigenvector within the modes of variation across the training shapes. Among
the eigenvectors, those with larger eigenvalues are selected to build the basis Ψ.
Thus, a model that can generate large variations in shape using few parameters
is obtained.

In order to fit the deformable model to the image, a particular type of ASM
named Constrained Local Model (CLM) is used [Cristinacce 2006, Saragih 2011].
This CLM uses patches where local features are computed to search landmarks
in the image. The position of each landmark is related to a point of the PDM.
A set of training images is used to build a model that incorporates local features
associated with each anatomical landmark. If the shape S is fitted to a test image
by the ASM, the parameters of T (s, R, T ; ·) and the vector of parameters, p, of
the basis Ψ, are optimized (2.11). The optimization minimizes the difference
between features computed in the patches at each point of S and the features
of the model built using the training images. The image features are extracted
from patches of the raw gray image, the image gradient, and local binary patterns
(LBP).

The features computed in the test images are compared with the features
of the training images by using the normalized correlation coefficient. Then, the
method uses a non-parametric approach based on the mean-shift [Fukunaga 1975]
mode seeking algorithm to optimize the position of the points in the PDM by
minimizing the difference between the training and test features. The result is a
shape fitted to the facial features (Figure 2.9). For a completely automatic face
recognition system, pose and fiducial landmarks should be obtained automati-
cally. However, for experimentation purposes, it is assumed them to be known
beforehand, a common practice followed in several previous studies [Sharma 2012,
Li 2012, Vu 2009, Zou 2007, González-Jiménez 2007, Ashraf 2008, Blanz 2003].
The shapes adjusted by the ASM that did not fit correctly for large pose varia-
tions were adjusted manually to evaluate the expected performance of the pro-
posed method.
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Figure 2.9: Example of the mesh used to detect facial features by using the CLM method of
Saragih et al. [Saragih 2011].

2.2.1.2 Face Alignment

Before computing the Gabor features, the images are normalized to a size of
300×400 pixels using the shapes adjusted to the face and a mean face shape.
Figure 2.10 shows the face mean shape (in blue lines) that is positioned on the
face as follows: The vertex of the mean shape representing the position of the
columella’s base of the nose is positioned on the horizontal center of the image
and at 1/3 of the height of the image. The columella is the tissue that links the
nasal tip to the nasal base, and separates the nares. It is the inferior margin
of the nasal septum. The eyes are localized on the same horizontal line and
their separation between centers is set to 68 pixels. The separation between the
eyes controls the scale of the aligned mean shape and has the same scale used
in [Zou 2007, Cament 2014]. In the alignment step, the images are rotated to set
the eyes on the same horizontal line, scaled such that the width of the adjusted
shapes is equal to the width of the aligned mean shape, and translated so that
the center of the triangle formed by the center of each eye and the vertex at the
columella of the nose coincide between the mean shape and the shapes adjusted
to the faces. This alignment allows comparisons between gallery and test faces
in similar positions, improving the performance of the method. If the face pose
has a large rotation (yaw rotation) and one side is occluded, the vertex at the
upper part of the nose is used instead of the occluded eye. Figure 2.10 shows a
normalized image of the FERET database with the adjusted shape in green and
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the mean shape in blue.

Figure 2.10: Image from the FERET database normalized before using the face recognition
method. The image is aligned using a mean face shape (blue) and the shape adjusted to the
face (green). The image is rotated to place the eyes on the same horizontal line, scaled such
that the width of the adjusted shape is equal to the width of the mean shape, and translated so
that the center of the triangle formed by the center of each eye and the vertex at the columella
of the nose coincide.

2.2.2 Gabor Features Extraction with Grid Deformation
Gabor jets are computed on selected points, using five different grids. Frontal
LMG used the grids defined in [Zou 2007], where the images are normalized to
203×251 pixels with the eyes in fixed positions (67, 125) and (135, 125). Figure 2.3
shows an example of these normalized images with the five grids superimposed.
The grids indicate the positions where features are extracted by the Gabor jets
at five different spatial resolutions. The same Gabor filters as used for frontal
face recognition (details in section 2.1.3) are applied on these images.

Figure 2.11(a) shows an image of the FERET database with the mean face
shape and the grid with ν = 3 superimposed. Then, the grids are deformed by
using the adjusted shape to change the positions at which the jets are computed in
each image. A field of deformations D(x, y) = [x′, y′] is computed using the Thin
Plate Splines method [Bookstein 1989] on the vertex of the model and adjusted
shapes. This deformation field is the spatial transformation between the mean
shape and the adjusted shapes, and it is used to deform the grid in such a way that
the jets are computed at the same relative position with respect to the adjusted
shapes of each image. Therefore, the positions of the points in the deformed grids
are p′ν(i) = D(pν(i)). Figure 2.11(b) shows the grid with ν = 3 deformed using
this method. Figures 2.11(c) and 2.11(d) show deformed grids in a frontal and
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rotated face, respectively. As these figures show, the positions of the Gabor jets
have the same relative position with respect to the face features in both images.
If one side of the face is occluded because of the rotation, only the vertices and
jets on the side of the face that is exposed are used to compute the deformation
field and the Gabor features, respectively. The method assumes that a gallery is
available with faces of the persons to be identified. For each face in the gallery,
the Gabor jets are computed off-line and stored in a database for later on-line
identification.

2.2.3 Classification
A similar classification scheme than the one shown in section 2.1.4 is used for pose
variation case. It is used the same comparison with cosine distance between jets,
Borda count as a classifier combiner, BTH and entropy weighting. An Statistical
model per pose was added to the classification of pose variation face recognition.

2.2.3.1 Statistical Model

Although the position where the jets are computed is corrected by deformation
fields, the image is still 2D. Therefore, the Gabor features computed in images
of the same person but with varying pose are different, mainly for large rotation
angles. This variation of the Gabor features with respect to the angle can be
modeled as follows: First, the probability distribution functions of the scores Sj
with respect to the rotation angle are computed in different blocks defined in the
grids. A training set of images is used to compute this probability. Then, the
estimated probability is used to correct the scores Sj computed in an input image
depending on its rotation angle.

The image is divided in V × H blocks as shown in Figure 2.12, and a local
probability model is built for each one. Instead of using all jets in the Borda
count method, the Borda count is computed for each block individually in this
approach. Thus, for the r-th block the comparison matrix Cr is extracted and
the ranking matrix Or = BC(Cr) is computed. The matrix Cr is a subset of the
comparison matrix C, that contains the inner product of the jets inside the r-th
block. Note that if LN images are used, the matrices C and O are replaced by
C ln and Oln. The identification score of the j-th gallery image in the r-th block
Srj = ∑Mr

i=1 O
r
ji, where Mr is the number of jets in the r-th block, is used as the

input of the statistical model. The training and recognition are performed as
follows:
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(a) (b)

(c) (d)

Figure 2.11: Example of the deformation of the grids used to compute the Gabor jets. (a) Initial
grid (yellow) and mean face shape (blue). The grid is set as if the mean face shape were a face
normalized. (b) Deformed grid (yellow) and adjusted face shape (green). The original grid
is deformed to have the same relative position with respect to the adjusted shape that the
original grid has with respect to the mean shape. By using this deformation, the position
of the Gabor jets has the same relative position with respect to the face features in different
images. Figures (c) and (d) show the position of the Gabor jets in a frontal and rotated face,
respectively.

Training The prior distribution, P , of the identification scores Sr (score for a
given comparison in the r-th block) with respect to a pose and matching label
is computed for each block r. The pose label is the rotation angle φp, and the
matching label w can take two values: same if the input and gallery images to be
compared are of the same person, and dif if they are of different persons. Thus,
the prior distribution of the r-th block given a determine type of match and an
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H

V

r-th block

Figure 2.12: Division in Blocks for the Statistical Model. The five spatial scales used are shown.
The white lines represent the different blocks and the + signs represent the spatial position
where a Gabor jet is computed.

angle is:
P (Sr|w, φp) , w ∈ {same, dif} . (2.12)

The prior distribution is modeled by using a normal distribution as
in [Vu 2009]:

P (Sr|w, φp) = 1√
2πσrw,p

exp
−1

2

(
Sr − µrw,p
σrw,p

)2
 , (2.13)

where µrw,p, and σrw,p are the mean and the standard deviation of the scores Sr
for the r-th block, and across all the training images with rotation angle φp and
matching label w. To obtain these values the training database must contain a
gallery set and test sets labeled with angles φp. The Borda count scores Sr are
computed for all test images, and the labels w and φp are assigned to compute
µrw,p and σrw,p.

Recognition To perform the recognition for the r-th block the Bayes rule is
used. The probability of comparing the same person given the r-th score and an
angle is:

P (same|Sr, φp) =
P (Sr|same, φp)P (same)

P (Sr|same, φp)P (same) + P (Sr|dif, φp)P (dif) . (2.14)

If the entropy is used in the classification, the weighting is not applied to each
jet as in the LMGEW method. In this case, an entropy is computed for each
block. The entropy of the r-th block, Er, is computed as the mean of the entropy
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of all jets inside the block. To use P in the computation of the identification score
of the j-th gallery image with respect to the input image, the rotation angle, φp,
of the input image is also needed. This angle can be considered as known for each
input image, or computed by using the shape S adjusted to the face. Finally, the
identification score of the j-th gallery image with respect to the input image is
computed as:

Sj(φp) = 1
V H

V H∑
r=1

ErP (same|Sr, φp). (2.15)
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A number of experiments were performed with the objective of assessing the
proposed face recognition method. The most commonly used databases for face
recognition evaluation were selected to compare results obtained in this work
with those published in the literature. Section 3.1 contains descriptions of the
databases used in this work. Section 3.2 describes the experiments for frontal
face recognition and section 3.3 describes the experiments for face recognition
across pose variation.
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3.1 Face databases

3.1.1 The FERET database

Fa Fb Fc Dup1&2

bb bc bd be ba

bf bg bh bi

Figure 3.1: Examples of face images taken from frontal view (top) and different view points
(bottom) from FERET database. Face poses are shown only for left side rotation, right side
rotation is analogous.
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The FERET database [Phillips 1998] is one of the most widely used benchmarks
for face identification methods. The FERET database has a large number of
images with different gestures, illuminations, and a significant amount of time
between pictures taken. Frontal FERET database is organized into 5 sets of
images: the gallery is Fa, and the test sets are Fb, Fc, Dup1, and Dup2. In the
Fa set there are 1,196 face images of different people. In the Fb set there are
1,195 images of people with different gestures. Fc has 194 images with different
illuminations. In Dup1 there are 722 images taken between 0 and 34 months
of difference from those of Fa. The Dup2 set has 234 images taken at least 18
months after the Fa set. The Fa set contains one image per person and is the
Gallery set, while Fb, Fc, Dup1, and Dup2 are called test sets. Figure 3.1 shows
images from different sets of the FERET database: (a) a neutral image from the
Fa set, (b) an image with a different expression from the Fb set, (c) an image
with an illumination change from the Fc set, and (d) an image taken with several
months difference from the Dup1 set. To test faces with varying pose, 8 sets
from ba through bi were taken to investigate the pose angle effects. Specifically,
bf-bi are symmetric analogues of bb-be, while ba is the frontal face. The sets are:
bb, bc, bd, be, bf, bg, bh, and bi with pose angles 0◦, 60◦, 40◦, 25◦, 15◦, −15◦,
−25◦, −40◦, −60◦ respectively. Each of these sets has 200 images of 200 different
people. Face examples for FERET database, bb, bc, bd, be, ba, bf, bg, bh and
bi sets, are shown in Figure 3.1.

3.1.2 The AR face database
The AR database [Martinez 1998] contains frontal face images of men and women
(60 females and 76 males) with different conditions of illumination, expression,
and occlusion. Pictures were taken in two different sessions, with 13 pictures per
session. It is called Session 1, S1, and Session 2, S2. Seven of the thirteen images
contain illumination changes and gestures. In three images the person is wearing
sunglasses, and in three other images, the person is wearing a scarf. Figure 3.2
shows images from the AR database: (a) a neutral face image, (b) an expression
variation, (c) an illumination variation, (d) a face with sunglasses, and (e) a face
with a scarf.

3.1.3 The FRGC 2.0 database
The FRGC 2.0 database [Phillips 2005, Phillips 2006] contains more than 50,000
images that are divided into training and testing partitions. The images are
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Figure 3.2: AR database example images. (a) Neutral face image, (b) expression variation, (c)
illumination variation, (d) face with sunglasses and (e) face with scarf.

high resolution, with people looking frontally at the camera. There are images
with and without controlled illumination. The FRGC 2.0 database has a total
of six experiments related to different subsets in the database. Nevertheless,
Experiments 1, 2, and 4 are the only ones for 2D face recognition; the rest of
the experiments are for 3D face recognition. Experiment 1 contains controlled
illumination images. Experiment 2 compares groups of images of the same in-
dividual, using the same images as in Experiment 1. Experiment 4 uses images
under uncontrolled illumination, unfocused images, and some with small pose
variations. Figure 3.3 shows examples of the FRGC 2.0 database; both (a) and
(b) are gallery samples, (c) is a controlled image from Experiment 1, and (d) and
(e) are uncontrolled images from Experiment 4.

a b c d e

Figure 3.3: ]
Examples of face images from the FRGC 2.0 database: (a) and (b) gallery

images, (c) controlled images, (d) and (e) uncontrolled images.
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3.1.4 The PIE face database
The CMU-PIE database [Sim 2003] is also one of the most commonly used
databases for face recognition across pose variation. This database is composed
of images of 68 different people. The images were acquired in 13 different poses,
under 43 different illumination conditions, with 4 different expressions, and while
the subjects were talking. To test the proposed face recognition method, the 13
poses of each subject were used, corresponding to cameras 22, 02, 25, 37, 05, 09,
27, 07, 29, 11, 31, 14 and 34. Images with frontal illumination (flash 11) were
used. Face images for PIE database, 22, 02, 25, 37, 05, 09 and 27 sets, are shown
in Figure 3.4; Oposites sets, 07, 29, 11, 31, 14 and 34, are analogs to those showed
in Figure 3.4.

c25 c09

c22 c02 c37 c05 c27

Figure 3.4: Examples of face images taken from different view points for PIE database. Images
c25 and c09 taken with the camera located at an angle above the face. The other face images
taken with a camera at the same height of the face. Face poses are shown only for left side
rotation, right side rotation is analogous.

3.2 Experiments and Results for Frontal Face
Recognition

3.2.1 Literature results
The results on face recognition in the literature are summarized in this section.
In 2009 [Serrano 2009] provided an up to date summary highlighting the best
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results reached in face recognition with the Local Gabor methodology. Results
of more recent literature review and proposed methods on face recognition are
summarized in Tables 3.1, 3.2 and 3.6 for different databases with frontal face
cases. There are also shown results for faces with small pose variations; those
that are rotated by ±15 and ±25 degrees in the FERET database are shown
in Table 3.3. The first columns of each table shows the face identification rates
for different subsets of different databases. The last column in Tables 3.1, 3.2,
and 3.3 shows the total number of errors on all subsets of the databases.

Table 3.1: Rank-1 face recognition rate on different subsets of FERET database for different
face recognition methods published in the literature.

Accuracy (%) Errors
Methods Fb Fc Dup1 Dup2 Total

LMG [Zou 2007]a 99.5 99.5 85.0 79.5 163
LGBPWP [Nguyen 2009]a 98.1 98.9 83.8 81.6 185

LLGP [Xie 2009]a 99.0 99.0 80.0 78.0 209
HGPP [Zhang 2007]a 97.5 99.5 79.5 77.8 231

LGBPHS [Zhang 2005]a 98.0 97.0 74.0 71.0 286
HEC [Su 2009]a 99.00 99.00 92.00 88.00 99

LGBP+LGXP [Xie 2010]a 99.00 99.00 94.00 93.00 77
LMGEW [Perez 2011a] 99.75 100.00 87.40 85.47 128

LMGEW-BTH [Perez 2011a] 99.75 100.00 90.17 88.03 102
LMGEW//LN-BTH [Cament 2014] 99.83 100.00 92.66 89.74 79

LGBP [Cament 2014] b 99.08 98.45 85.60 77.35 171
LGXP [Cament 2014] b 97.66 96.39 79.64 75.64 239

LMGEW//LN+LGBP [Cament 2014] 99.92 100.00 95.57 93.59 48
LMGEW//LN+LGXP [Cament 2014] 99.92 100.00 94.74 91.88 58

a results extracted from original source.
b results obtained with our implementation of the method.

3.2.2 Local Matching Gabor Entropy Weighted
(LMGEW)

Table 3.1 summarizes the results obtained with the different methodological en-
hancements proposed in this work [Perez 2011a, Cament 2014]. LMG [Zou 2007]
is shown on the first line for comparison. The first four columns of Table 3.1 show
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Table 3.2: Rank-1 face recognition rate on the AR database.

Gal S1 Accuracy (%) Errors
Methods S2-Neutral Scarves Sunglasses Total

LGBPHS [Zhang 2005]a —– 98 80 —–
SRC [Wright 2009]a 95.7 93.5 97.5 84

LMG-BTH 99.00 98.83 89.50 77
LMGEW-BTH 99.29 99.00 95.33 39

LMGEW//LN-BTH 99.29 98.83 95.00 45
LGBP [Cament 2014] 99.71 97.83 65.83 220
LGXP [Cament 2014] 97.86 94.33 73.67 213

LMGEW//LN+LGBP [Cament 2014] 100.00 99.83 95.50 29
LMGEW//LN+LGXP [Cament 2014] 100.00 99.67 96.33 24

a results extracted from original source.

Table 3.3: Rank-1 face identification rate published in the literature and proposed methods on
different subsets with varying pose of the FERET database.

Accuracy (%) Errors
Methods bd be bf bg Total

LMG [Zou 2007]a 81.0 97.0 98.0 79.5 89
LMGEW//LN-BTH 96.0 99.0 99.5 96.5 18
LGBP [Cament 2014] 86.5 98.0 97.5 88.5 60
LGXP [Cament 2014] 73.5 95.5 96.0 65.5 139

LMGEW//LN+LGBP [Cament 2014] 98.0 99.0 99.5 96.5 14
LMGEW//LN+LGXP [Cament 2014] 97.5 99.0 99.5 96.0 16

a results extracted from original source.

the results in percentage for the four different subsets of the FERET database,
Fb, Fc, Dup1 and Dup2. The last column shows the total number of errors in
all subsets of the FERET database. In the case of LMG [Zou 2007], the total
number of errors in all subsets is 163. For LMGEW the total error was reduced
from 163 to 128, which represents a 21% total error reduction.

The results on the AR database can be observed in Table 3.2. The database
contains 76 images from males and 60 from females. Sets of 50 male and 50
female images are built. A gallery set is used with 7 images per person from
session 1, containing 1 neutral image, 3 images with expressions and 3 images
with different illumination. The set called S2-Neutral is identical to gallery set
but with images from session 2. The set Sunglasses has 6 images per person using
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sunglasses from both sessions and the set Scarves also 6 images per person using a
scarf. Table 3.2 also shows a comparison between the proposed method and other
previously published results [Wright 2009, Zhang 2005]. The LMGEW method
improves in the Neutral AR subset from 98.86% to 99.00% when compared to
LMG. For the Sunglasses subset the proposed method improved from 89.33%
to 93.83% and for the Scarves subset from 96.67% to 97.67%. These results
show that the LMGEW is better than LMG in all cases. Comparing with other
methods published in the literature only for the Sunglasses subset, the method
SRC [Wright 2009] is better than LMGEW.

3.2.2.1 Cascade LMGEW-BTH

The results obtained for the combined LMGEW-BTH enhancements are pre-
sented in Table 3.1. Figure 3.5 shows the face recognition accuracy for the train-
ing set of the FERET database using different thresholds in the interval 0.60-0.95.
For this reason a threshold 0.84 is chosen, and LMGEW-BTH method obtained
a total number of 102 errors compared to 163 using LMG. This represents a 37%
improvement relative to the LMG method.

Table 3.2 shows results for the cascade LMGEW-BTH in the AR database.
The last row shows a significant improvement for all AR subsets compared to
LMG and LMGEW. If the results between the LMGEW-BTH and LMGEW are
compared, the results in the Neutral subset improved from 99.00% to 99.29%, in
the Sunglasses subset improved from 93.83% to 96.00% and in the Scarves subset
from 97.67% to 99.50%.

3.2.2.2 Robustness to threshold selection for LMGEW-BTH

In section 3.2.2.1 a threshold range between 0.8 and 0.9 was determined from
FERET training set. The robustness to threshold selection is tested by choosing
three different thresholds in that range, 0.82, 0.85 and 0.88 for the FERET and the
AR database. Table 3.4 shows the results for the FERET database and Table 3.5
for the AR database. For the FERET database there are slightly better results
for threshold 0.85, but similar to those obtained for threshold 0.88 in the Dup2
subset. In the AR database there are no differences in the Neutral subset for the
three thresholds, and differences are less than 1% among the other subsets for
threshold 0.88. Therefore, results for AR and FERET databases show that if the
threshold is chosen for any of the three values within the range 0.8 to 0.9 there
are no significant differences in the results.
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Figure 3.5: Identification rate on training FERET database varying Th on LMGEW.

Table 3.4: Face recognition rate for three different thresholds for the LMGEW-BTH method
in the FERET database.

Accuracy (%) Errors
Methods Fb Fc Dup1 Dup2 Total
LMGEW 99.75 100.00 87.40 85.47 128

LMGEW-BTH-[0.82] [Perez 2011a] 99.75 100.00 89.47 86.32 111
LMGEW-BTH-[0.85] [Perez 2011a] 99.75 100.00 89.89 88.03 104
LMGEW-BTH-[0.88] [Perez 2011a] 99.83 100.00 89.34 86.32 111

∗ results extracted from original source.

3.2.2.3 Effect of error in eye localization for the LMGEW-BTH
method

The LMG method is based on eye localization to align all faces. Therefore,
it is important to assess the effect of eye localization error on face recognition
for the LMG method. Gaussian noise is added to coordinates of the eyes for
LMGEW-BTH method using a threshold of 0.88. Then, the image was aligned
and cropped using the new eyes coordinates. Ten different standard deviation
values are used for the Gaussian noise to generate errors from 1 to 10 pixels and
a uniform probability for the angle between 0° and 360°. Figure 3.7 (a) shows the
face recognition rate in FERET database and Figure 3.7 (b) for AR database.
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Table 3.5: Face recognition rate for three different thresholds for the LMGEW-BTH method
in the AR database.

Accuracy (%)
Methods S2-Neutral Sunglasses Scarves
LMGEW 99.00 93.83 97.67

LMGEW-BTH-[0.82] [Perez 2011a] 99.29 95.33 99.00
LMGEW-BTH-[0.85] [Perez 2011a] 99.29 95.33 99.00
LMGEW-BTH-[0.88] [Perez 2011a] 99.29 96.00 99.50

∗ results extracted from original source.

In the FERET database the image dimension is 256 × 384 pixels, and faces are
about 150×150. For the FERET subsets Fb and Fc (expression and illumination
changes), face recognition is very good up to a noise of 3 pixels and then decrease
strongly. For Dup1 and Dup2 sets (time difference), the recognition rate decrease
starting at 1 pixel of noise. Figure 3.6 shows some examples for alignment with
noise. Figure 3.6 (a) and (b) show the difference between a well aligned image
and a 5 pixels noise image. Figure 3.6 (c) and (d) show the difference of a
well aligned image and a 10 pixels noise image. In the AR database the image
dimension is 768 × 576 and the face size is about 400 × 400, almost three times
larger than those of the FERET database. For S2-Neutral and Scarves subsets,
the recognition rate is over 95% until a 7 pixels noise variance. For Sunglasses
subset, recognition rate is over 90% until noise variance of 5 pixels. The three
subsets do not show a fall in face recognition accuracy until a noise level over 3
pixels. Eye localization is an important issue but there are several methods that
perform very precise eye localization [Perez 2010a].

3.2.3 Local Matching Gabor Entropy Weighted with Lo-
cal Normalization (LMGEW//LN)

For all the experiments the Borda count threshold (BTH) used is 0.85, obtained
in a previous section.

3.2.3.1 LMGEW//LN-BTH Results using the FERET database

The results obtained with LMGEW//LN-BTH and those published previously
are presented in Table 3.1. The LMGEW//LN-BTH method obtained a total
number of 79 errors with the FERET database. This result is better than all
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a) b) c) d)

Figure 3.6: Face images with Gaussian noise in eyes position. (a) Image aligned without noise,
(b) the image aligned with noise of 5 pixels in both eyes, (c) another image well aligned, (d)
image aligned with noise of 10 pixels.

the best previously published results [Zou 2007]. Even though LMGEW//LN-
BTH has the best overall results, most of the improvement was produced in
the Fb and Fc subsets. The total number of errors was reduced by 22.5%
on images compared to the LMGEW//LN-BTH method. HEC [Su 2009] and
LGBP+LGXP [Xie 2010] obtained better results in the Dup2 subset, and
LGBP+LGXP also obtained better results in subset Dup1. The LGBP+LGXP
method reached 94% accuracy while LMGEW//LN-BTH obtained 92.66% in
Dup1, and in Dup2 they reached 93% and 89.74%, respectively.

3.2.3.2 LMGEW//LN-BTH Results using the AR face database

Table 3.2 shows results for the LMGEW//LN-BTH and previously published
methods in the AR database. As in [Wright 2009] 50 men and 50 women which
each had 26 images available are randomly selected. A gallery set composed of
7 images of Session 1 (neutral, expression, and illumination variation images),
and five test subsets are used. Subset S2-Neutral is similar to the gallery set,
but contains images from Session 2. Subset Scarves contains faces occluded with
scarves for Session 1 and Session 2, and subset Sunglasses contains faces occluded
with sunglasses.

Results are almost the same as those of LMGEW-BTH, and better than the
previously published identification methods. Only SRC has greater accuracy in
the Sunglasses subset of AR, due to its robustness to occlusions.
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Figure 3.7: Rank-1 face recognition rate in the FERET (a) and AR (b) databases when a
Gaussian noise with variance between 1 and 10 pixels is added over the eyes coordinates.

3.2.3.3 LMGEW//LN-BTH Results using the FRGC 2.0 database

For each experiment in FRGC 2.0 database, the Receiving Operator Charac-
teristic (ROC) curves are constructed. ROC1 compares images taken within
semesters, ROC2 within a year, and ROC3 during different semesters. Since the
proposed method was designed for the face identification problem, the original is
adapted from verification experiments of the FRGC 2.0 database to the identifi-
cation problem using the Rank-1 method. Images of Experiments 1 and 4 from
the ROC3 partition are used. For Experiment 1, the same gallery set containing
7,572 images and a sub-set of the test set without impostor images with a total
of 6,512 images are used. For Experiment 4 the gallery set was formed with 7,512
gallery images and 3,256 test images.

Results of LMG methods are shown in Table 3.6. Experiment 1 shows a
small difference between best and worst results, while the proposed method
obtained the highest accuracy. In Experiment 4 the best score, 89.71%, was
reached with the LMGEW-BTH, and the second best, 89.71%, was achieved
using LMGEW//LN-BTH.
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Table 3.6: Rank-1 face recognition rate on experiments 1 and 4 on the FRGC 2.0 database.

Accuracy (%)
Methods Exp1 Exp4

LMG [Perez 2011b] 99.08 86.15
LMG-BTH [Perez 2011b] 99.23 89.10

LMGEW-BTH [Perez 2011a] 99.62 89.71
LMGEW//LN-BTH [Cament 2014] 99.69 88.57

3.2.3.4 Effect on face identification resulting from error in eye local-
ization with the LMGEW//LN-BTH method

The LMG and derived methods require eye localization to align faces. Therefore
it is important to assess the effect of eye localization error on face identification for
the LMG method. Noise is added to the eye coordinates for the LMGEW//LN-
BTH method. The error distance radius varied between 1 and 10 pixels, and the
angle between the center and the computed position between 0° and 360°, both,
radius and angle, using a uniform probability. Then, the images were aligned and
cropped using the new eye coordinates. Figure 3.8 shows examples of alignment
with noise in eye localization. Figures 3.8 (a) and (b) show the difference between
a well-aligned image and an image with 4 pixels of noise. Figures 3.8 (c) and (d)
show the difference between a well- aligned image and an image with 10 pixels of
noise. Figure 3.9 shows the face identification rate in the FERET database for
subsets Fb, Fc, Dup1, and Dup2.

In the FERET database the image dimension is 256 × 384 pixels, and faces
vary approximately between 75×95 to 180×260 pixels, which means that an error
of 10 pixels in both eyes is significant. Results for the FERET subsets Fb and
Fc (expression and illumination changes), show that face identification is almost
unaffected by noise levels of up to 4 pixels. For errors greater than 4 pixels,
the identification rate falls significantly with increasing eye localization error.
For the Dup1 and Dup2 sets (time difference), the identification rate decreases
significantly with more than 2 pixels of noise.

3.2.4 Entropy-like weighting on LGBP and LGXP fea-
tures

LGBP and LGXP are tested computing entropy-like values for each local clas-
sifier, i.e., for each block. The feature vector of each block on the test image is

39



Chapter 3. Experiments and Results

Figure 3.8: Face images with Gaussian noise in eye position. (a) Image aligned without noise,
(b) the image aligned with noise of 4 pixels in both eyes, (c) another well aligned image, (d)
image aligned with noise of 10 pixels.

compared with the same vector of the gallery image. Then, a comparison ma-
trix is built containing comparisons between all blocks of each test image and
the blocks of each gallery image. With this matrix, entropy-like values are com-
puted and used to weight with the same strategy described in section 3.1. The
results for Fb, Fc, Dup1, and Dup2 are 99.16%, 97.94%, 86.29%, 79.06% using
LGBP; and 97.66%, 95.88%, 79.64%, 76.50% using LGXP. Results showed small
improvements (0.5% for LGBP, and 0.1% for LGXP) in face recognition when the
entropy strategy was applied to LGBP and LGXP compared to the case where
the entropy strategy was not applied. A possible explanation for these results
is that the local features are already significantly reduced by the application of
LDA over the histograms of LGBP and LGXP features. Therefore, the entropy
strategy does not improve results in LGBP and LGXP as it does in the case of
the LMG method where features are not reduced.

3.2.4.1 Results of the fusion of methods LMGEW//LN-BTH+LGBP
and LMGEW//LN-BTH+LGXP

The LGBP and LGXP methods proposed in [Xie 2010], and LMGEW//LN-
BTH [Cament 2014] were combined, resulting in an improvement of face identifi-
cation rates in all subsets of the FERET and AR databases. A fusion of the meth-
ods LMGEW//LN-BTH+LGBP and LMGEW//LN-BTH+LGXP is done at the
score level as shown in (2.8). S1 denotes the identification score of LMGEW//LN-
BTH, S2 the score of LGBP or LGXP.
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Figure 3.9: Rank-1 face identification rate using the FERET database when noise between 1
and 10 pixels is added to the eye coordinates.

Before fusing both methods, the ranges for the LMG, LGBP and LGXP scores
were normalized to [0, 1]. LGBP and LGXP take values in the range [−2, 16]
while LMG takes values between [100, 600]. Therefore, the normalization was
SnormLGBP = (SLGBP + 2)/18, for LGBP and LGXP. For LMG the normalization
was SnormLMG = (SLMG + 100)/500. The weight w was varied from 0 to 1 as shown
in Figure 3.10. It can be observed that for values of w between 0.5 and 0.85
the fusion achieved the best results compared with any of the methods applied
independently. The weight w = 0.75 is chosen and used for all the following
experiments.

Fusion of the LMGEW//LN-BTH+LGBP and LMGEW//LN-BTH+LGXP
methods using the FERET database yielded the same results in Fb and Fc with
99.92% and 100% accuracy respectively. Dup1 was improved by 1.57% and Dup2
by 0.59% compared with LGBP+LGXP. The total number of errors decreased
from 77 in LGBP+LGXP to 48 in LMGEW//LN-BTH+LGBP which is a 38%
improvement relative to previously published methods.

Fusion of LMGEW//LN-BTH+LGBP and LMGEW//LN-BTH+LGXP
methods in the AR database also improved the best results obtained previously
with LMG-based methods for all sub-sets. For the S2-Neutral subset both fusions
reached 100% accuracy, improving the 99.29% performance of LMGEW-BTH. In
the Scarves subset both fusions improved compared with previous methods, and
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LMGEW//LN-BTH+LGBP reduced the error rate by 1%. In the Sunglasses
subset, the fusion LMGEW//LN-BTH+LGXP method improved the results but
could not reach the best results obtained by SRC [Wright 2009].

Figure 3.10: Results for the fusion LMGEW//LN-BTH+LGBP and LMGEW//LN-
BTH+LGXP as a function of the weight w in FERET database.

3.2.5 Results of face identification with small pose varia-
tions

LMGEW//LN-BTH, LGBP, LGXP methods were tested and combined with the
subsets bd, be, bf, and bg with pose variations of the FERET database as shown
in Figure 3.1. Table 3.3 shows the results of face recognition for small pose
variations, and also the best previously published results.

The proposed methods improve these results significantly for faces with small
pose variations. LMGEW//LN-BTH showed a 80% in the error rate improvement
compared to previous LMG results, reducing the total number of errors from 89
to 18. Results improved by 0.5% and 1.5% for ±15° face pose rotation on the
subsets be and bf, respectively. Results also improved 2.5% and 5% for subsets
bd and bg, respectively, which have ±25° face rotations. Fusion improved the
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results slightly, reducing the errors by 4 and 2 with LMGEW//LN+LGBP and
LMGEW//LN+LGXP, respectively. These results show improvements in using
LMGEW//LN-BTH and fusion with LGBP and LGXP for face identification
with small pose variations.

3.3 Experiments and Results for Pose Variation
Face Recognition

3.3.1 Grid Deformation
The effectiveness of an ASM to deform the grid and adjust the Gabor filters to
pose variation was measured by the following experiments:

• Face identification performing only a face alignment, without using the grid
deformation, as described in section 2.2.1.2 and shown in Figure 2.11(a).

• Face identification performing grid deformation, as described in sec-
tion 2.2.2 and shown in Figure 2.11(b).

Both experiments were performed without any additional improvement of the
LMG method so that only the improvement due to the grid deformation was
measured. Then, the experiments were repeated using two different variants of
the proposed method to measure the improvement achieved by using each of
them. The first variant includes a Borda count threshold (BTH) and an Entropy
weighting (E). The BTH eliminates very small value scores that act as noise for
the Borda count computation. The E weighting is used to emphasize the Gabor
jets with the best performance. The second variant, in addition to BTH and E,
includes the Local Normalization (LN) introduced in [Perez 2010b], which is used
to compensate for illumination conditions.

Table 3.7 shows the Rank-1 results on the FERET database using only face
alignment, or face alignment with grid deformation, and three different condi-
tions. Both methods were tested without any other improvement of the LMG
method, and then using the variants of the LMG which include BTH, E, and LN.
As shown, the best results reach 100% for face pose near frontal, −25◦ to 25◦.
However, for larger pose changes, 40◦ or more, the identification results decrease
significantly and differences among different variants of the proposed method be-
come evident. For example, when only alignment is used in images with pose
variation of 60◦, the correct identification rate is 34.5%. Using grid deformation,
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results improve to 59.5%. As shown in Table 3.7 the results obtained with grid
deformation are significantly better than those obtained with only alignment.
This improvement can be explained because with the grid deformation, the ex-
tracted features are closer to the features extracted in the frontal face enrolled in
the gallery. This effect is especially noticeable in faces with large pose variation.
If BTH, LN, and E are combined with face alignment and grid deformation, the
recognition rate improves significantly achieving the highest results. This im-
provement can be seen in Table 3.7, particularly for the ±40◦ and ±60◦ rotation
angles. For example, the results using grid deformation (GD) increase 10% for
the ±40◦ (GD+LN+BTH+E), and 32% for the ±60◦, if LN, BTH and E are
used.

Table 3.8 shows the results of the same experiments described above but car-
ried out using the PIE database. In same way as in the FERET database, the
results are 100% for the near frontal poses (05, 09, 07, 29). However, for larger
rotation angles the performance decreases. Results obtained using grid deforma-
tion are always better than those with alignment only. The best performance
was obtained using grid deformation with BTH and E, in this database. The
performance did not improve when LN was used. For example, the performance
obtained using grid deformation increased approximately 43.5% for the largest
rotation angles (sets 22 and 34) when BTH and E were used, but it increased
only 28.2% if BTH, E and LN were used.

3.3.2 Statistical Model
The statistical model was trained for each block. Each of the FERET eight pose
sets (bb, bc, bd, be, bf, bg, bh, bi) contains 200 images, including the gallery
set. Each set was partitioned into two subsets, the first to train the model, and
the second for testing. The training subsets were built by randomly choosing 100
images of the corresponding set, and the remaining 100 images were used to test
the model. A cross-validation was performed exchanging the training and test
sets, i.e., training with the second partition and testing with the first one. In the
CMU-PIE database, an analogous procedure was carried out. Each of the 13 pose
sets of the PIE database contains 68 images; therefore, 34 were randomly selected
for the training set and 34 for the testing set to perform the cross-validation. The
combinations of grid deformation, LN, BTH, and E with best performance in the
previous experiments (section 3.3.1), were used to evaluate the performance of
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the statistical model in each database. The method was tested using different
numbers of blocks for the statistical model (see Figure 2.12).

In order to measure the performance of the statistical model (P) in combina-
tion with the other methods used in the system, a set of experiments similar to
those presented in section 3.3.1 were performed. Face identification performing
only a face alignment, or also using grid deformation, was carried out using P,
and combinations of BTH, E, and LN.

Table 3.9 shows the results of the classification performance on the FERET
database for different arrays of blocks used to test the statistical model. The best
result was reached with an array size of 20×25, therefore this size was selected
for further testing of the statistical model. Table 3.10 shows analogous results
on the CMU-PIE database. The best result for the PIE database was achieved
with an array size of 8×10, accordingly this size was selected for further testing
on the PIE database.

Table 3.11 shows the results of face identification using only face alignment,
or face alignment with grid deformation, with P and combinations of BTH, E,
and LN in the FERET database. Results show that the use of the statistical
model improves the recognition rate significantly, as can be seen by comparison
with those in Table 3.7. The recognition rates reach 100% for near frontal images,
and nearly 99% for ±40◦ pose angles. For ±60◦ pose angles the improvement is
roughly 16% of the best result shown in Table 3.7.

Table 3.11 shows that the results using GD are always better than those
using A. The best result was achieved by the combination GD+P+BTH+LN,
with a mean performance of 96.4 ± 0.2%. However, this performance was very
close to that obtained by the combinations GD+P+BTH, GD+P+BTH+E and
GD+P+BTH+LN+E. The results show that the improvement in the perfor-
mance is similar using only BTH, or combinations of BTH, E and LN.

Table 3.12 shows the results of using P and combinations of BTH, E and
LN on the CMU-PIE database. In the same way as on the FERET database,
the results improved significantly by using the statistical model. Considering the
experiments with better average results in Tables 3.8 and 3.12, the performance
improvement in the largest rotation angles (sets 22 and 34) is 53% when the
statistical model is used. Also the results using GD are always better than when
using A.

The best performance was achieved using GD+P on the CMU-PIE database,
with a mean performance of 86.1±1.4% (Table 3.12). The performance of combi-
nations GD+P+BTH and GD+P+BTH+E were close to this result, nevertheless,
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the combinations using LN did not improve the results.

3.3.3 Gallery Sets with Different Pose Angles
In order to measure the robustness of the method when images of rotated faces
are used as gallery, different pose sets were enrolled. The sets bc, bd, be, bf, bg
and bh of the FERET database were enrolled as gallery. The sets bb and bi were
not used as gallery because one side of the face is usually not visible in these
images due to the large rotation (±60◦). In the CMU-PIE database, the sets of
cameras 37, 05, 09, 27, 07, 29 and 11 were used as gallery, and the sets 22, 02,
25, 31, 14 and 34 were not used because of their large rotation. This experiment
also allows comparison with other published methods in which the results are
presented using rotated faces as galleries.

Table 3.13 shows the results of enrolling sets of images with various pose
angles, between −40◦ and 40◦, as gallery in the FERET database. Results show
that the highest recognition performance was reached consistently for faces with
pose closest to the enrolled face angle. Even if faces with a small pose variation
are used as gallery, the recognition rate of faces with large pose variation improves
significantly. Using galleries with just ±15◦, the average result in the test sets
with ±60◦ of rotation in the same direction is 94.6%.

Table 3.14 shows the results of using images with different pose angles as
gallery in the CMU-PIE database. Also, the highest recognition rates were con-
sistently reached for faces with pose angle closest to the enrolled faces. Using the
sets of cameras 37 and 11 as gallery, the average results in the sets with largest
rotations is 86.1%.

3.3.4 Comparison with other Methods
The results of the proposed method were compared with those published pre-
viously with pose variations on the FERET database. Table 3.15 shows the
performance of 7 different 2D methods and the proposed method on the FERET
database. Comparing the results, it can be concluded that the proposed method
reaches the highest overall classification performance.

Table 3.16 shows the performance of 5 different 3D methods and the proposed
method on the FERET database. Some methods consider the set with 15◦ of
rotation as the gallery. To perform an equivalent comparison with these methods,
the sets with 15◦ and −15◦ of pose were used both individually and together as
gallery. The proposed method outperformed all the methods that use the set with

46



Chapter 3. Experiments and Results

0◦ of pose as gallery. Only one of the methods that uses the set with 15◦ of pose
as gallery had a performance that exceeded that of the proposed method, when
sets with 15◦ or −15◦ of pose are used as gallery individually [Paysan 2009] the
proposed method gets a comparable performance. Nevertheless, the sets in which
the proposed method is surpassed are only those with ±60◦ of face rotation. If
both sets together (15◦ and −15◦) are used as gallery, the method achieves the
best performance. To use two sets as gallery, the rotation angle of the test face
is computed by using the shape adjusted to the face, and then the comparison is
carried out using the gallery set with the closest rotation angle.

Table 3.17 shows the results of 10 different 2D methods and the proposed
method on the CMU-PIE database. The proposed method is compared using the
set with frontal faces (27) and also two sets with rotated faces (37 and 11) as
gallery. Since few methods show results in just some sets, the mean performance
of the proposed method is also shown taking only the sets used for each method
into account. By using the frontal faces as gallery, the proposed method outper-
forms 6 of the 10 methods. This overall performance is caused by poor recognition
in the sets with large rotation angles, although the performance in near frontal
faces is 100%. If two sets of rotated faces are used as gallery, the performance of
the proposed method is increased, surpassing that of all the comparison methods.

Table 3.18 shows the performance of 5 different 3D methods and the proposed
method on the CMU-PIE database. The performance of the proposed method
is shown using one and two sets as gallery. If only frontal faces are used in the
gallery, the method outperforms only 2 of the comparison methods. Nevertheless,
when two sets are used in the gallery, the method outperforms 4 of the comparison
methods.
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Chapter 4

Discussion and Conclusions

Face recognition is an important topic in a wide variety of applications ranging
from surveillance to selective marketing. Several recent studies have shown the
predominance of local matching approaches in face recognition results. The work
in this thesis was divided in two parts, the first one in frontal face recognition
and the second one in face recognition under pose variation. For frontal face
recognition, we proposed a local matching Gabor method using a preprocessing
step with local normalization. The method uses entropy-like weighted Gabor
features to weight the jet scores. Experiments were done on the FERET, AR,
and FRGC 2.0 databases to test and compare the obtained results with those
published previously.

Results of the methodological improvements proposed in this work show that
it is possible to improve face recognition rate by weighting jets with entropy
as in LMGEW. Weighting jets by entropy produces significant improvements in
face recognition in the FERET database subsets Dup1 and Dup2 where images
from the same person were taken further apart in time. The proposed LMGEW
method reduces the total number of errors in the FERET database subsets Fb,
Fc, Dup1 and Dup2 from 163 to 128, a 21% improvement. It was also shown
that the combination of the proposed methods in cascade LMGEW-BTH reached
an overall of 102 errors in the FERET database which represents a 37% error
reduction compared to the best previously published results. On the AR database
LMGEW-BTH achieved a reduction in error rate compared to LMG, of method
38% in the Normal subset, 63% in the Sunglasses subset and 85% in the Scarves
subset. The threshold BTH is the only parameter that is chosen within a range
in the proposed method. Choosing the Th in the range 0.8 to 0.9 yields high
accuracy on the results of the LMGEW-BTH method. Adding noise to the eye
position ground truth, produces a small error in face recognition if the error in
eye localization is of few pixels.

LMGEW//LN-BTH showed good identification performance improving re-
sults of LMG and LMGEW. The method was assessed on different databases
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with varying illumination, small pose variations (up to 25°), changing expres-
sions, and using images taken on different dates and locations. The proposed
method shows robustness to illumination changes and expressions as shown in
the results on the FERET, subsets Fb, Fc, the AR Normal subset and FRGC
Exp.1, with results over 99%. Robustness to illumination and spatial changes is
due to the Gabor jets’ capacity to deal with small spatial perturbations. The
LN method, capable of eliminating the noise introduced by illumination changes,
plays an important role. Improvements can be observed across all subsets of
the FERET database, although they are most evident in Dup1 and Dup2 which
contain images with age difference compared to the gallery face images. The
error was reduced from 15% to 7.3% in Dup1 and from 20% to 10.3% in Dup2.
This is a reduction of 52.3% in the error rate for Dup1 and 48.5% for Dup2. In
addition, for pose variation of 25° the improvement in face recognition increased
from 80.3% to 96.3%, i.e., a 16% increase. This improvement could be due to
the entropy-like weights on the Gabor jets. The entropy-like function measures
the consistency of each jet in one image compared to the same jet in the entire
database. The weights are larger on face zones that are similar to each other on
the frontal view of the face, while weights are smaller on other parts of the face.

LMGEW//LN-BTH, LGBP and LGXP individually have the highest scores
on face identification, and they were combined in this thesis. Results on fusion
methods suggest that different methods for face identification improve different
features, and combining these features improves the overall results. Different
methodologies applied to face recognition extract and emphasize different aspects
of the face image and therefore, fusing them has a synergistic effect as shown in
Fig. 3.10.

Real face identification applications require automatic face detection and eye
localization, which reduce performance in face recognition systems. The effect of
adding noise to the eye localization on face identification was tested. Noise from
1 to 10 pixels was added in each eye and the results indicate that up to 4 pixels
of error do not have a significant effect on Fb and Fc subsets. In Dup1 and Dup2,
the effect is significant with over 2 pixels of error in eye localization. Real-time
eye localization systems [Perez 2010a] tolerate only less than 3 pixels of error.

The LMG is a well-established method for frontal face identification with
excellent performance. Nevertheless, as with most face identification methods,
LMG performance declines significantly for large geometric deformations such
as those produced by varying pose. In the second part of this study, a new
method based on LMG is proposed using ASM to correct the position where
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Gabor jets are computed with pose changes. Also, the method incorporates a
statistical model of the Borda count scores computed by using the Gabor jets.
The method includes illumination compensation by Local Normalization, and an
entropy weighting of the Gabor jets to emphasize those features most relevant
for identification.

The method was tested using the FERET and CMU-PIE databases, which are
the most widely used international databases for face identification across pose.
The FERET database has a subset with pose variations (+60◦, +40◦, +25◦, +15◦,
+0◦, −15◦, −25◦, −40◦, −60◦) with 200 faces for each pose angle. The proposed
method was tested enrolling each pose angle as the gallery set. Consistently the
highest recognition performance was reached for faces with pose closest to the
enrolled face angle. Also, even if a gallery with a small pose angle was used, the
recognition rates of faces with high rotation improved significantly. The mean
recognition rate of faces with ±60◦ of rotation increased from 86.8% to 95.2%
if a gallery set with only 15◦ of rotation in the same direction was used. The
mean improvement in the recognition rate of the proposed method compared to
the classical LMG on the FERET database for pose variation went from 77.9%
to 96.4%.

As expected, the improvement was larger for significant face pose variations.
For example, the mean performance of the classical LMG in faces with ±60◦ pose
variation improved from 35.5% to 86.8% (144.5% improvement). The CMU-PIE
database has 13 subsets with different pose variations, each with 68 faces. The
recognition rate of faces with large rotation angles also improved significantly if
a gallery with pose angle was used in this database. The recognition rate in the
set with the largest rotation (set 22), increased from 61.2% to 97.5% when set
37 is used as gallery. Compared to the classical LMG, the mean performance in
the recognition rate of the proposed method on the CMU-PIE database increased
from 67.6% to 87.1% when a gallery of frontal faces was used. The recognition
rate improvement for the sets with largest rotation angles (22 and 34) was 130.8%.

Results on the FERET database were compared to those of 12 different 2D
and 3D state-of-the-art methods published previously. Obtained results were
significantly better than all previous 2D methods which used the set with 0◦ of
pose as gallery. The best 2D method [Vu 2009] achieved a mean performance of
93.4%, while the proposed method reached 96.4%. This difference was greater
in faces with large pose variation angles. For example, the mean performance
obtained in [Vu 2009] for faces with ±60◦ of pose was 81.8% while the proposed
method results reached 86.8%. Only one of the 3D methods obtained a better
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mean result than the proposed method on the FERET database [Paysan 2009].
This method uses the set with 15◦ of pose as gallery, and the proposed method
yields better results if the sets with ±15◦ of pose are used together as gallery. The
3D methods require a greater number of computations which can be interpreted
as a disadvantage compared to the proposed method.

In the CMU-PIE database, the proposed method was compared with 10 dif-
ferent 2D and 5 different 3D previously published methods. Using the set with
frontal faces as gallery the performance of the proposed method outperforms 6 of
the 2D methods. Nonetheless, if two sets with rotated faces (37 and 11) are used
as galleries, the mean result of the proposed method surpasses the performance
of all previously published methods. If frontal faces are used in the gallery, the
mean performance of the proposed method is better than the performance of 2
of the 3D methods on the CMU-PIE database. Using the two sets with rotated
faces as galleries, the mean performance of the proposed method surpasses the
results of 4 of the 5 methods.

The proposed method has a more consistent performance for the same rotation
on the two tested databases (FERET and CMU-PIE) than the other methods
because methods that show highest performance on CMU-PIE have lower per-
formance on the FERET database. The cause of this may be that the proposed
method is more robust to changes in the general conditions regarding the image
capture procedure. This can be observed by comparing the sets with similar
rotations in the FERET and CMU-PIE databases.
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Publications

The following publications resulted from the work of this thesis:

• Perez CA, Cament LA, Castillo LE, Methodological improvement on local
Gabor face recognition based on feature selection and enhanced Borda count,
Pattern Recognition, 44(4), pp.951-963, 2011.

• Perez CA, Cament LA, Castillo LE, Local matching Gabor entropy
weighted face recognition, IEEE International Conference on Automatic
Face & Gesture Recognition and Workshops (FG 2011), pp.179-184, 2011.

• Cament LA, Castillo LE, Perez JP, Galdames FJ, Perez CA, Fusion of
Local Normalization and Gabor Entropy Weighted Features for Face Iden-
tification, Pattern Recognition, 47(2), pp.568-577, 2014.
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