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Abstract Let S be a set of 2n points on a circle such that for each point p ∈ S also its
antipodal (mirrored with respect to the circle center) point p′ belongs to S. A polygon
P of size n is called antipodal if it consists of precisely one point of each antipodal
pair (p, p′) of S. We provide a complete characterization of antipodal polygons which
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maximize (minimize, respectively) the area among all antipodal polygons of S. Based
on this characterization, a simple linear time algorithm is presented for computing
extremal antipodal polygons. Moreover, for the generalization of antipodal polygons
to higher dimensions we show that a similar characterization does not exist.

Keywords Antipodal points · Extremal area polygons · Discrete and computational
geometry

1 Introduction

For a point p = (x1, x2) ∈ IR2, let p′ := (−x1,−x2) be the antipodal point of p.
Consider a set S of points on a circle centered at the origin such that for each point
p ∈ S also its antipodal point p′ belongs to S. We choose one point from each antipodal
pair of S such that their convex hull is as large or as small (with respect to its area)
as possible. It is easy to see that, with this selection, the largest polygon will have to
contain the origin, but the smallest polygon does not. In Fig. 1 an example of a thin (the
smallest) and a thick (the largest) polygon is shown. An interesting question, which
immediately suggests itself, is whether any polygon of S containing the center has
larger area than any polygon that does not. We will formalize the mentioned concepts
of thin and thick polygons and answer this question for sets in the plane as well as for
sets in higher dimensions.

We start by introducing the problem formally in the plane. A set of 2n (n ≥ 3) points
on the unit circle centered at the origin is called an antipodal point set if for every
point p it also contains its antipodal point p′. Let S := {p1, p′

1, p2, p′
2, . . . , pn, p′

n}
be such a set. An antipodal polygon on S is a convex polygon having as vertices
precisely one point from each antipodal pair (pi , p′

i ) of S. A thin antipodal polygon
P is an antipodal polygon whose vertices are consecutive points on the circle. For n
odd, a thick antipodal polygon P is an antipodal polygon such that its vertices are
every other point of S along the circle. For n even, we add the exception that exactly
one pair of vertices of P are consecutive points on the circle. See Fig. 1. Note that an

Fig. 1 A thin (left) and a thick (right) antipodal polygon
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antipodal polygon P could be thin, thick, or neither, but P cannot both be thin and
thick at the same time. Moreover, a thin antipodal polygon does not contain the center
of the circle and a non-thin antipodal polygon always contains it.
We will consider the following questions:

• Does a thick antipodal polygon always have larger area than a thin antipodal
polygon?

• How efficiently can one compute an antipodal polygon with minimal (maximal)
area?

• What can be said about antipodal polygons in higher dimensions?

1.1 Related Work

The questions studied here are related to and motivated by several other (geometric)
problems, some of which we mention below.

Extremal problems: Plane geometry is rich of extremal problems, often dating back
till the ancient Greeks. During the centuries many of these problems have been solved
by geometrical reasoning. Specifically, extremal problems on convex polygons have
attracted the attention of both fields, geometry and optimization. In computational
geometry, efficient algorithms have been proposed for computing extremal polygons
with respect to several different properties [4]. In operations research, global optimiza-
tion techniques have been extensively studied to find convex polygons maximizing a
given parameter [3]. A geometric extremal problem similar to the one studied in this
paper was solved by Fejes Tóth [12] almost fifty years ago. He showed that the sum of
pairwise distances determined by n points contained in a circle is maximized when the
points are the vertices of a regular n-gon inscribed in the circle. Recently, the discrete
version of this problem has been reviewed in [14] and problems considering maximal
area instead of the sum of inter-point distances have been solved in [10]. The last two
mentioned references are also related to music theory, see below.

Stabbing problems: The problem of stabbing a set of objects by a polygon (transversal
problems in the mathematics literature) has been widely studied. For example, in
computational geometry, Arkin et al. [1] considered the following problem: a set S of
segments is stabbable if there exists a convex polygon whose boundary C intersects
every segment in S; the closed convex chain C is then called a (convex) transversal or
stabber of S. Arkin et al. [1] proved that deciding whether S is stabbable is an NP-hard
problem. In a recent paper [7], the problem of stabbing the set S of line segments by
a simple polygon but with a different criterion has been considered. A segment s is
stabbed by a simple polygon P if at least one of the two endpoints of s is contained in
P . The task is to find a simple polygon P that stabs S and has minimum(maximum)
area among those that stab S. In [7] it is shown that if S is a set of n pairwise disjoint
segments, the problem of computing the minimum and maximum area (perimeter)
polygon stabbing S can be solved in polynomial time. However, for general (crossing)
segments the problem is NP-hard. Note that our problem can be seen as a constrained
version of the problem studied in [7] in which each segment joins two antipodal points
on a circle.

123



324 Graphs and Combinatorics (2015) 31:321–333

A

A#

C
C#B

D

D#

E

F
F#

G

G#

A

A#

C
C#B

D

D#

E

F
F#

G

G#

(a) (b)
Fig. 2 The subsets in a and b represent maximally even scales with and without tritones, respectively

Music Theory: There exists a surprisingly high number of applications of mathematics
to music theory. Questions about variation, similarity, enumeration, and classification
of musical structures have long intrigued both musicians and mathematicians. In some
cases, these problems inspired mathematical discoveries. The research in music theory
has illuminated problems that are appealing, nontrivial, and, in some cases, connected
to deep mathematical questions. The problem introduced in this paper comes from
a question related to geometric measures of musical scales and rhythms [14]. An
antipodal polygon is related with the tritone concept in music theory. Typically, the
notes of a scale are represented by a polygon in a clock diagram. In a chromatic scale,
each whole tone can be further divided into two semitones. Thus, we can think on a
clock diagram with twelve points representing the twelve equally spaced pitches that
represent the chromatic universe (using an equal tempered tuning). The pitch class
diagram is illustrated in Fig. 2. A tritone is traditionally defined as a musical interval
composed of three whole tones. Thus, it is any interval spanning six semitones. In
Fig. 2a, the polygon represents a scale containing the tritones C F#, DG#, E A#. The
tritone is defined as a restless interval or dissonance in Western music from the early
Middle Ages. This interval was mostly avoided in medieval ecclesiastical singing
because of its dissonant sound. The name diabolus in musica (the Devil in music) has
been applied to the interval from at least the early 18th century [11]. In this context,
an antipodal polygon corresponds to a subset of notes or harmonic scale avoiding the
tritone. On the other hand, one of the properties that musicologists and mathematicians
have observed in music in various oral traditions is what is called regularity of the
rhythm (or of the musical scale). Regular rhythms have been defined as those which
maximize a particular geometric measure [14,15]. Thus, a maximal antipodal polygon
represents a maximally even set that avoids the tritone. A relationship between extremal
polygons and musical scales has been shown in [10].

Inscribed polygons with no antipodal vertices have also been considered in the
analysis of musical rhythms [2,5]. A rhythm has the rhythmic oddity property if, when
represented on a circle, it does not contain two onsets (the black points in Fig. 3)
that lie diametrically opposite of each other. Note that the property ensures that one
cannot split the circle into two parts of equal length whatever the chosen breaking
onsets is. Thus, these patterns possess a particular type of asymmetry. Many musical
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(a) Buleŕıa (c) Clave Son(b) Aka Pygmies rhythm
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Fig. 3 a The bulería rhythm used in Spain, b a rhythm used by the Aka Pygmies of Central Africa, c the
clave son of Cuba

traditions all over the world have asymmetric rhythmic patterns. Indeed, rhythms with
the oddity property (antipodal polygons have such a property) play a fundamental role
in traditional music as, for instance, flamenco music, african music or cuban music.
The bulería pattern used in the flamenco music of Spain (Fig. 3a)), the Aka Pygmies
pattern of Central Africa (Fig. 3b)) and the clave son in Cuba (Fig. 3c)) can all be
considered as antipodal polygons with k < n vertices. See [2,6,13] respectively, for
a detailed study on the preference of theses rhythms in their cultural contexts.

1.2 Our Results

In this paper we prove the following general result:

Claim Given an antipodal point set S ⊂ IR2, every thin antipodal polygon on S has
less area than any non-thin antipodal polygon on S.

In addition we show that the 2-dimensional case is special in the sense that the
above result can not be generalized to higher dimensions.

The analogue result holds for thick antipodal polygons when n is odd but surpris-
ingly turns out to be wrong when n is even; for n even we provide an example of
an antipodal non-thick polygon having larger area than a thick antipodal polygon.
However, we are able to prove the following result:

Claim Given an antipodal point set S ⊂ IR2, for every non-thick antipodal polygon
on S there exists a thick antipodal polygon on S with larger area.

Note that above claims imply that an antipodal polygon with minimum (resp. max-
imum) area is thin (resp. thick). As a consequence, we will show that the extremal
problems for antipodal polygons can be solved in linear time.

2 Thin Antipodal Polygons

Assume that the clockwise circular order of S around the origin is p1, p2, . . . , pn,

p′
1, p′

2, . . . , p′
n . For every point q in S, let Pq be the thin antipodal polygon that
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contains as vertices q and the next n − 1 clockwise consecutive points of S. Note that
all thin antipodal polygons are of this form and that Pq and Pq ′ are congruent, that is,
Pq and Pq ′ are the same polygon in different positions.

The next lemma characterizes triangles that contain a given point of S and maximize
the area.

Lemma 1 For a point p ∈ S let � be the line containing p and p′. Let τ be the triangle
determined by p, and its two neighbors in S. Among all triangles that have as vertices
p and one point of S in each of the two half-planes defined by �, τ has strictly the
smallest area.

Proof Let τ ′ be a triangle with vertices in S, containing p as a vertex and with a vertex
in each of the two half-planes defined by �. Assume that τ ′ is different from τ . Let
b be the side opposite to p in τ and b′ be the side opposite to p in τ ′. Note that b′
is at least as large as b, because S is an antipodal point set and � contains the origin.
The height of τ ′ with respect to p is larger than the height of τ with respect to p, as
otherwise b′ would have to intersect b, which is not possible by construction. Thus
the area of τ ′ is larger than the area of τ .

We split the proof of Claim 1.2 into the three cases n = 3, n = 4, and n ≥ 5.

Lemma 2 For n = 3, every thin antipodal polygon on S has area strictly less than
that of any non-thin antipodal polygon on S.

Proof In this case the only non-thin polygons are the two triangles τ and τ ′ with vertex
sets {p1, p′

2, p3} and {p′
1, p2, p′

3}, respectively. Note that τ has the same area as τ ′.
In addition, by Lemma 1, τ has larger area than Pp2 and τ ′ has larger area than Pp1

and Pp3 .

Lemma 3 For n = 4, every thin antipodal polygon on S has area strictly less than
that of any non-thin antipodal polygon on S.

Proof In this case a non-thin antipodal polygon P has exactly two consecutive points;
without loss of generality assume that they are p1 and p2. Thus, P is the convex
quadrilateral p1, p2, p4, p′

3. We show that P has larger area than Pp1 , Pp2 , Pp′
3

and
Pp′

4
.

By Lemma 1 the triangle p′
4 p1 p2 has less area than the triangle p′

3 p1 p2. By
Lemma 2 the triangle p′

3 p2 p4 has larger area than the triangle p′
3 p′

4 p2 and also larger
than the triangle p′

4 p2 p3. Thus P has larger area than Pp′
3

and also larger than Pp′
4
.

By Lemma 1 the triangle p1 p2 p3 has less area than the triangle p1 p2 p4. By Lemma 2
the triangle p′

3 p1 p4 has larger area than the triangle p1 p3 p4. Thus P has larger area
than Pp1 .

It remains to show that P has larger area than Pp2 . Let � be the line passing through
p1 and p′

1. Rotate � continuously clockwise around the origin and translate p1 and
p′

1 until p1 meets p2 and p′
1 meets p′

2. See Fig. 4. Throughout the motion the area
of Pp2 is strictly increasing. To see this, observe that the height of the triangle with
vertices p2, p4 and p′

1 is strictly increasing, as otherwise during the rotation p′
1 must
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Fig. 4 The rotation in the proof of Lemma 3 and its limit case

eventually cross the perpendicular bisector of the segment p2 p4. However, this cannot
happen since p′

1 reaches p′
2 before it reaches this line.

On the other hand, the area of P might at first be strictly increasing and then at
some point be strictly decreasing. Moreover, if this is the case, there is a point in
time at which P has the same area as in the beginning of the motion (and will strictly
decrease afterwards) and the area of Pp2 has increased. Thus, we can assume that
during the whole motion the area of P is strictly decreasing and the area of Pp2 is
strictly increasing. We will show that at the end of the motion P and Pp2 have equal
area. This implies that at the beginning of the motion the area of P is larger than the
area of Pp2 .

At the end of the motion P coincides with the triangle p2 p4 p′
3 and Pp2 with the

quadrilateral p2 p3 p4 p′
2. We split the quadrilateral p2 p3 p4 p′

2 into the triangles p2 p3 p4
and p′

2 p2 p4, sharing the side p2 p4. The height of the triangle p2 p4 p′
3 with respect

to p2 p4 has the same length as the sum of the heights of the triangles p2 p3 p4 and
p′

2 p2 p4 with respect to p2 p4 (This can bee seen by using the triangle p′
4 p′

3 p′
2). Hence,

the area of the triangle p2 p4 p′
3 equals the area of the quadrilateral p2 p3 p4 p′

2.

We are now ready to prove our first claim.

Theorem 1 Every thin antipodal polygon on S has less area than any non-thin antipo-
dal polygon on S.

Proof We proceed by induction on n where Lemmas 2 and 3 cover the induction base.
For n ≥ 5 let P be a non-thin antipodal polygon on S and let T be a triangulation of P .
Let p be a vertex of degree two in T such that the triangle τ of T having p as a vertex
does not contain the origin in its interior (as any triangulation has two ears, there is at
least one ear that does not contain the origin). Let q and r be the two neighbors of p
in S and τ ′ the triangle with vertices p, q and r . By Lemma 1 the area of τ ′ is equal
to or less than the area of τ .

The polygon P ′ with vertices of P without p is a non-thin antipodal polygon
for S\{p, p′}. By induction, P ′ has larger area than any thin antipodal polygon on
S\{p, p′}. Some of these thin polygons (specifically, any polygon that includes both
r and q) together with τ ′ form antipodal polygons on S. Using this observation and
the fact that the area of Ppi is the same as the area of Pp′

i
, it follows that, except for
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Pp and Pq (Pp′ and Pq ′ ), all antipodal thin polygons on S have area strictly less than
P . However, for n ≥ 5, P can be triangulated so that p is not the middle nor the last
vertex (clockwise) of an ear. As any triangulation has two ears, there is an ear that
does not contain the origin. Using the previous arguments for this new triangulation
and ear it can be shown that the area of P is strictly larger than the area of Pp (Pp′ ),
and similarly for Pq (Pq ′).

3 Thick Antipodal Polygons

In this section we present two area increasing operations on antipodal polygons. Using
a sequence of these operations a non-thick antipodal polygon can be transformed into
a thick antipodal polygon. We will use this to prove Claim 1.2.

We start with an (arbitrary) antipodal polygon P . By flipping a point q of S we
denote the following operation: if q is a vertex of P , then choose q ′ instead of q; if q
is not a vertex of P then choose q instead of q ′. The two operations described in the
following Lemmas 4 and 5 are sequences of such flips.

Lemma 4 If P has three consecutive points q1, q2 and q3 of S as vertices, then flipping
q2 provides a polygon P ′ of larger area.

Proof Let q ′
4 be the point after q ′

3 in P and q ′
0 be the point before q ′

1 in P . Moreover, τ1
is the triangle with vertex set {q1, q2, q3} and τ2 the triangle with vertex set {q ′

0, q ′
2, q ′

4}.
The difference of the areas of P and P ′ is equal to the difference in the areas of τ1
and τ2. However, τ1 has the same area as the triangle with vertex set {q ′

1, q ′
2, q ′

3}; by
Lemma 1 the area of this triangle is less than that of τ2.

From now on, we assume that P does not contain three consecutive points of S as
vertices. Otherwise we apply the operation described in Lemma 4.

Lemma 5 Let q1, q2, . . . , qm (4 ≤ m ≤ n) be consecutive points of S and let P be
an antipodal polygon with vertices from S such that:

• P does not contain three consecutive points of S,
• P contains q1 and q2,
• P contains either both qm−1 and qm, or neither of them, and
• every other point from q3 to qm−1 belongs to P.

Let P ′ be the antipodal polygon obtained from P, by flipping each point qi (2 ≤ i ≤
m − 1). Then P ′ has larger area than P.

Proof We proceed by comparing the area of P\P ′ with the area of P ′\P . Note that
these areas are formed by disjoint triangles. If m is odd then qm and qm−1 are ver-
tices of P (see Fig. 5, left) and if m is even then P does not contain any of them
(see Fig. 5, right). In Fig. 5 (left) the points a and b can match with q1 and qm ,
respectively and, in Fig. 5 (right) the points c and d exist and can be coincident. Let
T = (P\P ′) ∪ (P ′\P) (light-shaded and dark-shaded triangles in Fig. 5). For each p
in {q2, q ′

2, . . . , qm−1, q ′
m−1} let τ(p) be the triangle in T that contains p as a vertex.

The difference in the area of P and the area of P ′ equals the difference in the areas of
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Fig. 5 Schematic diagram of the flip operations described in Lemma 5 to transform P into P ′. The light-
shaded triangles are P\P ′ and the dark-shaded triangles are P ′\P

those triangles contained in P and those contained in P ′. For 4 ≤ i ≤ m − 3, the area
of τ(qi ) equals the area of τ(q ′

i ) and one of them is contained in P while the other is
contained in P ′, see Fig. 5. Thus, the difference in the areas of P and P ′ depends only
on the areas of τ(q2), τ(q ′

2), τ(q3), τ(q ′
3), τ(qm−2), τ(q ′

m−2), τ(qm−1), and τ(q ′
m−1)

Note that the area of τ(q2) is smaller than the area of τ(q ′
2) and that P contains τ(q2)

while P ′ contains τ(q ′
2). The same holds for τ(q3) and τ(q ′

3), see again Fig. 5.
If P contains both qm−1 and qm , then τ(qm−1) is contained in P and τ(q ′

m−1) is
contained in P ′. In this case the area of τ(qm−1) is smaller than the area of τ(q ′

m−1),
see Fig. 5 (left).

If P does not contain qm−1 and qm , then τ(q ′
m−1) is contained in P and τ(qm−1) is

contained in P ′. In this case the area of τ(q ′
m−1) is smaller than the area of τ(qm−1),

see Fig. 5 (right). The same argument can be applied to τ(qm−2) and τ(q ′
m−2). As a

consequence, in all cases the area of P is smaller than the area of P ′.

We are now ready to prove Claim 1.2.

Theorem 2 For every non-thick antipodal polygon on S, there exists a thick antipodal
polygon on S with larger area.

Proof The idea is to transform any non-thick antipodal polygon into a thick antipodal
polygon by using flipping transformations. Let Q be a non-thick antipodal polygon.
Then S contains three consecutive points as vertices of Q or S contains a sequence
q1, q2, . . . , qm (4 ≤ m ≤ n) fulfilling that Q contains q1 and q2, Q contains either
both qm−1 and qm , or neither of them, and every other point from q3 to qm−1 belongs
to Q. Using Lemmas 4 and 5 we obtain an antipodal polygon with larger area than
Q. Repeating these operations until they can no longer be applied we obtain a thick
polygon. The process terminates as in the operations described in Lemmas 4 and 5
the number of consecutive points in S as vertices of the non-thick antipodal polygon
decreases.

Corollary 1 For n odd, every thick antipodal polygon on S has larger area than a
non-thick antipodal polygon on S.

Proof For n odd there are only two antipodal thick polygons and they have the same
area.

We now provide an example of a set of points and a non-thick antipodal polygon
that has larger area than a thick antipodal polygon of this set.
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Fig. 6 Construction for Theorem 3

Theorem 3 For all n ≥ 6 even, there exist sets of n points with a non-thick antipodal
polygon and a thick antipodal polygon such that the non-thick antipodal polygon has
larger area than the thick antipodal polygon.

Proof Place p1 and p2 arbitrarily close to (−1, 0); thus p′
1 and p′

2 are arbitrarily close
to (1, 0). Place p3, . . . , pn arbitrarily close to (0, 1); thus p′

3, . . . , p′
n are arbitrarily

close to (0,−1) as illustrated in Fig. 6. Let P be the thick antipodal polygon that
contains both p1 and p2 as vertices. Let Q be any non-thick antipodal polygon that
contains p1, p′

2, p3 and p′
4 as vertices. Note that P is arbitrarily close to the triangle

with vertices (0, 1), (0,−1) and (1, 0); Q is arbitrarily close to the quadrilateral with
vertices (−1, 0), (0, 1), (1, 0), and (0,−1). Thus the area of P is arbitrarily close to
1, while the area of Q is arbitrarily close to 2.

It is worth mentioning that the algorithmic version of the optimization problem
in which the input is a set of line segments, each connecting two (non necessarily
antipodal) points on the circle, has been shown to be NP-hard [7]. Surprisingly, the
antipodal version can be easily solved in linear time by using the above characteri-
zations. According to Theorem 1, an antipodal polygon with minimum area is a thin
antipodal polygon. Thus, since there exist O(n) thin antipodal polygons, we can sweep
in a linear number of steps around the circle and update in constant time the area of
two consecutive thin antipodal polygons. On the other hand, according to Theorem 2,
if n is odd, there are only two thick antipodal polygons (the alternating polygons). For
n even, there exists a linear number of thick antipodal polygons (having two consecu-
tive points and the rest in alternating position). In the last case, a linear sweep around
the circle can also be used to compute in linear time a thick antipodal polygon that
maximizes the area.

4 Higher Dimensions: Antipodal Polytopes

In this section we consider a generalization of the problem to higher dimensions.
Assume therefore that all points are now placed on the unit d-dimensional sphere.
Instead of antipodal polygons we thus have antipodal polytopes.

The natural generalization for higher dimensions is as follows. Let S :=
{p1, p′

1, p2, p′
2, . . . , pn, p′

n} be a set of n antipodal pairs on the unit d-dimensional
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Fig. 7 An example showing that Theorem 1 can not be generalized to three-dimensions

sphere centered at the origin. A thin antipodal polytope is an antipodal polytope whose
vertices all lie on one side of some hyperplane passing through the origin. Note that
this definition generalizes the thin antipodal polygon’s notion.

In dimension 3 or greater Theorem 1 does not hold. There are antipodal point sets
S ⊂ IRd such that there exists an antipodal thin polytope with larger d-dimensional
volume than a non-thin antipodal polytope on S. We start by providing a three dimen-
sional example and then argue how to generalize it to higher dimensions.

For some small ε > 0, let δ = √
1 − 2ε2 and consider the set S1 of the five points

v1 := (0, 0, 1), v2 := (δ, ε, ε), v3 := (−δ, ε, ε), v4 := (ε, δ, ε), and v5 := (ε,−δ, ε).
Let S be the antipodal point set consisting of S1 and all its antipodal points. The
convex hull of S1 is a pyramid with a square base (with corners v2, . . . , v5) which lies
in the horizontal plane just ε above the origin, see Fig. 7. The top of the pyramid is at
height 1. Thus, this pyramid does not contain the origin in its interior, and for ε → 0
the volume of the pyramid converges to 2/3.

To obtain our second polyhedron first flip the vertex v1 to v′
1 := (0, 0,−1). This

gives a similar upside-down pyramid, which contains the origin in its interior. By also
flipping v2 to v′

2 := (−δ,−ε,−ε), we essentially halve the base of the pyramid to be
a triangle. We denote the resulting point set by S2 = {v′

1, v
′
2, v3, v4, v5} ⊂ S. Note

that v′
2 and v3 are rather close together. As the triangle v3, v4, v5 lies above the origin,

the convex hull of S2 still contains the origin in its interior, see again Fig. 7. Moreover,
the volume of the convex hull of S2 converges to 1/3 for ε → 0, and thus towards half
of the volume of the convex hull of S1.

So together these two polyhedra constitute an example which shows that Theorem 1
can not be generalized to higher dimensions: S is a set of five antipodal pairs of points
on the surface of the 3-dimensional unit sphere such that the convex hull of S1 does
not contain the origin, while the convex hull of S2 does. But in the limit the volume of
the convex hull of S1 becomes twice as large as the volume of the convex hull of S2.

It is straight forward to observe that this example can be generalized to any
dimension d ≥ 4. There we have 2d − 1 antipodal pairs of points, where we set
δ = √

1 − (d − 1)ε2 and every point has one coordinate at ±δ and the remaining
coordinates at ±ε, analogous to the 3-dimensional case. For d − 1 of the coordinate
axes two such pairs are “aligned” as in the 3-dimensional example, and for the last
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axis there is only one such pair. The resulting polytope does not contain the origin.
Flipping the vertex of the singular pair and one vertex for all but one aligned pairs
results in a polytope which contains the origin, but has a volume of only 1/2d−2 of
the first polytope.

We call a d-dimensional antipodal polytope thick if the number of vertices in any
half-space defined by a hyperplane through the origin contains at least

⌈ n−d
2

⌉
points of

the polytope. Note that in the two dimensional case, a thick antipodal polygon satisfies
that at least

⌈ n−2
2

⌉
of its vertices lie in both open half-planes defined by any given line

through the origin.1

It is not clear that for a given antipodal set in IRd an antipodal thick polytope
should exist. However, for every n ≥ d, there exist antipodal sets in IRd that admit an
antipodal thick polytope. For the proof of this remark we use the following Lemma.

Lemma 6 (Gale’s Lemma [8]). For every d ≥ 0 and every k ≥ 1, there exists a set
X ⊂ Sd of 2k + d points such that every open hemisphere of Sd contains at least k
points of X.

From the proof of Gale’s Lemma in [9] (page 64), it follows that the provided set
does not contain an antipodal pair of points. Recall that Sd−1 ⊂ IRd ; let X be the
subset of Sd−1 provided by Gale’s Lemma for k = ⌈ n−d+1

2

⌉
. If necessary remove a

point from X so that X consists of exactly n points. Let X ′ be the set of antipodal
points of X and set S := X ∪ X ′. Let P be the antipodal polytope on S with X as a
vertex set. It follows from Gale’s Lemma that P is thick.

5 Open Problems

Let us assume that we are given a circular lattice with an antipodal set of 2n points
(evenly spaced) and we would like to compute an extremal antipodal k-polygon with
k < n vertices. This problem is significantly different to the considered case k = n.
Recall that, for k = n, the linear algorithms proposed in this paper are strongly based on
the simple characterization for the extremal antipodal polygons. Namely, the minimal
thin antipodal polygon has consecutive vertices and the thick antipodal polygon has
an alternating configuration. It is not difficult to come up with examples for which that
characterization does not hold in the general case k < n. On the other hand, finding the
extremal antipodal (n−1)-polygon, called (2n, n−1)-problem for short, can be easily
reduced to solve O(n) times the (2(n − 1), n − 1)-problem. To see this, observe that
in the (2n, n − 1)-problem an antipodal pair is not selected and can thus be removed
from the input. This approach gives a simple O(nn−k+1) time algorithm for solving
the general (2n, k)-problem. This leaves the open question if the (2n, k)-problem can
be solve in o(nk) time.

Instead of area, it is also interesting to consider other extremal measures, like
perimeter or the sum of inter-point distances. Finally, for higher dimensions, we leave
the existence of thick polytopes for arbitrary antipodal point sets as an open problem.

1 This property is not “if and only if” because there also exist non-thick polygons fulfilling the property.
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For future research it is also interesting to consider alternative definitions of thin and
thick antipodal polytopes for higher dimensions.
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