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Abstract We introduce a stochastic individual model for the spatial behavior of an
animal population of dispersive and competitive species, considering various kinds of
biological effects, such as heterogeneity of environmental conditions, mutual attrac-
tive or repulsive interactions between individuals or competition between them for
resources. As a consequence of the study of the large population limit, global exis-
tence of a nonnegative weak solution to a multidimensional parabolic strongly coupled
model of competing species is proved. The main new feature of the corresponding
integro-differential equation is the nonlocal nonlinearity appearing in the diffusion
terms, which may depend on the spatial densities of all population types. Moreover,
the diffusion matrix is generally not strictly positive definite and the cross-diffusion
effect allows for influences growing linearly with the subpopulations’ sizes. We prove
uniqueness of the finite measure-valued solution and give conditions under which the
solution takes values in a functional space. We then make the competition kernels
converge to a Dirac measure and obtain the existence of a solution to a locally com-
petitive version of the previous equation. The techniques are essentially based on the
underlying stochastic flow related to the dispersive part of the dynamics, and the use
of suitable dual distances in the space of finite measures.
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830 J. Fontbona, S. Méléard

1 Introduction

The spatial structure of a biological community is a fundamental subject in mathe-
matical ecology and in particular the spatial distribution formed by dispersive motions
of populations with intra- and inter- specific interactions (see e.g. Keller and Segel
1970; Nisbet and Gurney 1975a,b; Mimura and Murray 1978; Mimura and Yamaguti
1982; Shigesada et al. 1979). In the present work, the spatial behavior of a popula-
tion of competitive species is studied. The dispersive motion of an individual in its
environment is modeled as the result of various kinds of biological effects, such as
heterogeneity of environmental conditions, mutual attractive or repulsive interactions
with other individuals and competition for resources. These different effects will be
modeled by local interaction kernels depending on the type of the individual and acting
either on its spatial parameters or on its ecological parameters.

The population is composed of M sub-populations (species) characterized by differ-
ent phenotypes. Each species has its own spatial and ecological dynamics depending
on the spatial and genetic characteristics of the whole population. We assume that the
motion of each individual (of a given type) is driven by a diffusion process on R

d

whose coefficients depend on the spatial repartition of the different species around.
Moreover, the individuals may reproduce and die, either from their natural death or
because of the competition pressure for sharing resources. Each species has its own
growth rate. The competition pressure of an individual of type j on an individual of
type i depends both on the location of these individuals and on their type. It is called
intra-specific competition if i = j , and inter-specific in case i �= j . It is not assumed
to be symmetric in (i, j).

We describe the stochastic dynamics of such a population by an individual-based
model. Each individual is characterized by its type and its spatial location. Because
of the births and deaths of individuals, the population doesn’t live in a vector space
of positions and we model its dynamics as a Markov process with values in the M-
dimensional vector space of R

d -point measures. We introduce the charge capacity
parameter K describing the order of the population size. To be consistent, the indi-
viduals are weighted by 1

K . The existence of the population process is obtained by
standard arguments. Then, large population asymptotics is studied. We show that when
K tends to infinity, the population process converges to a weak solution of the follow-
ing nonlocal (in trait and space) nonlinear parabolic cross-diffusion-reaction system:
for all i ∈ {1, . . . , M},

∂t u
i =

d∑

k,l=1

∂2
xk xl

(
ai

k,l(., Gi1 ∗ u1, . . . , Gi M ∗ uM ) ui
)

−
d∑

k=1

∂xk

(
bi

k(., Hi1 ∗ u1, · · · , Hi M ∗ uM ) ui
)
+
⎛

⎝ri −
M∑

j=1

Ci j ∗ u j

⎞

⎠ ui . (1)

Here, ui (t, .) denotes in general a finite measure on R
d for any t ≥ 0, and

(Gi j , Hi j , Ci j )1≤i, j≤M are 3M2 nonnegative and smooth L1-functions defined from
R

d to R+ that model the spatial interactions between individuals of type i and j .
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Non local Lotka-Volterra system 831

By means of this convergence result, we get a theorem of existence of a weak
solution to Eq. (1). Next we prove the uniqueness of such a solution and we give two
sets of assumptions under which the measure solution has a density with respect to the
Lebesgue measure, thus establishing the existence of a function solution to (1). The
tools we use to establish this and the forthcoming results are probabilistic ones. They
mainly rely on the stochastic flow related to the dispersive part of the equation and its
inverse flow (as function of the initial position).

In the model leading to Eq. (1), the competition between two individuals is described
as a function of the distance between them. This biological assumption is clear: the
closer the animals are, the stronger is the fight to share resources. An extreme situa-
tion is the local case, when individuals only compete if they stay at the same place.
Mathematically speaking, it means that for i, j ∈ {1, . . . , M} and for x ∈ R

d , the
competition kernel has the form

Ci j (x) = ci j Cε(x),

where ci j are positive constant numbers and the measures Cε(x − y)dy weakly con-
verge to the Dirac measure at x when the range of interaction ε tends to 0 (for instance,
Cε may be the centered Gaussian density with variance ε). We study the convergence
of the solution uε of (1) when ε tends to zero. We show that uε converges to the
unique solution u of the spatially nonlocal nonlinear cross-diffusion equation: for all
i ∈ {1, . . . , M},

∂t u
i =

d∑

k,l=1

∂2
xk xl

(
ai

k,l(., Gi1 ∗ u1, . . . , Gi M ∗ uM ) ui
)

−
d∑

k=1

∂xk

(
bi

k(., Hi1 ∗ u1, . . . , Hi M ∗ uM ) ui
)
+
⎛

⎝ri −
M∑

j=1

ci j u j

⎞

⎠ ui . (2)

Ecological models featuring space displacements have been studied by Champagnat
and Méléard (2007), Arnold et al. (2012) and Bouin et al. (2012), but the diffusion
coefficients therein only depend on the type of each individual, and not on the spatial
distribution of the other animals alive. To our knowledge, the nonlocal nonlinear
Eq. (1) and (2) have never been studied in such generality, despite the fact that they
naturally arise from the biological motivation. A recent paper on conservative relaxed
cross-diffusion Lepoutre et al. (2012) addresses well posedness issues in a model with
nonlocal interaction in the diffusion terms. Nonlocal reaction terms have otherwise
been considered by Coville and Dupaigne (2005), Berestycki et al. (2009), Genieys
et al. (2006) and in references therein. Our model incorporates those two features
simultaneously.

The dependance of the diffusion coefficient on the individual density is indeed the
main new difficulty we deal with in this paper. It is the reason why the introduction of
different techniques from those developed in the aforementioned works is needed.

Cross-diffusion models with local spatial interaction and local competition have
excited the scientific community, see for example the works of Mimura and Murray
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(1978), Mimura and Kawasaki (1980), Lou et al. (2000), Chen and Jüngel (2004), Chen
and Jüngel (2004, 2006) and more recently in a work by Desvillettes et al. (2013). The
prototypical equation in this situation has the form

∂t u
1 = d1�

(
(a1 + b12u2)u1

)
+ (r1 − c11u1 − c12u2)u1,

∂t u
2 = d2�

(
(a2 + b21u2)u1

)
+ (r2 − c21u1 − c22u2)u2, (3)

with boundary conditions on a given bounded smooth domain of R
d . Although global

existence results were obtained by Chen and Jüngel (2004, 2006) for such equation,
their techniques do not seem to be useful in more general situations. In that direction,
an interesting but highly difficult open challenge is to establish the convergence of
the system (2) to systems of the type of (3) when the kernels G and H tend to Dirac
measures.

2 The individual-based model

2.1 Assumptions

Let us denote by S+(Rd) the space of symmetric nonnegative diffusion matrices and
define for i = 1, . . . , M the measurable functions

ai : R
d × R

M �→ S+(Rd),

bi : R
d × R

M �→ R
d ,

ri : R
d �→ R+.

We denote by σ i the d × d−matrix such that ai = σ i (σ i )∗. We will assume
throughout this work the following hypotheses:

(H):

1. There is a positive constant L such that for any x, x ′ ∈ R
d and any v j , v

′
j ∈ R+( j ∈

{1, . . . , M}),

|σ i (x, v1, . . . , vM ) − σ i (x ′, v′
1, . . . , v

′
M )| + |bi (x, v1, . . . , vM )

−bi (x ′, v′
1, . . . , v

′
M )| ≤ L

⎛

⎝|x − x ′| +
M∑

j=1

|v j − v′
j |
⎞

⎠ .

2. The functions (Gi j , Hi j , Ci j )1≤i, j≤M defined from R
d to R+ are assumed to be

nonnegative, bounded and Lipschitz continuous.
3. The nonnegative functions ri are assumed to be bounded. We fix an upper bound

denoted by r̄i .

For later use, we also introduce some notation:
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Non local Lotka-Volterra system 833

• For k ≥ 1 and α ∈ (0, 1), we denote by Ck,α(E) the space of k times differentiable
functions on E = R

d or E = R
d × R

M+ which have bounded derivatives up to the
k−th order and a globally α-Holder derivative of order k. Notice that functions in
Ck,α(E) are not required to be bounded.

• The subspace of bounded functions in Ck,α(E) is denoted by Ck,α
b (E).

• The notation Ck(E) and Ck
b (E) is defined analogously, without the Holder continuity

requirement.

2.2 The diffusive M-type stochastic population dynamics

Let us now describe the dynamics of the population we are interested in. We take into
account the births and deaths of all individuals and their motion during their life. The
population dynamics will be modeled by a point measure-valued Markov processes.
Let us fix the charge capacity K ∈ N

∗ and define

MK =
{

1

K

N∑

n=1

δxn , xn ∈ R
d , N ∈ N

}

as the space of weighted finite point measures on R
d . The stochastic population process

(νK
t )t≥0 will take values in (MK )M . The i th coordinate of this process describes the

spatial configuration of the subpopulation of type i . Thus,

νK
t = (ν

1,K
t , . . . , ν

M,K
t ) = (ν

i,K
t )1≤i≤M

with

ν
1,K
t = 1

K

N 1
t∑

n=1

δXn,1
t

; · · · ; ν
M,K
t = 1

K

N M
t∑

n=1

δXn,M
t

.

where for any i ∈ {1, . . . , M}, N i
t ∈ N stands for the number of living individuals of

type i at time t and X1,i
t , . . . , X

Ni
t ,i

t describe their positions (in R
d ).

The dynamics of the population can be roughly summarized as follows:
The initial population is characterized by the measures (νi

0)1≤i≤M ∈ (MK )M at
time t = 0. Any individual of type i located at x ∈ R

d at time t has two indepen-
dent exponential clocks: a “clonal reproduction” clock with parameter ri (x) and a
“mortality” clock with parameter

∑M
j=1 Ci j ∗ ν

j,K
t (x). If the reproduction clock of

an individual rings, then it produces at the same location an individual of same type
as itself. If its mortality clock rings, then the individual disappears. The death rate of
an i th type individual depends on the positions of the other individuals through the
kernel Ci j , which describes how species j acts on i in the competition for resources.

During its life, an individual will move as a diffusion process whose coefficients
depend on all individual positions. The motion of an individual with type i is a diffusion
process with diffusion matrix ai (., Gi1 ∗ ν1,K , . . . , Gi M ∗ νM,K ) and drift vector
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834 J. Fontbona, S. Méléard

bi (., Hi1 ∗ ν1,K , . . . , Hi M ∗ νM,K ). The coefficients take into account the effects due
to the nonhomogeneous spatial densities of the different species. Indeed, a species
can be attracted or repulsed by the other ones and the concentration of species may
increase or decrease the fluctuations in the dynamics.

The vector-measure valued process (νt )t≥0 is a Markov process which can be
rigorously expressed as solution of a stochastic differential equation driven by
d-dimensional Brownian motions (Bn,i )1≤i≤M,n∈N∗ and Poisson point measures
(Qi (dt, dn, dθ))1≤i≤M on R+ × N

∗ × R+ with intensity dt
∑

n∈N∗ δn dθ , all inde-
pendent and independent of the initial condition (ν1

0 , . . . , νM
0 ). The measure Qi sto-

chastically dominates the jump process which describes the births and deaths in the
i−th population. The Brownian motions drive the spatial behavior of the individuals
alive. By using Itô’s formula, for C2(Rd)-functions fi , i = 1, . . . , M , we get

〈νi,K
t , fi 〉 = 1

K

K 〈νi
t ,1〉∑

n=1

fi (Xn,i
t )

= 〈νi
0, fi 〉 +

√
2

K

t∫

0

K 〈νi
s ,1〉∑

n=1

∑

k,l

σ i
k,l(Xn,i

s , Gi1 ∗ ν1,K
s (Xn,i

s ), · · · , Gi M

∗ νM,K
s (Xn,i

s )))∂xk fi (Xn,i
s ) d Bn,i

l (s)

+
t∫

0

〈
νi,K

s ,
∑

k,l

ai
k,l(·, Gi1 ∗ ν1,K

s , . . . , Gi M ∗ νM,K
s )) ∂2

xk xl
fi

+
∑

k

bi
k(·, Hi1 ∗ ν1,K

s , . . . , Hi M ∗ νM,K
s ) ∂xk fi

〉
ds

+ 1

K

∫

[0,t]×N×R+

fi (Xn,i
s−)

(
10<θ≤ri (Xn,i

s−)
−1ri (Xn,i

s−)<θ≤ri (Xn,i
s−)+∑M

j=1 Ci j ∗ν j,K (Xn,i
s−)

)

×1n≤K 〈νi
s−,1〉Qi (ds, dn, dθ).

The law of (νt )t is characterized by its infinitesimal generator L which captures the
dynamics described above. L is the sum of a birth and death (ecological) part Le

and a diffusion part Ld . The generator Le is defined for bounded and measurable
functions φ from (MK )M into R. Let us denote by εi the i th unit vector of R

M . For

ν = (νi )1≤i≤M = ( 1
K

∑Ni

n=1 δxn,i )1≤i≤M , we define

Leφ(ν) =
M∑

i=1

ri (xn,i )

Ni∑

n=1

φ

((
ν + 1

K
δxn,i .εi

)
− φ(ν)

)

+
M∑

i=1

Ni∑

n=1

⎛

⎝
M∑

j=1

Ci j ∗ ν j (xn,i )

⎞

⎠
(

φ

(
ν − 1

K
δxn,i .εi

)
− φ(ν)

)
. (4)
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Non local Lotka-Volterra system 835

In order to define the diffusion part of the generator we need to introduce a standard
class of cylindrical functions generating the set of bounded and measurable functions
from (MK )M into R. Let us consider F ∈ C2

b (RM ) and for i ∈ {1, . . . , M}, we
introduce fi ∈ C2(Rd) and define

F f (ν) = F(〈ν1, f1〉, . . . , 〈νM , fM 〉). (5)

The diffusive part Ld of the generator can easily be deduced from Itô’s formula. Its
form is similar to the one obtained in the whole space for branching diffusing processes
Dawson (1993) and is given by

Ld F f (ν) =
M∑

i=1

⎛

⎝
d∑

k,l=1

〈
νi ,

{
ai

kl(·, Gi1 ∗ νi , . . . , Gi M ∗ νM ) ∂2
xk xl

fi

+
d∑

k=1

bi
k(·, Hi1 ∗ νi , . . . , Hi M ∗ νM ) ∂xk fi

}〉
F ′

i (〈ν1, f1〉, . . . , 〈νM , fM 〉)

+
d∑

k,l=1

〈
νi , ai

kl(·, Gi1 ∗ νi , . . . , Gi M ∗ νM ) ∂xl fi ∂xk fi

〉

× F ′′
i i (〈ν1, f1〉, . . . , 〈νM , fM 〉)

⎞

⎠ . (6)

Hence, we have

L F f (ν) = Le F f (ν) + Ld F f (ν). (7)

3 Large population approximation and non local Lotka-Volterra cross diffusion
system

3.1 Existence and uniqueness of weak measure solutions

We now state a large population approximation for the previous M species model by
making the charge capacity K tend to infinity. This result in particular implies the
existence of weak solutions to a non local cross-diffusion system of nonlinear partial
differential equations.

We denote by M the space of finite measures in R
d endowed the weak topology.

Theorem 3.1 Assume that for some p ≥ 2, supK E(〈νi,K
0 , 1〉p) < +∞ for any

i = 1, . . . , M. Assume also (H) and moreover that the sequence of finite measures
(ν

1,K
0 , . . . , ν

M,K
0 ) converges in law as K goes to infinity to the deterministic finite mea-

sures (ξ1
0 , . . . , ξ M

0 ) . Then, when K tends to infinity, the sequence (ν1,K
. , . . . , νM,K

. )

converges in law in D([0, T ],MM ) to the unique deterministic continuous finite
measure-valued function ξ = (ξ1, . . . , ξ M ) weak solution of the following cross-
diffusion system: for all i = 1, . . . , M,
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836 J. Fontbona, S. Méléard

〈ξ i
t , f i

t 〉 = 〈ξ i
0, f i

0 〉 +
t∫

0

∫ ⎧
⎨

⎩
∑

k,l

ai
kl(·, Gi1 ∗ ξ1

t , . . . , Gi M ∗ ξ M
t ) ∂2

xk xl
f i
s

+
∑

k

bi
k(·, Hi1 ∗ ξ1

t , . . . , Hi M ∗ ξ M
t ) ∂xk f i

s

+
⎛

⎝ri −
M∑

j=1

Ci j ∗ ξ
j

s

⎞

⎠ f i
s + ∂s f i

s

⎫
⎬

⎭ (x) ξ i
s (dx)ds (8)

for every bounded continuous function (t, x) �→ f i
t (x) with continuous bounded

derivatives up to the first order in t ∈ [0, T ] and up to second order in x ∈ R
d .

Remark 3.2 Observe that in contrast to the models of cross-diffusion introduced by
Shigesada et al. (1979) or Mimura and Kawasaki (1980), Eq. (8) allows for long
range interaction in the coefficients of spatial diffusion. For example, taking Gi j =
Hi j = 1, the spatial behavior of individuals of type i depend on the total mass of the
subspecies j . It also covers some cases where the diffusion matrix might vanish , e.g.
ai (x, v1, . . . , vM ) = Id2

i (
∑M

j=1 v j ) with i : [0,∞] → R+ a Lipschitz continuous
function vanishing at 0 and Id the identity matrix.

Remark 3.3 Notice that a solution to (8) satisfies supt∈[0,T ] ‖ξ i
t ‖T V < er̄i T ‖ξ i

0‖T V

for i = 1, . . . , M , as is readily seen by taking f i = 1 and using the non negativity of
the functions Ci j and Gronwall’s lemma.

The proof is decomposed in several steps: propagation of moments of the total
mass, uniform tightness of the laws of (ν1,K

. , . . . , νM,K
. ), identification of the limit as

solution of (8) and uniqueness of solutions to that equation. The first three steps are
standard and can be adapted from the arguments of Fournier and Méléard (2004) and
of Champagnat and Méléard (2007), with some modifications owed to the unbounded
diffusion coefficients in the expression (6), which can be dealt with in a similar way as
with the competition terms in those works, thanks to the uniform control of moments
of the total mass.

The proof of uniqueness of weak measure solutions to (8) requires new techniques
and arguments in order to deal with the interaction in the diffusion terms. It is estab-
lished in next proposition where, for notational simplicity, we will deal only with the
case M = 2. All arguments easily extend to the general case.

Proposition 3.4 Let ξ = (ξ1, ξ2) and ξ̃ = (ξ̃1, ξ̃2) be two solutions of the system (8)
in [0, T ] with M = 2. Then (ξ1

t , ξ2
t ) = (ξ̃1

t , ξ̃2
t ) for all t ∈ [0, T ].

We will need to use a distance that is weaker than to total variation one but better
adapted to perturbations in the diffusion coefficients. Denote by LB(Rd) the space of
Lipschitz continuous and bounded functions on R

d , and by ‖ · ‖LB or simply ‖ · ‖ the
corresponding norm,

‖ϕ‖LB := sup
x �=y

|ϕ(x) − ϕ(y)|
|x − y| + sup

x
|ϕ(x)|.
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Non local Lotka-Volterra system 837

We endow M(Rd) with the dual norm with respect to LB(Rd),

‖η‖LB∗ := sup
‖ϕ‖LB≤1

〈η, ϕ〉, η ∈ M(Rd).

Given a solution (ξ1
t , . . . , ξ M

t )t∈[0,T ] to (8), we set for i = 1, . . . , M ,

σ(i, t, x) = σ i (x, Gi1 ∗ ξ1
t (x), . . . , Gi M ∗ ξ M

t (x)),

b(i, t, x) = bi (x, Hi1 ∗ ξ1
t (x), . . . , Hi M ∗ ξ M

t (x)). (9)

Remark 3.5 From assumption (H) i),ii) and Remark 3.3, the functions in (9) are
Lipschitz functions of x ∈ R

d , uniformly in [0, T ].
We introduce next the family of SDEs associated with the coefficients (9), and the

corresponding transition semigroups. For each x ∈ R
d and s ∈ [0, T ] consider the

unique (strong) solution

Xi
s,t (x) = (Xi,1

s,t (x), . . . , Xi,d
s,t (x)) t ∈ [s, T ]

of the stochastic differential equation in R
d ,

Xi
s,t (x) = x +

t∫

s

σ(i, r, Xi
s,r (x))d Bi

r +
t∫

s

b(i, r, Xi
s,r (x))dr, t ∈ [s, T ] (10)

where Bi = (Bi,q)d
q=1 is a standard d-dimensional Brownian motion in a given

probability space. The fact that for each s the mapping (t, x) �→ Xi
s,t (x) is measurable

can be classically deduced from the properties of functions σ(i, t, x) and b(i, t, x)

noted in Remark 3.5. The three parameter process (s, t, x) �→ Xi
s,t (x) is called the

stochastic flow associated with the coefficients σ(i, t, x) and b(i, t, x). Finer properties
of this processes will be recalled and used later.

Given a second solution (ξ̃1
t , ξ̃2

t )t∈[0,T ] of (8), define analogously coefficients

σ̃ (i, t, x) and b̃(i, t, x) in terms of (ξ̃1, ξ̃2), and the processes X̃ i
s,t (x) given for i = 1, 2

by the solution to the SDEs

X̃ i
s,t (x) = x +

t∫

s

σ̃ (i, r, X̃ i
s,r (x))d Bi

r +
t∫

s

b̃(i, r, X̃ i
s,r (x))dr,

driven by the same Brownian motions Bi as the processes Xi
s,t (x) in (10).

The proof of Proposition 3.4 will rely on stability properties of the non homoge-
nous transition semigroups of Xi

s,t (x) and X̃ i
s,t (x), which we respectively denote by

Pi
s,t (x, dy) and P̃i

s,t (x, dy). Below and in all the sequel, C > 0 denotes a constant
that may change from line to line.
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838 J. Fontbona, S. Méléard

Lemma 3.6 For all T > 0, ϕ ∈ LB(Rd), 0 ≤ s ≤ t ≤ T , i = 1, 2,

a) ‖Pi
s,tϕ‖2

LB ≤ C(ξ1, ξ2, T )‖ϕ‖2
LB and ‖P̃i

s,tϕ‖2 ≤ C(ξ̃1, ξ̃2, T )‖ϕ‖2
LB .

b) For all x ∈ R
d ,

|Pi
s,tϕ(x) − P̃i

s,tϕ(x)|2

≤ C ′(ξ1, ξ2, ξ̃1, ξ̃2, T )‖ϕ‖2
LB

t∫

s

‖ξ1
r − ξ̃1

r ‖2
LB∗ + ‖ξ2

r − ξ̃2
r ‖2

LB∗dr

The constants depend on ξ i or ξ̃ i only through supt∈[0,T ] ‖ξ i
t ‖TV and supt∈[0,T ] ‖ξ̃ i

t ‖TV ,
and can be chosen to depend only on er̄i T ‖ξ i

0‖T V .

Proof a) Is enough to control the Lipschitz constants of the function Pi
s,tϕ or P̃i

s,tϕ.
We have, by Burkholder-Davis-Gundy inequality

E |Xi
s,t (x) − Xi

s,t (y)|2 ≤ C |x − y|2 + C

t∫

s

E|σ(i, r, Xi
s,r (x)) − σ(i, r, Xi

s,r (y))|2dr

+C

t∫

s

E|b(i, r, Xi
s,r (x)) − b(i, r, Xi

s,r (y))|2dr

≤ C |x − y|2 + C

t∫

s

E|Xi
s,r (x) − Xi

s,r (y)|2dr

for all s ≤ t . The above constants depend on bounds for the Lipschitz constants of
the coefficients σ i , bi (as functions of the position), on Lipschitz constants of the
Kernels G1 j and H1 j and on supt∈[0,T ] ‖ξ i

t ‖T V and supt∈[0,T ] ‖ξ̃ i
t ‖T V . The latter

suprema are in turn controlled by er̄i T ‖ξ i
0‖T V by Remark 3.3. By Gronwall’s lemma,

E|Xi
s,t (x) − Xi

s,t (y)|2 ≤ C |x − y|2 which easily yields

|Pi
s,tϕ(x) − Pi

s,tϕ(y)|2 ≤ C‖ϕ‖2
LB|x − y|2

as required. b) For notational simplicity we consider first the case b = 0. Using similar
types of inequalities as before, we have for all s ≤ t ≤ T ,

E|Xi
s,t (x) − X̃ i

s,t (x)|2 ≤ C ′
⎛

⎝
t∫

s

E|Xi
s,r (x) − X̃ i

s,r (x)|2 + E|Gi1 ∗ ξ1(Xi
s,r (x))

− Gi1 ∗ ξ̃1(X̃ i
s,r (x))|2 + E|Gi2 ∗ ξ2(Xi

s,r (x)) − Gi2 ∗ ξ̃2(X̃ i
s,r (x))|2 dr

⎞

⎠
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≤ C ′′
⎛

⎝
t∫

s

E|Xi
s,r (x) − X̃ i

s,r (x)|2 + E

∣∣∣∣
∫

Gi1(Xi
s,r (x) − y)(ξ1

s (dy) − ξ̃1(dy))

∣∣∣∣
2

+ E

∣∣∣∣
∫

Gi2(Xi
s,r (x) − y)(ξ2

s (dy) − ξ̃2(dy))

∣∣∣∣
2

dr

⎞

⎠

Since the functions y �→ Gi j (Xi
s(x) − y) are uniformly Lipschitz continuous, we

deduce with Gronwall’s lemma that

E(|Xi
s,t (x) − X̃ i

s,t (x)|2) ≤ C

t∫

s

‖ξ1
r − ξ̃1

r ‖2
LB∗ + ‖ξ2

r − ξ̃2
r ‖2

LB∗dr

which allows us to easily conclude. The case b �= 0 is similar with additional terms
involving the kernels Hi j . ��
Proof of Proposition 3.4 Take ϕ ∈ LB(Rd) with ‖ϕ‖ ≤ 1. By the Feynmann-Kac
formula (e.g. Karatzas and Shreve 1991), the function f (t)(s, x) = E(ϕ(Xi

s,t (x))) =
Pi

s,tϕ(x) is the unique classic (bounded) solution of the linear parabolic problem

∂s f (t)(s, x) + a1
kl(·, Gi1 ∗ ξ1

t , Gi2 ∗ ξ2
t )∂xk xl f (t)(s, x)

+ b1
k (·, Hi1 ∗ ξ1

t , Hi2 ∗ ξ2
t )∂xk f (t)(s, x) = 0

with final condition at time s = t equal to ϕ(x). Replacing f (t) in the first equation
in (8), we see that ξ1 satisfies

〈ξ1
t , ϕ〉 = 〈ξ1

0 , P1
0,tϕ〉

+
t∫

0

∫ (
r1(x) − C11 ∗ ξ1

s (x) − C12 ∗ ξ2
s (x)

)
P1

s,tϕ(x)ξ1
s (dx)ds, (11)

and, similarly,

〈ξ̃1
t , ϕ〉 = 〈ξ1

0 , P̃1
0,tϕ〉

+
t∫

0

∫ (
r1(x) − C11 ∗ ξ̃1

s (x) − C12 ∗ ξ̃2
s (x)

)
P̃1

s,tϕ(x)ξ̃1
s (dx)ds.

Consequently,

〈ξ1
t − ξ̃1

t , ϕ〉2 ≤ 〈ξ1
0 , (P1

0,t − P̃1
0,t )ϕ〉2

+C

t∫

0

{[∫
(P1

s,t − P̃1
s,t )ϕ(x)ξ1

s (dx)

]2

+
[∫

P̃1
s,tϕ(x)(ξ1

s (dx) − ξ̃1
s (dx))

]2
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+
[∫

C11 ∗ (ξ1
s − ξ̃1

s )(x)P1
s,tϕ(x)ξ1

s (dx)

]2

+
[∫

C11 ∗ ξ̃1
s (x)(P1

s,tϕ(x) − P̃1
s,tϕ(x))ξ1

s (dx)

]2

+
[∫

C11 ∗ ξ̃1
s (x)P̃1

s,tϕ(x)(ξ1
s (dx) − ξ̃1

s (dx))

]2

+
[∫

C12 ∗ (ξ2
s − ξ̃2

s )(x)P1
s,tϕ(x)ξ1

s (dx)

]2

+
[∫

C12 ∗ ξ̃2
s (x)(P1

s,tϕ(x) − P̃1
s,tϕ(x))ξ1

s (dx)

]2

+
[∫

C12 ∗ ξ̃2
s (x)P̃1

s,tϕ(x)(ξ1
s (dx) − ξ̃1

s (dx))

]2 }
ds

≤ C sup
y

|(P1
0,t − P̃1

0,t )ϕ(y)|2+C

t∫

0

{
sup

y
|(P1

s,t − P̃1
s,t )ϕ(y)|2+〈ξ1

s −ξ̃1
s , P̃1

s,tϕ〉2

+sup
y

|C11 ∗ (ξ1
s − ξ̃1

s )(y)|2+
[∫

C11 ∗ ξ̃1
s (x)P̃1

s,tϕ(x)(ξ1
s (dx)−ξ̃1

s (dx))

]2

+ sup
y

|C12 ∗ (ξ2
s −ξ̃2

s )(y)|2+
[∫

C12 ∗ ξ̃2
s (x)P̃1

s,tϕ(x)(ξ1
s (dx)−ξ̃1

s (dx))

]2 }
ds,

for constants depending on supt∈[0,T ] ‖ξ i
t ‖2

T V , supt∈[0,T ] ‖ξ̃ i
t ‖2

T V and T . The functions
x �→ C1 j (x − y) are Lipschitz continuous uniformly in y and, by Lemma 3.6 a),
C1 j ∗ ξ̃

j
s (x)P̃1

s,tϕ(x) are Lipschitz continuous bounded functions, uniformly in s, t ∈
[0, T ]. Together with Lemma 3.6 b), this entails

〈ξ1
t − ξ̃1

t , ϕ〉2 ≤ C

t∫

0

∑

i=1,2

‖ξ i
s − ξ̃ i

s ‖2
LB∗ds,

and we can analogously obtain a similar bound for 〈ξ2
t − ξ̃2

t , ϕ〉2. Taking sup‖ϕ‖≤1,
summing the two obtained inequalities and using Gronwall’s lemma we conclude that

‖ξ i
t − ξ̃ i

t ‖2
LB∗ = 0

for all t ∈ [0, T ] and i = 1, 2 and thus uniqueness for System (8). ��

3.2 Regularity of the stochastic flow and function solutions

We next show under two types of suitable assumptions on the coefficients and the
initial condition that the solution ξ i

t (dx) has a density ξ i
t (x) with respect to Lebesgue

measure for i = 1, . . . , M .
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Lemma 3.7 Let (ξ1
t , . . . , ξ M

t )t∈[0,T ] be the measure solution of (8). Then, for all
t ∈ [0, T ],

ξ i
t ≤ er̄i T mi

t ,

where mi
t is the finite measure defined by

〈mi
t , ϕ〉 := E

⎛

⎜⎝
∫

Rd

ϕ(Xi
0,t (x))ξ i

0(dx)

⎞

⎟⎠ (12)

for any bounded function ϕ.

Proof We write the proof for M = 2 and i = 1, and omit for notational simplicity the
superscript 1 in the flow X1

s,t (x). Taking in the first equation in (8) the function

f (t)(s, x) := E

⎛

⎝ϕ(Xs,t (x)) exp

⎧
⎨

⎩

t∫

s

r1(Xs,r (x)) − C11 ∗ ξ1
r (Xs,r (x))

− C12 ∗ ξ2
r (Xs,r (x))dr

⎫
⎬

⎭

⎞

⎠ ,

which is by the Feynman-Kac formula (see Karatzas and Shreve 1991) the unique
classic (bounded) solution of the parabolic problem

0 = ∂s f (t)(s, x) + a1
kl(·, Gi1 ∗ ξ1

t , Gi2 ∗ ξ2
t )∂xk xl f (t)(s, x)

+ b1
k (·, Hi1 ∗ ξ1

t , Hi2 ∗ ξ2
t )∂xk f (t)(s, x)

+ (r1(x) − C11 ∗ ξ1
s − C12 ∗ ξ2

s

)
f (t)(s, x)

with final condition at time s = t equal to ϕ(x), we get that

〈ξ1
t , ϕ〉 = E

⎛

⎜⎝
∫

Rd

ϕ(X0,t (x)) exp

⎧
⎨

⎩

t∫

0

r1(X0,r (x))

− C11 ∗ ξ1
r (X0,r (x))−C12 ∗ ξ2

r (X0,r (x))dr

⎫
⎬

⎭ ξ1
0 (dx)

⎞

⎠ (13)

for each continuous bounded function ϕ ≥ 0. This yields 〈ξ1
t , ϕ〉 ≤ er̄1T 〈m1

t , ϕ〉 for
all bounded continuous ϕ. The measure ξ1

t + er̄1T m1
t being regular, for each Borel set

A and ε > 0 we can find a closed set B ⊆ A s.t. 〈ξ1
t − er̄1T m1

t , A\B〉 ≤ ε. Since
the sequence of bounded continuous functions fk(x) = (1 − kd(x, B))∨ 0 pointwise
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converges to 1B as k → ∞, we have 〈ξ1
t − er̄1T m1

t , 1B − fk〉 → 0 by dominated
convergence w.r.t. the positive finite measure |ξ1

t − er̄1T m1
t | . It follows that for k

sufficiently large

〈ξ1
t −er̄1T m1

t , A〉≤〈ξ1
t +m1

t , A\B〉+〈ξ1
t −er̄1T m1

t , 1B − fk〉+〈ξ1
t −er̄1T m1

t , fk〉≤2ε,

that is, 〈ξ1
t , A〉 ≤ er̄1T 〈m1

t , A〉. ��
We immediately deduce from (12) the following

Corollary 3.8 For any initial finite measure (ξ1
0 , . . . , ξ M

0 ) and in the uniform elliptic
case: ∃λi > 0 such that y∗ai (x, v)y ≥ λi |y|2 ∀x, y ∈ R

d , v ∈ R
M+ , the measure

ξ i
t (dx) has a density ξ i

t (x) with respect to Lebesgue measure for all t ∈ (0, T ].
Indeed, in that case, the law of the random variable Xi

0,t (x) has a density with
respect to Lebesgue measure. Lemma 3.7 allows us to conclude.

As pointed out in Remark 3.2, some natural biological examples are not covered
by this ellipticity assumption. We will next provide a finer result covering some non
elliptic cases under additional regularity assumptions. In all the sequel, we assume

(H)′ : Hypothesis (H) holds and moreover

1. σ i (x, v1, . . . , vM ) and bi (x, v1, . . . , vM ) are respectively C2,α(Rd × [0,∞)M )

and C1,α(Rd × [0,∞)M ) for some α ∈ (0, 1).
2. The functions (Gi j )1≤i, j≤M and (Hi j )1≤i, j≤M are respectively of class C2,α

b (Rd)

and C1,α
b (Rd) for some α ∈ (0, 1).

Remark 3.9 Under assumptions (H)′ and by Remark 3.3, σ(i, t, x) and b(i, t, x) in
(9) are respectively C2,α(Rd) and C1,α(Rd) for some α ∈ (0, 1), uniformly in [0, T ].
Proposition 3.10 Assume hypothesis (H)′. If for some type i the measure ξ i

0 has a
density, then ξ i

t has a density for all t ∈ [0, T ].
The proof will require classical regularity properties of stochastic flows stated by

Kunita (1984) and summarized in the next Lemma.

Lemma 3.11 Under assumptions (H)′, the process (s, t, x) �→ Xi
s,t (x) has a contin-

uous version such that, a.s. for each s < t the function (s, t, x) �→ Xi
s,t (x) is a global

diffeomorphism of class C1,β for all β ∈ (0, α).
Moreover, for each (t, y) ∈ [0, T ] × R

d the inverse mappings ηi
s,t (y) :=

(Xi
s,t )

−1(y), 0 ≤ s < t ≤ T , satisfy the stochastic differential equation

ηi
s,t (y) = y −

t∫

s

σ(i, r, ηi
r,t (y))d̂ Bi

r −
t∫

s

b̂(i, r, ηi
r,t (y))dr (14)

where for k ∈ {1, . . . , d}, b̂k(i, r, y) = bk(i, r, y) −∑d
q,l=1 σlq(i, r, y)∂yl σkq(i, r, y)

and d̂ Bi refers to the backward Itô integral with respect to the Brownian motion Bi

(see p. 194 in Kunita 1984).
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Finally, for each (t, y) ∈ [0, T ]×R
d the (invertible) Jacobian matrix ∇yη

i
s,t (y) =

(
∂yl η

i,k
s,t (y)

)d

k,l=1
of ηi

s,t (y) satisfies the system of backward linear stochastic differ-

ential equations:

∂yl η
i,k
s,t (y) = δkl −

d∑

p,q=1

t∫

s

∂x pσkq(i, r, ηi
r,t (y))∂yl η

i,p
r,t (y)d̂ Bi,q

r

−
d∑

p=1

t∫

s

∂x p b̂k(i, r, ηi
r,t (y))∂yl η

i,p
r,t (y)dr. (15)

Proof Thanks to assumption (H)′ and Remark 3.9 we can apply Theorems 3.1 and
6.1 in Ch. II of Kunita (1984). ��
Proof of Proposition 3.10 Let ϕ ≥ 0 be a bounded measurable function in R

d . By the
previous lemma, we can do the change of variable X0,t (x) = y in the integral inside
the expectation in (12), to get

〈mt , ϕ〉 = E

⎛

⎜⎝
∫

Rd

ϕ(y)ξ1
0 (η0,t (y))|det∇η0,t (y)|dy

⎞

⎟⎠ < +∞.

Everything being positive in the above expression, Fubini’s theorem yields that mt has
the (integrable) density y �→ E

[
ξ1

0 (η0,t (y))|det∇η0,t (y)|] with respect to Lebesgue
measure, and we conclude by Lemma 3.7. ��

4 Convergence to local competition

Our aim in this section is to describe some situations where the interaction range of
the competition is much smaller than the one of spatial diffusion. For example one
may assume that animals interact for sharing resources as they are on the same place
but diffuse depending on the densities of the different species staying around them in
a larger neighbourhood. To model such situation, we suppose now that Ci j = ci jγε

for ci j ≥ 0 some fixed constant and γε a suitable smooth approximation of the Dirac
mass as ε → 0. Our goal is to show that, under additional regularity assumptions,
the (unique) solution ξ = (ξ1, . . . , ξ M ) of Eq. (8) given by Theorem 3.1 for such
competition coefficients converges, as ε → 0, to a weak function solution of the
system of Eq. (2).

In what follows, stronger conditions on the coefficients will be enforced, namely:
(H)′′ : Hypothesis (H) holds and moreover

1. σ i (x, v1, . . . , vM ) and bi (x, v1, . . . , vM ) are respectively C3,α(Rd × [0,∞)M )

and C2,α(Rd × [0,∞)M ) for some α ∈ (0, 1). Moreover, there exists a constant
CM > 0 such that for all x ∈ R

d and v = (v1, . . . , vM ) ∈ R
M+ ,

|σ i (x, v1, . . . , vM )| ≤ CM (1 + |v|).
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2. Functions (Gi j )1≤i, j≤M and (Hi j )1≤i, j≤M are respectivelyC3,α(Rd) andC2,α(Rd)

for some α ∈ (0, 1). Moreover, functions (Ci j )1≤i, j≤M are integrable in R
d and

have bounded derivatives.
3. Functions ri have bounded derivatives.

Remark 4.1 Under assumptions (H)′′, functions σ(i, t, x) and b(i, t, x) in (9) are
respectively C3,α

b (Rd) and C2,α(Rd) for some α ∈ (0, 1), uniformly in [0, T ], and
with bounds that do not depend on the kernels Ci j (cf. Remark 3.3). The uniform in
x growth condition in the v variable in (H)′′ i) is needed in the sequel in order that
the coefficients driving the reverse flow (14) be of class C2,α(Rd). Notice nevertheless
that σ i (x, v1, . . . , vM ) might still allow for an unbounded influence of the population
densities (v1, . . . , vM ) on the diffusion terms.

We will next establish

Theorem 4.2 Assume that hypothesis (H)′′ hold, and that the initial measures
(ξ1

0 , . . . , ξ M
0 ) have densities in L1 ∩ L∞ and distributional derivatives in L∞.

Furthermore, assume that Ci j = ci jγε for ci j ≥ 0 some fixed constant and
γε = γ (x/ε)ε−d for some regular function γ ≥ 0 satisfying

∫
Rd γ (x)dx = 1 and∫

Rd |x |γ (x)dx < ∞.
Then, for each T > 0 the unique weak function-solution ξε to Eq. (8) converges

in the space C([0, T ],MM ) (endowed with the uniform topology) at speed ε with
respect to the dual Lipschitz norm, to a solution u = (u1, . . . , uM ) of the non local
cross-diffusion system with local competition:

〈ui
t , f i

t 〉 = 〈ξ i
0, f i

0 〉 +
t∫

0

∫ ⎧
⎨

⎩
∑

k,l

ai
kl(·, Gi1 ∗ u1

t , . . . , Gi M ∗ uM
t ) ∂xk xl f i

s

+
∑

k

bi
k(·, Hi1 ∗ u1

t , . . . , Hi M ∗ uM
t ) ∂xk f i

s

+
⎛

⎝ri −
M∑

j=1

ci j u j
s

⎞

⎠ f i
s + ∂s f i

s

⎫
⎬

⎭ (x) ui
s(x)dxds. (16)

Moreover the function u is the unique function solution of (16) such that

sup
t∈[0,T ]

‖ut‖1 + ‖ut‖∞ + ‖∇ut‖∞ < +∞. (17)

To prove Theorem 4.2, we will extend to a convergence argument some of the
techniques previously used in the uniqueness result. The same dual norm will be used,
along with some additional estimates and technical results:

Lemma 4.3 Under the assumptions of Theorem 4.2, for each t ∈ [0, T ] the functions
(ξε

t )i , i = 1, . . . , M have bounded first order derivatives. Moreover, there exists for
each i a constant Ki > 0 depending on the functions Ci j , j = 1, . . . , M only through
their L1 norms ci j (and not on ε), such that
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max{ sup
t∈[0,T ]

‖(ξε
t )i‖∞, sup

t∈[0,T ]
‖∇(ξε

t )i‖∞} < Ki , ∀ i = 1, . . . M.

This result relies on an enhancement of Lemma 3.11 needing finer properties of sto-
chastic flows established by Kunita (1990).

Lemma 4.4 Under assumption (H)′′ for each i = 1, . . . , M and p ≥ 2, there exist
finite constants Ki1(p) > 0 and Ki2(p) > 0 not depending on the kernels Ci j such
that for all t ∈ [0, T ],

sup
y∈Rd

E

(
sup

s∈[0,t]
|∇yη

i
s,t (y)|p

)
< Ki1(p) and sup

y∈Rd
E

(
sup

s∈[0,t]
|det∇yη

i
s,t (y)|p

)
< Ki2(p).

Moreover, for each s < t with s, t ∈ [0, T ] the function y �→ det∇yη
i
s,t (y) is a.s.

differentiable and there exists Ki3(p) > 0 not depending on the kernels Ci j such that
for all t ∈ [0, T ],

sup
y∈Rd

E

(
sup

s∈[0,t]
|∇y

[
det∇yη

i
s,t (y)

]
|p

)
< Ki3(p).

Proof of Lemma 4.4 For fixed i ∈ {1, . . . , M} and t ∈ [0, T ] we define coefficients
β : [0, t] × R

d → R
d and Aq : [0, t] × R

d → R
d , q = 1, . . . , d with components

βk and Aq
k , k = 1, . . . , d by

βk(s, y) := −b̂k(i, t − s, y), Aq
k (s, y) := σkq(i, t − s, y)

(see Lemma 3.11 for the notation) and the process (Zs(y); s ∈ [0, t], y ∈ R
d) by

Zs(y) = ηi
t−s,t (y). Then, denoting by W = (W 1, . . . , W d) the standard d− dimen-

sional Brownian motion Ws := Bi
t−s − Bi

t , it easily follows from Lemma 3.11 that
Zs(y) satisfies the classic Itô stochastic differential equation

Zs(y) = y +
s∫

0

A(r, Zr (y))dWr +
s∫

0

β(r, Zr (y))dr , (18)

whereas the associated Jacobian matrix satisfies the linear system:

∂yl Zk
s (y) = Id +

d∑

p,q=1

s∫

0

∂x p Aq
k (r, Zr (y))∂yl Z p

r (y)dW q
r

+
d∑

p=1

s∫

0

∂x pβk(r, Zr (y))∂yl Z p
r (y)dr. (19)

Notice that the (non-homogenous) coefficients of this linear SDE are uniformly
bounded (cf. Remark 4.1) independently of kernels Ci j . Using the Burkholder-Davis-
Gundy inequality, the boundedness of the derivatives of Aq and β and Gronwall’s
lemma, we deduce that
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E

(
sup

s∈[0,t]
|∇y Zs(y)|p

)
< Ki1(p) (20)

for some constant Ki1(p) which depends on bounds for those derivatives and on
supt∈[0,T ] ‖ξ i

t ‖T V (cf. Remark 3.9) but does not depend on y ∈ R
d . This yields the

first asserted estimate.
In order to get the estimates for the determinant and its gradient, we rewrite (18) in

Stratonovich form

Zs(y) = y +
s∫

0

A(r, Zr (y)) ◦ dWr +
s∫

0

β◦(r, Zr (y))dr

where β◦(r, x) = β(r, x)− 1
2

∑
l,q Aq

l (r, x)∂xl Aq(r, x). By the proof of Lemma 4.3.1
of Kunita (1990), det∇y Zs(y) satisfies the linear Stratonovich stochastic differential
equation

det∇y Zs(y) = 1

+
s∫

0

det∇y Zr (y)

d∑

k=1

⎡

⎣
d∑

q=1

∂yk Aq
k (r, Zr (y)) ◦ dW q

r +∂yk β
◦
k (r, Zr (y))dr

⎤

⎦ . (21)

Again, the coefficients of this scalar linear SDE are uniformly bounded independently
of the kernels Ci j . Using Burkholder-Davis-Gundy inequality in the Itô’s form of the
previous equation, we deduce using also Gronwall’s lemma that

E

(
sup

s∈[0,t]
|det∇y Zs(y)|p

)
< Ki2(p) (22)

for some constant Ki2(p) depending on bounds on the (up to second order) derivatives
of σ i and (up to first order derivatives) of b, on supt∈[0,T ] ‖ξ i

t ‖T V and on the constant
CM in assumption (H)′′ i). This yields the second required estimate. Remark 3.3
ensures that the constants Ki1(p) and Ki2(p) do not depend on the kernels Ci j nor on ε.

Finally, under assumptions (H)′′ we deduce from Eq. (21) and Theorem 3.3.3 of
Kunita (1990) (see also Exercise 3.1.5 therein) the a.s. differentiability of the mapping
y �→ det∇yη

i
s,t (y), and the fact that its derivative with respect to yl satisfies

∂yl [det∇y Zs(y)]

=
s∫

0

∂yl [det∇y Zr (y)]
d∑

k=1

⎡

⎣
d∑

q=1

∂yk Aq
k (r, Zr (y)) ◦ dW q

r + ∂yk β
◦
k (r, Zr (y))dr

⎤

⎦

+
s∫

0

det∇y Zr (y)

d∑

m,k=1

∂yl Zm
s (y)

⎡

⎣
d∑

q=1

∂2
ym yk

Aq
k (r, Zr (y)) ◦ dW q

r

+ ∂ym yk β
◦
k (r, Zr (y))dr

⎤

⎦ .
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Note that all coefficients inside the square brackets are uniformly bounded functions
(independently of kernels Ci j ). Writing this equation in Itô’s form, we now deduce
with the Burkholder-Davis-Gundy inequality that φ(s) := E

(
supr∈[0,s] |∇y [det

∇y Zr (y)
] |p
)

satisfies the inequality

φ(s) ≤ C ′
s∫

0

φ(r)dr + C ′′
s∫

0

E

(
sup

θ∈[0,r ]
|det∇y Zθ (y)|p sup

θ∈[0,r ]
|∇y Zθ (y)|p

)
dr.

By Cauchy-Schwarz inequality and the estimates (20) and (22) with 2p instead of
p, the above expectation is seen to be bounded uniformly in r ∈ [0, t], y ∈ R

d . We
deduce by Gronwall’s lemma that

E

(
sup

s∈[0,t]
|∇y

[
det∇y Zs(y)

] |p

)
< Ki3(p)

for some constant Ki3(p) as required, and conclude the third asserted estimate. ��
Proof of Lemma 4.3 We again consider M = 2, i = 1 and omit the superscript 1
in the process X1

s,t (x), the inverse flow and its derivative. By Lemma 3.11 we can
do the change of variables X0,t (x) = y in the integral with respect to dx inside the
expectation in (13). Using the semigroup property of the flow and its inverse stated
by Kunita (1984, 1990) together with Fubini’s theorem (thanks to Lemma 4.4), we
deduce that for a.e. y ∈ R

d ,
ξ1

t (y) = E [(t, y)] (23)

where (t, y) is the random function

(t, y) := exp

⎧
⎨

⎩

t∫

0

(r1(ηr,t (y)) − C11 ∗ ξ1
r (ηr,t (y)) − C12 ∗ ξ2

r (ηr,t (y)))dr

⎫
⎬

⎭

ξ1
0 (η0,t (y))det∇yη0,t (y).

Notice that we have used the fact that det∇yη0,t (y) > 0, which follows from
det∇yηr,t (y) �= 0 for all r ∈ [0, t] and r �→ ∇yηr,t (y) being continuous with value
Id at r = t . The bound on supt∈[0,T ] ‖ξ i

t ‖∞ readily follows from the previous identity,
the assumptions on ξ i

0 and the second estimate in Lemma 4.4.
The function y �→ (t, y) is moreover continuously differentiable, by Lemmas

3.11 and 4.4. Since the kernels C11 and C12 have bounded derivatives we deduce that,
a.s.

∇(t, y) = exp

⎧
⎨

⎩

t∫

0

r1(ηr,t (y)) − C11 ∗ ξ1
r (ηr,t (y)) − C12 ∗ ξ2

r (ηr,t (y))dr

⎫
⎬

⎭

×
⎡

⎣ξ1
0 (η0,t (y))det∇η0,t (y)

t∫

0

∇∗ηr,t (y)
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×
[
∇r1 − (∇C11) ∗ ξ1

r − (∇C12) ∗ ξ2
r

]
(ηr,t (y))dr

+∇∗η0,t (y)∇
[
ξ1

0

]
(η0,t (y))det∇η0,t (y)

+ξ1
0 (η0,t (y))∇ [det∇η0,t (y)

]
⎤

⎦ (24)

for all y ∈ R
d . From Lemma 4.4, thanks to Cauchy-Schwarz inequality we get that

E

⎛

⎝|det∇η0,t (y)|
t∫

0

|∇ηr,t (y)|dr + |∇η0,t (y)| |det∇η0,t (y)| + |∇ [det∇η0,t (y)
] |
⎞

⎠ < ∞.

Thus, we can take derivatives inside the expectation (23) and deduce the existence of

∇ξ1
t (y) = E [∇(t, y)] ,

and moreover that supt∈[0,T ] ‖∇ξ1
t ‖∞ < ∞. Similarly, supt∈[0,T ] ‖∇ξ2

t ‖∞ < ∞. We
can now rewrite (24) as

∇(t, y) = exp

⎧
⎨

⎩

t∫

0

r1(ηr,t (y)) − C11 ∗ ξ1
r (ηr,t (y)) − C12 ∗ ξ2

r (ηr,t (y))dr

⎫
⎬

⎭

×
⎡

⎣ξ1
0 (η0,t (y))det∇η0,t (y)

t∫

0

∇∗ηr,t (y)

×
[
∇r1 − C11 ∗ ∇ξ1

r − C12 ∗ ∇ξ2
r

]
(ηr,t (y))dr

+∇∗η0,t (y)∇
[
ξ1

0

]
(η0,t (y))det∇η0,t (y)

+ ξ1
0 (η0,t (y))∇ [det∇η0,t (y)

]
⎤

⎦ . (25)

Since ‖C1 j‖1 = c1 j , we have ‖C1 j ∗ ∇ξ
j

s ‖∞ ≤ c1 j‖∇ξ
j

s ‖∞ for all s ∈ [0, T ].
Taking expectation in (25) and using the estimates in Lemma 4.4, we deduce that for
all t ∈ [0, T ],

‖∇ξ1
t ‖∞ ≤ C ′′

t∫

0

(‖∇ξ1
r ‖∞ + ‖∇ξ2

r ‖∞)dr + C ′′′

for constants C ′′′, C ′′ > 0 depending on the functions C1 j only through their L1

norms c1 j (in particular not depending on ε). Summing the later estimate with the
analogous one for ‖∇ξ2

t ‖∞, we conclude thanks to Gronwall’s lemma. ��
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We are now ready for the

Proof of Theorem 4.2 Again, we write the proof in the case M = 2. Let ε > ε̄ > 0.
To lighten notation, we denote simply by ξ = (ξ1, ξ2) and ξ̄ = (ξ̄1, ξ̄2) two solutions
of system (8) in [0, T ] respectively with Ci j = ci jϕε and C̄i j := ci jϕε̄. Proceeding
as in the proof of Proposition 3.4, we deduce that for all function ϕ with ‖ϕ‖LB ≤ 1,

〈ξ1
t − ξ̄1

t , ϕ〉2 ≤ 〈ξ1
0 , (P1

0,t − P̄1
0,t )ϕ〉2 + C

t∫

0

{[∫
(P1

s,t − P̄1
s,t )ϕ(x)ξ1

s (x)dx

]2

+
[∫

P̄1
s,tϕ(x)(ξ1

s (x)−ξ̄1
s (x))dx

]2

+
[∫

C11 ∗ (ξ1
s − ξ̄1

s )(x)P1
s,tϕ(x)ξ1

s (x)dx

]2

+
[∫

C11 ∗ ξ̄1
s (x)(P1

s,tϕ(x) − P̄1
s,tϕ(x))ξ1

s (x)dx

]2

+
[∫

C11 ∗ ξ̄1
s (x)P̄1

s,tϕ(x)(ξ1
s (x) − ξ̄1

s (x))dx

]2

+
[∫

[C11 − C̄11] ∗ ξ̄1
s (x)P̄1

s,tϕ(x)ξ̄1
s (x)dx

]2

+
[∫

C12 ∗ (ξ2
s − ξ̄2

s )(x)P1
s,tϕ(x)ξ1

s (x)dx

]2

+
[∫

C12 ∗ ξ̄2
s (x)(P1

s,tϕ(x) − P̄1
s,tϕ(x))ξ1

s (x)dx

]2

+
[∫

C12 ∗ ξ̄2
s (x)P̄1

s,tϕ(x)(ξ1
s (x) − ξ̄1

s (x))dx

]2

+
[∫

[C12 − C̄12] ∗ ξ̄2
s (x)P̄1

s,tϕ(x)ξ̄1
s (x)dx

]2 }
ds. (26)

Thanks to Lemma 4.3, P1
s,tϕξ1

s is a bounded Lipschitz function with Lipschitz norm
bounded independently of ε, ε̄ and s, t ∈ [0, T ]. We thus can rewrite and bound the
first term in the third line of (26) as follows:

[∫
(ξ1

s − ξ̄1
s )(y)C11 ∗ (P1

s,tϕξ1
s )(y) dy

]2

≤ C‖ξ1
s − ξ̄1

s ‖2
LB∗

for some C > 0 not depending on ε, ε̄. The second term in the third line is controlled
by

C‖ξ̄1
s ‖2∞‖ξ1

s ‖2
T V sup

x∈Rd

∣∣∣P1
s,tϕ(x)

−P̄1
s,tϕ(x)

∣∣∣
2 ≤ C‖ξ̄1

s ‖2∞‖ξ1
s ‖2

T V

t∫

s

‖ξ1
r − ξ̄1

r ‖2
LB∗ + ‖ξ2

r − ξ̄2
r ‖2

LB∗dr
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thanks to Lemma 3.6 b). The term in the fourth line is easily controlled by C‖ξ1
s −

ξ̄1
s ‖2

LB∗ . Using the fact that, by Lemma 4.3, ξ̄1
s has derivatives uniformly bounded

independently of ε̄ > 0 and s ∈ [0, T ], we deduce by the assumption on γ that

sup
x∈Rd

|[C11 − C̄11] ∗ ξ̄1
s (x)|2 ≤ C |ε − ε̄|2.

A similar upper bound then follows for the term in the fifth line of (26). The last
three lines can be bounded in a similar way, and the first line on the right hand side is
bounded in terms of dual Lipschitz distances by similar arguments as in Proposition
3.4. Proceeding in a similar way as therein, we now obtain the estimate

〈ξ1
t − ξ̄1

t , ϕ〉2 ≤ C

t∫

0

∑

i=1,2

‖ξ i
s − ξ̄ i

s ‖2
LB∗ds + C |ε − ε̄|2,

where the constants do not depend on t ∈ [0, T ] nor on ε or ε̄. Taking suitable suprema,
the latter estimate can thus be strengthened to

sup
r∈[0,t]

‖ξ1
r − ξ̄1

r ‖2
LB∗ ≤ C

t∫

0

∑

i=1,2

sup
r∈[0,s]

‖ξ i
r − ξ̄ i

r ‖2
LB∗ds + C |ε − ε̄|2,

which when summed with the corresponding estimate for i = 2 yields

∑

i=1,2

sup
r∈[0,T ]

‖ξ i
r − ξ̄ i

r ‖2
LB∗ ≤ C |ε − ε̄|2, (27)

after applying Gronwall’s lemma. Therefore, as ε goes to 0, the sequence (ξε)ε>0 is
Cauchy in the Polish space C([0, T ],MM ) and thus converges to some element in that
space. Dunford-Pettis criterion for weak compactness in L1, together with the uniform
bounds both in L1 and L∞ for (ξε

t )ε>0, imply that the components of the previous
limit have densities for each t ∈ [0, T ], which we denote by ui

t (x), and which satisfy
the same L1 and L∞ bounds.

Weak L1-convergence is however not enough to identify u as a solution of (16)
and some regularity of the limit will be needed to do so. We denote by P̂i

s,t (x, dy) the
semigroup associated with the SDE with coefficients defined in terms of the measures
(ui

t (x)dx)t∈[0,T ] as previously. For ϕ such that ‖ϕ‖LB ≤ 1, we set

1(t, ϕ) := 〈u1
t , ϕ〉

−〈ξ1
0 , P̂1

0,tϕ〉 −
t∫

0

∫ (
r1(x) − c11u1

s (x) − c12u2
s (x)

)
P̂1

s,tϕ(x)u1
s (x)dxds.
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Since ξ = ξε satisfies

〈ξ1
t , ϕ〉 − 〈ξ1

0 , P1
0,tϕ〉

−
t∫

0

∫ (
r1(x) − C11 ∗ ξ1

s (x) − C12 ∗ ξ2
s (x)

)
P1

s,tϕ(x)ξ1
s (x)dxds = 0,

proceeding in a similar way as done to obtain the estimate (26), we deduce that

|1(t, ϕ)|2 ≤
∑

i=1,2

sup
r∈[0,t]

‖ξ i
r − ui

r‖2
LB∗

+
t∫

0

[∫
[C1i ∗ ui

s(x) − c1i ui
s(x)]P̂1

s,tϕ(x)u1
s (x)dx

]2

ds (28)

(the last term corresponding to the sum of the fifth and last lines in (26) when ε̄ = 0).
Now, by Lemma 4.3, there exists a constant K > 0 (independent of ε > 0 ad s ∈
[0, T ]) such that for any ε > 0 one has |〈(ξε

s )i , ∂xl ϕ〉| ≤ K‖ϕ‖1 for any C∞ compactly
supported function ϕ. By letting ε → 0, the same bound is satisfied by ui

s . By standard
results on Sobolev spaces (see e.g. Proposition IX.3 of Brezis 1983) we get that ui

s
has distributional derivatives in L∞ and that ui

s is Lipschitz continuous with Lipschitz
constant less than or equal to K . Since C1i ∗ ui

s(x) − c1i ui
s(x) = c1i

∫
γ (z)[ui

s(x +
εz) − ui

s(x)]dz and
∫

γ (z)|z|dz < ∞, we deduce that ‖C1i ∗ ui
s − c1i ui

s‖∞ ≤ Cε,
which combined with the bound

∑

i=1,2

sup
r∈[0,t]

‖ξ i
r − ui

r‖2
LB∗ ≤ Cε2 ,

following from (27), yields |(t, ϕ)| ≤ Cε for all ε > 0. That is, u solves (16).
Let us finally prove the uniqueness of the solution u. Recall that P̂i

s,t (x, dy)

denotes the associated diffusion semigroup. Consider a second function solution v in
C([0, T ],MM ) satisfying (17) and with associated semigroups denoted P̌i

s,t (x, dy).
Then,

〈u1
t − v1

t , ϕ〉2

≤ 〈u1
0, (P̂1

0,t − P̌1
0,t )ϕ〉2

+C

t∫

0

{[∫
(P̂1

s,t − P̌1
s,t )ϕ(x)u1

s (x)dx

]2

+
[∫

P̌1
s,tϕ(x)(u1

s (x) − v1
s (x))dx

]2

+
[∫

c11(u1
s − v1

s )(x)P̂1
s,tϕ(x)u1

s (x)dx

]2

+
[∫

c11v1
s (x)(P̂1

s,tϕ(x) − P̌1
s,tϕ(x))u1

s (x)dx

]2
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+
[∫

c11v1
s (x)P̌1

s,tϕ(x)(u1
s (x) − v1

s (x))dx

]2

+
[∫

c12(u2
s − v2

s )(x)P̂1
s,tϕ(x)u1

s (x)dx

]2

+
[∫

c12v2
s (x)(P̂1

s,tϕ(x) − P̌1
s,tϕ(x))u1

s (x)dx

]2

+
[∫

c12v2
s (x)P̌1

s,tϕ(x)(u1
s (x) − v1

s (x))dx

]2 }
ds. (29)

The functions P̂1
s,tϕu1

s and P̌1
s,tϕv1

s having Lipschitz norm bounded independently of
s, t ∈ [0, T ], the first term in the third line and the term in the forth line above are
bounded by C‖u1

s − v1
s ‖2

LB∗ . The second term in the third line is bounded by

C‖v1
s ‖2∞‖u1

s ‖2
1 sup

x∈Rd

∣∣∣P̂1
s,tϕ(x)

−P̌1
s,tϕ(x)

∣∣∣
2 ≤ C‖v1

s ‖2∞‖u1
s ‖2

1

t∫

s

‖u1
r − v1

r ‖2
LB∗ + ‖u2

r − v2
r ‖2

LB∗dr

by Lemma 3.6 b). The last threes lines are similarly dealt with and we can easily
conclude as in Proposition 3.4. ��

5 Concluding remarks

We have developed models for dispersive and competitive multi species population
dynamics permitting nonlocal nonlinearity in the diffusive behavior of individuals.
Depending on the value of the spatial competition range, the continuum (macro) limits
of the individual (micro) dynamics turned out to be described by deterministic solu-
tions of nonlocal cross-diffusion systems with nonlocal or local competition terms.
These systems generalize usual diffusion-reaction systems with nonlocal or local spa-
tial nonlinearity in the diffusive coefficients, and nonlocal or local nonlinearity in the
reaction terms. These limiting objects can now be used as approximate objects for
numerical simulation of spatial and ecological dynamics, when the individual behav-
iors depend on the non homogeneous spatial densities of the different species. Of
course, estimators of the relevant parameters of the phenomena under study have to
be obtained first.

In the future it may also be worthwhile to elucidate the situation where the spatial
interaction range would be very small. This could thus justify by an individual-based
approach the cross-diffusion models with local spatial interaction and local competi-
tion extensively studied by the scientific community.
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