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The separation, identification and assessment of high-grade ore zones from low-grade ones are extremely impor-
tant inmining of metalliferous deposits. A technique that provides reliable results for those purposes is thus par-
amount to mining engineers and geologists. In this paper, the simulated size–number (SS–N) fractal model,
which is an extension of the number–size (N–S) fractalmodel,was utilized for classification of parts of the Zaghia
iron deposit, located near Bafq City in Central Iran, based on borehole data.We applied thismodel to the output of
the turning bands simulationmethod using the data, and the resultswere comparedwith those of the application
of the concentration–volume (C–V) fractal model to the output of kriging of the data. The technique using the
SS–N model combined with turning bands simulation presents more reliable results compared to technique
using the C–Vmodel combinedwith kriging since the former does not present smoothing effects. The grade var-
iability was classified in each mineralized zones defined by the SS–N and C–V models, based on which tonnage
cut-off models were generated. The tonnage cut-off obtained using the technique of combining turning bands
simulation and SS–N modeling is more reliable than that obtained using the technique of combining kriging
and C–V modeling.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The recognition of geochemical anomalies and their distinction from
geochemical background for the identification, delineation, and model-
ing of mineralized zones is important in mineral exploration, mineral
resource classification, and mine planning. Although various factors of
mineral deposit formation control the variability in geochemical data,
grades of metals in mineral deposits or concentrations of chemical
elements in the Earth's crust have been assumed to follow a normal
(Gaussian) or log-normal distribution in traditional statistical methods
of data analysis (Armstrong and Boufassa, 1988; Clark, 1999; Limpert
et al., 2001). However, many scientists and researchers have recognized
and advocated that frequency distributions of element concentrations are
mostly not normal (Ahrens, 1954a,b, 1966; Bai et al., 2010;He et al., 2013;
Li et al., 2003; Luz et al., 2014; Razumovsky, 1940; Reimann and
Filzmoser, 2000).

Geostatistical methods have been increasingly used as powerful
tools for predicting spatial attributes and for modeling the uncertainty
m (B. Sadeghi).
of predictions in un-sampled locations, which are important in min-
eral resource estimation and ore reserve evaluation (e.g., Chilès and
Delfiner, 2012; Emery, 2005, 2012; Emery and González, 2007;
Emery and Robles, 2009; Emery et al., 2005, 2006; Maleki Tehrani
et al., 2013; Montoya et al., 2012; Ortiz and Emery, 2006). Kriging,
as an important geostatistical interpolation method, is a linear and gen-
erally robust estimator, but its main disadvantage is its smoothing effect,
particularly for highly skewed data. Consequently, if kriging is applied to
datasets with non-Gaussian distribution, it is not able to reproduce spa-
tial heterogeneity that is characteristic ofmany suchdatasets. In contrast,
Gaussian simulation as an alternative technique for kriging provides
more precise results (Deutsch and Journel, 1998; Matheron, 1973;
Shinozuka and Jan, 1972), and most continuous variables can be simu-
lated by transformation to the Gaussian (or multi-Gaussian) distribu-
tion. Gaussian simulation algorithms are divided into two types, exact
and approximate algorithm (Emery and Lantuejoul, 2006). Several ap-
proximate Gaussian simulation algorithms have been developed, and
one of them is called turning bands method (Matheron, 1973). It was
first introduced by Chentsov (1957) in a special case of Brownian ran-
dom functions, but has been extended for the Gaussian simulation of
stationary and intrinsic random functions by Emery and Lantuejoul
(2006) and also Emery (2008). This method aims at simplifying the
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Gaussian simulation problem inmultidimensional spaces, using simula-
tions in one dimension and spreading them to 2-D or 3-D spaces. This
method is extremely fast with parallelizable computations and one
can simulate as many locations as desired. The Gaussian simulation
also exactly reproduces the desired covariance model (Chilès, 1977;
Chilès and Delfiner, 2012; David, 1977; Delhomme, 1979; Emery and
Fig. 1. Geological map of the Zaghia deposit with the locations of boreholes and trenches (from
Lantuejoul, 2006; Journel and Huijbregts, 1978; Mantoglou and Wilson,
1982). However, the turning bands method is like conventional
geostatistical methods because it also operates on the basis of classical
statistical parameters such as mean, percentile, and standard deviation
and requires normalization of data that may not actually distort the real
spatial distribution of geochemical data. For example, geochemical data
Sadeghi et al., 2012). The two slanting black lines represent boundaries of the study area.
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of elements in boreholes exhibit power-law distributions that can be
modeled more accurately using fractal models (Cheng et al., 1994;
Monecke et al., 2001; Sanderson et al., 1994; Zuo et al., 2009).

Fractal geometry (Mandelbrot, 1983) has been applied in the
geosciences since the 1980s. It is different from Euclidean geometry;
whereas dimensions in the latter are whole numbers, dimensions
in the former are fractions. In addition, there is a special property of
‘self-similarity’ in fractal geometry, which means that objects are
self-similar as they are scaled down. In the past three decades, fractal
geometry and fractal/multifractal models have been utilized to de-
scribe the spatial attributes of mineral deposits (e.g., Afzal et al.,
Scale

a

c

e

Fig. 2. 3-D models of borehole geological data in the Zaghia deposit (Sadeghi et al., 2012): (a)
units; (e) a representative cross-section.
2010, 2011, 2012; Carranza, 2011b; Carranza and Sadeghi, 2010;
Nazarpour et al., 2015; Nouri et al., 2013; Sadeghi et al., 2012; Shen
and Zhao, 2002; Turcotte, 1986, 2002; Wang and Cheng, 2006;
Wang et al., 2007, 2008, 2010a,b, 2011; Zhang et al., 2001) or geo-
chemical landscapes (e.g., Agterberg et al., 1993, 1996; Ali et al., 2007;
Carranza, 2010a,b, 2011a; Cheng, 2007; Cheng et al., 1994; Goncalves
et al., 2001; Sim et al., 1999; Zuo et al., 2012, 2013, 2015). In particular,
the spatial distributions of chemical elements in geochemical landscapes
have a fractal dimensions because they have self-similar properties in var-
ious geographic scales (Bolviken et al., 1992). The basic advantage of frac-
tal geometry is that it considers not only frequency but also spatial
b

d

geological model of the deposit; (b) low grade ores; (c) high grade ores; (d) metasomatic



Fig. 4. N–S log–log plot for Fe concentrations in the Zaghia deposit.
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distribution of data and, thus, geometrical properties of mineral deposits
or geochemical landscapes (Cheng et al., 1994; Davis, 2002; Li et al.,
2003).

Fractal models can be useful in solving particular problems of
traditional statistical methods in exploration geochemistry, and they
are based on the direct study of rocks and minerals. In general, the
common problem of traditional statistical methods is that they were
not developed originally for the study of distribution of chemical ele-
ments, whereas fractal models have been conceptualized for geograph-
ical as well as geological and geochemical properties that have some
kind of geometrical support (Bolviken et al., 1992; Mandelbrot, 1983;
Turcotte, 1986, 1996, 2002). As an example, fractal models have been
used to describe and explain the spatial distribution of mineralization
based on variations in geochemistry and geology through the recog-
nition of populations in spatial data from mineral deposits (Afzal
et al., 2011; Carranza, 2009; Carranza et al., 2009; Deng et al., 2010;
Goncalves et al., 2001; Hassanpour and Afzal, 2011). The recognition
of populations in spatial domain of data from mineral deposits
through fractal analysis allows for discrimination of mineralized zones
from background and for recognition of transition zones between min-
eralized zones with contrasting metal grades. Therefore, volumes of
zones inmineral deposits can bemapped and estimatedmore precisely
by techniques using fractal models than by traditional statistical
methods. This is critical in 3-D modeling as part of quantitative assess-
ment and prediction of mineral resources, whereby several kinds of
data such as geological, geochemical, and geophysical data, with differ-
ent statistical distributions, are used for exploring and delineating
mineral deposits. In general, the semi-variogram as a geostatistical
tool can be utilized for spatial analysis of all kinds of element distribu-
tions in mineral deposits and can provide vital parameters for interpo-
lating, estimating and even simulating in district-scale 3-D modeling
(Houlding, 2000; Wang et al., 2013; Wilson et al., 2011). However,
due to the complexity of 3-D modeling and the limitations of conven-
tional geostatistical methods discussed above, an innovative and more
efficient technique is required.

In this research, an innovative technique based on the fractal theory
in combination with geostatistical simulation is proposed for mineral
resource classification. It can be implemented in a few steps. Firstly,
Gaussian geostatistical simulation is used to reliably model the spatial
distribution and spatial variability of the data. Then, the simulated
size–number (SS–N) fractal model is applied to the interpolated/simu-
lated data to determine thresholds for mapping of mineralized zones,
Fig. 3. Histogram of Fe concentrations in lithogeo
which are critical for mine planning and mineral resource classifica-
tions. Mapped mineralized zones can be classified according to the
classification prescribed by the Joint Ore Reserves Committee (JORC,
www.jorc.org). The proposed technique combining Gaussian
geostatistical simulation and SS–N fractal modeling is robust with
respect to fluctuations in ore grade.

2. Methodology

2.1. Number–size (N–S) fractal model

The N–S fractal model was proposed by Mandelbrot (1983) for
describing the distribution of geochemical data. According to this
model, there is a relation between the number and size parameters
of evaluated data. The N–S model is expressed by the following equa-
tion (Mandelbrot, 1983):

N ≥ρð Þ ¼ Fρ−D ð1Þ

where ρ denotes element concentration, N(≥ρ) denotes cumulative
number of samples with concentration values greater than or equal to
ρ, F is a constant and D is the scaling exponent or fractal dimension of
the distribution of element concentrations. According to Mandelbrot
chemical samples from the Zaghia deposit.

http://www.jorc.org


Table 1
Zones in the Zaghia deposit based on two thresholds of Fe contents defined by the
N–S fractal model.

Mineralized zones Range Fe%

Wall rocks and weakly mineralized b23.9
Moderately mineralized 23.9–39.8
Highly mineralized N39.8
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(1983), log–log plots of N(≥ρ) versus ρ show straight line segments
with different slopes — D corresponding to different concentration
intervals.

Agterberg (1995) proposed a ‘concentration–size’ multifractal
model based on the N–S model in order to determine and describe the
spatial distribution of geochemical attributes in large mineral deposits.
Monecke et al. (2005) used the N–S model to describe geochemical
data, which indicate enrichment of minerals by replacement due to
metasomatic processes resulting in the formation of hydrothermal
deposits in the Waterloo massive-sulfide deposit, Australia. The
power-law frequency model, which has been suggested based on
the N-S model, measures the frequency distribution of element and
mineral concentrations based on the number of samples (Li et al.,
1994; Sadeghi et al., 2012; Sanderson and Zhang, 1999; Shi and
Wang, 1998; Turcotte, 1996; Zuo et al., 2009). The first 3-D modeling
work based on the N–S fractal model was demonstrated by Sadeghi
et al. (2012) for the separation of mineralized zones and wall rocks,
and the precision and thus the applicability of the model was proven
by comparison of results with those of the concentration–volume
Fig. 5. Classified zones based on thresholds defined using the N–S fractal model of Fe data (
(c) weakly mineralized zones and wall rocks; and (d) a cross-section of the mineralized zones
(C–V) fractal model. The most important advantage of this model is
that there is no need for pre-processing of data for pre-estimation
before modeling.

2.2. Turning bands simulation

This method aims at simplifying the Gaussian simulation problem
in multi-dimensional spaces, using simulations in one dimension
and “spreading” them to 2-D or 3-D space, thus (Chilès and Delfiner,
2012):

Y xð Þ ¼ Y 1ð Þ xjuh ið Þ ð2Þ

where Y(1) is a random function in 1-D space, and U is a vector in multi-
dimensional space and 〈x|u〉 is a location x projection on the extended
line with a U vector.

For displaying the relationship between covariance functions in
1-D and 2-D space, we can let C1 be the covariance of Y(1) and Cd, the co-
variance of Y(x), can be defined as (Brooker, 1985; Gneiting, 1998;
Lantuejoul, 2002; Matheron, 1973):

Cd hð Þ ¼ C1 hjuh ið Þ ð3Þ

This covariance becomes isotropic if one draws the direction of u at
random, i.e., if one replaces the deterministic vector u by an isotropic
random vector U, thus:

Cd hð Þ ¼ E C1 hjuh ið Þf g ð4Þ
Sadeghi et al., 2012): (a) highly mineralized zones; (b) moderately mineralized zones;
.



Fig. 6. Gaussian anamorphosis modeling.
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The mapping C1 → Cd is one-to-one, so that one can simulate a
multi-dimensional random function with covariance Cd by means of a
1-D random function with covariance C1 and a random direction,
which is defined in the spreading process. The transition of covariance
from 1-D to 3-D spatial domain can be simplified as follows (C2 and C3
are Cd for d = 2 and d = 3, respectively):

C1 rð Þ ¼ d
dr

rC3 rð Þ½ � ð5Þ

and the covariance transition from 1-D to 2-D is more complex, thus:

C1 rð Þ ¼ d
dr

Zr

0

tffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−t2

p C2 tð Þdt ð6Þ

For obtaining a multi-Gaussian random and ergodic functions, it is re-
quired to calculate the average of the independent simulations as follows:

Y xð Þ ¼ 1ffiffiffiffi
N

p
XN
i¼1

Y 1ð Þ
i xjuih ið Þ ð7Þ
Fig. 7. 2-D plot of the sample variogram for all experimentally variable separation vectors,
depicting colors varying fromblue (low value) to red (highvalue) and representing incon-
sistency or variability of anisotropy.
Obtaining amulti-Gaussian random field requires numerous lines in
1-D space, and that means that the simulated random function is not
multi-Gaussian. To speed up the convergence to the multi-Gaussian
distribution, it is advisable to use equi-distributed directions and to
consider several hundreds or thousands of directions (Emery and
Lantuejoul, 2006).

2.3. Turning bands simulated size–number (SS–N) fractal model

The proposed technique of combining turning bands simulation and
SS–N fractal model is a geostatistical extension of the N–S model based
on the combination of geostatistical simulation and fractal/multifractal
modeling. We propose to relate simulated size (SS) and number
(N) of evaluated data with the following equation:

N SS≥ ρð Þ ¼ Fρ−D ð8Þ

where ρ denotes element concentration, N(≥ρ) is cumulative number
of samples with the average of the simulated concentration values
greater than or equal to ρ, F is a constant and D is the fractal dimension
of the distribution of element simulated concentrations. With this
model, one generates a large number of realizations by any type of
multi-Gaussian simulation approach (preferably, turning-bands).
The various realizations generated are comparable in their spatial
variability. The most significant issue is to produce “alternative real-
ities” phenomena, which are legitimately flexible to the fluctuations
of the underlying statistical parameters. This could be an excellent
alternative for some other approaches that produce just one realization
(Chilès and Delfiner, 2012).Whereas kriging is generally the best inter-
polation method, it is not able to produce interpolated data with the
same spatial variability as the given original data, unless the data have
a strictly Gaussian distribution.

The realizations generated by the proposed technique mimic the
spatial variability of the given original data. A meaningful application
of the proposed technique is to evaluate ore reserves and estimate
mineral resources. The separation of mineralized zones is particularly
crucial for the estimation of mineral resources. One can implement the
following steps to first mapmineralized zones and then classify mineral
resources with focus on handling spatial uncertainty.

Step 1 N–S modeling
Step 2 Spatial data analysis
Step 3 Geostatistical simulation
Step 4 SS–N modeling
Step 5 Mineral resource classification
Fig. 8. Normal scores semi-variogram. Sill = 1; horizontal range = 100; vertical range =
75; nugget effect = 0.25.
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3. Application to the Zaghia iron ore deposit

The Zaghia iron ore deposit, anomaly 2C, is located 120 km east of
Yazd and 15 to 17 km east of Bafq in the Yazd province, and it is sit-
uated within the area covered by the Esfordi 1:100,000 scale map
sheet of Iran. From a topographic point of view, the region where
the deposit exists consists of two parts, (i) Quaternary alluvial sedi-
ments and (ii) semi-mountainous areas. The sediments are cut by
drainage channels with the NW–SE and NE–SW trends. The anomaly
2C is limited by mountains to the east. It is located 12 km south-east
of the Choghart iron mine (Fig. 1). The Zaghia iron ore deposit occurs
either as a shallow outcrop or a concealed resource. Most of the
anomaly is covered by alluvial sediments and only a small outcrop
of iron ore is visible in the eastern area.
a 

c 

Fig. 9. Results for different numbers of real
The Zaghia deposit is a Kiruna-type Fe–P oxide deposit, which is the
same type to which the Choghart, North Anomaly and Mishdavan iron
ores belong (IMECCO, 2010). It is one of the Fe deposits hosted by a se-
quence of pre-Cambrian andCambrian rhyolitic volcanic rockswith inter-
calated shallow-water sedimentary rocks. The stratabound and zoned ore
deposit has a significant Fe-oxide‐rich core and an overlying body of brec-
cia and metasomatite that is rich in hematite and magnetite. There are
three principal paragenetic stages of apatite mineralization. These stages
aremainly associatedwith Fe-oxide-rich (magnetite) ore ormetasomatic
Fe-poor ore characterized by vein-style accumulation of pyrite andhema-
tite (Ramezani and Tucker, 2003; IMECCO, 2010; Sadeghi et al., 2011,
2012). Some outcrops of metasomatic units exist in the northern and
southern parts of the deposit (Fig. 2). Detailed exploration of the deposit
was carried out by IMPASCO, and it includes 31 exploration boreholes and
four trenches.
b

d

izations: (a) 20; (b) 40; (c) 60; (d) 80.
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For this study, 177 lithogeochemical samples were collected at 2 m
intervals along 19 boreholes in the deposit. The samples were analyzed
by XRF for a number of elements related to Fe mineralization; however,
only Fe data were evaluated in this study. The histogram of the Fe data
shows a multi-modal distribution with a mean value of 30.49% Fe
(Fig. 3).

3.1. Step 1: N–S modeling

Fractal models have been often used for characterization, delinea-
tion and separation of mineralized zones and have been seldom used
for estimation of mineral resources (e.g., Wang et al., 2010a,b, 2011,
2012). However, fractal models can be applied to 3-D mineral resource
estimation as well. The importance of fractal models is their better abil-
ity for the separation of mineralized zones because with conventional
statistical methods researchers attempt estimation after normalization
of the datawhereaswith fractalmodels there is noneed for normalization
of data, but they can providemore reliable estimates of mineral resource.
For instance, pre-estimation results obtained by any geostatistical
methods, such as kriging, always contain errors that can propagate
and become compounded in the final estimation using anothermethod.
In addition, Sadeghi et al. (2012) proved that this method can yield
Fig. 10. E-type models (2-D and 3-D)
better and more detailed results than the C–V model, which is one of
the most important fractal models used for 3-D analysis, especially in
cases of irregular grids of boreholes. Moreover, Sadeghi et al. (2011)
and Daneshvar Saein et al. (2013) proposed this method for modeling
of vertical distributions of elements in boreholes, and they proved
that this method is a useful means for accurate modeling of shape of
deposits.

To avoid propagation error from a pre-estimation step and to obtain
accurate results, the N–S fractal model was utilized as it does not need
any pre-estimation procedure as in the application of the C–V model
(Sadeghi et al., 2012). In the N–S log–log plot (Fig. 4), threshold values
obtained are breakpoints of straight lines fitted through least-square re-
gression (Agterberg et al., 1996; Spalla et al., 2010). Based on the N–S
model, the fractal dimensions are the slopes of individual line segments,
which also indicate intensity of element enrichment (Afzal et al., 2010;
Bai et al., 2010). Hence, there are three populations in the Fe data. The
first Fe threshold is 23.9%, and values of b23.9% Fe are related to wall
rocks and weakly-mineralized zones (Table 1). The second Fe threshold
is 39.8%, and values of 23.9–39.8% Fe are related to moderately-
mineralized zones (a combination of low and high grade ores), whereas
values of N39.8% Fe are related to highly-mineralized zones (magnetite
ore). Therefore, based on the 3-D classification of the Fe data using the
a) Etype-2D

b) Etype_3D

obtained from 100 realizations.



Fig. 11. Variogram reproductions of realizations in (a) east direction and (b) north direction. Green: experimental variogram of 100 realizations. Red: average of 100 realizations. Blue:
theoretical model of the declustered primary data.

Fig. 12. Comparison of results of all methods, and the thresholds defined using the SS–N model.
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Table 2
Comparison between kriging and simulation.

Min Max Mean

Original data 4.13 61 30.26 (declustered)
Kriging 8.97 47.14 30.93
Simulation 1.83 66.27 30.92

68 B. Sadeghi et al. / Journal of Geochemical Exploration 149 (2015) 59–73
thresholds obtained from the application of the N–S fractal model,
highly-mineralized zones are situated in the northern part of the depos-
it (Fig. 5a), moderately-mineralized zones follow a NW–SE trend
(Fig. 5b), and weakly-mineralized zones and wall rocks are situated in
the margins of the deposit (Fig. 5d).

3.2. Step 2: spatial data analysis

As a general rule, mineral resource simulation requires suitable sta-
tistical tools for better investigation of spatial distribution. However,
borehole spacing is seldom regular and may be concentrated in high
grade areas. Therefore, a declustering technique is needed to provide
representative distribution of the underlying attributes in a region.
Such technique assigns a weight to each location based on closeness
to surrounding data. Subsequently, we used a cell declustering method
(Journel, 1983; Deutsch and Journel, 1998) for the composited Fe data.

Some geostatistical methods are sensitive to the presence of trends
in the variability of ore grades (Rossi and Deutsch, 2014). Therefore, in
the second stage, it is crucial to detect possible trends in different
directions (i.e., easting, northing, and elevation). However, results of
trend analysis indicate that there is no drift in the Fe data and, thus,
the hypothesis of stationary can be honored in the geostatistical simula-
tion process.

For spatial data analysis, it is common to transform data to approxi-
mate Gaussian distribution. Likewise, modeling of prediction uncertain-
ty at un-sampled locations byGaussian simulation requires that data are
standardized to obtain normally distributed values. In this study, a
Gaussian anamorphosis function is used to transform the Fe data into
a Gaussian variable with mean 0 and variance 1. In this approach, one
constructs the sample cumulative histogram by applying declustering
weights. As a result, it is necessary to interpolate and extrapolate the
cumulative histogram of the original data (Chilès and Delfiner, 2012).
The lower and upper tails are correspondingly set to 1 and 0.95 as
shown in Fig. 6 to get the simulated results close to actual values after
back-transformation. Lastly, the procedure as described predicts the
quantitative spatial variability or continuity by semi-variogramanalysis.
Fig. 13. Cross-validation for (a) kriging and (b) sim
Continuity is a measure of geological properties against distance, which
can be sensitive to the different directions as in mineralization systems.
The form of spatial variability in mineralization systems is so-called an-
isotropic behavior because there is more continuity in one direction
than in others. A variogram map (Deutsch and Journel, 1998), which
is a 2-D plot of the sample variogram for all experimentally variable sep-
aration vectors, was generated to understand the anisotropy of Fe in the
region (Fig. 7). This is a global view of the variogram values in all direc-
tions. The value (0) = 0 plots at the center of the figure. The horizontal
values of variogramplot as colorscale at offset h=100 from that center.
The other black pixels which are not filled by the experimental values
are left uninformed. As can be seen, one cannot distinguish a sensible di-
rection of anisotropy in the plane. Therefore, it can be concluded that
the variogram in the plane is isotropic. In order to check the anisotropy
direction in vertical elongation, several variogramswere calculatedwith
over 22.5° of tolerance and showed minor anisotropy in about 90° ver-
tical. The semi-variogram equation can be presented as follows (Fig. 8):

γ hð Þ ¼ 0:25þ 0:75 Sph 100;100;20ð Þ ð9Þ

where 0.25 is nugget and the sill is 1 (Gaussian data), ranges 1 and 2 in
the plane are both 100 m (the same in all directions of the plane) and
range 3 is 20 m according to the vertical elongation, Sph provides the
spherical model.

3.3. Step 3: geostatistical simulation

The turning bands simulation is implemented by the TBSIMprogram
provided by Emery and Lantuejoul (2006) with a MATLAB source code.
A regular 3-D grid with the 10 × 10× 12m3 block support is utilized for
this study. One hundred realizations and thousand lines were produced
including ordinary kriging (OK) with a search radius of 500 m in hori-
zontal directions and 100m in vertical directions. Because the Gaussian
simulation produces equi-probable scenarios from the spatial variabili-
ty, all the realizations have similar statistical properties with the legible
fluctuations. Here, to illustrate the results, the realizations #20, #40,
#60 and #80 were selected randomly for the 7th mine level because
this is the most important level of Fe concentration (Fig. 9), and an
E-type map obtained from block averaging of 100 realizations is shown
as well (Fig. 10).

Validation of the output of a Gaussian simulation algorithm is
performed by comparing variograms of a set of realizations with the
variogram of a theoretical model. However, differences between the re-
alization parameters and the theoretical model parameters are ideally
ulation. Red: regression. Black: diagonal lines.



Table 3
Cross-validation specifications.

Intercept Slope Correlation Coefficient

Kriging 3.77 1.11 81.28 (%)
Simulation 3.53 1.10 82.03 (%)
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typically owing to the bounded region used in Gaussian simulation
processes (Matheron, 1989). If the variogram of a realization does not
match that of a theoretical model, it reflects that the Gaussian simu-
lation algorithm does not work properly. The comparison with the
theoretical model should be done only after averaging the regional
statistics over a large number of realizations (Emery, 2004). Hence,
the variograms of the 100 realizations are comparedwith the variogram
model and the results indicate a superb reproduction (Fig. 11).

3.4. Step 4: SS–N modeling

After generating the final simulated models (100 realizations) and
the respective N–S log–log plots, the average of all log–log plots for
the 100 realizations was calculated and six straight line segments
have been fitted through the averaged graph of the realizations. Five
thresholds were obtained at 24, 40, 50, 52.5 and 60% Fe. Compared to
Fig. 14. Probability above threshol
Fig. 12, it can be seen that there is a satisfactory correspondence be-
tween the SS–N and N–S log–log plots. However, the SS–N plot is
more enhanced and structured, as it separates populations more pre-
cisely. To complete the evaluation of the SS–N model, a C–V plot was
also created. The points on the C–V plot were found biased with respect
to the geological concept of the ore deposit. In regard to the efficiency of
the proposed approach, it was presented earlier that the simulation is
able to reproduce the spatial variability and global uncertainty whereas
kriging suffers from smoothing effect (Table 2). However, cross-
validation is needed to reflect the goodness of fitting between the esti-
mated or simulated and real attributes (Deutsch and Journel, 1998). In
cross-validation technique, actual data are removed one at a time and
re-estimated based on remaining neighborhood data. Each data attri-
bute is replaced in the data set once it has been re-estimated or re-
simulated. As can be seen from Fig. 13, both Gaussian simulation and
kriging show satisfactory results and the correlation coefficient is some-
what analogous (Table 3). However, the C–V model inherits the
smoothness and the under- and over-estimation errors obtained from
kriging particularly the tail and head of the C–V curve have been drasti-
cally reduced and increased, respectively, although the cross-validation
shows satisfactory estimation by kriging. It can be deduced that the
thresholds obtained from the SS–N modeling are more trustworthy
than those from the C–V modeling. For instance, the generated SS–N
d 40% in (a) 2-D and (b) 3-D.



Table 4
Mineral resource classification.

% Zone Measured Indicated Inferred Total Tonnage

Metal quantity
(Mt%)

Tonnage
(Mt)

Mean
grade (%)

Metal quantity
(Mt%)

Tonnage
(Mt)

Mean
Grade (%)

Metal quantity
(Mt%)

Tonnage
(Mt)

Mean
grade (%)

(Mt)

b24 Wall rocks 68 3.081 22.07 915.210 40.399,236 22.65 1608.1 93.271 17.22 136.850
24–40 Weakly mineralized

zones
9192.5 295.840 31.07 2227.6 64.066 34.76 257.870 6.722,900 38.35 366.630

40–50 Low grade zones 43.783 1.024 42.72 455.280 11.118,000 40.94 3490.1 79.302,078 44.00 91.444
50–52.5 Moderately mineralized

zones
0.829700 0.16297 50.90 1.007,300 19.732 50.98 208.530 4.083,800 51.06 4.119,800

52.6–60 Highly mineralized
zones

0.139500 0.002624 53.05 0.526390 0.0097524 53.76 122.100 2.242300 54.44 2.254,700

N60 Riched zones – – – – – – 2.622,100 0.042,800 61.11 0.042,800
Sum 601.341,300
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curve is consistentwith themaximumandminimumvalues of the glob-
al distribution, indicating its high level of capability and performance.
Subsequently, the local uncertainty can be modeled by probability
plots above each threshold for application in themine planning process.
For instance, the uncertainty above threshold 40% is presented in Fig. 14.
3.5. Step 5: mineral resource classification

Mineral resource classification is crucial in uncertainty assessment
and risk analysis for mineral resource development. An important fea-
ture of the SS–N model in mineral resource classification is its capacity
in separating and thus classifying data populations. Resource classifica-
tion is a typical activity in the mining industry. There are some docu-
mented international codes, which have been developed in practice,
for classification of mineral resource. However, many of such codes
are not enforcement tools. The JORC is one of the codes that is most
widely used for provision of information that is exhaustive and broadly
in accordance with mining companies' objectives. The JORC classifies
mineral resources as measured, indicated and inferred depending on
the degrees of confidence. Ore reserves can be classified as proven
and probable from either measured or indicated mineral resource.
Converting from mineral resource to ore reserve depending on the
modifying factor such as mining, processing, metallurgical, infrastruc-
ture, economic, marketing, legal, environment, social, government and
particularly on the final decision of a competent person (JORC, 2012).
Fig. 15. Tonnage-cut-off curves. Green: individual realizations. Red: averag
In this research, the aim was to introduce an innovative technique,
which is based on the combination of geostatistical simulation and frac-
tal modeling, for mineral resource classification. Conventional methods
of interpolation have been established based on geostatistical tech-
niques like kriging, which leads to biased estimation on the basis of
smoothing effect and, thus, unreliable decisions. As described earlier,
quantification of uncertainty in global and local and spatial scales can
be achieved by conditional Gaussian simulation. The generated realiza-
tions are amenable to resource and reserve classifications, and one can-
not see any smoothness as compared to kriging results. The mineral
resource classification is thus more reliable with geostatistical simula-
tion. Interestingly, the SS–N technique yields more reliable information
of mineralized zones, as they are more consistent with grade distribu-
tion since each realization reproduces the supposed histogram of
declustered data. Mineralized zones are then classified into measured,
indicated and inferred resources (Table 4). The tonnage-cut-off curve
is also calculated to highlight the difference between the methods.
From Fig. 15, it can be seen the biased effect from the C–V model.

4. Conclusions

Orebodymodeling is themost important stage inmine planning and
risk analysis. Classification of mineral resource is complicated but
should be consistent with geological interpretation. Compared to
existing methods of mineral resource classification, this new technique
can dealwith the complexity of the data yet produces reliable results for
e of realizations (SS–N). Blue: C–V model. Black: Global (N–S) model.
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different parts of amineral deposit. Fractalmodeling is highly critical for
delineation of mineralized zones, and can be proposed for estimation of
mineral resources. In this paper, the proposed SS–N technique is an at-
tempt to combine the fractalmodeling (S–N)with geostatistical simula-
tion. Therefore, the application of the C–V model, which uses
interpolated data (in this study, by kriging), leads to less reliable esti-
mates. The proposed SS–N technique yields (i) robust log–log plots for
realizations obtained from geostatistical simulation and (ii) more reli-
able mineral resource estimates of the Fe grade in the Zaghia deposit.
The proposed SS–N technique can be used as a substitute for conven-
tional methods of modeling and estimation of ore deposits. This pro-
posed technique, SS–N, is applicable when there is no geological
information for constructing the estimation domains.
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Appendix A

Programming was done in MATLAB 2008 environment since its
capability in drawing log–log plots, and also generating the average
over the realizations.
Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
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