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a b s t r a c t

Software contracts have proven to play an important role for the development of robust
software. Contract systems are widely adopted in statically typed languages and are cur-
rently finding their entrance in dynamically-typed programming languages. Most research
on higher-order contracts has adopted a black-box approach where only input and output
are checked. These systems cannot check many interesting concerns about the behaviour
of a function. Examples include prohibiting or ensuring that certain functions are called,
checking access permissions, time or memory constraints, interaction protocols, etc. To
address this need for behavioural runtime validation, while preserving support for higher-
order programming, we introduce the notion of computational contracts. Computational
contracts is a contractmodelwith blame assignment in a higher-order setting that provides
a systematic way to specify temporal contracts over objects and functions and their possi-
bly higher-order arguments.We showvarious applications of computational contracts, and
explain how to assign blame in case of a violation. Computational contracts have been in-
tegrated in both Scheme and AmbientTalk, a dynamically-typed object-oriented language
built upon the principles of prototype-based programming.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Design by contract (DbC) [22] is a software correctness methodology that is based on the principle of pre- and post-
conditions to validate certain functionalities of a program. A contract specifies the obligations and the rights of both
the implementor and the client who uses the contracted entity. Pre- and post-conditions existed a long time before the
introduction of DbC, the novelty of DbC is that contracts are executable and defined by program code in the programming
language itself. DbC was first popularised in the Eiffel [21] programming language and since then adopted in almost all
mainstream languages (i.e. C++ [23], Java [19], C# [1] ). Contracts for higher-order functions were introduced in Scheme by
Findler and Felleisen [14]. Contracts have also been applied in multithreaded object-oriented systems to coordinate groups
of objects [17].

In general the aim of contracts is to specify and validatewell-defined properties of a system. Beugnard et al. [3] categorise
contract systems in four levels: syntactic (type systems), behavioural contracts (pre/post conditions), temporal contracts
(temporal ordering, time based synchronisation) and quality of service contracts (e.g. time and space guarantees). In this
paper we focus on runtime-validation of temporal contracts for dynamically-typed object-oriented languages.
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def MathModule := {

def positive := flat: {|x| x >= 0};

def sqrt(x) { ... };

def moduleInterface := object: {

def sqrt := provide: sqrt withContract: positive -> positive;

};

};

Fig. 1. Simple MathModule providing a contracted sqrt function.

We have found that most contract systems do not provide a structured and expressive mechanism to check temporal
aspects in a higher-order setting. Even though, many contract systems allow the programmer to define contracts at the class
and/or interface level, making sure that an object received as an argument obeys a temporal contract is impossible in such
a system if the object’s class does not already enforces this behaviour.

A very simple example of the lack in expressiveness of current higher-order contract systems can be observed when
implementing a temporal contract that disallows a function to write to a file. In current systems it requires the programmer
to manually save the state of the file in the precondition and later validate that the state of the file has not changed in the
postcondition. While this functionality on its own requires a substantial amount of work, other functions might open, write,
and close files in the system concurrently. Thesewrites are possibly allowed and thus should be ignoredwhen validating the
postcondition. Even more importantly, checking this particular contract in the (post-condition) is too late i.e. the damage
has already been done. Finally, current higher-order contract systems do not provide abstractions so that the programmer
can easily detect that a file was read.

In this paper we present computational contracts, an extension to the higher-order contract systems defined by Findler
and Felleisen [14]. Computational contracts tackle the problems of current higher-order contract systems by also allowing
temporal contracts in dynamically-typed languages. Computational contracts allow the programmer to define and check
temporal contracts over a function or an object and its higher-order arguments. We present various examples of computa-
tional contracts including mandatory function calls and protocol contracts. We describe an expressive model to specify and
check higher-order computational contracts at runtime, including proper blame assignment. We implemented3 computa-
tional contracts in AmbientTalk, a dynamically-typed object-oriented language built upon the principles of prototype-based
programming. The work presented in this paper extends our initial work on computational contracts [25] for Scheme with
support for object-oriented programming. In this paper we also give an operational semantics of computational contracts,
which was not presented before.

We start our explanation of computational contracts by first giving a small overview of higher-order contracts in
Section 2. Examples of computational contract applications are shown in Section 3. In Section 4, we illustrate the use of
computational contracts for object protocols. Subsequently we give the operational semantics of computational contracts
in Section 5.Wediscuss interactions between computational contracts and existing contracts in Section 7. Before concluding,
we survey related work in Section 8.

2. AmbientTalk higher-order contracts in a nutshell

The AmbientTalk [6] contract system is based upon Findler and Felleisen’s [14] seminal work on higher-order pre/post
contracts. It differentiates between contracts defined over simple values, called flat contracts, and contracts defined over
functions dubbed functional contracts. Functional contracts are of the form Cd → Cr where Cd is a contract over the domain
of the function and Cr is a contract defined over the range of the function. As the contract system supports higher-order
pre/post contracts, it allows Cd and Cr to be either flat or functional contracts. We first show a first-order function contract
example, i.e., a contract where Cd and Cr are flat contracts followed by an example where Cd is a functional contract. Finally
we show an extension to higher-order pre/post contracts necessary to define contracts over (prototype) objects.

2.1. First-order function contracts

The prototypical example of contract frameworks is to define a contract over the sqrt function. The purpose of the
contract is to ensure that the argument passed to the sqrt function is a positive number (pre-condition) and that the result
of the sqrt function is also a positive number (post-condition). A possible specification of this contract in AmbientTalk is
shown in Fig. 1.

Contracts in AmbientTalk are defined on the provided functionality of a module where they are the most effective
[14]. The AmbientTalk module system supports exporting functions and defining a contract over them at once by using
provide:withContract:. In the example the MathModule provides the function sqrt with a functional contract that is

3 Available at http://soft.vub.ac.be/∼cfscholl/index.php?page=at_contracts.
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> import MathModule;

> sqrt("wrong");

>>(1:1:REPL) sqrt("wrong") violated the contract,

expected positive given "wrong"

Fig. 2. The AmbientTalk interaction prompt: signalling a contract violation.

def map_pos(f, a) {

a.map: f;

}

def moduleInterface := object: {

def map_pos := provide: map_pos withContract:
(positive -> positive) * arrayOf(positive) -> arrayOf(positive);

}

Fig. 3. Higher-order pre/post contract over the function map_pos.

>map_pos( {|x| x+1 }, [1,2,3])

>>[2, 3, 4]

>map_pos( {|x| "wrong" }, [1,2,3])

>> (1:1:REPL) map_pos({ |x| "wrong"}, [1, 2, 3]) violated the contract,

expected positive given "wrong"

Fig. 4. The AmbientTalk interaction prompt: signalling a higher-order contract violation.

composed out of two flat contracts. These flat contracts are composed with the arrow operator (->). The positive contract
is constructed by making use of the flat: contract constructor, which given a predicate function returns a flat contract.
In AmbientTalk, literal closures are defined by curly braces and the formal arguments of the closure are written between
bars (|). The flat contract over the argument of the sqrt function positive checks that the argument passed to the sqrt
function is positive (left from the arrow). Similarly the result of the function (after the arrow) must also pass the same flat
contract.

Modern higher-order contract systems have a mechanism that allows the responsible party to be pointed out in case a
violation is detected. The process of figuring out who violated the contract is called blame assignment [14]. For first-order
function contracts, if the pre-conditions are violated it is the callers fault, if the post-condition is violated it is the callee’s
fault (the sqrt function in our example). An example of using the contracted sqrt function from the MathModule is shown
in Fig. 2. In this figure the AmbientTalk prompt is shown. First the math module is imported and then the sqrt function
is applied to the string "wrong". The contract system verifies the precondition and as expected assigns blame to the read–
eval–print loop (1:1:REPL).

For a long time researchers agreed on assigning blame to the immediate context in which the violation took place. If the
pre-conditions are violated it is the callers fault, if the post-condition is violated it is the callee’s fault (the sqrt function
in our example). However in the context of (dynamic) languages such as Ruby, Python or Scheme the use of higher-order
functions makes blame assignment more challenging.

2.2. Higher-order pre/post contracts

Higher-order contracts can be used in order to define contracts over higher-order functions, i.e. functions that receive
other functions as an argument or return functions. An example of a popular higher-order function is the map function, this
function expects a function f and an array a. The map function creates a new array b where b[i] = f (a[i]). A higher-order
contract that can be used to define a contract over a variation of the map function is shown in Fig. 3. This code excerpt
specifies that the first argument of the map_pos function is a function, which expects a positive number and returns a
positive number, the second argument of the map_pos function is an array of positive numbers. Finally the return value of
the map_pos function must be an array of positive numbers.

As an example of the use of the map_pos function consider Fig. 4. In this example, the map_pos function is first applied
correctly. Then the map function is applied again, however now the function passed as an argument does not produce
positive integers.While the call to themap function is being evaluated the contract system detects this violation and assigns
blame to the caller of the map function, in this case the REPL. This is in contrast to simple assertion-based systems, which
cannot validate such contracts. In such a case an exception would be thrownwhen the values of the returned array are used
in some other part of the program.

2.3. Validating higher-order contracts

In this section we give an intuitive explanation of how higher-order contracts are validated, a more operational
description of this process is shown in Section 5. A higher-order contract is an agreement between two parties; the server
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def notEmpty := contract: { |s| !s.isEmpty() };

def StackC := ObjectContract: {

def push(o) { int -> void;};

def pop() { notEmpty -> int; };

};

def contractedStack provide: stack withContract: StackC;

Fig. 5. Object contract definition and deployment.

and the client. The server is the provider of the initial contracted value (i.e. map_pos) and the client is its user context.
Assigning blame in case of higher-order contracts is not as trivial as with first-order function contracts. Predicates defined
over functions are in general undecidable and verifying them before starting the execution of the function under contract
is in general impossible [24]. For this reason, checking the functional contracts of a higher-order contract must be delayed
until these functions are used. It is easy to validate whether the array past as an argument to the map_pos function contains
positive integers but validating the function past to the map function is in general undecidable and thus must be delayed
until this function is used. Therefore, the execution point of a contract failure is dissociated from the execution point where
the contracted function is initially applied.

This disassociation means that contract checking and determining blame assignment requires more than looking at the
execution trace and blaming the last frame before the violation. When a contract is applied over a value it is decomposed
into (smaller) contracts to protect the values that the server and the client exchange. In case of the map_pos function the
functional contract defined over the function is taken out of the higher-order contract and applied over the function given
as an argument. This function contract is a first-order function contract and can be validated as shown in Section 2.1. The
contract system propagates a textual description of the provider and the server (blame labels) to the contract pieces it
extracts form the contract in order to assign blame in case a violation is detected. However, it is important to realise that
the provider of a higher-order argument is the client of the original contract and the user of the argument is the initially
contracted function. Therefore, the contract system needs to swaps the roles of the parties and thus the blame labels. For
arguments the client becomes the server and the server the client. For results the roles remain as before.

2.4. Object contract definition and deployment

Our approach for defining object contracts over prototypes is similar to how first-class class contracts are defined in
Racket [27]. An object contract is defined by a protocol that is similar in syntax to an object definition. The defined methods
in a protocol denote theminimal interface that an object has to implement. The body of these methods denotes the contract
that is applied over the individual methods of the contracted object. It is often important to access the fields of the object
in order to specify object contracts. Therefore, flat contracts over methods receive a reference to the contracted object as an
optional second argument. As this argument is optional, flat contracts for functions can be reused in method contracts. Pre-
and post-conditions that do not consume any arguments are created with the keyword function contract:.

An example of a contract for the elements, which can be pushed and popped off a stack is shown in Fig. 5. The object
contract specifies that there should be at least twomethods available namely push and pop. The contract defined over push
states that the argument should be an integer. Similarly the values that are popped of the stack should be integers. The
precondition of the pop operation states that the stack should not be empty. Object contracts are defined independently of
the objects on which they are applied for two main reasons. First, the decoupled nature of defining object contracts has the
advantage that the same contract can be reused for multiple objects. Second, defining the object contract independently of
the contract on which it is deployed allows for better modularity.

With object contracts, we finish the overview of the basic contract system in AmbientTalk. In the next section, we present
our extension to higher-order contracts,which allows the specification of contracts over the actual computation of a function
while preserving support for higher-order programming.

3. Computational contracts

A computational contract is a higher-order contract over the execution of a contracted entity. Computational contracts
are applicable over functions and objects and their higher-order arguments. In contrast to traditional higher-order contracts
they are not restricted to only validate the interface of an applicable value but they can also express assertions over the
computation that is associated with that value. Programmers can specify what has to happen or what should not happen
during the execution of the computation.

As an example of a high-level computational contract reconsider the sqrt function shown in Section 2. This function
should not display anything to the user. With computational contracts this behaviour can be enforced by specifying a

contract over the sqrt function, for example positive
!call(system.println)
−−−−−−−−−→ positive. The contract defined over the sqrt function
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def sqrt_c := provide: sqrt withContract:
positive -prohibit_c(system.println)-> positive;

Fig. 6. Using a prohibit contract to prevent the sqrt to apply system.println.

def map_pos := provide: map_pos withContract:
(positive -prohibit_c(system.println)-> positive) * arrayOf(positive)

-> arrayOf(positive);

Fig. 7. Defining a prohibit contract over the argument of the map_pos function.

again specifies that the argument has to be a positive number and that the return value has to be positive. In addition the
computational contract, denoted by !call(system.println), disallows all invocations of system.println during the execution
of the sqrt function. The computational contract is active during the dynamic extent of the function application. Internally,
the computational contract consist of two parts. First, the interception component is a description of when validation of
the function under contract is needed, in our example when the method system.println is invoked. Second, the blame
assignment component is applied when the interception component intercepts an interesting event. When the blame
assignment component is applied it can decide to assign blame, update internal state and/or proceed with the computation,
etc. The end programmer does not have to write these interception and blame assignment specification himself as the
computational contract system provides high-level abstractions, which make it easy for the end programmer to specify
temporal constraints.

Prohibition of certain function applications within the dynamic extent of a function application is only one type of
computational contract. Specifying that a certain function application is mandatory or that a sequence of function calls
should obey a certain protocol are two other examples, which are directly supported by the AmbientTalk computational
contract system. To make it easy for the end programmer, all these variations can be expressed by two functions ensure_c
and prohibit_c. These functions create low-level computational contracts. Depending on their arguments they either
create a computational contract that prohibits or ensures that a certain function is applied or a protocol is followed during
the execution of the contracted function. In the next sections we show how to define and use these type of high-level
computational contracts in AmbientTalk.

3.1. Prohibit contracts

In order to specify a computational contract that prohibits a function to be applied during the execution of a contracted
function, the developer only has to specify which function call is disallowed. With computational contracts prohibiting
a function call is done by generating a contract with the function prohibit_c. For example, prohibit_c(f) prohibits
the function f to be applied within the dynamic extent of the contracted function. Note that in this definition f denotes
applications of the function that the variable f refers to when the contract is constructed.

In the rest of our examples all contracted functions are defined in a file called "defs.at" and exported with a contract.
These functions are then imported and applied from a different module in a file called "uses.at". In most examples there
is no explicit module “uses.at” but when we show the AmbientTalk interaction prompt it is implicitly evaluated in this
module.

Computational contracts are tightly integrated with the existing AmbientTalk contract system. For example the
prohibit_c function can be used to contract exported functions in AmbientTalk as shown in Fig. 6. In this example4 the
function sqrt is exported with the prohibit contract that ensures that the function system.println is not applied. The
prohibit contract assigns blame to the function sqrt whenever the function system.println is applied in the dynamic
extent of the sqrt function.

The same prohibit_c contract constructor can also be used to contract functional arguments. Let us revisit the example
of the map_pos function from Section 2.2 and add a prohibit contract over the supplied function as shown in Fig. 7. When
using the contracted map_pos function correctly it behaves like any other function. A transcript that shows an example
where the function map_pos is applied to the increment function and the array [1,2,3,4] is shown below. The result of
this function is as expected the array [2,3,4,5].ˇ ¨
Interactive AmbientTalk Shell, version 2.19 Contracts

>import ~/.defs;

>>nil
>map_pos({|x| x+1}, [1,2,3]);

>>[2, 3, 4]˚ ˝

4 Note that there is a minus sign (-) in front of the prohibit_c contract. Besides representing that the computational contract is defined over the
arrow, minus is actually a contract operator that binds the preconditions to the computational contract. Similarly, the -> operator binds the computational
contract to the postconditions.
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def display_average(a) {

((a.inject: 0 into: {|x,y| x+y})/a.length);

};

def moduleInterface := object: {

def display_average := provide: display_average withContract:
arrayOf(pos) -ensure_c(system.println)-> any;

}

Fig. 8. Exporting the function display-averagewith a promise contract.

When the map_pos function is applied to a function that violates the computational contract, i.e. applies system.

println, blame is assigned to the caller of the map_pos function. A transcript of this interaction is shown below. In
the transcript there is no printout of the original array, instead an error message is presented. Contract checking of the
computational contract stops the current evaluation and prevents the function system.println from being applied. The
transcript shows that the violationwas caused by the file uses.at. As the transcript was taken from the interactionwindow
of the uses.at file, it can be easily deduced that the blame is assigned to the call made from the prompt. It is important to
note that blame is assignedwhen the argument function is appliedwithin the body of the map_pos function.When map_pos
is applied it is not possible to determine that the function passed as an argumentwill behave according to the contract. This is
also themain reasonwhy blame assignment is needed in the context of higher-order functions.When a violation is detected
during the execution of a function under contract, it is not always clear whether this is the fault of the caller or of the callee.
Blame assignment solves this problem.ˇ ¨
> map_pos( { |x| system.println(x); x+1; }, [1,2,3] )˚ ˝ˇ ¨
1:8:uses.at violated the contract prohibit_c(system.println)

computational contract violation

origin:

at system.println(x) (1:16:REPL)

at a.map:(f) (44:17:defs.at)

at map_pos({ |x| system.println(x); x.+(1)}, [1, 2, 3]) (1:1:REPL)˚ ˝
To pinpoint the line that causes the violation of the computational contract the stack trace can be used (shown after the

word origin:). It reveals that the origin of the violation is in the read–eval–print-loop on line 1, character 16. As shown in
the stack trace it is that line that contains the call to the system.println function.

3.2. Ensure contracts

The dual of prohibiting an action is to ensure that an action is performed. An ensure contract verifies that a certain promise
is kept during the dynamic extent of the contracted function. For example, a function g can promise to apply another function
f. Validating an ensure contract is more subtle than validating a prohibit contract as blame can only be assigned after the
contracted function returns. Defining an ensure contract with computational contracts is as simple as defining a prohibit
contract. Ensure contracts are created with the function ensure_c. When applied to the function f it returns an ensure
contract that verifies that the function f is applied within the dynamic extent of the function under contract.

To exemplify the use of an ensure contract consider the function display_average shown in Fig. 8. This function takes
an array of numbers and displays the average of the array. It is exported with an ensure contract that assigns blame when
the promise of applying the function system.println is not held.ˇ ¨
> display_average( [10,20] );˚ ˝ˇ ¨
47:13:defs.at violated the contract ensure_c(system.println)

origin:

at display_average([10, 20]) (1:1:REPL)˚ ˝
This function display_average correctly computes the average of the list passed as an argument. Unfortunately, the

function under contract does not apply the function system.println. Therefore applying the function display_average

to the list [10, 20] leads to a violation of the ensure contract. A transcript of this example is shown above. As highlighted
in the transcript the function display_average violates the ensure_c(system.println) contract.

3.3. Usage protocols

Computational contracts can also be used to validate that a usage protocol is respected. Until now we have only
considered computational contracts where the application of a single function is validated. In this section, we show
computational contractswhere the programmer describes a partial specification of the path of applications a certain function
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def OpenCloseProtocol() {

UsageProtocol: {

def start() { closed(); };

def closed() { (on: openFile) => { opened(); }};

def opened() { (on: closeFile) => { end(); }};

def end() { (on: anyMethod) => { false; }};

};

};

Fig. 9. Defining a protocol for opening and closing files.

def readCharFromFile(s) {

openFile(s).readChar();

};

def moduleInterface := object: {

def readCharFromFile := provide: readCharFromFile withContract:
string -ensure_c(OpenCloseProtocol)-> char;

}

Fig. 10. Defining a protocol contract over the readCharFromFile function.

should or should not follow. In our implementation this path is expressed by a finite state machine.5 As shown in Fig. 9, this
finite state machine describes those functions that can be applied successively. The start state of the finite state machine
indicates that the finite state machine has to be initialised to the state closed. Besides the start state the finite state machine
has three states: closed, opened, end. In each of these states there is one possible transition, for example when the finite
state is in the closed state, function invocations to the function openFile will transition the finite state machine to the
opened state.

Each state can have multiple transitions and are denoted with the following syntax (on: f)=> B; where f refers to a
function and B is a transition function expressed in AmbientTalk code. This transition function is applied to the arguments
of the intercepted function. If multiple transitions are defined the first applicable transition function is chosen. The result of
evaluating the transition function B is used as the next state of the finite state machine. In case the returned value is false, a
contract violation is detected. States can also receive arguments which can be used in the transition code in order to decide
to which state to transition next.

The protocol specifies that the end state can be reached after exactly one application of the function openFile followed
by one application of the function closeFile. Functions that are not specified in the protocol can always be applied. For
example the application sequenceopenFile,system.println,closeFile leads to the end state. In theend state the special
wildcard qualifier anyMethod is used. This means that, calling any function mentioned in the usage protocol while in the
end state results in a violation of the protocol.

When an application sequence does not follow the protocol blame is assigned. For example, the application sequence
openFile, closeFile, openFile is not allowed as the end state does not allow any applications to openFile.

Ensure protocols. Once a protocol is defined it can be used to create a computational contract with the ensure_c function.
When this function is applied to a protocol it returns a new computational contract. The resulting computational contract
assigns blame to the contracted functionwhen the function applications in the dynamic extent of the contracted function do
not obey the usage protocol. This happens when functions are applied in the wrong order or when the finite state machine
is not in the end state when the contracted function returns.

To exemplify the use of the OpenCloseProtocol consider the readCharFromFile function shown in Fig. 10. This
function opens a file and reads one character from this file. The readCharFromFile function is exported with a contract
that ensures that the OpenCloseProtocol is followed. Further it is specified that the argument of the function should be a
string and the return value a char.

Applying the exported readCharFromFile function results in an error message as shown below. In the error message
we see that blame is assigned to the file defs.at. It is also specified that the violation was a ensure_protocol_c contract
violation.ˇ ¨
> readCharFromFile("testFile.at");˚ ˝ˇ ¨
52:13:defs.at violated the contract ensure_protocol_c

origin:

at readCharFromFile("testFile.at") (1:1:REPL)˚ ˝

5 Our implementation of the finite state machine is in the line of [20].
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def createWindowProtocol :=

UsageProtocol: {

def start() { checkWindow(2) };

def checkWindow(x) {

(on: createWindow) => {

if: ( x == 1) then: { checkWindow(0); } else: { end(); }

};

};

};

Fig. 11. Open windows protocol definition.

def readAndShow(filename) {

...

createWindow( ... );

createWindow( ... );

...

}

def readAndShow := provide: readAndShow withContract:
string -prohibit_c(create-window-protocol)-> any);

Fig. 12. Defining a prohibit protocol contract over the readAndShow function.

Prohibit protocols. A computational contract that prohibits following a protocol can be created with the function
prohibit_c. Such a computational contract assigns blame when the function applications in the dynamic extent of the
contracted function obey the usage protocol. This happens when all function applications are applied in such an order that
the finite state machine reaches the end state. To show a use of a prohibit-protocol contract consider the protocol shown
in Fig. 11. This protocol reaches the end-state after exactly two applications of the createWindow function. When applying
this protocol to the prohibit_c function it returns a contract that prohibits a function to create more than one window.
From the moment the contracted function creates two windows it violates the prohibit contract because this application
sequence leads to the end state of the finite state machine.

The function readAndShow shown in Fig. 12, expects a filename and shows the content to the user. In order to make
sure that this function does not create more than one window it is exported with a prohibit contract: prohibit_c
(createWindowProtocol). Using the function make-and-show-window leads to a violation of the prohibit contract.

The use of protocols allows the programmer to express certain quality of service contracts. For example, in order to avoid
service abuse the programmer can define a protocol that states that a function must be called at least twice and at most five
times.

4. Computational contracts for object protocols

In this section we show the use of computational contracts in order to restrict temporal orderings of method calls on an
object. Such temporal orderings overmethod calls are known as object protocols and are an active point of research. Recently,
the use of object protocols has been analysed in a number of open-source projects, comprising almost two million lines of
code. A remarkable result from this study is that about 90% of the protocols found, fit into one of five categories [2]. In this
section we show the applicability of computational contracts for object protocols by defining abstractions that implement
the categories as presented in [2].

4.1. Initialisation

The first object protocol category concerns the initialisation of objects. In certain situations an objects must be initialised
after construction time but before the object is meant to be used. An example of this category can be found in the
AlgorithmParameters class of Java, only after one of its three init methods has been invoked calls to getEncoded

are allowed. In the initialisation category, calls to an instance method m after construction-time will result in an error
unless an initialising method i has been called at least once before [2]. The implementation of this object-protocol in
AmbientTalk is shown in Fig. 13. Method names in the object protocol can be matched based on regular expressions,
i.e. to select all methods that start with set the following regular expression can be used "set.*". In order to use the
InitialisationProtocol, the programmer thus only needs to provide the regular expression that selects the initialisation
methods. An example where the InitialisationProtocol will only allow method invocations to the contracted object
after a method invocation to the method initWithPredicate is shown at the bottom of Fig. 13. A simple variation on the
InitialisationProtocolwhere calls to the initmethod are only allowed once, only requires adding another case in the
endState, i.e. (on: initMethod) => {false};
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def InitialisationProtocol(initMethod) {

ObjectProtocol: {

def startState() { (on: initMethod) => { endState() };

(on: anyMethod ) => { false }; };

def endState() { (on: anyMethod ) => { endState() }; };

def start() { startState(); };

};

};

...

provide: filter withContract:
ensure_c( InitialisationProtocol("initWithPredicate") );

Fig. 13. Initialisation Protocol.

def TypeQualifierProtocol(initMethod,predicate, disallowed) {

ObjectProtocol: {

def startState() {

(on: initMethod) => { |arg|

if: !predicate(arg) then: {

allAllowed();

} else: {

disallowedState();

};

};

(on: anyMethod) => { startState(); };

};

def disallowedState() {

(on: disallowed) => { false; };

(on: anyMethod) => { disallowedState(); };

};

def allAllowed() {

(on: anyMethod) => { allAllowed(); };

};

def start() {

startState();

};

};

};

Fig. 14. TypeQualifierProtocol.

4.2. Deactivation

The deactivation object protocol category verifies the deactivation of an object. After deactivation, anymethod invocation
on a deactivated instance results into an exception. In the deactivation category, calls to an instance methodmwill fail after
somemethod d is called on the same instance, and it will always fail for the rest of the object’s lifetime [2]. Like initialisation,
object protocols may or may not permit d to be called more than once. The implementation of the deactivation protocol is
very similar to the initialisation protocol and thus omitted from this paper.

4.3. Type qualifier

Some types disable certain methods for the lifetime of the object. In the type qualifier category, an object instance
will enter an abstract state S at construction-time, which it will never leave [2]. Calls to an instance method m, if it is
disabled in state S will always fail. In many cases the abstract state that newly constructed instances inhabit can be set by
parameters to the constructor. This case is shown in Fig. 14. This object-protocol is instantiated with an initialiser method, a
predicate and a regular expression describing the disallowedmethods.When the initMethod is invoked in the startState
the predicate will be applied to the argument passed to the initMethod. This argument is accessible from within the
protocol and bound to the arg variable. Depending on the predicate, the state machine will transition to the allAllowed or
disallowedState.
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4.4. Dynamic preparation

In the dynamic preparation category, an instance methodmwill fail unless another instance method p is called before it
[2]. If we think of types in this category as having two states, ready and not-ready, this category is distinguished from the
initialisation category in that an object may dynamically change from ready to not-ready at numerous points in its lifetime
(i.e. it is not monotonic). Implementing this category boils down to adding transition relations that will move the object-
protocol from the not-ready state to the ready state when certain methods are applied. In the not-ready state invocation to
the disallowed method violate the object-protocol.

4.5. Redundant operation

In the redundant operation category, a method m will fail if it is called more than once on a given instance [2]. The
implementation of this abstraction is omitted from the paper, as it is very similar to the createWindowProtocol shown in
Fig. 11.

In this section we showed the applicability of computational contracts for object-protocols by implementation object-
protocol categories. These categories account for 90% of the object protocols currently found in the wild. While the
implementation of these object protocols with computational contracts seems trivial, current implementation of object-
protocols are low level and scattered throughout the code. With computational contracts we offer direct support for object-
protocols. Further the use of computational contracts for the implementation of object-protocols has the advantage that
the validation code can be separated from implementation. Direct support for object-protocols also has the advantage that
the programmer will be able to define more complex object-protocols. Finally, by making use of our contract system the
programmer receives blame assignment information about where the violation against the object-protocol takes place and
the module that is responsible for the violation.

5. Operational semantics of computational contracts

In this sectionweprecisely describe the innerworking of the computational contract systembypresenting an operational
semantics. In order to concentrate on the specific mechanism of checking computational contracts, we describe their
operational semantics in a simple higher-order functional language à la Scheme. The operational semantics of the full
AmbientTalk language are described elsewhere [30]; the integration of computational contracts in AT does not raise any
specific issue beyond the mechanism described here. An executable specification of the semantics is also available for PLT
Redex [13].6 The figures of the specification as explained here are generated directly from the PLT Redex semantics. We
start our explanation by describing the CEK model of a Scheme like language, and then explain how to extend it to support
computational contracts.

5.1. CEK model and syntax definition

We first show a core Scheme like language with syntax for computational contracts and incrementally show the
extensions needed to define computational contracts. The semantics is defined as a variation on a CEK machine. The CEK
machine defines program behaviour by defining transition relations from one program state to the next. The representation
of a program state consists of the control string together with its environment and the continuation of the computation. In
order to express computational contracts next to a variable environment also a contract environment is needed. Formally
the state of a computation consists of a tuple:

1. The control string (C), the environment (E) and the contract environment (CE).
2. The continuation code (K).

Environments are finite maps for the set of variables x to the set of values v. If E is an environment then E[x := v] is like
E except on the point xwhere it is v. Reduction rules of the machine are written in the form ⟨⟨C E CE⟩ K⟩ ⇒ ⟨⟨C′ E′ CE′

⟩ K′
⟩.

The contract environment CE is an ordered list of prohibit and ensure contracts.
Fig. 15 shows the core syntax of the λc (c for contract) language. λc is a simple Scheme like language with booleans,

numbers and lists together with the primitive operations applicable to them. The basic expressions consists of values,
variables, function applications, if statements, and assignment. There are three syntactical expression for the definition
of contracts. Flat contracts are represented by (flat e) where e is expected to evaluate to a predicate function. For
example, the definition of a flat contract that verifies that a value has to be bigger than 10 can be represented as follows:
(flat (λ (x) (> x 10))). Composing flat contracts in order to define a functional contract is done by using the arrow operator,
(→ ca cr). In this representation ca is the contract defined over the arguments of the function under contract and cr the

6 http://soft.vub.ac.be/∼cfscholl/index.php?page=at_contracts.
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Fig. 15. Core syntax of the λc language.

Fig. 16. Basic reduction rules of the CEK machine for computational contacts.

contract over the return value of the function under contract. Note that the definition of contracts is recursive, therefore
both ca and cr can be functional contracts.

Computational contracts in the semantics are limited to prohibit and ensure contracts, both take an expression that is
expected to evaluate to a function. Similar to the approach by Dimoulas et al. [7] guarding an expression with a contract is
expressed by a monitor construct (mon

j
i c e). The two labels i, j respectively indicate the provider of the expression and the

user of the expression. Finally, blame is expressed by (blame i j).

CEK-machine reductions rules. The rules that govern the CEK machine are shown in Fig. 16. There are four groups of rules,
a first group governs initialisation and termination, a second governs if statements, the third group deals with function
applications and the last group deals with higher-order contracts.

Initialisation and termination.

• INIT: In order to evaluate a program e, themachine starts with the initial environment E0 and the stop continuation stop.
In the initial environment E0 there are no bindings and the set of variables are all mapped to error i.e. E0 ≡ x → error

for all variables x. The initial contract environment CE0 is empty. After initialisation the machine steps through a number
of reductions until the machine reaches a terminal state.

• TERM: When a terminal state is reached the machine stops and the final value v is returned as the answer of the
evaluation.

If statements. The evaluation of if expressions is governed by IF, IF/TRUE and IF/FALSE and is completely standard.
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Higher-order contracts. The evaluation of higher-order contracts consists of three rules.

• MON: The monitor reduction rule moves evaluation to the body of the expression under contract and remembers the
contract that is defined over the value.

• FLAT:When the expression is evaluated to a value and there was a flat contract defined over this value the flat contract
is transformed into a conditional that tests whether the predicate of the flat contract is obeyed.

• HO: Higher-order contracts are recursively translated into a wrapper function, which monitors the argument and result
of the original function. Note that the blame labels are switched for the argument monitor as explained in Section 2.3.

Computational contracts:. The definition of computational contracts consists of three rules. Validating computational con-
tracts is interwoven with the reduction rules for function applications.

• CC-ARG: A ensure or prohibit computational contract takes an expression e that is expected to evaluate to a function.
The CC-ARG rule evaluates the expression e of the computational contract and creates a new continuation to be applied
over the monitored value.

• CC: Applying the contract over a value creates a new value on the top of the stack that is identical to the original value
but the contract environment EC of this new value is extended with the evaluated computational contract.

Function applications. The evaluation of function applications consists of the following rules and are interwoven with the
contract checking semantics.

• APP/PRIM-FUN: This rule moves evaluation to the applied function.
• APP/PRIM-ARG: This rules evaluates the argument expression of the function application. Note that the function that is

being applied cannot be contained in the prohibit list of the contract environment. Finally when a function is applied the
matching ensure contracts are removed from the contract environment (i.e. CEapp\VCfun).

• APP/PRIM-BLAME: When a function is being applied that is prohibited blame needs to be assigned. This is done by
traversing the list of prohibited functions from the oldest prohibited function till the newest prohibited function. In the
reduction rules this is expressed as CEapp[VCfun] = xh where xh is the blame label corresponding to the prohibit contract.

• APP/PRIM-BODY: After the argument is evaluated the body of the function is evaluated in the application environment
extended with the binding of the formal parameter to the actual parameter.

• CHK-ENSURE and CHK-ENSURE-BLAME: When the function application is evaluated to a value. The check ensure con-
tinuation validates whether all the ensure contracts of the applied function are removed from the contract environment
(with the e operator). In case a remaining ensure contract is found in the environment blame is assigned.

6. Implementation of computational contracts in AmbientTalk/C

The implementation of computational contracts in AmbientTalk/C is based on aspect-oriented programming. Therefore,
we first give a brief overview of the aspect-oriented language constructs and then go into detail of how computational
contracts can be implemented with those constructs.

6.1. Aspect-oriented language extensions

Aspect-oriented programming allows the specification of crosscutting expressions in a modular way so that they are no
longer scattered through the code but localised in one place of the code. Thesemodular crosscutting expressions are defined
by the specification of additional behaviour called advice on particular points in the programs execution called join points.
The programmer specifies when the advice has to be applied by giving a point cut . Whenever the join point descriptor
matches a join point the advice is executed.

An aspect consists of a pointcut descriptor and a corresponding advice. The advice is executed whenever the pointcut
descriptor matches the current join point stack. A point cut is represented by a predicate functionwhich is applied to a stack
of join points. When the aspect descriptor returns true the corresponding advice is executed. The programmer can alter the
execution of the program by executing other functionality before, after or instead of the intercepted function application.
Advice is implemented as a closure that is applied by the underlying system with a function p. This function p allows the
programmer to continue with the originally intercepted function application. The advice is expected to return a function
that is applied by the underlying system to the arguments of the intercepted function application.

Now that it is clear how an aspect can be defined, there is still the question of how to deploy an aspect and how to
limit its scope. Moreover, there also is the question whether the aspect should be active in the static or dynamic scope
of evaluation. Full fledged aspect languages have constructs for both dynamic and static aspect deployment [11]. As the
semantics of computational contracts depends only on dynamically deployed aspects we limit the rest of the explanation to
the specification of dynamic aspects. In AmbientTalk/C, fluid: A deploy: B, deploys an aspect A in the dynamic extent
of executing the body B.
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def cc (pc , adv , dom, rng ) {
{ | pos , neg |
{ | val |
i f : ( i s : val taggedAs : Closure ) then : {
{ | x |
def ver i f i ed := dom(neg , pos ) ( x ) ;
def adv := adv (pos , neg ) ;
def asp := aspect : pc advice : { | proceed , args |
adv ( proceed , args ) ;
} ;
def resu l t := ni l ;
f l u id : asp deploy : {
resu l t := val ( ve r i f i ed ) ;

} ;
rng (pos , neg ) ( resu l t ) ;

}
} else : {
blame(pos ) ;
} ;

} ;
} ;

} ;

def prohibi t_c ( pc ) {
cc (pc ,
{ | pos , neg | { | p , a | blame(pos ) } } ,
f l a t ( { | x | true ; } ) ,
f l a t ( { | x | true ; } ) )

} ;

def ensure_c ( pc ) {
def ca l led := f a l s e ;
cc (pc ,
{ | pos , neg | { | p , a | ca l led := true ; p( a ) ; } } ,
f l a t ( { | x | ca l led := f a l s e ; true ; } ) ,
f l a t ( { | x | ca l led ; } ) ) ;

}

Fig. 17. High-level abstraction for computational contracts.

6.2. Verification and blame assignment of computational contracts

We now show a didactical implementation7 of computational contracts based on aspects and explain how blame
assignment works.

At the top of Fig. 17, the computational contract constructor function cc is shown. This function is used to create a
computational contract (i.e. it implements the (-) and -> operators). The first argument of this function is the interception
component of the computational contract. The interception component specifies the exact points where the contract needs
to be validated. The second argument is the blame assignment component and is almost the same as an advice. The
difference is that a blame assignment component also receives blame assignment labels. The two last arguments are the
domain contract and the range contract. A computational contract verifies its contracted function very similarly to the way
higher-order contracts are verified in Section 5. First, the domain contract is verified (line 6). Second, the blame assignment
component is initialised and an aspect is created (line 7–10). This aspect is used to intercept interesting events in the dynamic
extent of the applied contracted function Subsequently, this aspect is deployed and the function over which the contract
is defined is applied (12–14). The blame assignment component is applied when a matching join point is encountered in
the dynamic extent of applying the contracted function, as specified in the advice (line 9). When there is no violation of
the computational contract during the execution of the contracted function, the computational contract behaves exactly like a
higher-order contract.

The definition of a prohibit and ensure contracts can now be defined in terms of our general computational contract
definition, as is shown in Fig. 17. A prohibit contract simply assigns blame in case the blame assignment component is
applied. An ensure contract initialises a variable called to be false in the precondition and sets this variable to true in the
blame assignment component. The postcondition returns this variable and blame is assigned when the variable was not set
to true.

7. Discussion

We now discuss some subtleties that arise in the interaction between computational contracts and existing contracts.

7 Available online: http://soft.vub.ac.be/∼cfscholl/AmbientTalk/ambienttalk.html.
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def process( f) { ... (f 4) ... }

def remove(path) { ... }

def moduleInterface := object: {

def process := provide: process withContract: any -prohibit_c(remove)-> any;

def remove := provide: remove withContract: string -> bool;

};

Fig. 18. Example where a computational contract and a pre/post contract can be active over the same function.

7.1. Blame precedence

Note that a function can be subject to validation bymultiple computational contracts at the same time. In our implemen-
tation we always give precedence to the oldest deployed computational contract. The reasoning behind this decision is that
in case of multiple identical contracts the oldest deployed contract indicates the first provider of the value who promised
the contract. Successive identical contract applications mean that a module has passed a contracted value to another mod-
ule that expects the same contract. If in this new module a violation is detected blame is assigned to the module who first
promised the contract.

It is also possible that a function is subject to validation by both a computational contract and a pre/post contract at the
same time. In that case, the contract system should give precedence to either the computational contract or the pre/post
contract.

To clarify this, consider the code example show in Fig. 18. There are two functions defined, process and remove. For
the discussion it is sufficient to know that process applies the function f given as argument and that the function remove

destructively deletes a file from the hard-disk. Both functions are exported with a contract. process has a computational
contract that prohibits the function remove to be applied. The function remove has a higher-order contract that states that
the arguments of the function remove should be a string and that the return value should be a boolean.

Let us consider that the exported function process is applied to the exported function remove from the prompt.
Remember that exporting a function with a contract creates a new function that acts and behaves almost exactly like
the original function, with the difference that the contract is validated. Applying the exported function process to the
exported function remove results in the computational contract to be validated. After deploying the computational contract
the function body of process is executed (line 1). In the body, the function argument f is applied to the number 4. Note that
the function remove is still contracted by the pre/post contract (string? → boolean?). At the same time a computational
contract that prohibits applications of the function remove is also active. Evaluating either contract leads to a violation. The
question is: which contract has precedence?

When precedence is given to the computational contract, blame is assigned to the function process and a computational
contract violation is presented to the developer. For the developer it will be clear that some piece of code attempted to
remove parts of his hard-disk while the contract clearly prohibits this. When precedence is given to the pre/post contract,
blame is assigned to the module where the function removewas applied from. In this case the developer is presented with
a precondition violation as the function remove is applied to a number instead of a string. A developer presented with this
errormessage could be tempted to correct this error. Of course such an attemptwould be futile as applications of the function
remove are prohibited by the computational contract anyway.

In our implementation, by default, pointcuts like (call f) select applications of a function f, whether or not it is
contracted; under the hood, it relies on a semantic equals function, whichmakes equality oblivious to contracts. Thismeans
that in the previous example, the programmer would get a computational contract violation. We also provide a call-eq
pointcut designator, which relies on the low-level pointer equality function eq. In that case, the computational contract is
not applied before the pre/post contract; hence the programmer gets a precondition violation.

7.2. Who will guard the guards?

An important aspect of contract systems is whether they assume that the contracts themselves are trustworthy or not.
Dependent contract as described in Findler and Felleisen’s original paper [14] do not enforce the domain contract defined
over the arguments during the evaluation of the postcondition. Dependent contracts thus fall into the category of contracts
where a contract is assumed to be always correct. This was criticised by Blume and McAllester [4]. They extended the work
on depended contracts so that the domain contract is enforced both in the precondition and in the postcondition of the
dependent contract. BlumeandMcAllester’s contract system is dubbed pickywhile Findler and Felleisen’s original dependent
contracts are called lax. While picky contracts capture more violations they do not assign blame to the contract. Recently
Dimoulas et al. [8] have further extended the picky blame assignment. This system dubbed indy, treats the contract as an
independent party and in case that the postcondition violates the domain contract, blame is assigned to the contract.

A very similar phenomena is observed when working with computational contracts. During the validation of a
computational contract the pre/post contract might violate the computational contract. Imagine a contracted function with
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a flat contract printArgument, which allows any argument to pass but also prints the argument. When this function is
applied a computational contract that disallows any application of the system.println function can be active. As of now,
our implementation provides lax computational contracts, as they would allow the above behaviour. Adapting the notion
of indy contracts to computational contracts is future work.

8. Related work

There is a group of research frameworks that focuses on grey box verification techniques. Similar to our work, these
verification mechanisms allow the programmer to define more expressive verification statements than simple pre/post
conditions. Helm et al. [17] and Holland [18] were among the first to use such advanced mechanisms. Their approach uses
model programs in order to describe contractual specifications, but they do not present amethod for automatic conformance
monitoring.

Shaner et al. have extended JML for higher-ordermethods (HOM) [26]. They define a higher-ordermethod as anymethod
whose behaviour critically depends on one ormoremandatory calls. This approach does not support higher-order contracts,
i.e contracts over the argument values cannot be specified. The verification is based on model contracts and violations are
only foundwhen themodel program can bematchedwith the body of the contractedmethod. Violations against the contract
in the dynamic extend of the contracted method (i.e. calls to other methods within the body of the contracted method) are
not validated.

A very related approach by Fischer [15] introduces trace-based assertions. These are similar in nature to the protocol
contracts as shown in Section 3.3. However, trace-based assertions do not support functional contracts to be defined over
the argument values of a function. A related approach by Soundarajan and Tyler [29] allows trace-based specifications by
means of hook methods that extend the trace. This system suffers from similar limitations as Fischer’s system with respect
to contracts over argument values.

In computational contracts an object contract is applied at the moment an object crosses the module boundaries. In JML
like languages contract definition and class definition are intertwined. Therefore viewing objects of a class under different
contracts requires the programmer to add new subclasses to the class hierarchy which leads to a lot of code repetition. In
AmbientTalk and other prototype based languages such as JavaScript, the object system is classless and objects are created
ex-nihilo. This difference in the place where the contract is defined was already observed in the context of higher-order
object-oriented contracts by Strickland et al. [27]. Our system brings the power of temporal contracts similar to JML into
higher-order dynamically-typed languages without leading to code repetition.

In static type systems, several proposals [5,12] have focused on higher-order function verification, to be sound they
introduce heavy restrictions on the scoping mechanism.

In Typestate oriented programming [28] the programmer defines an object which has multiple states, transition from
one state to another is linked to certain method invocations. This is very similar to the object protocols shown in Section 4.
However, the ensure and prohibit protocols expressible with computational contracts can transition from one state to
another by arbitrary method invocations (not limited to a single object).

MaC [9] is a runtime validation systemwhere program executions points, such as the application of a function, are reified
as events. Over these events the programmer can write rules for validating the program execution. While it is likely that the
expressive power of theMaC system allows computational contracts to be defined it has not been designed for higher-order
functions. Blame assignment is also not considered.

A remarkable contract system that goes beyond pre- and post-conditions was recently proposed by Heidegger et al. [16].
They propose access permission contracts, which allow programmers to annotate methods with a set of read and write
access paths. During the execution of a contracted function the dynamic extent of the contracted function can only read and
write to those variable in their access paths. Access permission contracts focus on checking the access to certain variables
and do not check function invocations. They can be viewed as a particular instantiation of computational contracts and we
plan to implement them in our framework as future work.

As pointed out throughout the paper computational contracts are an extension to the work on higher-order contracts
[14,4,27,8,7]. Most higher-order contract frameworks have focused on blame assignment and do not provide abstractions in
order to define temporal properties. HigherOrder Temporal (HOT) Contracts [10] extendprior higher-order contract systems
to also express and validate temporal properties between modules. In their formalisation, module behaviour is modelled
as a trace of events such as function calls and returns, which does not include internal module calls nor external module
calls. This makes that HOT contract differ from computational contracts in two ways. First, the prohibit_c contract shown
in Fig. 6 and similar contracts that refer to system calls are not easily expressible with a HOT contract because external
calls to the system module are not in the trace. It is possible to define a separate module that wraps the system library
into a different module with an appropriate temporal higher-order contract but it would not be trivial. Moreover, users of
the original module cannot see this contract with the wrapped system module at the interface level. Second, it is not only
important to check that a client respects a given protocol, but also that a provider of the said protocol fulfils it. Because
internal module calls are not in the trace, HOT contracts do not validate that the provider of their protocols fulfils it. This
makes it possible to define a module that internally violates its own HOT contract but will never be blamed for it. With
computational contracts all internal and external applications can be monitored.
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9. Conclusion

Many aspects such as prohibiting or enforcing certain method invocations, access permission, time constraints, sending
messages over the network, memory constraints etc. are well-defined properties of the computation of a certain function.
However, current higher-order contract systems do not provide a structured and expressive mechanism to validate these
aspects. The core problem of current contract systems is that they treat a contracted entity as a black box. In this paper we
introduced the notion of computational contracts. A computational contract is a contract over the execution of a contracted
entity. In contrast to existing contracts, which treat a contracted entity as a black box, a computational contract can validate
well-defined execution points during the execution of the contracted entity. With computational contracts the developer
can define a functional contract that verifies a single event or a sequence of events during the execution of the contracted
function. The developer can specify that certain events should or should not happen by making use of ensure and prohibit
computational contracts respectively.
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