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RESUMEN DE LA TESIS PARA OPTAR AL
GRADO DE: Magíster en Ciencias, mención Física
POR: Estefania Vidal Henríquez
FECHA: 06/03/2014
PROFESOR GUÍA: Marcel Clerc Gavilán

DINÁMICA DE SINGULARIDADES DE FASE EN SISTEMAS ANISOTRÓPICOS
FUERA DEL EQUILIBRIO

Esta tesis está enfocada en el estudio de singularidades de fase en el contexto de auto organi-
zación en sistemas fuera del equilibrio. Nuestra investigación estuvo focalizada en comprender
el surgimiento de vórtices en una válvula de cristal líquido nemático (LCLV por sus siglas en
inglés) con anclaje homeotrópico iluminada con un haz gaussiano. Este sistema físico per-
mite la creación de vórtices ópticos que son auto-inducidos y que tienen auto-alineamiento,
así como la inducción de vórtices positivos en el cristal líquido.
En el primer capítulo se derivó desde principios fundamentales una ecuación que modela este
sistema. Inicialmente se analizó el campo eléctrico aplicado y luego se derivó una ecuación
de amplitud. Esta ecuación corresponde a una generalización de la ecuación de Ginzburg-
Landau con un término anisotrópico y forzamiento espacial.

En el segundo capítulo la ecuación anisotrópica de Ginzburg-Landau fue estudiada, car-
acterizando la solución tipo vórtice. Dos tipos de vórtices positivos fueron identi�cados. Se
calculó la energía de estas soluciones y se mostró cómo intercambian estabilidad a través de
una bifurcación transcrítica degenerada dependiente del parámetro anisotrópico. Se carac-
terizó el vórtice negativo perturbativamente y se calculó su energía numéricamente.

En el tercer capítulo se realizó un análisis numérico de la ecuación anisotrópica forzada
de Ginzburg-Landau. Se mostró cómo el forzamiento induce un sólo vórtice positivo en el
centro del voltaje aplicado, lo que nos permitió comprender las observaciones experimentales.
Este mecanismo de anclaje nos permitió concebir la posibilidad de crear redes programables
de vórtices con una con�guración espacial arbitraria. Esto fue experimentalmente con�rmado
usando una adecuada con�guración de la LCLV. Posteriormente, se adaptó nuestra ecuación
para considerar diferentes rayos de luz, lo que mostró numéricamente redes de vórtices en
concordancia con las observaciones experimentales.

En el último capítulo se estudió la dinámica de dislocaciones en un patrón anisotrópico. Se de-
rivó una ecuación de amplitud enmendada para la ecuación anisotrópica de Swift-Hohenberg.
En esta ecuación de amplitud, las dislocaciones aparecen como vórtices cuya dinámica fue
caracterizada, permitiendo predecir la existencia de pares de dislocaciones estacionarios, lo
que fue con�rmado numéricamente.

Los resultados obtenidos en esta tesis muestran que las singularidades de fase son un fenómeno
omnipresente en la naturaleza, que pueden ser descritas en una manera uni�cada mediante
ecuaciones de amplitud. A su vez, estas ecuaciones pueden relacionarse con el contexto físico
especí�co, cerca de sus puntos críticos.
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POR: Estefania Vidal Henríquez
FECHA: 06/03/2014
PROFESOR GUÍA: Marcel Clerc Gavilán

PHASE SINGULARITY DYNAMICS IN OUT OF EQUILIBRIUM ANISOTROPIC
SYSTEMS

This thesis is devoted to the study of phase singularities in the context of self-organization
in out of equilibrium systems. Our study was focalized on understanding the emergence of
vortices in a nematic liquid crystal light valve (LCLV) with homeotropic anchoring illumi-
nated by a gaussian beam. This physical system allows the creation of optical vortices that
are self-induced and self-aligned, along with the induction of positive vortices in the liquid
crystal texture.

In the �rst chapter a model equation for this system was derived from �rst principles. First,
the electric �eld in the system was analysed and then, an amplitude equation was derived.
This equation corresponds to a generalization of the well-know Ginzburg-Landau Equation
with an anisotropic term and a spatial forcing.

In the second chapter the Anisotropic Ginzburg-Landau Equation was studied character-
izing its vortex solutions. Two di�erent types of positive vortices were identi�ed. The energy
of these solutions was calculated and it was shown how they exchange stability through a
Degenerated Transcritical Bifurcation that depends on the anisotropic parameter. The neg-
ative vortex was characterized perturbatively and its energy calculated numerically.

In the third chapter numerical analysis of the Forced Anisotropic Amplitude Equation was
performed. It was shown how the forcing parameter induces one single positive vortex in the
center of the applied voltage which allows us to understand the experimental observations.
This pinning mechanism allow us to envisage the possibility to create programmable vortex
lattices with arbitrary spatial con�guration. This was experimentally con�rmed using an ad-
equate con�guration in a LCLV. Furthermore, adapting our equation to account for di�erent
light rays showed numerical vortex lattices in quite good agreement with the experimental
observations.

In the last chapter the dislocation dynamics in an anisotropic pattern were studied. To
do this an Amended Amplitude Equation for the Anisotropic Swift-Hohenberg Equation was
derived, in this amplitude equation dislocations show up as vortices whose dynamic was
characterized, allowing the prediction of stationary dislocation pairs, which were con�rmed
numerically.

The results obtained in this thesis showed that phase singularities are an ubiquitous phe-
nomena in nature, which can be described in a uni�ed way by amplitude equations. In turn,
these equations can be related to the particular physical context close to its critical points.
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Chapter 1

Introduction

1.1 Pitchfork Bifurcation

To introduce dynamical systems we will begin with a simple example: The Andronov's
Pendulum [2]. Consider a ring of radius R rotating at a constant angular velocity ω like in
Figure 1.1, in this ring there is a particle of mass m that can slide along the border of the
ring, subject to viscous drag and gravitational pull.
In spherical coordinates this system is described by

mRθ̈ = −bθ̇ −mg sin(θ) +mRω2 sin(θ) cos(θ),

where θ is the angle between the pendulum and the vertical axis, and b is a damping coe�-
cient.We can rewrite this equation more clearly as

mRθ̈ + bθ̇ =mg sin(θ) (Rω
2

g
cos(θ) − 1) ,

it is easy to see that the system has a stationary solution sin(θ) = 0, i.e θ = {0, π} but it
also has the solution cos(θ) = g/Rω2 which only exists when g/Rω2 < 1, note that due to
symmetry this last solution corresponds to two values of θ.

Let's analyse the stability of the solution θ = 0 by taking θ = ε and linearizing in ε, we
then get

mRε̈ + bε̇ =mgε(Rω
2

g
− 1) ,

here we can see that the solution θ = 0 is only stable when Rω2/g < 1 or equivalently when
g/Rω2 > 1, this means that this solution is stable only while the other solutions do not exist.
Now we analyse the stability of θ = π by takin θ = π + ε and linearizing in ε, we obtain

mRε̈ + bε̇ = −mgε(−Rω
2

g
− 1) ,

1
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Figure 1.1: Andronov's Pendulum.
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Figure 1.2: Bifurcation diagram for the Pitchfork Bifurcation. The dashed line represents an unstable
solution, while the continuous line represents a stable one.

therefore the solution θ = π is always unstable. Finally we analyse the stability of cos(θ) =
g/Rω2 by taking θ = θ∗ + ε where θ∗ = cos−1(g/Rω2), we get

mRε̈ + bε̇ =mg(sin(θ∗) + cos(θ∗)ε) (Rω
2

g
(cos(θ∗) − sin(θ∗)ε − 1) ,

linearizing in ε and using that θ∗ = cos−1(g/Rω2) we get

mRε̈ + bε̇ = −mg sin2(θ∗)ε,

therefore this solution is stable regardless of the value of sin(θ∗), which means that both
possible values of θ∗ are stable, when they exist.

The phenomenon that the solution θ = 0 undergoes, when a solution changes its stabil-
ity, is called a bifurcation [12, 36], particularly, in this case when a solution loses stability
and two new stable solutions appear, it is called a Supercritical Pitchfork Bifurcation and it
is common in systems with re�ection symmetry. The bifurcation diagram for this kind of
instability is shown in Figure 1.2, where solutions are represented by lines, continuous if they
are stable or dashed if they are unstable. The simplest system that presents this bifurcation
is [13]

∂tu = µu − u3, (1.1)

here we recognize the bifurcation parameter µ, the bifurcation that occurs at µ = 0, and the
re�ection symmetry u → −u. This equation is an example of an Amplitude Equation, which

2
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Figure 1.3: Euler's elastica in one dimension.

are equations that describe the behavior of a system close to a bifurcation [17].
Another natural example to describe such bifurcation is an elastic rod subjected to gravi-
tational pull, like is shown in Figure 1.3. A simple model to describe this system is

Iθ̈ =mlg sin θ − κθ,

where I stands for the rod inertia, θ is the angle deviation from the vertical, m is the rod
mass, l its length, and κ an elastic constant. Approximating for small angle values we obtain

Iθ̈ = (mgl − κ)θ − mglθ
3

3
.

This equation can easily be rearranged into the normal form Equation 1.1 by simply taking
µ = (mgl −κ)/I and then scaling θ. Therefore this system presents the same phenomenology
already discussed.

1.2 Degenerated Pitchfork Bifurcation

If now we try to imagine this bifurcation in a two dimension variable instead of just one,
the system must have rotational invariance instead of just re�ection symmetry, for example
we can imagine the same vertical rod subject to gravitational pull, �xed in its base. If the
rod is short it can stay straight, but if the rod is too long it will inevitable bend, but now
because of the rotational symmetry, the rod can bend in any direction, or, in cylindrical
coordinates, in any angle between 0 and 2π, as is schematically shown in Figure 1.4. Just
like in the one dimensional case the competition between gravity pull and internal elasticity
would account for the bifurcation parameter and how much the rod bends would correspond
to the amplitude in the Amplitude Equation. The instability presented here is an example
of a Degenerated Pitchfork Bifurcation which is schematically represented in Figure 1.5.

To describe a system such as this one we will need to introduce a complex parameter A

3
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Figure 1.4: Euler's elastica in two dimensions.
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Figure 1.5: Bifurcation diagram for the Degenerated Pitchfork Bifurcation.

to take into account the two necessary directions, this way the real part of A can represent
the deviation of the rod in the x-axis, and the imaginary part, the deviation in the other,
perpendicular, y-axis. We will call this parameter A, order parameter, a concept that was
�rst introduced by Ginzburg and Landau in the context of phase transitions [37]. This order
parameter is usually a combination of the relevant �elds in a particular system, in a way that
important changes in the system can be easily visualized as changes in the order parameter.
The equation that this parameter satis�es is the simplest equation that describes this kind
of dynamic and it is "isomorphic" to other systems with the same dynamic through an ad-
equate variable change [17] . For our example above, the system when the rod is straight is
described with A = 0 and with the rod bending can be simply described with ∣A∣ ≠ 0. The
Amplitude Equation that describes this type of bifurcation is the following normal form

∂tA = εA − ∣A∣2A.

Continuing with our description of more complex systems that present similar bifurcations
we can promote our variable to a �eld, considering now an extended system. First in 1-D,

4
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Figure 1.6: Kink solution for Eq.1.2 with ε = 1. This state connects the solutions u =
√
ε and u = −

√
ε.

let's consider
∂tu = εu − u3 + ∂xxu, (1.2)

here we have a system similar to Eq.1.1, because it also presents the symmetry u → −u. In
this equation there are two symmetrical homogeneous solutions, when ε > 0, u = √

ε and
u = −√ε, these solutions are both stable and have the same energy.

Because of initial conditions or �uctuations these two solutions can exist in di�erent lo-
cations in the system simultaneously, these di�erent locations are called domains. When
this happens the two solutions need to be connected in a smooth way, this is accomplished
through the Kink Solution, u = √

ε tanh(x
√
ε/2) which is shown in Figure 1.6. Due to the

symmetry of the system, the analogous Antikink also exists u = −√ε tanh(x
√
ε/2). If more

than one kink (or antikink) exists in the system, they will attract if they are of di�erent type,
or repel if they are of the same type, in order to minimize the total free energy. This way,
when two kinks of di�erent type collide they annihilate leaving a homogeneous solution in
the system, which is the global energy minimum.

More generically when the amplitude magnitude in an Amplitude Equation goes to zero
that point is known as a Defect, because it breaks the translational invariance symmetry,
these defects are very common in dynamical systems where some kind of symmetry exists.
Defects present a very rich dynamic and will be the center of the following chapters. Finally,
as a last step in raising the complexity of the system we will gather all the elements previ-
ously mentioned, considering the 2-D bifurcation in an extended system, the Ginzburg-Landau
Equation with real coe�cients

∂tA = εA − ∣A∣2A +∇2A,

the system above presents the previously mentioned Degenerated Pitchfork Bifurcation when
ε = 0, which means that the homogeneous state A = √

εeiφ0 can take any value of φ0, or, if we
imagine a polar representation of A in the plane, the arrow can take any direction as long as
it has the appropriate size. And, just like in the example above, the system can take di�erent
directions in di�erent zones. If there are two di�erent directions (values of φ0) in the system,
they are connected through a wall solution A = eiφ0

√
ε tanh(x

√
ε/2), which is very similar to

a kink, but extended, and therefore it is known as an extended defect, since there are in�nite

5
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Figure 1.7: Di�erent vortex solutions for the Ginzburg-Landau Equation. a) and b) show vortex of charge
m = +1, while c) represent a vortex of charge m = −1.

points where the amplitude becomes zero.

This system also has localized defects, which occur when there are at least three di�er-
ent directions expressed locally in the system. In this case these di�erent orientations are
smoothly connected through a defect known as Vortex which is characterized by having a
phase singularity in the point where the Amplitude goes to zero (See Figure 1.7). This
singularity is described through its charge m [32], de�ned by

∮
Γ
∇ϕ = 2πm

where ϕ is the phase of A in the polar representation, and the path Γ encircles the vortex.
This equation allows charges with m ∈ Z for the phase to be well de�ned. Some vortices are
depicted in Figure 1.7, where b) simply is a rotation in π/2 of a) in order to show that there
is an in�nite number of vortices due to the rotational invariance of the system. The vortex
solution is studied in depth in Chapter 3.

1.3 Liquid Crystals

Liquid Crystals are materials that have local position and/or orientation correlation, but
not at large distances, thus allowing them to �ow and also to present crystal-like proper-
ties [10, 25, 30]. They have been a great source of interest since their discovery in 1888 by
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Figure 1.8: a) Molecular structure of a typical liquid crystal. After [25]. b) Molecular structure of MBBA
(N-(4-Methoxybenzylidene)-4-butylaniline)

Friedrich Reinitzer due to their optical properties, which has spiked their use in technological
applications, the most widely known being the Liquid Crystal Display (LCD) [38].

Liquid Crystals may appear in di�erent phases depending on temperature, straining con-
ditions, and the particular properties of the chemical compound, among other reasons. The
three principal phases: nematic, cholesteric, and smectic; were classi�ed by Friedel in 1922
[20], and even though since then several other phases have been reported, thanks to the
discovery of new materials, this classi�cation remains useful as a �rst approach [16]. The Ne-
matic phase has the least order amount and highest symmetry, presenting only orientational
order of the long molecular axis. The Cholesteric phase is similar to the Nematic in that
it only presents orientational order, but with a chirality, meaning that it has a macroscopic
helical structure. Finally, the smectic phase besides orientational order it also has positional
order, thus having molecules ordered in layers [10, 30].
In particular we will be interested in nematic liquid crystals due to the experimental setup
that motivates this work (see Section 2.1), the molecules in this case are usually elongated
with a rod-like shape, as shown in Figure 1.8, which allows us to de�ne the director vector
Ð→n (Ð→r ) that describes the average molecule position in the liquid crystal. Since the molecules
are cuadripolar this vector has the symmetry Ð→n = −Ð→n , or in other words "it does not have
an arrowhead".

Liquid crystals are a highly dissipative medium whose dynamic is characterized by mini-
mizing their elastic energy, which was �rst described by Frank in 1958 [18]. In nematic ma-
terials there are three principal distinct director axis deformations: twist, splay, and bend;
which are depicted in Figure 1.9, each of these deformations has its own elastic constant,
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Figure 1.9: Principal deformations on a Nematic Liquid Crystal: Twist, Bend, and Splay. After [25]

giving rise to the Frank Free energy density

F = K1

2
(∇ ⋅Ð→n )2 + K2

2
(Ð→n ⋅ (∇×Ð→n ))2 + K3

2
(Ð→n × (∇×Ð→n ))2,

where K1 corresponds to the splay deformation, K2 to the twist deformation, and K3 to
the bend one. If the sample of liquid crystal is subject to electric or magnetic �elds, then
those energy densities are added accordingly. These constants are usually of the order of
10−6 dyne, for example for MBBA (Figure 1.8 b)) their values are 5.8 × 10−7, 3.4 × 10−7, and
7 × 10−7 dyne, for K1, K2, and K3, respectively.
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Chapter 2

Vortex Induction

2.1 Experimental Setup

One of the �rst reported experiences in liquid crystals was the observation of schlieren tex-

tures under crossed polarizers [26, 20]. This texture can occur in di�erent con�gurations,
particularly it occurs when a nematic mixture of liquid crystal is sandwiched between two
glass plates that have been treated to provide an homeotropic anchoring to the molecules,
this forces the molecules to be perpendicular to the glass plates. These plates have usually a
surface of about 1− 5cm2, while the separation between the plates is 5− 50µm, this provides
a large area to observe the e�ects. Due to this anchoring and the elasticity of the material,
the molecules inside the sample align themselves perpendicular to the glass plates, therefore
if the sample is observed between crossed polarizers it appears black, since the light is not
refracted inside the sample after it crosses the �rst polarizer and is cancelled by the second
one.
If the material has a negative dielectric constant εa (εa = ε∥ − ε⊥), then when a voltage is

applied to the plates, the molecules will tend to align perpendicular to the electric �eld in
order to reduce their energy. This electric force opposes the elasticity if there is homeotropic
anchoring, therefore, for low voltages nothing happens and the sample remains dark, but if
the voltage is increased a transition occurs at a voltage known as Freedericksz Voltage [19]
and a schlieren texture as in Figure 2.1 appears. This transition is a Degenerated Pitchfork

Bifurcation (see Section 1.1), where the molecules leave the vertical axis in an angle that de-
pends on the magnitude of the voltage, but there is a cone of possible equilibrium positions
for the molecules, therefore di�erent directions are taken in di�erent places in the sample.
The dark lines observed correspond to the places where the molecules align with one of the
polarizers, and the intersection of these lines correspond to the positions where the molecules
remain perpendicular to the plates. These points are a kind of defect known mostly in the
liquid crystal community as umbilics, these defects move through the sample and disappear
by colliding among them or by reaching the boundaries of the sample.

The setup above described is very well known to experimentalists and also has been properly
described by theory [7], particularly the dynamics of these defects. Because of the above
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Figure 2.1: Schlieren texture in a sample of MBBA.

Figure 2.2: Schematic representation of the creation mechanism for optical vortices. Taken after [6].

mentioned, vortices are very di�cult to control, since they appear everywhere in the sample
and quickly move and disappear. A novel method to control vortices was reported in [5],
where the setup is very similar to the one previously described, with the di�erence that one
of the glass plates is replaced with a slab of a transparent photoconductor and the sample
is held at a voltage lower than critical. Then, with the aid of a Spacial Light Modulator
(SLM) a laser is directed to the photoconductor. The area illuminated by the laser is around
250µm, this causes an additional voltage drop between the plates in the illuminated area.
This allows the voltage in this area of the sample to rise above the critical voltage. In this
area one single umbilical defect is created, and is always close to the center of the illuminated
area, has a +1 charge, and remains �xed in that position.

The possibility of having one controlled vortex allows the creation of Gauss-Laguerre
modes in the light once it has crossed the sample, as it is described in [5] and shown in
Figure 2.2. These modes correspond to an optical vortex, light modes with a singularity at
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their center that carry angular momentum. They have several technological applications [39]
and this method of creation guaranties the correct alignment between the light ray and the
phase singularity.
From this point forward we will concentrate on understanding this isolated umbilical struc-
ture, why it appears, remains stable, and its characteristics. We begin by analysing the shape
of the electric �eld inside the sample.

2.2 Electric Field Inside the Valve

The light that illuminates the Liquid Crystal Light Valve (LCLV) is a Gaussian beam, since
this is the natural shape the light acquires when it travels through a medium (it is the
solution to the paraxial equation [24]), which means that the voltage induced in the plate
is not uniform, but bell-shaped. In order to calculate the electric �eld inside the cell we
modeled the cell as two in�nite planar parallel plates separated by a distance d in the z axis,
where the photoconductor is in z = d and has a gaussian-shaped voltage drop, and the other
plate is taken as reference (see Figure 2.4), thus the boundary conditions are

V (z, r) = V (z = d) = V0 + αI(r),

V (z, r) = V (z = 0) = 0,

where I(r) is proportional to the light intensity that illuminates the sample and has a gaussian
pro�le, I(r) = I0e−r

2
/ω2 , where I0 is the intensity peak and ω is the waist of the beam.

Introducing cylindrical coordinates centered at the center of the gaussian beam, the voltage
satis�es the anisotropic Laplace equation of the form

∂zzV + ε�
ε∥
∇2
�
V = 0;

where ∇2
�
V is the laplacian in the transversal coordinates, ε� is the dielectric constant of the

liquid crystal for the perpendicular electrical �eld and ε∥ is the dielectric constant for the
parallel one. Using the Fourier transform in the plane parallel to the plates we obtain the
Fourier transform of the voltage

Ṽ (z, k) = 1√
2π
∫

∞

−∞

eik⋅r�V (z, r�)dr�,

and for the laplacian equation we get

∂zzṼ − ε�
ε∥
k2Ṽ = 0.

For the boundary condition V (z = 0) = 0 we get that its Fourier transform is also zero, this
way we retain only the odd modes of the solution, obtaining

Ṽ (z, k) = A(k)
sinh

⎛
⎝

√
ε�
ε∥
kz

⎞
⎠

sinh
⎛
⎝

√
ε�
ε∥
kd

⎞
⎠

,
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now to impose the other boundary condition we need to revert to the coordinate space using
the inverse Fourier transform

V (z, r) = 1√
2π
∫

∞

−∞

dke−ik⋅r�A(k)
sinh

⎛
⎝

√
ε�
ε∥
kz

⎞
⎠

sinh
⎛
⎝

√
ε�
ε∥
kd

⎞
⎠

, (2.1)

and considering z = d, we impose the boundary condition at the photoconductor.

V (d, r) = V0 + αI(r/ω) =
1√
2π
∫

∞

−∞

dke−ik⋅r�A(k) (2.2)

then using again the Fourier transform we obtain

A(k) = 1√
2π
∫

∞

−∞

dr�e
ik⋅r�(V0 + αI(r�/ω)). (2.3)

Replacing (2.3) in (2.1) we obtain the solution to the initial equation with the previously
mentioned boundary conditions

V (z, r) = 1

2π ∫
∞

−∞

dke−ik⋅r�

sinh
⎛
⎝

√
ε�
ε∥
kz

⎞
⎠

sinh
⎛
⎝

√
ε�
ε∥
kd

⎞
⎠

(∫
∞

−∞

dr∗
�
eik⋅r∗

�[V0 + αI(r∗�/ω)])

We can now renormalize the variables using the width ω of the gaussian beam: p = r∗/ω,
q = kω, and obtain

V (z, r) = 1

2π ∫
∞

−∞

dqe−iq⋅r�/ω

sinh
⎛
⎝

√
ε�
ε∥
qz/ω

⎞
⎠

sinh
⎛
⎝

√
ε�
ε∥
qd/ω

⎞
⎠

(∫
∞

−∞

dpeiq⋅p[V0 + αI(p)]) .

This is the explicit solution of the Laplace Equation, however due to its complexity it is
di�cult to obtain intuitive results form it. Thus, we will consider a limit where we can �gure
out the e�ect of the photoconductor in the LCLV.

In the limit where the gaussian beam is very �at (very wide)(ω → ∞) we can make the
approximation

sinh
⎛
⎝

√
ε�
ε∥
qz/ω

⎞
⎠

sinh
⎛
⎝

√
ε�
ε∥
qd/ω

⎞
⎠

≈ z
d
+O ( 1

ω2
) ,
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Figure 2.3: Voltage inside the Liquid Crystal Light Valve.
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a)                                                     b)

Figure 2.4: a) Top view and b) lateral cut view of the electromagnetic �eld inside the Liquid Crystal Light
Valve.

this approximation is plausible because the gaussian beam is large compared to the size of a
vortex in the liquid crystal. Using the previous approximation we get

V (z, r) ≈ z
d

1

2π ∫
∞

−∞

∫
∞

−∞

dqdpeiq(p−r/ω)(V0 + αI(p)) =
z

d ∫
∞

−∞

dpδ(p − r/ω)(V0 + αI(p)),

solving the integral we obtain the voltage inside the valve at �rst order

V (z, r) ≈ z
d
(V0 + αI(r/ω)).

This solution is shown in Figure 2.3 and corresponds to a gaussian pro�le that progressively
losses strength as we move away from the incoming light beam.

Finally we obtain the electric �eld inside the valve using E = −∇V = −∂V
∂r

r̂− 1

r

∂V

∂θ
θ̂− ∂V

∂z
ẑ

E = −1

d
(V0 + αI(r/ω))ẑ −

z

dω
αI ′(r/ω)r̂
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The electromagnetic �eld inside the LCLV is shown schematically in Figure 2.4 were we can
appreciate the radial component and the vortex-like shape of the �eld due to the gaussian
light pro�le. Hence we deduced that the light produces, by means of the photoconductor, an
electric �eld with a vortex structure inside the valve.

2.3 Amplitude Equation Derivation

2.3.1 Linear Analysis

To describe the position of the liquid crystal inside the Light Valve we consider the director
vector Ð→n (x, y) with ∣Ð→n ∣ = 1, which corresponds to the average position of the molecules at
(x, y) and since it has a relaxation dynamic we begin with the system Frank-Oseen Free
Energy Density [10]

F = K1

2
(∇ ⋅Ð→n )2 + K2

2
(Ð→n ⋅ (∇×Ð→n ))2 + K3

2
(Ð→n × (∇×Ð→n ))2 − εa

2
(E ⋅Ð→n )2.

The �rst three terms correspond to the elastic energy contribution (See Section 1.3) and the
last one to the interaction with the electric �eld. The nonlinearities in this problem arise
when we minimize the free energy while maintaining the norm of the director, thus we must
consider

γ
dÐ→n
dt

= − δF
δÐ→n

with the restriction ∣Ð→n ∣ = 1, which is equivalent to

γ
dÐ→n
dt

= − δF
δÐ→n

+Ð→n (Ð→n ⋅ δF
δÐ→n

) ,

thus we obtain the following equation for the director [21]

γ
dÐ→n
dt

= K3[∇2Ð→n −Ð→n (Ð→n ⋅ ∇2Ð→n )] + (K3 −K1)[Ð→n (Ð→n ⋅ ∇)(∇ ⋅Ð→n ) −∇(∇ ⋅Ð→n )]
+(K2 −K3)[2(Ð→n ⋅ ∇ ×Ð→n )(Ð→n (Ð→n ⋅ ∇ ×Ð→n ) −∇ ×Ð→n ) +Ð→n ×∇(Ð→n ⋅ ∇ ×Ð→n )]
−εa(Ð→n ⋅Ð→E )(Ð→n (Ð→n ⋅Ð→E ) −Ð→E ),

where εa < 0. We �rst �nd the point in the parameter space where the homeotropic position
destabilizes due to the e�ect of the electric �eld, by doing a linear analysis, we set Ð→n =
(u, v,1 − (u2 + v2)/2) where u, v are small perturbations. Retaining the leading order we
obtain

γu̇ =K3∂zzu − εaE2u,

γv̇ =K3∂zzv − εaE2v,

we now take an ansatz consistent with the homeotropic boundary conditions, u = v = 0 in
z = 0 and z = d, and �nd when it destabilizes. Thus we take a perturbation of the form
u = v = eσt sin(kz) with k = πn/d, and obtain

γσ = −K3k
2 −E2εa,
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this shows the growing rate σ for all wavelengths, but only the ones mentioned before can
appear in the system, of these the one that �rst destabilizes is kc = π/d. Solving for the
electrical �eld, we obtain

E2 = −K3k2

εa
= −K3π2n2

d2εa
,

then the minimum value of the �eld that causes movement in the molecules is for n = 1

E =
√

−K3π2

εad2
,

and thus obtaining the critical voltage, Freedericksz Voltage [19], VF =
√
−K3π2/εa. This

corresponds to the point were the electric force on the molecules is able to overcome the elas-
tic force that tries to maintain the molecules perpendicular to the glass plates and thus, tilt
the molecules in any possible direction like in the rod in Figure 1.5, therefore a Degenerated
Pitchfork Bifurcation occurs at this voltage. This bifurcation is particularly useful to exper-
imentally determine the value of K3, since it is relatively easy to localize. To understand the
liquid crystal dynamics close to the bifurcation we will perform a weakly nonlinear analysis.

2.3.2 Weakly Nonlinear Analysis

We can now set the voltage close to this critical value and perform a weakly nonlinear analysis,
where we assume the deviation from the homeotropic state is small. We suppose

n =
⎛
⎜⎜⎜
⎝

n1

n2

1 − n
2
1 + n2

2

2

⎞
⎟⎟⎟
⎠

and neglecting higher orders in the radial electric �eld we obtain:

γṅ1 =K3[∇2n1 + n1((∂zn1)2 + (∂zn2)2)] − (K3 −K1)[n1∂zz(n2
1 + n2

2)/2 + ∂xxn1 + ∂xyn2]
+(K2 −K3)[−∂xyn2 + ∂yyn1] − εan1E2

z(1 − n2
1 − n2

2)
−εa(2n2

1EzEx + 2n1n2EzEy −ExEz(1 − n2
1/2 − n2

2/2)),

γṅ2 =K3[∇2n2 + n2((∂zn1)2 + (∂zn2)2)] − (K3 −K1)[n2∂zz(n2
1 + n2

2)/2 + ∂xyn1 + ∂yyn2]
+(K2 −K3)[∂xxn2 − ∂xyn1] − εan2E2

z(1 − n2
1 − n2

2)
−εa(2n2

2EzEy + 2n1n2EzEx −EyEz(1 − n2
1/2 − n2

2/2));

where the last terms correspond to the corrections due to the radial �eld. We now consider
the ansatz n1 = X sin(kcz) +W1, n2 = Y sin(kcz) +W2 which describes the amplitude of the

�rst unstable mode (kc = π/d), and
Ð→
W = (W1,W2) stands for higher order corrections, using

k = kc to simplify notation, we then obtain
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γẊ sin(kz) = (K3∂zz − εaE2
z)W1 +K3 sin(kz)[∇�X − k2X + k2X(X2 + Y 2) cos2(kz)]

−(K3 −K1) sin(kz)[Xk2(X2 + Y 2)(cos2(kz) − sin2(kz)) + ∂xxX + ∂xyY ]
+(K2 −K3) sin(kz)[∂yyX − ∂xyY ]
−εaX sin(kz)E2

z(1 − (X2 + Y 2) sin2(kz))
+εaExEz − εa sin2(kz)[2X2EzEx + 2XY EzEy +ExEz(X2 + Y 2)/2],

γẎ sin(kz) = (K3∂zz − εaE2
z)W2 +K3 sin(kz)[∇�Y − k2Y + k2Y (X2 + Y 2) cos2(kz)]

−(K3 −K1) sin(kz)[Y k2(X2 + Y 2)(cos2(kz) − sin2(kz)) + ∂xyX + ∂yyY ]
+(K2 −K3) sin(kz)[∂xxY − ∂xyX]
−εaY sin(kz)E2

z(1 − (X2 + Y 2) sin2(kz))
+εaEyEz − εa sin2(kz)[2Y 2EzEy + 2XY EzEx +EyEz(X2 + Y 2)/2].

The linear operator acting on W is

L = ( K3∂zz − εaE2
z 0

0 K3∂zz − εaE2
z

) ,

if we de�ne the inner product ⟨f ∣g⟩ = ∫
d

0 f ⋅ g this operator is self-adjoint and its kernel
is Ker{L�} = {(sin(kz),0), (0, sin(kz))}, we now use the Freedholm alternative projecting
our system onto the kernel elements of the adjoint operator and considering that Ez is
independent of z we obtain

γẊ = K3[∇�X − k2X + k2X(X2 + Y 2)/4]
−(K3 −K1)[(∂xxX + ∂xyY ) −Xk2(X2 + Y 2)/2] + (K2 −K3)[∂yyX − ∂xyY ]
−εaXE2

z(1 − 3(X2 + Y 2)/4) + εaEz
2

d ∫
d

0 Ex sin(kz)dz

−2

d
εaEz[2X2 ∫

d

0 Ex sin(kz)3dz + 2XY ∫
d

0 Ey sin(kz)3dz

+X
2 + Y 2

2 ∫
d

0 Ex sin(kz)3dz],

γẎ = K3[∇�Y − k2Y + k2Y (X2 + Y 2)/4]
−(K3 −K1)[(∂xyX + ∂yyY ) − Y k2(X2 + Y 2)/2] + (K2 −K3)[∂xxY − ∂xyX]
−εaY E2

z(1 − 3(X2 + Y 2)/4) + εaEz
2

d ∫
d

0 Ey sin(kz)dz

−2

d
εaEz[2Y 2 ∫

d

0 Ey sin(kz)3dz + 2XY ∫
d

0 Ex sin(kz)3dz

+X
2 + Y 2

2 ∫
d

0 Ey sin(kz)3dz].
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Using that the radial �eld has a linear dependence on z we get

γẊ = K3[∇�X − k2X + k2X(X2 + Y 2)/4]
−(K3 −K1)[(∂xxX + ∂xyY ) −Xk2(X2 + Y 2)/2] + (K2 −K3)[∂yyX − ∂xyY ]
−εaXE2

z(1 − 3(X2 + Y 2)/4) + εa
2d

πz
ExEz

−εaEz
4d

3πz
[2X2Ex + 2XY Ey +Ex(X2 + Y 2)/2],

γẎ = K3[∇�Y − k2Y + k2Y (X2 + Y 2)/4]
−(K3 −K1)[(∂xyX + ∂yyY ) − Y k2(X2 + Y 2)/2] + (K2 −K3)[∂xxY − ∂xyX]
−εaY E2

z(1 − 3(X2 + Y 2)/4) + εa
2d

πz
EyEz

−εaEz
4d

3πz
[2Y 2Ey + 2XY Ex +Ey(X2 + Y 2)/2].

Rewriting with the help of the complex parameter A = X + iY and de�ning ∂η = ∂x + i∂y,
µ = −K3k2 − εaE2

z , and a = (2K1k2 − 3εaE2
z)/4 we get

γ∂tA = µA + K1 +K2

2
∇2A + K1 −K2

2
∂ηηA − aA∣A∣2

+ εa
2d

π

Er(z)
z

Eze
iθ − εaEz

4d

3π

Er(z)
z

(2ARe(Ae−iθ) + ∣A∣2eiθ

2
) ,

�nally dropping the smaller corrections and scaling, time, space, and the parameter A we
obtain

∂tA = µA +∇2A + δ∂ηηA −A∣A∣2 + bEr(z)
z

Eze
iθ

where δ = (K1 −K2)/(K1 +K2) and b = 2εad
√
a/π. This is the Forced Anisotropic Ginzburg-

Landau Equation, where µ is the bifurcation parameter, which accounts for the competition
between the elastic and electric force, the second term corresponds to di�usion, which is
a consequence of the elastic coupling, the fourth is the nonlinear saturation, the third is
the anisotropic correction, a consequence of how the di�erent deformations in the system
have di�erent energy, and the last corresponds to the forcing produced by the shape of the
electric �eld inside the valve. Without forcing and anisotropy this equation corresponds to
the Ginzburg-Landau Equation with real coe�cients, a equation widely studied because of
its importance in dynamical systems, as we have mentioned before. The properties of the
Anisotropic Ginzburg-Landau Equation are studied in the following chapter.

It is noteworthy to mention that δ ∈ [−1,1], the extreme cases occurring when one of the
elastic constants (K1 or K2) diverges. This occurs when the liquid crystal goes through a
phase transition from the nematic state to a smetic one, as can be seen in Figure 2.5.
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Figure 2.5: Elastic constants as a function of temperature in 8OCB in the vecinity of the Nematic - Smetic
A transition. Experimental results by Madhusudana and Pratibha [27].
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Chapter 3

Anisotropic Ginzburg-Landau Equation

To better understand the e�ects of both the anisotropy and the forcing in the Ginzburg-

Landau Equation we will separate these e�ects, thus we now devote ourselves to the study
of the Anisotropic Ginzburg-Landau Equation

∂tA = µA +∇2A + δ∂ηηA −A∣A∣2

with δ ≠ 0. This equation was �rst deduced in [21] for nematic liquid crystals and it has also
been proposed for the self-assembly of microtubules and motors [4].

If δ = 0 this is the well known Ginzburg-Landau Equation with real coe�cients [22]. Before
jumping into the anisotropic equation a quick overview of this isotropic model is necessary.

3.1 Ginzburg-Landau Equation with Real Coe�cients

The Complex Ginzburg-Landau Equation appears in such di�erent systems as �uids, super-
�uids, superconductors, granular matter, and liquid crystals. In 2-D this equation describes
any stationary degenerate supercritical bifurcation [12], which appears in the most various
systems that present vortices, understanding them as structures with zero amplitude and a
phase discontinuity at their center, as has been presented in Section 1.1.
In particular we will be interested in the Ginzburg-Landau Equation with real coe�cients
that presents dissipative vortices in contraposition with the equation with pure imaginary
coe�cients that presents conservative vortices, which describes super�uids and superconduc-
tors, where it was �rst derived by Ginzburg and Pitaevskii [23]. For a complete review of
this equation see Ref [3] and references therein. The Ginzburg-Landau Equation with real
coe�cients reads,

∂tA = µA +∇2A −A∣A∣2. (3.1)

It is important to mention that this equation has a Lyapunov functional E so that ∂tA =
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Figure 3.1: Numerical solution for the isotropic vortex pro�le Rv with µ = 1 and charge m = ±1 in blue dots,
Pade approximation in red continuous line.

−δE/δA, which means that the system is variational and has a relaxation dynamic, minimizing
its free energy

E = ∫ (−µ∣A∣2 + ∣A∣4
2

+∇A∇A)dS,

where the minimal energy solution corresponds to the homogeneous one A = √
µeiφ0 , where

φ0 is an arbitrary phase and thus this is a family of solutions parameterized by φ0. This is a
consequence of Equation 3.1 being phase invariant.

3.1.1 Vortex Solution

We now refer to the most studied and intricate particle type solution of this equation, the
Dissipative Vortex Solution. A particle type solution is a localized solution parameterized by
a set of continuous and discrete parameters such as position, width, and charge, to name a
few.

We begin by looking for a stationary solution where the amplitude is axisymmetric and
the phase grows continuously around the vortex, by taking A = R(r)ei(mθ+θ0), where (r, θ) are
polar coordinates and θ0 is an arbitrary parameter, related to the symmetry of the system,
that shows explicitly the position of the phase discontinuity or singularity. We obtain from
3.1

0 = ei(mθ+θ0) (µR −R3 + ∂
2R

∂r2
+ 1

r

∂R

∂r
− m

2R

r2
) (3.2)

Unfortunately this equation does not have an analytic solution, however we can �nd its
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Figure 3.2: Numerical solution for the isotropic vortex with charge +1 and −1, Left: Amplitude, Right:
Phase. a-b Positive Vortex, c-d Negative Vortex.

asymptotic behavior close to in�nity and near to the origin.

R(r) ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αmr∣m∣ + . . . , r Ð→ 0,

√
µ − m2

2 r
−2 + . . . , r Ð→∞,

where am is a positive constant that depends on µ. A good approximation developed by
Pismen in [32] for µ = 1 and charge m = ±1 in the form of a Pade approximation for the
square of the amplitude magnitude is

R2
v(r) ≈

0.34r2 + 0.07r4

1 + 0.42r2 + 0.07r4
,

a numeric solution, also for µ = 1 is shown in Figure 3.1 along with this approximation,
showing quite good agreement. For di�erent values of µ this approximation needs to be
scaled as Rµ(r) =

√
µRµ=1(

√
µr). The complete 3D representation is shown in Figure 3.2.

In order for the phase to be well de�ned we need m ∈ Z, this is know as the vortex's charge
or winding number. It is important to note that the amplitude of the vortex Rv does not
depend on the sign of the charge, making them indistinguishable in the amplitude magnitude.
Numerical simulations show that the only stable solutions are with m = ±1, all other charges
are unstable.

Since this system minimizes its energy, we can calculate the energy E of the vortex, in
order to simplify calculations we will use µ = 1, without lose of generality, so we can rearrange
the energy

E = 1

2 ∫ ∇A∇A + 1

2
(1 − ∣A∣2)2

dS,

we now replace the vortex solution A = Rveimθ, where Rv corresponds to the pro�le of the
vortex.

E = 1

2 ∫ (∂rRv)2 + m
2R2

v

r2
+ 1

2
(1 −R2

v)
2
dS,
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since Rv depends only in the absolute value of m, we can see that the vortex energy only
depends on the size of the charge and not on its sign. The �rst two terms in the energy
are divergent in an in�nite domain, so we will separate the energy in its diverging and �nite
parts and after we integrate in the angular dependence we obtain,

E1 = π∫
∞

0
((∂rRv)2 + m

2R2
v

r2
) rdr

and
E2 =

π

2 ∫
∞

0
(1 −R2

v)
2
rdr

respectively, E2 can be solved analytically using that Rv is the solution to Equation 3.2, to
do this, �rst we integrate by parts

E2 = π∫
∞

0
(1 −R2

v)RvR
′

vr
2dr

and now using Equation 3.2 we obtain

E2 = −π∫
∞

0
(rR′

v

d(rR′

v)
dr

−m2RvR
′

v)dr = πm
2

2
.

Now, to calculate E1 we need to introduce a cut-o� at a distance L because of the logarithmic
divergency, that is, we consider the vortex in a domain of �nite size. The result depends on
a numerical constant a0 that depends on the solution Rv, i.e. the speci�c shape of the vortex
core, obtaining E1 = πm2 lnL/a0 > 0, we then get

E(V ortex) = πm2 (ln
L

a0

+ 1

2
) = πm2 ln(L

√
e

a0

)

This tells us that vortices with charge m = ±1 are stable, result that has been con�rmed
numerically, the other charges being unstable. Still, this solution has more energy that the
uniform state A = √

µ, and in order for the energy to reach its minimum the vortices must
disappear by colliding between them or by reaching the boundaries of the system.

Since the vortex structure in two dimensions occurs in the intersection between two null-
clines (lines where a �eld goes to zero, in this case, the �elds Im(A) and Re(A)) they are
topologically stable solutions. This is because the only way an intersection of continuous lines
in 2-D can disappear by continuously deforming them is through the collision with another
intersection of the same lines. Any other deformation of the nullclines will only move the
intersection but it will not make it disappear. This explains why vortices only annihilate
with other vortices, or with the boundaries of the system.

The basis of this collision mechanism was described by Bodenschatz, et al. in Ref [9], vortices
with same sign charge repel, and vortices with di�erent sign attract. This kinematic law is
given in Ref [9] and Ref [34].

v ln( v
v0

) = q
r

where v0 is a constant, v is the vortex velocity, and q sign depends whether the interaction is
attraction or repulsion. This interaction acts at very large distances (long range interaction),
since it has a polynomial decay, which makes particularly di�cult the task of isolating a
single pair of vortices. Recently, by means of a LCLV a pair of vortices have been isolated
and this interaction has been characterized [7].
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3.2 Anisotropic Ginzburg-Landau Equation

We now look to perform a similar analysis for the anisotropic equation

∂tA = µA +∇2A + δ∂ηηA −A∣A∣2.

This equation has lost the independent rotational symmetries A → Aeiθ and z → zeiθ with
θ ∈ (0,2π), where z are the coordinates, retaining only the simultaneous symmetry A(z) →
e−iθA(zeiθ)

Just like its isotropic counterpart, the Anisotropic Ginzburg-Landau Equation has a re-
laxation dynamic given by ∂tA = −δEA/δA, where, taking µ = 1, the energy reads

EA = 1

2 ∫ ∇A∇A + 1

2
(1 − ∣A∣2)2 + δRe{(∂ηA)2}dS,

where the minimum energy solution is the uniform state A = 1 with EA(A = 1) = 0. Another
uniform solution easy to see is the uniform state A = 0 which is unstable with EA(A = 0) = 1/2.

This equation also has solutions in the form of domain walls

A(x, y) = √
µ tanh

√
µ

2(1 + δ)x, A(x, y) = √
µ tanh

√
µ

2(1 − δ)y,

these solutions are less common than the vortex solution and are harder to observe experi-
mentally. They are unstable giving rise to vortices on their core, in the presence of noise.

3.3 Positive Vortex Solution in Anisotropic Ginzburg-Landau

Numerical simulations have shown that the vortex solutions are persistent when δ ≠ 0, there-
fore, we now devote ourselves to the study of this solution. We begin with the same Ansatz
as before, imposing a positive charge m = +1 in the vortex A = R(r)ei(θ+θ0) we obtain

0 = µR −R3 + (1 + δe−2iθ0) (R′′ + R
′

r
− R
r2

)

where the imaginary part implies

0 = δ sin 2θ0 (R′′ + R
′

r
− R
r2

) ,

then sin 2θ0 = 0 , giving the solutions

θ0 = {0,
π

2
, π,

3π

2
}.

For the real part we obtain

0 = µR −R3 + (1 + δ cos 2θ0) (R′′ + R
′

r
− R
r2

) ,
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Figure 3.3: Left: Vortex pro�le of the two anisotropic positive vortices. Right: Top view of both vortices.

where the isotropic solution is recovered by scaling the space

R(r) = Rv (
r√

1 + δ cos 2θ0

) .

Then, the positive vortex solution can be summed up as

A = Rv (
r√

1 ± δ
) e

i(θ+
π

4
∓

π

4
+nπ)

with n = 0,1.We will refer to these solutions as V (+)

0 and V (−)

0 for the solution with θ0 = 0
and θ0 = π/2, respectively. These solutions are shown in Figure 3.3, where we notice that
even though the di�erence in the amplitude is only a scaling, the orientation of the molecules
(right side) is signi�catively di�erent. Note that the anisotropic system has a discrete number
of solutions, in contrast with the isotropic system, which has an in�nite number of solutions
parameterized by a continuous parameter. These solutions are two positive vortices, one
whose core is bigger than the isotropic one, and one whose core is smaller (see Figure 3.3).

We now follow the same procedure as before to characterize the energy of these vortices.

We can evaluate the energy of the system EA

EA = 1

2 ∫ ∇A∇A + 1

2
(1 − ∣A∣2)2 + δRe{(∂ηA)2}dS,

using A = RA(r)ei(θ+θ0), where RA is the pro�le of the anisotropic vortex, i.e. a scaling of Rv,
we then obtain

EA = 1

2 ∫ (∂rRA)2 + R
2
A

r2
+ 1

2
(1 −R2

A)2 + δ cos (2θ0) (∂rRA +
RA

r
)

2

dS.

24



Unfortunately, just like in the isotropic case, the two �rst terms and also the last term of the
above expression are in�nite, this is solved by introducing a cut-o� at r = L with L much
larger than the core size.

EA = π∫
L

0
(∂rRA)2 + R

2
A

r2
+ 1

2
(1 −R2

A)2 + δ cos (2θ0) (∂rRA +
RA

r
)

2

rdr,

using the scaling of the isotropic solution and changing variables we obtain

EA =π∫
L/

√

1±δ

0
(∂ρRv(ρ))2 + R

2
v(ρ)
ρ2

+ (1 ± δ)(1 −R2
v(ρ))2

2

± δ (∂ρRv(ρ) +
Rv(ρ)
ρ

)
2

ρdρ,

similarly to the isotropic case we will separate this expression in its diverging, �nite and
anisotropic parts. Respectively

EA1 = π∫
L/

√

1±δ

0
(∂ρRv(ρ))2 + R

2
v(ρ)
ρ2

ρdρ,

EA2 =
π(1 ± δ)

2 ∫
L/

√

1±δ

0
(1 −R2

v(ρ))2ρdρ,

and

EA3 = ±δπ∫
L/

√

1±δ

0
(∂ρRv(ρ) +

Rv(ρ)
ρ

)
2

ρdρ.

We can see that EA1 corresponds to the term E1 in the isotropic case, but with a cuto� in
L/

√
1 ± δ instead of in L, thus we obtain EA1 = π ln(L/ao

√
1 ± δ).

For EA2 we simply notice that EA2 = (1 ± δ)E2 = π(1 ± δ)/2. Finally for EA3 we can simplify
the expression

EA3 = ±δπ∫
L/

√

1±δ

0
((∂ρRv(ρ))2 + R

2
v(ρ)
ρ2

+ 2R′

v(ρ)Rv(ρ)
ρ

)ρdρ,

here we notice that the �rst two terms correspond to EA1 and that the last one is an exact
derivative

EA3 = ±δEA1 ± δπ∫
L/

√

1±δ

0
∂ρ[R2

v(ρ)]dρ = ±δπ(ln(L/ao
√

1 ± δ) + 1).

Regrouping all these terms we obtain the energy of the positive anisotropic vortex

EA = π ln( L

a0

√
1 ± δ

) + π(1 ± δ)
2

± πδ (ln( L

a0

√
1 ± δ

) + 1) ,

EA = (1 ± δ)π ln( L
√

e

a0

√
1 ± δ

) ± δπ, (3.3)

where the ± sign stands for + for θ0 = {0, π} and − for θ0 = {π/2,3π/2}. This shows that the
scaling that makes the core smaller is the one with less energy and, therefore, preferred by
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Figure 3.5: Bifurcation Diagram for the Degenerated Transcritical Bifurcation that the parameter θ0 under-
goes. The black circles represent stable solutions, while the white ones represent unstable ones.

the system. This way, if δ < 0 (δ > 0 ) the stable solution is the one with θ0 = 0 (θ0 = π/2). We
understand this as the system prefers the homogeneous state (the minimal energy solution is
A = √

µ) it reduces the vortex so its core occupies the least space, this way the homogeneous
state occupies a bigger part of the system, therefore reducing the energy of the system even
though the gradients are bigger in the smaller core than in the larger one.
The energy calculated numerically for di�erent δ is shown in Figure 3.4 along with the
theoretical prediction given by Equation (3.3), which shows quite good agreement, the stable
and unstable vortices are shown with a continuous and dashed line, respectively.

3.3.1 Bifurcation Diagram

It has been shown that there are two degenerated positive vortex solutions that exist for
every value of δ with ∣δ∣ < 1. This solutions exchange stability at δ = 0, where θ0 = 0 goes
from stable to unstable, and viceversa for θ0 = π/2. The way these solutions exchange sta-
bility is not by the usual collision of solutions and exchange of stability of the Transcritical
Bifurcation [36], but rather by passing through a very degenerated point at δ = 0 where an
in�nite number of solutions exists (θ0 can take any value between 0 and 2π) that connects
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the existing ones. We call this bifurcation a Degenerated Transcritical Bifurcation and
it is schematically shown in Figure 3.5.

To illustrate this type of instability we consider a prototype model that undergoes a similar
bifurcation,

θ̇ = δ sin (2θ)
where the steady solutions are θ = {0, π/2, π,3π/2} and exist for every value of δ. An analysis
of the potential V ,

θ̇ = −dV

dθ

with V = δ cos (2θ)/2 indicates that the solutions θ = {0, π} are stable for δ < 0 and unstable
for δ > 0. At δ = 0, θ is solution ∀θ ∈ [0,2π], and these solutions connect the already existent
ones making the stability exchange possible, this system is shown in Figure 3.6. Therefore
this system also has the bifurcation diagram shown in Figure 3.5, that is, this model exhibits
a Degenerated Transcritical Bifurcation.

3.4 Negative Vortex Solution in Anisotropic Ginzburg-

Landau

Due to the complexity of the equations for the negative vortex, a perturbatively approach will
be used. We look for an approximate solution with negative charge for small δ, by inserting
the following ansatz A ≈ [Rv(r) + δg(r, θ)]e−i[θ−δΘ(r,θ)], where g and Θ are corrections to the
isotropic negative vortex, and with the condition that Θ has no charge, ie

∮
Γ
∇Θdl = 0
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when the path Γ encircles the vortex core. Taking the leading order in δ we obtain

0 =e−iθ[µg − 3R2
vg +

∂2g

∂r2
+ 2i

∂Θ

∂r

∂Rv

∂r
+ iRv

∂2Θ

∂r2
+ 1

r

∂g

∂r
+ iRv

r

∂Θ

∂r
+ 1

r2

∂2g

∂θ2

− 2i

r2

∂g

∂θ
+ iRv

r2

∂2Θ

∂θ2
+ 2Rv

r2

∂Θ

∂θ
− g

r2
] + e3iθ [∂

2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
] ,

separating the real and imaginary parts, the equations read

0 =µg − 3R2
vg +

∂2g

∂r2
+ 1

r

∂g

∂r
+ 1

r2

∂2g

∂θ2
+ 2Rv

r2

∂Θ

∂θ
− g

r2

+ cos(4θ) [∂
2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
] ,

0 =2
∂Θ

∂r

∂Rv

∂r
+Rv

∂2Θ

∂r2
+ Rv

r

∂Θ

∂r
− 2

r2

∂g

∂θ
+ Rv

r2

∂2Θ

∂θ2

+ sin(4θ) [∂
2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
] ,

the angular dependency is easily solved doing variable separation, by setting g(r, θ) = g4(r) cos(4θ)
and Θ(r, θ) = θ4(r) sin(4θ), thus we obtain equations for the radial dependency

0 = µg4 − 3R2
vg4 +

∂2g4

∂r2
+ 1

r

∂g4

∂r
− 16g4

r2
+ 8Rvθ4

r2
− g4

r2
+ ∂

2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r

0 = 2
∂θ4

∂r

∂Rv

∂r
+Rv

∂2θ4

∂r2
+ Rv

r

∂θ4

∂r
+ 8g4

r2
− 16Rvθ4

r2
+ ∂

2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
.

At r →∞ this functions behave as follows

g4(r) ∼
9

4r2
, θ4(r) ∼

3

16
.

A numerical solution for g4 is shown in Figure (3.7). The next important corrections
to the modulus correspond to g8(r) cos(8θ) and to g12(r) cos(12θ), the amplitudes of these
corrections are shown in Figure 3.8.

Unlike its positive counterpart, the negative vortex can have any value of the parameter
θ0, recovering the solution already obtained for θ0 = 0 by a simple rotation of the axis,
obtaining

A ≈ [R(r) + δg4(r) cos(4θ − 2θ0)]ei(−θ+θ0+δθ4 sin(4θ−2θ0)).

All of these rotations have the same energy. Using numerical simulations we can calculate
the energy EA of the negative vortex, this is presented in Figure 3.9. This energy is symmet-
rical with respect to the y axis, thus saying that EA depends only on ∣δ∣ within numerical
error. From here we can also observe that the negative vortex always has more energy than
the stable positive vortex, only being the same at δ = 0. Nonetheless, the vortices always
appear in pairs of opposite charge, in order to maintain the topological charge of the sys-
tem. Hence, this model presents a mechanism of particle creation by pairs with opposite
topological charge and di�erent energies.
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3.5 Relation to Previous Results in Liquid Crystals

The idea that the positive and negative vortices are not identical is not new for experimen-
talists, who have known this for a while thanks to the use of di�erent techniques, such as
circular polarizers [28], measuring their di�erent speeds at collision [15], or simply due to the
di�erent colors the vortices present under white light and crossed polarizers. However, very
few attempts have been made to characterize them theoretically when the elastic constants
are di�erent. Remarkably in this group are the works of Saupe and Rapini, who obtained
di�erent properties of the anisotropic vortices using the Frank-Oseen free energy of liquid
crystals.

Saupe and Nehring [29] found the vortex solutions by minimizing the volume integral over
the energy density of the system and �xing the deviation of the director vector from the per-
pendicular axis, which translates in our model to maintaining the amplitude �xed, leaving
only one degree of freedom, the phase ϕ, i.e. they looked for a coreless solution. Using this
approximation they found that only integer charges are permitted. They also showed that
after the one constant approximation (K1 = K2 = K3 equivalent to δ = 0) is dropped, only
some of the positive vortex remain an exact solution of their model:

ϕ = θ + nπ
2

with n ∈ Z, and ϕ = 2θ + θ0. The �rst of these solutions corresponds to our �ndings of the
positive vortex, that only some positions are permitted for the phase discontinuity, but they
neglect the modi�ed center in the structure of the amplitude. Their second solution is not
valid in our model.

They also found an approximation for the other charges, linear in ε, a parameter that mea-
sures the anisotropy of the system, similar to our δ,

ϕ ≈mθ + θ0 + ε(
m(2 −m)
4(m − 1)2

sin [2(θ(m − 1) + θ0)] + θ1) ,
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where m is the vortex charge and θ0 and θ1 are arbitrary constants. If we take the negative
vortex in this approximation (m = −1) we obtain

ϕ ≈ −θ + θ0 + ε(
3

16
sin [4θ − 2θ0] + θ1) ,

which is equivalent to our solution for the negative vortex when r →∞, i.e. far from the core,
except for the freedom θ1, which probably comes from taking the amplitude as a constant.

Finally, they calculated the energy of the vortices, obtaining for the positive vortex

E = E0 + πdk[1 + δ cos (2θ0)] log (R/rc)

where k is a parameter that depends on the elastic constants and the deviation from the
vertical axis; d is the thickness of the sample, rc the core radius, and R the sample radius.
This result is qualitatively similar to ours, but with a simpler dependency in the anisotropy,
and captures the same bifurcation diagram. For di�erent charges, they claim that the energy
is independent of the anisotropy, this is not consistent with our numerical results.

The year after Saupe, in 1973 [35] A. Rapini studied vortices in a similar way by taking
the amplitude of the �rst unstable mode, separating its radial and angular components, and
minimizing the Frank-Oseen Energy. He then searched for positive vortices setting the phase
ϕ = θ + θ0 and obtained the same equation for the vortex pro�le as in the Ginzburg-Landau
Equation. What is interesting is that he founds a complicated equation for a parameter
called K, which he claims is "roughly proportional to the energy" [35], and he founds the
minima of this parameter, thus obtaining that if K1 < K2 then θ0 = 0 is a stable solution,
and if K1 > K2, then θ0 = π/2 is stable. This is equivalent to our �ndings in Section 3.3.
Sadly Rapini fails to point out that these two are in fact the only two positive solutions of
the system, or how this modi�es their core size. Finally Rapini calculates this parameter
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K for the negative vortex and �nds that it has always more energy than the stable positive
vortex.
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Chapter 4

Forced Anisotropic Ginzburg-Landau

Equation

4.1 Forced Ginzburg-Landau Equation

To understand the e�ect of this particular forcing in the Ginzburg-Landau Equation, numer-
ical simulations were performed with an additional, and arti�cial, parameter in the forcing,
ϕ0. Thus, the equation becomes

∂tA = µA +∇2A − ∣A∣2A + bEr(z)
z

Eze
i(θ+ϕ0).

When there is no forcing (Er = 0) and starting from the uniform and unstable state A = 0,
in the presence of noise a great number of vortices of charge +1 and −1 appear in the system,
which subsequently collide and annihilate or disappear through the borders of the simulation,
depending on boundary conditions.
On the contrary, in the presence of forcing (Er ≠ 0) even though several vortices are initially
created, only one positive vortex remains after the annihilation process. This vortex has its
phase discontinuity aligned with the parameter ϕ0, instead of any random direction like in
the case without forcing, i.e θ0 = ϕ0 instead of θ0 ∈ {0,2π}. This vortex remains stable and
pinned in the center of the forcing Er, which has a gaussian pro�le. This positive vortex
di�ers with the previously studied isotropic vortex A = Rvei(θ+ϕ0) only in Rv which roughly
takes the form of the root of the forcing amplitude, i.e. a gaussian pro�le with zero amplitude
at its center.

This induction is explained by analysing the shape of the forcing, which has vorticity itself.
If we look at the system from the top, the minimum energy is reached when the molecules
are aligned with the local electric �eld (and equivalently with the forcing), but looking per-
pendicular to the plates, we see that there is an angle between the �eld and the molecules.
This is the energy minimum when the radial electric �eld (forcing) is applied.
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Figure 4.1: Stable solutions of the Forced Anisotropic Ginzburg-Landau Equation for di�erent values of ϕ0

and δ > 0. A single positive vortex is induced in the center of the gaussian pro�le, whose phase depends on
the value of ϕ0. The nullcline (Re(A)Im(A)) and phase �eld are presented for ϕ0 = 0 (a,b), ϕ0 = π/4 (c,d),
and ϕ0 = π/2 (e,f), respectively.

4.2 Forced Anisotropic Ginzburg-Landau Equation

Let us consider the amplitude equation

∂tA = µA +∇2A + δ∂ηηA −A∣A∣2 + bEr(z)
z

Eze
i(θ+ϕ0).

As was explained in the previous section, the forcing induces a single vortex along with a
preferred direction for the phase jump θ0, in the case of our experiment ϕ0 = 0, but we will
study this equation for any value of ϕ0 ∈ {0,2π}. This phase jump may or may not coincide
with the phase jump preferred by the anisotropy (which depends only in the sign of δ as was
shown in Section 3.3).

When these two e�ects do not agree, numerical simulations have shown that the vortex
starts to turn in order to align its phase jump close to the center with the preferred value
for the anisotropy, but maintaining the phase jump imposed by the forcing in the border of
the illuminated area. This is shown in Figure 4.1, where we can observe that when there
is no mismatch between ϕ0 and θ0 (Figure 4.1 e) and f))the vortex maintains its shape
(ϕ0 = θ0 = π/2). But when they di�er like in Figure 4.1 a) and b), where ϕ0 = 0 and θ0 = π/2,
the vortex reaches a compromise between the two states, by �rst beginning with the phase
jump imposed by the electric �eld (θ0 = ϕ0) and then turning the vortex in order to lower the
energy of the system. This time dependent process is shown in Figure 4.2, the vortex starts
to rotate from its center which stops when its local phase jump is vertical; this phenomenon

33



a) b) c)

d) e) f)

-0.57 0.57

x

y

x

y

x

y

x

y

x

y

x

y

ψ

t=2s t=5s t=7s

t=8s t=11s t=14s

Figure 4.2: Time evolution of the induced positive vortex for positive anisotropy (δ > 0) and ϕ0 = 0.

a)                                                   b)

Figure 4.3: a) Numerical simulation of a vortex with swirling arms, b) Experimental observation.

gives rise to a vortex with swirling arms, which is a stationary state. This state shows quite
good agreement with the experimental observations, as is shown in Figure 4.3.

We understand this rotation process in terms of energy minimization, since the e�ect of
the anisotropy depends on the derivative of A it is stronger in the core of the vortex, thus
this is the section of the vortex that contributes the most to the energy of the system. There-
fore, locally turning the vortex allows to minimize the energy by making the core smaller,
even though it introduces some radial dependency in the phase. In the outer regions of the
vortex the gradients of the amplitude are smaller, thus making the e�ect of the forcing the
prevalent one.

A similar e�ect of vortex rotating has been reported in nematic liquid crystals subjected
to magnetic forcing [31]. In that experiment small circular magnets are positioned above and
below a nematic liquid crystal cell, this way a magnetic �eld with a vorticity is applied to the
cell, in a very similar way to the electric �eld in our experiment. This induces vortices in the
cell as an initial condition for the experiment. Then, the magnets are removed, since they
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Figure 4.4: a)Experimental and b) numerical simulation of an square array of vortices. c) Experimental and
d) numerical simulation of an hexagonal array of vortices.

do not allow a direct observation of the experiment, and an electric �eld is applied in the
whole system in order to overcome the Freedericksz transition, due to this the vortices start
to turn similarly to our experiment. We expect that this experiment is described in a similar
way to our own: the initial condition imposed by the magnets creates positive vortices that
are not stable when the electric �eld is applied and thus turn to become the stable positive
vortex that we have already described.

4.3 Numerical Vortex Lattices

By including more than one gaussian beam in our simulations we are capable of creating vor-
tex lattices with arbitrary spatial con�gurations, similar to the ones observed experimentally.
This is done simply by superimposing several Ereiθ and µ(r) centred on di�erent positions
of the system, thus replicating the e�ect of illuminating the sample with several laser beams.

Once the system has relaxed and each center contains one positive vortex, we recreate the
e�ect of increasing the voltage applied to the sample by upgrading the parameter µ(r) →
µ(r) + µ0, with µ0 > 0, this way the places on the system that were not illuminated before
can now cross the Freedericksz transition and form vortices. Since the forcing is still in
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place the positive vortices remain in their original positions, while in the rest of the sample
negative and positive vortices appear, in order to make the total topological charge of the
system, depending on the overall forcing. Therefore, the vortices interact through attraction
and repulsion depending on their charge, but keeping the already pinned vortices, �xed; this
way, negative vortex locate in between positive vortices, and new positive vortices appear
in between negative vortices. Finally, a stable arrange of vortices is created, these lattices
compare well with the experiments as is shown in Figure 4.4
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Chapter 5

Other Anisotropic Systems

5.1 Anisotropic Patterns in Out of Equilibrium Systems

Out of equilibrium systems are characterized by having continuous injection and dissipation
of energy and momentum. This allows the existence of the most varied solutions, in particu-
lar, patterns appear in a wide variety of systems in nature, ranging from the skin of di�erent
animals to the formation of mountains (see Figure 5.1). The study of these patterns is a
complicated task, because when the pattern emerges, it usually can appear in any direction
(isotropic systems, where a privileged direction does not exists), when the direction or the
size of the pattern in an area does not coincide with the rest of the pattern, a defect is created
in order to join the pattern domains. A pattern in an isotropic system can present a wide
variety of defects such as dislocations, disclinations, and dominion walls, among others, lead-
ing up to 10 type of defects [14, 36], this makes the study of defects in patterns a thorny task.

A somewhat simpler system to study patterns is in an anisotropic system, where one di-
rection of the pattern is privileged above the other directions. This can occur physically for
di�erent reasons, for example if the wind in a beach blows predominantly in one direction,
sand will develop a pattern with stripes in that particular direction; the anisotropy can also
come from the boundary conditions of the system, like in the stripes of a zebra, where they
take a particular direction depending on the area of the animal they appear. What is in-
teresting about these systems is that since the anisotropy already �xed the direction of the
stripes, only one type of defect can appear, dislocations [33]. Therefore dislocations appear
between stripes of di�erent wavelengths, i.e. they conciliate di�erent wavelengths inside the
pattern. These dislocations also correspond to a phase singularity, just like vortices in the
Ginzburg-Landau Equation.

A simple model equation for anisotropic patterns is the Anisotropic Swift-Hohemberg Equa-
tion

∂tu = εu − u3 − (∂xx + q2)2u + ∂yyu, (5.1)

where a wavelength is clearly de�ned in the x-axis [11] (see Figure 5.2). This equation was
�rst proposed in its isotropic form by Swift and Hohemberg, in the context of Rayleigh-
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a)                                                          b)

c) d)

Figure 5.1: Di�erent patterns that appear in nature. a) Patterns on the skin of a leopard, b) Anisotropic
patterns in sand, c) Anisotropic pattern on the skin of a zebra�sh, and d) Pattern on zebra skin.

Bernard convection [13, 14, 33], and has been widely used to study anisotropic patterns in
di�erent contexts [14].

To study dislocation dynamics the Ginzburg-Landau Equation has been commonly used
[9, 33], since this equation describes the amplitude, or envelope, of the pattern close to the
bifurcation; therefore vortices occur if a dislocation exists in the original equation. However,
these descriptions present several problems, mostly related to trying to describe an anisotropic
system with an isotropic one, therefore vortices are likely to occur in any position in the
system and can move in any direction with the same probability, this is very di�erent from
dislocations where the movement across the pattern (glide) and along the pattern (climb) are
clearly distinguished. In order to obtain a better description of the movement of dislocations
we will retain the nonresonant terms of the amplitude equation so we can break the isotropy
of the system.

5.2 Amended Amplitude Equation

Beginning with the Anisotropic Swift-Hohemberg equation

∂tu = εu − u3 − (∂xx + q2)2u + ∂yyu,

we would like to obtain the equation for the pattern amplitude; in order to do this we
insert an Ansatz that separates the amplitude from the main spatial frequency oscillation,
u = A(X,Y, t)eiqx+W (A,X)+c.c., here we assume that A depends slowly in its variables and
W are non-linear corrections, with W ≪ 1. We then get

∂tAeiqx =[εA − 3∣A∣2A −A3e2iqx + ∂yyA − ∂xxxxA
− 4iq∂xxxA + 4q2∂xxA]eiqx − (∂xx + q2)2W,
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Figure 5.2: Numerical simulations of Equation 5.1 showing an anisotropic pattern for q = 0.7. a) ε = 0.22, b)
ε = 1.

the linear operator acting on W is L = (∂xx + q2)2. Introducing the inner product

⟨f ∣g⟩ = q

2πn ∫
X+2πn/q

X
f(x)g(x)dx,

then L is a self adjoint operator which Kernel is {eiqx, e−iqx}.

We then apply solvability condition by doing the inner product between the equation and
the Kernel element ⟨eiqx∣; in this product we can recognize two kinds of elements: those
that are proportional to eiqx (resonant terms) and those who have other phase (nonresonant
terms).
When the solvability condition is applied to a resonant term we obtain, using the Laplace
Integral [8] which corresponds to the mean value theorem,

⟨eiqx∣f(A)eiqx⟩ = lim
q→+∞

q

2πn ∫
X+2πn/q

X
f(A)dx = q

2πn
f(A)2πn

q
= f(A(X)).

And when is applied to nonresonant terms we can use the stationary phase approximation
[8] and obtain the following series

⟨eiqx∣f(A)eimqx⟩ = lim
q→+∞

q

2πn ∫
X+2πn/q

X
f(A)eiqx(m−1)dx

= lim
q→+∞

q

2πn
(f(A)eiqx(m−1)

iq(m − 1) ∣X+2πn/q
X − ∫

X+2πn/q

X

f ′(A)eiqx(m−1)

iq(m − 1) dx)

= lim
q→+∞

q

2πn
{f(A)eiqx(m−1)

iq(m − 1) ∣X+2πn/q
X − f

′(A)eiqx(m−1)

(iq(m − 1))2
∣X+2πn/q
X

+ ∫
X+2πn/q

X

f ′′(A)eiqx(m−1)

(iq(m − 1))2
dx},
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this series in 1/q is convergent when the pattern and the amplitude have di�erent scales.
Therefore it can be approximated by its �rst terms, as follows

⟨eiqx∣f(A)eimqx⟩ = q

2πn
{ eiqx(m−1)

iq(m − 1)[f(A(X + 2πn/q)) − f(A(X))]

− eiqx(m−1)

(iq(m − 1))2
[f ′(A(X + 2πn/q)) − f ′(A(X))]

+O(1/q3)}

≈ eiqx(m−1)

iq(m − 1) (f ′(A(X)) − f
′′(A(X))

iq(m − 1) ) .

Applying these results to the amplitude equation we obtain

∂tA =εA − 3∣A∣2A + ∂yyA − ∂xxxxA

− 4iq∂xxxA + 4q2∂xxA − e2iqx∂x(A3)
2iq

.

Finally keeping the terms to the leading order and scaling both variable and space, we obtain
the amended equation for the amplitude of the pattern, we will refer to this as Amended
Ginzburg-Landau Equation

∂tA = εA − ∣A∣2A +∇2A − i∂xxxA

2q2
− e4iq2xA2∂xA

4iq2
.

At �rst sight we can notice how the amended terms break the symmetry between x and y,
because of this we expect to recover some features of the original Swift-Hohenberg Equation
that are lost in the Ginzburg-Landau description. It is also noteworthy that we can not
derive this equation from a Lyapunow Functional, therefore it does not have a relaxation
dynamic and some permanent dynamic might appear.

Numerical simulations of this equation have shown that vortices are a persistent solution.
In this equation, vortices have no longer rotational symmetry, instead, a small pattern per-
turbation can be observed on the amplitude (see Figure 5.6), close to the vortex core. This
pattern has twice the wavelength of the original pattern, q.

5.3 Dislocation Dynamics

Using this equation we can study the movement of dislocations following the previous studies
done in the Isotropic Ginzburg-Landau Equation by Bodenchatz et al in [9]. We then follow
the same procedure and consider the last term as a perturbation as we have seen numerically
that vortex still are a solution, we insert the Ansatz of a vortex moved by a phase disturbance:

A = R(Ð→r −Ð→r0(t))ei
Ð→
k ⋅Ð→r +W
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where R is the vortex solution of the Isotropic Ginzburg-Landau equation, k = Qx̂ + P ŷ is a
phase disturbance and W are small nonlinear corrections.
Inserting the ansatz into the equation we obtain to the leading order

−ẋ0∂xR − ẏ0∂yR =(εW −R2W − 2∣R∣2W +∇2W ) + 2iQ∂xR + 2iP∂yR

− (Q2 + P 2)R − R
2∂xRe4iq2x

4iq2
.

The linear operator acting on W is

L = (
ε − 2∣R∣2 +∇2 −R2

−R2
ε − 2∣R∣2 +∇2

)

and the Kernel of its conjugate is

Ker{L�} = {( ∂xR

∂xR
) ,( ∂yR

∂yR
)}

with the inner product already de�ned.
Using solvability condition with the �rst and the second of the kernel elements we obtain
respectively

0 =ẋ0(⟨∂xR∣∂xR⟩ + ⟨∂xR∣∂xR⟩) + 2iP (⟨∂xR∣∂yR⟩ − ⟨∂xR∣∂yR⟩)

− 1

4iq2
(⟨∂xR∣R2∂xRe4iq2x⟩ − ⟨∂xR∣R2

∂xRe−4iq2x⟩),

0 =ẏ0(⟨∂yR∣∂yR⟩ + ⟨∂yR∣∂yR⟩) + 2iQ(⟨∂yR∣∂xR⟩ − ⟨∂yR∣∂xR⟩)

− 1

4iq2
(⟨∂yR∣R2∂xRe4iq2x⟩ − ⟨∂yR∣R2

∂xRe−4iq2x⟩),

where the �rst inner product in each equation corresponds to the mobility of the solution
and requires a renormalization of the phase in order to be calculated [9]. Naming this mobility
Mx and My respectively and solving the other inner products we obtain

0 =ẋ0Mx − 4Pπm(ε − P 2 −Q2) −C sin 4q2x0

2q2

0 =ẏ0My + 4Qπm(ε − P 2 −Q2) −Dm cos 4q2x0

2q2

where m = ±1 is the charge of the solution and the values of C and D are given by

C = − ∫
∞

0
R2(∂rR)2 π

8q4r
(4q2rJ1(4q2r) + (16q4r2 − 6)J2(4q2r))dr

+ ∫
∞

0

πR4

8q4r3
(4q2rJ1(4q2r) − 6J2(4q2r))dr
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Figure 5.3: Graphic representation of the interacting forces in a blocked pair. Since the vortices are of
di�erent charge they experiment a radial attractive force, of Peach-Köehler type. A Peierls Nabarro force
opposes to the movement across the pattern (horizontal axis) and a self-propelling force makes the vortices
climb along the pattern.

and

D =∫
∞

0

2πJ2(4q2r) − q2rJ3(4q2r)
4q4r

R2 (r∂rR)2 −R2

2r2
dr

+ ∫
∞

0
2πJ2(4q2r)R3∂rRdr.

In this last expression we identi�ed two types of forces acting on the vortex. A Peach-
Köehler type of force that acts perpendicular to the wavelength induced by the vortex (Q
and P ) and a Peierls Nabarro type of force that comes from the underlying pattern that the
dislocations observe and, therefore, depends on q. These two forces can oppose each other
in some situations, producing pairs of vortices that do not change their relative distance, as
is shown in Figure 5.6. Therefore, we expect a minimum distance dc(q) to exist, in a way
that if two vortices are separated by a distance d < dc they will attract and annihilate, due
to the Peach-Köehler force. But, if they are separated by a distance d > dc, then they can
produce a vortex pair. This was con�rmed using numerical simulations as is shown in Figure
5.6, there, two distances at which vortices pairs exist can be observed.

The magnitude of the parameters C and D are depicted in Figure 5.4 and 5.5 for di�er-
ent combinations of q and ε. In this last image we can observe how the force due to the
periodic forcing increases with ε, which is consistent with the increasing size of the oscilla-
tion which goes with

√
ε, therefore at bigger values of ε is easier to �nd blocked dislocations

pairs as is shown in Figure 5.7, unfortunately in that region of parameters other phenomena
appear and dislocations are not the only defect that can exist as it can be seen in Figure 5.2
b).
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Figure 5.4: Values of C and D obtained through numerical integration for ε = 0.22 and di�erent values of q.

Finally, from our kinematic law we can also see that the force imposed by the underlaying
pattern oscillates at twice the frequency of the original pattern, which predicts two possible
equilibrium positions for the dislocations, this has been con�rmed numerically as it is shown
in Figure 5.8.
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Figure 5.5: Values of C and D obtained through numerical integration for q = 0.7 and di�erent values of ε.

 

 

 

 

0 1 0 1

a)                                                                     b)

Figure 5.6: Two stationary vortex pairs with di�erent relative distances. Due to periodic boundary conditions
the vortex pair travels along the vertical direction (climbing) maintaining their relative distance.
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Figure 5.7: Stationary dislocation pair for q = 0.7 and ε = 1.
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Figure 5.8: Two symmetrical types of dislocations. a) When the dislocation appears in a pattern minimum
and b) when the dislocation is in a pattern maximum.
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Chapter 6

Conclusions

Due to inherent �uctuations in macroscopic systems and coexistence of di�erent spatial struc-
tures, defects are a common feature in dynamical systems appearing in pattern formation. In
particular, in rotational invariance systems vortices or phase singularities are the most com-
mon local defects. This thesis is devoted to the study of phase singularities in the context of
self-organization in out of equilibrium systems, these defects are well described in an uni�ed
manner by modi�ed Ginzburg-Landau equations. This type of model was the mathematical
framework for the present thesis.

Our study was focalized in the understanding of the emergence of vortices in a nematic
liquid crystal light valve (LCLV) with homeotropic anchoring illuminated with a gaussian
beam. This physical system allows the creation of optical vortices that are self-induced and
self-aligned, along with the induction of positive vortices in the liquid crystal texture. A
model equation for this system was derived from �rst principles. First, the electric �eld in
the system was analysed and then, an amplitude equation was derived, close to the onset of
the Freedericksz transition. This equation corresponds to a generalization of the well-know
Ginzburg-Landau Equation with an anisotropic term to stand for the di�erence between the
elastic constants and a spatial forcing term as a result of the particular electric �eld shape
inside the cell.

This Anisotropic Ginzburg-Landau Equation was studied, characterizing its vortex solutions.
Two di�erent types of positive vortices were identi�ed, these solutions are a scaling of the
already known vortex in the Isotropic Ginzburg-Landau Equation. The energy of these so-
lutions was calculated and it was shown how they exchange stability through a Degenerated
Transcritical Bifurcation depending on the anisotropic parameter. The negative vortex was
characterized perturbatively and its energy calculated numerically. This showed how the neg-
ative vortex losses its rotational invariance in the anisotropic equation, making both charges
(positive and negative) no longer indistinguishable in their magnitude.

Numerical analysis of the Forced Anisotropic Amplitude Equation showed how the forc-
ing term induces one single positive vortex in the center of the applied voltage which allows
us to understand the experimental observations of light-induced matter vortices in a LCLV.
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This vortex was always of the same type and consistent with the shape of the electric �eld
inside the sample, all other vortices created by noise are quickly expelled from the system,
consistent with the experimental observations. In the region of parameters our experiment
takes place the induced vortex is unstable and therefore the molecules rearrange to form
the stable positive vortex; since this is not consistent with what is imposed by the �eld,
the system reaches a compromise between the two possible positive solutions forming a vor-
tex with bent arms. This pinning mechanism allow us to envisage the possibility to create
programmable vortex lattices with arbitrary spatial con�guration. This was experimentally
con�rmed using an adequate con�guration in a Liquid Crystal Light Valve. Furthermore,
adapting our equation to account for di�erent light rays showed numerical vortex lattices in
quite good agreement with the experimental observations.

In the last chapter the dislocation dynamics in an anisotropic pattern was studied. To
do this an Amended Amplitude Equation for the Anisotropic Swift-Hohenberg Equation was
derived, in this amplitude equation dislocations show up as vortices whose dynamic was
characterized, allowing the prediction of stationary dislocation pairs, which were con�rmed
numerically.

The results obtained in this thesis showed that phase singularities are a ubiquitous phe-
nomena in nature, which can be described in a uni�ed way by amplitude equations. In turn,
these equations can be related to the particular physical context close to its critical points.
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Appendix A

Vortex Induction via Anisotropy

Stabilized Light-Matter Interaction

This Appendix is the paper entitled "Vortex Induction via Anisotropy Stabilized Light-Matter
Interaction" published in Physical Review Letters.
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By sending circularly polarized light beams onto a homeotropic nematic liquid crystal cell with a

photosensitive wall, we are able to locally induce spontaneous matter vortices that remain, each, stable

and trapped at the chosen location. We discuss the dual light-matter nature of the created vortices and

demonstrate the ability of the system to create optical vortices with opposite topological charges that,

consistent with angular momentum conservation, both derive from the same defect created in the liquid

crystal texture. Theoretically, we identify a self-stabilizing mechanism for the matter vortex, which is

provided by the concurrency of light-induced gradients and anisotropy of the elastic constants that

characterize the deformation of the liquid crystal medium.
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Optical vortices [1–3] are receiving considerable
attention in view of their potential applications. We can
mention, for instance, the exchange of angular momen-
tum between light and matter [4], the realization of
optical tweezers [5–7], the implementation of quantum
computational schemes [8], the improvement of astro-
nomical imaging [9], and wave front sensors [10].
Among the different methods envisaged to produce opti-
cal vortices, Marrucci et al. realized ad hoc matter de-
fects with pre-imposed director orientation in liquid
crystal (LC) samples, the so-called q-plates, and demon-
strated that they can efficiently perform the transfer from
spin-to-orbital angular momentum for circularly polarized
beams [11]. This approach exploits the anisotropic nature
of LC media. However, besides anisotropy, which is at
the basis of their large electro-optic response, LCs are
also characterized by their self-reconfiguring capability,
either under the action of light [12] or of electric fields
[13]. In this framework, optical vortices are expected to
derive directly from the appearance of defects in the LC
texture, for instance, under the application of an electric
field, as it was shown for dislocations in cholesteric LCs
[14] and, more recently, for umbilics in homeotropic
nematics [15,16]. In particular, the umbilic defect natu-
rally possesses a vortex-like morphology, making it at-
tractive for realizing the matter template able to impress a
helical structure on an incoming wave front. Nonetheless,
major problems arise when practical implementations are
aimed at, because soft-matter defects are dissipative
structures that obey a complex Ginzburg-Landau equation
(CGLE) and undergo a coarsening dynamics ruled by
their mutual interaction and annihilation [17]. There-
fore, they are unstable (see, e.g., Refs. [2,13]), usually
limited to a single defect pair per sample or a defect-
free sample, and without the possibility of controlled
addressing.

In this Letter, we propose a novel approach for robust
vortex induction, which relies on the association of ne-
matic LCs with a photosensitive substrate, to realize a
homeotropic light-valve geometry. By transforming the
intensity of the incoming light into a voltage that locally
applies only across the illuminated regions, the LC light
valve (LCLV) enables the local induction of stable and
positionally reconfigurable matter vortices, trapped at each
chosen location. These matter vortices, in turn, give rise to
optical vortices via the transfer of spin-to-orbital angular
momentum onto the incoming light. We demonstrate the
ability to control optical vortices of opposite topological
charges that, consistent with angular momentum conser-
vation, both derive from the same matter defect created in
the LC layer. Then, we show the possibility of inducing
adjacent independent vortices, with input beams separated
by a transverse distance of the same order of their size. Our
experimental results are supported by a theoretical expla-
nation of matter vortex stability, which, on the basis of a
modified Ginzburg-Landau model with anisotropic terms
[18], identifies a self-stabilizing and self-centering mecha-
nism. The latter derives from the concurrency of light-
induced gradients and anisotropy of the elastic constants
that describe the deformation of the LC medium. As a
result, equilibrium vortex positions are found near the
center of the illuminated region. Note that, compared to
other techniques, our method to create optical vortices has
several advantages, such as self-induction, reconfigurabil-
ity, and self-centering properties, together with the low
power of the beams that induce the vortices.
Experimental setup.— The setup for vortex induction

is sketched in Fig. 1(a). The LCLV is prepared by interpos-
ing a d ¼ 15 �m layer of nematic LC (MLC 6608 from
Merck) in between two parallel interfaces, a glass plate and
a slab of the transparent photoconductor Bi12SiO20 (BSO),
25� 25 mm2, thickness 1 mm. The interior surfaces are
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treated to obtain the homeotropic anchoring of the LC, that
is, with the nematic director orthogonal to the confining
walls. The outer surface of the photoconductor and inner
surface of the glass plate are uniformly coated with thin
indium-tin-oxide transparent electrodes for applying a
voltage V0 across the cell. The employed LC has a negative
dielectric anisotropy, �a ¼ �k � �? < 0, with �k and �?
the dielectric susceptibility for the electric fields parallel
and orthogonal, respectively, to the molecular director.

When a bias V0 is applied to the LCLV beyond the
Fréedericskz transition voltage of the cell VFT , the mole-
cules tend to reorient perpendicularly to the (low fre-
quency) electric field because of the negative �a; hence,

since ~E ¼ Vs=dẑ (with Vs the voltage at the LC-BSO
interface) is applied along the longitudinal z direction
and the 2� azimuthal degeneracy imposes rotational in-
variance around it, the LC molecules can arbitrarily align
in any direction, spontaneously forming spatial domains
separated by walls, loops, and umbilic defects or vortices
[13]. In the present experiment, we keep V0 & VFT in order
to avoid the spontaneous reorientation while bringing the
molecules close to the transition point. When a light beam
is incident onto the photosensitive wall of the LCLV, due to
the photo-generated charges, there is a slight increase of
the voltage, which effectively drops across the LC region
underneath: the Fréedericskz threshold is locally overcome
and the molecules start reorienting, following the intensity
gradients associated with the Gaussian beam profile.
Moreover, if the input beam is circularly polarized, the

reorienting molecules follow the rotational structure of the
associated electric-field lines. Hence, a vortex-like defect
is spontaneously induced in the matter texture. A sche-
matic sketch of the molecular director in the x-y plane is
shown in Fig. 1(b), while Fig. 1(c) reports an experimental
vortex profile observed under white light illumination and
crossed polarizers.
Vortex induction.—To prove the vortex induction, a

laser beam of wavelength � ¼ 632 nm and power P ¼
0:55 mW is focused on a diameter of 395 �m onto the
photoconductive side of the LCLV. The input beam polar-
ization is taken to be either right-handed (RH) or left-
handed (LH) circular. Typical snapshots of the output
beams observed in the two cases are shown in Fig. 2 for
V0 ¼ 24 V rms at a frequency of 100 Hz. The intensity
profiles, Figs. 2(a) and 2(b), show that the two beams are
Gauss-Laguerre—like modes with complex amplitude of
the form �ðx; y; zÞ ¼ c ðr; zÞ expðikzþm�Þ, with c , k,
and m representing, respectively, the amplitude, the wave
vector, and the topological charge. Here, (r, �, z) are the
cylindrical coordinates associated to (x, y, z). The output
beam polarization for a LH (RH) circular input beam has
been verified to be RH (LH) circular. The topological
charge can be estimated from the interference patterns
displayed in Figs. 2(c)–2(f), for spherical and respectively
planar wave front of the reference beam. The two-arm
spirals in the first case and the two dislocations in
the fringe patterns in the second case are robust and

LH RHa)
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e)

b)

d)

f)

FIG. 2 (color online). Experimental observation of optical
vortices induced by left-handed, LH (right-handed, RH), circu-
larly polarized input beams: (a, b) output intensity showing
Gauss-Laguerre beams, (c, d) fringe patterns after interference
with a curved wave front, (e, f) patterns after interference with a
planar wave front; (c, e) m ¼ þ2, (d, f) m ¼ �2; V0 ¼ 24 Vpp,

P ¼ 0:55 mW.
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FIG. 1 (color online). (a) Schematic setup for vortex induction:
a circularly polarized beam is incident on the photoconductive
side of the LCLV; the voltage V0 is such that only the illuminated
region undergoes the Fréedericksz transition; when reorienting,
the LC molecules follow the circular pattern associated with the
electric field and create a matter vortex; this, in turn, induces an
optical vortex at the exit. Matter vortex: (b) schematic sketch of
the molecular director in the x-y plane; the dashed lines represent
the transverse lines of the electric field; (c) intensity profile
measured under white light illumination, crossed polarizers.
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reproducible. The topological charge transferred to the
output beam is m ¼ þ2 (m ¼ �2) for the LH (RH) cir-
cularly polarized input beam. Correspondingly, the spin-
to-orbital angular momentum conversion is consistent with
a q plate with charge q ¼ þ1 [11] and the matter vortex is
an umbilic-like defect with winding numberþ1. Note that
due to the nature of the matter vortex,m ¼ �2 are the only
possible values for the transferred topological charge.

The efficiency of the spin-to-orbital angular momentum
transfer is quantified by recording the power of the output
Gauss-Laguerre mode PGL02 when varying the voltage Vpp

applied to the LCLV and for various input powers. The
measurements are carried out by placing a �=4 wave plate
on the path of the output beam, projecting the circularly
converted RH (LH) for LH (RH) input, and the residual
polarization components into two orthogonal linear polar-
izations, andmeasuring the intensity of the one carrying the
topological charge [11]. The results are plotted in Fig. 3,
where the value of the input power is marked along each
curve. The threshold voltage VFT slightly depends on the
input power. The peak of the response curves corresponds to
a � overall phase retardation between the ordinary and
extraordinary components in the LC layer. Finally, by
launching two adjacent input beams, we verify that two
stable and independent vortices are obtained. Figure 4
shows the vortices induced for two RH [Fig. 4(a)], two
LH [Fig. 4(b)], and LH and RH [Fig. 4(c)] input beams,
respectively. The minimal separation at which the two
vortices can be induced coincides approximately with the
size of the individual input spots.

Mechanism for self-stabilization of the matter vortex.—
To describe the mechanism of the creation and pinning of
matter vortices, we derive a model in the vicinity of the
Fréedericksz transition, a limit where analytical results are
accessible, as nematic LC molecules are weakly tilted from

the longitudinal axis ẑ and backflow effects can be ne-
glected. The dynamical equation for the molecular
director ~n reads [13] �@t ~n¼ K3½r2 ~n� ~nð ~n � r2 ~nÞ�þ
ðK3 � K1Þ½ ~nð ~n � ~rÞð ~r � ~nÞ � ~rð ~n � ~rÞ� þ 2ðK2 �K3Þ �
½ð ~n � ~r� ~nÞð ~nð ~n � ~r� ~nÞ � ~r� ~nÞ þ ~n� ~rð ~n � ~r� ~nÞ�þ
�að ~n � ~EÞ½ ~E� ~nð ~n � ~EÞ�, where � is the LC rotational vis-
cosity, and fK1; K2; K3g are the NLC elastic

constants. Under uniform illumination, ~E ¼ V=dẑ � Ezẑ,
and the homeotropic state ~n ¼ ẑ undergoes a stationary
instability for critical values of the voltage, which match

the Fréedericksz threshold VFT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�K3�
2=�a

p
. Close to

the transition point, we introduce the ansatz

~n �

uð ~r; tÞ sin
�
�z
d

�

vð ~r; tÞ sin
�
�z
d

�

1� ðu2þv2Þ
2 sin2

�
�z
d

�

0
BBBBBBBBB@

1
CCCCCCCCCA
;

with ~r ¼ ðx; yÞ the transverse coordinates. By using the

complex field Að ~�; tÞ ¼ ðuþ ivÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2�=�2ð2K1 � 3K3Þ

p
and scaling the space as ~� ¼ ~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðK1 þ K2Þ

p
, after

straightforward calculations we obtain the anisotropic
CGLE [18]

@tA ¼ �0A� jAj2Aþr2
?Aþ �@	;	 �A; (1)

where �0 � ð��aE
2
z � K3�

2=d2Þ=� is the bifurcation
parameter, � � ðK1 � K2Þ=ðK1 þ K2Þ accounts for the
elastic anisotropy, @	 ¼ @x þ i@y, and r2

? � @xx þ @yy ¼
@	@ �	.When neglecting anisotropy,� ¼ 0, the abovemodel

reduces to the CGLE with real coefficients, which admits
stable dissipative vortex solutions with topological charge
(winding number) �1 [2]. The presence of anisotropy
breaks the symmetry, and the þ1 vortex is energetically
favored with respect to�1. Anisotropy, therefore, strongly
influences the system response.
When the illumination has a Gaussian profile, in order to

calculate the nonuniform voltage V across the LC layer, we
have to consider the Laplace equation

r2V þ �a
�?

@2zV ¼ 0; (2)
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FIG. 3 (color online). Efficiency of spin-to-orbital angular
momentum transfer versus experimental parameters. The power
of the output Gauss-Laguerre mode PGL02 is plotted as a function
of the voltage Vpp applied to the light valve and for various input

powers as marked (in mW) on each curve; VFT is the
Fréedericksz transition voltage.
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FIG. 4 (color online). Observed adjacent vortex beams for
(a) right-handed (RH), (b) left-handed (LH), (c) one RH and
one LH input beams; V0 ¼ 24 Vpp, P ¼ 0:55 mW.
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where we neglect the effect of director reorientation.
By taking the boundary conditions Vðx; y; 0Þ ¼ 0 and
Vðx; y; dÞ ¼ Vsðx; yÞ, with Vs the voltage distribution at
the surface, we can find a solution of the form

Vðx; y; zÞ ¼
Z sinhð
qzÞ

sinhð
qdÞVsð ~qÞei ~q� ~rd ~q2; (3)

with 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �a=�?

p
. In the limit of slow gradient, we

can approximate sinhð
qdÞ � 
qd and, therefore, take
Vðx; y; zÞ ¼ Vsðx; yÞz=d; that is, we can separate the trans-
verse contribution of the electric field from its vertical one.
We can, then, calculate the pinning force of a radially
symmetric potential on a stationary vortex. The total en-
ergy of the system can be written as W ¼ WD þWINT,
with WD¼ 1

2

R
K1ðr2 � ~nÞþK2ð ~n �r� ~nÞþK3ðr� ~nÞ2 and

WINT ¼ � 1
2 �a

Rð ~n � rVÞ2 the deformation and the inter-

action energy, respectively. By taking as an ansatz for
Vsðx; yÞ a Gaussian profile of width w and amplitude V1,
that is, Vsð ~rÞ ¼ Vs0 þ V1 expð�2r2=w2Þ, and by inserting

it into the expression for WINT, after straightforward
calculations, we find WINT ¼ � �

4 �adV
2
1 ½cosð2�Þ�

expð�4L2=w2Þ þ 1�, where L is the distance of the vortex
core from the center of the radially symmetric potential
and � is the angle of the nematic director in the transverse
plane with respect to the radial lines of the electric field.
Since in our case, �a < 0, the defect has a minimum energy
when � ¼ �=2 [19]; that is, the director is orthogonal to
the field lines [see Fig. 1(b)]. By accounting for this
transverse correction, the bifurcation parameter is modified
as follows:

�ð�Þ ¼ �o þ �ad
2ð1=3� 1=2�2Þj@	Ezj2=� � �0 þ�1;

(4)

which incorporates light-induced gradients, with �0

the same as before and Ez ¼ Vsð~rÞ=d. A circular region
is below or above the Fréedericksz transition threshold
when �0 þ�1 < 0 or �0 þ�1 > 0, respectively.
Moreover, first-order corrections introduce in Eq. (1)
transverse pinning and forcing terms that have the form
of ð1=3� 1=�2Þð@	EzÞ2 �Aþ 2L=�Ez@	Ez [20].

We perform numerical simulations of the modified
Eq. (1), starting from an initial homeotropic condition
A ¼ 0 in the presence of noise and for �0 þ�1 > 0. At
the beginning, we observe the creation of a large number of
vortices, later accompanied by a coarsening evolution
through the annihilation of oppositely charged vortices,
after which a few vortices survive. In the isotropic case,
� ¼ 0 and no transverse pinning terms, we observe that the
vortices move away from the center, then they disappear by
exiting through the edges, and finally there would be no
vortex left in the system. However, when we consider the
joint effects of transverse pinning and anisotropy, � � 0,
the scenario changes. While the negatively charged vorti-
ces continue to move towards the perimeter of the circle,

where they finally vanish, the vortices with positive
charges repel each other and also disappear at the edges,
but one of them remains pinned at an equilibrium position
close to the center, with a small but finite offset.
Figure 5 illustrates the role of anisotropy on vortex

stabilization. The equilibrium position can be interpreted
as resulting from the balance of two forces: a radial force
induced by the parameter gradients, which tend to push the
vortices to the edges of the illuminated region, and a force
induced by the anisotropic deformation, which is opposite
to the light gradients. In Fig. 5(a), the numerically calcu-
lated vortex profile is plotted together with parameter
variation, with the arrows indicating the forces caused by
light gradients and anisotropy respectively. The direction
of the force due to anisotropy depends on the vortex
charge. Because of the balance between the two opposite
forces, the vortex core is at an equilibrium position x0 close
to but not exactly coincident with the center xc of the
illuminated region. Figure 5(b) shows the numerically
calculated potential, in which four equilibrium vortex po-
sitions near the center are visible. An experimental ex-
ample of a stable experimental vortex is shown in
Fig. 5(c). The corresponding intensity profile is plotted in
Fig. 5(d) against the radial coordinate r.
Conclusions.—By using a nematic LC in a homeotropic

LV geometry, we experimentally demonstrated a novel
robust phenomenon of controlled vortex induction, which
is, at the same time, low power, self-induced, self-
stabilizing, and positionally stable. We have highlighted
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FIG. 5 (color online). Effect of the anisotropy on vortex stabi-
lization. (a) Calculated vortex profile; f1 and f2 are the forces
generated by the parameter gradients and anisotropy, respec-
tively; a numerically simulated vortex is shown in the inset.
(b) Pinning potential showing the equilibrium vortex positions
near the center; � is the angle of the nematic director in the
transverse plane. (c) Photograph of a stable experimental vortex;
the cross indicates the center of the illuminated region.
(d) Corresponding intensity profile versus the radial coordinate
r; g.v. stands for gray values on the camera.
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the relative role of the matter vortex and optical vortex.
The latter is mediated by the spin-to-orbital angular mo-
mentum transfer of photons. Besides, we have pinpointed
the theoretical basis of the vortex stability by means of a
generalized Ginzburg-Landau model that takes into ac-
count medium anisotropy.
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Appendix B

Harnessing Optical Vortex Lattices in

Nematic Liquid Crystals

This Appendix is the paper entitled "Harnessing Optical Vortex Lattices in Nematic Liquid
Crystals" published in Physical Review Letters.
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By creating self-induced vortexlike defects in the nematic liquid crystal layer of a light valve, we

demonstrate the realization of programable lattices of optical vortices with arbitrary distribution in space.

On each lattice site, every matter vortex acts as a photonic spin-to-orbital momentum coupler and an array

of circularly polarized input beams is converted into an output array of vortex beams with topological

charges consistent with the matter lattice. The vortex arrangements are explained on the basis of light-

induced matter defects of both signs and consistent topological rules.

DOI: 10.1103/PhysRevLett.111.093902 PACS numbers: 42.25.�p, 42.50.Tx, 42.70.Df, 42.70.Gi

Optical vortices are singular points where the electro-
magnetic field goes to zero and around which the phase
forms an n-armed spiral profile, with n the topological
charge [1–3]. In low-order Gauss-Laguerre beams, a single
optical vortex corresponds to a phase singularity on the
axis of the beam. Vortex beams attract a lot of attention in
view of their applications [4], including the exchange of
angular momentum between light and matter [5], optical
tweezers [6–8], quantum computation [9], data transmis-
sion [10], and enhancement of astronomical images [11].
To date, optical vortices were generated mainly by using
spiral phase plates [12] or diffractive elements [13,14]. The
introduction of q plates, planar elements with a preset
radial director orientation [15], as well as the exploitation
of umbiliclike defects [16] in nematic liquid crystals has
opened new promising avenues, these approaches provid-
ing both tunability and high efficiency. Direct optical trap-
ping of liquid crystal defects, first reported in nematics [17]
and then extended to other textures, as cholesterics and
smectics [18], was also demonstrated. However, the align-
ment of the incoming beam with the ‘‘vortex-making’’
element remains critical in certain conditions, for instance,
in the presence of atmospheric turbulence as required by
coronagraph applications [19]. By exploiting reorienta-
tional nonlinearities in the nematic liquid crystal (LC)
layer of a light valve, we have recently realized vortex
beams that are self-induced, and hence, self-aligned with
the impinging light beam [20]. In this Letter, we show that
a similar approach can be successfully exploited to create
closely packed lattices of optical vortices with arbitrary
and reconfigurable geometric distributions. As long as LC
reorientation occurs only in the illuminated areas (which
happens for relatively low amplitudes of the voltage
applied to the light valve), the vortices on adjacent lattice
sites are independent from one another and all have the
same sign. Conversely, when reorientation occurs in the
whole liquid crystal layer (for increased applied voltages),
all the vortices become tightly coupled together, leading to

the spontaneous generation of defects with opposite signs
in between adjacent lattice sites. The resulting vortex
arrangements are consistent with simple topological con-
servation rules accounting for the reconnection of reorien-
tation lines in the distorted nematic layer. Similar rules
were recently reported in topological colloids, where par-
ticles of various shapes were introduced in a nematic host
[21], as well as in nematic samples submitted to magnetic
fields created by small magnets [22]. Remarkably, in our
case, all the topological reconnections are reconfigurable,
optically addressable, and tunable via the voltage applied
to the light valve. Moreover, the induced defect lattices act
as arrays of photonic spin-to-orbital angular momentum
couplers with both signs of the topological charge.
The vortex induction process is schematically repre-

sented in Fig. 1(a). The liquid crystal light valve (LCLV)
is filled with a nematic mixture exhibiting negative dielec-
tric anisotropy �" ¼ "k � "? < 0. In such a valve, the

transparent interfaces are treated in order to provide the
homeotropic alignment of the liquid crystals, that is, with
the nematic director (optic axis) perpendicular to the con-
fining walls, one of which is a photoconductive Bi12SiO20

(BSO) slab. Owing to this photoconductive substrate, when
the LCLV is illuminated by a Gaussian light beam, the
effective voltage drop across the LC layer acquires a bell
shaped profile, peaked in the center of the illuminated area
and able to overcome the critical value of the Fréedericksz
transition for which the molecules start to reorient owing to
the torque exerted by the electric field [23]. As we employ
a liquid crystal with �" < 0, the torque exerted along the
short molecular axis is larger than that on the long axis;
therefore, the molecules tend to (re)align perpendicularly to
the electric field, leading to a2�-degenerate reorientation and
the formation of topological defects in the nematic texture
[24]. Besides, the Gaussian profile of the incoming beam also
produces a transverse component of the electric field, thus
giving rise to an effective potential able to pin the topological
defect close to the optical intensity peak [20,25].
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The created defect, in turn, couples orbital and spin
components of the optical angular momentum; hence, the
outgoing beam acquires a helical wavefront. The matter-
defect–optical-vortex duality and their mutual coupling are
illustrated in Fig. 1(b). An input Gaussian beam produces a
vortexlike distribution of the LC molecules (a defect) and,
because of the different phase retardations undergone by
ordinary and extraordinary waves, a right-handed (left-
handed) RHP (LHP) circularly polarized beam gets
transformed into a Gauss-Laguerre beam of opposite po-
larization and carrying a phase singularity of topological
charge �2 (þ2). Actual snapshots of output beams
with spiraling interference fringes are shown beside the
respective panels in Fig. 1(b). The opposite signs of the
optical vortices are revealed by the opposite rotations of
the spiral arms. The matter defect was initially character-
ized by observing it under crossed polarizers [left panel of
Fig. 1(c)]. The black cross appearing in these conditions is
the signature of a umbiliclike defect, which can be pro-
duced by two different types of deformations of the ne-
matic texture, corresponding to �1 signs, or winding
numbers, of the defect [26]. In order to discriminate the
sign of the defect, we carried out spatially resolved polar-
imetry [27]: using quarter-wave plates, we analyzed the
local birefringence and reconstructed the phase distribu-
tion around the defect [central panel of Fig. 1(c)]. The
polarimetric profile shows that the defect is, indeed, umbil-
iclike and of winding number q ¼ þ1. Note that the
reconstructed phase is proportional to 2�, with � the liquid
crystal tilt in the transverse plane; therefore, the 4� phase
jump around the singularity indicates a 2� change of the

LC tilt angle �. Correspondingly, the reconstructed mo-
lecular organization in the transverse plane has an azimu-
thal distribution [right panel of Fig. 1(c)]; hence, the defect
acts as a q plate, to which a Jones matrix can be associated
[28]. It can be shown that for a circularly polarized input

~e� ¼ ð�= ffiffiffi
2

p Þð ~xþ i�~yÞ, where � is the amplitude and
� ¼ þ1 (�1) stands for the LHP (RHP), the exit
field is given by ~eout ¼ � cosð�=2Þ ~e� þ expð2iq��Þ
� expð2i��0Þ sinð�=2Þ ~e��; that is, the incoming circular
polarization is converted to the opposite one with a helical
phase exp2iq� through a conversion factor sin2ð�=2Þ, �
being the overall phase shift between ordinary and extraor-
dinary components. The conversion efficiency, measured
by recording the intensity of the output (converted) beam
for different input powers, is plotted versus voltage bias in
Fig. 1(d). For small input powers, the Fréedericksz thresh-
old is large due to the voltage drop over the BSO slab. For
higher powers, the vortex appears sooner due to the
increased conductivity of the BSO. In each curve, the first
peak is reached when � is an odd multiple of �. Saturation
occurs at high voltages.
In order to describe the mechanism of the optical vortex

self-induction, we have derived from first principles a
forced Ginzburg-Landau equation [25]

�@tA ¼ �A� aAjAj2 þ Kr2
?Aþ�K@	;	 �A

þ b
Erðr; zÞ

z
Eze

i�; (1)

where A is the amplitude of the LC director field
deformation, � is the bifurcation parameter describing

η

π

π

(a) (b)

(c)

(d)

FIG. 1 (color online). Schematic representation of (a) optical vortex self-induction and (b) spin-to-orbital angular momentum
transfer through the induced defect: An RHP (LHP) beam is converted into an LHP (RHP) beam with a phase singularity of charge
�2 (þ2); experimental interferograms are shown beside the respective panels. (c) A matter defect observed under crossed polarizers
(left); spatially resolved polarimetry (middle); reconstructed molecular organization (right). (d) Spin-to-orbital angular momentum
conversion efficiency measured versus voltage bias and for various input intensities.
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the Fréedericksz transition, a is the saturation parameter,
b � �"2d=�, Ez and Er are the longitudinal, respectively,
transverse electric fields, @	 � @x þ i@y is the derivative

on the transverse (x, y) plane, r? � @	; �	, z is the longi-

tudinal coordinate, K � ðK1 þ K2Þ=2, and �K � ðK1 �
K2Þ=2 accounts for the elastic anisotropy Ki, i ¼ f1; 2; 3g
being the LC elastic constants. Without the last two terms,
the above equation is the well-known Ginzburg-Landau
equation, a prototype model widely employed to describe
dissipative vortex dynamics [2]. The inclusion of the last
two terms accounts for the elastic anisotropy of the LC and
the effective electric potential induced by the light imping-
ing on the photoconductor, which are responsible for the
pinning of the matter vortex at the center of the illuminated
areas [20].

The setup for generating vortex lattices is sketched in
Fig. 2. The beam of a diode-pumped frequency-doubled
solid-state (DPSS) laser at wavelength 
 ¼ 532 nm is
expanded, collimated, and directed to a spatial light modu-
lator (SLM). TheSLM is computer driven by intensitymasks
(an example is shown in the inset, the lattice period is 0.5mm,
and the diameter of the vortex core is 1:2 �m) which,
through a lens, are imaged onto the BSO side of the LCLV.
The vortex beams at the LCLVoutput are recorded by a CCD
camera. In order to observe the whole orientational structure
inside the LC layer, the LCLV is also illuminated by white
light and the transmitted field is imaged at the CCD plane.
Polarizers and red filters discriminate the greenvortex beams
from the white light transmitted through the valve. A He-Ne
laser at wavelength 
 ¼ 632 nm is used to realize an inter-
ferometer, through which the phase singularities are

visualized by making the whole vortex lattice interfere with
an expanded collimated beam.
Defect lattices were generated with various symmetries

and spatial distributions, specifically designing the inten-
sity masks for the SLM in order to achieve close packing of
the vortices. Examples of hexagonal vortex lattices are
displayed in Fig. 3. At low voltage, the vortices are
independent from one another and can be individually
addressed [Figs. 3(a) and 3(b)]. When the voltage is
increased, adjacent vortices become coupled through reor-
ientation in the whole nematic background. Because of the
topological constraints associated with the reconnection of
reorientation lines, two (initially generated) adjacent vor-
tices of equal sign induce a vortex of opposite charge in
between them. An example of fully connected network of
vortices with alternating signs is visible in Fig. 3(c).
Figure 3(d) presents the interferogram obtained with a
plane reference wave. The spatially resolved polarimetry
of the vortex distributions in Figs. 3(e) and 3(f) shows the
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FIG. 2 (color online). Experimental setup. Obj, objective; BS,
beam splitter; M, mirror; SLM, spatial light modulator; NDF,
neutral density filter; F, filter transmitting the red components of
the white light source for background illumination of the sample;
POL, polarizer; HWP, half-wave plate; QWP, quarter-wave plate;
PH, pinhole; L, lens; and CCD, charge-coupled device camera.
Bottom inset: Example of square modulation mask as input to the
SLM. Upper inset: Enlarged view of the sample observed under
crossed polarizers when illuminated by the square grid (bright
spots from the DPSS green laser) and white light background; on
the left is an enlarged view of a single vortex.

π

π

FIG. 3 (color online). Hexagonal vortex lattices: (a) Laser
intensity distribution V ¼ 19 V; (b),(c) white light images under
crossed polarizers, (b) independent vortices V ¼ 18 V and
(c) fully coupled lattice V ¼ 22 V; (d) interferogram
V ¼ 12 V; and (e),(f) spatially resolved polarimetry,
(e) V ¼ 22 V and (f) V ¼ 18 V. The dashed lines mark the
lattice structure, and the circles indicate the positions of the
addressing light spots; the input intensity is I ¼ 250 �W=cm2.
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sign of each vortex by the direction of circulation of the
phase arms.

Employing suitably designed intensity masks, we real-
ized vortex lattices with various distributions. Figure 4
shows the cases of square, Penrose, and hexagonal lattices
with a topological frustration in the center. Again, as the
bias was increased from low to high voltages, we observed
the transition from independent vortices to a fully con-
nected network of adjacent vortices of alternating signs. In
hexagonal lattices, a topological frustration is induced by
addressing a defect in the center of a hexagonal cell. If this
is done when the fully connected network is already estab-
lished, the addressed defect undergoes a topological frus-
tration with respect to the defect with opposite sign that
was present at the same site. As a consequence, the
unmatched reorientation lines reorganize themselves and
give rise to a transient unwinding dynamics of the defect
spiral arms, until the system is able to self-heal into a
stationary configurational tradeoff [29].

Figures 5(a) and 5(b) display a numerical simulation
of the vortex structure obtained by using the three-
dimensional molecular director dynamics, illustrating,
respectively, the molecular orientation around the defect
core and the energy density of the associated deformation.
Figure 5(c) shows the numerical solution of Eq. (1) [25]:
the two initially addressed (by Gaussian beams) q ¼ þ1
vortices appearing in the middle of each illuminated
area spontaneously induced an additional q ¼ �1 vortex
between them, owing to the topological constraints that
force the reconnection of adjacent orientation lines in the
nematic texture. These constraints could be exploited to
establish the experimental induction of a q ¼ �1 vortex,
thereby demonstrating spin-to-orbital angular momentum

transfer for q ¼ �1 matter defects, as shown in Fig. 5(d)
for individual lattice sites (the extension to all lattice sites
is cumbersome but straightforward). A q ¼ þ1 defect is
created in the center of an illuminated area, whereas a
q ¼ �1 defect is generated in between two adjacent illu-
minated spots. Correspondingly, for a LHP input, the
q ¼ þ1 (q ¼ �1) defect produces an optical vortex of
topological charge�2 (þ2); for a RHP input, the q ¼ þ1
(q ¼ �1) defect yields an optical vortex of charge
þ2 (�2). Noteworthily, manipulation and control of
optical vortices can be achieved either by changing the
polarization of the input beam or by employing matter
defects with opposite signs.
In conclusion, we have shown that optical vortex lattices

can be realized in a liquid crystal light valve. The optical
vortices are driven by their counterparts in the nematic
texture, where umbiliclike defects are created in closely
packed configurations of various geometrical distributions.
Every defect on each lattice site acts as a spin-to-orbital
momentum coupler and can be harnessed either via optical
addressing or by tuning the voltage applied to the light
valve. These photonic structures, easily reconfigurable and

(b)

(e)

(h)

(a)

(d)

(g)

(f)

(c)

(i)

FIG. 4 (color online). Vortex lattices with various spatial dis-
tributions; the images were taken through crossed polarizers;
input intensity I ¼ 250 �W=cm2. Squares for (a)–(c) V ¼ 14,
18, 22 V, hexagons with a defect in the center for (d)–(f) V ¼ 14,
18, 22 V, and Penrose lattice for (g)–(i) V ¼ 14, 18, 22 V.
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FIG. 5 (color online). Numerical distribution of (a) the mo-
lecular director and (b) energy density around the defect; lengths
are normalized to the cell thickness. (c) Simulated vortex struc-
ture and spatial arrangement; two þ1 vortices are initially
addressed, with a �1 spontaneously appearing in between
them. (d) Experimental demonstration of spin-to-orbital angular
momentum transfer. Left panels: A q ¼ þ1 defect is created in
the center of an illuminated area; a q ¼ �1 defect is generated
in between two spots. Central (right) panels: For an input LHP
(RHP), the q ¼ þ1 defect yields an optical vortex with charge
�2 (þ2), and the q ¼ �1 defect produces an optical vortex
with charge þ2 (�2).
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self-healing, can encompass the parallel processing of a
large number of optical signals.
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Appendix C

Symmetry breaking of nematic umbilical

defects through an amplitude equation

This Appendix is the paper entitled "Symmetry breaking of nematic umbilical defects through
an amplitude equation" published in Physical Review E.
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The existence, stability properties, and bifurcation diagram of the nematic umbilical defects is studied. Close to
the Fréedericksz transition of nematic liquid crystals with negative anisotropic dielectric constant and homeotropic
anchoring, an anisotropic Ginzburg-Landau equation for the amplitude of the tilt of the director away from the
vertical axis is derived by taking the three-dimensional (3D) to 2D limit of the Frank-Oseen model. The anisotropic
Ginzburg-Landau equation allows us to reveal the mechanism of symmetry breaking of nematic umbilical defects.
The positive defect is fully characterized as a function of the anisotropy, while the negative defect is characterized
perturbatively. Numerical simulations show quite good agreement with the analytical results.
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I. INTRODUCTION

Macroscopic systems with injection and dissipation of en-
ergy and momenta exhibit instabilities leading to spontaneous
symmetry breaking and pattern formation [1]. Due to the
inherent fluctuations of these macroscopic systems, different
organizations may emerge in distinct regions of the same
sample; hence, spatial structures are usually characterized by
domains, separated by interfaces, as grain boundaries, defects,
or dislocations [2,3]. Among others, defects in rotationally
invariant two-dimensional (2D) systems, i.e., vortices, attract
a great deal of attention because of their universal character, as
they are solutions of the complex Ginzburg-Landau equation
(CGLE) that describes such different systems as fluids, super-
fluids, superconductors, liquid crystals, fluidized anisotropic
granular matter, magnetic media, and optical dielectrics, to
mention a few [4]. Vortices occur in complex fields and can be
identified as topological defects, that is, pointlike singularities,
which locally break the symmetry. They exhibit a zero intensity
at the singular point with a phase spiraling around it. The
topological charge is assigned by counting the number of spiral
arms in the phase distribution, while the sign is given by the
sense of the spiral rotation.

Nematic liquid crystals with negative anisotropic dielectric
constant and homeotropic anchoring are a natural physical
context where dissipative vortices are observed [5,6]. Figure 1
shows the typically observed vortices and schematic represen-
tations in two and three dimensions of these defects. Umbilical
defects in nematic liquid crystals have long been reported in
the literature (see textbooks [5–7] and references therein). Two
types of stable vortices with opposite charges are observed
[see Fig. 1(c)], which are characterized by being attracted
(repulsed) to the opposite (identical) topological charge. The
nematic liquid crystal phase is characterized by rod-shaped
molecules that have no positional order but tend to point in
the same direction. Then, the description of the nematic liquid
crystal is given by a vector—the director n⃗—which accounts

*marcel@dfi.uchile.cl

for the molecular order. Note that the defects observed
in this context are strongly dissipative, compared to those
observed in magnetic systems, superfluids, superconductors,
and Bose-Einstein condensates. Even so, the vortexlike defects
have accompanied liquid crystals since their discovery in
1889 by Lemman [8], who called these structures kernels.
Later, they were observed in a similar experimental setup
by Freidel, who called these defects noyaux [9]. Moreover,
he also resolved their detailed topological structure. From
the theory of elasticity of nematics liquid crystals Frank
calculated the detailed structure of these defects [10]. Due
to the fact that these defects break the orientational order and
by analogy with dislocations in crystals of condensed matter,
Frank called these defects disclinations. Despite the different
names given to the observed vortices in this context, none
of them were adopted by the community of liquid crystals.
There the most widely used name for these defects is nematic
umbilical defects. The term umbilics was coined by Rapini [11]
and refers to the topological structure of the defect, which
corresponds to a stringlike object in three dimensions [see
Fig. 1(b)]. Because of the complex elasticity theory associated
with nematic liquid crystals, characterized by three types of
deformation (blend, twist, and splay), the dynamic study of
defects is a thorny task [5–7]. A simple and universal strategy
to study and characterize these defects and their dynamics is
to analyze their behavior near the orientational instability of
the molecules, which is called Fréedericksz transition [5,6].
Close to this transition the dynamics of the director can be
reduced at main order to the Ginzburg-Landau equation with
real coefficients [12,13]. This amplitude equation allows us to
understand the emergence of different orientational domains,
two types of stable vortices, and their respective dynamics.
Since the vortices have a ±2π phase jump (winding number),
usually they are referred to as vortex + and −, respectively.
In this approach, however, both defects are indistinguishable
in their amplitude and, as a result of the phase invariance of
the Ginzburg-Landau equation, they account for a continuous
family of solutions, characterized by a phase parameter.
Notwithstanding, as a result of the inherent anisotropy of liquid
crystals these defects can be distinguished experimentally.

1539-3755/2014/90(1)/012507(9) 012507-1 ©2014 American Physical Society
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FIG. 1. (Color online) Nematic umbilical defects. (a) Schematic
representation of the system under study, the rods describe the
orientation of the director and the gray rods (green rods) stand for the
vortex position. (b) Three-dimensional representation of the nematic
umbilical defect, where arrows stand for the position of the defect.
(c) Experimental image of umbilical defects. (d) Bifurcation diagram
of a degenerate pitchfork bifurcation with O(2) symmetry.

Figure 1(c) shows an image obtained using two crossed
polarizers where one can distinguish between different defects,
in which one exhibits a variety of different colors.

The aim of this manuscript is to investigate the existence,
stability properties, and bifurcation diagram of the nematic
umbilical defects through amplitude equations. Several studies
have been performed using variational methods in the free
energy of Frank [11,14], however there is no complete
characterization of the nematic umbilical defects. Close to
the Fréedericksz transition of nematic liquid crystals with
negative anisotropic dielectric constant and homeotropic an-
choring, an anisotropic Ginzburg-Landau equation for the
transversal critical mode is derived by taking the 3D to 2D
limit of the Frank-Oseen model. This model allows us to reveal
the mechanism of symmetry breaking of nematic umbilical
defects. The defect with positive charge is fully characterized
as a function of the anisotropy, while the negative defect
is characterized perturbatively. In particular, only a discrete
number of solutions of the continuous family of defect persists
when anisotropy is taken into account.

II. AMPLITUDE EQUATION CLOSE TO THE
FRÉEDERICKSZ TRANSITION

Let us consider a nematic liquid crystal layer with negative
anisotropic dielectric constant and homeotropic anchoring
under the influence of high-frequency electrical tension (kHz).
Figure 1(a) shows schematically the liquid crystal layer, where
the rods account for the orientation of the director n⃗(r,t) and
{r,t} describe the space and time, respectively. To understand
the dynamical behavior of umbilical defects, we derive a
model in the vicinity of the Fréedericksz transition, a limit
where analytical results are accessible as nematic liquid crystal

molecules are weakly tilted from the longitudinal axis ẑ
and backflow effects can safely be neglected. The dynamical
equation for the molecular director n⃗ reads (the Frank-Oseen
model) [6]

γ ∂t n⃗ = K3[∇2n⃗ − n⃗(n⃗ · ∇2n⃗)]

+ (K3 − K1)[n⃗(n⃗ · ∇⃗)(∇⃗ · n⃗) − ∇⃗(∇⃗ · n⃗)]

+ (K2 − K3)[2(n⃗ · ∇⃗ × n⃗)(n⃗(n⃗ · ∇⃗ × n⃗) − ∇⃗ × n⃗)

+ n⃗ × ∇⃗(n⃗ · ∇⃗ × n⃗)] + ϵa(n⃗ · E⃗)[E⃗ − n⃗(n⃗ · E⃗)], (1)

where γ is the relaxation time, ϵa is the anisotropic dielectric
constant that accounts for nonlinear response of the dielectric
constant, {K1,K2,K3} are the nematic liquid crystal elastic
constants, which account for the elastic deformation of splay,
twist, and bend type, respectively. The electric field is given
by E⃗ = (V/d)ẑ ≡ Ezẑ, where Ez is the root mean square
amplitude of the electric field, V is the applied voltage and
d is the width of the liquid crystal layer.

A. Amplitude equation close to Fréedericksz transition

A trivial equilibrium of the liquid crystal layer is the
homeotropic state, n⃗ = ẑ. This state undergoes a degenerate
stationary instability when the anisotropic dielectric con-
stant is negative (ϵa < 0) for critical values of the voltage,
which match the Fréedericksz transition threshold VFT =√

−K3π2/ϵa . Then, the director undergoes orientational insta-
bility, i.e., the molecules do not want to align with the electric
field. As a result of elastic coupling between the molecules,
the director has a cone of possible equilibria. From the point
of view of bifurcation theory, this instability corresponds to
a degenerate pitchfork bifurcation with O(2) symmetry [3].
Figure 1(d) outlines the bifurcation diagram for this instability.

Close to the transition point, we introduce the ansatz

n⃗ =

⎛

⎜⎝
nx(r⃗ ,πz/d,t)
ny(r⃗ ,πz/d,t)√
1 −

(
n2

x + n2
y

)

⎞

⎟⎠ ,

with r⃗ = (x,y) ∈ % ⊂ R2 the transverse coordinates, z ∈
(−1/2,1/2) and the parameter d ≪ 1 measures the thickness
of the liquid crystal sample (which is conveniently taken to
be equal to πd). Now the idea is to take the 3D to 2D limit
of Eq. (1) near the Fréedericksz point, or in other words take
the limit d → 0. To do this we assume that the voltage has the
following expansion

V = VFT + d2V1 + · · · , V1 > 0.

We introduce the new variable ζ = z/d and write the ansatz
in a more explicit form

nx(r⃗,ζ,t) = d2u0(r⃗ ,t) cos(πζ ) + d4u1(r⃗ ,t)ϑ(πζ ) + · · · ,

ny(r⃗,ζ,t) = d2v0(r⃗ ,t) cos(πζ ) + d4v1(r⃗ ,t)ϑ(πζ ) + · · · ,

nz(r⃗,ζ,t) =
√

1 −
(
n2

x + n2
y

)
,

where ϑ(πζ ) is a function to be determined. Next, we
substitute these expressions in Eq. (1) and compare terms
with equal powers of d . This allows us to have a hierarchy
of equations. It turns out that the O(1) term in the direction of
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the vector x̂ = (1,0,0) satisfies

K3d
−2∂2

ζ ζnx + ϵaV
2
FT d−2nx = u0

(
−K3π

2 − ϵaV
2
FT

)
= 0,

because of the choice of VFT . Hence, this condition cor-
responds to impose that the voltage is in the Fréedericksz
transition. A similar equation holds in the ŷ = (0,1,0) di-
rection. Note that this does not allow us to determine the
functions u0 and v0. As is the case in the standard formal
asymptotic expansion of a homogenization problem, these
functions are determined as solvability conditions for the
equations corresponding to O(d2) order. Indeed, at this order
we have to solve, say in the direction of x̂, a linear problem
for the function ϑ , which is of the form

u1
[
K3∂

2
ζ ζ − ϵaV

2
FT

]
ϑ = gx(r⃗ ,πζ,t),

and this last equation can be solved uniquely if
∫ 1/2

−1/2
gx(r⃗ ,πζ,t) cos(πζ ) dζ = 0.

We show in the Appendix that this, and a similar condition
in the ŷ direction lead to the following equation for the order
parameter w0 ≡ u0 + iv0:

γ ∂tw0 = 1
2 (K1 + K2)∇2

⊥w0 + 1
2 (K1 − K2)∂2

ηηw̄0

−K3π
2w0|w0|2 − ϵaVFT V1w0, (2)

where w̄0 stands for the complex conjugate of w0, ∂η ≡ ∂x +
i∂y and ∇2

⊥ ≡ ∂xx + ∂yy = ∂η∂η̄.
We change variables

w0(r⃗ ,t) +−→ 1
π

√
K1 + K2

K3
A[ρ⃗,(K1 + K2)t/2γ ],

and let δ = (K1 − K2)/(K1 + K2). Denoting the new time
variable by t again we obtain an anisotropic complex
Ginzburg-Landau equation:

∂tA = µ0A − |A|2A + ∇2
⊥A + δ∂2

ηηĀ, (3)

where

µ0 = 2|ϵa|VFT V1

K1 + K2

is the bifurcation parameter and δ ∈ [−1,1] accounts for the
elastic anisotropy.

Similar equations were derived before: using the method
of amplitude equations for nematic liquid crystals near the
Fréedericksz transition [13] (see also [12]), and for modeling
self-organization in an array of microtubules interacting via
molecular motors in Ref. [15].

Note that Eq. (3) can be rewritten in the form

∂tA = − δE
δĀ

, (4)

where the free energy is

E(A,δ) ≡
∫

%

dS

[
|∇A|2 + 1

2
(µ0 − |A|2)2 + δRe{(∂ηA)2}

]
,

(5)

where % ⊂ R2 is a bounded domain. In other words the time-
dependent anisotropic Ginzburg-Landau Eq. (3) is simply a

gradient flow of the free energy. Obviously E is a Lyapunov
functional, i.e.,

dE
dt

=
∫

%

ds

(
δE
δA

∂tA + δE
δĀ

∂t Ā

)
,

= −2
∫

%

ds
δE
δA

δE
δĀ

≤ 0. (6)

The trivial equilibria that minimize the free energy are |A|2 =
µ0. However, as we will see this equation has nontrivial
inhomogeneous equilibria.

B. Isotropic limit: Ginzburg-Landau equation

Considering the isotropic limit (K1 = K2 = K3), δ = 0, the
above model reduces to the well-known complex Ginzburg-
Landau equation with real coefficients

∂tA = µ0A − |A|2A + ∇2
⊥A. (7)

This model has gathered a great interest by describing several
physical systems such as fluids, superfluids, superconduc-
tors, liquid crystals, magnetic media, and optical cavity, to
mention a few [4]. The main properties of the complex
Ginzburg-Landau equation are reported in the review [16].
This equation admits stable dissipative vortex solutions with
topological charge ±1 [2,4]. Figure 2 illustrates the vortex
solution with negative topological charge. If one considers
polar representation A = Rv(r)ei(mϕ+ϕ0), where m = ±1 is
the topological charge, (r,ϕ) are the polar coordinates in
the plane and ϕ0 is a continuous parameter that accounts
for the phase invariance of the above amplitude Eq. (7). The
magnitude Rv(r) satisfies

µ0Rv − R3
v − m2

r2
Rv + 1

r

dRv

dr
+ d2Rv

d2r
= 0. (8)

There are no analytical expressions for the defect solutions of
this model, which were first observed numerically in Ref. [17].
However, one has the asymptotic behavior

Rv(r) ≈
{

αmr |m| + · · · , r −→ 0,
√

µ0 − m2

2 r−2 + · · · , r −→ ∞,

where αm > 0 is a constant that depends on µ0 as well.
By using Padé approximants, one can obtain suitable

approximations for the vortices [2]. There is a long history of
literature devoted to the rigorous study of vortices in complex
Ginzburg-Landau equation (see Ref. [18] and references
therein). Note that the equation for the modulus of the
amplitude does not depend on the sign of the topological
charge. Hence, both vortices are indistinguishable from the
point of view of their magnitude.

In order to characterize the arms of the vortex and to allow
a comparison with the experimental observations obtained
by using cross polarizers, let us introduce the nullcline field
ψ(r,θ ) ≡ Re(A)Im(A). This auxiliary field becomes zero
when the real or imaginary part of A vanishes. Then, the
arms and position of the vortex are represented, respectively,
by the zero and the intersection of the zero nullcline curves.
Figure 2(c) shows the nullcline field obtained by using the
above Ginzburg-Landau equation (7). Note that both defects
are still indistinguishable (see Fig. 2), however these defects
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FIG. 2. (Color online) Vortex solution of Ginzburg-Landau equa-
tion (7) with µ0 = 1 (from numerical simulations). Structure of the
magnitude (a) and phase of the positive vortex (b). Structure of the
magnitude (c) and phase of the negative vortex (d). (e) Nullcline field,
ψ(x,y,t) = Re(A)Im(A) at given time. This field is equivalent to the
light intensity observed when one considers crossed polarizers on an
experimental setup. (f) Modulus of the amplitude A at given time.

are experimentally distinguishable [see Fig. 1(c)] [11,14,21].
The different colors observed experimentally are due to the
different optical paths produced by the different orientations
of the molecules. Moreover, from the Ginzburg-Landau
equation, one deduces that the interaction between vortices is
symmetric [4,22], however it has been reported that the speed
of umbilic defects in the process of collision is different [23].
Numerical simulations considering the dynamic of the nematic
liquid crystal show the same result, where the speed asymmetry
arises from backflow effects and anisotropy in the elastic
constants [23].

The Ginzburg-Landau equation is invariant under the
following symmetries: r⃗ −→ r⃗ + r⃗0 (spatial translation in-
variance), ϕ −→ ϕ + ϕ0 (coordinates rotation), ϕ −→ −ϕ
(coordinates reflection), A −→ Aeiϕ0 (phase invariance), and
A −→ Ā (reflection invariance).

III. ANISOTROPY INDUCES SYMMETRY BREAKING

A. Fourfold symmetry of the energy and its consequences

For the purpose of the following discussion we assume
that µ0 = 1. Let us now consider the effect of the anisotropy

of the elastic constants (δ ̸= 0). From the point of view of
symmetries, equation (7) as well as the free energy E are still
invariant under spatial translation, but phase invariance and
coordinates rotation are no longer valid symmetries. They are
replaced by a joint symmetry A(z,t) −→ A(ze−iϕ0 ,t)eiϕ0 (z
is the complex variable that represents the Cartesian plane).
Using the notation Rϕ0 for the rotation by the angle ϕ0 of R2

about the origin, a short calculation shows however that we
still have:

E(A,δ) = E(A ◦ Rϕ0 , − δ) = E(Rϕ0A,−δ),

when ϕ0 = π/2. This is best seen if we notice that with A =
u + iv we have

E(A,δ) =
∫

%

dS[(1 + δ)(ux + vy)2 + (1 − δ)(uy − vx)2]

+ 1
4

∫

%

dS[1 − (u2 + v2)]2.

We say that E has a fourfold symmetry in the sense that

E(A,δ) = E[Rmπ/2A ◦ Rkπ/2,(−1)m+kδ]. (9)

This formula relates different equations and energies when
m + k is odd, and at the same time it shows that energy and
bifurcation diagrams have to be even symmetric with respect
to δ = 0. Functionals with fourfold symmetries appear for
instance in the so-called d-wave Ginzburg-Landau equation,
see for instance Refs. [19,20] and the references therein.

The presence of anisotropy also breaks the symmetry
between the vortices with positive and negative charge. To
give a first insight into this issue let us suppose that % = BL

is a ball of radius L centered at the origin. Consider a function
f defined in % with Fourier series expansion

f (z) =
∞∑

n=−∞
fn(r)e inθ,

with z = re iθ . Now, if f (z) has the form

f (z) =
∞∑

n=−∞
f4n±1(r)e i(4n±1)θ ,

that is, only modes indexed by 4n ± 1 are present, it can be
checked that

/u + δ∂ηηū + u(1 − |u|2)

has an expansion where again only modes 4n ± 1 appear. With
this in mind we can define A to be a vortex solution with unit
positive charge if its Fourier series has the terms indexed by
4n + 1 and f ′

1(0) ̸= 0, and unit negative charge if its series has
the terms 4n − 1 and f ′

−1(0) ̸= 0.
Figure 3 illustrates the vortices with positive and negative

topological charge found in the asymmetric Giznburg-Landau
equation (3). Note that from the nullcline field ψ(r,t) it is
not possible to differentiate these vortices, compared to the
magnitude field |A(r,t)| where they are distinguishable (cf.
Fig. 3). For the vortex with charge +1, the modulus remains
rotationally invariant, while for the −1 vortex the rotational
invariance around the core is broken by the fourfold symmetry.
Indeed, in a single color map representation of |A|, one can
identify the positive and negative charges on their circular and
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FIG. 3. (Color online) Vortex solution of the anisotropic
Ginzburg-Landau equation (3) with µ0 = 1 and δ = 0.7 (from
numerical simulations). Structure of the magnitude (a) and phase
of the positive vortex (b). Structure of the magnitude (c) and
phase of the negative vortex (d). (e) Colormap of nullcline field
ψ(x,y,t) = Re(A)Im(A) and (f) modulus of the amplitude A at given
time.

cross structure, respectively [cf. Fig. 3(d)]. Note that when one
increases the anisotropy, the size of the cross structure grows.
Below, we study the properties of each of the vortices.

B. Vortex with positive charge

By introducing the ansatz A(r,θ, {ϕ0}) = R(r)ei(θ+ϕ0) in
the anisotropic Ginzburg-Landau equation (3), for the vortex
solution with positive topological charge, we obtain the
following set of scalar equations

0 = µ0R − R3 + (1 + δe−2iϕ0 )
(

d2R

d2r
+ 1

r

dR

dr
− R

r2

)
(10)

0 = δ sin 2ϕ0

(
d2R

d2r
+ 1

r

dR

dr
− R

r2

)
. (11)

From Eq. (11), the only possibility to obtain a nontriv-
ial solution is to consider the phase parameter satisfying
sin 2ϕ0 = 0, which gives the discrete solutions ϕ0 =
{0,π/2,π,3π/2}, and which is of course consistent with
the fourfold symmetry mentioned above. Therefore, from
the continuous family of possible phase jumps only four
possibilities survive. On the other hand, the equation for the

-2

0

2

-2 0 2

r
0.2

0.6

1.0
|A| δ<0

2 6 10r

|A| δ>0

y

y

x

x

Rv

Rv+

Rv-

Rv-

Rv+
Rv

Rv+
Rv-

2 6 10

0.2

0.6

1.0

-2 0 2

-2

0

2

(a)

(b)

(e)

(c)

(d)

-2 0 2
-2

0

2

y

x

FIG. 4. (Color online) Vortex solution with positive topological
charge of the anisotropic Ginzburg-Landau equation (3) with µ0 = 1
and δ = 0.1. Magnitude of the vortex with positive (a) and negative (b)
anisotropy, respectively. The dashed curve stands for the magnitude
of the vortex for isotropic systems (δ = 0). (c) and (d) schematic
representation of the orientation field A(r,θ, {ϕ0}) for different values
of ϕ0: R−

v (ϕ0 = π/2) and R+
v (ϕ0 = 0). (e) Schematic representation

of the orientation amplitude field for the negative topological charge.

magnitude of the amplitude reads

0 = µ0R − R3 + (1 + δ cos 2ϕ0)
(

d2R

d2r
+ 1

r

dR

dr
− R

r2

)
.

(12)

Since ϕ0 = {0,π/2,π,3π/2}, we must have cos 2ϕ0 = ±1.
Rescaling the space by the factor

√
1 ± δ, the above equation

becomes Eq. (8). Therefore, the isotropic positive vortex has
the form

A = R±
v

(
r√

1 ± δ

)
ei(θ+ π

4 ∓ π
4 +nπ), (13)

with Rv the magnitude of the vortex solution of the Ginzburg-
Landau equation and n = 0,±1,±2, . . . . Consequently, the
anisotropic vortex solution with positive charge corresponds
to a simple scaling of the isotropic vortex solution, notwith-
standing, with a finite number of possible phase jumps (ϕ0 =
{0,π/2,π,3π/2}), in opposition, to the isotropic system, which
has an infinite number of solutions parameterized by the
continuous parameter ϕ0. Figure 4 illustrates the magnitude
of a vortex with positive topological charge solution for the
asymmetric Ginzburg-Landau equation (3), for positive and
negative anisotropy. Note that the difference between the
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vortices R+
v and R−

v in the amplitude are their different sizes of
the vortex core. For positive (negative) anisotropy the largest
core is for vortex R+

v (R−
v ). Also, due to the different ϕ0,

both vortices represent different configurations for the director
orientation [cf. Figs. 4(c) and 4(d)].

It is worth noting that it is known, from the variational
approach to the Frank free energy, that the elastic anisotropy
allows a discrete number of four possible phase jumps for
umbilical defects with positive topological charge [11,14].
These features are recovered by the analytical expression (13).
In the context of self-organization of an array of microtubules
interacting via molecular motors similar configurations have
been numerically found for the orientational field with ϕ0 = 0
and ϕ0 = π/2, which have been denominated, respectively,
aster and ideal vortex [15]. Notice that these configurations and
their continuous deformation are vortex solutions like Frank
remarked at the dawn of the theory of liquid crystals [10].

C. Free-energy analysis

In order to study the existence, stability properties and
bifurcation diagram of the vortex solution with positive
topological charge, one can analyze the properties of the
free energy E , expression (5). Using the vortex solution
A = R±

v (r/
√

1 ± δ)ei(θ+ϕ0), where the ± sign stands for + for
ϕ0 = {0,π} and − for ϕ0 = {π/2,3π/2}, and taking % = BL

we obtain

E = π

∫ L

0

{
(∂rRv)2 + R2

v

r2
+ 1

2

(
1 − R2

v

)2

+ δ cos (2ϕ0)
(

∂rRv + Rv

r

)2}
rdr, (14)

changing variables ρ = r/
√

1 ± δ, we obtain

E = π

∫ L/
√

1±δ

0

{
(∂ρRv(ρ))2 + R2

v(ρ)
ρ2

+
(1 ± δ)

(
1 − R2

v(ρ)
)2

2
± δ

(
∂ρRv(ρ) + Rv(ρ)

ρ

)2}
ρdρ,

(15)

after straightforward calculations and following the same
strategy presented in Ref. [4], we derive the energy of the
vortex with positive topological charge

E = π ln
(

L

a0
√

1 ± δ

)
+ π (1 ± δ)

2

±πδ

(
ln
(

L

a0
√

1 ± δ

)
+ 1

)
. (16)

Figure 5 shows the energy for the two different vortices with
positive topological charge (two respective signs). The lines
and geometrical symbols represent, respectively, the energy
obtained using formula (16) and obtained from numerical
simulations of Eq. (3). The numerical results show quite good
agreement with the analytical expressions. Note that this figure
shows that the scaling

√
1 ± δ that makes the core smaller is the

one with less energy and, therefore, preferred by the system.
Therefore, if δ < 0 (δ > 0) the solution with minimal energy
is the one with ϕ0 = {0,π} (ϕ0 = {π/2,3π/2}). Numerical

-0.6 -0.4 -0.2 0.2 0.4 0.6δ

10

15

20

E

δ<0δ>0

Rv- Rv+

FIG. 5. (Color online) Energy of the positive vortex solutions for
different jump phase ϕ0 as function of δ. Numerical results obtained
from vortex solutions of Eq. (3) are shown by the geometrical
symbols (circles and diamonds) and the theoretical result obtained
from expression (16) by a continuous and dashed line. The continuous
and dashed line indicate, respectively, the stable and unstable
vortex solution with positive topological charge. The bottom panel
schematically illustrates the bifurcation diagram for the phase jump
ϕ0, which correspond to a degenerate transcritical bifurcation. The
dark and white circles account for stable and unstable vortices
solutions.

simulations of the anisotropic Ginzburg-Landau equation (3)
show that the vortices with positive topological charge and
large core are unstable. Thus, the stable vortices are those
with small core. The respective stability of these solutions is
represented by continuous (stable) and dashed (unstable) lines
in Fig. 5. One expects that vortices with small core are the
more stable, because the energy privileges the uniform state
|A|2 = µ0.

D. Bifurcation diagram

The above analysis shows that there are two positive vortex
solutions that exist for every value of δ. These phase singularity
solutions exchange stability in the isotropic limit (δ = 0),
where ϕ0 = {0,π} goes from stable to unstable solution, and
vice versa for ϕ0 = {π/2,3π/2}. The mechanism through
which these solutions exchange stability is not by the usual
collision of solutions of the transcritical bifurcation [24,25],
but rather by passing through a very degenerate point at δ = 0,
where an infinite number of solutions exist and ϕ0 can take any
continuous value between 0 and 2π . Hence, this bifurcation is
a degenerate transcritical bifurcation and it is schematically
shown in the bottom panel in Fig. 5, where the dark and
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white circles account for stable and unstable vortex solutions,
respectively.

In brief, we have shown that the anisotropic elasticity is
responsible for the dissimilarity of the defects with different
topological charges. One possible experimental protocol for
characterizing several properties of these nematic umbilical
defects is through the use of crossed circular polarizers [21]
and modification of the elastic constants by changing the
temperature. Temperature allows to handle the values of elastic
anisotropy constants. In particular, the elastic constants are
quite sensitive to temperature near to the nematic-smectic
transition [5].

IV. NEGATIVE VORTEX SOLUTION

The above analysis yields a complete description of vortices
with topological charge +1. As we have mentioned, in vortices
with negative topological charge, their rotational invariance
around the core is broken by a fourfold symmetry (see Fig. 3).
We will consider the strategy of perturbative analysis of
these phase singularity solutions for small anisotropy (δ ≪ 1).
Hence, we consider the following ansatz

A(r,θ ) ≈ [Rv(r) + δg(r,θ ) + O(δ2)]e−i[θ−δ0(r,θ )], (17)

where g(r,θ ) and 0(r,θ ) are dominate correction functions to
the isotropic negative vortex, and with the condition that 0
has no topological charge, i.e.,

∮

1

∇0 · dl⃗ = 0, (18)

where the path 1 encircles the core of the vortex. Using
the above ansatz (17) in the anisotropic Ginzburg-Landau
equation (3) and taking the leading order in δ, we obtain

0 = e−iθ

[
µ0g − 3R2

vg + ∂2g

∂r2
+ 2i

∂0

∂r

∂Rv

∂r

+ iRv

∂20

∂r2
+ 1

r

∂g

∂r
+ iRv

r

∂0

∂r
+ 1

r2

∂2g

∂θ2

− 2i

r2

∂g

∂θ
+ iRv

r2

∂20

∂θ2
+ 2Rv

r2

∂0

∂θ
− g

r2

]

+ e3iθ

[
∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r

]
, (19)

separating the real and imaginary parts

0 = µ0g − 3R2
vg + ∂2g

∂r2
+ 1

r

∂g

∂r
+ 1

r2

∂2g

∂θ2
+ 2Rv

r2

∂0

∂θ

− g

r2
+ cos(4θ )

[
∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r

]
, (20)

0 = 2
∂0

∂r

∂Rv

∂r
+ Rv

∂20

∂r2
+ Rv

r

∂0

∂r
+ Rv

r2

∂20

∂θ2

− 2
r2

∂g

∂θ
+ sin(4θ)

[
∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r

]
. (21)

The θ dependence is easily addressed doing variable sep-
aration, by setting g(r,θ ) = g4(r) cos(4θ ) and 0(r,θ ) =
θ4(r) sin(4θ ). Thus we obtain the following set of equations
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FIG. 6. (Color online) Vortex solution with negative topological
charge of anisotropic Ginzburg-Landau equation (3) with µ0 = 1
and δ = 0.7. (a) left panel magnitude of amplitude |A| and right
panels different radial profiles. (b) Numerical coefficients of the
modal expansion (25).

for the radial dependency

0 = µ0g4 − 3R2
vg4 + ∂2g4

∂r2
+ 1

r

∂g4

∂r
− 16g4

r2

+ 8Rvθ4

r2
− g4

r2
+ ∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
, (22)

0 = 2
∂θ4

∂r

∂Rv

∂r
+ Rv

∂2θ4

∂r2
+ Rv

r

∂θ4

∂r
+ 8g4

r2

− 16Rvθ4

r2
+ ∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
. (23)

As r → ∞, the solution of this set of equations behaves as
follows

g4(r) → 9
4r2

, θ4(r) → 3
16

. (24)

Then, the phase correction converges to a constant value. Using
a variational approach to the Frank free energy far from the
core of the vortex, neglecting the spatial dependence, and
considering a modal angular expansion, one can recover the
value of θ4 = 3/16 and g4 = 0 [14]. However, this ansatz does
not allow us to characterize the spatial structure of the negative
vortex solution.

Asymptotically, the correction of the magnitude of the
amplitude, g4(r), decreases as the inverse of the square of
the distance. A numerical solution for g4(r) is shown in
Fig. 6, which has quite good agreement with the above
asymptotic expression. The magnitude of the amplitude of
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the phase singularity with negative topological charge as a
function of the radial distance is not monotonous. However,
this nonmonotonous feature is weak even for large δ [cf.
Fig. 6(a)]. In order to investigate the spatial structure of the
magnitude of the amplitude, we have considered the following
modal angular expansion

|A(r,θ )| =
∑

n=2

gn(r) cos(nθ ), (25)

where gn(r) are the coefficients of the expansion. Numeri-
cally, we have computed the coefficients for the expansion.
Figure 6(b) shows some of these coefficients. One expects the
mode g4(r) to be the dominant one even for larger δ as can be
seen in Fig. 6(b). Hence, this mode is responsible for the four-
fold symmetry of the vortex solutions with negative charge.

Note that in the perturbative analysis the phase jump, ϕ0,
is not predetermined, because if we consider a more general
ansatz

A(r,θ,ϕ0) ≈ [Rv(r) + δg(r,θ )]e−i[θ+ϕ0−δ0(r,θ )], (26)

the previous analysis remains the same by setting g(r,θ ) =
g4(r) cos(4θ + 4ϕ0) and 0(r,θ ) = θ4(r) sin(4θ + 4ϕ0). There-
fore, the vortex solution with negative topological charge
is parametrized continuously by ϕ0. Furthermore, when the
anisotropy parameter δ is modified numerically, the vortex
does not exhibit any bifurcation. Using the vortex solution
with negative topological charge obtained numerically from
the anisotropic Ginzburg-Landau equation (3) and evaluating
the free energy E , formula (5), we can reveal the dependence
of the free energy as a function of the anisotropy, E(δ). Figure 7
shows this function for various critical points of E . The first
observation we make is that the graph of the set [δ,E(δ)] is
even. This is a general fact that follows immediately from the
relation (9) with m = 1 and k = 0.

Second, the energy of the vortex with negative charge is
exactly alike with the positive one only at δ = 0. The vortex
with positive topological charge is always more stable for

-0.6 -0.4 -0.2 0.2 0.4 0.6 δ

10

15

Rv+Rv- E

FIG. 7. (Color online) Energy of the vortex solutions as function
of δ. The star symbols account for the free energy E obtained
numerically using a vortex with negative topological charge and
formula (5). The solid and dashed lines, drawn to guide the
eye, show the evolution of the free energy of the vortices with
topological negative and positive charge, respectively, as function
of the anisotropy.

anisotropic nematic liquid crystals. It is worthy to note that the
vortices are always created by pairs to conserve the topological
charge, even though one vortex has more energy than the other
one. Furthermore, the scenario of the collision of opposite vor-
tices described by isotropic Ginzburg-Landau (see Refs. [4,22]
and references therein) does not account for the whole picture
of the collision of opposite nematic umbilical defects as is
shown in Ref. [23]. The characterization of vortex interaction
in the anisotropic Ginzburg-Landau equation is in progress.

V. CONCLUSIONS AND REMARKS

The dissipative vortexlike defects, nematic umbilical, have
accompanied liquid crystals since their discovery. In spite of
the large amount of experimental and theoretical studies, an
entire understanding of this phase singularity solutions has
not been overtaken. The existence, stability properties, and
bifurcation diagram of the nematic umbilical defects through
amplitude equations was presented. Close to the Fréedericksz
transition of a nematic liquid crystal with negative anisotropic
dielectric constant and homeotropic anchoring, an anisotropic
Ginzburg-Landau equation for the transversal critical mode,
which is derived by taking the 3D to 2D limit of the
Frank-Oseen model, is considered. This model is a variational
generalization of the Ginzburg-Landau equation with real
coefficients. This model allows us to reveal the mechanism of
symmetry breaking of nematic umbilical defects. The defect
with positive charge is fully characterized as a function of
the anisotropy, while the negative defect is characterized per-
turbatively. In particular, only a discrete number of solutions
of the continuous family of defect persist when anisotropy is
considered. Numerical simulations show quite good agreement
with the analytical results.

Recently, by sending circularly polarized light beams onto
a homeotropic nematic liquid crystal cell with a photosensitive
wall matter vortices were spontaneously induced that remain,
each stable and trapped at the chosen location [26,27]. These
optical lattices and others, like the ones created using magnets
by Pieranski et al. [28] can be understood by this amplitude
equation method. In particular we expect the positive vortex
to rotate when the boundary or initial conditions do not agree
with the phase jump imposed by the anisotropy, as is seen in
Refs. [27,28].

The anisotropic Ginzburg-Landau equation opens new
avenues to the study of nematic umbilical defects such as
dynamical evolution and interaction.
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APPENDIX: 3D TO 2D ASYMPTOTICS FOR THE FULL
FRANK-OSEEN MODEL NEAR THE FRÉEDERICKSZ

TRANSITION

In this Appendix we provide some details of the calculation
that leads from Eq. (1) to Eq. (2) in the limit d → 0. As
we pointed out it suffices to identify terms of order O(1)
and those of order O(d2). Taking into account that a priori
nx = O(d2) and ny = O(d2) it is rather easy to identify these
orders. For brevity in the following we will only consider the x̂
component, calculations involving ŷ component being similar.
In the notation of Sec. II A we have the following terms at order
O(1) and O(d2):

−
[
K3
(
∇2

⊥nx + d−2∂2
ζ ζnx − nxnzd

−2∂2
ζ ζnz

)

+(K3 − K1)
(
nxnzd

−2∂2
ζ ζnz − ∂2

xxnx − ∂2
xyny

)

−(K2 − K3)
(
∂2
xyny − ∂2

yynx

)]

−ϵaV
2
FT d−2nx − 2ϵaVFT V1nx + γ ∂t nx.

Taking into account the definition of VFT we see that O(1)
terms above cancel and we are left with

gx = −
[(

K1∂
2
xxu0 + K2∂

2
yyu0 + (K1 − K2)∂2

xyv0
)

cos(πζ )

+K1u0
1
2

(
u2

0 + v2
0

)
cos(πζ )∂2

ζ ζ cos2(πζ )

−2ϵaVFT V1u0 cos(πζ )
]
+ γ cos(πζ )∂t u0.

Condition
∫ 1/2
−1/2 gx cos(πζ ) dζ = 0 leads to

γ ∂t u0 = K1 + K2

2
∇2

⊥u0

+ K1 − K2

2

[(
∂2
xx − ∂2

yy

)
u0 + 2∂2

xyv0
]

− K1

2
π2u0

(
u2

0 + v2
0

)
− ϵaVFT V1u0.

From this, taking into account a similar equation in the
direction ŷ we get Eq. (2).
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Appendix D

Light-matter interaction induces a single

positive vortex with swirling arms

This Appendix is the paper entitled "Light-matter interaction induces a single positive vortex
with swirling arms" published in Philosophical Transactions of the Royal Society A.
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Homeotropic nematic liquid crystal cells with a
photosensitive wall and negative dielectric anisotropy
exhibit, under the influence of local illumination,
stable vortexes with swirling arms that are trapped
at the illuminated area. Close to the Fréedericksz
transition an amplitude equation is derived, which
allows us to understand the origin of the induced
vortex and the competition between the illuminating
profile and the elastic anisotropy generating the
swirling of the arms.

1. Introduction
Motivated by the unexpected intricate structures of
radio echoes from the bottom of the Antarctic ice
sheet, Nye & Berry [1] conducted ultrasound pulse
experiments on a rough surface, allowing them to
establish the emergence of singularities in wave trains,
optical vortexes. These are singular points where the
electromagnetic field goes to zero and around which
the phase forms an n-armed spiral profile, with n the
topological charge (see [2–4] and references therein). In
low-order Gauss–Laguerre beams, a single optical vortex
corresponds to a phase singularity on the beam axis
[5]. Optical vortexes have been introduced on symmetry
grounds as the topological defects arising above the
laser transition [6] and, in this context, identified as
phase singularities appearing and disappearing in pairs
of opposite charge. Reported in several experiments,
such as photorefractive cavities [7] and lasers [8,9], phase

2014 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. (a) Umbilical defect exhibiting swirling arms with superposed molecular organization (i); for comparison the
molecular organization of a defect with straight cross arms is shown in (ii). (b) Set-up for the optical induction of a matter
vortex induction: a circularly polarized beam is incident on the photoconductive side of the LC light valve; the voltage VBias
is such that only the illuminated region undergoes the Fréedericksz transition; when reorienting, the LC molecules follow the
circular pattern associated with the electric field and create the matter vortex; this, in turn, induces an optical vortex at the
exit of the sample. (c) Schematic of the spin-orbital angular momentum transfer through the optically induced defect: an RHP
(LHP) circularly polarized beam is converted into an LHP (RHP) beam with a phase singularity of topological charge−2 (+2);
experimental interferograms are shown beside the respective panels. (Online version in colour.)

singularities are currently receiving a lot of attention in view of their applications, e.g. light–
matter angular momentum exchange [10], optical tweezers [11–13], quantum computation [14],
astronomical imaging [15] and data transmission [16].

Optical vortexes have mainly been generated with spiral phase plates [17] or diffractive
elements [18]. Recently, the introduction of q-plates, planar elements with a pre-set azimuthal
orientation in nematic liquid crystals (LCs), has opened up promising new avenues [19], as
well as exploiting the umbilical defects in nematic textures [20]. This approach provides both
tunability and high efficiency, although the LC alignment can cause some beam deformation
and a consequent degradation of the generated optical vortexes [21]. Recently, by exploiting
reorientational nonlinearities in the nematic LC layer of a light valve, we have accomplished the
optically addressed self-induction of vortex beams that are self-aligned with the impinging light
beam [22]. The spontaneous nature of the induction process guarantees that the generated defect
is aligned with the incoming light beam.

In this framework, optical vortexes derive directly from the induced umbilical defects in the
LC texture. Indeed, the umbilical defect is one that naturally possesses a vortex-like morphology,
making it attractive for spontaneously enabling the matter template to impress a helical structure
on an incoming light wavefront. Based on this vortex induction process, we have demonstrated
the realization of programmable lattices of optical vortexes with an arbitrary distribution in space
[23]. An intriguing property of the induced matter vortexes is their stationary swirling arms
(cf. figure 1a). These arms are related to the phase jumps of the vortex, or the nullclines (zero-
growth isoclines) showed by crossed polarizers, used to characterize the texture of umbilical
defects. From the theoretical point of view, this type of behaviour is not usually expected
from its universal description, complex Ginzburg–Landau equation (CGLE), where the arms are
characterized by a cross with straight lines [2].
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The aim of this paper is to establish the origin of the swirling arms of the matter vortex
trapped by light in a homeotropic nematic LC cell with a photosensitive wall and negative
dielectric anisotropy. Based on bifurcation theory, close to the Fréedericksz transition [24], a
forced Ginzburg–Landau equation is derived. This equation allows us to understand the origin
of the induced vortex, particularly the competition between the forcing generated by the light
beam and the elastic medium anisotropy, which generates the swirling of the vortex arms.
Numerical simulations of the amplitude equation and experimental observations show quite
good agreement.

2. Experimental observation of the optically induced matter vortex
The set-up for vortex induction is sketched in figure 1b. The liquid crystal light valve (LCLV) is
prepared by interposing a d = 15 µm layer of nematic LC (MLC6608 from Merck) in between two
parallel planar interfaces, a glass plate and a slab of the transparent photoconductor Bi12SiO20
(BSO), 25 × 25 mm2, thickness 1 mm. The interior surfaces are treated to obtain the homeotropic
anchoring of the LC, that is, with the nematic director orthogonal to the confining walls (cf.
figure 1b). The outer surface of the photoconductor and the inner surface of the glass plate
are uniformly coated with thin transparent indium–tin–oxide (ITO) electrodes, through which
a voltage V0 is applied to the cell. The employed LC has a negative dielectric anisotropy,
εa = ε‖ − ε⊥ < 0, with ε‖ and ε⊥ the dielectric susceptibility for low-frequency electric fields
parallel and orthogonal, respectively, to the molecular director [24].

When a bias VBias is applied to the LCLV beyond the Fréedericskz transition voltage VFT,
the molecules tend to reorient perpendicularly to the (low-frequency) electric field because of
the negative εa; hence, since E = (Vs/d)ẑ (with Vs the voltage at the LC–BSO interface) is applied
along the longitudinal z-direction and the 2π azimuthal degeneracy imposes rotational invariance
around it, the LC molecules can arbitrarily align themselves in any direction, spontaneously
forming spatial domains separated by umbilical defects or vortexes [24]. In the conducted
experiment, we kept VBias � VFT, in order to avoid spontaneous reorientation while bringing the
molecules close to the transition point. When a light beam is incident onto the photosensitive
wall of the LCLV, due to the photo-generated charges there is a slight increase in the voltage
that effectively drops across the LC region underneath: the Fréedericksz threshold is locally
overcome and the molecules start reorienting following the intensity gradients associated with the
Gaussian beam profile of the incoming beam. Then, the light on the matter induces, through the
photosensitive wall, a vortex with positive topological charge (using the convention of the right-
hand rule). Figure 1a illustrates the typically observed vortex when one uses crossed polarizers.
The black cross appearing in these conditions is the signature of an umbilical defect, which can
be produced by two different types of deformations of the nematic texture, corresponding to ±1
charge, or winding numbers, of the defect [24].

To prove the optical induction of the matter vortex, and the subsequent transfer from spin
to orbital angular momentum, which is mediated by the light–matter interaction, a circularly
polarized laser beam of wavelength λ= 632 nm, power P = 0.55 mW is focused to a diameter of
395 µm on the photoconductive side of the LCLV. The input beam polarization is taken either
right-handed circular or left-handed circular. Typical snapshots of the output beams observed
in the two cases are illustrated in figure 2c, where the interferograms, made with a spherical
reference wave, show the helical structure of the output wavefront. The bias voltage of the LCLV
was fixed to V0 = 24 V RMS at frequency 100 Hz. The spin-to-orbital angular momentum transfer
is consistent with a +1 q-plate; therefore, the matter vortex is a +1 defect [19].

A characteristic feature of the observed vortex is that its arms are bent and thus swirling
around the defect core. Experimental snapshots showing the matter defect with clockwise
and anticlockwise swirling arms are displayed in figure 2a(i) and (ii), respectively. In order
to discriminate the sign of the defect, we carried out spatially resolved polarimetry [25].
Using quarter-wave plates, we analysed the local birefringence and reconstructed the director
distribution around the defect (figure 2b). The obtained polarimetric profile allowed us to infer
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Figure 2. Matter vortex: (a) intensity profiles recorded underwhite light illumination and crossed polarizers showing clockwise
(i) and anticlockwise (ii) swirling arms; (b) spatially resolvedpolarimetry in the case of a defectwith anticlockwise swirling arms.
(Online version in colour.)

that the defect is indeed umbilical and of winding number +1. Note that the reconstructed phase
is 2θ , with θ the LC tilt in the transverse plane; therefore, the 4π phase jump around the singularity
indicates a 2π change of the LC tilt angle θ . In addition, this type of method allows us to observe
the bending of the arms of the vortex (cf. figure 2b).

3. Amplitude equation close to the Fréedericksz transition
In order to elucidate the mechanism of creation and pinning of matter vortexes, we derive an
amplitude equation in the vicinity of the Fréedericksz transition, a limit where analytical results
are accessible as nematic LC molecules are weakly tilted from the longitudinal axis ẑ and backflow
effects can safely be neglected. Illuminating the LCLV with a Gaussian beam induces a voltage
drop with a bell-shaped profile across the LC layer, higher in the centre of the illuminated area.
To determine the shape of the voltage drop within the sample, one can consider the sample
as consisting of two infinitely extended planar parallel plates separated by a distance d. The
upper plate, located at z = d, is lit by a Gaussian beam. By introducing cylindrical coordinates,
the voltage V(r, θ , z) satisfies the Laplace equation

∂zzV + ε⊥
ε‖

∇2
⊥V = 0,

where ∇2
⊥ stands for the transverse Laplacian operator in polar coordinates. The voltage satisfies

the boundary conditions in the respective plates V(r, θ , z = d) = V0 + αI(r) and V(r, θ , z = 0) = 0,
with V0 the voltage across the LC layer in the absence of light, (r, θ ) the polar coordinates in
the plane where the origin of the coordinate system corresponds to the centre of the beam and
θ = 0 accounts for the x-axis (figure 1b), I(r) stands for the intensity of the Gaussian beam, and
I(r) = I0 e−r2/ω2

, with I0 the peak intensity and ω the beam waist. By using the Fourier transform
in polar coordinates and solving the above equation with the corresponding boundary conditions,
after straightforward calculations one obtains

V(z, r) = 1
2π

∫∞

−∞
dk e−ik·r⊥

sinh
(√
ε⊥/ε‖ kz

)

sinh(
√
ε⊥/ε‖ kd)

(∫∞

0
dr∗

⊥ eik·r∗
⊥

[
V0 + αI

(
r∗
⊥
ω

)])
.

This expression is an exact analytical solution; however it is too intricate to infer results from it.
For the sake of simplicity, we consider the limit of a Gaussian beam sufficiently flattened (ω→ ∞).
In this limit, the above expression, at the dominant order, takes the form

V(z, r) ≈ z
d

[
V0 + αI

( r
ω

)]
.

The first and second terms on the right-hand side account for the externally applied bias and
the voltage drop induced by the Gaussian beam impinging on the sample, respectively. Figure 3a

 on September 22, 2014rsta.royalsocietypublishing.orgDownloaded from 



5
rsta.royalsocietypublishing.org

Phil.Trans.R.Soc.A372:20140019
.........................................................

4

z = 0

V

E

z = d
–4 –4

0

0 1

4
1

0

0

(a) (b)

Figure 3. (a) Vertical cross section showing a schematic of the electric field (arrows) and voltage drop (isolines) across the
LC layer when a laser beam illuminates the sample from above; (b) corresponding top view of the LC director orientation; the
illuminating laser beam is impinging at the centre of the sample. (Online version in colour.)

illustrates the voltage drop inside the LCLV in a vertical cross-sectional view. Then, the electric
field E(r, θ , z) inside the LCLV takes the form

E = −VV = Ezẑ + Err̂ = −1
d

[
V0 + αI

( r
ω

)]
ẑ − zα

dω
dI(r/ω)

dr
r̂,

with ẑ and r̂ the unit vectors in cylindrical coordinates (figure 3a). Note that the electric field
contains an axisymmetrical structure. This structure will be responsible for inducing a matter
vortex (cf. figure 3). The presence of an inhomogeneous electric field strongly modifies the
dynamics of the LC director n. The dynamical equation for the molecular director n reads [26]

γ ∂tn = K3[∇2n − n(n · ∇2n)] + (K3 − K1)[n(n · V)(V · n) − V(n · V)]

+ 2(K2 − K3)[(n · V × n)(n(n · V × n) − V × n) + n × V(n · V × n)]

+ εa(n · E)[E − n(n · E)],

where γ is the relaxation time and {K1, K2, K3} are the nematic LC elastic constants [24,26]. The
dynamical behaviour of the director is of relaxation type and is characterized by preserving
its norm. The homeotropic state, n = ẑ, undergoes a stationary instability for critical values
of the voltage V0 ≡ VFT =

√
−K3π2/εa, which corresponds to the Fréedericksz transition of the

LC [24,26]. Close to this transition point, and by considering the inhomogeneous electric field
E(r, θ , z), at the dominant order one can use the following ansatz for the amplitude of the critical
mode:

n(r, θ , z) ≈

⎛

⎜⎜⎜⎜⎜⎜⎝

u(r, θ , t) sin
(πz

d

)

w(r, θ , t) sin
(πz

d

)

1 − (u2 + w2)
2

sin2
(πz

d

)

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Introducing the above ansatz in the director equation, integrating in the z coordinate over one
period, and defining the complex amplitude A ≡ u + iw, after straightforward calculations one
obtains

γ ∂tA =μA − aA|A|2 + K∇2
⊥A + δ∂η,ηĀ + b

Er(z)
z

Ez eiθ , (3.1)

which is the amplitude equation for self-stabilization of the matter vortex [23]. Here μ≡ −K3k2 −
εaE2

z(r, z) is the bifurcation parameter (note that μ is a spatially dependent parameter), k ≡ π/d,
a ≡ −(K3k2/4 + 3εaE2

z/4)> 0 is a parameter of order one that accounts for the nonlinear saturation,
b ≡ εa2d/π , ∂η ≡ ∂x + i∂y, K ≡ (K1 + K2)/2 and δ ≡ (K1 − K2)/(K1 + K2) accounts for the elastic
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Figure 4. Vortex solution of the anisotropic and forced amplitude equation (3.1) with positive anisotropy (δ > 0) and (a,b)
θ0 = 0, (c,d) θ0 = π/4, and (e,f ) θ0 = π/2. The top and bottom panels represent, respectively, the nullcline fieldψ (r, θ ),
and the phase of the amplitude A. Simulations realized withμ= −0.5 + 1.69 e−r2/σ 2

, σ = 18, δ= 0.7 and b(Er/z)Ez =
0.00169r e−r2/σ 2

.

anisotropy. Note that Er(z)/z = −(α/dω) dI(r/ω)/dr does not depend on the z coordinate. In order
to elucidate the swirling arms, we consider an extra parameter in the external forcing, changing
Ez eiθ for Ez ei(θ+θ0).

The last term on the right-hand side is an external forcing generated by the inhomogeneous
radial electric field, which in turn is induced by the inhomogeneous profile of the light beam.
This forcing term is responsible for inducing a matter vortex with positive charge in the centre
position where the applied Gaussian beam is peaked, which is at the origin of the self-stabilization
mechanism for the vortex induction.

In order to characterize the dynamics of the arms of the vortex and to allow a direct comparison
with the observations obtained by using crossed polarizers, let us introduce the nullcline field
ψ(r, θ ) ≡ Re(A) Im(A). This auxiliary field becomes zero when the real or imaginary part of A
vanishes. Then, the arms and position of the vortex are represented, respectively, by the zero and
the intersection of the zero nullcline curves. Figure 4 shows the nullcline field and the phase field
obtained by using the above Ginzburg–Landau equation with anisotropic forcing, equation (3.1).
Note that the vortexes shown in the left and centre panels are similar to those observed
experimentally (figure 1). The anisotropic term (the term proportional to δ) is responsible for
moving and slightly rotating the matter vortex, as we will see later.

4. Positive vortex with swirling arms
Neglecting anisotropy δ = 0 (K1 = K2 = K3) and spatial variations of the voltage (Er = 0), the above
model reduces to the well-known CGLE with real coefficients. This model has gathered a great
interest by describing various physical systems such as fluids, superfluids, superconductors, LCs,
magnetic media and optical cavities, to mention a few [2]. The main properties of the CGLE are
reported in a review [27]. The CGLE admits stable dissipative vortex solutions with topological
charge (winding number) ±1 [2]. To characterize these stationary solutions, let us consider the
polar representation and polar coordinates A = Rv(r) ei(mθ+ϕ0), where m = ±1 is the topological
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0
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|A|

Figure 5. Dynamical evolution of the vortexes observed in the forced amplitude equation (3.1) without anisotropy (δ = 0)
starting from the unstable state, A= 0, with an initial noise. The temporal evolution is from (a) to (d). The magnitude of the
amplitude |A| is displayed in greyscale. The steady state, which corresponds to a single vortex trapped in the centre, is shown
in (d). Simulations realized withμ= −0.5 + 1.69 e−r2/σ 2

,σ = 18, δ = 0.7 and b(Er/z)Ez = 0.00169r e−r2/σ 2
.

charge, and ϕ0 is a continuous parameter that accounts for the phase invariance of the CGLE. The
magnitude Rv(r) satisfies

μ0Rv − R3
v − m2

r2 Rv + 1
r

dRv
dr

+ d2Rv
d2r

= 0, (4.1)

where μ≡ −K3k2 − εaE2
z , measured in the middle of the sample. The defect solution of this model

was first observed numerically in [28] and does not have an analytical expression. However, the
vortex has the asymptotic behaviour

Rv(r) −→

⎧
⎨

⎩
r, r −→ 0,
√
μ0

(
1 − 2 e−2r

√
μ0/2

)
, r −→ ∞.

(4.2)

By using Padé approximants, one can obtain suitable approximations for the vortexes [2]. Note
that the equation for the modulus of the amplitude (4.1) does not depend on the sign of the
topological charge. Hence, the two vortexes are indistinguishable from the point of view of the
magnitude. The nullcline field in this case takes the formψ(r, θ ) = R2

v(r) sin(2θ )/2. Thus, the vortex
arms are characterized by being straight and orthogonal, forming a cross whose centre determines
the position of the vortex. An example of this case is shown in figure 4e. In addition, the phase
jump is characterized by a straight line emerging from the position of the vortex (figure 4f ).

(a) Effects of forcing
When the Fréedericksz transition starts from the unstable state, A = 0, in the presence of noise,
or under uniform illumination, the system initially generates a large number of vortexes that
subsequently annihilate by pairs of opposite topological charge or fade towards the edges. Let us
now consider the effect of forcing, Er �= 0, occurring in the presence of a non-uniform illumination.
Such a forcing simultaneously breaks the translational symmetry and the spatial rotation and,
consequently, leads to a single positive vortex to be attracted and trapped in the central position
of the addressed area. Figure 5 shows a sequence of pictures illustrating the process described
above. Starting from three generated vortexes, a couple of them, oppositely charged, mutually
attract and annihilate (figure 5a–c), thus leaving a single positive vortex at the end (figure 5c). The
single vortex is then attracted to the centre of the illuminated area where it remains pinned. The
stationary pinned vortex is depicted in figure 5d.

Figure 4e and f shows, respectively, the nullcline field and the corresponding phase of the
induced stationary vortex. Note that negatively charged vortexes are not consistent with the
charge induced by the forcing; thus they are not a steady state. Note also that the phase jump
is always consistent with that imposed by the forcing (θ0).
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(b) Effects of elastic anisotropy
We now focus on the effect of elastic anisotropy on the single positive vortex. We first ignore the
inhomogeneous forcing; hence, we take Er = 0. In this case, the amplitude of the critical mode
satisfies the anisotropic Ginzburg–Landau equation [29]

γ ∂tA =μ0A − aA|A|2 + K∇2
⊥A + δ∂η,ηĀ. (4.3)

By introducing the ansatz A(r, θ ) = R(r) ei(θ+ϕ0) in the above equation for the vortex solution with
positive topological charge, we obtain the following set of scalar equations:

0 =μ0R − aR3 + (K + δ e−2iϕ0 )

(
d2R
d2r

+ 1
r

dR
dr

− R
r2

)

(4.4)

and

0 = δ sin 2ϕ0

(
d2R
d2r

+ 1
r

dR
dr

− R
r2

)

. (4.5)

From equation (4.5), the only possibility to obtain a non-trivial solution is to consider the phase
parameter satisfying sin 2ϕ0 = 0, which gives the solutions ϕ0 = {0,π/2,π , 3π/2}. Therefore, from
the continuous family of possible phase jumps, only four possibilities survive. On the other hand,
the equation for the magnitude of the amplitude reads

0 =μ0R − aR3 + (K + δ cos 2ϕ0)

(
d2R
d2r

+ 1
r

dR
dr

− R
r2

)

. (4.6)

Owing to the periodicity of the cosine function, we only have two possibilities, cos 2ϕ0 = ±1.
Rescaling the space by the factor

√
1 ± δ, the above equation becomes equation (4.1). Therefore,

the isotropic positive vortex has the solution

A = Rv

(
r√

1 ± δ

)
ei(θ+π/4∓π/4+nπ), (4.7)

with n = 0, ±1, ±2, . . .. Consequently, the anisotropic vortex solution with positive charge
corresponds to a simple scaling of the isotropic vortex solution, notwithstanding, with a finite
number of possible phase jumps (ϕ0 = {0,π/2,π , 3π/2}), in opposition, with the isotropic system,
which has an infinite number of solutions parametrized by the continuous parameter ϕ0. Of the
four solutions found, those with a smaller core are stable and the others are unstable. It can be
inferred from energy calculations, or through numerical simulations, that for positive (negative)
anisotropy the stable solutions are ϕ0 = {π/2, 3π/2} (ϕ0 = {0,π}). It is worth noting that it is known,
from the variational approach to the Frank free energy, that the elastic anisotropy allows a discrete
number of four possible phase jumps for umbilical defects [30,31]. These conditions are recovered
by the above solutions.

(c) Simultaneous effect of anisotropy and forcing
We now consider simultaneously the effects of the elastic anisotropy, which is intrinsic to the
medium properties, and the spatial forcing that is induced by the light. While the forcing induces
a vortex that is pinned at the centre of the light beam and tries to impose the phase jump in
θ0, the elastic anisotropy imposes a phase jump that must be consistent with the four above-
mentioned ϕ0. Because the anisotropy is proportional to the spatial derivatives, we expect it
to be more relevant near the core of the vortex. Therefore, one expects that the anisotropy is
imposing the phase jump in the region close to the vortex core and the spatial forcing imposes the
phase jump in the outer regions of the vortex. Figure 4 illustrates stationary vortexes for positive
anisotropy (ϕ0 = {π/2, 3π/2} are privileged) with different θ0. In the left, centre and right panels
are considered θ0 = 0, θ0 = π/4 and θ0 = π/2, respectively. As a result of adjusting the respective
angles of the phase jump, the vortex solution exhibits a phase gradient, which induces a small
force responsible for slightly displacing the vortex from its centre.
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Figure 6. Bending process of the arms of a single positive vortex obtained from the forced amplitude equation (3.1) for positive
elastic anisotropy. The time evolution corresponds to (a) to (f ). The nullcline field ψ is displayed in greyscale. During its
evolution, the vortex develops a swirling of the arms around its core. The final configuration is shown in (f ). Simulations realized
withμ= −0.5 + 1.69 e−r2/σ 2

,σ = 18, δ = 0.7, and b(Er/z)Ez = 0.00169r e−r2/σ 2
; the time shown is scaled by γ .

Therefore, the origin of the bent arms of the vortexes is simply the result of the competition
between two effects: the anisotropy, imposing a phase jump angle in the core of the vortex,
and the spatial forcing, imposing another phase jump angle in the outside regions. Figure 6
shows the evolution of a positive vortex initially consistent with the spatial forcing and its later
temporal evolution resulting from the anisotropy. Clearly, a process of bending of the arms of the
vortex is originated from the core. These numerical findings are consistent with the experimental
observations.

5. Conclusion and comment
By using a nematic LC in a homeotropic light-valve geometry, we experimentally demonstrated a
robust phenomenon of controlled vortex induction, which is, at the same time, spontaneous, self-
stabilizing and positionally stable. After its induction, the vortex develops a swirling of the arms,
which remain stationary and stable. Close to the Fréedericksz transition, an amplitude equation
is derived, which allows us to understand the origin of the induced vortex and the competition
between the forcing induced by the light and the elastic anisotropy that generates the swirling
arms of the vortex. More precisely, the spatial forcing induces a single charge vortex, then the
anisotropy imposes a phase jump in the region close to the vortex core and the spatial forcing
imposes a phase jump in the outer regions. Numerical simulations of the amplitude equation
show a fairly good agreement with the experimental observations.

Vortexes with swirling arms are usually observed in vortex interactions [32]. They have also
been observed in LCs with an active surface [33] and in singular birefringent patterns generated
by non-singular light beams [34]. All these observations can be understood as the result of the
combination of the elastic anisotropy and an external forcing given, for instance, by another
vortex, or by the boundary conditions, or an external field. The anisotropy and the external forcing
try to impose the phase jump in different directions, generating a vortex with swirling arms.
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By means of appropriate illumination profiles, one could induce vortexes of opposite charges
in the same LC sample with a photosensitive wall. The interaction of oppositely charged vortexes
exhibits a complex dynamics [2,32]. The characterization of the interaction of vortexes with
swirling arms is a work in progress.
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