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Abstract Let (Xn) be a sequence of independent and identically distributed random
variables, with common absolutely continuous distribution F . An observation Xn is
a near-record if Xn ∈ (Mn−1 − a, Mn−1], where Mn = max{X1, . . . , Xn} and a > 0
is a parameter. We analyze the point process η on [0,∞) of near-record values from
(Xn), showing that it is a Poisson cluster process. We derive the probability generating
functional of η and formulas for the expectation, variance and covariance of the count-
ing variables η(A), A ⊂ [0,∞). We also obtain strong convergence and asymptotic
normality of η(t) := η([0, t]), as t → ∞, under mild tail-regularity conditions on F .
For heavy-tailed distributions, with square-integrable hazard function, we show that
η(t) grows to a finite random limit η(∞) and compute its probability generating func-
tion. We apply our results to Pareto and Weibull distributions and include an example
of application to real data.
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1 Introduction

Given a sequence of random variables (Xn), indexed by the positive integers, Xn is a
(upper) record if it exceeds all preceding observations X1, . . . , Xn−1. Mathematical
properties of records have been under study for decades, mostly for independent and
identically distributed (iid) random variables, with continuous parent distribution. The
interested reader may consult the monograph by Arnold et al. (1998) for a complete
account of the theory up to the late 1990s.

A near-record is an observation which is not a record but is close to being one, and
as such can be seen as natural extension of the idea of record. Informally, a near-record
fails to be a record but is located within distance a of the current record value.

Near-records were defined in Balakrishnan et al. (2005) and their potential interest
in actuarialmathematicswas pointed out.More recently, the idea of combining records
and near-records in statistical procedures was first proposed in Gouet et al. (2012c), as
a way of compensating for the relative exiguity of records, without radically changing
the experimental design. Maximum likelihood estimation was developed and a natural
strategy for simultaneously collecting records and near-records was described, in the
context of destructive stress testing. See Gulati and Padgett (2003) for information on
record-data-based inference.

Previous work on near-records has mainly focused on “time-axis” counting vari-
ables such as the number of near-records associated to the n-th record, first studied
in Balakrishnan et al. (2005), with additional results in Pakes (2007). The asymp-
totic behavior of the total number of near-records, among the first n observations,
was investigated in Gouet et al. (2012a, b), where central limit theorems and laws
of large numbers were established. Extensions to bivariate observations and to the
Pfeifer model have been analyzed by Bose and Gangopadhyay (2011) and Bairamov
and Stepanov (2011), respectively.

We consider the aforementioned results as being of time-axis kind because near-
records are counted as time n goes by. The aim of the present paper is to study
near-records in the spatial axis of their values. To that end, we define and completely
characterize the point process η of near-record values as a Poisson cluster process, in
a way similar to Shorrock’s characterization of record values; see Arnold et al. (1998,
p. 42). Together with the characterization of η, we give the explicit expression of its
probability generating functional and formulas for the probability generating function,
mean, variance and covariance of counting variables related to η.

When the common distribution F of the observations is heavy-tailed, the total
number of near-records along the whole sequence (Xn), denoted by η(∞), is shown
to be finite. We are able to characterize the distribution of η(∞) and, in the particular
case of the Pareto distribution (F(x) = 1 − 1/xr , for x > 1), we answer a question
posed in Gouet et al. (2012b). For moderate- and light-tailed F , η(t) grows to infinity
as t → ∞ and, under further regularity assumptions, we establish a law of large
numbers and a central limit theorem.

The paper is organized as follows. Notations, definitions and a technical Lemma
are presented in Sect. 2. Results on the structure of η and about the limiting behavior
of η(t) are stated and proved in Sect. 3. Examples of application of the results to
particular distributions are given in Sect. 4.
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2 Notation and preliminaries

Let (Xn) denote an iid sequence of nonnegative random variables, indexed by the posi-
tive integers. Let F be their commondistribution function,which is assumed absolutely
continuous, with positive density f and hazard function λ(x) := f (x)/F̄(x), where
F̄ := 1 − F . The nonnegativity of the random variables and the strict positivity of f
can be dropped but we assume them to ease the exposition.

Records. Denote by Mn := max{X1, . . . , Xn}, n ≥ 1, the sequence of partial
maxima and call Xn a (upper) record if Xn > Mn−1, with M0 = 0 (so that X1 is
conventionally counted as record). Record times and record values are, respectively,
defined by L1 = 1, Ln = min{k > Ln−1|Xk > Mk−1}, n > 1, and Rn = X Ln , n ≥ 1.
For any Borel subset A of the line, let F(A) := ∫

A f (t)dt .
Let ξ denote the point process of record values on the line (Shorrock’s process),

with counting function given by

ξ(t) = card{n ≥ 1 | Rn ≤ t}, t ∈ [0,∞).

It is well known that, under the assumptions stated above, ξ is a non-homogeneous
Poisson process on [0,∞), with intensity measure λ(t)dt .

Near-records. Let a be a fixed positive parameter and call Xn a (upper) near-record
if Xn ∈ (Mn−1 − a, Mn−1]. Additionally, we say that the near-record is associated to
the m-th record if Lm < n < Lm+1.

The number of near-records associated to Rm is denoted by Sm and near-record
values associated to Rm by Ym, j , j = 1, . . . , Sm . Observe that 0 ≤ Sm < Lm+1− Lm

and also that Rm − a < Ym, j ≤ Rm , for j = 1, . . . , Sm .

Lemma 1 Under the hypotheses at the beginning of this section:

(i) conditional on Rm = x, the distribution of Sm is geometric (starting at 0) with
success parameter p(x) := F̄(x)/F̄(x − a).

(ii) Conditional on Rm = x and Sm = k, the random variables Ym, j , j = 1, . . . , k,
are independent, with common density

f (y)1(x−a,x](y)

F((x − a, x]) . (1)

(iii) Conditional on the sequence (Rn), the random variables Sn are independent.
Moreover, near-records associated to different record values are mutually inde-
pendent.

Proof (i) Sm counts the number of independent observations X j , with j > Lm , such
that X j > Rm − a, until one observation is greater than Rm (success). Clearly,
given Rm = x , the probability of success is P[X j > x |X j > x − a] = p(x).

(ii) The random variables Ym, j are just X observations constrained to be in (Rm −
a, Rm], hence, given Rm = x , they are independent with density (1).

(iii) The conclusion follows from the mutual independence of the sets of random
variables {X j | j ∈ [Lm + 1, Lm+1]}, m ≥ 1, given (Rn). �	
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Let Ra
n be the n-th near-record of the sequence (Xn). We define η, the point process

of near-record values, through its counting function as

η(t) = card{n ≥ 1 | Ra
n ≤ t}, t ∈ [0,∞),

In Sect. 3, η := {η(t), t ≥ 0} is shown to be a Poisson cluster process (PCP), with
center process given by Shorrock’s process ξ .

Poisson cluster process. They are among the most important and versatile types of
point process models, with applications in many fields. A PCP is the superposition of
a family of independent point processes {N (· | x), x ∈ R} over the points of a Poisson
process Nc (the center process). The points xi of Nc act as the centers of the clusters
and, for each xi , a realization of N (· | xi ) (the component process) is observed. The
PCP is the result of superposing the points of all clusters N (· | xi ).

The probability generating functional G of a point process M is defined as

G M (h) := E
[∏

i h(xi )
]
, where the product is taken over the points of each real-

ization of M and h is a measurable function such that 0 ≤ h ≤ 1 and 1 − h vanishes
outside some bounded set.

We recall (Daley and Vere-Jones 2003, Proposition 6.3.III) that the superposition
of processes N (· | x) over the points of Nc is a PCP if the following conditions hold:

(i) the family {N (· | x), x ∈ [0,∞)} is measurable (i.e., for each h, its probability
generating functional G N (h | x) is a measurable function of x);

(ii) {N (· | x), x ∈ [0,∞)} is an independent family and N ([0,∞) | x) < ∞ almost
surely (a.s.), for each x > 0;

(iii) the center process Nc is Poisson and
(iv)

∫ ∞
0 P[N (A|x) > 0]μ(dx) < ∞, for every bounded Borel set A ⊂ [0,∞),
where μ is the intensity measure of Nc.

3 Results

3.1 Structure of the point process of near-record values

Theorem 1 Let η be the point process of near-record values. Then, for any measurable
function 0 ≤ h ≤ 1, with 1−h vanishing outside a bounded set, and A, B Borel subsets
of [0,∞),

(a) η is a PCP with centers given by Shorrock’s process ξ and component processes
{K (· | x), x ∈ (0,∞)}, such that K (A|x) is geometrically distributed (starting
at 0) with parameter

r(x) := F̄(x)

F̄(x) + F(A ∩ (x − a, x]) . (2)
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(b) The probability generating functional G of η is given by

G(h) = exp

{

−
∫ ∞

0

(

1 − F̄(x)

F̄(x − a) − ∫ x
x−a h(t) f (t)dt

)

λ(x)dx

}

. (3)

(c) Moments of η(A):

μ(A) := E[η(A)] =
∫ ∞

0

F(A ∩ (x − a, x])
F̄(x)

λ(x)dx, (4)

σ 2(A) := Var[η(A)] = 2
∫ ∞

0

(
F(A ∩ (x − a, x])

F̄(x)

)2

λ(x)dx + E[η(A)]
(5)

and, if A ∩ B = ∅,

Cov[η(A), η(B)] = 2
∫ ∞

0

F(A ∩ (x − a, x])
F̄(x)

F(B ∩ (x − a, x])
F̄(x)

λ(x)dx . (6)

(d) Probability generating function of η(A): for α ∈ [0, 1] and A bounded

ϕA(α) := E[αη(A)] = exp

(

−
∫ ∞

0

(1 − α)F(A ∩ (x − a, x])
(1 − α)F(A ∩ (x − a, x]) + F̄(x)

λ(x)dx

)

.

(7)

(e)

∫ ∞

0
E[K (A|x)3]λ(x)dx = 6

∫ ∞

0

(
F(A ∩ (x − a, x])

F̄(x)

)3

λ(x)dx

+ 3σ 2(A) − 2μ(A). (8)

Proof (a) Clearly, η is the superposition of near-records associated to the sequence
(Rn). On the other hand, near-records associated to Rn form a point process on
[0,∞), which can be characterized as follows: from Lemma 1 (i), the number Sn

of near-records associated to Rn , conditional on Rn = x , is geometric with parameter
p(x) = F̄(x)/F̄(x − a). Each near-record lands in A with probability F(A∩(x−a,x])

F((x−a,x]) ,
independently of other near-records. Therefore, the number of near-records associated
to Rn , landing in A, is geometric with parameter

p(x)

p(x) + (1 − p(x))
F(A∩(x−a,x])

F((x−a,x])
= r(x).

Also, from Lemma 1 (ii), near-records in A, associated to Rn , are (conditionally
on Rn = x) independent with common density f (y)/F(A ∩ (x − a, x]), for y ∈
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A ∩ (x − a, x]. Let us calculate the probability generating functional G K (· | x) of the
process K (· | x) by conditioning on Sn . Then,

G K (h | x) = E
[ ∏

i

E
[
h(xi )

∣
∣Sn

]]

=
∞∑

k=0

k∏

i=1

E[h(xi )]P[Sn = k]

=
∞∑

k=0

(∫ x

x−a

h(y) f (y)

F((x − a, x])dy

)k

(1 − p(x))k p(x)

= F̄(x)

F̄(x − a) − ∫ x
x−a h(t) f (t)dt

. (9)

The series above is convergent because h ≤ 1 and so,
∫ x

x−a h(y) f (y)dy < F̄(x − a).
We now verify that the superposition of the processes K (· | x) defines a PCP, by

checking conditions (i) to (iv) of Sect. 2.
Condition (i) clearly follows from (9). For (ii), the independence of processes

K (· | x) follows from Lemma 1 (iii) while finiteness holds because of its geometric
distribution. Condition (iii) is immediate since the center process ξ is Poisson. Finally,
for (iv) let A ⊆ [c, d], then x 
∈ [c, d + a] implies P[K (A|x) > 0] = 0. So, recalling
that λ is the intensity of ξ ,

∫ ∞

0
P[K (A|x)>0]λ(x)dx =

∫ d+a

c
P[K (A|x)>0]λ(x)dx ≤

∫ d+a

c
λ(x)dx < ∞.

Therefore, (a) is proved.

(b) By (6.3.9) in Daley and Vere-Jones (2003), G(h) = e− ∫ ∞
0 (1−G K (h|x))λ(dx).

Replacing (9) into the previous formula, we obtain the result.
(c) From (6.3.10) inDaley andVere-Jones (2003), E[η(A)]=∫ ∞

0 E[K (A|x)]λ(x)dx .

Then, (4) follows by noting that K (A|x) is geometric with expectation 1−r(x)
r(x)

=
F(A∩(x−a,x])

F̄(x)
. For the variance, we apply (6.3.11) in Daley and Vere-Jones (2003)

to obtain

Var[η(A)] =
∫ ∞

0
E[K (A|x)2]λ(x)dx .

We observe that E[K (A|x)2] = 2
(
1−r(x)

r(x)

)2 + 1−r(x)
r(x)

and so (5) follows. For the

covariance, we note that 2Cov[η(A), η(B)] = Var[η(A)+η(B)]−Var[η(A)]−
Var[η(B)]. So, if A ∩ B = ∅,
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Var[η(A) + η(B)] = Var[η(A ∪ B)]

= 2
∫ ∞

0

(
F((A ∪ B) ∩ (x − a, x])

F̄(x)

)2

λ(x)dx + E[η(A ∪ B)]

= 2
∫ ∞

0

(
F(A ∩ (x − a, x])

F̄(x)

)2

λ(x)dx + 2
∫ ∞

0

(
F(B ∩ (x − a, x])

F̄(x)

)2

λ(x)dx

+ 4
∫ ∞

0

F(A ∩ (x − a, x])F(B ∩ (x − a, x])
F̄(x)2

λ(x)dx + E[η(A ∪ B)]

= 4
∫ ∞

0

F(A ∩ (x − a, x])F(B ∩ (x − a, x])
F̄(x)2

λ(x)dx + Var[η(A)] + Var[η(B)],

which yields (6).
(d) For (7), we define h(x) = α1A(x) and calculate

∫ x

x−a
h(t) f (t)dt = F̄(x − a) − F̄(x) − (1 − α)F(A ∩ (x − a, x]),

which is replaced in (3).

(e) For (8), we use E[K (A|x)3] = 6
(
1−r(x)

r(x)

)3 + 6
(
1−r(x)

r(x)

)2 + 1−r(x)
r(x)

. �	

We consider below the random variables N (s, t) := η(t) − η(s), for 0 ≤ s < t ,
corresponding to the number of near-record values in the interval (s, t]. For simplicity,
we write η(t) instead of N (0, t).

Closed-form expressions for E[η(t)],Var[η(t)], Cov[N (s, t), N (t, u)] and the
probability generating function E[αη(t)] are shown below. For the covariance between
N (s1, s2) and N (t1, t2), note first that if s2 < t1 − a, N (s1, s2) and N (t1, t2) are inde-
pendent and so the covariance is 0. Also, due to the properties of the covariance
and having computed Var[η(t)], it is easy to see that the different relative positions
of s1, s2, t1, t2 can be reduced to s1 < s2 = t1 < t2. Therefore, we compute the
covariance explicitly only in this situation. We use the notations r ∧ s := min{r, s},
r ∨ s := max{r, s}.
Corollary 1 Moments and probability generating function.

μ(t) := E[η(t)] =
∫ t+a

0

F̄(x − a) − F̄(x ∧ t)

F̄(x)
λ(x)dx, (10)

σ 2(t) := Var[η(t)] = 2
∫ t+a

0

(
F̄(x − a) − F̄(x ∧ t)

F̄(x)

)2

λ(x)dx + μ(t). (11)

Let s < t < u, then

Cov[N (s, t), N (t, u)]
= 2

∫ t+a

t

(
F̄(t) − F̄(x ∧ u)

) (
F̄(s ∨ (x − a)) − F̄(t)

)

F̄(x)2
λ(x)dx (12)
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and, for α ∈ [0, 1],

ϕt (α) := E[αη(t)] = exp

(

−
∫ t+a

0

(1 − α)(F̄(x − a) − F̄(x ∧ t))

(1 − α)(F̄(x − a) − F̄(x ∧ t)) + F̄(x)
λ(x)dx

)

.

(13)

Proof Formulas for μ(t) and σ 2(t) are obtained from (4) and (5), respectively, with
A = [0, t], noting that F([0, t]∩(x −a, x]) = (F̄(x −a)− F̄(x ∧ t))1{x<t+a}. For the
covariance, we use (6) with A = (s, t], B = (t, u], noting that F((s, t]∩(x −a, x]) =
(F̄(s ∨ (x − a)) − F̄(t ∧ x))1{s<x<t+a}.

For (13), it suffices to take A = [0, t] in (7). �	

Remark 1 Observe that while the center process ξ has independent increments, η

only has a-dependent increments, in the sense that for t0 < t1 < · · · < t2n+1, with
t2i − t2i−1 > a, i = 1, . . . , n, the random variables η(t2i+1) − η(t2i ), i = 0, . . . , n,
are independent. This fact is exploited in the proof of the strong law of large numbers.
See Propositions 1 and 2.

Remark 2 Anotion closely related to near-record is that of δ-record. Given a fixed real
parameter δ, Xn is called a δ-record if Xn > Mn−1+δ. So, if we take δ = −a < 0, then
a δ-record is either a record or a near-record (of parameter a). Therefore, for negative
δ, the process of δ-record values differs from the process of near-record values only
in that the centers are counted as points of the respective component processes. So,
the point process of δ-record values is also a PCP and the formulas in Theorem 1
and Corollary 1 can be easily adapted. For distributional results on δ-records, see
López-Blázquez and Salamanca-Miño (2013).

3.2 Asymptotic analysis

In this section, we study the limit behavior of η(t), as t → ∞. For simplicity, we
assume that the density f is continuous and strictly decreasing on (0,∞). But since
we deal with asymptotics of upper extremes, where only the upper-tail behavior mat-
ters, we could replace these conditions by weaker ones such as f being ultimately
continuous and strictly decreasing. It is straightforward to check that all theorems in
this section hold under the weaker versions of the hypotheses; see Remark 5. Note that
conditions above imply that the right-end point of F , defined by sup{x | F(x) < 1},
is infinite.

Before stating the main results, we give two technical lemmas. The first one deals
with heavy- and exponential-tailed distributions, while the second applies to light-
tailed ones. Observe that tail properties are stated in terms of the hazard function
λ. We define v(x) := (F̄(x − a) − F̄(x))/F̄(x), which is the expected number of
near-records associated to a record with value x .

Lemma 2 Suppose
∫ x

x−a λ(t)dt < D, for some D > 0 and every x > 0. Then, there
exist positive constants A, C such that
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(a) 0 < v(x) < A, for all x > 0, and
(b) aλ(x) < v(x) < Cλ(x − a), for all x > a.

Proof (a) Since F̄(x) = e− ∫ x
0 λ(t)dt , we have 0 < v(x) = F̄(x−a)−F̄(x)

F̄(x)
=

e
∫ x

x−a λ(t)dt − 1 < eD − 1.
(b) Let x > a then, by the mean value theorem, F̄(x − a)− F̄(x) = a f (θ(x)), where

θ(x) ∈ (x − a, x). Hence, since f is decreasing,

aλ(x) = a
f (x)

F̄(x)
< a

f (θ(x))

F̄(x)
= v(x).

Also, from (a), we have

a
f (θ(x))

F̄(x)
< a

f (x − a)

F̄(x − a)

F̄(x − a)

F̄(x)
= aλ(x − a)(v(x) + 1) < aλ(x − a)eD,

thus (b) is proved. �	
Remark 3 Note from Lemma 2 that

∫ x
x−a λ(t)dt is bounded if and only if λ(x) is

bounded. In this equivalence, the hypothesis of f being decreasing is crucial.

Lemma 3 Suppose that λ(x) → ∞ as x → ∞ and that |λ′(x)| < M,∀x > x0, for
some x0 > a, M > 0. Then, there exist constants A, B, C > 0 and D > 1 such that,
for all x ≥ a,

(a) F̄(x−a)

F̄(x)
> D and

(b) Aeaλ(x) < B F̄(x−a)

F̄(x)
< v(x) < Ceaλ(x).

Proof (a) Let m = inf{λ(x); x > 0}, which is positive since f is continuous and

decreasing, and λ(x) → ∞. Then, F̄(x−a)

F̄(x)
= e

∫ x
x−a λ(t)dt > eam > 1.

(b) Let x > x0 and z ∈ [x − a, x] then, by the mean value theorem, |λ(z) − λ(x)| <

M(x − z) < Ma. Therefore,

∣
∣
∣
∣

∫ x

x−a
λ(t)dt − aλ(x)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ x

x−a
(λ(t) − λ(x))dt

∣
∣
∣
∣ < Ma

∫ x

x−a
dt = Ma2,

so

aλ(x) − Ma2 <

∫ x

x−a
λ(t)dt < aλ(x) + Ma2

and

eaλ(x) < eMa2e
∫ x

x−a λ(t)dt = eMa2 F̄(x − a)

F̄(x)
.
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On the other hand,

D − 1

D

F̄(x − a)

F̄(x)
< v(x) <

F̄(x − a)

F̄(x)
< eMa2eaλ(x),

so (b) is proved in the case of x > x0. Observe that all inequalities in (b) also hold
(with possibly different constants) for x ∈ [a, x0] since the functions involved are all
positive and continuous. �	
In the next result, we show that, for distributions F with very heavy tails, η(∞) :=
N (0,∞) is finite a.s. and give its probability generating function.

Theorem 2 Suppose that
∫ ∞

a λ2(x)dx < ∞, then η(∞) is a.s. finite, with probability
generating function given by

ϕ∞(α) := E[αη(∞)] = exp

{

−
∫ ∞

0

(1 − α)v(x)

(1 − α)v(x) + 1
λ(x)dx

}

. (14)

Proof Let α ∈ [0, 1] then αη(t) → αη(∞) a.s. and, by the monotone convergence
theorem, ϕt (α) → ϕ∞(α), as t → ∞. Thus, to prove (14), we take limits in (13). In
fact, the integral in (13) can be written as

∫ ∞
0 h(x, t)dx , with

h(x, t) := (1 − α)(F̄(x − a) − F̄(x ∧ t))

(1 − α)(F̄(x − a) − F̄(x ∧ t)) + F̄(x)
λ(x)1{x<t+a}.

Then, h(x, t) converges increasingly to h(x) := (1−α)v(x)
(1−α)v(x)+1λ(x), as t → ∞. So, by

the monotone convergence theorem, we have
∫ ∞
0 h(x, t)dx → ∫ ∞

0 h(x)dx . Finally,
we check that η(∞) is finite by showing that the integral in (14) is finite. To apply
Lemma 2 we observe, from the Cauchy–Schwarz inequality, that

(∫ x

x−a
λ(t)dt

)2

≤ a
∫ x

x−a
λ2(t)dt ≤ a

∫ ∞

a
λ2(t)dt < ∞,

for all x > 2a. Hence, by Lemma 2 (b) and the Cauchy–Schwarz inequality

∫ ∞

2a

v(x)

(1 − α)v(x) + 1
λ(x)dx ≤

∫ ∞

2a
v(x)λ(x)dx ≤ C

∫ ∞

2a
λ(x − a)λ(x)dx < ∞.

Thus, the result is proved. �	
Remark 4 In the absence of some regularity condition on λ, we do not know whether∫ ∞

a λ2(x)dx = ∞ implies η(∞) = ∞ or not but we are able to show that E[η(∞)] =
∞. Indeed, E[η(∞)] = ∫ ∞

0 v(x)λ(x)dx > a
∫ ∞

a λ2(x)dx = ∞, because the first
inequality in Lemma 2 (b) is valid for all functions λ.

Lemma 4 Suppose that either lim infx→∞ λ(x) > 0 or lim supx→∞ λ(x) < ∞.
Then,

∫ ∞
a λ2(x)dx = ∞ implies η(∞) = ∞ a.s.
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Proof We show that ϕ∞(α) = 0. From Lemma 2 (b), we obtain

∫ ∞

a

v(x)

(1 − α)v(x) + 1
λ(x)dx >

∫ ∞

a

λ2(x)

(1 − α)λ(x) + a−1 dx . (15)

If A > 0 is a lower bound of λ, then λ2(x)

(1−α)λ(x)+a−1 ≥ A2

(1−α)A+a−1 and so the integral

in the rhs of (15) diverges. If λ is bounded above by B > 0, then λ2(x)

(1−α)λ(x)+a−1 ≥
λ2(x)

(1−α)B+a−1 and again, the integral diverges. �	

In Theorem 3, we establish a strong law of large numbers for η(t) under regularity
conditions on λ, which are satisfied by many well-known distributions. Note that
hypothesis (a) is related to heavy- andmoderate-tailed distributions,while (b) concerns
light-tailed ones. We first prove two propositions dealing with the discretized process
η(na), n = 1, 2, . . ., under (a) and (b), respectively.

Proposition 1 If λ(x) ≤ M,∀x > 0, for some M > 0, and
∫ ∞

a λ2(x)dx = ∞, then
η(na)/μ(na) → 1 a.s.

Proof Let Zn = N ((n − 1)a, na), n ≥ 1. The a-dependence of η, commented in
Remark 1, implies that the Zn are 1-dependent. We apply Lemma 5 in the Appendix,
with Yn = Zn − E[Zn] and bn = μ(na), which grows to ∞ as shown in Remark 4.
So, we have to establish

∞∑

n=1

Var[Zn]/μ(na)2 < ∞. (16)

We calculate and bound the variance of N (t − a, t) as follows. From (4), (5) and
Lemma 2 we have, for t ≥ 3a,

Var[N (t − a, t)] = 2
∫ t+a

t−a

(
F((t − a, t] ∩ (x − a, x])

F̄(x)

)2

λ(x)dx

+
∫ t+a

t−a

F((t − a, t] ∩ (x − a, x])
F̄(x)

λ(x)dx

≤
∫ t+a

t−a
(2v2(x) + v(x))λ(x)dx

≤
∫ t+a

t−a
(2C2λ2(x − a) + Cλ(x − a))λ(x)dx

≤ C2(2aM + 1)

a

∫ t+a

t−a
λ2(x − a)dx = C ′

∫ t

t−2a
λ2(x)dx .

(17)
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Now, letting t = na, with C ′, C ′′, C ′′′ positive constants, we obtain from Lemma 2

∫ na

(n−2)a
λ2(x)dx ≤

∫ (n−1)a

(n−2)a
λ2(x)dx + C ′′

∫ na

(n−1)a
λ2(x − a)dx

= (1 + C ′′)
∫ (n−1)a

(n−2)a
λ2(x)dx,

for n ≥ 3. Hence, Var[Zn] ≤ C ′′′ ∫ (n−1)a
(n−2)a λ2(x)dx . Also, from (10) and Lemma 2,

μ(na) ≥ ∫ na
a v(x)λ(x)dx ≥ a

∫ (n−1)a
a λ2(x)dx . Therefore, (16) holds if we prove

∑

n≥4

cn

S2
n

< ∞, (18)

with cn = ∫ (n−1)a
(n−2)a λ2(y)dy and Sn = ∑n

k=3 ck, n ≥ 3. Note that the series (18) is
bounded above by

∑

n≥4

cn

Sn Sn−1
=

∑

n≥4

(
1

Sn−1
− 1

Sn

)

= 1
∫ 2a

a λ2(y)dy
< ∞

and so (16) follows. �	
Proposition 2 If λ(x) → ∞ as x → ∞ and |λ′(x)| < x−r ,∀x > x0, for some
x0 > a, r > 1/2, then η(na)/μ(na) → 1 a.s.

Proof Without loss of generality, let r ∈ (1/2, 1). We proceed as in Proposition 1 and
prove convergence of the series (16). From (10) and Lemma 3, we have

μ(t) ≥
∫ t

a
v(x)λ(x)dx > A

∫ t

a
eaλ(x)λ(x)dx (19)

and, from (17),

Var[N (t − a, t)] ≤
∫ t+a

t−a
(2v2(x) + v(x))λ(x)dx

≤ (2 + B−1)

∫ t+a

t−a
v2(x)λ(x)dx

≤ (2 + B−1)C
∫ t+a

t−a
e2aλ(x)λ(x)dx . (20)

Also, for t large enough, knowing that λ′ is bounded, there is a constant H > 0 such
that

∫ t+a

t−a
e2aλ(x)λ(x)dx ≤ He2aλ(t)λ(t). (21)
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So, to establish (16), it suffices to take t = na in (19) and (20) and prove convergence

of the series
∑

n≥3 h(na), where h(t) = e2aλ(t)λ(t)
/(∫ t

0 e
aλ(x)λ(x)dx

)2
. It can be

shown (Gouet et al. 2012c, p. 202), that t2r h(t) → 0 as t → ∞. Hence, for n large
enough, h(na) < (na)−2r and, because r ∈ (1/2, 1), we obtain

∑
n≥3 h(na) < ∞.

�	
Theorem 3 Suppose that either

(a) λ(x) ≤ M,∀x > 0, for some M > 0, and
∫ ∞

a λ2(x)dx = ∞ or
(b) λ(x) → ∞ as x → ∞ and |λ′(x)| < x−r ,∀x > x0, for some x0 > a, r > 1/2.

Then, as t → ∞, η(t)/μ(t) → 1 a.s.

Proof Note that, for all t > a,

μ(�t/a�a)

μ(�t/a�a)

η(�t/a�a)

μ(�t/a�a)
≤ η(t)

μ(t)
≤ η(�t/a�a)

μ(�t/a�a)

μ(�t/a�a)

μ(�t/a�a)
, a.s.

So, by Propositions 1 and 2, we only need to prove that μ(�t/a�a)/μ(�t/a�a) → 1,
as t → ∞, which is equivalent to E[Zn]/μ(na) → 0.

Suppose (a) holds then, by Lemma 2,

E[Zn]=
∫ ∞

0

F(((n − 1)a, na] ∩ (x − a, x])
F̄(x)

λ(x)dx ≤
∫ (n+1)a

(n−1)a
v(x)λ(x)dx ≤ 2A2

and the conclusion follows. If (b) holds, by Lemma 3, we have

∫ (n+1)a

(n−1)a
v(x)λ(x)dx ≤ C

∫ (n+1)a

(n−1)a
eaλ(x)λ(x)dx ≤ Heaλ(na)λ(na),

for some H > 0. Then, from (19) and using L’Hôpital’s rule, we obtain

E[Zn]
μ(na)

≤ H
eaλ(na)λ(na)

∫ na
a eaλ(x)λ(x)dx

→ 0.

�	
The last result of the paper is a central limit theorem for η(t). As in Theorem 3, we first
consider heavy- and exponential-tailed distributions and then the light-tailed ones. For
the former, we impose the same condition as in Theorem 2 (essentially η(∞) = ∞),
while for the latter the condition isweaker than that for the strong law of large numbers.
In particular, our central limit theorem yields a weak law of large numbers for some
light-tailed distributions which are not covered by Theorem 3. We use the notation
d→ N (0, σ 2) to indicate convergence in distribution to the gaussian distribution with
variance σ 2.
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Theorem 4 Suppose that either

(a) λ(x) ≤ M,∀x > 0, for some M > 0, and
∫ ∞

a λ2(x)dx = ∞ or
(b) λ(x) → ∞ as x → ∞ and |λ′(x)| < M,∀x > 0, for some M > 0.

Then, as t → ∞,

η(t) − μ(t)

σ (t)
d→ N (0, 1). (22)

Proof Note first that under either (a) or (b), μ(∞) = ∞ (see Remark 4). Hence, from
(11), σ 2(t) > μ(t) → ∞, as → ∞. We apply Corollary 4 of Lane (1984), since the
PCP is a particular case of the Poisson shot-noise process. Our result will follow if we
prove, under (a) and (b), the following Lyapunov-type condition: as t → ∞,

L(t) :=
∫ ∞

0
E

[
K ((0, t)|x)3

]
λ(x)dx/σ 3(t) → 0. (23)

Observe from (8) that L(t) ≤ ∫ t+a
0 v(x)3λ(x)dx/σ 3(t) + 3/σ(t) and so (23) follows

if we prove

∫ t+a

0
v(x)3λ(x)dx/σ 3(t) → 0. (24)

Note that σ 2(t) ≥ 2
∫ t
0 v2(x)λ(x)dx . Then, assuming that (a) holds, from Lemma 2

we have
∫ t+a
0 v(x)3λ(x)dx ≤ A

∫ t
0 v(x)2λ(x)dx + A4. In view of these bounds, we

get (24).
Under (b), we get σ 2(t) ≥ 2A2

∫ t
a e2aλ(x)λ(x)dx and also, reasoning as for inequal-

ity (21),

∫ t+a

a
v(x)3λ(x)dx ≤ C3

(∫ t

a
e3aλ(x)λ(x)dx +

∫ t+a

t
e3aλ(x)λ(x)dx

)

≤ C3
(∫ t

a
e3aλ(x)λ(x)dx + He3aλ(t)λ(t)

)

,

with H > 0, for t large enough. Hence, for (24), we only need to show that

∫ t
a e3aλ(x)λ(x)dx + He3aλ(t)λ(t)

(∫ t
a e2aλ(x)λ(x)dx

)3/2 → 0,

as t → ∞, which is achieved by applying L’Hôpital’s rule. �	
Remark 5 All theorems above remain valid under the (weaker) hypothesis of f being
continuous and decreasing on an interval (x∗,∞), for some x∗ > 0. In this situation,
the integral

∫ ∞
a λ2(x)dx has to be replaced by

∫ ∞
a+x∗ λ2(x)dx in Theorems 2–4. Also,

the boundedness conditions for λ and λ′ in Theorems 3 and 4 should be stated for
x > x∗.
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4 Examples

Example 1 (Pareto distribution) Let r > 0, F̄(x) = x−r and f (x) = r x−r−1, for
x > 1. Since λ(x) = r/x , for x > 1, we have

∫ ∞
1 λ(x)2dx < ∞ and, by Theorem 2,

η(∞) < ∞. We first analyze the case r = 1 and then r 
= 1.

(a) (r = 1) The behavior of η(∞) was studied in Gouet et al. (2012b) via Monte
Carlo simulation. Since the geometric distribution fitted very well the simulated
data, it was conjectured that the distribution of η(∞)was in fact geometric. Now,
we answer the conjecture in the positive.
Note that λ(x) = x−11{x>1} and v(x) = (x −1)1{1<x≤1+a}+a(x −a)−11{x>1+a}.
So, the integral in (14) can be written as

∫ a+1

1

(1 − α)(x − 1)

((1 − α)(x − 1) + 1)x
dx +

∫ ∞

a+1

(1 − α)a

((1 − α)a + x − a)x
dx

= log(1 + a − aα).

Therefore, ϕ∞(α) = e− log(1+a−aα) = (1+a)−1

1−(1+a)−1α
, that is, η(∞) has a geometric

distribution with parameter (1 + a)−1.
(b) (r 
= 1) In this case, the integral in (14) cannot be calculated in closed form.

For r = 2, 3, . . ., it is still possible to find an explicit expression but the calcula-
tions become cumbersome. For illustration’s sake, we pick r = 2 and compute
E[η(∞)] = a2 + 4a and Var[η(∞)] = a4 + 16

3 a3 + 9a2 + 4a. These values
reveal that η(∞) is not geometrically distributed.

Example 2 (Weibull distribution) For α, β > 0, let F̄(x) = e−(x/α)β and λ(x) =
βα−β xβ−1, for x > 0. We analyze the limit behavior of η(t) as t → ∞, depending
on the value of β; detailed calculations are provided only for β = 1/2. The notation
g(t) ∼ h(t) stands for lim g(t)/h(t) = 1, as t → ∞.

(a) (β < 1/2) In this case,
∫ ∞

a λ(y)2dy < ∞, so η(∞) < ∞ and the moment
generating function can be obtained from Theorem 2.

(b) (β = 1/2) Here, λ(y) = (αy)− 1
2 /2 → 0 and condition (a) of both Theo-

rems 3 and 4 hold. We have v(y) ∼ ∫ y
y−a λ(x)dx = α− 1

2

(
y

1
2 − (y − a)

1
2

)
∼

a(αy)− 1
2 /2 and so,

∫ t
0 v(y)λ(y)dy ∼ a

4α log t . Moreover,

∫ t+a

t

F̄(y − a) − F̄(t)

F̄(y)
λ(y)dy ≤

∫ t+a

t
v(y)λ(y)dy → 0, (25)

soμ(t) ∼ a
4α log t . Further, sincev(y) → 0,wehave

∫ t
0 v(y)2λ(y)dy

/ ∫ t
0 v(y)λ(y)dy

→ 0 and

∫ t+a

t

(
F̄(y − a) − F̄(t)

F̄(y)

)2

λ(y)dy ≤
∫ t+a

t
v(y)2λ(y)dy → 0.

123



On the point process of near-record values 317

Then, by (11), σ 2(t) ∼ μ(t). Finally, observe that, for t > a,

∣
∣
∣E[N (a, t)] − a

4α
log t

∣
∣
∣ ≤

∣
∣
∣
∣

∫ t

a

(

v(y) −
∫ y

y−a
λ(x)dx

)

λ(y)dy

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

a

(
α− 1

2

(
y

1
2 − (y − a)

1
2

)
− a(αy)−

1
2 /2

)
λ(y)dy

∣
∣
∣
∣

+ a

4α
| log a| +

∫ t+a

t

F̄(y − a) − F̄(t)

F̄(y)
λ(y)dy. (26)

We check that all summands in (26) are bounded (as functions of t) so they tend to 0
when divided by σ(t); C, C ′, . . . are generic positive constants. For the first one note
that, for y > a,

∣
∣
∣
∣v(y) −

∫ y

y−a
λ(x)dx

∣
∣
∣
∣ =

∣
∣
∣
∣e

∫ y
y−a λ(x)dx − 1 −

∫ y

y−a
λ(x)dx

∣
∣
∣
∣ ≤ C

(∫ y

y−a
λ(x)dx

)2

.

Therefore, the first term is bounded above by C ′ ∫ t
a y−3/2dy < C ′′. For the second,

we have

∫ t

a

∣
∣α− 1

2

(
y

1
2 − (y − a)

1
2

)
− a(αy)−

1
2 /2

∣
∣λ(y)dy ≤ C ′′′

∫ t

a
y−2dy < C ′′′/a.

The last term is bounded because of (25). Thus, for β = 1/2, we haveμ(t) ∼ σ 2(t) ∼
γ log t and (μ(t) − γ log t)/σ (t) → 0, where γ = a/(4α), so

η(t)

log t
→ γ a.s. and

η(t) − γ log t√
log t

d→ N (0, γ ).

(c) (β ∈ (1/2, 1)) As in (b), λ(y) → 0 so condition (a) of Theorems 3 and 4
holds. We find that μ(t) ∼ σ 2(t) ∼ γ t2β−1, with γ = a(β/αβ)2/(2β − 1), but
(μ(t) − γ t2β−1)/σ (t) → 0 only if β < 3/4. In this case, we have

η(t)

t2β−1 → γ a.s. and
η(t) − γ t2β−1

tβ−1/2
d→ N (0, γ ).

When β ∈ [3/4, 1), a finer estimate of μ(t) is needed for the asymptotic normal-
ity. It can be shown that if β ∈ [3/4, 5/6) then

η(t) − γ t2β−1 − δt3β−2

tβ−1/2
d→ N (0, γ ), (27)

where δ = a2(β/αβ)3/(6β − 4). The estimate of μ(t) in (27) can be further
refined so that the range of validity of β gets as close to (1/2, 1) as desired.
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(d) (β = 1: exponential distribution) Since λ(x) is constant, condition (a) of The-
orems 3 and 4 is fulfilled. In this case, μ(t) = γ t and σ 2(t) ∼ δt , with
γ = (ea/α − 1)/α and δ = γ (2ea/α − 1), are readily obtained and we have

η(t)

t
→ γ a.s. and

η(t) − γ t√
t

d→ N (0, δ).

In this case, the process η is a Neyman–Scott process, as defined in page 662 of
Cressie (1993). In fact, the sizes of the clusters are iid geometric with parameter
e−a/α and the distance of a point of a cluster to its center has density

fd(t) = et/α

α(ea/α − 1)
, t ∈ [0, a], (28)

regardless of the position of the center. Moreover, the process is stationary, since
the center process is homogeneous Poisson with rate 1/α. Note also that the
exponential is the only distribution where η is a Neyman–Scott process since
under any other distribution the sizes of the clusters are not identically distributed.

(e) (β ∈ (1, 3/2)) In this case, conditions (b) of Theorems 3 and 4 hold and
we find the following estimations μ(t) ∼ γ teδtβ−1

and σ 2(t) ∼ γ te2δtβ−1
,

with γ = 1/(a(β − 1)) and δ = aβα−β . However, it turns out that (μ(t) −
γ teδtβ−1

)/σ (t) 
→ 0, which means that we need a better approximation of μ(t)
to be used as centering in the central limit theorem. We do not carry out such
calculation here and so we obtain

η(t)

teδtβ−1 → γ a.s. and
η(t) − μ(t)√

teδtβ−1

d→ N (0, γ ).

(f) (β ∈ [3/2, 2)) In this case (b) of Theorem 4 is satisfied. However, Theorem 3
does not apply and we do not have a strong convergence for η(t). Nevertheless,
from the central limit theorem, we can recover a weak law of large numbers. The
estimations of μ(t) and σ 2(t) are as in (e) and so

η(t)

teδtβ−1 → γ in probability and
η(t) − μ(t)√

teδtβ−1

d→ N (0, γ ).

(g) (β = 2) Condition (b) of Theorem 4 is satisfied and, as in (f), we do not have
strong convergence, while μ(t) is calculated exactly as

μ(t) = e(a/α)2

(
e2at/α2

a

(

t − α2

2a

)

+ α2

2a2

)

− t2

α2 ∼ t

a
e(a/α)2e2at/α2
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and σ 2(t) ∼ t
a e

2(a/α)2e4at/α2
. So (μ(t) − t

a e
(a/α)2e2at/α2

)/σ (t) → 0 and we
obtain

η(t)

teδt
→ γ in probability and

η(t) − γ teδt

√
teδt

d→ N (0, aγ 2),

where γ = e(a/α)2/a and δ = 2a/α2.
(h) (β > 2) Theorems 3 or 4 do not apply and we have no asymptotic result for η(t)

in this situation.

Example 3 (Exponentiality test)We exploit structural properties of η for testing expo-
nentiality of the parent distribution F . Given the dataset {x1, . . . , xN } of near-record
values, observed in an interval [0, t], we develop a procedure for testing the hypothesis
that F is the exponential distribution.

This is an illustrative example intended to show the statistical applicability of struc-
tural properties ofη and, consequently, the discussion of themerits and technical details
of the proposed strategy are kept to a minimum. The reader interested in methods for
assessing the fit of a point process model can consult, for instance, Diggle (1983),
Karr (1991) and Cressie (1993).

As mentioned in Example 2(d), η is a Neyman–Scott process if and only if F̄(x) =
e−x/α, x > 0, for some α > 0. Hence, the quality of the fit of the Neyman–Scott
model to the data is informative about the exponentiality of F . To assess the fit of the
theoretical model, we use a Cramér-Von Mises-type statistic, based on Ripley’s K (h)

function, given by

D =
∫ h0

0

(
K (h)0.5 − K̂ (h)0.5

)2
dh, (29)

where

K̂ (h) = t

N 2

∑

i 
= j

w−1(xi , x j )1{|xi −x j }≤h},

is Ripley’s estimator, with w a weight function defined to minimize edge effects.
See section 5.3 in Diggle (1983) and sections 8.4, 8.5 in Cressie (1993) for further
information and discussion. An explicit formula for K (h) is obtained by adapting
(8.5.39) in Cressie (1993) to our case, since the sizes of the clusters are geometric and
the distance of a point to its parent has density given in (28), yielding

K (h) =
⎧
⎨

⎩

2h + 2α
1−e−h/α+e−2a/α

(
1−eh/α

)

(1−e−a/α)
2 for 0 ≤ h ≤ a,

2h + 2α for h > a.

For the practical implementation of the proposed test, we require the null distribution of
D, which is not known, but can be approximated bymeans ofMonte Carlo simulation.
Also, the parameter α of the exponential model has to be estimated, and this is done by
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Fig. 1 Values of Ripley’s K
function for Wilmington
snowfall data. Solid line K̂ (h);
dotted line K(h); dashed lines 5,
95 confidence bounds
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equating the expected number of points of η in [0, t]with the number N of data points
actually observed; that is, α is estimated as the unique solution of (ea/α −1)t/α = N ,
see Example 2(d).

For illustration,we consider theWilmingtonNCsnowfall database, recording snow-
fall measurements in inches from 1870, available at www.weather.gov. The series has
114 observations and, setting a = 1, there are 7 near-record values given by 1.5, 2,
1.5, 1.6, 2, 2 and 2.3. Also, based on the observed data, we can pick t = 14.3 and
h0 = 0.143, and formula (29) yields the value D = 1.56. On the other hand, from
simulations under the null hypothesis, we obtain the 5 % critical value D∗ = 1.55
and thus, the claim of exponentiality for the snowfall dataset is rejected, although not
by much. A better understanding of the poor fit of the Neyman–Scott model to the
snowfall data can be obtained from Fig. 1, where K and K̂ are plotted along with
confidence bounds for the fitted model estimated from simulations.
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Appendix

Lemma 5 Let (Yn) be a sequence of centered, square-integrable, m-dependent ran-

dom variables and (bn)a sequence of real numbers growing to∞. Then,
∑ E[Y 2

n ]
b2n

< ∞
implies 1

bn

∑n
k=1 Yk → 0 a.s.

Proof For 1 ≤ k ≤ m + 1,
(

Yk+(m+1)n
bk+(m+1)n

)

n≥0
is a sequence of independent random vari-

ables. By hypothesis
∑

n≥0
E[Y 2

k+(m+1)n]
b2k+(m+1)n

< ∞ and so, by the Khintchin–Kolmogorov
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convergence theorem (Chow and Teicher 1988, p. 113),
∑

n≥0
Yk+(m+1)n
bk+(m+1)n

< ∞ a.s.

Adding up the series for k = 1, . . . , m + 1, we obtain
∑

n≥1
Yn
bn

< ∞ a.s. and the
conclusion follows from Kronecker’s lemma. �	
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