
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2015; 45:399–434
Published online 3 October 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2227

Fast in-memory XPath search using compressed indexes

Diego Arroyuelo1, Francisco Claude2, Sebastian Maneth3, Veli Mäkinen4,
Gonzalo Navarro5, Kim Nguyễn6,*,†, Jouni Sirén5 and Niko Välimäki7

1Departamento de Informática, Universidad Técnica Federico Santa María, Chile
2Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Chile

3School of Informatics, University of Edinburgh, UK
4HIIT and Department of Computer Science, University of Helsinki, Finland

5Department of Computer Science, University of Chile, Chile
6LRI, Université Paris-Sud, France

7Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Finland

SUMMARY

Extensible Markup Language (XML) documents consist of text data plus structured data (markup). XPath
allows to query both text and structure. Evaluating such hybrid queries is challenging. We present a sys-
tem for in-memory evaluation of XPath search queries, that is, queries with text and structure predicates,
yet without advanced features such as backward axes, arithmetics, and joins. We show that for this query
fragment, which contains Forward Core XPath, our system, dubbed Succinct XML Self-Index (‘SXSI’),
outperforms existing systems by 1–3 orders of magnitude. SXSI is based on state-of-the-art indexes for text
and structure data. It combines two novelties. On one hand, it represents the XML data in a compact indexed
form, which allows it to handle larger collections in main memory while supporting powerful search and
navigation operations over the text and the structure. On the other hand, it features an execution engine that
uses tree automata and cleverly chooses evaluation orders that leverage the speeds of the respective indexes.
SXSI is modular and allows seamless replacement of its indexes. This is demonstrated through experiments
with (1) a text index specialized for search of bio sequences, and (2) a word-based text index specialized for
natural language search. Copyright © 2013 John Wiley & Sons, Ltd.

Received 12 March 2013; Revised 13 August 2013; Accepted 19 August 2013

KEY WORDS: XML; succinct data structures; XPath; tree automata

1. INTRODUCTION

As increasing amounts of data are stored, transmitted, queried, and manipulated in XML, the pop-
ularity of XPath and XQuery as query languages for semi-structured data grows. Evaluating such
XML queries efficiently is challenging, and has triggered much research. Today there is a wealth
of public and commercial XPath/XQuery engines, apart from several theoretical proposals. In this
paper, we focus on XPath, which is simpler and forms the basis of XQuery. XPath query engines
can be roughly divided into two categories: sequential and indexed. In the former, which follows a
streaming approach, no preprocessing of the XML data is performed. Each query sequentially reads
the whole document, and the goal is to be as close as possible to making just one pass over the
data, while using as little main memory as possible to hold intermediate results and data structures.
Instead, the indexed approach preprocesses the XML document to build a data structure on it, so
that queries can later be evaluated without traversing the whole document.

*Correspondence to: Kim Nguyễn, LRI, Université Paris-Sud, France.
†E-mail: kn@lri.fr

Copyright © 2013 John Wiley & Sons, Ltd.

400 D. ARROYUELO ET AL.

A serious shortcoming of the indexed approach is that the index can use much more space than
the original data, and thus may have to be manipulated on disk even on moderate-sized collections
where the data itself would fit in main memory. Given the way disk performance favors sequential
accesses, an index on disk may turn out to be slower than a streaming solution, even if the data are
also stored on disk and if the index accesses only a minor part of the data. There are two approaches
for dealing with this problem: (1) to load the index only partially (by using clever clustering tech-
niques on disk), or (2) to use less powerful indexes that require less space. Examples of systems
using these approaches are Qizx/DB [1], MonetDB/XQuery [2], and Tauro [3].

Most main memory XML query systems (such as Saxon [4], Galax [5], Qizx/Open [1], etc.) use
machine pointers to represent XML data. We observe that on various well-established Document
Object Model implementations, this representation blows up memory consumption to about 5–10
times the size of the original XML data. As a result, they can only handle in main memory XML
collections that are much smaller than what streaming approaches could accommodate (as these
require no extra data apart from the plain XML).

In this work, we aim at an index for XML that uses little extra space on top of that of the data (or
actually less, as explained soon), yet without giving up on indexing power, but resorting instead to
compact data structures. As a result, the index fits in main memory whenever the data does, thereby
solving XPath queries without any need of resorting to disk. An in-memory index should outperform
streaming approaches by far, even when the latter also operate in main memory. This is confirmed
when comparing our indexed approach against two well-known streaming XPath engines (over data
coming from a RAM-disk): GCX [6] and SPEX [7] are about 50 and 350 times, respectively, slower
than our system.

An XML document can be regarded essentially as a text collection (that is, a set of strings) orga-
nized into a tree structure, so that the strings correspond to the text data and the tree structure
corresponds to the nesting of tags. The problem of manipulating text collections and sequences
within compressed space is now well understood [8–10], and also much work has been carried out
on compact data structures for trees [11–16]. In this paper, we show how those types of compact
data structures can be integrated into a compressed index representation for XML data, which is
able to efficiently solve XPath queries.

A feature inherited from its components is that the compressed index replaces the XML collec-
tion, in the sense that the data (or any part of it) can be efficiently reproduced from the index (and
thus, the data itself can be discarded). The result is called a self-index, as the data is inextricably tied
to its index. A self-index might thus require less space than the original data, while representing it
and at the same time offering indexed access to it.

Ours is not the first self-index for XML data. The so-called XBW index [17, 18] is a self-index
offering some XPath search support, yet this is reduced to a very limited class of queries that are
handled particularly well: ‘simple paths’, that is, queries of the form //t1/t2/ : : : /tk , where each ti
is a tag name. For such queries, they can count the number of nodes satisfying the query in time
O.k/, and they can report them in time O.log1C� n/ per result, for any constant � > 0. For those
specific queries, the XBW can be between one and two orders of magnitude faster than our system
[19]. Likewise, there have been other attempts at using compact representations of the tree and the
text. An earlier system in this line is BSBC [20]. They do not implement query evaluation on their
compressed format, but their compression results are competitive. They show how some traversal
operations used for XPath query evaluation can be sped up by using inverted indexes on the text con-
tent. Using inverted indexes, however, limits the applicability of the approach to compress natural
language XML collections.

We aim at handling general sequences at the text nodes, and at a much more complete XPath
coverage. Our system supports an extension of Forward Core XPath [21], that is, all forward nav-
igational axes. The extension includes text() and the attribute axis, and the three text predicates D
(equality), contains, and starts-with. We believe this to be a highly relevant and practical subset
of XPath, and observe that a large fraction of real-world queries over datasets, such as Medline or
DBLP, fall into this subset. Backward axes, arithmetics, and semi-joins are not yet handled. Our sys-
tem, dubbed Succinct XML Self-Index (SXSI), is the first practical and public tool for compressed
indexing of XML data. It takes a little space, solves a significant portion of XPath, and largely

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 401

outperforms the best public software supporting XPath we are aware of, namely MonetDB/XQuery
[2] and Qizx/DB [1], in many cases by 1–3 orders of magnitude.

The main challenges in achieving our results have been to develop practical implementations of
compact data structures (for texts, sequences, trees, and others) that are at a theoretical stage, to
develop new compact schemes tailored to this particular problem and to develop query processing
strategies tuned for the specific cost model that emerges from the use of these compact data struc-
tures. The limitations of our scheme are that it is in-memory, that it is static (i.e., the index must
be rebuilt when the XML data changes), and that it does not handle the more sophisticated parts of
XPath nor XQuery. The first limitation is a design decision; the last two are subject of future work.

This paper introduces the three main ingredients of SXSI: (i) the text index, (ii) the tree index, and
(iii) the query evaluator. Although theoretical descriptions on the first two components can be found
elsewhere in the literature, we mention here the main aspects of these components and focus on how
they are integrated inside the practical SXSI system. For (iii), we have used tree automata, because
they describe queries at a low level, thus allowing one to integrate the calls to our indexes. One
important idea in integrating (ii) and (iii) is that of ‘jumping’ to a descendant or following a node
(without traversing the intermediate nodes). This provides large speedups and allows an ‘automata-
optimal’ evaluation [22]. Another important idea integrating (i) and (iii) is that of ‘true bottom-up
runs’: typically, a tree can only be accessed through its root node. In SXSI, we are able to access
leaves of the document tree. This allows us to start evaluation at text nodes, a technique that incurs
large speedups for queries containing highly selective text predicates. Note that such queries are
very common in practice.

The main part of the experimental section is about comparing SXSI against the state-of-the-art
XPath engines MonetDB/XQuery and Qizx/DB. Certainly, this comparison must be considered with
care: MonetDB and Qizx are full-blown XQuery engines with many features (such as multiuser and
transaction support), whereas SXSI is a bare XPath engine. Hence, a comparison is hardly fair.
However, our comparison shows the potential of succinct data structures and automata, as alterna-
tive core of XML databases. We use two batches of experiments: the ‘tree-oriented’ queries of the
XPathMark benchmark [23] (over XMark data [24]) and our own ‘text-oriented’ queries (over Med-
line documents). Our results show that SXSI outperforms the other systems for virtually all tested
queries, in many cases by 1–3 orders of magnitude, and moreover, that the running times of SXSI
are more predictable and ‘robust’ than those of other systems. We also demonstrate SXSI’s ability
to seamlessly integrate other indexes. We replace the text index by (1) an index tailored toward
bio-sequence search and (2) a word-based index tailored toward natural language search.

We extend the work of [25] by (i) detailed explanations and examples, (ii) a description of impor-
tant general optimizations used to efficiently run automata, (iii) a raw speed comparison of the
indexes against naive solutions, (iv) an experimental analysis of the impact of different optimization
techniques, and (v) an experimental comparison with alternative text indexes.

2. BASIC CONCEPTS AND MODEL

We regard an XML document as (i) an ordered set of strings and (ii) a labeled tree. The latter is the
natural XML parse tree defined by the hierarchical tags, where the (normalized) tag name labels the
corresponding node. We add an extra root node (labeled ‘&’) on top of the document’s root node;
this node is needed for XPath semantics, but could also be used to hold additional information such
as the document name. Each text node is represented as a leaf labeled #. Attributes are handled as
follows in this model. Each node with attributes obtains an additional single child labeled @ (at the
first child position), and for each attribute @attr=value of the node, a child labeled attr is
added to its @-node, and a leaf child labeled % to the attr-node. The text content value is then
associated to that leaf. Thus, there is exactly one string content associated to each tree leaf labeled
or %. We refer to those strings as texts. We do not store empty texts; for instance, the XML docu-
ment <a> is stored as a single a-labeled leaf node (which is the unique child of the &-labeled
root node).

Let us call T the concatenation of all the texts, each separated by a symbol ‘$’ smaller than any
other. Let n the total number of tree nodes, † the alphabet of the strings, t the total number of

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

402 D. ARROYUELO ET AL.

different tag and attribute names, and d the number of texts (i.e., # or %-labeled tree leaves). These
receive text identifiers, which are consecutive numbers assigned in a left-to-right parsing of the data.
In our implementation, † is simply the set of byte values 1 to 255, and 0 will act as a special
terminator called $. This symbol occurs exactly once at the end of each text in T . Note that our
implementation can easily support also UTF-8 encoding and hence, adheres to the XML standard.
Table I summarizes the notation.

To connect tree nodes and texts, we define global identifiers, which give unique numbers to both
internal and leaf nodes, in depth-first preorder. Figure 1 shows a toy document (top left) and our
model of it (top right), as well as its representation using our data structures (bottom), which serves
as a running example for the rest of the paper. In the model, the tree is formed by the solid edges,
whereas dotted edges display the connection with the set of texts. The tree contains the extra root
node (labeled &), as well as extra internal nodes (labeled #, @, and %). Note how the attributes are
handled. There are six texts, which are associated to the tree leaves and receive consecutive text
numbers (marked in italics at their right). Global identifiers are associated to each node and leaf
(drawn at their left). The conversion between tag names and symbols, drawn within the bottom-left
component, is used to translate queries and to recreate the XML data. Note that if the return and
space (indentation) characters are present precisely as shown in the ‘XML data’ box of the figure,
then there are indeed several additional #-leaves in the tree: for instance, the whitespace (return and
space characters) after the initial <parts> and before the final </parts> give rise to two extra
texts (and therefore, the parts-node in the tree has additional first and last children labeled #).

Table I. Notation.

Term Meaning

T Concatenation of all the texts in the collection
† Alphabet of the distinct text symbols
$ Character that terminates each text in the collection
n Number of nodes in the XML tree
t Number of different tag and attribute names in the document
d Number of texts in the XML tree (in our model, tree leaves)
Hk.S/ k-th order empirical entropy of string S

Figure 1. Our running example on representing an XML document.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 403

In total, there are seven such whitespace texts, which have been omitted in our figure for reasons
of readability.

Some notation and measures of compressibility follow, preceding a rough description of our
space complexities. The empirical k-th order entropy [26] of a sequence S over alphabet †,
Hk.S/ 6 log j†j, is a lower bound to the output size per symbol of any k-th order compressor
applied to S . The formula of the zero-order entropy is as follows:

H0.S/D
X
c2†

sc

s
log

s

sc
,

where sc is the number of occurrences of c in S and s D jS j. We assume logD log2 and 0 log 0D 0
henceforth. Let †k denote the set of words over † of length k. Now let SW be the set of characters
preceding the occurrences of W 2†k in S , then for k > 0,

Hk.S/D
1

s

X

W 2†k

jSW jH0.SW /.

Note 06Hk.S/6Hk�1.S/6 : : :6H0.S/6 log j†j.
We will build on self-indexes able of handling text collections T within jT jHk.T /Co.jT j log j†j/

bits [9, 10, 27]. On the other hand, representing an unlabeled tree of n nodes requires 2n �
O.logn/ bits, and several representations using 2nC o.n/ bits support many tree query and nav-
igation operations in constant time (e.g., [16]). The labels require in principle other n log t bits.
Sequences S of length n over an alphabet of size t can be stored within n log t .1C o.1// bits (and
even nH0.S/C o.n log t /), so that any element SŒi � can be accessed, and they can also efficiently
answer the following queries [8, 9, 28, 29]:

rankc.S , i/ is the number of c’s in SŒ1, i �; and
selectc.S , j / is the position of the j -th c in S .

These are essential building blocks for more complex functionalities, as seen later.
The final space requirement of our index will include the following:

1. jT jHk.T / C o.jT j log j†j/ bits for representing the text collection T in self-indexed form.
This supports the string searches of XPath and can (slowly) reproduce any text.

2. d log d C o.d log d/ bits for the mapping between the self-index and the text identifiers, for
example, to determine to which text identifier a self-index position belongs, or restricting
self-index searches to some texts.

3. 2nC o.n/ bits for representing the tree structure. This supports many navigational operations
in constant time.

4. 4n log t C 2n C o.n/ bits to represent the tags in a way that they support very fast XPath
searches.

5. 2nC o.n/ bits for mapping between tree nodes and text identifiers.

6. Optionally, jT j log j†j or jT jHk.T /Co.jT j log j†j/ bits, plusO
�
d log jT j

d

�
, to achieve faster

text extraction than in 1).

As a practical yardstick, without the extra storage of texts (item 6), the memory consumption of
our system is about the size of the original XML file (and, being a self-index, includes it!), and with
the extra text store, the memory consumption is 1–2 times the size of the original XML file.

In Section 3, we describe our representation of the set of strings, including how to obtain text
identifiers from text positions. This explains items 1, 2, and 6 previously. Section 4 describes our
representation for the tree and the labels, and the way the correspondence between tree nodes and
text identifiers works. This explains items 3, 4, and 5. Section 5 describes how we process XPath
queries on top of these compact data structures. In Section 6, we give some implementation details
and empirically compare our SXSI engine with the most relevant public engines we are aware of.
We conclude in Section 7.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

404 D. ARROYUELO ET AL.

3. TEXT REPRESENTATION

Text data in SXSI is represented as a succinct full-text self-index [10], that is, generally known as the
FM-index [30]. The index supports efficient pattern matching operations that can be easily extended
to support different XPath predicates.

3.1. FM-index and backward searching

Given a string T of total length jT j, from an alphabet†, the alphabet-friendly FM-index [9] requires
jT jHk.T /C o.jT j log j†j/ bits of space for any k 6 ˛ logj†j n and any constant 0 < ˛ < 1. The
index supports counting the number of occurrences of a pattern P in O.jP j log j†j/ time. Locating
the occurrences takes extra O.log1C� jT j/ time per answer, for any constant � > 0.

The FM-index is based on the Burrows–Wheeler transform (BWT) of string T [31]. Assume T
ends with the special end-marker $. Let M be a matrix whose rows are all the cyclic rotations of
T in lexicographic order. The first column of M, denoted F , contains all symbols of T in lexico-
graphic order. The last column L of M forms a permutation of T , which is the BWT string T bwt.
The matrix is only conceptual; the FM-index uses only on the T bwt string. Figure 2 illustrates the
matrix M with its first and last rows (F and T bwt) in bold. Figure 1 (bottom right) shows how this
fits in our overall scheme.

The resulting permutation from T to T bwt is reversible. There exists a simple last-to-first map-
ping from symbols in T bwt to F [30]: Let C Œc� be the total number of symbols in T that are
lexicographically less than c. Then, the LF-mapping is defined as

LF.i/D C ŒT bwtŒi ��C rankT bwtŒi�.T
bwt, i/.

Note that T bwtŒi � is the symbol preceding the i-th lexicographically smallest row of M. Thus, if
T bwtŒi � D T Œj �, then T bwtŒLF.i/� D T Œj � 1�. The symbols of T can therefore be read in reverse
order by starting from the location i such that T bwtŒi �D $ and applying LF recursively:

T ŒjT j�D $D T bwtŒ1� T ŒjT j � 1�D T bwtŒLF.1/� T ŒjT j � 2�D T bwtŒLF.LF.1//�

and so on until, after jT j steps, we obtain the first symbol T Œ1�. The values C Œc� can be stored in a
small array of j†j log jT j bits. Function rankc.T bwt, i/ can be computed in O.log j†j/ time with a
data structure called wavelet tree that, when built on T bwt, uses only jT jHk.T /Co.jT j log j†j/ bits
[9, 28, 32]. In practice, we opt for a Huffman-shaped wavelet tree using uncompressed bitmaps
inside [33]. Despite this achieves space jT j.H0.T /C 1/.1C o.1//, it is much faster than the other
implementations. In particular, operations cost O.H0.T // time on average under some conditions,
an improvement that applies to all the O.log j†j/ worst-case complexities that follow.

Figure 2. On the left, an example of the FM-index for text T D “discontinued” sampled each l D 3
positions. On the right, counting algorithm on the FM-index.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 405

Pattern matching is supported via backward searching on the BWT [30]. Given a pattern P Œ1,m�,
the backward search starts with the range Œsp, ep�D Œ1, jT j� of rows in M. At each step i 2 ¹m,m�
1, : : : , 1º of the backward search, the range Œsp, ep� is updated to match all rows of M that have
P Œi ,m� as a prefix. The new range Œsp0, ep0� is given by sp0 D C ŒP Œi ��C rankPŒi�.T bwt, sp�1/C1
and ep0 D C ŒP Œi ��C rankPŒi�.T bwt, ep/. Each step takes O.log j†j/ time using the wavelet tree,
and finally, ep � spC 1 gives the number of times P occurs in T . Figure 2 gives the pseudocode.

To find out the location of each occurrence, the text is traversed backwards from each sp 6 i 6 ep
(virtually, using LF on T bwt) until a sampled position is found. This is a sampling carried out
at regular text positions, so that the corresponding positions in T bwt are marked in a bitmap
BsŒ1, jT j�, and the text position corresponding to T bwtŒi �, if BsŒi � D 1, is stored in a samples array
PsŒrank1.Bs , i/�. If every l-th position of T is sampled, the extra space is O..n=l/ logn/C o.n/
(including the compressed Bs [34]), and the locating takes O.l log j†j/ time per occurrence. Using
l D ‚.log1C� jT j= log j†j/ for any � > 0 yields o.jT j log j†j/ extra space and locating time
O.log1C� jT j/.

Figure 2 illustrates a sampling of T each l D 3 symbols. Assume we look for P D “n”, then
backward search finds Œsp, ep� D Œ8, 9�. Now, to locate the occurrence at 8, we see that BsŒ8� D 0,
BsŒLF.8/� D BsŒ10� D 0, and finally, BsŒLF.10/� D BsŒ2� D 1. This corresponds to position
PsŒrank1.Bs , 2/� D PsŒ2� D 4. Because we applied LF twice, the answer is 4C 2 D 6. We have
found the occurrence T Œ6..�D “n..”.

3.2. Text collection and queries

The textual content of the XML data is stored as $-terminated strings so that each text corresponds
to one string. Let T be the concatenated sequence of the d texts. Array Ps is extended to record
both the text identifier and the offset inside it. Because there are several $’s in T , we fix a special
ordering such that the end marker of the i-th text appears at F Œi� in M (see Figure 1, bottom right).
This generates a valid T bwt of all the texts and makes it easy to extract the i-th text starting from its
$-terminator.

Now T bwt contains all end markers in some permuted order. This permutation is represented with
a data structure Doc, that maps from positions of $s in T bwt to text identifiers. Let T bwtŒj � corre-
spond to the first symbol of the text with identifier x, thus if i D LF.j /, it holds T bwtŒi � D $.
Then, we store DocŒrank$.T

bwt, i/� D x. Furthermore, Doc can be stored in a format that allows
for range searching (as illustrated in Figure 1 (right)): Given a range Œsp, ep� of T bwt and a range
of text identifiers Œx,y�, Doc can be used to output identifiers of all $-terminators within the range
Œsp, ep� � Œx,y�, in O.log d/ time per answer [35]. In practice, because we only use the simpler
functionality in the current system, Doc is implemented as a plain array using d log d bits.

Note Doc allows us to never switch from one text to another while looking for the preceding
sampled value: If we reach a $ before finding any BsŒi � D 1, array Doc can be used to determine
that we are at the first position of some text with identifier x.

The basic pattern matching feature of the FM-index can be extended to support XPath functions
such as starts-with, ends-with, contains, and operators D, 6, <, >, > for lexicographic order-
ing. Given a pattern and a range of text identifiers to be searched, these functions return all text
identifiers that match the query within the range. In addition, existential (is there a match in the
range?) and counting (how many matches in the range?) queries are supported. Time complexities
are O.jP j log j†j/ for the search phase, plus an extra for reporting. Although we describe the oper-
ators in their general form, which needs the range reporting functionality from Doc, our current
prototype implements only the simple case Œx,y�D Œ1, d�, where Doc can be an array.

starts-with.P , Œx,y�/ : The goal is to find texts in range Œx,y� prefixed by the given patternP . After
the normal backward search, the range Œsp, ep� in T bwt contains the end markers of all the texts pre-
fixed by P . Now Œsp, ep� � Œx,y� can be mapped to Doc, and existential and counting queries can
be answered in O.log j†j C log d/ time. Matching text identifiers can be reported in O.log d/ time
per identifier. If Œx,y� D Œ1, d� and Doc is an array, the counting time after the backward search is
O.log j†j/, and each text identifier can be reported in constant time.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

406 D. ARROYUELO ET AL.

ends-with.P , Œx,y�/ : Backward searching is localized to texts in Œx,y� by choosing Œsp, ep� D
Œx,y� as the starting interval, because we have forced the ordering of F Œ1, d�, so that F Œ´� D $ is
the terminator of text with identifier ´. After the backward search, the resulting range Œsp, ep� con-
tains all possible matches, thus existential and counting queries are answered in constant time after
the search. To find out text identifiers for each occurrence, the text must be traversed backwards to
find a sampled position (or a $). The cost isO.l log j†jC log d/ per answer, where l is the sampling
step. If Œx,y�D Œ1, d� and Doc is an array, the cost is just O.l log j†j/.

operatorD .P , Œx,y�/ : Whole texts that are equal to P , and with identifiers in the range Œx,y�, can
be found as follows. Start with a backward search as in ends-with, and then map to the $-terminators
as in starts-with. The time complexities are same as in starts-with.

contains.P , Œx,y�/ : To find texts that contain P , we start with the normal backward search and
finish such as in ends-with. In this case, there might be several occurrences inside one text, which
have to be filtered. Thus, the time complexity is proportional to the total number of occurrences,
O.l log j†j/ for each. Existential and counting queries are as slow as reporting queries. The basic
O.jP j log j†j/-time counting of all the occurrences of P can still be useful for query optimization.

operators 6, <, >, > : Operator 6 matches texts that are lexicographically smaller than or equal
to the given pattern. It can be solved such as the starts-with query, but updating only the ep of each
backward search step, whereas sp D 1 stays constant. Whereas Œsp, ep� delimits the rows of M
that start with P Œi ,m�, Œ1, ep� delimits the rows that start with a prefix lexicographically smaller
than or equal to P Œi ,m�. If at some point there are no occurrences of P Œi� D c within the pre-
fix T bwtŒ1, ep�, this means that P Œi ,m� does not appear in T . To continue the search, we replace
ep D C Œc� and continue for P Œ1, i�1�. Other operators can be supported analogously, and costs are
as for starts-with.

The new XPath extension, XPath Full Text 1.0 [36], suggests a wider functionality for text search-
ing. Implementation of these extensions requires regular expression and approximate searching
functionalities, which can be supported within our index using the general backtracking framework
[37]: The idea is to alter the backward search to branch recursively to different ranges Œsp0, ep0�
representing the suffixes of the text prefixes (i.e., substrings). This is performed by computing
sp0c D C Œc�C rankc.T bwt, sp � 1/C 1 and ep0c D C Œc�C rankc.T bwt, ep/ for all c 2† at each step
and recursing on each

�
sp0c , ep

0
c

�
. Then, the pattern (or regular expression) can be compared with

all substrings of the texts, allowing us to search for approximate occurrences [37]. The running time
becomes exponential in the number of errors allowed, but different branch-and-bound techniques
can be used to obtain practical running times [38, 39]. We omit further details, as these extensions
are out of the scope of this paper.

3.3. Construction and text extraction

The FM-index can be built by adapting any BWT construction algorithm. Linear time algorithms
exist for the task, but their practical bottleneck is the peak memory consumption. Although there
exist general time-efficient and space-efficient construction algorithms, it turned out that our spe-
cial case of text collection admits a tailored incremental BWT construction algorithm [40] (see the
references and experimental comparison therein for previous work on BWT construction): The text
collection is split into several smaller collections, and a temporary index is built for each of them
separately. The temporary indexes are then merged and finally, converted into a static FM-index.
The BWT allows extracting the i-th text by successively applying LF from T bwtŒi �, at O.log j†j/
cost per extracted symbol.

3.4. Faster text extraction using more space

To enable faster text extraction, we allow storing the texts in plain format in n log j†j bits, or
in an enhanced LZ78-compressed format (derived from the LZ-index [41]) using jT jHk.T / C

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 407

o.jT j log j†j/ bits. These secondary text representations are coupled with a delta-encoded bit vector

storing starting positions of each text in T . This bitmap requires O
�
d log jT j

d

�
more bits.

In fact, keeping next to the FM-index, an additional copy of all texts in plain format has more
advantages. As mentioned before, the time complexity of contains-queries is proportional to the
total number of occurrences. This implies that for large occurrence numbers, it becomes faster to
search over the plain texts than over the FM-index. The precise cut-off point depends on the sam-
pling factor l , see Section 6.3 for more details. Because a global count over the FM-index is fast
(O.jP j log j†j/ time), we use it to decide whether to search over the plain text or over the FM-index.

In practice, we opt for a plain text representation, which is much faster for extraction than an
LZ-index at the price of not much more space.

4. TREE REPRESENTATION

4.1. Data representation

The tree structure of an XML collection is represented by the following compact data structures,
which provide navigation and indexed access to it. See also the bottom left of Figure 1.

4.1.1. Par. This is the balanced parentheses representation of the tree structure (e.g., [42]). It is
obtained by traversing the tree in depth-first-search order (or preorder), writing a ‘(’ whenever we
arrive at a node and a ‘)’ when we leave it (thus, it follows the sequences of events generated by an
XML SAX parser). In this way, every node is represented by a pair of matching opening and closing
parentheses. A tree node is identified by the position of its opening parenthesis in Par (that is, a node
is just an integer index within Par). In particular, we use the balanced parentheses implementation of
[16], which supports a very complete set of operations, including finding the i-th child of a node, in
constant time; for more information concerning implementation details and performance, see [43].
Overall Par uses 2nC o.n/ bits. This includes the space needed for constant-time binary rank on
Par, which is very fast in practice.

4.1.2. Tag. This is the sequence of the tag identifiers of each tree node, including an opening and
a closing version of each tag, to mark the beginning and ending point of each node. These tags are
numbers in Œ1, 2t� and are aligned with Par so that the tag of node i is simply TagŒi �.

We also need rank and select queries on Tag. They allow us to carry out special operations such
as ‘TaggedDesc’, which ‘jumps’ to the first descendant of the given node having a given label
(Section 4.2.2). Several sequence representations supporting access, and these operations are known
[8,28,33]. Given that Tag is not too critical in the overall space, but it is in time, we opt for a practi-
cal representation that favors speed over space. First, we store the tags in an array using dlog 2te bits
per field, which gives constant time access to TagŒi �. The rank and select queries over the sequence
of tags are answered by a second structure. Consider the binary matrix RŒ1..2t�Œ1..2n� such that
RŒi , j � D 1 if TagŒj � D i . We represent each row of the matrix using Okanohara and Sadakane’s
structure sarray [44]. Its space requirement for each row i is ni log 2n

ni
Cni .2Co.1// bits, where

ni is the number of times symbol i appears in Tag. The total space of both structures adds up to
2n log.2t/C 2nH0.Tag/C n.2C o.1// 6 4n log t C 2nC o.n/ bits. Thus, we support access and
select in O.1/ time, and rank in O.logn/ time.‡

4.2. Tree navigation

We define the following operations over the tree structure, which are useful to support XPath queries
over the tree. Most of these operations are supported in constant time, except when a rank over Tag
is involved. In what follows, we assume that all the operations take an implicit argument Tree (we
do not write it explicitly to improve the readability). Nodes of Tree (that is, positions in Par) are

‡They report higher complexities, but these are easily improved by using a representation for dense arrays that supports
select in constant time.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

408 D. ARROYUELO ET AL.

ranged over by x, y, and so on. We assume the existence of a dummy node Nil guaranteed to be
distinct from any node of Tree (for instance �1).

4.2.1. Basic tree operations. These are directly inherited from Sadakane’s implementation [16].
We mention only the most important ones for this paper.

� Close.x/: The closing parenthesis matching ParŒx�. If x is a small subtree, this takes a few
local accesses to Par, otherwise a few nonlocal table accesses.
� Preorder.x/D rank(.Par, i/: Preorder number of x.
� SubtreeSize.x/D .Close.x/� xC 1/=2: Number of nodes in the subtree rooted at x.
� IsAncestor.x,y/D x 6 y 6 Close.x/: Whether x is an ancestor of y.
� IsLeaf.x/D .ParŒxC 1�D ‘)’/: Whether node x is a leaf in the tree.
� FirstChild.x/D xC 1: First child of x, if any (i.e., if ParŒxC 1�D ‘(’), Nil otherwise (i.e. if
x denotes a leaf).
� NextSibling.x/ D Close.x/C 1: Next sibling of x, if any (i.e., if ParŒClose.x/C 1� D ‘(’),
Nil otherwise.
� Parent.x/: Parent of x found as the closest parentheses pair enclosing x. Somewhat costlier

than Close.x/ in practice, because the answer is less likely to be near x in Par. Return Nil for
the root node.

4.2.2. Connecting to tags. The following operations are essential for our fast XPath evaluation. Let
tag be a tag identifier.

� SubtreeTags.x, tag/: Returns the number of occurrences of tag within the subtree rooted at
node x. This is ranktag.Tag, Close.x//� ranktag.Tag, x � 1/.
� Tag.x/: Gives the tag identifier of node x. In our representation, this is just TagŒx�. Returns
Nil if there are no such nodes.
� TaggedDesc.x, tag/: The first node (in preorder) labeled tag strictly within the subtree rooted

at x. It is obtained as selecttag.Tag, ranktag.Tag, x/C 1/ if it is 6 Close.x/; otherwise, there is
no such node, and the function returns Nil.
� TaggedPrec.x, tag/: The last node labeled tag with preorder smaller than that of node x, and

not an ancestor of x. Let r D ranktag.Tag, x � 1/. If selecttag.Tag, r/ is not an ancestor of node
x, we return it. Otherwise, we set r D r � 1 and iterate. Returns Nil when r D 0.
� TaggedFoll.x, tag/: The first node labeled tag with preorder larger than that of x, and not in the

subtree of x. This is selecttag.Tag, ranktag.Tag, Close.x//C 1/. Return Nil if there is no such
node.

4.2.3. Connecting the text and the tree. Conversion among text numbers, tree nodes, and global
identifiers is easily carried out by using Par and a bitmap B of 2n bits that marks the opening
parentheses of tree leaves containing text, plus o.n/ extra bits to support rank/select queries. The
bitmap B uses an implementation by Raman et al. [34], which is described in [33], and it enables
the computation of the following operations:

� LeafNumber.x/: Gives the number of leaves up to x in Par. This is rank1.B , x/.
� TextIds.x/: Gives the range of text identifiers that descend from node x. This is simply
ŒLeafNumber.x � 1/C 1, LeafNumber.Close.x//�.
� XMLIdText.d/: Gives the global tree preorder identifier for the text with identifier d . This is

Preorder.select1.B , d//.
� XMLIdNode.x/: Gives the global identifier for a tree node x. This is just Preorder.x/.

4.3. Displaying contents

Given a node x, we want to recreate its XML serialization, that is, return (a portion of) the original
XML string. We traverse the structure starting from ParŒx�, retrieving the tag names and the text
contents, from the text identifiers. The time is O.log �/ per text symbol (or O.1/ if we use the
redundant text storage described in Section 3) and O.1/ per tag.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 409

� GetText.d/: generates the text with identifier d .
� GetSubtree.x/: generates the subtree at node x.

5. XPATH QUERIES

In this section, we define the XPath fragment ‘Core+’, show its translation into automata, and dis-
cuss efficient execution of these automata. We do not formally define the semantics of XPath and
assume the reader to be familiar with the basics of XPath, see, for example, [21].

5.1. The XPath fragment Core+

Our goal is to support a practical subset of XPath, while being able to guarantee efficient evaluation
based on the data structures described in the previous sections. As a first shot, we target the forward
fragment of ‘Core XPath’ [21]. Here is an Extended Backus–Naur Form for Core XPath.

Core WWD LocationPath j / LocationPath
LocationPath WWD LocationStep (/ LocationStep)*
LocationStep WWD Axis :: NodeTest j Axis :: NodeTest [Pred]
Pred WWD Pred and Pred j Pred or Pred j not (Pred) j Core j (Pred)

We focus our presentation on the descendant and child axes, but self, attribute
and following-sibling are also supported in our implementation. A node test is either the
wild-card (*), a tag name, or a node type test, that is, one of ‘text()’ or ‘node()’.

Our fragment, called Core+, supports forward Core XPath and additionally all text predicates
of XPath 1.0, that is, the = (equality), contains, starts-with, and ends-with predicates.
These predicates appear inside filters (square brackets) and are generated by the nonterminal ‘Pred’.
Equality tests if a (constant) string is equal to a string selected by a Core+ expression; contains
tests if the string is contained in the expression; and starts-with tests if the string is a prefix of
the expression. Thus, our Core+ fragment specializes the previous Extended BackusŰ-Naur Form
with the following rules:

Axis WWD descendant j child j self j attribute j following-sibling
NodeTest WWD * j TagName j text() j node()
Pred WWD Core+ = String j contains(Core+,String) j starts-with(Core+,String)

j ends-with(Core+,String)

An XPath query selects nodes of an XML document. The last axis in a query determines
the selected nodes. For instance, the query /descendant::listitem/child::keyword
selects all keyword-children of all listitem-nodes in the document. The query T D
/descendant::text() selects all text nodes of the document, and the query A D
/descendant::*/attribute::* selects all attribute nodes of the document. In terms of our
example document in Figure 1, the query T selects the nodes 7, 9, 11, and 17 of our model. XPath
processors return the XML content (subtrees) of the selected nodes. Thus, for T the strings ‘Soon
discontinued’, ‘blue’, ‘40’, and ‘30’ are returned (plus the whitespace text nodes, compared with
the discussion at the beginning of Section 2).

The string held by every text and attribute node is called its value. If a subquery only selects text
and attribute nodes, then we call it a value expression. The ‘Core+’ nonterminals mentioned on the
right-hand side of our last ‘Pred’ rule must correspond to value expressions (we have avoided to
complicate the grammar to enforce that). As an example, the query

/descendant::text()[contains(self::node(),’and’)]

is in Core+; note that ‘self’ here is a value expression, because /descendant::text() is.

5.2. From XPath to automata

We use ‘marking tree automata’ as our execution model for Core+ queries. Before we formally
define these automata in the next section, we explain here by means of an example how a Core+

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

410 D. ARROYUELO ET AL.

Figure 3. The tree automaton for the query /descendant::listitem/descendant::keyword
[child::emph].

query is translated into an automaton. The translation of an XPath query to an automaton is a simple
syntax-directed translation that can be carried out in one pass through the parse tree of the query.
Roughly speaking, the resulting automaton is ‘isomorphic’ to the original query. Consider the query

/descendant::listitem/descendant::keyword[child::emph] .

This query selects all keyword-nodes that are descendants of listitem-nodes and that have a
child node tagged emph. Formally speaking, the query starts with the expression ‘/’, which selects
the root node of the document (in our model, the &-node), then applies the descendant axis to that,
and so on. The automaton has four states, q0, q1, q2, and q3, which correspond to the four steps in
the query (namely, ‘/’, two descendants, and the child one). Its transitions are given in Figure 3. The
automaton has start state q0 and end states q1 and q2. At first, we can consider that this automaton
is a classical nondeterministic alternating tree automaton (e.g., as the ones documented in [45] and
[46]). The transitions have the form: ‘state, set of labels! formula’. In the transitions previously,
L denotes the whole alphabet of the automaton and in the formulas, > denotes the Boolean ‘true’,
and #1 q (resp. #2 q) is true if there exists an accepting run from state q on the first child (resp.
next sibling) of the current node. The notion of (accepting) run for a given input tree is again the
usual one:

� the root must be in a start state (here q0);
� the leaves must be in an end state (here q1 or q2);
� a node x of the tree is in state q if there exists a transition q,L! �, if the label of x, is in L

and if the formula � holds (which possibly requires some conditions on the left or right child
of x).

The novelty here is the presence of the mark predicate (Transition 4) whose intuitive meaning is to
remember the nodes in which the transition containing mark (here Transition 4) was valid.

Let us now describe informally the correspondence between the XPath formula and the automa-
ton. The latter starts at the root of the input tree in state q0. Here, only Transition 1 can be satisfied.
That is the case if the first child of the root is in state q1. That state has two corresponding transi-
tions (recall that our automaton is nondeterministic). Transition 2 requires that (i) the current label
is listitem and q2 hold for the first child and q1 hold for both the first child and next sibling.
Transition 3 has no requirement on the label (it can be anything in L) but q1 must hold for both the
first child and next sibling of the current node. This self reference to q1 in both directions simply
encodes the recursion performed by the descendant axis in the query. Likewise for q2 (and in
general for any step of the query but the initial ‘/’), there are two transitions. Transition 5 han-
dles the recursion in case the label of the current node is not keyword or if the current node is
a keyword, which has no emph in child position. Transition 4 requires that the current node has
label keyword that q2 holds for both first child and next sibling (recursion) and that q3 holds for
the first child. If that is the case, the node is marked. Lastly q3 encodes the filter [child::emph].
If the current label is emph, then the transition is satisfied (there is no need to iterate in that case,
because only one emph-node is sufficient for the filter to be true). Or the current node is not emph,
and the automaton looks for an emph on the next sibling (recursion on #2 only, which encodes a
child axis).

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 411

There are of course several accepting runs for a given input tree (because the automaton is non-
deterministic), but if a node is marked during a run, then it is a keyword node, which has a
listitem-node above it and an emph node amongst its children.

It is well-known that all the runs of a nondeterministic automaton can be simulated in a one pass
traversal of the input (this holds for word automata as well as tree automata). Essentially, one main-
tains for each node a set of states (all those in which the nondeterministic automaton can be) instead
of a single state. We show, after introducing formally our automata model, how we can compute the
set of nodes marked during any nondeterministic run for a given automata, first using only FirstChild
and NextSibling move, in one traversal of the tree. Then, we show several optimizations techniques
that allow us to leverage the speed of the low-level tree and text indices and to compute efficiently
the set of marked nodes.

5.3. Tree automata representation

Tree automata are a well-known and popular tool for reasoning about XML, see, for example,
[47–50]. Only seldom have they been used as a tool for query evaluation. In [51], automata are
used to evaluate, on an XML stream, many (very simple) XPath queries in parallel. It is well known
that Core XPath can be evaluated using tree automata; see, for example, [52] and [53]. Here, we
use alternating tree automata (as in [45] and [46]). Such automata work with Boolean formulas over
states, which must become satisfied for a transition to be triggered. This allows a much more com-
pact representation of queries through automata than ordinary tree automata (without formulas). Our
tree automata are defined over a binary tree view of the XML tree where the left child is the first
child of the XML node, and the right child is the next sibling of the XML node.

Definition 5.1
A nondeterministic marking automaton A is a tuple .L,Q, T ,B, ı/, where

� L is a countable (possibly infinite) set of tree labels;
� Q is a finite set of states;
� T �Q is a set of top states (that is, states that must be satisfied at the root node);
� B �Q is a set of bottom states (that is, states that must be satisfied at the leaves);
� ı W Q � 2L

f
[2Lcof ! F is a transition function, where F is the set of Boolean formulas, 2L

f
is

the set of finite subsets of L, and 2Lcof is the set of cofinite subsets of L. A Boolean formula �
is produced by the grammar,

� WWD > j ? j mark j � _ � j � ^ � j :� j a j p (formula)
a WWD #1q j #2q (atom),

where p 2 P is a built-in predicate and q is a state.

Before explaining in detail the use of formulas, we motivate our use of finite or cofinite sets
as guards for transitions. Although traditionally automata transitions are guarded by a state and a
single label, this would make the encoding of XPath into automata very tedious and needlessly
complicate the algorithms. Indeed, one of the features of XPath is a wildcard element test, namely
‘*’. One solution could be to suppose that for a given automaton the set of labels of the input
document is known in advance and that this set is used as alphabet for the automaton. Unfortu-
nately, this does not accurately reflect the semantics of XPath in which a query can be defined
independently of any document and can even be executed on any document (it might not yield
any result, but its application is valid). Another solution (as in [51]) is to equip automata with a
special ‘default’ transition, labeled for instance ‘_’, which is taken if in the current state no other
transition can be evaluated. This has two drawbacks. First, it is only well-defined for determin-
istic tree automata (our encoding makes heavy use of non-determinism). Second, the evaluation
function is polluted by the special cases which handle this default transition. Our solution is more
blunt. We guard transitions by finite or co-finite sets of labels, and a transition is taken if the
label of the current node is a member of that set. For instance, the ‘*’ XPath test is encoded

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

412 D. ARROYUELO ET AL.

Figure 4. Inference rules defining the evaluation of a formula.

as a transition guarded by the set L � ¹@, #º, where ‘@’ and ‘#’ represent labels of subtrees
containing attribute nodes and text nodes in our encoding. This allows us to give a very straight-
forward evaluation function for tree automata, which relies on the evaluation of Boolean formulas,
presented next.

Definition 5.2 (Evaluation of a formula)
Given an automaton A and an input tree t , the evaluation of a formula is given by the judgment
R1,R2, t 0 `A � D .b,R/ where R1 and R2 are mappings from states to sets of nodes of t , t 0 is a
node of t , � is a formula, b 2 ¹>,?º, and R is a set of nodes of t . We define the semantics of this
judgment by the means of the inference rules given in Figure 4.

These rules are straightforward and combine the rules for a classical alternating automaton, with
the rules of a marking automaton. Rules (or) and (and) implement the Boolean connective of the
formula and collect the marking found in their true subformulas. Rules (left) and (right) (written as
a rule scheme for conciseness) evaluate to true if the state q is in the corresponding set. Intuitively,
R1 (resp. R2) is the set of states recognizing the left (resp. right) subtree of the input tree. Rule
(pred) assumes the existence of an evaluation function for built-in predicates. Among the latter, we
assume the existence of a special predicate mark, which evaluates to > and returns the singleton
set containing the current node.

We now give the semantics of an automaton by means of the run function TopDownRun
(Figure 5). This algorithm is based on the textbook algorithm for recursive bottom-up evaluation
of tree automata (e.g., [46]). The algorithm performs a recursive first child/next sibling traversal
of the tree until a leaf is reached (base case for the recursion). When returning form the recursive
evaluation on the left and right subtrees (Lines 6 and 7, Figure 5), the function evaluates the set of
transitions for the current node, based on the set of states recognizing the left and right subtree. How-
ever, instead of blindly doing a recursive descent from the root to the leaves and evaluating when
returning from the recursive calls, the transitions are restricted by the set of states Qtd (Line 4).
This technique is dubbed ‘bottom-up evaluation with top-down preprocessing’ in [46]. We therefore
named the run function TopDownRun to differentiate it from a real bottom-up run (starting from
the leaves of the tree) that we present in Section 5.4.2. The novelty is our use of maps from states to
nodes instead of only sets of states. The resulting map associate any state q, which has an accepting
run from x with the set of nodes that were marked during that run.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 413

Figure 5. Evaluation function for tree automata.

5.4. Leveraging the speed of the low-level interface

We have seen how to evaluate an XPath query by compiling it into a tree automaton and running
the latter on the input document. We present now several techniques that make use of the tree and
text index presented in Sections 4 and 3. These are the techniques that make our SXSI prototype
competitive in speed with state-of-the-art XML databases.

5.4.1. Jumping to relevant nodes. Conventionally, the run of a tree automaton visits every node of
the input tree. This is, for instance, the behavior of the tree automata presented in [52], which per-
form two scans of the whole XML document (the latter being stored on disk in a particular format).
However, for typical queries, most of the nodes are ‘useless’ in the sense that the automaton only
loops through them staying in the same set of states. In other words, the automaton ignores most of
the nodes. To restrict the run to interesting nodes, we use the notion of relevant nodes introduced in
[22]. Although the full characterization is out of the scope of this paper, we give a flavor of relevant
nodes, using an example. Consider again the query

/descendant::listitem/descendant::keyword[child::emph]

whose corresponding automaton is given in Figure 3. If we consider the starting transition, (Line 1)
in Figure 3, we can see that at the root node, (labeled &) the automaton will first go on the first child,
in state ¹q1º. Then, it will loop, going down on the first child and next sibling of each node until it
reaches a listitem element, on which it changes state and goes in ¹q1, q2º. Here we see, first,
that there are no relevant nodes between the root and the first listitem. Indeed, the tree could
be of any shape, and labeled with any tag (besides listitem), and the result of the query would
be the same. Second, we see this listitem node is reached through the following sequence of
moves (informally):

#1 q1 � .#1 q1j #2 q1/
�

(one first child move followed by an arbitrary sequence of first child and next sibling moves). Note,
that all nodes that can be reached by such a sequence of move are descendants of the root node.

Our TopDownRun algorithm is therefore specialized as follows:

1. We compute from the formulas of the transitions we consider (Line 4, Figure 5) the set of
states Q1 (resp. Q2) that are reached by a #1 move (resp. #2 move).

2. For Q1 (resp. Q2), we compute which set of labels cause a transition from one of the states in
Q1 to go in a state not in Q1. These labels make the node that have them relevant.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

414 D. ARROYUELO ET AL.

3. We test whether the sequence of moves that can make the automaton leave the set of state
Q1 (resp. Q2) has a specific pattern, for which our low-level library has an optimized call:
TaggedDesc, TaggedFoll,

4. We use that special call instead of FirstChild (resp. NextSibling)

In the previous example, we are initially in state ¹q0º with label &. We have ¹q1º as set of states
Q1. We see that a label listitem will make the automaton go from Q1 to Q01 D ¹q1, q2º. We
therefore perform a TaggedDesc(_, listitem) to reach the next node (Line 6 of Figure 5)). The
same process occurs recursively at each node, (e.g., after finding a listitem node, we look for a
keyword node in the same fashion, jumping using low-level calls. Note that for the algorithm to
remain sound, we cannot always jump in this fashion. For instance, once reaching a keyword node,
we cannot jump arbitrarily, because, for example, on its first child, several situations may happen
(all in parallel):

� the first child is labeled with emph, in which case the automaton will change back into a state
that looks for a descendant keyword;
� the first child is labeled with keyword, in which case the automaton will change into a state

that (1) looks for a sibling of that node labeled emph and check later this second keyword node
if there is a child labeled emph; and
� the first child is labeled by neither tag, then the automaton looks for a emph sibling and a
keyword descendant

This behavior is similar to the idea of ‘partitioning and pruning’ in the staircase
join [54], but here achieved by means of automata. One advantage of using automata
instead of working directly on the syntactic form of the XPath query is that some
simplification occur ‘for free’. For instance, query /descendant::*/descendant::a,
/descendant::*/descendant::a, /descendant::*/child::a, and /child::*/
descendant::a are all executed in the same, efficient fashion: move one level down from the
root then jump to all the a descendants. This happens because the for all these queries, the automata
perform the same state change during the top-down phase.

5.4.2. Bottom-up runs. Although the previous technique works well for tree-based queries, it still
remains slow for very selective value-based queries. For instance, consider the query

/descendant::listitem/descendant::keyword[contains(.,"Unique")] .

The text interface described in Section 3 can answer the text predicate very efficiently, returning the
set of text nodes matching this contains query. If the number of occurrences is low, and in particu-
lar smaller than the number of listitem or keyword tags in the document (which can also be
determined efficiently through the tree structure interface), then it would be faster to take these text
nodes as starting points for query evaluation and test if their path upward to the root matches the
XPath expression before the filter. This scheme (already mentioned in [55]) is particularly useful
for text oriented queries with low selectivity text predicates. However, it also applies for tree only
queries; consider again the query,

/descendant::listitem/descendant::keyword[child::emph]

on a tree with many listitem nodes but only a few keyword nodes. We can start by jumping to
the keyword nodes, run the remainder of the query (child::emph) on the subtree rooted at that
node and then, check its ancestors for listitem nodes. Note that with the tree index described in
Section 4, we cannot directly jump to all bottom-most keyword nodes. We would need to iterate
through all keyword nodes. Direct access could be provided through additional sarrays storing
for each label its bottom-most nodes.

We now devise a real bottom-up evaluation algorithm of our automata. The algorithm takes an
automaton and a sequence of potential match nodes (in our example, keyword labeled nodes). It
then moves up to the root, using the Parent function and checks that the automaton arrives at the

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 415

Figure 6. Bottom-up evaluation function.

root node in a top state q 2 T . Note that, if naively performed, such a bottom-up run will visit many
nodes repeatedly: if a node is the common ancestor of m potential match nodes, then it would be
visited m times. Instead, we move bottom-up left-to-right, and only move upwards from the left-
most potential match until we reach its lowest common ancestor with the next potential match. This
technique is similar in spirit to shift-reduce parsing ([56]). Our bottom-up matching algorithm is
given in Figure 6.

The behavior of this algorithm is explained in detail on an example in Figure 7 (in this figure,
vertical lines denote FirstChild edges, horizontal lines denote NextSibling edges, and dashed lines
represent skipped subtrees). Intuitively, it takes as input a sequence of potential matches. For each
of them it runs first the TopDownRun function to verify the downward context of the query (Lines
5 and 16). It then proceeds to walk upward (using Parent(_)) from a potential match node but stops
(shift) when it reaches an ancestor of the next match. The following matches are recursively han-
dled, and the algorithm can restart (reduce) when all the descendants of the current node have
been treated.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

416 D. ARROYUELO ET AL.

Figure 7. Illustration of the bottom-up run.

For our algorithm to be sound, we need to be sure that the subtrees that are not visited (e.g., left
subtree of x2 and x6 right subtrees of x3, x5, and x7 in Figure 7) can safely be ignored. This is the
case if the query at issue has the form

/axis::step/. . ./axis::step [pred]

(as in our previous example). Indeed, if a query has predicates in intermediate steps, for example:

/descendant::listitem[descendant::bold]/descendant:

:keyword[child::emph] ,

then we might need to explore the whole subtree of a listitem if no bold node is found on
the path between a keyword node and its listitem ancestor. We chose not to explore such
extensions to the BottomUpRun algorithm, because it would, in our opinion, not yield a significant
speedup with respect to the TopDownRun algorithm. On the contrary, the speedups provided by
the version of BottomUpRun we presented in this section were sufficient to justify the use of a
dedicated procedure for low-selectivity queries of a particular shape.

5.5. General optimizations, on-the-fly determinization

Although the optimizations presented in the previous sections give the most important speedup,
we describe hereafter a series of implementation techniques used for the efficient evaluation
of automata.

5.5.1. Hash consing of data structures. We use hash consing for all critical data structures: sets
of states, formulas, sets of transitions, sets of labels, and so on. Hash consed values have the fol-
lowing two properties. First, structurally equal values share the same representation in memory.
Therefore, testing for equality of such values (e.g., testing that two sets of transitions are equal)
consists in comparing their memory address (which is cheap). Second, to each such value, we can
associate a unique integer id (this can be its memory address, e.g., but more interestingly a small

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 417

integer assigned at the creation of the value). These two properties—especially the second one—are
instrumental to the other optimizations. Indeed, as described in [57], we can memoize (or cache)
the results of expensive computations and reuse them when needed instead of recomputing them.
We can associate to each function a table, indexed by the argument’s id. Although the first compu-
tation might be expensive, its result is stored once and for all in the table and can be retrieved with
one pointer indirection later on, when the same computation is requested. We explain now how this
generic technique comes into play for automata evaluation.

5.5.2. Just-in-time compilation of automata. In the TopDownRun algorithm (Figure 5), the most
expensive operations are in Lines 4, 5, and 8. By expensive, we mean that they take time O.m/
where m is the number of steps in the original query. At Line 4, we gather all the transitions that
can be selected from the current label ` and set of states Qtd. From these, we compute, at Line 5,
the new set of states Q1

td and Q2
td onto which we will launch the recursive call. As explained in Sec-

tion 5.4, from the set of states Q1
td

�
resp. Q2

td

�
, we compute the ‘jump’ moves that the automaton

will do to reach the next node in the left (resp. right) subtree. If none of the formulas requires the
evaluation of a value predicate (such as contains, for instance), then we can see that this whole
computation of Lines 4 and 5 can be cached in a two-dimensional array, using only ` (the current
label, identified by a small integer) and Qtd (a hash-consed set of states with a unique small id) as
a key. In practice, we store in this table a small sequence of instructions that are computed at run
time and which represent the behavior of the automaton for the next step (e.g., ‘jump to the next
keyword label in state ¹q0, q1º’). This just-in-time compilation scheme absorbs in practice most
of the overhead caused by the automaton machinery and makes running an automaton almost as
fast as executing a handwritten, precompiled function. In the same fashion, the computation of the
judgment `A can be memoized, this time in two parts. First, the sets of states (i.e., the domain of
the resulting mapping) is stored once and for all, and second, a sequence of instructions telling how
to propagate the results from the left and right subtrees is stored and evaluated for each node.

5.5.3. Handling of result sets. Maintaining sets of (result) nodes can be expensive. Our efficient
management of sets of nodes relies on the following two observations. First, note that only the states
outside of filters actually accumulate nodes. All other states always yield empty bindings. Thus, we
can split the set of states into marking and regular states. This reduces the number of � and � oper-
ations on result sets. Note also that given a transition qi , ` !#1 qj^ #2 qk where qi , qj , and qk
are marking states, all nodes accumulated in qj are in the left subtree of the current node. Likewise,
all the nodes accumulated in qk are subtrees of the right subtree of the current node. Thus, both
sets of nodes are disjoint, and we do not need to keep sorted sets of nodes but only need sequences
which supportO.1/ concatenation. Computing the union of two result setsRj andRk can therefore
be carried out in constant time, and consequently, � and � can be implemented in constant time.
Furthermore, if we are only interested in obtaining the number of results of a query, these sets can
be replaced by integer counters. Marking a node corresponds to incrementing a counter and merging
two sets (i.e., performing � or �) corresponds to adding two counters. The evaluation of formulas
as well as the preorder traversal we perform guarantees that marked node are not counted twice (i.e.,
in our algorithms, the results R become mapping from states to integers rather than mapping from
states to sets of nodes).

5.5.4. Lazy result sets. Another way to leverage the speed and jumping capabilities of our tree
index is by making use of a lazy result set. Consider the query /descendant::listitem/
descendant::keyword . When reaching a listitem node, the automaton is in a state
that encodes the following behavior: ‘accumulate all keyword nodes below this node’. There-
fore, instead of having the automaton jump through the subtree to individually put each keyword
node in the result set, we only store the listitem node (i.e., the current node during evaluation)
and a flag to remember that during serialization, it is not the listitem node that should be printed
but rather all its keyword descendants. Because our tree index allows us to reach each such node
using a constant time jump operation, we delay the process of obtaining all the final result nodes
until serialization, therefore speeding up the marking process. This not only saves time but also

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

418 D. ARROYUELO ET AL.

memory, because the full set of nodes does not have to be materialized. When evaluating the query
in counting mode (as described in the previous point), then we replace the lazy result set by a sin-
gle call to, for example, SubtreeTags(_, keyword), which returns in constant time the number of
keyword-labeled nodes. This number is then added to the counter of the corresponding state.

5.5.5. Early evaluation of formulas. Another optimization consists in evaluating the Boolean for-
mulas of the automaton as early as possible. First, remark that in the TopDownRun algorithm, a
node is ‘visited’ three times. Once when the automaton enters the node, during the top-down phase
(Line 1). Here, we only know that at most all states inQtd yield a successful run. Then, when return-
ing from the left subtree (Line 6), we know R1, that is, the states that yield an accepting run for
the left subtree. The idea now is to perform a partial evaluation of formulas by using only R1. If
this happens to be sufficient to prove or disprove the states in Qtd, then the right subtree can be
skipped altogether. This optimization is very important for filters as it insures that, for instance, in
a query such as /descendant::listitem[./descendant::keyword], the run function
only tests for the presence of the left-most keyword node below a listitem node.

5.5.6. Relative tag position tables. As explained earlier, the transitions for the query
.../descendant::keyword/... would be (just-in-time) compiled into a piece of code per-
forming a subtree traversal using TaggedDesc(_, keyword) and TaggedFoll(_ , keyword) instead
of FirstChild and NextSibling. This is already optimal for documents where keyword nodes may
appear arbitrarily. However, it is often the case that labels are not recursive (i.e., nodes with a label
l do not occur below other l-labeled nodes). To further optimize the compilation of the automaton,
we build –while indexing the document– four relative position tables, telling for each label l in the
document the sets of labels that occur respectively in child position, descendant position, following-
sibling position and following position. When compiling at run time the automaton and generating a
call to TaggedDescendant for a label l , we check that this l label can indeed appear as descendant of
the label of the current node (and similarly for other jumping functions). If the label does not occur,
then the TaggedDescendant call is replaced by a constant function returning directly the correct sets
of states for the left subtree as well as an empty result set, as if the automaton had made a full run
on this subtree.

6. EXPERIMENTAL RESULTS

This section presents our experimental results and is organized as follows. We first describe our
experimental settings, test machine, and benchmark data. We then provide a first round of experi-
ments illustrating the raw performances of the tree and text index: indexing time and resulting index
size, direct querying of the text index, and performing full preorder traversal using FirstChild and
NextSibling moves. A third subsection illustrates how the tree index and automata-based engine
work together to achieve very fast tree-oriented query evaluation (in particular, using the jumping
moves described in Section 4.1.2). We then show how the automaton machinery can leverage the
speed of both the text and tree index by evaluating queries containing both text and tree predicates.
Lastly, we illustrate the versatility of our approach: our engine is easily extended to support querying
of XML document storing bio-genetic data as well as natural language.

We have implemented a prototype XPath evaluator based on the data structures and algorithms
presented in the previous sections. Both the tree structure and the FM-index were developed in C++,
whereas the XPath engine was written using the OCaml language.

6.1. Protocol

To validate our approach, we benchmark our implementation against two well-established XQuery
implementations, MonetDB/XQuery and Qizx/DB. We describe our experimental settings hereafter.

Test machine. Our test machine features an Intel Core i5 platform featuring eight 3.33 Ghz cores,
16 GB of RAM and a S-ATA hard drive. The OS is a 64-bit version of Ubuntu Linux (11.04). The

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 419

kernel version is 3.0 and the file system used to store the various files is ext4, with default settings.
All tests are run on a minimal environment where only the tested program and essential services
were running. We use the standard compiler and libraries available on this distribution (namely g++
4.6.1, libxml2 2.7.8 for document parsing, and OCaml 3.12.1).

Qizx/DB. We use version 4.1 of Qizx/DB engine (free edition), running on top of the 64-bit version
of the JVM (with the -server flag set as recommended in the Qizx user manual). The maximal
amount of memory of the JVM is set to the maximal amount of physical memory (using the -Xmx
flag). We also use the flag -r of the Qizx/DB command line interface, which allows us to re-run the
same query without restarting the whole program (this ensures that the JVM’s garbage collector and
thread machinery do not impact the performances). We use the timing provided by Qizx debugging
flags and report the serialization time (which actually includes the materialization of the results in
memory and the serialization).

MonetDB/XQuery. We use version Oct2010-SP1 of MonetDB, and in particular, version 4.40.3 of
MonetDB4 server and version 0.40.3 of the XQuery module (pathfinder). We use the timing reported
by the ‘-t’ flag of MonetDB client program, mclient. We keep the materialization time and the
serialization time separate.

Running times and memory reporting. Each query is executed 11 times in a row within the same
program instance (using ‘-r 11’ for Qizx and by evaluating the same query 11 times for MonetDB
without restarting the server). Of these 11 runs, we discard the first and average the remaining 10,
which we report as ‘running time’ in the subsequent experiments. For all engines and all queries,
the first run is always much slower (due to cold cache issues, garbage collector adjustments, and so
on). The running time does not take into account query parsing or the query optimization phases that
take place before the actual query evaluation. We found these times to always be negligible for all
queries and engines tested (around 1 ms or less). We monitor the resident set size of each process,
which corresponds to the amount of process memory actually mapped in physical memory. For the
tests in which serialization is involved, we serialize to the /dev/null device (i.e., all the results
are discarded without causing any output operation). We also ascertained that for all queries, all
engines give the same node count and serialize roughly the same amount of data (small variations
exist, because, e.g., empty elements can be rendered <a/> or <a>).

Test data. Our test data is comprised of XMark documents [24] of various sizes (between 116 MB
and 1 GB), a 83 MB treebank document§ and a 122 MB Medline document¶. In Section 6.6 that
investigates XPath text-oriented queries, we also experiment using a word-based FM-index within
SXSI, and do this over a 2.3 GB mediawiki document (part of the English ‘wiktionary’). Last, in
Section 6.7, we experiment with a 132 MB XML document composed of gene annotations and their
DNA sequences.

Remarks. We also compared with Tauro [3]. Yet, as it uses a tailored query language, we could not
produce comparable results.

6.2. Indexing

Our implementation features a versatile index. It is divided into three parts. First, the tree represen-
tation composed of the parenthesis structure, as well as the tag structure. Second, the FM-index
encoding the text collection. Third, the auxiliary text representation allowing fast extraction of
text content.

It is easy to determine from the query which parts of the index are needed in order to solve it,
and thus, load only those into main memory. For instance, if a query only involves tree navigation,

§http://www.cs.washington.edu/research/xmldatasets
¶http://www.ncbi.nlm.nih.gov/pubmed

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

420 D. ARROYUELO ET AL.

Table II. Search times of FM-index (in milliseconds), sampling factor l D 64.

GlobalCount ContainsCount Report- Mem

Query Pattern Number Time Number Time Contains (MB)

1 Bakst 1 .004 1 0.04 0.012 61
2 ruminants 22 .009 19 2.3 1.6 61
3 morphine 392 .009 144 4.6 4.5 61
4 AUSTRALIA 438 .009 438 29.9 32.7 61
5 molecule 1472 .008 966 128.3 122.0 61
6 brain 2685 .005 1493 218.5 215.2 61
7 human 6897 .005 4690 553.5 548.0 62
8 blood 10,402 .005 8534 401.2 399.7 62
9 from 20,859 .004 12,073 1723 1718 62

10 with 63,332 .004 22,974 5084 5084 63
11 in 238,638 .003 42,586 19,642 19,630 64
12 a 2,932,251 .001 595,716 189,299 188,377 93
13 nn 9,730,750 .001 5,870,474 132,780 132,241 86

Mem, memory.

Figure 8. Indexing of XMark documents.

then having the FM-index in memory is unnecessary. On the other hand, if we are interested in very
selective text-oriented queries, then only the tree part and FM-index are needed (both for counting
and serializing the results). In this case, serialization is a bit slower (due to the cost of text extraction
from the FM-index) but remains acceptable because the number of results is low; see Table II.

Figure 8 reports the construction time and memory consumption of the indexing process, the
loading time from disk into main memory of a constructed index, and a comparison between the
size of the original document and the size of our in-memory structures.

For these indexes, a sampling factor l D 64 (cf. Section 3) was chosen. It should be noted that
the size of the tree index plus the size of the FM-index is always less than the size of the original
document.

It should further be noted that although loading time is acceptable, it dominates query answering
time. This is however not a problem for the use case we have targeted: a main memory query engine
where the same large document is queried many times. As mentioned in Section 1, systems such as
MonetDB load their indexes only partially; this gives superior performance in a cold-cache scenario
when compared with our system.

6.3. Raw performance of text index

Here, we give a short overview of the performance of our implementation of the FM-index. We
present the search times for different versions of contains-queries:

1. GlobalCount.P /: returns the global number of occurrences of the pattern P in all texts.
2. ContainsCount.P /: returns the number of texts that contain P .
3. ContainsReport.P /: returns the positions of all occurrences of P in the texts.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 421

Our experiments are over the text collection obtained from a 122 MB Medline XML document.
The size of this text is around 82 MB (if stored in 1-byte per character ASCII format). Our ‘plain’
alternative to the FM-index is a naive (byte-wise) string buffer (using precisely 82 MB of memory).
To search over the plain buffer, we use OCaml’s regular string expression library. The naive search
time is constant for all our queries at around 2700 ms. For both the naive and the FM-index, the
result positions (32 bit integers) for ContainsReport queries are materialized in an array. Consider
now the performance of our FM-index in comparison. First, at sampling factor l D 64, shown in
Table II. As can be seen, the times for ContainsCount and ContainsReport for the word ‘from’ are
at around 1720 ms. Thus, in this case, it is still faster to search over the FM-index. On the other
hand, for the word ‘with’, the search time is over 5000 ms, thus, here the plain search becomes
faster. Hence, somewhere between 20,859 and 63,332 occurrences lies the cutoff point from which
on searching over the plain text is faster than over the FM-index. Table III shows timings obtained
with sampling factor l D 4. As can be seen the cutoff point is now much later, at a global count
somewhere between 411,409 and 748,326. The last columns of Tables II and III show the maximal
memory consumption for these queries over the FM-index. As mentioned in the beginning of this
section, we measure the maximum memory used by the process, as reported by the operating system
(this is a slight over-approximation of the actual memory). The memory overhead for queries with
large cardinality, such as the last queries (q13 and q15), is explained by the size of the result array:
for both sampling factors, this is around 25 MB. This query has around 6 million results (Con-
tainsCount-number); each result is stored as a 4 byte integer. Thus, 23 MB are needed. However,
additional memory overhead occurs when results are removed from the GlobalCount (because they
occur in the same XML text node). For instance, in the second to last query (q12/q14), the ratio of
GlobalCount-number to ContainsCount-number is much larger than for the last query (4.9 versus
1.7). This means that on average, there are around 5 ‘a’-characters per text node, while there are only
around 1.7 return-characters per text node. Correspondingly, the maximum memory consumption is
much higher too.

6.4. Raw performance of tree index

The performance of some low-level features of our tree index is compared with the corresponding
performance of a standard pointer-based implementation of a tree. The latter provides for each tree
node two 64-bit pointers to its first child and next sibling nodes (and does not store labels). We first
compare construction times. Then, we compare times for a full depth-first left-to-right tree traversal
on the different structures. Finally, we test the speed of the taggedDesc and taggedFoll functions.

Table III. Search times of FM-index (in milliseconds), sampling factor l D 4.

GlobalCount ContainsCount Report- Mem

Query Number Time Number Time Contains (MB)

1 Bakst 1 .005 1 0.049 0.013 100
2 ruminants 22 .010 19 0.156 0.086 100
3 morphine 392 .009 144 1.7 1.4 100
4 AUSTRALIA 438 .009 438 4.1 3.9 100
5 molecule 1,472 .009 966 6.2 5.9 101
6 brain 2,685 .006 1,493 12.2 11.6 101
7 human 6,897 .005 4,690 25.4 27.3 101
8 blood 10,402 .005 8,534 77.2 73.6 101
9 from 20,859 .003 12,073 84.0 78.7 101
10 with 63,332 .004 22,974 242.8 235.0 102
11 in 238,638 .002 42,586 1,105 1,091 103
12 b 411,409 .001 135,307 1,779 1,762 108

13 g 748,326 .001 320,440 3,412 3,379 119
14 a 2,932,251 001 595,716 13,183 13,173 133
15 nn 9,730,750 .001 5,870,474 87,771 88,230 126

Mem, memory.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

422 D. ARROYUELO ET AL.

Table IV. Construction times (in milliseconds) for pointer versus SXSI tree store.

File Parse Pointers Parentheses Tags Tag-tabs

XMark116M 89,446 373 504 4682 1324
XMark223M 220,143 716 976 9051 2544
XMark559M 620,479 7923 2415 22,857 6283
Treebank83M 67,412 465 615 14,067 18,867
medline122M 67,935 537 760 6933 2036

Table V. Traversal times (in milliseconds), #nodes (in millions).

Recursive, all nodes Element nodes, SXSI

file #nodes Pointer SXSI #nodes Rec. //*

XMark116M 6 33 109 1.7 71 153
XMark223M 12 63 209 3.3 137 296
XMark559M 30 164 535 8.4 345 756
Treebank83M 7 57 184 2.4 136 292
medline122M 9 48 164 2.9 112 244

Table VI. Times (in milliseconds) for tagged traversals over XMark116M.

tag #nodes jump(C++) //(cou) //(mat)

category 1,040 1.2 1.6 1.7
price 10,141 2.3 2.9 3.1
listitem 63,179 16 22 24
keyword 73,070 11 12 14

We compare different traversals through all nodes with a given label: (i) using a pure C++ function,
(ii) using our automata in counting mode, and (iii) using our automata in materialization mode.

Construction. As Table IV shows, the construction of the parentheses structure takes roughly 1.5
times the amount of time of allocation a pointer structure for the tree. Constructing the tag sequence
is considerably slower, about 10 times as much as building the parentheses structure. This is because,
for each opening and for each closing tag, a separate sarray is constructed (see bottom left of
Figure 1). The last column shows the time for building the four tag-to-tag tables described in Sec-
tion 5.5.6. We also show the XML parsing time in the first column of the table, which dominates the
rest of construction times.

Full traversals. The left part of Table V shows that a full tree traversal through all nodes is between
3.2 and 3.4 times slower with SXSI, than with a pointer tree data structure. Note that the pointers
are allocated in preorder too, giving optimal performance for preorder traversal. As a comparison, if
the pointers are allocated in postorder, then traversal time for the preorder traversal is almost twice
as slow as the numbers reported, and if pointers are allocated in in-order, then the times are a bit
over twice as slow; see [43] for a discussion of the phenomenon. It should also be noted that for
other access patterns, such as random root-to-leaf traversals, the time difference between pointer
and succinct trees is much larger, factors of up to 100 are measured in [43].

In the right part of Table V, we see the number of element nodes in these trees, and the time it
takes for SXSI to recurse through those nodes: either using a small recursive C-function (column
‘rec.’), or using the automaton for the XPath query //*, and executing in counting mode.

Tagged Traversals. Here, the speed of the TaggedDesc and TaggedFoll functions is investigated.
Using these two functions, three different traversal through all nodes with a given label are consid-
ered: first, by a small C++ function, and second and third by our automata through a //label query in
counting and materializing modes, respectively. For instance, Table VI shows that iterating through

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 423

Figure 9. Tree-oriented queries based on Treebank (T01–T05) and XMark (X01–X17).

all keyword-nodes of the 116 MB XMark document takes essentially the same time for all three
methods (11–14 ms). This is in contrast to some other labels: for listitem, for instance, the
count-automaton traversal is 1.5 times slower than the C++ traversal. This can be explained by the
fact that listitem is a recursive tag: there are in fact 23,298 listitem nodes that appear as
descendants of listitem nodes. Hence, at each listitem node the automaton issues a tagged-
Descendant to search for further nodes. The other labels such as keyword and category do not appear
recursively. Because this information is part of our tree index (cf. Section 5.5.6), the automaton run
function avoids all these taggedDesc calls, which brings the speed almost up to the one of the
C++ function.

6.5. XPath tree queries

We benchmark tree queries using the queries given in Figure 9. Queries X01 to X12 are taken from
the XPathMark benchmark [58], derived from the XMark XQuery benchmark suite. X13 to X17
are ‘crash tests’ that are either simple (X13 selects only the root, because it always has at least one
descendant in our files) or generate roughly the same amount of results but with various intermediate
result sizes. Queries T01 to T05 work on the Treebank file.

Query answering time. For this experiment, we use the Treebank document (83 MB) and XMark
documents (116 MB and 1 GB). In the cases of MonetDB and Qizx, the files were indexed using
the default settings. Let us first describe in detail Figure 10, which summarizes the running time for
XMark queries. Each of the six graphs should be read as follows. For each query (X01 to X17), the
graph reports as vertical bars the relative running time of the three engines with respect to SXSI’s
running time (therefore, SXSI’s score is always 100%). In these graphs, a higher bar means that the
engine was slower. We also give at the top of each bar the average running time for the query in
milliseconds (or seconds, if the number is suffixed with an ‘s’). For instance, in the first graph—
labelled ‘116 MB (counting)’—we can see that for query X01, SXSI evaluates the query in 1.8 ms,
MonetDB 7.4 ms (or roughly 400% of SXSI’s time) and QizX 3.6 ms (or roughly 200% of SXSI’s
time). For count queries, the timing for all three engines are given side by side (SXSI, MonetDB,
and QizX in that order). For full reporting queries however, we want to gauge precisely the amount
of time spent during materialization and during serialization. The definition of materialization seems
to fit the evaluation model of both MonetDB and SXSI: create a data structure in memory, which
holds the resulting nodes in order and without duplicates such that access of the first result in pre-
order can be carried out in constant time, and accessing the next resulting node from the current one
in preorder can also be carried out in constant time. The timing for both SXSI and MonetDB are

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

424 D. ARROYUELO ET AL.

Figure 10. Running times for XMark queries, in milliseconds or seconds and as percent of SXSI’s speed.
Lower bars are better.

given in the graphs labelled ‘(materialization)’. Because Qizx interleaves evaluation of the query and
serialization, we only compared it with SXSI and MonetDB in the ‘(materialization+serialization)’
series. We also checked that all three engines generated in the end the same amount of data while in
serialization mode and that they generated valid XML documents (in particular, special characters
were replaced by their corresponding XML entities—for instance ‘&’ is rendered as ‘&’).

From the results of Figure 10, we see how the different components of SXSI contribute to the
efficient evaluation model. Fully qualified paths, such as queries X01–03 and X5 illustrate the sheer
speed of the tree structure and in particular, the efficiency of its basic operations (such as FirstChild
and NextSibling, which are used for the child axis), as well as the efficient execution scheme pro-
vided by the automaton. The descendant axes (used, e.g., in X04, X06, X10–12) show the impact
of the jumping primitives and the computation of relevant nodes. Complex filters (X06–12) show
how the alternating automata can efficiently evaluate complex Boolean formulas corresponding to
structural conditions over subtrees of a given node, including negations of paths and nested pred-
icates. Finally, X12 to X17 illustrate the robustness of our automaton model. Indeed while such
queries might seem unrealistic, the good performances that we obtain are the combination of (i)

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 425

using an automata-based evaluator (which factors in the states of the automaton all the necessary
computation and thus, do not materialize unneeded intermediate results) and (ii) our implementation
of lazy result sets, which shifts the burden of walking through the document as much as possible to
the serialization process.

As for Treebank queries, the results are reported in Figure 11. As one can see, SXSI behaves
well for simple queries (such as T01) and for more complex ones (T02, T04 and T05). An impor-
tant point is also the following one: the running times for all queries and for all engines are much
worse than the ones obtained for larger XMark documents. It seems that, despite using three dif-
ferent approaches (tree automata+jump, staircase join or Qizx’s proprietary one), a high number of
distinct paths and labels impact query results much more than the final node count.

Jumping and memoization of computations. As the experiments of the previous section show, SXSI
often outperforms MonetDB and Qizx. To better highlight how the optimizations described in Sec-
tions 5.4 and 5.5 impact the running time of Algorithm 5, we selectively disabled some of them and
executed queries X01 to X17 on a 116 MB XMark document. The results are shown in Figure 12.
The first bar of each cluster gives the running time of a naive version of the TopDownRun algo-
rithm, where each node of the document is traversed, and the computation of the next transitions to
evaluate is recomputed for each node. In other words, in this run, the jDj (size of the document) and
jQj (size of the automaton/query) factors are paid in full. Here, we can see that query answering
time depends on both the size of the query (which increases from X01 to X12) but also the number
of selected nodes (e.g., X14 is a short query but selects all nodes, causing memory allocations and
result sets book-keeping—which are expensive operations—for each node in the document).

The second bar in each cluster reports query answering time when computation and jumping to
relevant nodes are performed (but these computations are not memoized). This includes not only

Figure 11. Running times for Treebank queries, in milliseconds or seconds and as percent of SXSI’s speed.
From left to right, counting, materialization, and serialization times. Lower bars are better.

Figure 12. Impact of jumping and hash consing on the running time of TopDownRun (Figure 5).
Logarithmic scale, lower bars are better.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

426 D. ARROYUELO ET AL.

jumping to relevant nodes but also discarding whole subtrees and using the constant-time subtree
counting function of the tree interface (Section 5.5.4). It comes to no surprise that skipping nodes
aggressively yields important speedups in query answering time (some queries being translated into
a single low-level function call). However, queries such as X17 show the limit of the approach. For
these queries (//*//*//* and //*//*//*//* resp.) the engine reaches all the element nodes
at depth 3 (resp. 4) and select in constant time the set of elements in their subtrees. Because of the
shape of the document, there are much more nodes at depth 4 than at depth 3, and therefore, the
automaton has to traverse more nodes to touch all those at depth 4. This explains why the impact of
jumping is much lower for query X17 than it is for X16.

The third bar in each cluster reports query answering time of a version of the TopDownRun
that traverses the whole document, but memoizes the computations of Lines 4, 5, and 8 in Figure 5
in look-up tables. This also decreases the query answering time greatly. Furthermore, because this
technique does not rely on a particular index, it shows that it would also benefit more traditional
‘Document Object Model based’ query engines, which lack the low-level jumping primitives.

Lastly, the fourth bar reports query answering time with both optimizations enabled. Here, we
see that the jumping optimization is further improved by the memoization: the somewhat expensive
process that computes the next relevant node and the corresponding jump function is stored in a
look-up table and can be accessed in constant time when the automaton reaches again the same
configuration.

Memory use and precision. Although it is straightforward to predict the memory consumption of
our engine with respect to the index part (the full index is mapped in memory excluding the auxiliary
text, see Figure 8), the behavior of the automaton evaluation function is unclear. Indeed, to speedup
the computation, we create memoization tables, we handle partial result sets, and we perform recur-
sive procedures that might be as deep as the binary encoding of the XML document (because we
recurse on FirstChild and NextSibling move), thus increasing the size of the call stack.

We report in Figure 13 (left) the memory consumption for the automata evaluation of material-
ization queries. This includes the size of the recursive call stack, the size of OCaml’s heap (which is
grown dynamically by OCaml’s garbage collector to accommodate the memory need). On the heap
are allocated the memoization tables, intermediary structures and final result sets. As one can see,
the memory use is very modest, peaking at 32 MB for query Q11. Although we do not compare
directly with MonetDB or QizX for memory consumption (because these engines try to maximize
the memory used to achieve better speed), we see that we can reach comparable (if not greater)
speed while being very conservative memory wise.

To gauge the precision of our automata-based approach, we report in Figure 13 (right) for each
query:

� the number of visited nodes (i.e., the number of nodes onto which the TopDownRun function
is called);
� the number of marked nodes (i.e., the number of nodes that are marked as potential results

during the evaluation);
� and finally, the number of result nodes for the query.

Figure 13. On the left, memory use in megabytes for XMark 116 MB documents (excluding the index). On
the right, comparison of visited, marked and result nodes for each query (logarithmic scale).

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 427

A first observation is that the number of marked nodes is almost always the same as the number
of result nodes. In particular, for queries of the form:

/axis::step/. . ./axis::step[pred] ,

we only mark nodes that are part of the final result (the first part of the path is resolved during the
top-down phase, whereas the filter is validated during the bottom-up phase. Thus, once reaching a
potential result the automaton has recognized its path to the root as well as its subtree and can decide
whether to select it or not). For general queries, the experimental results show that early evaluation
of Boolean formulas helps to decide early during query evaluation whether a node is indeed a result
or not (even though some nodes are still selected and discarded later on). Another point of interest
is that for several queries (X02, X04, X14–X17), we only visit result nodes. Although this might be
expected for queries X14–X17, for which virtually every node is a result, queries such as X02 or
X04 are very selective. However, these queries provide enough information for the runtime analysis
of relevant nodes to be exact and therefore, only touch result nodes. In general of course, the num-
ber of traversed node is larger than the number of resulting nodes but always far less than the whole
document. Queries X14 to X17 show the impact of lazy result sets where we mark several nodes
(whole subtrees actually) in one function call and therefore, manage to return more nodes than we
have actually visited.

Lastly, we can see that the shapes of the ‘Visited Nodes’ curve in Figure 13 (right) and the mem-
ory use (Figure 13 left) are quite similar (the former being flattened by the logarithmic scale). This
(quite expectedly) shows that the number of visited nodes (and not the number of result nodes or
intermediary results) impacts directly the memory consumption of our query engine.

6.6. XPath text queries

In this section, we illustrate how our approach can leverage the speed of the underlying text engine.
Evaluation of text queries is performed as follows:

1. We determine during parsing whether the query can be run using the BottomUp algorithm
(Section 5.4.2).

2. We determine whether the text predicates (starts-with, ends-with, contains, . . .)
are applied to a single text node, for example, if the context node in the XPath expression
is reached using ‘axis::text()’, or if the content of a selected element is known to be
PCDATA (this information is kept in the index). If that is the case, we use the FM-index
and run the query bottom-up. Otherwise, we revert to using the naive text representation to
ensure that the semantics of the XPath text function is preserved, and run the query using the
TopDownRun algorithm.

Here, the check in Step 2 is necessary to implement the semantics of XPath’s text predicates over
mixed content. Indeed, for such elements (containing both text and other elements), the semantics is
to first create a text node resulting in the concatenation of all text elements and only then to perform
the text predicate. For instance, on the document

<a>012345

the following query returns the root node as a result (i.e., the predicate evaluates to true):

/child::a[contains(. , "1234")] .

Because the text value of ‘.’ (i.e., the root node) is the concatenated string ‘012345’, which indeed
contains the substring ‘1234’. Although this ‘feature’ of text predicates is rarely used in practice,
its presence in the XPath specification can hinder the efficiency of ‘normal’ text queries.

6.6.1. FM-index. For this experiment, we compared the generic version of XPath text searching
function (such as contains, ends-with, and start-with) for all three engines on a 659 MB
Medline document (used to store bibliographic data about medical publications). The queries we

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

428 D. ARROYUELO ET AL.

used for this experiment are given in Figure 14. In queries M01, M03, and M04, SXSI can use
the FM-index but cannot run bottom-up, because they feature complex filters. On the other hand,
queries M02 and M05–M09 can be run purely bottom-up. Lastly, queries M10 and M11 need to use
the ‘naive’ text collection because the string that is searched for could overlap several text elements
of the TextCollection (for M10, the MedlineCitation element has mixed content, whereas for
M11, it is not known at query compile time which element will be searched for the text).

The timings for these queries for all three engines are given in Figure 15.

Figure 14. Text-oriented XPath queries over Medline and their evaluation strategies.

Figure 15. Running times for Medline queries, in milliseconds or seconds and as percent of SXSI’s speed.
Lower bars are better.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 429

Figure 16. Word-based queries on Medline (W01–W05) and Wikimedia (W06–W10) documents.

Table VII. Experimental results for word-based text queries.

Query W01 W02 W03 W04 W05 W06 W07 W08 W09 W10
SXSI (ms) 5.7 4.9 136.8 5.7 143.5 10.5 1600 10.6 7.8 10.2
Qizx (ms) 86.3 78.3 137.3 158.0 150.7 – – – – –

The interpretation of the histograms is the same as for the tree-oriented queries. For queries M01–
M09, for which the FM-index can be used, we also give a table with the details of the amount of
time spent querying the whole text collection for matches and the amount of time spent traversing
the tree with the automaton. We also give the number of matches of the query.

As expected, in the case where queries can be evaluated in a bottom-up fashion the improvement
in running time is of several orders of magnitude. Even when this is not the case, the improvement
of using the FM-index over the naive substring search completely justifies the somewhat longer
indexing time and memory use. Lastly, for queries where the naive text representation must be used,
the fact that our tree representation allows to return in constant time, the set of texts that occurs
as descendant of a given node allows us to avoid costly materialization of large temporary text
elements (as we can see in query M11, Qizx seems to also manage to avoid allocations, yielding a
query answering time close to ours, whereas MonetDB seems to allocate large amounts of temporary
character buffers, which impacts query answering time).

6.6.2. Word-based text index. The loose coupling of SXSI’s components (automata-based query
engine, succinct tree index, and text index) allows us to readily plug other sorts of tree structures
or text indices. The text collection presented in Section 3 achieves exact symbol-based text pattern-
matching at the cost of indexing time and query time for large results. We show in this section how
one can choose another tradeoff, by plugging in the simple word-based text index by Fariña et al.
[59]. This index achieves high indexing and querying speed, with little memory by limiting queries
at a word boundary. In this index, distinct words are treated as distinct symbols, and the text collec-
tion is therefore viewed as a suffix array over a very large alphabet (the alphabet size is the number
of distinct words in the original text). We compare SXSI equipped with this index to the full-text
extension of Qixz. This extension implements the XQuery Full-Text facility [36], which allows to
perform token-based (essentially word-based) queries. We used the queries in Figure 16 to test both
indexes. Although in this figure we used the ‘contains’ function for conciseness, Qizx queries
are implemented using the special ‘ftcontains’ operator (which performs word based queries).

We tested queries for both Qizx and SXSI on the 122 MB Medline document and for SXSI only||

on a 2.3 GB mediawiki document (a snapshot of the english ‘wiktionary’ [60]). The results of the
experiment are given in Table VII. As we can see, even when both SXSI and Qizx are allowed
to make use of an efficient index, SXSI’s bottom-up evaluation strategy clearly improves query
answering time (all queries, but W03, W05 and W06 can be answered in 10 ms or less). For queries
that involve several text predicates (i.e., that need to be evaluated in a top-down fashion), SXSI and
Qizx perform similarly (and efficiently, even for large documents).

||Unfortunately only the standard version of Qizx hits a hard limit of around 2 GB for a single document (while the
commercial ‘XL’ version of the engine supports documents of 1 TB).

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

430 D. ARROYUELO ET AL.

Figure 17. DTD for bio-genetic data.

6.7. Biological sequence queries

As a last experiment, we demonstrate the versatility of SXSI by showing that it can be used as a
very efficient biological database manager, answering queries that make use of both the tree struc-
ture and a tailored text index. More precisely, we create XML files that combine gene annotations
with their DNA sequences. A sample DTD for these files is given in Figure 17. In this DTD, the
elements promoter and sequence are of particular interest: they store the DNA represented as
long sequences of A, T, C, and G characters. The other #PCDATA elements store the gene annotation
data such as positions, names, and so on.

Our experiment data are composed from human chromosome five**, which contains 2719 genes
having in total 8330 different transcripts. For each gene, we include 1000 base pairs of its upstream
promoter sequence, the gene sequence itself (all exons and introns included), and annotation infor-
mation such as gene’s biotype and description. Additionally, we include all known transcripts of
each gene, that is, sequences of the exons they contain as well as the concatenation of these exons.
The resulting textual content is highly repetitive, because each one of the exon sequences can appear
in many transcripts. Highly repetitive data have been shown to compress well using certain run-
length encoded text indexes [61], thus, here, the text index implementation is switched to use a
run-length compressed suffix array [61] instead of the FM-index. In this example, the final XML
file†† is 132 MB, whereas the text index requires only 63 MB of memory plus 59 MB for the sam-
ples array. The full index, including tree and text, is around 135 MB, that is, only as big as the
original document. The resulting XML document contains 323,318 elements, of which 65,286 are
either promoter or sequence nodes containing genetic data.

To do biologically relevant XML queries, we extend our engine to support position specific scor-
ing matrix queries (PSSM), which allow us to search for transcription factor binding sites from
genes’ promoter regions. The input for this query is a position frequency matrix (PFM) and a
minimum threshold for a valid match. The matrices can be found from the Jaspar database [62].

In a nutshell, PFMs have one row for each symbol of the alphabet (in our case 4 rows A, T, C,
and G) and one column for each position in the pattern to search. For instance, the PFM:

2
64
A 0 20 10 1

T 30 10 0 0

C 0 0 10 20

G 18 6 6 6

3
75

denotes patterns of length four, and the substring AGCT would obtain the score 0C6C10C10D 26.
To form the PSSM query, the PFM matrix is first converted into log-odds form to take into account

**Ensemble Human genome release 59, August 2010.
††http://www.cs.helsinki.fi/group/suds/sxsi/data/

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 431

Figure 18. Running times for position specific scoring matrix (PSSM) queries (in milliseconds).

the uneven background distribution of nucleotide frequences. Then, the PSSM query takes such
a matrix as well as a threshold and returns all text elements whose content scores more than the
given threshold. Figure 18 gives the running times for XPath queries using the PSSM predicates
and run-length compressed suffix array, with block size 128 and sample rate 16, as the text index.
The table summarizes also the number of results, the length of the search pattern and the value of
the threshold.

It is interesting to remark that since the document has a very flat and shallow structure, the automa-
ton/tree part of the query evaluates always very quickly (7 ms or under). The PSSM scheme also
allows us to write biologically meaningful queries that would otherwise be impossible or very hard
to write with regular expressions or a regular full-text extension. Yet, we did not have to modify our
core engine, only the text index was modified in isolation to add PSSM capabilities; the automata
and tree machinery remained unchanged.

7. CONCLUSIONS AND FUTURE WORK

We have presented SXSI, a system for compact in-memory representation of an XML collection and
for fast-indexed XPath queries over the representation. Even in its current prototype stage, SXSI is
already competitive with well-known efficient systems such as MonetDB and Qizx. A number of
avenues for future work are open. We mention the broadest ones.

Handling updates to the collections is possible in principle, as there are dynamic data structures
for sequences, trees, and text collections [16,27,63–65]. However, their practicality has not yet been
established nor how they relate to classical schemes that maintain a log of changes and re-index
periodically.

The compact data structures used in SXSI support several fancy operations beyond those actu-
ally used by our XPath evaluator. A matter of future work is to explore other evaluation strategies
that take advantage of those nonstandard capabilities. As an example, the current XPath evaluator
does not use the range search capabilities of the structure Doc of Section 3. This could be useful in
the case of top-down evaluation of queries that contain nonselective text searches; after a top-down
phase the search on Doc could be restricted to the range of a particular subtree.

An interesting challenge is to support XPath string-value semantics, where strings spanning
more than one text node can be searched for. This, at least at a rough level, is not hard to
achieve with our FM-index, by removing the $-terminators and marking them on a separate bitmap
instead.

We would like to extend our implementation to full XPath 1.0 and to add core functionalities of
XQuery. The first step here is to add backward axes to our XPath fragment. Ideally, we would like
to extend the lazy on-the-fly determinization procedure of our automata to a lazy remove-backward
procedure, which removes backward axes during the run of the automaton. We do however need to
execute automata with backward axes too, because not every query can be rewritten into a forward
one (see Section 3.2 of [66]). Even with backward axes and with the semi-joins of XPath, evalu-
ation can be performed in linear time (cf. [67]) and should be fast and predictable in SXSI. This
efficiency will have to be given up in general, when we want to support more complex features such
as numerical operations and loops of XQuery.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

432 D. ARROYUELO ET AL.

ACKNOWLEDGEMENTS

We would like to thank Schloss Dagstuhl for the very pleasant and stimulating research environment it pro-
vides; the work of this paper was initiated during the Dagstuhl seminar ‘Structure-Based Compression of
Complex Massive Data’ (Number 08261). In particular, the idea of sorting according to end markers came
alive during the meeting, as briefly sketched in the report [68], and was then independently developed in
different directions [25,64]. We are grateful to Kunihiko Sadakane for making available to us his implemen-
tation of parentheses structure for succinct trees, and to Juha Karjalainen for composing the BioXML data.
Diego Arroyuelo and Francisco Claude were partially funded by NICTA, Australia. Francisco Claude was
partially funded by NSERC of Canada and the Go-Bell Scholarships Program. Diego Arroyuelo and Gonzalo
Navarro were partially funded by Fondecyt Grant 1-110066, Chile. Gonzalo Navarro was partially funded
by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant ICM P05-001-F, Mideplan,
Chile. Veli Mäkinen and Jouni Sirén were partially funded by the Academy of Finland under grant num-
ber 1140727. Niko Välimäki was partially funded by the Helsinki Graduate School in Computer Science
and Engineering.

REFERENCES

1. XML Mind products. Qizx XML query engine, 2007. Available from: http://www.axyana.com/qizx [last accessed 30
August 2013].

2. Boncz PA, Grust T, van Keulen M, Manegold S, Rittinger J, Teubner J. MonetDB/XQuery: a fast XQuery processor
powered by a relational engine. SIGMOD, Chicago, Illinois, USA, 2006; 479–490.

3. Signum. Tauro, 2008. Available from: http://tauro.signum.sns.it/ [last accessed 30 August 2013].
4. Kay M. Ten reasons why Saxon XQuery is fast. IEEE Data Engineering Bulletin 2008; 31(4):65–74.
5. Fernández MF, Siméon J, Choi B, Marian A, Sur G. Implementing XQuery 1.0: the Galax experience. VLDB, Berlin,

Germany, 2003; 1077–1080.
6. Koch C, Scherzinger S, Schmidt M. The GCX system: dynamic buffer minimization in streaming xquery evaluation.

VLDB, Vienna, Austria, 2007; 1378–1381.
7. Olteanu D. SPEX: streamed and progressive evaluation of XPath. IEEE Transactions on Knowledge and Data

Engineering 2007; 19(7):934–949.
8. Golynski A, Munro I, Rao S. Rank/select operations on large alphabets: a tool for text indexing. SODA, Miami,

Florida, USA, 2006; 368–373.
9. Ferragina P, Manzini G, Mäkinen V, Navarro G. Compressed representations of sequences and full-text indexes.

ACM Transactions on Algorithms 2007; 3(2): article 20.
10. Navarro G, Mäkinen V. Compressed full-text indexes. ACM Computing Surveys 2007; 39(1): article 2.
11. Jacobson G. Space-efficient static trees and graphs. FOCS, Research Triangle Park, North Carolina, USA, 1989;

549–554.
12. Munro J, Raman V. Succinct representation of balanced parentheses and static trees. SIAM Journal on Computing

2001; 31:762–776.
13. Geary R, Rahman N, Raman R, Raman V. A simple optimal representation for balanced parentheses. CPM, Istanbul,

Turkey, 2004; 159–172.
14. Benoit D, Demaine E, Munro JI, Raman R, Raman V, Rao SS. Representing trees of higher degree. Algorithmica

2005; 43(4):275–292.
15. Arroyuelo D. An improved succinct representation for dynamic k-ary trees. CPM, Pisa, Italy, 2008; 277–289.
16. Sadakane K, Navarro G. Fully-functional static and dynamic succinct trees. SODA, Austin, Texas, USA, 2010;

134–149.
17. Ferragina P, Luccio F, Manzini G, Muthukrishnan S. Structuring labeled trees for optimal succinctness, and beyond.

FOCS, Pittsburgh, PA, USA, 2005; 184–196.
18. Ferragina P, Luccio F, Manzini G, Muthukrishnan S. Compressing and searching XML data via two zips. WWW,

Edinburgh, Scotland, 2006; 751–760.
19. Maneth S, Sebastian T. Fast and tiny structural self-indexes for XML. CoRR 2010. abs/1012.5696.
20. Böttcher S, Hartel R, Heinzemann C. BSBC: towards a succinct data format for XML streams. WEBIST, Vol. 1,

Funchal, Madeira, Portugal, 2008; 13–21.
21. Gottlob G, Koch C, Pichler R. Efficient algorithms for processing XPath queries. ACM Transactions on Database

Systems 2005; 30(2):444–491.
22. Maneth S, Nguyen K. XPath whole query optimization. PVLDB 2010; 3(1):882–893.
23. Franceschet M. XPathMark: an XPath benchmark for the XMark generated data. XSym, Trondheim, Norway, 2005;

129–143.
24. Schmidt A, Waas F, Kersten ML, Carey MJ, Manolescu I, Busse R. XMark: a benchmark for XML data management.

VLDB, Hong Kong, China, 2002; 974–985.
25. Arroyuelo D, Claude F, Maneth S, Mäkinen V, Navarro G, Nguyen K, Sirén J, Välimäki N. Fast in-memory XPath

search using compressed indexes. ICDE, Long Beach, California, USA, 2010; 417–428.
26. Manzini G. An analysis of the Burrows–Wheeler transform. Journal of the ACM 2001; 48(3):407–430.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

FAST IN-MEMORY XPATH SEARCH USING COMPRESSED INDEXES 433

27. Mäkinen V, Navarro G. Dynamic entropy-compressed sequences and full-text indexes. ACM Transactions on
Algorithms 2008; 4(3): article 32.

28. Grossi R, Gupta A, Vitter JS. High-order entropy-compressed text indexes. SODA, Baltimore, Maryland, USA, 2003;
841–850.

29. Barbay J, Gagie T, Navarro G, Nekrich Y. Alphabet partitioning for compressed rank/select and applications. ISAAC
(2), Jeju Island, Korea, 2010; 315–326.

30. Ferragina P, Manzini G. Indexing compressed text. Journal of the ACM 2005; 54(4):552–581.
31. Burrows M, Wheeler DJ. A block-sorting lossless data compression algorithm. Technical Report 124, Digital

Equipment Corporation, 1994.
32. Mäkinen V, Navarro G. Implicit compression boosting with applications to self-indexing. SPIRE, Santiago, Chile,

2007; 229–241.
33. Claude F, Navarro G. Practical rank/select queries over arbitrary sequences. SPIRE, Melbourne, Australia, 2008;

176–187.
34. Raman R, Raman V, Rao SS. Succinct indexable dictionaries with applications to encoding k-ary trees and multisets.

SODA, San Francisco, CA, USA, 2002; 233–242.
35. Mäkinen V, Navarro G. Rank and select revisited and extended. Theory of Computing Systems 2007; 387(3):332–347.
36. XQuery and XPath Full Text 1.0. Available from: http://www.w3.org/TR/xpath-full-text-10 [last accessed 30 August

2013].
37. Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM. Compressed indexing and local alignment of DNA. Bioinformatics

2008; 24(6):791–797.
38. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to

the human genome. Genome Biology 2009; 10(3): R25.
39. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009;

25(14):1754–1760.
40. Sirén J. Compressed suffix arrays for massive data. SPIRE, Saariselkä, Finland, 2009; 63–74.
41. Arroyuelo D, Navarro G, Sadakane K. Reducing the space requirement of LZ-index. CPM, Barcelona, Spain, 2006;

319–330.
42. Munro I, Raman V. Succinct representation of balanced parentheses, static trees and planar graphs. FOCS, Miami

Beach, Florida, USA, 1997; 118–126.
43. Arroyuelo D, Cánovas R, Navarro G, Sadakane K. Succinct trees in practice. ALENEX, Austin, Texas, USA, 2010;

84–97.
44. Okanohara D, Sadakane K. Practical entropy-compressed rank/select dictionary. ALENEX, New Orleans, Louisiana,

USA, 2007; 60–70.
45. Comon H, Dauchet M, Gilleron R, Jacquemard F, Löding C, Lugiez D, Tison S, Tommasi M. Tree automata

techniques and applications, 2007. Available from: http://www.grappa.univ-lille3.fr/tata [last accessed 30 August
2013].

46. Hosoya H. Foundations of XML Processing: The Tree Automata Approach. Cambridge University Press: Cambridge,
UK, 2010.

47. Neven F. Automata theory for XML researchers. SIGMOD Record 2002; 31:39–46.
48. Schwentick T. Automata for XML - a survey. Journal of Computer and System Sciences 2007; 73:289–315.
49. Genevès P, Layaïda N. XML reasoning made practical. ICDE, Long Beach, California, USA, 2010; 1169–1172.
50. Libkin L, Sirangelo C. Reasoning about XML with temporal logics and automata. Journal of Applied Logic 2010;

8:210–232.
51. Green TJ, Gupta A, Miklau G, Onizuka M, Suciu D. Processing XML streams with deterministic automata and

stream indexes. ACM Transactions on Database Systems 2004; 29:752–788.
52. Koch C. Efficient processing of expressive node-selecting queries on XML data in secondary storage: a tree

automata-based approach. VLDB, Berlin, Germany, 2003; 249–260.
53. Björklund H, Gelade W, Marquardt M, Martens W. Incremental XPath evaluation. ICDT, Saint-Petersburg, Russia,

2009; 162–173.
54. Grust T, van Keulen M, Teubner J. Staircase join: teach a relational DBMS to watch its (axis) steps. VLDB, Berlin,

Germany, 2003; 524–525.
55. McHugh J, Widom J. Query optimization for xml. VLDB, Edinburgh, Scotland, 1999; 315–326.
56. Aho AV, Sethi R, Ullman JD. Compilers: Principles, Techniques and Tools. Addison Wesley: Boston, USA, 1986.
57. Conchon S, Filliâtre J-C. Type-safe modular hash-consing. Proceedings of the ACM SIGPLAN Workshop on ML,

Portland, Oregon, USA, 2006. Available from: http://www.lri.fr/~filliatr/ftp/publis/hash-consing2.ps [last accessed
30 August 2013].

58. Franceschet M. XPathMark: functional and performance tests for XPath. Xquery Implementation Paradigms, 2007.
Available from: http://drops.dagstuhl.de/opus/volltexte/2007/892 [last accessed 30 August 2013].

59. Fariña A, Brisaboa N, Navarro G, Claude F, Places A, Rodríguez E. Word-based self-indexes for natural language
text. ACM Transactions on Information Systems 2012; 30(1): article 1.

60. English Wiktionary. Available from: http://en.wiktionary.org/ [last accessed 30 August 2013].
61. Mäkinen V, Navarro G, Siren J, Välimäki N. Storage and retrieval of highly repetitive sequence collections. Journal

of Computational Biology 2010; 17(3):281–308.
62. JASPAR database. Available from: http://jaspar.genereg.net [last accessed 30 August 2013].

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

434 D. ARROYUELO ET AL.

63. Chan H-L, Hon W-K, Lam T-W, Sadakane K. Compressed indexes for dynamic text collections. ACM Transactions
on Algorithms 2007; 3(2): article 21.

64. Böttcher S, Bültmann A, Hartel R. Search and modification in compressed texts. DCC, Snowbird, Utah, US, 2011;
403–412.

65. Navarro G, Nekrich Y. Optimal dynamic sequence representations. SODA, New Orleans, Louisiana, USA, 2013;
865–876.

66. Benedikt M, Koch C. XPath leashed. ACM Computing Surveys 2008; 41(1): article 3.
67. Bojanczyk M, Parys P. XPath evaluation in linear time. Journal of the ACM 2011; 58(4):17.
68. Bonifati A, Leighton G, Makinen V, Maneth S, Navarro G, Pugliese A. An in-memory XQuery/XPath engine

over a compressed structured text representation. Structure-Based Compression of Complex Massive Data. Dagstuhl
Seminar Proceedings 08261, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2008.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:399–434
DOI: 10.1002/spe

