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a b s t r a c t

This work proposes a new approach for multichannel facies image reconstruction based on compressed
sensing where the image is recovered from pixel-based measurements without the use of prior in-
formation from a training image. An minimization1− reconstruction algorithm is proposed, and a per-
formance guaranteed result is adopted to evaluate its reconstruction. From this analysis, we formulate
the problem of basis selection, where it is shown that for unstructured pixel-based measurements the
Discrete Cosine Transform is the best choice for the problem. In the experimental side, signal-to-noise
ratios and similarity perceptual indicators are used to evaluate the quality of the reconstructions, and
promising reconstruction results are obtained. The potential of this new approach is demonstrated in
under-sampled scenario of 2–4% of direct data, which is known to be very challenging in the absence of
prior knowledge from a training image.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The reconstruction of images from scarce measurements is the
essence of many inverse problems in Geosciences. Direct measure-
ments are expensive and an exhaustive analysis is out of the possi-
bilities. In this sampling context, the conventional way to treat the
lack of data in geostatistics has been by incorporating prior in-
formation of a statistical model that captures the geological structure
a family of images (Mariethoz and Renard, 2010; Ortiz and Deutsch,
2004). On this, the use of non-parametric models for statistical si-
mulation is a well-established approach (Ortiz and Deutsch, 2004).
Among these methods, multiple-point (MP) simulation techniques
are widely used for the reconstruction of geological structures
(Guardiano and Srivastava, 1993; Strebelle, 2002; Arpat and Caers,
2007; Wu et al., 2008). These approaches use a small portion of wells
(direct measurements in the pixel domain) to recover a collection of
images by means of reproducing the statistical patterns of the se-
lected model. This is a stochastic approach where the variability in
the results is intrinsic and, consequently, it does not lead to a single
representation of the distribution of facies.
al Engineering, University of
: þ56 2 6953881.
rón), jorgesil.edu@gmail.com,
. Ortiz),

.

This work departs from the problem of image recovery based
on reproducing patterns of a training image (Ortiz and Deutsch,
2004; Tahmasebi et al., 2014; Mariethoz and Renard, 2010; Mar-
iethoz and Lefebvre, 2014), and treats the image recovery as a
generalized sampling problem (Vetterli and Kovacevic, 1995; Do-
noho et al., 1998; Mallat, 2009). We follow the essential idea
proposed by Jafarpour and McLaughlin (2009), Jafarpour et al.
(2009, 2010), Jafarpour (2011) in the context of subsurface flow
model characterization from nonlinear measurements (Khani-
nezhad et al., 2012; Elsheikh et al., 2013; Khaninezhad and Ja-
farpour, 2014), which considers that subsurface facies images have
a common structure that can be efficiently represented in a
transform domain. Then, our conjecture is that this signal struc-
ture is information that can be used to recover the missing pixels
directly from the partial measurements. To validate this, we pro-
pose to study the compressible structure of the facies and with
this the critical rate of measurements needed to achieve a given
reconstruction quality.

In the setting of image reconstruction (Donoho et al., 1998;
Vetterli and Kovacevic, 1995; Elad, 2010), the figure of merit is a
comparison of the recovered image with the true image using
distortion measures like the signal to noise ratio (SNR) or visual
perceptual indicators (Zhou et al., 2004). In contrast, the conven-
tional way of evaluating the quality of geostatistic simulations has
been based on assessing the reproduction of univariate, bivariate
and multiple-point statistics of an image model (Ortiz and
Deutsch, 2004; Mariethoz and Renard, 2010; Tan et al., 2014;
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Peredo and Ortiz, 2011; Leuangthong et al., 2004). Therefore, in the
sampling-reconstruction context of this work, we move the at-
tention to the more challenging objective of true image recovery
from a small fraction of its pixels. Under this umbrella, this work
focus on the extension of the framework of compressed sensing to
the context of facies image reconstruction from pixel-based
measurements.

Compressed sensing (CS) has introduced a new paradigm for
the classical problem of sensing and reconstruction (Candès and
Tao, 2005, 2006; Candès et al., 2006a,b; Donoho, 2006). In a nut-
shell, the idea of CS is to model signals that are embedded in a
small sub-dimension of a target space, and to capture that in-
formation using the fewest possible measurements. The structure
of an image is measured by notions of sparseness and compres-
sibility, which is the ability of the image to be perfect or well
approximated by its best k-sparse version. Sources like natural
images and acoustic signals are emblematic examples of this no-
tion of compressibility (Mallat, 2009; Vetterli and Kovacevic,
1995). On the theoretical side, the main CS results offer conditions
for perfect reconstruction under a number of measurements
(Candès et al., 2006b; Donoho, 2006), which are far below the
classical Nyquist–Shannon sampling rate (Nyquist, 1928; Shannon,
1949). In the practical side, there are well-documented algorithms
to solve the recovery problem based on linear programming as
well as greedy iterative solutions (Mallat and Zhang, 1993; Tropp
and Gilbert, 2007; Blumensath and Davies, 2009; Elad, 2010).

The application of CS to inverse problems in geosciences is an
active area of research. In particular, several contributions have
been developed in the problem of subsurface flow model cali-
brations based on non-linear flow measurements (Jafarpour et al.,
2010; Jafarpour, 2011; Khaninezhad et al., 2012; Elsheikh et al.,
2013; Khaninezhad and Jafarpour, 2014; Lee and Kitanidis, 2013).
In these contributions, CS results are used to propose new sparsity
promoting algorithms that recover subsurface models based on
the formulation of complexity regularization problem. These sce-
narios are estimation problems based on complex nonlinear (flow)
measurements and do not belong to the category of sampling
problems explored in this work. In addition, CS has also been
applied to other relevant inverse problems in geophysics (Herr-
mann and Li, 2012; Herrmann et al., 2012).

For the specific context of recovering a channelized facies im-
age from pixel-based measurements, the work of Jafarpour et al.
(2009) is the first that explored the role of CS. They focused on the
analysis of a mono-channel image model and a specific data-rate
regime, where promising results were obtained. In this work we
extend this direction in a number of new dimensions: addressing
the formal connections with the RIPless theory of CS, exploring
and formulating the problem of basis selection, proposing
Fig. 1. (a) A multichannel facies image. (b) Unstructured pixel-based measurements (5%
variations of the classical basis pursuit algorithm, proposing an
inter-block approach for processing arbitrary large images, and
finally, conducting a systematic experimental analysis to validate
the approach in different data-rate regimes and scenarios.

We first formulate the image reconstruction problem as an
instance of a CS reconstruction and establish concrete connections
with the performance guarantee result of the RIPless theory of CS.
As part of the formulation, the role of change of basis is analyzed
and the problem of basis selection is addressed, where a concrete
indicator to evaluate the quality of the basis in this transform-
based framework is proposed. In particular, for our scenario of
unstructured pixel-based measurements, the DCT shows the best
performance in the sense of offering the best tradeoff between a
reconstruction error and the number of measurements.

Applying the CS technique to the reconstruction of facies with
the selected DCT basis, the regime from 1% to 10% of pixel mea-
surements is explored. Promising results are shown even in the
under-sample regime (from 2% to 4%) where the hard-data offers
very limited contextual information. From these results, we can
ratify that the underlying transform-based structure of channe-
lized facies images is very rich, and that the CS offers an effective
solution to recover that image from very limited and unstructured
pixel-based data. Our results are evaluated in terms of concrete
performances versus rate of measurements curves, which resolves
the question of the critical number of measurements that is nee-
ded to achieve a given level of image reconstruction. Furthermore,
a novel post-processing stage is proposed that considers averaging
information across different block-by-block reconstructions and a
final hard-thresholding process to pass from continuous to cate-
gorical values. This final stage is systematically evaluated and of-
fers a relevant performance boost in the critical regime from 2% to
10% of the pixel data.
1.1. Problem formulation

Our problem is the recovery of a geological structure from the
acquisition of vertical wells. More precisely, we focus on the family
of 2D facies distributions over a deposit or reservoir as illustrated
in Fig. 1(a). This problem is modeled as the recovery of an image (a
collection of pixels x( )i j

N N
,

{1, , } {1, , }∈ … × … indexed by the pair
i j N N( , ) {1, , } {1, , }∈ … × … ), where the wells correspond to un-
structured pixel measurements of a small proportion of the image
size in the range [1%, 10%], see Fig. 1(b). In this drastic under-
sampling regime, any classical interpolation or sampling technique
offers poor performance. Then, the use of prior knowledge of the
image is mandatory to achieve a reasonable recovery from the
limited information in Fig. 1(b).
taken at random positions). Gray pixels indicate the absence of the measurement.
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The next section is devoted to provide a concise presentation of
the CS approach adopted in this work, as well as its performance
guarantee. With this background, in Section 3 we add the needed
operational restrictions and considerations that allow us to state
the main recovery result of our problem. The main reason to
present this formality is two folds: first to concretely understand
the role of the basis in this reconstruction problem, and second, to
characterize an objective function that allows us to address the
problem of basis selection. This last problem is elaborated in
Sections 4 and 5. Finally, Section 6 provides the experimental re-
sults for geological facies reconstruction, and Section 7 presents
final remarks and discussion on future work.
1 The n terms in the RHS of (9) are needed to satisfy  aa I( ) =† .
2. Elements of CS

We model an image as a finite dimensional vector x in n. On
this context, our sensing modality is a linear operator, i.e.,

y Ax (1)m= ∈

where A is an m by n matrix and y denotes the observation vector.
Here we focus on the under sampling regime m n< , where the
recovery of x from y is an ill-posed problem. However under
specific conditions on x, the CS theory tells us that it is possible to
obtain perfect reconstruction (Candès and Tao, 2005; Candès et al.,
2006b; Donoho, 2006; Cohen et al., 2009). We elaborate this over
the RIPless theory of CS (Candès and Plan, 2011).

This theory is constructed over a sensing modality that is
random. More formally, the m-rows of the matrix A, i.e.,

a k m{ : 1, , }k
n= … ⊂ are generated from independent and iden-

tically distributed (i.i.d.) realizations of a random vector in n with
a probability that we denote by ρ (Candès and Plan, 2011). Another
key concept is the notion of signal sparseness (Candès et al.,
2006b; Donoho, 2006; Candès and Plan, 2011). A signal x n∈ is
said to be s-sparse, with s n≤ , if it has at most s coefficients dif-
ferent than zero. The collection of s-sparse signals is denoted by

s
nΣ ⊂ . For all x n∈ ,

x x x( ) min
(2)s

x
p

s
pσ ≡ ‖ − ˜‖

Σ˜∈

is the error of the best s-term approximation of x, where
x x( )i

n
i

p p
1

1/
p‖ ‖ = ∑ | |= is the p-norm with p 1≥ . Before we state the

main CS result, we need to introduce two concepts:

Definition 1 (Candès and Plan, 2011). If the rows of A in (1) are i.i.
d. realizations of a random vector a(w) (with probability ρ), then A
obeys the isotropy property if

 aa I( ) . (3)a =ρ∼
†

In addition, we define its coherence μ, as the smallest number such
that if a w a w a w n( ) ( ( , 1), , ( , ))= … † then

a w imax ( , ) ,
(4)i n1, ,

2 μ| | ≤
= …

with probability 1.

Theorem 1 (Candès and Plan, 2011, Theorem 1.2). Let x n∈ and let
us consider the linear acquisition model of Eq. (1), and the recovery
algorithm given by the solution of the ℓ1-minimization problem:


x x subject to Ax yarg min . (5)x n 1
^ = ‖˜‖ ˜ =

˜∈

Then for any s n< (level of sparsity) and 0β > , with probability (over
the sensing matrix) n e1 6/ 6− − β− , the solution to Eq. (5) satisfies
that
x x
C

s
x

(1 )
( ) ,

(6)s2 1
α σ‖^ − ‖ ≤ + ·

provided that Eq. (3) is satisfied and

m C s nlog , (7)μ≥ · · ·β

with s n m s m(1 ) log log log /2α β μ= + , C C(1 ) 0β= +β , and C and
C0 numerical constants.

This result guarantees for m (number of measurements) of the
order of O s n( log )μ· , a perfect recovery of any sparse signal in
x sΣ∈ (as in this case x( ) 0s 1σ = in Eq. (6)) adopting the
ℓ1-minimization decoder in Eq. (5). Then, the signal sparseness
( x( )s 1σ in Eq. (6)), and the coherence coefficient μ (because of its
role in Eq. (7)) are the two key design variables to achieve good-
perfect performance in this CS setting.
3. Image reconstruction from random pixel measurements as
a CS problem

There are two aspects of our image reconstruction problem that
we need to model to reduce it to the CS setting in Section 2. First,
facies images are no-sparse neither compressible in the coordinate
domain, but instead they can be compressed in a transform do-
main (Vetterli and Kovacevic, 1995; Starck et al., 2010; Mallat,
2009). Second, we consider measurements taken at random pixel
locations to model the sensing mechanics presented in Section 1.1.
This random pixel location is a reasonable assumption as we
consider that wells are taken in an unstructured way (i.e. we want
to recover the 2D geological pattern universally among a family of
images), although one could argue that they are placed using some
prior knowledge of the geological structure of the deposit or
reservoir.

Formally, let U be an unitary matrix, i.e., the columns of U de-
fine an orthonormal basis for n, where the signal x n∈ can be
expressed by

x Uz (8)=

with z U x= † denoting the transform representation of x. Our pixel-
based random sensing scheme is represented by a w( )˜ , which in-
dependently takes m -columns of the identity matrix I with uni-
form probability to form the m-rows of a sensing matrix that we
denote by Ã. Hence, (1) in our problem can be expressed as


y n AU z

(9)A

m= · ˜ · ∈
=

relating the pixel-based measurements y m∈ with z n∈ , which
is the transform representation of the signal with respect to U.
From this, it is simple to verify that  aa I( ) =† for any basis U, and
then the isotropy property in Definition 1 is satisfied.1 Further-
more, we can state a version of Theorem 1 for our pixel-based
imaging problem.

Corollary 1. Let us consider x n∈ , the linear acquisition model in
(9), and the recovery algorithm (in the transform domain) given by


z z subject to y Az n AUzarg min . (10)z n 1
^ = ‖˜‖ = ˜ = ˜ ˜

˜̃∈

Let us consider s n< and 0β > , then with probability n e1 6/ 6− − β− ,
the solution to Eq. (10) satisfies that

x x
C

s
z

(1 )
( ) ,

(11)s2 1
α σ‖^ − ‖ ≤ + ·



Fig. 2. A sample of the generated 2D multi-channel images used for analysis and reconstruction.
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being x¼Uz and x Uz^ = ^ provided that m C U s n( ) logμ≥ ·β . In this
case

U n u( ) max
(12)i j n

i j
, {1, , }

,
2μ = · | |

∈ …

is the coherence of the sensing matrix in (4), where ui j, denotes the
i j, entry of the unitary matrix U.

3.1. Interpretation of Corollary 1

There are two important aspects about the role of the basis U in
Corollary 1. First, z( )s 1σ , in Eq. (11), is an indicator of the quality of
the basis U to represent x in few transform coefficients. Second, we
have the critical condition

m C U s n( ) log (13)μ≥ · ·β

that says that the smaller the U( )μ is, the better the CS scheme
performs, in terms of the number of measurements needed to
achieve a given reconstruction error. Therefore, both the com-
pressibility of the signal (after projection on U) and the coherence
coefficients U( )μ play a key role to achieve good reconstruction.



Fig. 3. The first 4 columns correspond to elements of the DCT basis and the last 4 columns correspond to elements of the Wavelet basis (Daubechies of order 3 with 5 levels
of iteration).

Fig. 4. Best k-term sparse approximation for the multichannel image using the DCT basis (first row) and the Haar basis with 5 levels of iteration (second row). From left to
right: 100%, 10%, 5%, 2%, 1% 0.5% and 0.1% of more significant transform coefficients.
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4. Basis selection: a joint compressibility and incoherence
analysis

Our key performance result in Corollary 1 is valid for every
basis U. This offers a design variable and rises the problem of basis
selection. Here we propose a formal methodology to address this
problem.

For a basis U, a signal x, and a target reconstruction error 0ϵ > ,
let us introduce the following concept:
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fidelity indicator 1/ϵ. For the Wavelet bases, the Daubechies two-channel filters of different orders are used, from DB1 to DB9.

Table 1
Coherence indicator for the DCT and Wavelet bases induced by the Daubechies two
channel filers (DB) of different orders (from 1 to 9) and with 5 levels of iteration.

DCT Daubechies wavelet bases

Db1 (Haar) Db2 Db3 Db5 Db7 Db9

U( )jμ 2.00 100.00 139.95 130.21 104.92 106.33 86.41
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⎧⎨⎩
⎫⎬⎭s x U s n

C
s

U x( , , ) min 1 : such that
(1 )

( ) ,
(14)

s 1
α σϵ ≡ ≤ ≤ + · ≤ ϵ†
Fig. 7. CS reconstructions obtained with 4% of random pixel measurements. (a) Original
by processing sub-images with block size of 40 40 pp× . (d) Reconstruction with blocks o
blocks of 150 150 pp× . (g) Reconstruction with blocks of 200 200 pp× . (h) Reconstru
200 200 pp× ) and thresholding pixel by pixel information.
which is the critical number of the significant transform coefficients
needed to have a reconstruction error smaller than ϵ. Equipped
with this notion, if we have a collection of bases U j J{ : }j ∈ , from
Eq. (13) we can choose the basis that offers the smallest lower
bound on the number of random-pixel measurements as the
solution of

j x s x U U( , ) arg min ( , , ) ( ).
(15)j J

j jμ* ϵ = ϵ ·
∈

This solves the problem of basis selection from the point of view of
minimizing the number of measurements, where j x( , )ϵ⁎ finds an
optimal balance between compressibility, in terms of s x U( , , )j ϵ in
(14), and coherence, in terms of U( )jμ in (12).
multichannel image. (b) Random pixel measurements. (c) Reconstruction obtained
f 70 70 pp× . (e) Reconstruction with blocks of100 100 pp× . (f) Reconstruction with
ction obtained by averaging (block-by-block reconstructions from 40 40 pp× to
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5. Analysis for the problem of facies field reconstruction

The focus of this section is to present the bases considered on
the analysis of facies images, as well as to solve (15) in this context.
Examples of these 2D multichannel structures are presented in
Fig. 2. For the bases, we consider the collection of wavelets in-
duced by the Daubechies two channel filters (Db) (Vetterli and
Kovacevic, 1995; Daubechies, 1988) of different orders (from 1 to
9) and number of iterations (from 1 to 5), as well as the widely
adopted discrete cosine transform (DCT) (Jafarpour and McLaughlin,
2009). Some examples of the elements of these bases are pre-
sented in Fig. 3.

Moving to the basis selection, first Fig. 5 shows the ϵ-critical
number of coefficients in Eq. (14) of a typical field (the image in
Fig. 4) as a function of 1/ϵ and for our family of bases (DCT and
Wavelets). Here, it is clear that wavelet bases of smaller order offer
better representations than the DCT in terms of critical number of
coefficients across a wide range of fidelity values 1/ϵ. In particular,
the solution of the smallest order (DB1) or the Haar Wavelet
(Vetterli and Kovacevic, 1995) has the best performance as it
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Fig. 11. Reconstructions using the adaptive hard-thresholding stage. The first row shows average reconstructions across block sizes without hard-thresholding, and the
second row shows the respective results with the hard-thresholding. From left to right in columns: 10%, 7%, 5%, 2% and 1% of direct data.
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captures better the hard transitions between the two facies. To
illustrate this last point visually, Fig. 4 shows the best k-term ap-
proximation of our target image adopting the DCT and the Haar
Wavelet (DB1).

When we incorporate the coherence indicator of the bases, i.e.,
U( )jμ in Eq. (12), to address the basis selection (BS) in Eq. (15), the

balance completely changes in favor of the DCT. In particular, Fig. 6
shows the RHS of Eq. (15) and its trend for different wavelet bases
and fidelity values 1/ϵ in a wide range of approximation errors
0ϵ > . We can see that the gain in compressibility shown in Fig. 5
does not compensate the fact that wavelet bases are not suffi-
ciently incoherent with respect to the pixel domain, compared
with the DCT, which is almost perfectly incoherent with respect to
the pixel domain, see Table 1. Consequently, subject to the pixel-
based acquisition scheme of Section 3, by far the DCT is the best
basis from the point of view of solving our BS problem in (15) and,
equivalently, from the point of view of taking advantage of the
pixel measurements. In conclusion, the DCT is the basis that will



Fig. 12. Average reconstruction across block sizes with different proportion of measurements. (a) and (b) show the 10% of the data and the reconstruction, respectively.
(c) and (d) show the same graphics for 8% of data. (e) and (f) for the 5%. (g) and (h) for the 2%.
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be considered for the CS reconstruction experiments conducted in
the following section.
6. Reconstruction results

In this section reconstruction results are presented and ana-
lyzed. The multiple point simulation algorithm snesim developed
in SGeMS (Strebelle, 2002; Remy et al., 2009) is used to create a
rich collection of multichannel fields of arbitrary complexity and
size. In particular, one hundred images of 200�200 pixels (pp) are
created with different structures and orientations, capturing the
typical channel structure of the geological phenomenon of inter-
est. A sample of these images is presented Fig. 2. The results ob-
tained with the CS scheme were orientation-invariant, and con-
sequently, we focus on presenting the results applied to images
that have left-to-right dominant channel orientation.

6.1. Block decomposition and the average inter-block reconstruction

As the measurements were obtained at random pixel locations
with a given proportion (from 1% to 10%), this allows us to de-
couple the reconstruction by decomposing the image in non-
overlapping square-blocks and then applying the ℓ1-minimizer in
Eq. (10) individually in each block (see Fig. 7(c)–(g)). On average,
each resulting sub-image will have a similar number of pixels by
the nature of the random sensing modality in Eq. (9). This has an
important algorithmic advantage, because it reduces the com-
plexity of the reconstruction that scales from O n n( log ) to
O n n k(( log )/ ) (Kunis and Rauhut, 2008; Elad, 2010), n being the
size (number of pixels) of the image and k being the number of
blocks, allowing the framework to handle very large images. On
the negative side, this approach introduces block-wise artifacts,
see Fig. 7(c)–(g). However, we will see that this can be compen-
sated in the process of averaging the information across different
block sizes, see Fig. 7(h).

Moving to the experimental setting, we took random pixels
with different proportions in the range of 1–10% of the size
of the image. From these data, we applied the block-by-block
ℓ1-minimizer CS reconstruction presented in Section 3 considering
different block sizes (from 40�40 pp to 200�200 pp). Fig. 7
shows the reconstructions of an image with 5% of measurements
considering different block sizes organized from left-to-right. We
also provide the average reconstruction across all the block sizes
that is shown in Fig. 7(h). Finally in all these scenarios, we adopted
a two-level hard thresholding as the final post-processing stage.
The objective of this final quantization is to match the categorical
nature of the facies images. For that, we consider an adaptive
threshold (applied pixel-wise on the continuous image provided
by the CS scheme) that preserves the proportion of white and
black points observed in the direct measurements.

From the results illustrated in Fig. 7, it is possible to see that by
increasing the block size of the reconstruction, better image
quality is obtained at the expense of increasing the complexity of
the ℓ1-decoding algorithm. A simple justification is that the arti-
facts induced by connecting non-overlapping reconstructions are
reduced in this process. A more fundamental reason is that by
increasing the size of the block, the image becomes more com-
pressible with respect to the DCT. Consequently with the same
measurements, more image structure in terms of compressibility
can be incorporated in the ℓ1-recovery process (Corollary 1). This
compressibility trend is shown in Fig. 8, where the k-best ap-
proximation errors, measured in terms of x x10 log / ( )s2 2σ‖ ‖
(a relative approximation error), are presented as a function of the
number of significant coefficients and the size of the block.

Supporting the results in Fig. 8, the difference between the
reconstruction x̂ and the real images x is computed in the signal
to noise ratio (SNR) sense (using the classical expression

x x x10 log /2 2‖ ‖ ‖^ − ‖ in dB), and also the well-adopted index of
perceptual similarity (the structured similarity index (SSIM))
(Zhou et al., 2004) used to evaluate the quality of state-of-the-art
image compression techniques. Figs. 9 and 10 show these results
as a function of the block size and the number of measurements
from 1% to 10% of the total image data. Both in terms of SNR and
SSIM, there is a clear performance improvement by increasing the
block size, in particular by passing from 40�40 pp to 70�70 pp
the gain is important in the whole range from 1% to 10% of the



Fig. 13. Illustration of the sensing variability of the CS reconstruction. Four independent reconstructions are presented (organized by columns), in the regime of 10%, 5% and
2% of direct data (organized in rows from top to bottom), respectively. The original image is presented at the very top.
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measurements. In addition, these figures show the results without
and with the adaptive hard-thresholding, where it is clear that
thresholding improves performances. In particular for the best
scenario of the average reconstruction the gain is significant. To
illustrate this result, Fig. 11 shows examples of continuous versus
categorical reconstructions.

From the results in Figs. 9 and 10, we notice a dramatic im-
provement when adopting the average image reconstruction, in
particular in the regime from 2% to 6% pixel measurements and in
conjunction with the hard-thresholding post-processing. It is
worth noting the improvement in terms of SSIM in Fig. 10, which is
aligned with the human perception of the image quality. Hence,
the average reconstruction (see Fig. 7(h)) significantly increases
the quality of the recovered image when compared with its in-
dividual block-by-block recoveries (see Fig. 7(c)–(g)). This can be
attributed to the fact that averaging helps compensating the
artifacts of the block-by-block processing. However, we believe
that the major gain comes from the multi-scale nature of this
approach, because in the process of averaging information across
blocks of different sizes (from 40�40 pp to 200�200 pp), there is
a persistent pattern across scale that provides the performance
boost.

Finally for the best setting (average reconstruction with hard-
thresholding), Fig. 12 shows the recovered images and the actual
data in four sample regimes. First, it is evident the perceptual
accuracy of the method when more than 5% of the data is avail-
able. What is more interesting is that even with 2% of unstructured
data, we can recover an image that is acceptable in terms of pre-
serving the channel structures of the original image, which makes
this framework very attractive for image reconstruction and an
interesting complement to state-of-the-art simulation-based
techniques.
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6.2. Analysis of the sensing variability and comparison with other
methods

As the sensing matrix A is random, it is of interest to analyze
the variability in the reconstruction when considering a collection
of sensing matrices generated by the random sensing approach in
Section 3. A key question to ask is: how much do the results de-
viate from the average performance? In other words, we want to
evaluate the robustness of the CS method given the random nature
of A.

In addition, we use this analysis to compare our best CS based
solution, with other signal processing (interpolation) techniques.
On this, we applied the classical basis pursuit (BP) algorithm
(Candès, 2008; Candès et al., 2006a,b; Elad, 2010) on the whole
image using the DCT (as explored in Jafarpour et al., 2009), the
Haar basis with 5 levels of iterations (Vetterli and Kovacevic, 1995),
and the bi-orthogonal Wavelet CDF9/7 (Cohen et al., 1992) with
5 level of iterations (used for image compression in JPEG2000,
Wallace, 1991; Vetterli and Kovacevic, 1995). Furthermore, we
explore two other regularized solutions for ill-posed image re-
construction: the total variations (TV) minimization (subject to
linear measurements) (Needell and Ward, 2013; Lee and Kitanidis,
2013), and the linear least square (LLS) (Elad, 2010, Chapter 1.1)
(also explored in Jafarpour et al., 2009).

Concerning robustness, we fix the channel images in Fig. 7(a),
and run our best inter-block average CS reconstruction with the
adaptive hard-thresholding for 25 independent realizations of A in
Eq. (9) preserving the same number of measurements across the
scenarios. To illustrate the results, Fig. 13 provides solutions for
different proportions of measurements (organized by rows from
10% to 2%) and showing four independent reconstructions (orga-
nized by columns). These examples illustrate the robustness of the
CS method in the range above 5% of measurements, in the sense
that the recoveries are almost invariant to the specific realization
of A, see Fig. 14(b). On the other hand, in the critical range of
[1 4%]– , examples in the last row of Fig. 13, the variability increases,
because the limited data could result in blocks that are under-re-
presented, from instance to instance of the sensing matrix A, and
consequently this translates in higher uncertainty. In other words,
the deviation with respect to the average performance value, as
expected, tends to increase by considering smaller fraction of the
data. This is shown in Fig. 14 where average performance (MSSIM)
and the respective standard deviation are reported.

Concerning the trend in performance presented for all the
methods in Fig. 14, our CS method offers better reconstruction
results in all data-rate regimes, which is clear for rates in [1 6%]– .
There is clear gain with respect to the more competitive pure BP
with the DCT basis, showing the importance of the proposed inter-
block averaging process and the adaptive hard-thresholding.
When comparing results within the family of BP solution, we can
ratify the quality of the DCT in terms of performance in all the
range [1 10%]– . Bases known to have better compressibility than
the DCT (like the CDF9/7 and the Haar bases) do not translate that
compressibility gain into the CS reconstruction. The RIPless CS
theory offers an explanation for this (Section 3), because in-
coherence with the pixel-based domain plays a more important
role as showed in Sections 4 and 5. On the other hand, the TV
minimization approach shows to be an attractive alternative when
more than 8% of data is available, which is better than the plain
use of BP with the DCT. Finally, the non-sparsity promoting solu-
tion (LLS) shows the poorest results in all the data-rate regimes.
7. Summary and final discussion

This work investigates the problem of facies reconstruction
from under-sampled data (the regime from 1% to 10%) without the
use of a training image. This is an alternative to the way prior
information has been modeled and incorporated for this recovery
problem in geostatistics. A key contribution is the way in which
this problem is put on the framework of compressed sensing (CS).
A bridge between the well-elaborated RIPless CS theory and
practical aspects of this recovery problem is provided. From this
bridge, the basis selection problem is addressed where a justifi-
cation that the DCT is an excellent alternative for the recovery of
facies is presented. On top of that, a new inter-block averaging
process and an adaptive hard-thresholding method are proposed,
which offer a significant boost in performances in the regime of 1–
10% of direct data. Interestingly, this approach shows that the
objective of true facies reconstruction is feasible, when we have
access to a critical number of measurements in the range of
[3%, 5%]. On the other hand, good reconstructions are reported
even when less than 3% of the hard-data is available, which is
known to be a very challenging problem. Hence, we can say that
this CS based approach is able to recover geological facies images
from scatter data with no small scale information, which is pre-
cisely the regime where the direct sampling method presents
some difficulties (Mariethoz and Renard, 2010).

This CS approach offers promising new avenues for geological
image reconstructions, and we believe that much work needs to be
done to address the relevant scenario with less than 1% of data,
where this signal processing approach begins to show clear



H. Calderón et al. / Computers & Geosciences 77 (2015) 54–65 65
limitations, see Fig. 11. One important direction is to jointly in-
corporate signal structural information (in the CS paradigm) as
well as (multiple-point) statistical information from a training
image, as conventionally used in geostatistics. In this direction, it is
worth mentioning some new results in the context of subsurface
model calibration based on nonlinear (dynamic) flow data (Kha-
ninezhad et al., 2012; Elsheikh et al., 2013; Khaninezhad and Ja-
farpour, 2014). They have explored the idea of integrating a prior
geologic model to create a specialized geologic dictionary that is
used to reconstruct images from non-linear measurements with
good results. This is an interesting alternative to explore in our
linear sampling context, however, the specific challenges of our
problem need to be considered. For instance, the random nature of
the sensing modality, and the fact that good bases relay not only
on compressibility as in Khaninezhad et al. (2012) and Elsheikh
et al. (2013), but on a formal trade-off between compressibility
and coherence.
Acknowledgments

The work is supported by the research grant Fondecyt 1140840,
CONICYT, Chile and the Basal AMTC center. We are grateful with
Dr. Claudio Estevez and Cesar Azurdia for proofreading this
material.
References

Arpat, B., Caers, J., 2007. Conditional simulations with patterns. Math. Geol. 39 (2),
177–203.

Blumensath, T., Davies, M., 2009. Iterative hard thresholding for compressive sen-
sing. Appl. Comput. Harmon. Anal. 27 (November (7)), 265–274.

Candès, E., 2008. The restricted isometry property and its applications for com-
pressed sensing. C. R. Acad. Sci. Paris I 346, 589–592.

Candès, E., Plan, Y., 2011. A probabilistic and RIPless theory of compressed sensing.
IEEE Trans. Inf. Theory 57 (11), 7235–7254.

Candès, E., Romberg, J., Tao, T., 2006a. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory 52 (2), 489–509.

Candès, E., Romberg, J., Tao, T., 2006b. Stable signal recovery from incomplete and
inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223.

Candès, E., Tao, T., 2005. Decoding by linear programming. IEEE Trans. Inf. Theory
51 (December (12)), 4203–4215.

Candès, E., Tao, T., 2006. Near-optimal signal recovery from random projections:
universal encoding strategies?. IEEE Trans. Inf. Theory 52 (December (12)),
5406–5425.

Cohen, A., Dahmen, W., DeVore, R., 2009. Compressed sensing and best k-term
approximation. J. Am. Math. Soc. 22 (July (1)), 211–231.

Cohen, A., Daubechies, I., Feauveau, J., 1992. Biorthogonal bases of compactly sup-
ported wavelets. Commun. Pure Appl. Math. 45 (5), 485–560.

Daubechies, I., 1988. Orthonormal bases of compactly supported wavelets. Com-
mun. Pure Appl. Math. 41, 909–996.

Donoho, D., 2006. Compressed sensing. IEEE Trans. Inf. Theory 52 (4), 1289–1306.
Donoho, D.L., Vetterli, M., DeVore, R.A., Daubechies, I., 1998. Data compression and

harmonic analysis. IEEE Trans. Inf. Theory 44 (6), 2435–2476.
Elad, M., 2010. Sparse and Redundant Representations, 1st ed. Springer, New York.
Elsheikh, A., Wheeler, M., Hoteit, I., 2013. Sparse calibration of subsurface flow

models using nonlinear orthogonal matching pursuit and an iterative stochastic
ensemble method. Adv. Water Resour. 56, 14–26.

Guardiano, F., Srivastava, M., 1993. Multivariate geostatistics: beyond bivariate
methods. In: Geostatistics-Troia. Kluwer Academic, Amsterdam, pp. 133–144.
Herrmann, F.J., Friedlander, M.P., Yilmaz, O., 2012. Fighting the curse of di-
mensionality: compressive sensing in exploration seismology. IEEE Signal
Process. Mag. 29, 88–100.

Herrmann, F.J., Li, X., 2012. Efficient least-squares imaging with sparsity promotion
and compressive sensing. Geophys. Prospect. 60, 696–712.

Jafarpour, B., 2011. Wavelet reconstruction of geologic facies from nonlinear dy-
namic flow measurements. IEEE Trans. Geosci. Remote Sens. 49 (5), 1520–1535.

Jafarpour, B., Goyal, V.K., McLaughlin, D.B., Freeman, W.T., 2009. Transform-domain
sparsity regularization for inverse problems in geosciences. Geophysics 74
(September–October (5)), R69–R83.

Jafarpour, B., Goyal, V.K., McLaughlin, D.B., Freeman, W.T., 2010. Compressed history
matching: exploiting transform-domain sparsity for regularization of nonlinear
dynamic data integration problems. Math. Geosci. 42 (1), 1–27.

Jafarpour, B., McLaughlin, D.B., 2009. Reservoir characterization with the discrete
cosine transform. SPE J. 14 (1), 182–201.

Khaninezhad, M.M., Jafarpour, B., 2014. Hybrid parametrization for robust history
matching. SPE J. 19 (3), 487–499.

Khaninezhad, M.M., Jafarpour, B., Li, L., 2012. Sparse geologic dictonaries for sub-
surface flow model calibration: part 1 inversion formulation. Adv. Water Re-
sour. 39, 106–121.

Kunis, S., Rauhut, H., 2008. Random sampling of sparse trigonometric polynomials,
ii. orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8
(6), 737–763.

Lee, J., Kitanidis, P., 2013. Bayesian inversion with total variations prior for discrete
geologic structure identification. Water Resour. Res. 49, 7658–7669.

Leuangthong, O., McLennan, J., Deutsch, C., 2004. Minimum acceptance criteria for
geostatistical realizations. Nat. Resour. Res. 13 (September (3)), 131–141.

Mallat, S., 2009. A Wavelet Tour of Signal Processing, 3rd ed. Academic Press.
Mallat, S., Zhang, Z., 1993. Matching pursuit with time–frequency dictionaries. IEEE

Trans. Signal Process. 41 (December (12)), 3397–3415.
Mariethoz, G., Lefebvre, S., 2014. Bridges between multiple-point geostatistics and

texture synthesis: review and guidelines for future research. Comput. Geosci.
66, 66–80.

Mariethoz, G., Renard, P., 2010. Reconstruction of incomplete data sets or images
using direct sampling. Math. Geosci. 42, 245–268.

Needell, D., Ward, R., 2013. Stable image reconstruction using total variation
minimization. SIAM J. Imaging Sci. 6 (2), 1035–1058.

Nyquist, H., 1928. Certain topics in telegraph transmission theory. Trans. AIEE 47
(April (2)), 617–644.

Ortiz, J.M., Deutsch, C.V., 2004. Indicator simulation accounting for multiple-point
statistics. Math. Geol. 36 (5), 545–565.

Peredo, O., Ortiz, J.M., 2011. Parallel implementation of simulating annealing to
reproduce multiple-point statistics. Comput. Geosci. 37, 1110–1121.

Remy, N., Boucher, A., Wu, J., 2009. Applied Geostatistics with SGeMS, A User's
Guide. Cambridge University Press.

Shannon, C.E., 1949. Communication in the presence of noise. Proc. IRE 37 (January
(1)), 10–21.

Starck, J.-L., Murtagh, F., Fadili, J.M., 2010. Sparse Image and Signal Processing.
Cambridge University Press.

Strebelle, S., 2002. Conditional simulation of complex geological structures using
multiple points statistics. Math. Geol. 34 (1), 1–22.

Tahmasebi, P., Sahimi, M., Caers, J., 2014. Ms-ccsim: accelerating pattern-based
geostatistical simulation of categorical variables using multi-scale search in
Fourier spaces. Comput. Geosci. 67, 75–88.

Tan, X., Tahmasebi, P., Caers, J., 2014. Comparing training-image based algorithms
using an analysis of distances. Math. Geosci. 46, 149–169.

Tropp, J., Gilbert, A., 2007. Signal recovery from random measurements via or-
thogonal matching pursuit. IEEE Trans. Inf. Theory 53 (December (12)),
4655–4666.

Vetterli, M., Kovacevic, J., 1995. Wavelet and Subband Coding. Prentice-Hall, Eng-
lewood Cliffs, NY.

Wallace, G.K., 1991. The jpeg still picture compression standard. Commun. ACM 34
(April), 30–44, URL: 〈http://doi.acm.org/10.1145/103085.103089〉.

Wu, J., Boucher, A., Zhang, T., 2008. A SGeMS code for pattern simulation of con-
tinuous and categorical variables: FILTERSIM. Comput. Geosci. 34 (12),
1863–1876.

Zhou, W., Bovik, A., Sheikh, H., Simoncelli, E., 2004. Image quality assessment: from
error visibility to structural similarity. IEEE Trans. Image Process. 13 (4),
600–612.

http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref1
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref1
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref1
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref2
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref2
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref2
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref3
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref3
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref3
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref4
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref4
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref4
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref5
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref5
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref5
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref5
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref6
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref6
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref6
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref7
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref7
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref7
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref8
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref8
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref8
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref8
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref9
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref9
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref9
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref10
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref10
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref10
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref11
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref11
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref11
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref12
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref12
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref13
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref13
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref13
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref14
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref15
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref15
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref15
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref15
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref17
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref17
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref17
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref17
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref18
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref18
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref18
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref19
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref19
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref19
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref20
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref20
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref20
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref20
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref21
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref21
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref21
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref21
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref22
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref22
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref22
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref23
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref23
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref23
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref24
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref24
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref24
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref24
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref25
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref25
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref25
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref25
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref26
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref26
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref26
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref27
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref27
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref27
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref28
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref29
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref29
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref29
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref30
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref30
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref30
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref30
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref31
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref31
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref31
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref32
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref32
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref32
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref33
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref33
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref33
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref34
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref34
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref34
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref35
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref35
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref35
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref36
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref36
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref37
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref37
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref37
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref38
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref38
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref39
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref39
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref39
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref40
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref40
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref40
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref40
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref41
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref41
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref41
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref42
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref42
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref42
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref42
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref43
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref43
http://doi.acm.org/10.1145/103085.103089
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref45
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref45
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref45
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref45
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref46
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref46
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref46
http://refhub.elsevier.com/S0098-3004(15)00007-2/sbref46

	Reconstruction of channelized geological facies based on RIPless compressed sensing
	Introduction
	Problem formulation

	Elements of CS
	Image reconstruction from random pixel measurements as a CS problem
	Interpretation of Corollary 1

	Basis selection: a joint compressibility and incoherence analysis
	Analysis for the problem of facies field reconstruction
	Reconstruction results
	Block decomposition and the average inter-block reconstruction
	Analysis of the sensing variability and comparison with other methods

	Summary and final discussion
	Acknowledgments
	References




