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Abstract
We consider here solutions of the nonlinear fractional Schrödinger equation

ε2s(−�)su + V (x)u = up.

We show that concentration points must be critical points for V . We also
prove that if the potential V is coercive and has a unique global minimum, then
ground states concentrate suitably at such a minimal point as ε tends to zero. In
addition, if the potential V is radial and radially decreasing, then the minimizer
is unique provided ε is small.
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1. Introduction

In this paper we will study standing waves for a nonlinear differential equation driven by the
fractional Laplacian. We will focus on the so-called fractional Schrödinger equation

ih̄
∂ψ

∂t
= h̄2s(−�)sψ + V (x)ψ − |ψ |p−1 ψ (1.1)

where h̄ is the Planck constant, (x, t) ∈ R
N × (0, +∞), 0 < s < 1, and V : R

N → R is an
external potential function. The operator (−�)s is the fractional Laplacian of order s, which
for a function ϕ ∈ C∞

c (here and in the sequel when omitting the space of definition we are
meaning R

N ) may be defined via the Fourier transform:

F(−�)sϕ(ξ) = |ξ |2s ϕ̂(ξ) for ξ ∈ R
N,

where we used the standard notation

ϕ̂(ξ) := F(ϕ)(ξ) := 1

(2π)
N
2

∫
RN

e−ıξ ·xϕ(x)dx

for the Fourier transform of a function ϕ ∈ L2. As is customary, we will focus on the standing
wave situation of equation (1.1), namely on the case in which ψ(x, t) = u(x)e

it
h̄ , with u � 0:

under this further assumption (and replacing V +1 with V and h̄ with the small parameter ε > 0),
equation (1.1) reduces to

ε2s(−�)su + V (x)u − up = 0. (1.2)

This is the main equation studied in this paper and it will be set in the whole of R
N , with N > 2s

and p subcritical6, namely

1 < p <
N + 2s

N − 2s
. (1.3)

As for the potential V in (1.2), we suppose which is smooth, positive, and bounded away from
zero, namely we assume that

‖V ‖C2 < ∞, V̄ = inf
RN

V > 0. (1.4)

The weak formulation of the fractional Laplacian naturally leads to the study of the fractional
Sobolev spaces

Hs :=
{
u ∈ L2 :

∫
RN

|ξ |2s |̂u|2 dξ < ∞
}

, (1.5)

endowed with the norm

‖u‖2
Hs := ‖u‖2

L2 + ‖u‖2
Ds,2 ,

where ‖u‖2
Ds,2 :=

∫
RN

|ξ |2s |̂u|2 dξ.

Notice that all the functional spaces L2, Hs etc. are set in the whole of R
N unless explicitly

mentioned. In this functional setting, a weak solution of equation (1.2) is a function uε ∈ Hs

such that

ε2s

∫
RN

|ξ |2s ûε(ξ)ϕ̂(ξ) dξ =
∫

RN

(
V (x)uε(x) − up

ε (x)
)

ϕ(x) dx

for any ϕ ∈ Hs . For the existence of weak solutions for special cases of (1.2), see e.g. [4–6,
10, 12, 14, 15, 22]: in this circumstance, the solutions found are indeed positive, bounded,

6 When N � 2s, one can say that p is subcritical when p ∈ (1, +∞).
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and C2,α (see theorem 3.4 in [14] and lemma 4.4 in [3]). In this case, equation (1.2) holds
pointwise and the fractional Laplace of u at the point x ∈ R

N has the integral representation

(−�)su(x) = c(N, s)

∫
RN

2u(x) − u(x + y) − u(x − y)

|y|N+2s
dy (1.6)

for a suitable c(N, s) > 0, see e.g. proposition 3.3 in [9].
The first result that we provide characterizes the points at which solutions of (1.2)

concentrate for small ε, stating that these points are critical for the potential. This is somehow
an extension to the nonlocal setting7 of Wang’s result, see [24]. To state this first result, given
a sequence of positive solutions uε for equation (1.2) in the whole of R

N , we say that x0 ∈ R
N

is a strong concentration point for this sequence (or that the sequence uε strongly concentrates
at x0) if

for any δ > 0 there exist ε0 and R > 0 such that, for any ε ∈ (0, ε0), (1.7)

uε(x) � δ for all x ∈ R
N \ B(x0, εR).

With this setting, the following result holds:

Theorem 1.1. Assume (1.4) and let uε ∈ Hs be a sequence of positive solutions of (1.2) in the
whole of R

N that strongly concentrate at x0. Then ∇V (x0) = 0.

We remark that if we perform a translation and a spacial dilation of factor 1/ε,
equation (1.2) becomes

(−�)su + V (εx + x0)u − up = 0. (1.8)

Thus, to study the concentration phenomena of this equation, it is convenient to define

Vε(x) := V (εx + x0),

‖u‖2
ε,V :=

∫
RN

Vε(x) u2(x) dx,

‖u‖2
ε := ‖u‖2

Ds,2 + ‖u‖2
ε,V ,

and ν(Vε) := inf
u �=0

‖u‖2
ε

‖u‖2
Lp+1

.

Notice that these definitions also make sense when ε = 0, namely, one has

‖u‖2
0,V := V (x0)

∫
RN

u2(x) dx

and so on. Moreover, we remark that if u is a minimizer for ν(Vε) then uε(x) := u((x −x0)/ε)

is a minimizer for

νε(V ) := ε
N (1−p)

1+p inf
u �=0

ε2s‖u‖2
Ds,2 +

∫
RN V (x) u2(x) dx

‖u‖2
Lp+1

.

In this setting, we can better determine the variational properties of the concentration point x0.
Namely, while we know from theorem 1.1 that x0 is a stationary point for the potential, now
we give conditions under which it is a minimum. For this scope, given a sequence of positive
solutions uε for equation (1.2) in the whole of R

N , we say that x0 ∈ R
N is a weak concentration

7 As a technical comment, we point out that the proof of lemma 4.2 in [24] uses the nondegeneracy of the limit profile,
which does not seem to be available in the fractional setting. Nevertheless, this nondegeneracy plays a crucial role
only in proving the uniqueness of the maximal points of the spikes, so we will be able to get around this argument in
our framework.
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point for this sequence (or that the sequence uε weakly concentrates at x0) if there exists a
sequence of points xε → x0 such that

for any δ > 0 there exist ε0 and R > 0 such that, for any ε ∈ (0, ε0), (1.9)

uε(x) � δ for all x ∈ R
N \ B(xε, εR).

By comparing (1.7) and (1.9), we notice that strong concentration implies weak concentration
(by choosing xε := x0) for every ε. Then, the following result holds:

Theorem 1.2. Suppose that V has a unique global minimum point and that uε is a minimizer
for νε(V ). Assume in addition that V at infinity stays above such minimal value, i.e.

lim inf
|x|→+∞

V (x) > min
RN

V . (1.10)

Then uε weakly concentrates at the global minimum point x0 of V . More precisely, the point xε

in (1.9) is the unique global maximum point of uε.

We emphasize that, in the above theorem, an additional complication is that the nonlocal
operator (−�)s does not ‘see’ local maximum points. Namely, if yε is a local maximum
point for uε, it is not necessarily true that (−�)suε(yε) � 0 (and, as a matter of fact, the
‘local’ behavior of ‘nonlocal’ equations can be very wild: for instance all functions are locally
s-harmonic up to an arbitrarily small error, see [11]). This feature makes the proof of the
uniqueness of the global maximum point of uε more delicate than in the classical case. With
regard to the characterization of concentration sets for minimizers of singular perturbation
problems we refer the reader to [1, 7, 18–21, 24] and some references therein.

The next results establish a uniqueness property for the minimizers:

Theorem 1.3. Assume that V ∈ C1(RN), with inf
RN

V > 0 and it is radial. Let vε be a minimizer

for

ε2s‖u‖2
Ds,2 +

∫
RN V (x) u2(x) dx

‖u‖2
Lp+1

in the class of radial competitors u ∈ Hs , u �= 0. Then vε is unique, provided that ε is small
enough.

Corollary 1.4. Assume that V ∈ C1(RN), with inf
RN

V > 0 and it is radial and radially

decreasing. Let vε be a minimizer for νε(V ). Then vε is unique, provided that ε is small
enough.

The rest of the paper is organized as follows. In section 2 we study the concentration
phenomena at given points of the space and we prove theorem 1.1. The proof of theorem 1.2
requires some preliminary work that is carried out in section 3. In particular, we obtain there
an expansion of the minimizers of ν(Vε) as the perturbation of a suitable translation of the
ground state (for this, no condition on the concentration point is required).

The proof of theorem 1.2 is then completed in section 4. Then, section 5 contains the
preliminaries needed for the proof of theorem 1.3, which, in turn, will be completed in section 7.
The proof of corollary 1.4 is contained in section 8.

2. Concentrations occurring at critical points of V and proof of theorem 1.1

In this section, we prove theorem 1.1. We define

vε(x) := uε(εx + x0).
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By construction, vε is a positive solution of

(−�)svε + V (εx + x0)vε − vp
ε = 0 in R

N. (2.1)

Roughly speaking, the idea is to take the derivative of (2.1), test it against vε, integrate by parts
and hence send ε → 0, in order to see that ∇V (x0) = 0: but to do these steps, some uniform
regularity and decay estimates in ε are in order. To obtain these estimates, we define

mε := max
RN

vε = ‖uε‖L∞ .

We claim that

m := sup
ε∈(0,1)

mε < +∞. (2.2)

The proof is based on a classical contradiction and scaling arguments. Namely, suppose that

mε → +∞, (2.3)

up to a subsequence. Now we recall (1.4) and we use (1.7) with

δ := min

1,

(
V̄

2

) 1
p−1

 .

Accordingly, we obtain that there exists R1 > 0 for which

uε(x) � min

1,

(
V̄

2

) 1
p−1

 for any y ∈ R
N such that |y − x0| � εR1, (2.4)

as long as ε is small enough. Now we notice that if x ∈ R
N \B(0, R1) then |(εx + x0)− x0| �

εR1: hence (2.4) implies that

vε(x) � min

1,

(
V̄

2

) 1
p−1

 for any x ∈ R
N \ B(0, R1). (2.5)

From (2.3) and (2.5), we conclude that, for small ε,

1 < mε = max
B(0,R1)

vε,

and there exists

xε ∈ B(0, R1) (2.6)

maximizing vε, that is

mε = max
RN

vε = vε(xε).

So, we set µε := m
1−p

2s
ε and wε(x) := m−1

ε vε(xε + εµεx). Then ‖wε‖L∞ = 1 = wε(0) and

(−�)swε(x) = − µ2s
ε V (ε(xε + εµε)) wε(x) + wp

ε (x). (2.7)

Notice that µε → 0 as ε → 0, thanks to (2.3). Therefore, by (2.7), we have that ‖(−�)swε‖L∞

is bounded uniformly in ε. As a consequence of this and of the regularity results (see e.g.
lemma 4.4 in [3], see also [23]), we deduce that ‖wε‖C2,α is bounded uniformly in ε, for
some α ∈ (0, 1). Hence, we can suppose that wε converges to some function w0 in C

2,α
loc , with

‖w0‖L∞ = 1 = w0(0). (2.8)

By passing to the limit in (2.7), we obtain that

(−�)sw0 = w
p

0 in R
N. (2.9)
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Since the only non-negative and bounded solution of (2.9) with p subcritical (according to (1.3))
is the one constantly equal to zero (see remark 1.2 in [17] or theorem 1.3 in [13]), we conclude
that w0 vanishes identically, in contradiction with (2.8).

This completes the proof of (2.2). As a consequence of (2.1), (2.2) and of the regularity
results (see e.g. lemma 4.4 in [3]), we conclude that

‖vε‖C2,α is bounded uniformly in ε, (2.10)

hence we may suppose that

vε converges to some function v0 in C
2,α
loc . (2.11)

Now, since xε maximizes vε, we have that

2vε(xε) − vε(xε + y) − vε(xε − y) � 0 for any y ∈ R
N,

and so, using (1.6) and (2.1),

0 � (−�)svε(xε) = vp
ε (xε) − V (εxε + x0)vε(xε).

Accordingly,

V (εxε + x0) � vp−1
ε (xε). (2.12)

Since |xε| is bounded uniformly in ε, in light of (2.6), we suppose, up to a subsequence,
that xε → x̄, for some x̄ ∈ B(0, R1), as ε → 0. Thus, by taking the limit as ε → 0 in (2.12),
we obtain that

0 < V̄ � V (x0) � v
p−1
0 (x̄).

In particular,

v0 is not identically zero. (2.13)

Next we claim that there exists ε0 > 0 such that

vε(x) � Const

1 + |x|N+2s
∀ε ∈ (0, ε0). (2.14)

To prove this, we use lemma 4.2 of [14], according to which there exists a function w̄ such
that

0 � w̄(x) � Const

1 + |x|N+2s
(2.15)

and

(−�)sw̄ +
V̄

2
w � 0 in R

N \ B(0, R̃), (2.16)

for a suitable R̃ > 0. Now, we take

R2 := min{R1, R̃}, (2.17)

where R1 is the one in (2.5). Thanks to (1.7), we have that vε converges to zero as |x| → ∞
uniformly with respect to ε. From (2.5), we obtain

(−�)svε +
V̄

2
vε = (−�)svε + V vε −

(
V − V̄

2

)
vε (2.18)

= vp
ε −

(
V − V̄

2

)
vε � vp

ε − V̄

2
vε = vε

(
vp−1

ε − V̄

2

)
� 0.

Now we set

b := inf
B(0,R2)

w̄ > 0 (2.19)
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and

zε := (m + 1)w̄ − bvε, (2.20)

where m is given in (2.2). Our goal is to show that

zε � 0 in R
N. (2.21)

For this we argue by contradiction and suppose that

0 > inf
RN

zε = lim
j→+∞

zε(xj,ε), (2.22)

for a suitable sequence xj,ε. Notice that

lim
|x|→+∞

w̄(x) = 0,

due to (2.15), and

lim
|x|→+∞

uε(x) = 0,

due to our integrability and continuity assumptions on uε, and therefore

lim
|x|→+∞

vε(x) = 0,

and so

lim
|x|→+∞

zε(x) = 0.

Consequently, the sequence xj,ε is bounded and therefore, up to subsequence, we suppose
that xj,ε → x�,ε as j → +∞, for some x�,ε ∈ R

N . So (2.22) becomes

0 > min
RN

zε = zε(x�,ε). (2.23)

The minimality property of x�,ε and (1.6) give that

(−�)szε(x�,ε) = c(N, s)

∫
RN

2zε(x�,ε) − zε(x�,ε + y) − zε(x�,ε − y)

|y|n+2s
dy � 0. (2.24)

Now notice that, by (2.2) and (2.19),

zε � mb + w̄ − bm > 0 in B(0, R2).

Comparing this with (2.23), we see that

x�,ε ∈ R
N \ B(0, R2). (2.25)

Moreover, from (2.16), (2.17) and (2.18), we obtain that

(−�)szε +
V̄

2
zε � 0 in R

N \ B(0, R2). (2.26)

Thanks to (2.25), we can evaluate (2.26) at the point x�,ε: in this way, and recalling (2.23)
and (2.24), we obtain that

0 � (−�)szε(x�,ε) +
V̄

2
zε(x�,ε) < 0.

This is a contradiction, so (2.21) is established.
From (2.21), we deduce that vε � (m + 1)b−1w̄, which, together with (2.15), completes

the proof of (2.14).
Using (2.11) and (2.14) and the dominated convergence theorem, we see that

lim
ε→0

∫
RN

∂iV (εx + x0)v
2
ε = ∂iV (x0)

∫
RN

v2
0, (2.27)

for any i ∈ {1, . . . , N}.
1943
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Now we show that

|∇vε| ∈ L2. (2.28)

For this, we write (2.1) as

(−�)svε = −V (εx + x0) vε + vp
ε =: ψε. (2.29)

We know from (2.14) that

ψε(x) � Const

1 + |x|N+2s
.

Thus, we take the fundamental solution � of the operator in (2.29) and we obtain that

vε(x) = Const
∫

RN

ψε(y)

|x − y|N−2s
dy.

Therefore

|∇vε(x)| � Const
∫

RN

|ψε(y)|
|x − y|N−2s+1

dy �
∫

RN

Const

(1 + |y|N+2s) |x − y|N−2s+1
dy.

So, fixing x ∈ R
N \ B(0, 2), we observe that∫
B(x,1)

|ψε(y)|
|x − y|N−2s+1

dy � Const

|x|N+2s

∫
B(0,1)

1

|ξ |N−2s+1
dξ � Const

|x|N+2s
,

therefore we obtain that

|∇vε(x)| � Const

[∫
RN \B(x,1)

1

(1 + |y|N+2s) |x − y|N−2s+1
dy +

1

|x|N+2s

]
� Const

[∫
RN \B(x,1)

1

(1 + |y|N+2s) (1 + |x − y|N−2s+1)
dy +

1

|x|N+2s

]
.

Accordingly, by the properties of the convolution of decaying kernels (see e.g. lemma 5.1
in [8]), we obtain that

|∇vε(x)| � Const

|x|κ , (2.30)

with κ := min{N + 2s, N − 2s + 1}. Notice that

2κ = min{2N + 4s, N + N − 4s + 2} > min{2N, 2s + N − 4s + 2} > N,

hence (2.30) implies (2.28), as desired.
Now we perform some calculations on integrals that involve vε. For this, we let ei be the

ith vector of the standard Euclidean base, we fix R > 1 and we use the divergence theorem to
see that, for any i ∈ {1, . . . , N},∫

B(0,R)

∂iv
p+1
ε =

∫
B(0,R)

div(vp+1
ε ei) =

∫
∂B(0,R)

vp+1
ε

xi

R
.

Thus, from (2.14), we have∫
B(0,R)

∂iv
p+1
ε = O(RN−1−(p+1)(N+2s)). (2.31)

Similarly,∫
B(0,R)

V (εx + x0)∂iv
2
ε =

∫
B(0,R)

[
div

(
V (εx + x0)v

2
ε ei

) − ε∂iV (εx + x0)v
2
ε

]
=

∫
∂B(0,R)

V (εx + x0)v
2
ε

xi

R
− ε

∫
B(0,R)

∂iV (εx + x0)v
2
ε

1944



Nonlinearity 28 (2015) 1937 M M Fall et al

which, together with (2.14), gives that∫
B(0,R)

V (εx + x0)∂iv
2
ε = −ε

∫
B(0,R)

∂iV (εx + x0)v
2
ε + O(RN−1−2(N+2s)). (2.32)

We summarize the estimates in (2.31) and (2.32) by writing∫
B(0,R)

(
ε∂iV (εx + x0)v

2
ε +

1

2
V (εx + x0)∂iv

2
ε − p

p + 1
∂iv

p+1
ε

)
(2.33)

= ε

2

∫
B(0,R)

∂iV (εx + x0)v
2
ε + O(RN−1−2(N+2s)).

Now, we point out that (−�)svε is C2 and bounded, due to (1.4), (2.1), (2.2) and (2.10) (recall
also (1.4), therefore we can speak about ∂i(−�)svε in the classical sense. Accordingly, we
can take a derivative, say in the ith coordinate direction, of (2.1): we get

∂i(−�)svε + ε∂iV (εx + x0)vε + V (εx + x0)∂ivε − pvp−1
ε ∂ivε = 0. (2.34)

So, recalling (2.10), (2.14) and (2.28), we see that

∂i(−�)svε ∈ L2. (2.35)

Consequently, by Plancherel theorem, we obtain∫
RN

vε∂i(−�)svε =
∫

RN

v̂ε F(∂i(−�)svε) (2.36)

= −
∫

RN

ξi v̂ε F((−�)svε) = −
∫

RN

ξi |ξ |2s |v̂ε(ξ)|2

= −
∫

RN

ξi

∣∣F (
(−�)s/2vε

)∣∣2
.

We remark that

(−�)s/2vε ∈ L2. (2.37)

Indeed, since uε ∈ Hs (hence vε ∈ Hs), we have that∫
RN

|ξ |2s |v̂ε|2 �
∫

RN

(1 + |ξ |2s)|v̂ε|2 < +∞,

therefore F((−�)s/2vε) = |ξ |s v̂ε ∈ L2 and so (2.37) follows from the Plancherel theorem.
Also, for any g ∈ L2, we have that

the map ξ �→ |̂g(ξ)|2 is even. (2.38)

To check this, notice that

ĝ(ξ) =
∫

RN

g(x)e−ix·ξ dx =
∫

RN

g(x)eix·ξ dx = ĝ(−ξ)

and so

ĝ(−ξ) = ĝ(ξ).

As a consequence

|̂g(−ξ)|2 = ĝ(−ξ)ĝ(−ξ) = ĝ(ξ)ĝ(ξ) = |̂g(ξ)|2,
that proves (2.38).

So, from (2.37) and (2.38), we see that the map ξ �→ ξi |F((−�)s/2vε)|2 is odd, and
therefore ∫

B(0,R)

ξi

∣∣F (
(−�)s/2vε

)∣∣2 = 0
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for any R > 0. By plugging this into (2.36) and recalling (2.35) we obtain∫
RN

vε∂i(−�)svε = lim
R→+∞

∫
B(0,R)

vε∂i(−�)svε = 0. (2.39)

Now we go back to (2.34) and we multiply this equation by vε: in this way we obtain that

0 = vε∂i(−�)svε + ε∂iV (εx + x0)v
2
ε + V (εx + x0)vε∂ivε − pvp

ε ∂ivε

= vε∂i(−�)svε + ε∂iV (εx + x0)v
2
ε +

1

2
V (εx + x0)∂iv

2
ε − p

p + 1
∂iv

p+1
ε .

We fix R > 1 and we integrate the above equation on B(0, R): thus, exploiting (2.33) we
obtain ∫

B(0,R)

vε∂i(−�)svε +
ε

2

∫
B(0,R)

∂iV (εx + x0)v
2
ε = O(RN−1−2(N+2s)).

So, we send R → +∞, recalling also (2.39) and we divide by ε, we get∫
RN

∂iV (εx + x0)v
2
ε = 0.

Now we send ε → 0: recalling (2.27) we conclude that

∂iV (x0)

∫
RN

v2
0 = 0.

Therefore, by (2.13), we obtain that ∂iV (x0) = 0 for any i ∈ {1, . . . , N}, and this completes
the proof of theorem 1.1. �

3. Concentration points of ground-states: preliminary work for the proof of
theorem 1.2

In this section we discuss some basic concentration properties of the minimizers. For this,
we recall that for any λ > 0 there exists a unique function Uλ that attains the following
minimization problem

ν(λ) := inf
‖u‖

Lp+1 =1
‖u‖2

Ds,2 + λ‖u‖2
L2 .

In addition, such a minimizer is unique, radially symmetric, and belongs to C∞ ∩ H 2s+1(RN)

(we refer to [16] for further details on this, see in particular theorem 4 there). Thus, we will
denote by Ũ the radially symmetric function that attains

inf
‖u‖

Lp+1 =1
‖u‖2

Ds,2 + Ṽ ‖u‖2
L2 ,

where

Ṽ := inf
RN

V . (3.1)

With this notation, we provide an asymptotic expansion for the minimizers of ν(Vε). It is
worth pointing out that this expansion is valid without assuming any structural condition on
the potential V (in particular the point x0 ∈ R

N can be fixed, without assuming that is minimal
or critical):

Lemma 3.1. Let vε be a positive minimizer for ν(Vε), with ‖vε‖Lp+1 = 1. Then there exists a
sequence of points aε, c ∈ R

N such that, up to a subsequence,

vε(x + aε) = Ũ (x − c) + ωε(x),

with ‖ωε‖Hs → 0 as ε → 0.
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Also

lim
ε→0

ν(Vε) = ν(Ṽ )

and, for any x ∈ R
N ,

lim
ε→0

V (εx + εaε + x0) = Ṽ . (3.2)

Proof. We observe that

‖u‖2
ε,V ∈ [

V̄ ‖u‖2
L2 , ‖V ‖L∞‖u‖2

L2

]
thanks to (1.4), and therefore ν(Vε) is bounded (and bounded from zero) uniformly in ε. Hence,
up to a subsequence, we suppose that

ν(Vε) → ν̃ (3.3)

as ε → 0, for some ν̃ > 0.
Also, vε is bounded in Hs and, using lemma 2.2 in [14], we have that there exists aε ∈ R

N

and positive real numbers R and γ such that

lim inf
ε→0

∫
BR(aε)

vε(x) dx � γ. (3.4)

Thus, setting wε(x) = vε(x + aε), we have that wε is bounded in Hs so it converges, up to a
subsequence, to a function w ∈ Hs weakly in Hs , strongly in L

p+1
loc and a.e.; furthermore, by

(3.4), we have that w �= 0.
We also notice that, by (1.4) and the theorem of Ascoli, there exists λ : R

N → R such
that, up to a subsequence,

lim
ε→0

V (εx + εaε + x0) = λ(x). (3.5)

We set λ := λ(0) and we claim that

λ(x) = λ (3.6)

for any x ∈ R
N . Indeed, for any x ∈ R

N ,

|λ(x) − λ| = lim
ε→0

|V (εx + εaε + x0) − V (εaε + x0)|
� Const lim

ε→0
|εx| = 0,

thanks to (1.4), and this proves (3.6).
By (3.5) and (3.6), we can write

lim
ε→0

V (εx + εaε + x0) = λ. (3.7)

Since, by (2.1),

(−�)swε + V (εx + εaε + x0)wε = ν(Vε)w
p
ε ,

we can pass to the limit and obtain

(−�)sw + λw = ν̃wp. (3.8)

By testing (3.8) against w we obtain that

ν̃ = ‖w‖2
Ds,2 + λ ‖w‖2

L2

‖w‖2
Lp+1

� inf
u �=0

‖u‖2
Ds,2 + λ ‖u‖2

L2

‖u‖2
Lp+1

= ν(λ). (3.9)
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On the other hand, by the dominated convergence theorem, we see that, for any u ∈ C∞
c ,

lim
ε→0

∫
RN

|V (εx + εaε + x0) − λ| u2(x) dx = 0.

As a consequence, for any u ∈ C∞
c , u �= 0, we set ũε(x) := u(x − aε) and we observe that

ν̃ = lim
ε→0

ν(Vε)

�
‖u‖2

Ds,2 + ‖u‖2
ε,V

‖u‖2
Lp+1

= lim
ε→0

‖ũε‖2
Ds,2 +

∫
RN V (εx + x0) ũ2

ε(x) dx

‖ũε‖2
Lp+1

= lim
ε→0

‖u‖2
Ds,2 +

∫
RN V (εx + x0) u2(x − aε) dx

‖u‖2
Lp+1

= lim
ε→0

‖u‖2
Ds,2 +

∫
RN V (εx + εaε + x0) u2(x) dx

‖u‖2
Lp+1

= ‖u‖2
Ds,2 + λ‖u‖2

L2

‖u‖2
Lp+1

.

By density, this is valid for any u ∈ Hs , and so, taking the infimum over u �= 0, we obtain
that ν̃ � ν(λ). This and (3.9) give that

ν̃ = ν(λ). (3.10)

This, (3.8) and the uniqueness of the ground state (see theorem 4 in [16]) give that w is a
translation of Uλ, namely w(x) = Uλ(x − c), for some c ∈ R

N .
Now we claim that

λ = Ṽ (3.11)

To prove this, let us fix q ∈ R
N . Then, for any u ∈ C∞

c , we set uε(x) := u(x + ε−1(x0 − q))

and we use the change of variable y := x + ε−1(q − x0) to obtain that

‖u‖2
Ds,2 +

∫
RN V (εx + q) u2(x) dx

‖u‖2
Lp+1

= ‖u‖2
Ds,2 +

∫
RN V (εy + x0) u2(y + ε−1(x0 − q)) dy

‖u‖2
Lp+1

= ‖uε‖2
Ds,2 +

∫
RN V (εy + x0) u2

ε(y) dy

‖uε‖2
Lp+1

= ‖uε‖2
ε,V

‖uε‖2
Lp+1

� ν(Vε).

So, by (3.3), (3.10) and the dominated convergence theorem, we obtain

‖u‖2
Ds,2 + V (q)‖u‖2

L2

‖u‖2
Lp+1

= lim
ε→0

‖u‖2
Ds,2 +

∫
RN V (εx + q) u2(x) dx

‖u‖2
Lp+1

� lim
ε→0

ν(Vε) = ν̃ = ν(λ) = ‖Uλ‖2
Ds,2 + λ‖Uλ‖2

L2

‖Uλ‖2
Lp+1

.
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This is valid for any u ∈ C∞
c and so, by density, also for Uλ. Thus, we conclude that

‖Uλ‖2
Ds,2 + V (q)‖Uλ‖2

L2

‖Uλ‖2
Lp+1

�
‖Uλ‖2

Ds,2 + λ‖Uλ‖2
L2

‖Uλ‖2
Lp+1

and therefore

V (q) � λ.

Now, this is valid for any q ∈ R
N , thus, recalling (3.1), we obtain that

Ṽ = inf
q∈RN

V (q) � λ.

The other inequality follows from (3.7), and so the proof of (3.11) is complete.
Then, (3.11) and the definition of Ũ give that Uλ = Ũ . Accordingly,

vε(x + aε) = wε(x) → w(x) = Uλ(x − c) = Ũ (x − c)

weakly in Hs , strongly in L
p+1
loc and a.e., so to complete the proof of lemma 3.1 it only remains

to show that the convergence occurs strongly in Hs . To see this, we use the fact that w is a
minimizer for the quotient ν(Ṽ ) = ν(λ) = ν̃, hence

ν̃ = ‖w‖2
Ds,2 + λ‖w‖2

L2

‖w‖2
Lp+1

. (3.12)

On the other hand, by testing (3.8) against w, we obtain that

‖w‖2
Ds,2 + λ‖w‖2

L2 = ν̃ ‖w‖p+1
Lp+1 .

By comparing this with (3.12), we conclude that ‖w‖Lp+1 = 1. Therefore

‖wε‖2
Ds,2 + λ‖wε‖2

L2 = ‖vε‖2
Ds,2 + λ‖vε‖2

L2

= ‖vε‖2
Ds,2 + λ‖vε‖2

ε,V +
∫

RN

(λ − V (εx + x0)) vε(x) dx

= ν(Vε) +
∫

RN

(λ − V (εx + x0)) vε(x) dx.

Moreover, by (3.1) and (3.11),

λ = inf
RN

V � V (εx + x0),

thus we obtain that

‖wε‖2
Ds,2 + λ‖wε‖2

L2 � ν(Vε).

So, from the weak convergence and Fatou lemma, passing to the limit we obtain that

ν̃ = ‖w‖2
Ds,2 + λ‖w‖2

L2 � lim inf
ε→0

‖wε‖2
Ds,2 + λ‖wε‖2

L2

� lim sup
ε→0

‖wε‖2
Ds,2 + λ‖wε‖2

L2 � lim sup
ε→0

ν(Vε) = ν̃.

This gives that

lim
ε→0

‖wε‖2
Ds,2 + λ‖wε‖2

L2 = ‖w‖2
Ds,2 + λ‖w‖2

L2 .

By making use of this and of the weak convergence of wε, we infer that wε → w in the Hilbert

norm
√

‖ · ‖2
Ds,2 + λ‖ · ‖2

L2 .
Since this norm is equivalent to the one in Hs , we have proved that wε → w in Hs . �
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4. Completion of the proof of theorem 1.2

Now we finish the proof of theorem 1.2. For this, we suppose that V has a unique global
minimum point at x0. Let uε be a minimizer for νε(V ). Then vε(x) := uε(x0 + εx) is a
minimizer for ν(Vε). By lemma 3.1, there are points aε, c ∈ R

N such that, up to a subsequence,

wε(x) := vε(x + aε) = Ũ (x − c) + ωε(x),

where ‖ωε‖Hs → 0, the function Ũ is a minimizer for ν(Ṽ ), and, comparing (3.1) and (3.2),
we have that

lim
ε→0

V (εaε + x0) = Ṽ = min
x∈RN

V (x) = V (x0). (4.1)

Now we prove that

lim
ε→0

εaε = 0. (4.2)

Suppose not, say |εaε| � a0 for some a0 > 0 and an infinitesimal sequence of ε’s. Then |εaε|
remains bounded, otherwise, by (1.10), the limit in (4.1) would be strictly larger than V (x0).

Accordingly, there exists an infinitesimal sequence of ε’s for which εaε → α, for
some α ∈ R

N with |α| � a0 > 0. From this and (4.1), we obtain that

V (x0) = lim
ε→0

V (εaε + x0) = V (α + x0).

This contradicts the uniqueness of the minimal point for V , and so it proves (4.2).
Now we claim that

sup
ε

∫
|x|�R

wr
ε dx → 0 as R → ∞, (4.3)

with8 r := 2N
N−2s

. To see this, we can assume by contradiction that there exists δ positive and
a sequence of Rn → ∞ such that

sup
ε

∫
|x|�Rn

wr
ε dx � δ as n → ∞,

This implies that for a sequence of εn → 0, we have∫
|x|�Rn

wr
εn

dx � δ as n → ∞.

Because wεn
converges strongly in Lr , we have (see e.g. [2, theorem 4.9]) that there exists

h ∈ Lr and a subsequence, still denoted by εn such that wεn
� h a.e. in R

N . But then

0 < δ �
∫

|x|�Rn

wr
εn

dx �
∫

|x|�Rn

hr dx → 0 as n → ∞.

This leads to a contradiction. We thus have proved (4.3).
Next we observe that (−�)swε − ν(Ṽε)w

p−1
ε wε � 0 in R

N . Since w
p−1
ε ∈ L

q

loc for some
q > N

2s
, we deduce from [17, proposition 2.6] that for any compact set K , we have

max
K

wε � C

∫
K

wr
ε dx,

where r is as above. We therefore conclude from (4.3) that

sup
ε

wε(x) → 0 as |x| → ∞.

8 If N � 2s, the above definition of r can be replaced by just fixing r ∈ (1, +∞).
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This together with lemma C.2 in [16] also imply that

wε(x) � Const

1 + |x|N+2s
. (4.4)

By scaling back, we obtain

uε(x) = vε

(
x − x0

ε

)
= wε

(
x − x0 − εaε

ε

)
� Const εN+2s

εN+2s + |x − x0 − εaε|N+2s
. (4.5)

It is then clear that uε concentrates at x0 in the sense of (1.9).
Now, to prove the last statement of the theorem (uε has a unique global maximum point),

we observe that uε ∈ C
2,α
loc and by (4.5), we have lim

|x|→∞
uε(x) = 0 for every fixed and positive

ε. We can therefore let u(xε) = max
RN

uε. Then (−�)suε(xε) � 0 and thus from (1.2) (recalling

(1.4)), we deduce that

u(xε) �
(

V̄

ν(V )

) 1
p−1

=: C0.

Hence, by (4.5), we get

C0 � Const εN+2s

εN+2s + |xε − x0 − εaε|N+2s

so that

|xε − x0 − εaε| � C1ε. (4.6)

From this we conclude, provided |x − xε| � εR � 2εC1, that

uε(x) � Const

1 + R − C1
� Const

1 + R/2
and this completes the proof of concentration of uε at x0.

We now prove the uniqueness of xε. Indeed, we observe that

(−�)sωε = (−�)swε − (−�)sŨ(· − c) = V (εx + εaε + x0)[Ũ (· − c) − wε]

+[V (x0) − V (εx + εaε + x0)]Ũ (· − c)

+[ν(Vε) − ν(V (x0))]w
p
ε + ν(V (x0))[w

p
ε − Ũp(· − c)].

We rewrite this as

(−�)sωε + βε(x)ωε = [V (x0) − V (εx + εaε + x0)]Ũ (· − c) + [ν(Vε) − ν(V (x0))]w
p
ε ,

where we have set

βε(x) = V (εx + εaε + x0) − ν(V (x0))[w
p
ε − Ũp(· − c)]

wε − Ũ (· − c)
.

By (4.4), we have |wp
ε −Ũp(·−c)| � C|wε−Ũ (·−c)| and thus |βε(x)| � Const.. Applying [17,

proposition 2.6], we deduce that ωε → 0 in C
0,α
loc (RN) for some α ∈ (0, 1). Now by a bootstrap

argument and using proposition 2.1.8 in [23], we conclude that ωε = wε − Ũ (· − c) → 0 in
C

2,α
loc (RN) for some α ∈ (0, 1).

We now set w̄ε(x) = wε(x + x̄ε) with x̄ε = xε−x0−εaε

ε
. We notice that 0 is the global

maximum point of w̄ε and so we have

0 = ∇w̄ε(0) = ∇Ũ (x̄ε − c) + ∇ωε(x̄ε).

Recalling that Ũ is symmetric decreasing with respect to the origin, that has a unique critical
point and also ωε → 0 ∈ C

2,α
loc (RN). Therefore, from (4.6) we deduce that

|x̄ε − c| → 0.
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It is clear that any other global maximum point of w̄ε must stay in the neighborhood of c. We
then observe that

w̄ε(x) = Ũ (x) + ω̄ε(x),

where ω̄ε(x) = [Ũ (x+x̄ε−c)−Ũ (x)]+ωε(x). Since Ũ ∈ C∞(RN), we obtain ω̄ε → 0 ∈ C
2,α
loc .

Now using lemma 4.2 in [19], we conclude that the only critical point for w̄ε is the origin. �

Remark 4.1. We remark that from the above proof, the minimizers uε for νε(V ) have the
following precise form:

uε(εx + xε) = Ũ (x) + ω̄ε(x),

where ω̄ε → 0 in Hs(RN) ∩ C
2,α
loc (RN) ∩ L∞(RN) with xε the unique global maximizer for

uε and xε converges to x0, which is the global minimum point for V . Also Ũ is the unique
minimizer for ν(V (x0)).

5. Non-degeneracy and uniqueness: preliminaries for the proof of theorem 1.3

Now we will deal with the functional

Jε(u, ν(Vε)) := 1

2
‖u‖2

ε − ν(Vε)

p + 1

∫
RN

|u|p+1 dx (5.1)

and we will consider the scalar products that induce the norms of the fractional spaces used in
this paper, namely we set

〈u, v〉Ds,2 :=
∫

RN

|ξ |2s û v̂ dξ,

〈u, v〉ε,V :=
∫

RN

V (εx + x0) u(x) v(x) dx,

and 〈u, v〉ε := 〈u, v〉Ds,2 + 〈u, v〉ε,V .

The Hilbert space associated with 〈·, ·〉ε will be denoted by Hs
ε and, as usual, we say that u ⊥ε v

whenever 〈u, v〉ε = 0. One simple, but important feature, is that the radially symmetric
minimizer U for ν(V0) is perpendicular in Hs

0 (that is Hs
ε with ε = 0) to its derivatives, and

the derivatives themselves are perpendicular to each other, according to the following result:

Lemma 5.1. For any i ∈ {1, . . . , N}, we have that

〈U, ∂iU〉0 = 0 (5.2)

and
∫

RN

Up∂iU = 0.

Moreover, for any i, j ∈ {1, . . . , N}, with i �= j , we have that∫
RN

Up−1 ∂iU ∂jU = 0 (5.3)

and

〈∂iU, ∂jU〉0 = 0. (5.4)

Proof. By construction

(−�)sU + V (0)U = Up (5.5)

and so, taking derivatives,

(−�)s(∂iU) + V (0)∂iU = pUp−1∂iU. (5.6)
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We multiply (5.5) by ∂iU and (5.6) by U and integrate: we obtain, respectively,

〈U, ∂iU〉0 =
∫

RN

Up ∂iU and 〈U, ∂iU〉0 = p

∫
RN

Up ∂iU.

By comparing these two equations we obtain that

p

∫
RN

Up ∂iU =
∫

RN

Up ∂iU,

and so

〈U, ∂iU〉0 =
∫

RN

Up ∂iU = 0,

that proves (5.2).
Now we use the rotational invariance of U to write U(x) = Ū (|x|), for some Ū : R → R.

Then we have that ∂iU(x) = Ū ′(|x|) |x|−1 xi and so, by symmetry∫
RN

Up−1(x) ∂iU(x) ∂jU(x) dx =
∫

RN

Ūp−1(|x|) ∣∣Ū ′(|x|)∣∣2 |x|−2 xixj dx = 0.

This establishes (5.3). Then, formula (5.4) follows multiplying (5.6) by ∂jU and integrating
over R

N . �
Our next result is of the coercivity type. It is stronger than what we will need in the

following part of the paper; we expose it here because we believe that it might be of interest.
We also mention that in the rest of the paper, the regularity assumption can be relaxed to

V ∈ C1(RN).
Given the radially symmetric minimizer U for ν(V0) and a ∈ R

N , we define Ua(x) :=
U(x − a) and

Wε := {
v ∈ Hss.t. v ⊥ε Ua and v ⊥ε ∂jUa for any j = 1, . . . , N

}
. (5.7)

With this, we can bound the second derivative of Jε(Ua, νε) from below as follows:

Lemma 5.2. Let Jε be as in (5.1). There exists ε0 > 0 such that for any ε ∈ (0, ε0), for
any v ∈ Wε and for any a ∈ R

N

J ′′
ε (Ua, ν(Vε))[v, v] � Const ‖v‖2

ε.

The Const above does not depend on a.

Proof. Up to translations, we can suppose that x0 = 0. We consider χ ∈ C∞
c (RN, (0, 2))

such that χ = 1 in B1 and χ = 0 in R
N \ B2. Also we take R > 1, to be chosen suitably large

in the sequel. We define

χR(x) = χ
(
a +

x

R

)
,

χ̄R := 1 − χR,

v1 := χRv,

v2 := χ̄Rv,

and I1 :=
∫

R2N

χR(x) χ̄R(x) (v(x) − v(y))2

|x − y|N+2s
dx dy.

First we prove that

|〈v1, v2〉Ds,2 | � ηR(v), (5.8)

with ηR(v) not depending on ε and such that

lim
R→+∞

ηR(v) = 0, (5.9)
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for v fixed. To this goal, we compute

(v1(x) − v1(y)) (v2(x) − v2(y))

= (v(x)χR(x) − v(y)χR(y)) (v(x)χ̄R(x) − v(y)χ̄R(y))

= (v(x) (χR(x) − χR(y)) + χR(y) (v(x) − v(y)))

· (χ̄R(x) (v(x) − v(y)) + v(y) (χ̄R(x) − χ̄R(y)))

= (v(x) (χR(x) − χR(y)) + χR(y) (v(x) − v(y)))

· (χ̄R(x) (v(x) − v(y)) − v(y) (χR(x) − χR(y)))

= −v(x) v(y) (χR(x) − χR(y))2 + χR(x) χ̄R(x) (v(x) − v(y))2

+v(x) χ̄R(x) (v(x) − v(y)) (χR(x) − χR(y))

−v(y) χR(y) (v(x) − v(y)) (χR(x) − χR(y)) .

Therefore

|〈v1, v2〉Ds,2 | � I1 + Const (J1 + J2) (5.10)

with

J1 :=
∫

R2N

|v(x)| |v(y)| (χR(x) − χR(y))2 dµ(x, y), (5.11)

J2 :=
∫

R2N

|v(x)| |v(x) − v(y)| |χR(x) − χR(y)| dµ(x, y),

and dµ(x, y) := |x − y|−N−2s dx dy.

Now we observe that ‖∇χR‖L∞ � Const R−1, and so

|χR(x) − χR(y)| � Const min
{
1, R−1|x − y|} . (5.12)

Therefore, for any x ∈ R
N ,∫

Rn

|χR(x) − χR(y)|2
|x − y|N+2s

dy

� Const

[∫
B(0,R)

R−2 |x − y|2
|x − y|N+2s

dy +
∫

RN \B(0,R)

1

|x − y|N+2s
dy

]
= Const R−2s .

Using this and the Hölder inequality we obtain

J2 �
√∫

R2N

|v(x)|2 |χR(x) − χR(y)|2 dµ(x, y) ·
√∫

R2N

|v(x) − v(y)|2 dµ(x, y) (5.13)

�
√

Const R−2s

∫
RN

|v(x)|2 dx · ‖v‖Ds,2

� Const R−s ‖v‖L2 · ‖v‖Ds,2

� Const R−s ‖v‖2
ε.

Now we define

R
2N
R := {

(x, y) ∈ R
2N s.t. |x − y| < R

}
and V := {

(x, y) ∈ R
2N s.t. |v(x)| � |v(y)|} .
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By symmetry∫
R

2N
R

|v(x)| |v(y)| |x − y|2 dµ(x, y) � 2
∫

R
2N
R ∩V

|v(x)|2 |x − y|2 dµ(x, y) (5.14)

� 2
∫

RN

|v(x)|2
[∫

B(x,R)

|x − y|2−N−2s dy

]
dx � Const R2−2s

∫
RN

|v(x)|2 dx

= Const R2−2s ‖v‖2
L2 .

Similarly,∫
(R2N \R

2N
R )

|v(x)| |v(y)| dµ(x, y) � 2
∫

(R2N \R
2N
R )∩V

|v(x)|2 dµ(x, y)

� 2
∫

RN

|v(x)|2
[∫

RN \B(0,R)

|x − y|−N−2s dy

]
dx � Const R−2s

∫
RN

|v(x)|2 dx

= Const R−2s ‖v‖2
L2 .

We use the latter inequality together with (5.12) and (5.14) to conclude that

J1 � Const

[
R−2

∫
R

2N
R

|v(x)| |v(y)| |x − y|2 dµ(x, y) +
∫

R2N \R
2N
R

|v(x)| |v(y)| dµ(x, y)

]
� Const R−2s ‖v‖2

L2 .

Hence, by (5.10) and (5.13),∣∣〈v1, v2〉Ds,2

∣∣ � I1 + Const (R−2s + R−s)‖v‖2
ε. (5.15)

Now we estimate I1. For this we observe that the function χRχ̄R is supported in B(a, 2R) \
B(a, R), hence

I1 �
∫

(B(a,2R)\B(a,R))×RN

(v(x) − v(y))2

|x − y|N+2s
dx dy.

Since v is a fixed function of Hs , we have that

lim
R→+∞

∫
(B(a,2R)\B(a,R))×RN

(v(x) − v(y))2

|x − y|N+2s
dx dy = 0.

These considerations and (5.15) imply (5.8), as desired.
From (5.8), we obtain that

‖v‖2
Ds,2 = ‖v1 + v2‖2

Ds,2 = ‖v1‖2
Ds,2 + ‖v2‖2

Ds,2 + 2〈v1, v2〉Ds,2 (5.16)

� ‖v1‖Ds,2 + ‖v2‖Ds,2 + 2ηR(v).

Moreover

‖v‖2
ε,V = ‖v1‖2

ε,V + ‖v2‖2
ε,V +

∫
RN

V (εx) v1(x) v2(x) dx

� Const
(‖v1‖2

ε,V + ‖v2‖2
ε,V

)
.

This and (5.16) yield that

‖v‖2
ε � Const

(‖v1‖2
ε + ‖v2‖2

ε + ηR(v)
)
. (5.17)

On the other hand, v1v2 = χRχ̄Rv2, therefore v1v2 � 0 and it is supported in B(a, 2R) \
B(a, R). In this domain Ua is of the order R−(N+2s), therefore∫

RN

Up−1
a v1 v2 � Const R−(p−1)(N+2s)

∫
B(a,2R)\B(a,R)

|v|2 � Const R−(p−1)(N+2s) ‖v‖2
L2 .
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From this and (5.8) we infer that

J ′′
ε (Ua, ν(Vε))[v1, v2] = 〈v1, v2〉Ds,2 +

∫
RN

V (εx)v1v2 − pν(Vε)

∫
RN

Up−1
a v1v2 (5.18)

� − Const R−s ‖v‖2
ε + 0 − Const R−(p−1)(N+2s) ‖v‖2

L2

� − Const R−γ ‖v‖2
ε,

up to renaming constants, where γ := min{s, (p − 1)(N + 2s)} > 0 (here we have also used
lemma (3.1) to bound ν(Vε) uniformly in ε). Similarly, v2 is supported outside B(0, R), hence∫

RN

Up−1
a v2

2 � Const R−(p−1)(N+2s)

∫
RN

v2,

and therefore

J ′′
ε (Ua, ν(Vε))[v2, v2] = ‖v2‖2

ε − pν(Vε)

∫
RN

Up−1
a v2

2 � ‖v2‖2
ε − Const R−(p−1)(N+2s) ‖v‖2

L2 .

(5.19)

Next we estimate J ′′
ε (Ua, ν(Vε))[v1, v1]. To this goal, we project v1 along the space spanned

by Ua and its derivatives, i.e. we set

ψ := 1

‖Ua‖2
0

〈v1, Ua〉0Ua +
1

‖∂iUa‖2
0

〈v1, ∂iUa〉0∂iUa,

where the repeated indices convention is used, and w := v1 − ψ . Therefore

J ′′
ε (Ua, ν(Vε))[v1, v1] = J ′′

ε (Ua, ν(Vε))[w, w] + J ′′
ε (Ua, ν(Vε))[ψ, ψ]

+2J ′′
ε (Ua, ν(Vε))[w, ψ]. (5.20)

We observe that the norms ‖ · ‖0 and ‖ · ‖ε are comparable, thanks to (1.4). Therefore

|ψ | � ‖v1‖0

‖U‖0
Ua +

‖v1‖0

‖∂iUa‖0
|∂iUa| � Const ‖v1‖ε (Ua + |∂iUa|) , (5.21)

hence ∫
RN

(1 + |x|)ψ2 � Const ‖v1‖2
ε.

Using this, the fact that |V (εx) − V (0)| � Const ε |x|, and that v1 is supported in B(a, R),
we conclude that∫

RN

|V (εx) − V (0)|w2 (5.22)

=
∫

B(a,R)

|V (εx) − V (0)| v2
1 +

∫
RN

|V (εx) − V (0)| ψ2 − 2
∫

RN

|V (εx) − V (0)| v1ψ

� Const

[∫
B(a,R)

|V (εx) − V (0)| v2
1 +

∫
RN

|V (εx) − V (0)| ψ2

]
� Const ε (R + |a|) ‖v1‖2

ε.

Now we remark that w is orthogonal in Hs
0 (i.e. in Hs

ε with ε = 0) to any element of the
basis {Ua, ∂1Ua, . . . , ∂NUa}, thanks to lemma (5.1). Hence, from [16], we have that

J ′′
0 (Ua, ν0)[w, w] � Const ‖w‖2

0 � Const ‖w‖2
ε.
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As a consequence,

J ′′
ε (Ua, ν(Vε))[w, w] = J ′′

0 (Ua, ν(V0))[w, w]

+
∫

RN

[V (εx) − V (0)]w2 − p(ν(Vε) − ν(V0))

∫
RN

Up−1
a w2 (5.23)

� Const ‖w‖2
ε +

∫
RN

[V (εx) − V (0)]w2 − p(ν(Vε) − ν(V0))

∫
RN

Up−1w2

� Const ‖w‖2
ε − Const ε (R + |a|) ‖v1‖2

ε − Const |ν(Vε) − ν(V0)| ‖v1‖ε,

where both (5.22) and (5.21) were used in the last inequality.
Furthermore, since v ⊥ε Ua , we have

〈v1, Ua〉0 = 〈v1, Ua〉ε +
∫

RN

[V (0) − V (εx)]v1Ua

= 〈v, Ua〉ε − 〈v2, Ua〉ε +
∫

RN

[V (0) − V (εx)]v1Ua

= −〈v2, Ua〉ε +
∫

RN

[V (0) − V (εx)]v1Ua

= −〈v2, Ua〉Ds,2 −
∫

RN

V (εx)v2Ua +
∫

RN

[V (0) − V (εx)]v1Ua

= −
∫

RN

v2(−�)sUa −
∫

RN

V (εx)v2Ua +
∫

RN

[V (0) − V (εx)]v1Ua

= −
∫

RN

v2[−V (0)Ua + ν0U
p
a ] −

∫
RN

V (εx)v2Ua +
∫

RN

[V (0) − V (εx)]v1Ua

=
∫

RN

[V (0) − V (εx)]vUa − ν0

∫
RN

Up
a v2

thus, since v2 is supported outside B(a, R),∣∣〈v1, Ua〉0

∣∣ � Const
(
ε (R + |a|) ‖v‖L2 + R−(p−1)(N+2s)‖v‖L2

)
. (5.24)

In a similar way, since also v ⊥ε ∂iUa , we have that∣∣〈v1, ∂iUa〉0

∣∣ � Const
(
ε (R + |a|) ‖v‖L2 + R−(p−1)(N+2s)‖v‖L2

)
. (5.25)

We deduce from (5.24) and (5.25) that

‖ψ‖0 � Const
(∣∣〈v1, Ua〉0

∣∣ +
∣∣〈v1, ∂iUa〉0

∣∣)
� Const

(
ε(R + |a|) ‖v‖L2 + R−(p−1)(N+2s)‖v‖L2

)
and so, since the two norms are comparable,

‖ψ‖ε � Const
(
ε(R + |a|) ‖v‖L2 + R−(p−1)(N+2s)‖v‖L2

)
.

So, we use the fact that

2|〈v1, ψ〉ε| = 2|〈v1/2, 2ψ〉ε| � ‖v1‖ε

4
+ 4‖ψ‖ε

to conclude that

‖w‖2
ε = ‖v1‖2

ε + ‖ψ‖2
ε − 2〈v1, ψ〉ε

� 3

4
‖v1‖2

ε − Const (ε(R + |a|) + R−(p−1)(N+2s))2 ‖v‖2
L2 .

Exploiting this and (5.23) we obtain

J ′′
ε (Ua, ν(Vε))[w, w] � Const ‖v1‖2

ε − Const (ε(R + |a|) + R−(p−1)(N+2s))2 ‖v‖2
L2 (5.26)

− Const ε (R + |a|) ‖v1‖2
ε − Const |ν(Vε) − ν(V0)| ‖v1‖ε.
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Notice now that

J ′′
ε (Ua, ν(Vε))[v, v] = J ′′

ε (Ua, ν(Vε))[v1, v1] + J ′′
ε (Ua, ν(Vε))[v2, v2]

+2J ′′
ε (Ua, ν(Vε))[v1, v2].

Thus, by collecting (5.18), (5.19) and (5.26), we obtain

J ′′
ε (Ua, ν(Vε))[v, v] � Const (‖v1‖2

ε + ‖v2‖2
ε)

− Const (ε(R + |a|) + R−γ ) ‖v‖2
ε, − Const R−(p−1)(N+2s) ‖v‖2

L2

− Const ε (R + |a|) ‖v1‖2
ε − Const |ν(Vε) − ν(V0)| ‖v1‖ε

Now, recalling (5.17) and (5.9), and sending first ε → 0 and then R → +∞, we get the desired
result. �

6. Uniqueness of radial solutions

In this section we assume that V is radial and we consider the functional in (5.1). We denote by
Hs

r the subspace of Hs of radially symmetric function. We will make use of the minimizer U

for ν(V0), normalized with ‖U‖Lp+1 = 1, which is a solution of

〈U, v〉Ds,2 + V (0) 〈U, v〉L2 = ν(V0)

∫
RN

Up(x) v(x) dx, (6.1)

for every v ∈ Hs .
We also define Iε as the restriction of u �→ Jε(u, ν(Vε)) on Hs

r . Next, we define the
operator �ε : Hs

r → Hs
r by

�ε(ω) := I ′
ε (U + ω) . (6.2)

By (6.2), we mean: for all w ∈ Hs
r

〈�ε(ω), w〉 = I ′
ε (U + ω) [w]. (6.3)

Lemma 6.1. There exist δ, ε0 > 0 sufficiently small such that: for every ε ∈ (0, ε),
if �ε(w1) = �ε(w2) for some w1, w2 ∈ Hs

r with ‖w1‖ε + ‖w2‖ε � δ, then w1 = w2.

Proof. The proof is a consequence of lemma 5.2. The details go as follows. First we fix the
following notation: given f ∈ Hs

r , we define

cf := 〈f, U〉ε
‖U‖2

ε

and f̃ := f − cf U.

Notice that f̃ is radial, since so are f and U , and that 〈f̃ , U〉ε = 0. As a matter of fact,
since both f̃ and U are radial, a direct computation based on odd symmetry shows that
also 〈f̃ , ∂iU〉ε = 0, that is

f̃ ∈ Wε, (6.4)

according to the definition in (5.7).
Notice that f = f̃ + cf U . We also consider the reflection of f with respect to U , namely

f � := f̃ − cf U. (6.5)

Now we observe that

J ′′
0 (U, ν(V0))[U, v] = (1 − p) ν(V0)

∫
RN

Up(x) v(x) dx (6.6)
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for any v ∈ Hs
r . Indeed, for any v ∈ Hs ,

J ′′
0 (U, ν(V0))[U, v] = 〈U, v〉Ds,2 + V (0) 〈U, v〉L2 − pν(V0)

∫
RN

Up−1(x) U(x) v(x) dx

= (1 − p) ν(V0)

∫
RN

Up(x) v(x) dx,

thanks to (6.1), and this establishes (6.6).
Furthermore

J ′′
ε (U, ν(Vε))[U, v] − J ′′

0 (U, ν(V0))[U, v]

=
∫

RN

(V (εx) − V (0))U(x)v(x) dx − p(ν(Vε) − ν(V0))

∫
RN

Up(x) v(x) dx.

This, combined with (6.6) gives that

J ′′
ε (U, ν(Vε))[U, v] =

∫
RN

(V (εx) − V (0))U(x)v(x) dx − cε

∫
RN

Up(x) v(x) dx,

where

cε := −(1 − p) ν(V0) + p(ν(Vε) − ν(V0)).

Notice that cε → (p − 1) ν(V0) > 0 as ε → 0, due to lemma 3.1. In particular

J ′′
ε (U, ν(Vε))[U, U ] = ηε − cε,

with

ηε :=
∫

RN

(V (εx) − V (0))U 2(x) dx → 0,

as ε → 0, by dominated convergence theorem. We conclude that

J ′′
ε (U, ν(Vε))[U, U ] � −cε

2
(6.7)

for small ε. Now, for any v, w ∈ Hs
r , we set

Nε(v)[w] := �ε(v)[w] − �ε(0)[w] − 〈�′
ε(0)[v], w〉

= I ′
ε(U + v)[w] − I ′

ε(U)[w] − I ′′
ε (U)[v, w]

= ν(Vε)

(
−

∫
RN

|U + v|pw dx +
∫

RN

Upw dx + p

∫
RN

Up−1w dx

)
.

Referring to page 128 in [1], we obtain

‖Nε(v1) − Nε(v2)‖ � Const (‖v1‖ε + ‖v1‖p−1
ε + ‖v2‖ε + ‖v2‖p−1

ε )‖v1 − v2‖ε. (6.8)

Now we take w := w1 −w2 and we use the notation in (6.5) and the assumption that �ε(w1) =
�ε(w2) to compute:

0 = �ε(w1)[w
�] − �ε(w2)[w

�]

= Nε(w1)[w
�] + �ε(0)[w�] + 〈�′

ε(0)[w1], w�〉 − Nε(w2)[w
�] − �ε(0)[w�]

− 〈�′
ε(0)[w2], w�〉

= 〈�′
ε(0)[w1], w�〉 − 〈�′

ε(0)[w2], w�〉 + Nε(w1)[w
�] − Nε(w2)[w

�]

= J ′′
ε (U, ν(Vε))[w, w�] + Nε(w1)[w

�] − Nε(w2)[w
�].

Thus, we write w = w̃ + cwU and w� = w̃ − cwU , and we exploit (6.8) and (6.7), to see that

0 � J ′′
ε (U, ν(Vε))[w̃, w̃] − c2

wJ ′′
ε (U, ν(Vε))[U, U ] − Const δmin{1,p−1}‖w‖ε‖w�‖ε

� J ′′
ε (U, ν(Vε))[w̃, w̃] +

cεc
2
w

2
− Const δmin{1,p−1}‖w‖ε‖w�‖ε.
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Now, thanks to (6.4), we can make use of lemma 5.2 and write that J ′′
ε (U, ν(Vε))[w̃, w̃] �

Const ‖w̃‖2
ε . So we obtain that

0 � Const
(‖w̃‖2

ε + c2
w

) − Const δmin{1,p−1}‖w‖ε‖w�‖ε. (6.9)

Also, by (6.4),

‖w‖2
ε = ‖w̃‖2

ε + c2
w‖U‖2

ε + 2〈w̃, U〉ε = ‖w̃‖2
ε + c2

w‖U‖2
ε

and, similarly,

‖w�‖2
ε = ‖w̃‖2

ε + c2
w‖U‖2

ε.

In particular, ‖w‖2
ε � Const

(‖w̃‖2
ε + c2

w

)
and (6.9) becomes

0 � Const
(‖w̃‖2

ε + c2
w

) − Const δmin{1,p−1}‖w‖2
ε

�
(

Const − Const δmin{1,p−1}) ‖w‖2
ε,

which implies that ‖w‖ε = 0 if δ is small enough. �

7. Completeness of the proof of theorem 1.3

Now we complete the proof of theorem 1.3. For this, let vi
ε be a radial minimizer for ν(Vε) in

the class of radial competitors, with i = 1, 2. Then, by lemma 3.1, provided ε is sufficiently
small, we have

vi
ε(x) = U + wi

ε with ‖wε
i ‖ε → 0 as ε → 0.

It turns out that �ε(w
i
ε) = I ′

ε(v
i
ε) = 0, so we conclude that w1

ε = w2
ε , due to lemma 6.1. �

8. Completeness of the proof of Corollary 1.4

Since V is radial and radially decreasing, then using symmetric decreasing arguments, or the
moving plane argument, we have that vi

ε is radial. Then the result follows by theorem 1.3. �
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