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a b s t r a c t

When using Acoustic Emission (AE) technologies, tensile, compressive and shear stress/
strain tests can provide a detector for material deformation and dislocations. In this paper
improvements are made to standardise calibration techniques for AE against known
metrics such as force. AE signatures were evaluated from various calibration energy
sources based on the energy from the first harmonic (dominant energy band) [1,2].
The effects of AE against its calibration identity are investigated: where signals are
correlated to the average energy and distance of the detected phenomena. In addition,
extra tests are investigated in terms of the tensile tests and single grit tests characterising
different materials. Necessary translations to the time–frequency domain were necessary
when segregating salient features between different material properties. Continuing this
work the obtained AE is summarised and evaluated by a Neural Network (NN) regression
classification technique which identifies how far the malformation has progressed (in
terms of energy/force) during material transformation. Both genetic-fuzzy clustering and
tree rule based classifier techniques were used as the second and third classification
techniques respectively to verify the NN output giving a weighted three classifier system.
The work discussed in this paper looks at both distance and force relationships for various
prolonged Acoustic Emission stresses. Later such analysis was realised with different
classifier models and finally implemented into the Simulink simulations. Further inves-
tigations were made into classifier models for different material interactions in terms of
force and distance which add further dimension to this work with different materials
based simulation realisations.

Within the statistical analysis section there are two varying prolonged stress tests which
together offer the mechanical calibration system (automated solenoid and pencil break
calibration system). Taking such a mechanical system with the real-time simulations gives a
fully automated accurate AE calibration system to force and distance measurement phenomena.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

When machining aerospace alloys, there are a number of signal extraction technologies that can be used to identify the
onset of malfunction which promotes efficient machining for the duration of manufacture. A key point to note here is the
use of a calibration method that is both recorded and referenced to previous energy patterns. To ensure this process,
information is recorded and interpreted and if a condition of concern is identified this must be evaluated in terms of its
energy level and if further diagnosed as a concern, must then be acted on [3]. In contrast, AE is less established in industry
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than other signals such as force, accelerations, strain, temperature, torque and power which are all internationally recognised
standards where AE is not. This is difficult to do due to the nature of extraction where AE is sensitive to minute material
dislocations and such measurements can differ significantly due to daily environmental changes such a temperature, air
pressure and humidity to name a few. Such differences attribute to different signal time of flights, change of wave reflections,
differences in material mediums and lastly, the difference in the process of calibration. The method presented in this paper
ensures a correlation from known standardised phenomena to the less verified phenomena of AE.

Other sensors such as force are very useful for extracting workpiece deflection and even stiffness characteristics.
Moreover, AE and force sensors look at similar conditions within the machining environment with importance being placed
on the correct interpretation of the signal where different facets are extracted due to the different sampling frequencies used for the
different sensing technologies. This paper will discuss all the AE signal representations against known phenomena.

Distance and force correlate very well for AE calibration when analysing the rich summarised extracted time signal;
however to gain more useful information in terms of the material differences, a high bandwidth of AE frequency response
needs to be identified and recognised. With rich information in the form of frequency band intensity it is possible to
separate different material interactions exerting the same force at the same distance from the AE sensor(s). The method
presented in terms of signal processing for preparation to the classifier uses a rich summary extraction technique to
segregate time extracted signals in the form of the 5 highest peaks and the 5 lowest troughs and their associated time steps
to the next proceeding zero point in time. This summary data technique is carried out for every 100 points of extracted data
to give a 20 summary data points representation (5:1 compression ratio) which gives a rich summary of data (5 max, 5 min
and 5 related times from the respective min–max points to the next zero point in time). This gives useful information in
terms of both intensity and intensity to distance (hence the higher the frequency/amplitude components the closer the
phenomenon). Such a technique is considered powerful and computationally affordable. If however there is more than one
material being calibrated against then a more powerful technique is required which is more computationally demanding.
Such a technique is one that translates the time to the time–frequency representations (such as Short-time Fourier
transforms (STFT)) and segregates the different material interactions made by prolonged stress when applied to different
materials. For a generic classifier system correlating force and distance of different materials extra frequency components
from the STFT (5 max frequency peaks for that 100 points of time data) is added to the rich summary data information
giving an even richer representation. The 20 points windowed summarised data is taken across every 100 points of the raw
extracted AE signal and for the duration of average signal phenomena (1000 points of raw extracted AE signal).

The last section of the paper investigates intelligent models with Neural Network (NN) representations, Fuzzy clustering
and tree rules based classifiers providing verified model predictions for distance and force when an AE source is emitted
from prolonged stress. Further work in distinguishing signal phenomena for different materials is also discussed taking the
time series summary representation further.

The main investigation objectives of this paper are
�
 Characterise the force and distance phenomenon in horizontal SG scratch tests.

�
 Characterise force and distance phenomenon using a rich summary signal pre/processing technique.

�
 Characterise AE to force and distance phenomenon for pencil break calibration tests.

�
 Characterise AE to force phenomenon for tensile tests.

�
 Characterise AE to force phenomenon for different material tests.

�
 Characterise and analyse AE in terms of statistical measurements for possible calibration technique: SG, pencil break and

tensile tests.

�
 Characterise and analyse AE in terms of statistical measurements for possible calibration technique: varying intensities

for pencil break and solenoid prolonged stress measurements.

�
 Verify signals with Dual AE sensors set equal distances apart and from sensor delay determine the position of the scratch

interaction.

�
 Classify force and distance data using NN technique.

�
 Verify the classification process using training, test and verification data using fuzzy clustering and tree rule based classifiers.

�
 Produce AE to force and distance simulation displaying changing energy patterns as the prolonged stress changes in

intensity (all the above objectives displayed within the proposed simulation).

�
 Produce AE to material distinction simulation displaying changing energy patterns from the same prolonged stress

against different material mediums.

The remainder of this paper is organised as follows: Acoustic Emission technology (Section 2), Experimental Setup for AE
calibration tests (Section 3), Acoustic Emission Analysis and Results (Section 4), Classifier Technologies (Section 5), Classifier Results
(Section 6), AE Calibration Model Simulations (Section 7), Discussion of Results (Section 8) and Conclusions (Section 9).
2. Acoustic Emission technology

AE has been used for materials research in monitoring stresses from AE events emitted from crack initiation, structural
defects, measurements, and other material anomalies. From such work it was found that most materials emit sounds or stress
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waves as they are deformed; these sounds provide the very nature of plastic deformation under different intensities which
inherently give warning signals for impending failure of a material. A lot of work in the area of AE has been made on many
different materials from homogeneous/non-homogeneous metals/alloys to rocks and earth quake monitoring. The
sensitivity of such sensors is of paramount importance, for example, when applied to single grit tests where the AE
phenomenon is so minuet and localised it is difficult to detect and therefore there is a need for sensitivity. AE generated
from material under stress refers to the generation of transient elastic waves during the rapid release of energy from the
localised sources within a material. The difference between the AE technique and other non-destructive evaluation (NDE)
methods is that AE detects the activities inside the materials, while other NDE methods attempt to examine the internal
structures of the materials. Furthermore, AE only needs the input of one or more relatively small sensors fixed on the surface
of the structure or specimen under examination.

AE sensors use crystals or certain ceramic materials which generate a piezoelectric voltage when a mechanical stress is
applied. The deformation of the crystal is very small (0.1% of the original dimension). Such devices can be used to detect
emitted waves, the generation of high voltages, electronic frequency generation, microbalance, and ultra-fine focusing of
optical assemblies. When crystals are subjected to a change when being compressed, twisted or even distorted an electric
charge is emitted and which is proportional to change in pressure/force. In short, when a load is applied to the sensing
element, deformation of the crystal lattice exists which results in the generation of an electric charge [4,5].

In addition, bio-sensors and medical imaging (diagnostic ultrasound/medical ultrasonography) also use this technology
which is very precise in terms of measurement and output. For good confidence levels in using AE technology, exhaustive
tests are required to understand and define the limitations of operation.

The disadvantage of AE is that commercial AE systems can only estimate qualitatively how much damage is in the
material and approximately how long the components will last. So, other NDE methods are still needed to do more thorough
examinations and provide quantitative results (such as force and displacement sensors).

From tests carried out within this work there are noticeable oscillations and reflections of surface/material phenomenon
apparent within the returned AE signal. Such oscillations are due to the size and thickness of the material, the level of
energy emitted from the elastic/plastic deformation machining process, the distance between sensor, material anomalies
and the material damping coefficient. Due to materials having different dimensions and characteristics there need to be
more work concerning the stability and reliability and this is why other sensors are used to verify the signal analysis.

The AE wave is described as a non-stationary stochastic signal and this is why a continual wave stream is required as the
short burst high frequencies can be missed with event driven methods.

AE sensor sensitivity is the ratio of pressure for each μbar from a given point of phenomenon and the open loop voltage caused
by the sound pressure (piezoelectric effect). The sensors can be calibrated for either pressure waves (V/μbar) or with transient
waves (V m/s) but they cannot be converted from each other once the calibration has been selected. The sensor has a maximum
displacement of approximately 200 pmwhich is extremely sensitive when compared with atomic radii (atomic force microscope)
with a range displacement of 150 pm. With these characteristics, AE is very useful for monitoring material processing.

2.1. Current work on AE calibration

AE is seeing more applications used in industry due to the possibilities to measure a change in minute phenomena;
however calibration methods for such developing technologies have not been accepted in terms of standardisation and
instead are only associated with best practices [6].

Hatano et al. [1] looked at pencil calibrations and various other calibration methods to investigate the AE elastic wave time/
velocity and phase behaviour. Their investigation looked at both transmitted and received signals. During experiments, the actual
test plate was measured in terms of its absolute dimensions and was considered flawless in terms of any possible machining
discontinuities. Reciprocity calibration has been used in underwater acoustics [1]; however both Raleigh and longitudinal waves
were measured from the AE event. The test pieces used in the work presented in this paper use the same dimensions for both
distance and force measurements during pencil calibrations. However, this was not possible for machining SG and tensile tests and
the method presented here looks at the recorded direct energy and correlated known phenomena in terms of distance and force.
This is also summarised in [1] where spurious waves do not make a huge significance to dominant waves (Raleigh and
longitudinal). In short, the AE elastic waves are located in terms of the dominant energy bands.

Yan et al. [2] discussed a calibration method to be used in connection with the primary sensor. This is where a
piezoelectric point source emitter and known material for the contact plate resulted in an accurate calibration method from
the initiation of an artificial AE source. This technique is limited to structures of a certain width and the material being used
for machining is required to be the same as the backing sensor plate. In addition, the self-calibration method discussed by
Yan et al. [2,7] is essentially a method to measure the coupling capacity of the AE sensor through the initiated back plate
artificial AE source. In short, a sensor monitoring another sensor in-situ where the first sensor initiates the artificial test
calibration pulse for second sensor to pick-up (both transmitted and received signals) similar to the work presented in [1,2].

Goding et al. [8] look at using k-means and self-organising maps (SOM) which are similar to fuzzy-neural classifiers in
segregating different mechanisms of material failure referenced to tensile tests and the recorded AE signals, where such AE
is reduced in terms of n-dimensionality to give the rise time, peaks and, the counts of threshold passes. Similar research is
reflected in this paper where a similar process is used; however the peaks and troughs time to the zero is considered a more
salient characteristic and is particularly useful for classification. This reduction technique coupled with the Short Time
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Fourier Transform (STFT) summarised information has not been seen in AE calibration literature before and has been found
to be a powerful method to promote segregation based on different signal characteristics.

3. Experimental setup for AE calibration tests

This paper obtains its results from a near noise free environment; however as previous research [9] has displayed with
the use of filters such signals obtained during harsh environments can be used against known calibrated signals and used
for monitoring the onset and the continuation of material failure. The work presented here uses a number of different
signals obtained during various experimental tests and the addition of calibration tests made during machining trials to
compare and use against. Current work in the arena of AE calibration is discussed.

The proposed work outlined in this paper is based on work discussed by Hatano [1] where intelligent correlation is made
from the signal input/output to the classifier which essentially is a three layer NN. Also, with more sensors present, the
dominant signals can be measured in terms of transmitting and receiving the amplitude, phase and velocity.

There were two experiments carried out for this work, the first consisted of pencil break tests to gain the time of flight (see
future sections for more information) and different intensities experienced at different sensor distances (see Fig. 3a and b for
experimental setup). The second looked at various AE emitted sources from prolonged stress with correlated force relationships
which consisted of three tests: SG tests (see Figs. 1 and 3 for setup and future sections for more information), pencil break
calibration tests and finally, the AE experienced during tensile tests of super aerospace alloys (see Fig. 2 for set-up information).

The other being distance which has proved to be accurate over short distances (1–200 mm) when comparing with
previous methods [10]. Therefore both experiments supply rich information for a calibration standard when measuring AE
sources. Both data collected from the two experiments is then reduced in terms of dimensionality (see section AE system
and tensile tests) and presented to two independent NN for expert classification. Such a regime would be combined for
production methods; however it was necessary to display the two facets of information. Figs. 1 and 2 display the set-up for
the three individual tests reference to the first experiment set: (1) SG, (2) pencil calibration. The SG experiments give micro-force
and AE relationships for micro-induced intensities which are below and approaching that of pencil calibrations and finally
tensile tests. Fig. 3a illustrates the distances for pencil calibration and force tests. The SG experiments were designed to gain
the relationship between AE and force (both low and high forces) where the distances were measured and recorded and
finally, for tensile tests, the two sensors were kept 10 mm apart.
Fig. 1. Pencil break and single grit experimental setup.

Fig. 2. Tensile tests for AE vs. force using both non/machined super alloy workpieces.
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The experiments information is tabulated in Table 1 as experiment numbers 1 and 2 and such experiments were
specifically looking for different intensities and force between two AE sensors (sensors 1 and 2) by changing the distance of
the pencil break calibration tests (Hit1, Hit2 and Hit3).

The data obtained by both experiments can be used for calibration conversion to the known standard. In addition other
measured phenomena such as the force experienced in tensile and SG tests are also considered. Essentially the classifier
gives a translation from AE to a known measurable phenomenon.

4. Acoustic Emission analysis and results

4.1. Acoustic Emission oscillation and time of flight

Acoustic energy waves occur naturally when matter vibrates at a frequency usually between 1 Hz and 600 kHz [11].
Acoustic energy can be described as sound which has a range between 20 Hz and 20 kHz and can be detected by the human
ear. Lower frequency acoustic energy has a long wavelength and takes a longer period of time to attenuate. The converse is



Table 1
Experimental setup information for time of flight pencil break calibration tests using dual AE sensors.

Experiment
number

Experiment fibre
break (hit) number

Sensor 1 distance
from break (mm)

Sensor 2 distance
from break (mm)

Experiment type

1 1 120 20 Comparison near/far
1 2 140 40 Comparison near/far
1 3 160 60 Comparison near/far
2 1 20 10 Near AE source
2 2 30 20 Near AE source
2 3 50 40 Near AE source
3 1 220 120 Far AE source
3 2 240 140 Far AE source
3 3 260 160 Far AE source
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true for higher frequency acoustic energy, where a shorter wavelength exists and therefore a shorter period of time to
attenuate. For instance, a low note played from a piano lasts much longer than high note.

The AE experienced from the applied stress of either grinding or SG scratch tests experiences damping which can be
quantified in terms of a material damping constant for the emitted AE energy. It can be noted that if the material [12] is
brittle in nature, the damping coefficient is much less than if the material is more ductile and thus experiences hardly any
oscillations. Following on, the signal amplitude and damped oscillations decrease steadily relative to the material
characteristics. Such oscillations add to the retrieved signal phenomenon thus suspending the propagation of dislocations
in time. The oscillations contain important material information and should be noted when correlating the physical material
characteristics with the extracted AE signal phenomenon. In addition to the material characteristics, the fixture and the grit
materials also play an important role in the AE material damping coefficient, where the stiffer the experimental set-up, the
less oscillations will be allowed to vibrate around the material medium [13,14].

To see the differences in time of flight for the AE to return from the crack position of the pencil break, an experiment was
set up as tabulated in Table 1reference experiment 3. This was to see the difference in rise of signal over the norm
(background noise with no AE emission). This would prove the subtle differences of the returning AE to the receiver
reference to the fracture of the pencil break. In addition, this experiment displays how sensitive the AE sensor was for the
experiments discussed in this paper [15].
4.2. Pencil calibration

In addition to SG tests, two specially designed tests look at the energy and distance relationship where pencil calibrations
were used for obtaining additional measurements. Every time machining would be carried out, a pencil calibration test
would be made ensuring the sensor is correlated to a specific noise level and operating normally based on previous
historical data. This test however would not normally be correlated to a distance or force measurement. This calibration
check ensures a fair and accurate comparison between the signals. The pencil break tests can suggest if the sensitivity has
been set too high or low and may saturate during machining. The proposal in this paper is for the user to take five
calibration measurements with an automatic pencil and with outliers ignored (based on possible variance spread) it would
be possible to automatically calibrate against known data stored in a Neural Network (NN) to gain both distance and force
relationships. Such known quantities can be stored in combination with the AE recorded data and used for monitoring
defects as well as legal requirements for condition/health monitoring.

The pencil break method is a manufacturing practice used for AE sensor calibration purposes. The simulated AE method
is known as the Hsu–Heilsen source (breaking of a high polymer graphite pencil lead to provide a localised AE burst [6])
which provides a broadband step-release transient wave. Important factors to take into consideration are the length of the
lead, lead diameter, lead hardness and angle of application between the lead and the surface of the workpiece, as these
factors affect the frequency and amplitude of the extracted signal [13].

The sensor is required to be clamped as close as possible to the phenomenon of interest. The closer the sensor: the less
time of flight, reverberations and signal reflections. The current best practices specify a 2H lead of 0.5 mm diameter, 3 mm
length should be used for the pencil calibration. Such a signal is displayed in Fig. 3. Fig. 3 shows a pencil break and force
extracted signal displaying the calibration between force and the AE emitted stress. The calibration was carried out at
10 mm away from the AE sensor.
4.3. Pencil calibration to recognise time of flight and distance

As shown in Fig. 6 the STFT image gives the energy intensities of the extracted AE source and predominately what one is
interested in, such signals are summarised in terms of richness with both peak and trough time to zero calculations.

This section looks at pencil calibration tests and various AE source recordings. These specifically are based on varying
distances with two clamped AE sensor microphones (see Table 1 for details of set-up information). Fig. 4 displays a



Fig. 4. Pencil break time of flight/intensity experimental waveviewer results.
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waveviewer screen capture of three pencil calibration sources, at the various distances taken by a two sensor set-up as
displayed in Fig. 1 and information tabulated in Table 1.
4.4. Single grit tests

For the SG test [16] a piece of single grit (SG) was glued into a microscopic drilled hole of the specially designed steel
plate. The steel plate would then be fixed to the spindle and rotated at the same range of commercial grinding speeds. The
SG was fixed to the plate in a protruding fashion which would ensure the SG was the first object to make contact with the
workpiece when controlled within a micron of accuracy. The machine set-up also consisted of the AE and force sensors
being attached in a manner to ensure maximum signal extraction. For monitoring the force and AE, two computers were
synchronised by switch driven digital acquisition cards.

The scratch test was carried out by feeding a rotating Al2O3 grit towards a flat horizontally placed workpiece (see Fig. 1).
With a micron incremental grit stroke, a scratch groove will be formed on the surface of the flat sample. The average scratch
depth is about 1 μm, which is a typical value of grinding chip in high efficiency grinding. During a single scratch action the
AE feature frequency bands/intensities change with respect to time significant of different applied forces. In short, the
mechanical AE propagation should be considered in both time and frequency features.

An AE data acquisition system where two Physical Acoustics WD AE sensors were used both identical and with a
frequency response range of 80 kHz–1 MHz. The two sensors were set-up equal distances apart (see Fig. 1 for set-up
configuration). The sampling rate was set to 5 MHz to ensure no aliasing occurred when the signal was reconstructed using
the Matlab Digital Signal Toolbox (DSP) and all the short burst high frequency information was obtained.

Fig. 5 displays the raw extracted time AE signal (TOP) followed by its STFT representation (middle) and the Photomap 3D
measurement image (bottom). Looking at the figure, the phenomena displayed by the STFT/time representations of AE hit
correlate to a measured cut length of 401 mm (SG scratch length for the contact phenomena). The interaction between grit
and workpiece takes 14 ms which is calculated from the following equation:

vg ¼
πD RPM�vw

60
ð1Þ

where vg is the grain cut through speed, wheel rotational speed in RPM is 4000 RPM, the diameter D of the steel wheel on
which the grit is glued upon is 138 mm and the test piece feed speed vw is 4000 mm/min. The calculation of vg gives a very
fast peripheral grain cut through speed of 28,836 mm/s. Such tests were carried out to see the effects of the relationship
between AE and force.

Pencil break tests [4] also displayed a large response time to what can only be described as a microsecond fracture. Fig. 5
displays the STFT of the SG tests which is significant when displaying the energy intensities against that of the known force
phenomenon (including the material interaction).
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The aforementioned experiments were carried out to give different correlations between AE and force for changing
phenomena. This builds the gap between pencil calibrations and tensile tests in promoting more data for regression
purposes in classification.

4.5. Tensile tests

Figs. 6 and 7 display the AE time and STFT representations of the tensile test experiment using aerospace super alloy test
pieces (similar in nature to Inconel 718). As shown in Fig. 8 the AE time source displays a relationship of 4 V to 4 μbar of
recorded shear pressure this relates to 0.7 mm of tensile movement and therefore 17.5 kN of force.

The STFT displayed in Fig. 7 displays the correlated energy intensities of emitted AE during the tensile tests of super
alloys. Here the energy has significant frequency bands at 300 and 800 kHz which are significant to mechanical stress and
heat changing properties [9,14].

The AE energy patterns within these tests were reduced in terms of n-dimensionality where the richness of data was
used for both classification and training data. The n-dimensional reduction technique is a computationally inexpensive
method where the first five highest peaks and the lowest troughs would be found along a specified window of raw extracted
signal length and each of those peaks/troughs would have its time taken from the peak to the next zero state. Such
information would be windowed along the raw time extracted signal. For every 100 points along an average signal length of
a 1000 points extracted signal equates to 20 points of summary windowed information. Therefore for every window of



0 0.5 1 1.5
x 10-3

-5

0

5
AE sensor 1 tensile break signal

Time (s)
A

E
 A

m
pl

itu
de

 (V
)

0 0.5 1 1.5
x 10-3

-5

0

5
AE sensor 2 tensile break signal

Time (s)

A
E

 A
m

pl
itu

de
 (V

)

4ubar

4ubar
AE Scale
1V/ubar

AE Scale
1V/ubar

Tensile output:
0.7V/0.7mm/17.5 KN
Max: 10V/10mm/250KN

Tensile output:
0.7V/0.7mm/17.5 KN
Max: 10V/10mm/250KN

Fig. 6. Tensile test AE signal at point of material failure.

Time (s)

Fr
eq

ue
nc

y 
(H

z)

AE sensor 1 STFT tensile break signal

2 4 6 8 10 12 14
x 10

-4

0

5

10
x 10

5

Time (s)

Fr
eq

ue
nc

y 
(H

z)

AE sensor 2 STFT tensile break signal

2 4 6 8 10 12 14
x 10

-4

0

5

10
x 10

5

-60
-40
-20
0
20

-60
-40
-20
0
20

Fig. 7. Tensile test AE STFT signal at point of material failure.

J. Griffin / Mechanical Systems and Signal Processing 50-51 (2015) 757–783 765
extracted 100 points, the 5 largest peaks and troughs would be found and recorded along with their respective time from
peak to the next proceeding zero state.

This technique was considered to be very useful as the results can easily be transferable to real time applications and at
the same time, give a rich summary account of the signal phenomenon. These tests would be weighted in terms of the mean
value for a given five samples. If outliers were found (based on variance of the extracted signals) they would be ignored and
the mean level amount being based on the signals within a set tolerance of variance. This mean oriented way of calibration
can then be checked against a database for both phenomena in terms of distance and force intensities. It was felt that the
techniques presented here are paving the way forward for an accepted method of calibration in AE. The database weights
would be changed accordingly with more verified data added at some later point in time.

4.6. Single grit material interaction tests

This section investigates SG material interactions where the same force and distance is exerted during tests. This
information provides another dimension to AE calibration techniques in that first distance and force measurements are
useful for a single material; however, if different materials are being calibrated against then the addition of another
classification technique is required. To separate the different material signals using time–frequency analysis through the use
of STFT allows the translation from the first method of using the rich summary time series information providing both the
time and frequency domains representation. Figs. 8 and 9 display different AE extracted signals and their respective
frequency–time domain STFT representations for different materials.
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Fig. 8. AE SG events for Inconel 718, CMSX4, EN8 and MARM-002 materials.
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Fig. 9. AE STFT for Inconel 718, CMSX4, EN8 and MARM-002 materials.
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Table 2
Aerospace material properties used in this work [18].

Property Inconel 718 CMSX4 EN8 Steel MARM-002

Composition (wt%) Mo: 3, Cr: 18, Ti: 0.9 Mo: 0.6, Cr: 7, Ti: 1, C: 0.36–0440, Mn: 0.6–0.1, Co: 8.25 Cr: 5.5 Ni: 59
Nb: 5.1, Fe: 18.3, Al: 5.6, Co: 10 S: o0.05, P: 0.04 W: 10, Ta: 3.0,

Ti: 1.0, Al: 5.5,
Ni: 53.7 Ni: 67, Re: 3, W: 6 Mo: 0.7, Fe: 0.5, B: 0.015

Density (kg/m3) 8193 8690 7800–8030 8267
Hardness (HV) 456 520 178 470
Tensile strength (MPa) 758–1407 1090 510–660 965
Yield strength (MPa¼N/mm2) 1150 1150 245–530 815
Yield strength (MPa¼N/mm2) 1150 990 245–530 815
Elastic modulus (GPa) 31 18.5 200 24.6
Elongation (%) 21–27 10–12 32.8 13–17
Melting point (1C) 1336 1395 950 1130
Poisson's ratio 0.284 0.273 0.29 0.295
Thermal conductivity (W/mk) 11.4–28.7 12–63 60.5 33.5
Special heat capacity (K/kg K) 430–700 381–544 437.2 450
Thermal diffusivity (�10-6 m2/s) 2.01–8.24 2.54–21 17.74 16
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As shown in Figs. 8 and 9 it can be seen that higher intensities at low frequency bands (100 kHz) are prominent for all the
materials tested with greater intensities for materials with greater levels of hardness (see Table 2). Looking at the mid
frequency signature bands of the material EN8 steel, this is the only material that does not have high intensities when
compared with other super alloy, nickel based materials. The nickel based super alloy materials have higher levels of
hardness than that of EN8 steel and therefore requires more energy to create material dislocations. Differences in material
compositions can be seen between all the materials as shown in Fig. 13; Inconel 718 had prominent bands at 250 and
400 kHz, CMSX4 had prominent bands between the 100, 200, 600 and 650 kHz, EN8 had prominent bands at 200 kHz and
finally, MARM-002 had prominent bands between 150, 525 and 575 kHz. These segregations of frequency bands give the
capability to classify different AE material signatures when faced with the same stimulated force at a specified constant
distance [17].
4.7. Acoustic Emission statistical tests

This section looks at statistical and regression analyses to verify the suitability of the various forms of AE when exerted to
different prolonged stresses. Due to the miniscule measurement difficulties with some tests, some test sets are small in
nature however still give an indication of general tendencies (pencil calibration and single grit tests with force). In addition,
it was difficult to make many tensile tests and therefore such data is small in nature but still gives a general indication of
possible spread. This section looks at various statistical tests for the following: pencil break tests (amplitude change with
respect to distance), solenoid hit tests (amplitude change with respect to distance), tensile tests (amplitude change
with respect to force), pencil break tests (amplitude change with respect to force) and single grit tests (amplitude change
with respect to force). The solenoid/pencil break distance tests follow the same setup as pencil break distance setup
described in Sections 4.1–4.3. Both tests combined give a good varying analysis of AE over distance. Combined further with
the AE to force tests gives a possible mechanical solution for an automated AE calibration technique.

Figs. 10 and 11 investigate the pencil break and solenoid amplitude tests with respect to changing distances (experiment
setup information tabulated in Table 3). Tables 4 and 5 give the statistical and regression measurements for both tests
respectively. Voltage amplitude instead of power decibel amplitude was considered more sensitive to change and therefore
communicated here (where the measurement conversion was set up to be 1 V per 1 mbar of pressure).

Looking at the data in Fig. 10 and Table 4 it can be seen that the general patterns signify that the amplitudes decrease as
the distance increases (see mean measurement in Table 4). In addition the standard deviation spread increases as the
distance increases; therefore it will be implied that as the distance significantly increases the measurements become more
variable and questionable. However the distances chosen in this work look at maximum distances with small variation
which are suitable for miniscule measurement.

The data presented in Fig. 11 and Table 5 reinforce the pencil break tests with respect to distance. Here two sets of
parallel tests were carried out to give more verification for a possible automated calibration method where a combined
pencil break and solenoid system can exist, in-situ within the sensor. The forces experienced with the clamped solenoid to
workpiece setup gave similar forces to pencil break calibration tests between 45 N and 50 N (see Fig. 15 for pencil break
calibration and force tests).

Again the solenoid tests give similar results to the distance pencil break tests where the amplitude deceases as the
distance increases. Giving similar verification the standard deviation spread is also noted as similar. For a proposed
automated calibration system there would be a lot less variability in a purpose built system and therefore an adapted
solenoid pencil break calibration system would give more improved results.
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Table 3
Experimental setup information for incremental pencil break calibration tests.

AE experiment
number

Experiment fibre
break number

AE Sensor distance
from break (mm)

Experiment type

4 1 20 Pencil Incremental AE source
4 2 40 Pencil Incremental AE source
4 3 60 Pencil Incremental AE source
4 4 80 Pencil Incremental AE source
4 5 100 Pencil Incremental AE source
4 6 120 Pencil Incremental AE source
5 1 20 Solenoid Incremental AE source
5 2 40 Solenoid Incremental AE source
5 3 60 Solenoid Incremental AE source
5 4 80 Solenoid Incremental AE source
5 5 100 Solenoid Incremental AE source
5 6 120 Solenoid Incremental AE source
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With the aerospace material tensile tests it was difficult to carry out many tests (reference Fig. 12 tensile tests) however
such tests display there is an increase in amplitude (V) as the force increases. In addition such data gives the higher end of
amplitude and force measurements for an automated AE calibration classification system. For the tensile tests the distance
between both sensors was equal and the material plastic deformation phenomenon was located in the same position (note
standard tensile test specimens were used).

Figs. 13 and 14 display the AE pencil break and single grit tests respectively which were correlated with force
measurements (prolonged stress initiated at the same distance). Due to difficulties [19] in obtaining force measurements for



Table 4
The linear line equations and statistics for Fig. 12.

Distance (mm) Mean Std dev. Linear line equations

20 0.1174 0.002006 y¼0.00025xþ0.11
40 0.1156 0.003879 y¼0.00064xþ0.11
60 0.1123 0.002443 y¼0.0004xþ0.11
80 0.1039 0.00478 y¼0.00066xþ0.097

100 0.09919 0.004521 y¼0.00074xþ0.091
120 0.09613 0.006255 y¼0.001xþ0.086

Table 5
The linear line equations and statistics for Fig. 11.

Sol test Distance (mm) Mean Std dev. Linear line equations

Sol 1 20 0.1176 0.0003847 y¼3.4e�5xþ0.12
Sol 1 40 0.1167 0.0006283 y¼9e�5xþ0.12
Sol 1 60 0.1146 0.0006117 y¼8.6e�5xþ0.11
Sol 1 80 0.1081 0.002311 y¼0.00037xþ0.1
Sol 1 100 0.1034 0.002528 y¼0.00039xþ0.099
Sol 2 20 0.1214 0.0004579 y¼4.8e�5x þ0.12
Sol 2 40 0.1172 0.0006876 y¼7.8e�5xþ0.12
Sol 2 60 0.1153 0.001589 y¼0.00023xþ0.11
Sol 2 80 0.1118 0.003048 y¼0.00042xþ0.11
Sol 2 100 0.1041 0.003105 y¼0.00048xþ0.099
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single grit tests, the test set displayed in Fig. 14 is small however general trends are displayed. From both tests it can be seen
that as force increases so does the received amplitude voltage. The pencil break tests have less variability due to similar
initiated prolonged stress from the pencil break fracture [6] when compared to the single grit tests. The single grit tests have
more variability as the beginning and end of the scratch grooves are significant of less force (maximum force is achieved
when approaching the negative apex of the scratch groove). Lastly from looking at different STFT images of measured AE
with respect to changing distances it was noticed that higher frequencies and higher amplitudes were recorded near AE
phenomenon when compared with lower frequencies and lower amplitudes with AE phenomenon further away. This is an
important consideration for an automated classification system and is further reinforced from the commonly known that
power is inversely proportional to frequency (see Figs. 3 and 4 where the higher frequencies have the less intensity
compared to the lower frequencies where both low and high frequencies are significant to the most intense part of the
prolonged stress).
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5. Classifier technologies

5.1. Neural networks for classification of calibration data

A large number of researchers have reported the application of using NN models for the classification of phenomena of
interest when applied to tool condition monitoring [20]. A feed-forward NN model was used with the back-propagation
learning strategy to provide the segregation of data [21]. Commonly, NNs are used for pattern recognition in image analysis
or sound waves in signal analysis. The NN consists of a complex interconnection of units which are otherwise known as
nodes or neurons. The general layout for a NN consists of a set of neuron layers connected together through complex
connections; this layout and features are known as the network architecture.

The transfer function (for non-linear problems a differential transfer function, such as Tan-sigmoid is used) is required to
map the non-linear input–output relations which are obtained for each neuron and updated in an iterative fashion towards
the desired target set. Back-propagation is so called as the weights are updated from the error between the actual output
and the desired output which in short is from the back to the front of the network topology. This method segregates the
different classes based on the supervised training data given to the NN. The summation of weights and bias values is
multiplied by a differential transfer function to give a neuron output.



Table 6
NN parameters for NN classifications.

NN parameters Value

Hidden layers 1
Input size 200 Neurons of rich AE time series
Transfer function for layers I/P: TAN, 2nd: TAN, O/P: PURE
Epochs 16,000
Learning rule Back-propagation (step size: 10�9)
Momentum 0.9
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The output of each neuron is a function of its inputs. Specifically, output of the jth neuron is reference to the specific layer
and is described by the following equations:

Uj ¼∑ðPinwijÞ ð2Þ

ai ¼ FðUjþtjÞ ð3Þ
For every neuron, ‘j’, in a layer, each of the ‘i’ inputs, Pi to that layer is multiplied by a previously established weight, wij.
These are all summed together, resulting in the internal value of the operation, Uj. This value is then biased by a previously
established threshold value tj, and sent through an activation function, F (Tan-Sigmoid or Linear) giving the NN output, ai.

Eq. (4) describes the output error obtained from each neuron:

ME¼ 1
Ω

∑
Ω

i ¼ 1
ðti�aiÞ2 ð4Þ

where ME is the mean squared error, ai is the output of the network corresponding to ith input P1–Pn. The error term of
network is given from ðti�aiÞ where ti is the target vector or the desired value for given input vectors P1–Pn. The error
function can be applied to the NN in a batch training fashion at the end of data presentation or sequentially after each input–
output pair.

For the back-propagation algorithm the weight and bias update equations are as follows:

Δwk
ij ¼ �α

∂ME
∂wk

ij

ð5Þ

Δbki ¼ �α
∂ME

∂bki
ð6Þ

where α is the learning rate, which has a trade-off in value to ensure it is small enough to gain a true convergence but large
enough to separate the data space in adequate time. Eqs. (5) and (6) are iteratively changed across the network along with
other functions to provide learning sensitivity. This process of weight and input, and error calculation propagates through
the NN to provide the segregation rules which separates the data according to class (target vector). The ‘b’ is a bias term used
to influence the training weights and for NN training. Table 6 tabulates the NN parameters used in these tests.

5.2. Clustering method for classification of calibration data

Another pattern recognition technique used for classification is through Fuzzy clustering [22,23]. Pattern recognition can
select features of interest based on all data features. The technique of fuzzy clustering provides rules in the form of distance
measurements that segregate the different cluster sets from each other, in this case, AE vs. force and distance.

Clustering techniques have emerged from work carried out in statistical probability [24]. When looking at real world
phenomena most cases are not finite and instead possess a lot of in-between values such as that seen in fuzzy sets. Fuzzy
clustering-mean algorithm is an iterative technique for clustering data sets in a soft rule set fashion. It is a technique for
grouping data and finding structures in data. Essentially clustering techniques use a distance measure to segregate like data
from other presented data into classes or sets (clusters).

There are two main types of clustering techniques: the conventional way of clustering through hard clustering where
partitions are formed representing each pattern similar to a threshold measure used for pre-processing the NN outputs.
The difference in hard clustering is the data belongs to only one cluster. With nonlinear data there is no sharp classification
between clusters, especially at the boundaries; this is why fuzzy clustering is better than other clustering techniques as it
can assign clustering between 0 and 1 and not just one fixed value, therefore giving cases for both cluster sets. The
classification here is based on the input data set and has more similarities when compared with the others and is known as
soft clustering.

Fig. 15 displays a block diagram of the fuzzy-c/GA which is based on work carried out by [21] clustering AE vs. force and
distance measurements. The first step in this process is to convert the rich reduced data-set and form the fuzzy similarity
matrix defining the relations of similarity. The next process is to then define the fuzzy variable similarity matrix which



Fig. 15. Block diagram of Fuzzy-GA classification for AE vs. force and distance classifications.
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evaluates each coefficients ~r ij degree of membership between the element i and element j. Following on, the cluster centres
are determined, the centres segregate and categorise one cluster from another. The centre cluster is the representing
function of a particular cluster set. Input test data that has a membership close to a particular centre than other centres
means that input data belongs to that centre.

Let X ¼ fX1; X2; :::; Xmg; X � V ; where X1 to Xm are feature vectors which make up the total feature matrix set and
Xi ¼ ðXi1; Xi2; :::; XinÞAV is a feature vector (element of total feature matrix set V); Xij is the jth feature of individual Xi where
feature matrix is made up from 1 to n feature vectors. To ensure there is normalisation across the feature matrix, Eq. (7) is
used which calculates the normalised mean for each input value divided by the variance.

xij' ¼mjXij & x″ij ¼ ðxij' �xi'Þ=si ð7Þ

where

mj ¼ maxðX11;X12; :::;X1nÞ=X1j; xi'¼
1
n

∑
n

j ¼ 1
xij'&si ¼

1
n

∑
n

j ¼ 1
ðxij' �xi'Þ2

�����
�����
1=2

The normalised feature matrix is then represented by the feature matrix:

Xðm� nÞ ¼

x″11; x″12; :::; x″1j; :::; x″1n
x″21; x″22; :::; x″2j; :::; x″2n
⋮ ⋮
x″i1; x″i2; :::; x″ij; :::; x″in
⋮ ⋮

x″m1; x″m2; :::; x″mj; :::; x″mn

2
66666666664

3
77777777775

ð8Þ

The Fuzzy similarity matrix is the next calculation required for the fuzzy clustering of the input data set. The similarity
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matrix uses a distance measure to show similarities within the matrix set. There are many distance functions available;
however fuzzy-c clustering uses Eq. (9). The index of similarity is based on the minimum distance that equates to the
maximum similarity.

mij ¼
∑n

k ¼ 1jðxik�xiÞðxkj�xjÞj
∑n

k ¼ 1ðxik�xÞ2
h i

: ∑n
k ¼ 1ðxkj�xjÞ2

h i1=2� � ð9Þ

By using the correlation coefficient Eq. (9) the normalised feature matrix is converted into a fuzzy proximity matrix M:

M¼

m11; m12; :::; m1j; :::; m1n

m21; m22; :::; m2j; :::; m2n

⋮ ⋮
mi1; mi2; :::; mij; :::; min

⋮ ⋮
mm1; mm2; :::; mmj; :::; mmn

2
6666666664

3
7777777775

ð10Þ

The fuzzy proximity matrix M is then converted into a fuzzy similarity matrix MK as the proximity relationship does not
have enough similarities for fuzzy clustering to be carried out. From using the fuzzy algorithm such as transitive closure, the
fuzzy matrix M can be converted into the fuzzy similarity matrix MK.

MK ¼

~m11; ~m12; :::; ~m1j; :::; ~m1n

~m21; ~m22; :::; ~m2j; :::; ~m2n

⋮ ⋮
~mi1; ~mi2; :::; ~mij; :::; ~min

⋮ ⋮
~mm1; ~mm2; :::; ~mmj; :::; ~mmn

2
6666666664

3
7777777775

ð11Þ

min Jm ¼ ∑
m

j ¼ 1
∑
n

i ¼ 1
jμjðxiÞjbjjxi�cjjj2

( )
ð12Þ

Looking at Eq. (11), ~mij in the matrix Mk is the similarity between feature ‘i’ and feature ‘j.’ The maximum value of
similarity is when i¼ j and the feature itself equates to 1. After ranking the features in the order of similarity values, it is then
possible to segregate these features using the closest cluster distance membership function and distinguish the AE data in
terms of force and distance measurements. The closest distance membership function of fuzzy-clustering is based on the
squared loss cost function (see Eq. (12)) for each point. For Eq. (11), xi is the samples (i¼1, 2, …, n), m is the number of
known clusters, cj is the cluster centre point where (j¼1, 2, …, m), and μj(xi) is the fuzzy membership of sample xi to cluster
‘j.’ The ‘b’ term if equals 1, tends more towards k-means clustering, similar to city-block distance statistical measure and if ‘b’
tends towards 1 it becomes completely fuzzy similar to Chebyshev maximum distance clustering. If however the term ‘b’
takes the value of 2 it is similar to the Euclidean distance technique which was used in this work. The fuzzy algorithm
iterates through Eq. (11) until it can no longer best fit the separation of one cluster from another.
5.3. Tree rule based systems for classification of calibration data

Rules can sometimes be a simple yet affective way to represent the classification of a given dataset. As the third classifier
this is merely a third check on the two previously discussed technologies and it is easily formed into simulation test code as
“if, else-if or else” rules. Such a method uses an interactive approach to segregate the data using discriminate values of more
than or less than to give either a class or node to another rule or class. This type of classifier technique has not been used
much in condition monitoring however it is referenced here as being used to classify the generation of rules [25] which is of
particular importance to work presented in this paper in that the different classifiers verify one another's output.

Classification and Regression Trees (CART) however is a method of classification similar to fuzzy clustering with the
added facet of producing more transparent rules which is why it has been used here to verify the output classifications of
other classification technologies and it is easily transportable to real-time simulation. As mentioned before CART is also
suitable for n-dimensional datasets which is what is presented here.

CART builds classification and regression trees for predicting continuous dependent variables (regression) and categorical
predictor variables (classification). It achieves its functionality by recursively splitting the feature space into sets of non-overlapping
regions, and finally by predicting the most likely value of the dependent variable within each region. By generating a binary tree
through recursive partitioning it splits the data into sub nodes based on the minimisation of a heterogeneity criterion computed at
the resulting sub-nodes. With the CART algorithm the tree is forwardly propagated (using forward stepwise regression) for best
purity of node split. The best node split becomes the chosen value of partition (see Eq. (13)).



J. Griffin / Mechanical Systems and Signal Processing 50-51 (2015) 757–783774
A good splitting criterion is the following:

PRE¼∅ðs; tÞ

Misclassification error:Qm ¼ 1
Nm

Σ
xiεR

m
ðyiakðmÞÞ ¼ 1� P̂mkðmÞ ð13Þ

where yi is the output of the individual under test and k(m) is the class category under test.
PRE is the minimum production reduction in error, s is the spilt at any t node. The best purity measure looks at the best

unique class classification where less impure looks at more multiclass representation. For the CART algorithm the
percentage accuracy of classifications is used as the best purity measure [26].

This method of classification is not only chosen to verify fuzzy clustering/NNs and rule transparency but also because the
tree fitting methods are actually closely related to cluster analysis [27]. This is where each node can be thought of as a
cluster of objects, or cases, that are split by further branches in the tree. Note that the top node covers the whole sample
amount and each remaining node contains a sub amount of the original sample and so on as the split levels increase.

A classification tree represents a set of nested logical if–then conditions (similar to a rule based system) on the values of
the feature variables that allow the prediction of the value for the dependent categorical variable based on the observed
values of the feature variables. A regression tree also represents a set of nested logical if–then conditions on the features
variables, but these are used instead to predict the value of a continuous response variable.

CART can handle missing values by imputing such values in obtaining the mean over the complete observations.
The model can be tested on a separately specified test set. Additionally, the model can be saved and used subsequently on
additional test sets.

Some points for discussion on best tree representations are as follows:
�

Fig
ver
A very large tree may over fit the data.

�
 A small tree might not capture the important structure.
Therefore there is trade-off consideration for the best tree when thinking of the overall size:
�
 The optimal tree size should be adaptively chosen from the data provided.

�
 Different stopping criteria can give different results such as an impurity threshold is reached and the branching and

splitting is halted or a specified minimum of branch level is achieved as so branching and splitting is halted at this point.

�
 Think of a pruning strategy that does not impact on the overall tree classification accuracy.

6. Classifier results

Fig. 16 displays the results made from first experiment where an accuracy of 93% classifications was obtained with half
the cases unseen. Even the misclassifications (shown by the red boxes) appear to have the correct classification distinction
albeit the level is lower than desired. For training, 150 test cases were used. This initial experiment displayed the possibility
for such an automatic calibration method for AE against known quantities of force.
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Fig. 17. Neural Network calibration results for AE source location. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 18. Fuzzy-c/GA clustering results for AE vs. force.
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Fig. 19. Fuzzy-c/GA clustering results for AE vs. distance.
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Fig. 17 displays results for the second experiment where results are similar to the first experiment with 95% accuracy.
Again the unseen cases were 50% of the test data and again the misclassifications (shown by the red boxes) were correct just
with an incorrect level difference. NNs are particularly good at giving multiple outputs and this is why such a classification
technique was used during these experiments. The results display an indication that AE calibration can also be correlated to
distance, based on the intensity of the measured signal.

This second classification technique verifies the NN results. Fig. 18 displays the results for the second experiment with
92% accuracy and Fig. 19 with 94% accuracy (unseen cases were 50% with respect to both test data sets). It can be said that
NNs are more accurate for giving multiple outputs when compared with fuzzy-c cluster analysis. However with more
training and test data this may not be the case. The tree based rules gave a further verification accuracy of 95% accuracy for
both distance and force tests (where again the unseen cases were 50% of the test data set). Such verified results from various
classifier technologies give a high confidence for such an automated calibration system. To verify the data, individual
statistical tests were carried out in Section 4.7: AE statistical tests. Here high confidence was achieved for the majority of
tests and as the classifiers act as regression classifiers both force and distance could be realised with a mix of calibration data
(where the mix of data is considered more difficult to separate when compared with the individual AE tests (reference
Section 4.7).
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7. AE calibration model simulations

The investigation of this section continues the work discussed in the first part where the classifier technologies along
with other classifier technologies are discussed and realised in a Simulink model. In the second part further Simulink
models realise classifier technologies for discriminating different materials when experienced with the same force and
distance emitted AE sources.

7.1. Simulink model for AE calibration against distance and force

In the section of classifiers technologies and classifiers results, NNs and Fuzzy-C/GA clustering were discussed and used
to provide results in discriminating AE against both distance and force calibrations. This section will introduce the NN, tree
rule based system classification technique and the Fuzzy-clustering NN through radial basis distance function in the form of
technologies realised into a real-time simulation.
Fig. 21. Top level Simulink model for AE to distance and force calibration.
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Fig. 22. Tree based rule system for distance classifications.
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Fig. 20 displays the AE calibration process flow chart; here it can be seen the signal under test is checked against both
distance and force expert systems for an associated output. Fig. 21 displays the full AE calibration simulation system, where
the three agreeing expert decision classifications give a weighted output for calibration against a known standardised
phenomena. As shown in Fig. 21 further, the left displays the method of testing five AE pencil calibration signals, the mid-
top displays the 3 expert systems which are weighted towards classification accuracies and used to give accurate
classification associations when faced with new AE phenomena. Here the classification is correlated against distance
phenomena and output accordingly. The mid-bottom displays 3 expert systems which are again weighted towards
classification accuracies with correlations to force phenomena and again, output accordingly.

The Simulink top level model displayed in Fig. 21 uses a three decision process for AE calibration against distance and
another three below for AE calibration against force. The first classifier mimics the NN with Backpropagation weight
learning rule. The second classifier uses a tree rule based system where the rules are translated and implemented into
embedded Matlab script. The final classification technology gives a fuzzy clustering technique through a Kohonen NN with
distance radial basis as a learning discriminator.

Fig. 22 displays the tree rule based output for the relationship between an AE emitted source with distance measured.
Figs. 23 and 24 look at a tree rule based system between an AE emitted source and a measured force, where Fig. 25 shows
the low force relationship, and Fig. 25 shows the high force relationship.
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The three decision process mechanism works similar to the flight management seen on the US Space Shuttle where two
decision discriminators agree, and the other one may not. The confidence of classification is based on two agreeing
discriminators. Agreement is made by how close the classifications are to the reference data and determines the weighted
amount given to the final classification. For this example, the model is supplied with 5 similar pencil calibrations
(pencil break against the recorded AE event) and these are translated into rich windowed amplitude and time information.
These 5 rich summaries (excluding any outliers) are averaged and a force and distance is given as output. This model can be
used to calibrate both forces and distance less than and greater than that of pencil calibrations. The output from the
Simulink model can be seen from Figs. 25 and 26 where the 5 input calibrations can be seen against their calculated average
amounts. It is possible that more calibration data can be made to the 3 decision classifiers in the form of similar
experimental data bolstering further AE calibration data.
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7.2. Simulink model for AE calibration against different material interactions

Figs. 27 and 28 display the AE calibration results against different material interactions through single grit scratch tests.
Both the results displayed in Figs. 27 and 28 give a 100% classification in that the technique of representing AE in both the

time and frequency domains gives a good discriminator for both classification techniques. These two technologies are
therefore realised in a second Simulink model segregating the four materials: EN8 Steel, Inconnel 718, CMSX4 and MARM-
002.

Similar to Fig. 20, Fig. 29 displays the flow process for identification of different material AE signals emitted from SG tests
which were measured at the same distance and same intensity of force throughout the tests. Fig. 30 displays an extension to
the simulation displayed in Fig. 20 where the decision realisation in Fig. 30 was implemented into a Simulink model. This
simulation uses two decision agreeing systems for an overall classification (the same technologies of NNs and fuzzy
clustering NNs as seen in Fig. 20 were used to make the material associations).
8. Discussion of results

The AE sensor used during the trials was a Physical Acoustic Corporations PAC WD (wide band) sensor. Table 7 lists each
individual AE sensor characteristics. For the tests carried out in this work the sensors were set to V/μbar.

The detected signals from the AE sensors (see Table 7 for sensor characteristics) were passed through pre-amplifiers with
a gain of 100(40 dB). A threshold dB pick-up setting (software) of 40 dB was used for SG tests. From carrying out earlier test
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Fig. 30. AE calibration Simulink model for different materials classifications.

Table 7
Main specifications of AE sensors.

PAC WD
SENSORS (1–3)

Sensor number/date Construction Sensor drive
capability

Dimensions
(dia.*ht.)

Peak sensitivity Operating freq
range (kHz)

1) AL04/(17/11/04)
2) AL05/(17/11/04)
3) AL19(11/12/02)

Differential Up to 100 m
with w/RG-58 AU cable

17*16 mm -63.21 (dB ref 1 V/μbar) 80–1000
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trials and verifying the signal AE acquisition system it was possible to configure the sensor systems to the correct reference
level to gain the phenomenon frequency response. This point is critical for any calibration system in that the noise level
settings for amplification need to be taken into consideration when calibrating AE sources on a daily basis. The pre-amplifier
also minimises or even eliminates mechanical and acoustical background noise that exits at low frequency, which is up to
and including 20 kHz.

In reviewing the results presented in the last section it is possible to see that the results are inspiring for such a proposed
AE standard. Future work would involve more tests to see howmuch different calibrations vary on a daily basis and whether
it is necessary to increase the number of pencil break calibrations from five to ten to get a richer spread of calibration.
If however there are large differences then more suitable and reliable methods of calibration are required such as an
automatic pencil break method with specially designed apparatus as seen in works [9,10]. Or the combination of varying AE
with respect to distance for pencil break and solenoid tests as seen in the statistical section.

The results provided by both simulation models give good confidence to the proposed technique in that the results were
both accurate and verified against actual statistical experimental data. Looking at the given results it is possible to see that
the proposed AE calibration method can give good confidence in correlating against force, distance and different material
interactions.

This method has certainly pushed forward a possible automatic calibration method for AE measurement and therefore
gives a novel approach to how such condition monitoring systems may look like in the future.
9. Conclusions

The experiments discussed within this paper were designed to investigate the correlations of force and distance based on
the measured AE event occurrence. Such experimental tests displayed different techniques to segregate the different
features obtained during different prolonged stresses in terms of AE measurements against different forces and distances.
There are many questions to address in obtaining an internationally recognised standard for AE.

This paper takes a lot of previous works [1,2,7,8] and advances it to achieve a possible AE calibration method for
condition monitoring. Also the paper displays where further work can be carried out in investigating different materials
looking at different facets of material fracture. Previous works [1,2,7,8] looked at different signal properties; however as
stated in [1,2] the first harmonic energy source of the phenomena is considered to be the most useful and as such was
predominately used in the experiments discussed in this paper.

Different single grit tests were carried out displaying different intensities of force and distance; however for different
material interaction tests the force and distance from the sensor were maintained throughout the tests giving balanced
comparisons. The time series information was identified as enough to discriminate AE sources in terms of force and
distance; however when faced with different materials both the time–frequency representations were necessary also.
Within the work displayed in this paper it is possible to use both technologies to discriminate between force and distance,
and for different materials. In the final parts of this work such tests were realised with intelligent models and simulations
giving a more realistic realisation for such a proposal.

Varying distance AE intensities from pencil break and solenoid hit tests (reference Acoustic Emission Statistical tests in
Section 4.7) the mechanical part of a proposed automated AE calibration system can be obtained.

The results displayed in Figs. 24 and 25 display high accurate output for a proposed AE calibration simulation. Both
correlated distance and force were accurately associated with input AE signal phenomena. Figs. 26 and 27 also display
accurate output of a two classifier system for distinguishing between different materials through extracted AE phenomena.
This is where the same force and distance were exerted during different material SG tests.

The classification and simulation results are further reinforced by the AE statistical analysis which displays the
significance of amplitude intensity correlated to both distance and force where the time to zero for the 5 max and 5 min
points windowed along the extracted AE signal gives further verification in terms of phenomenon distance.

Such individual and simulation based results display the real possibility of an industrial AE calibration system to be used
in various forms of condition monitoring and ultimately, form the basis for an accepted standard of AE sensor technologies.
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