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Vortex-type solutions to a magnetic nonlinear Choquard equation

Dora Salazar

Abstract. We consider the stationary nonlinear magnetic Choquard equation

(−i∇ + A(x))2u + W (x)u =

(
1

|x|α ∗ |u|p
)

|u|p−2u, x ∈ R
N ,

where N ≥ 3, α ∈ (0, N), p ∈ [
2, 2N−α

N−2

)
, A : RN → R

N is a magnetic potential and W : RN → R is a bounded electric

potential. For a given group Γ of linear isometries of R
N , we assume that A(gx) = gA(x) and W (gx) = W (x) for all

g ∈ Γ, x ∈ R
N . Under some assumptions on the decay of A and W at infinity, we establish the existence of solutions to this

problem which satisfy

u(γx) = φ(γ)u(x) for all γ ∈ Γ, x ∈ R
N ,

where φ : Γ → S
1 is a given continuous group homomorphism into the unit complex numbers.
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1. Introduction

We consider the problem⎧⎪⎨
⎪⎩

(−i∇ + A(x))2u + (V∞ + V (x))u =
(

1
|x|α ∗ |u|p

)
|u|p−2u,

u ∈ L2(RN , C),
∇u + iA(x)u ∈ L2(RN , CN ),

(1.1)

where N ≥ 3, α ∈ (0, N), p ∈ ( 2N−α
N , 2N−α

N−2

)
, A : R

N → R
N is a C1-vector potential and V∞ + V is a

scalar potential which satisfies

V ∈ C0(RN ), V∞ ∈ (0,∞), inf
x∈RN

{V∞ + V (x)} > 0, lim
|x|→∞

V (x) = 0. (V0)

Here, ∗ denotes the convolution operator and i is the imaginary unit.
This equation arises in various physical contexts, especially in the case where A = 0, V = 0, N =

3, α = 1, and p = 2. Depending on the context, it is called the stationary nonlinear Choquard equation or
the nonlinear Schrödinger–Newton equation. As the Choquard equation, it comes from an approximation
to the Hartree–Fock theory of a one-component plasma and describes an electron trapped in its own
hole (we refer to Lieb and Lieb–Simon’s papers [9,11] in the 1970s for a wide discussion on the relevance
of Choquard equation and Hartree–Fock equations to physics). As the nonlinear Schrödinger–Newton
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equation, it was proposed by Penrose in a model where quantum state reduction is considered as a
phenomenon that occurs due to some gravitational influence [21–23].

Because of its relevance to physics, the existence of solutions to Eq. (1.1) has been extensively inves-
tigated in the context of H1(R3) in the nonmagnetic case A = 0. In particular, when V = 0, α = 1, and
p = 2, there is a well-known result due to Lieb [9] which asserts that (1.1) possess a unique minimizer,
up to translations. A result concerning the existence of infinitely many radially symmetric solutions was
obtained by Lions [12]. We also refer to [15,16,25] and the references therein for interesting existence
results of Schrödinger–Newton equations.

Families of semiclassical solutions to problem (1.1) for N = 3, α = 1, and p = 2 have been obtained
in [19,24,26] when A = 0 and in [3,5,6] when A �= 0. The question of the existence of semiclassical
solutions in arbitrary dimensions N ∈ N for α ∈ (0, N) and an appropriate range of exponents p ≥ 2
has been recently studied by Moroz and Van Schaftingen [18] when A = 0. Further results for related
problems may be found in [1,4,14] and the references therein.

Recently, Cingolani, Clapp, and Secchi considered the stationary nonlinear magnetic Choquard equa-
tion (1.1) for the case in which |A|2 + V tends to its limit at infinity exponentially from below at an
appropriate speed of convergence. Under symmetry assumptions on the data and the additional condition[

2,
2N

N − 2

]
∩
(

p,
pN

N − α

)
∩
(

(2p − 2)N
N + 2 − α

,
(2p − 1)N
N + 2 − α

]
∩
[
(2p − 1)N
2N − α

,∞
)

�= ∅, (1.2)

they proved, in [3], the existence of a complex-valued solution to this problem which exhibits a vortex-
type behavior. The main goal of this paper is to allow potentials A and V such that |A|2 + V approaches
to its limit at infinity exponentially from above.

For the local nonlinear Schrödinger equation

−Δu + (V∞ + V (x))u = |u|p−2u, u ∈ H1(RN ),

which corresponds to the local version of (1.1) when A = 0, Bahri and Lions solved the question of
the existence, for potentials that approach to its limit from above, without any symmetry assumption.
Unfortunately, some of the facts that they used are not available in the nonlocal setting. For example,
the uniqueness of positive solutions to (1.1) when A = 0 and V = 0 is a difficult problem that has only
been solved in the case N = 3, α = 1, and p = 2 [13].

The existence of infinitely many symmetric solutions of (1.1) is known in the case where A and V
are compatible with the action of some group G of linear isometries of R

N and every nontrivial G-orbit
in R

N is infinite [3]. When the data have only finite symmetries and A = 0, it was shown in [8] that
there exist a positive and multiple sign-changing solutions to (1.1). Our purpose is to obtain vortex-type
solutions to the magnetic problem above when both A and V have finite symmetries given by the action
of a closed subgroup Γ of the group O(N) of linear isometries of R

N .
More precisely, we assume that A and V satisfy

A(gx) = gA(x) and V (gx) = V (x) for all g ∈ Γ and x ∈ R
N . (1.3)

We consider a continuous group homomorphism φ : Γ → S
1 into the unit complex numbers S

1 and we
look for solutions that satisfy

u(gx) = φ(g)u(x) for all g ∈ Γ and x ∈ R
N . (1.4)

We denote by Γx := {g ∈ Γ : gx = x} the isotropy group of x, by Γx := {gx : g ∈ Γ} the Γ-orbit of x and
by #Γx its cardinality. Let

�(Γ) := min
{
#Γx : x ∈ R

N
� {0}} .

Recall that a function is called Γ-invariant if it is constant on each Γ-orbit in its domain. Note that if u
satisfies (1.4), then the absolute value |u| of u is Γ-invariant, i.e.,

|u(gx)| = |u(x)| for all g ∈ Γ and x ∈ R
N .
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Moreover, the phase of u(gx) is that of u(x) multiplied by φ(g). If φ ≡ 1 is the trivial homomorphism,
then (1.4) simply says that u is Γ-invariant.

Observe that it may happen that every function satisfying (1.4) is trivial. Indeed, if Γ = O(N) and
φ(g) is the determinant of g, then for each x ∈ R

N , we may choose a gx ∈ O(N) with gxx = x and
φ(gx) = −1. If u satisfies (1.4), then u(x) = u(gxx) = φ(gx)u(x) = −u(x). Thus, u ≡ 0. To avoid this
situation, we will restrict our attention to those x ∈ R

N such that Γx ⊂ ker φ. Set

Σφ :=
{
x ∈ R

N : |x| = 1, #Γx = �(Γ), Γx ⊂ ker φ
}

.

Note that Σφ is Γ-invariant, i.e., Γx ⊂ Σφ for every x ∈ Σφ.
We are going to consider only the case �(Γ) < ∞ because, as we mentioned before, if all Γ-orbits of

R
N

�{0} are infinite and Σφ �= ∅, it was already shown in [3, Theorem 1.1] that (1.1) has infinitely many
solutions satisfying (1.4).

Let z ∈ Σφ. If there exists α ∈ Γ such that αz �= z and Re(φ(α)) > 0, we define

μφ(Γz) := min
{

|gz − hz| : g, h ∈ Γ, gz �= hz,Re
(
φ(g)φ(h)

)
> 0
}

.

Otherwise, we set μφ(Γz) = 2.
We denote by c∞ the energy of a ground state of the problem{

−Δu + V∞u =
(

1
|x|α ∗ |u|p

)
|u|p−2u,

u ∈ H1(RN ).
(1.5)

We shall look for solutions with small energy, i.e., which satisfy

p − 1
2p

∫
RN

∫
RN

|u(x)|p|u(y)|p
|x − y|α dx dy < �(Γ) c∞. (1.6)

In what follows, we assume that V satisfies (V0). We shall prove the following result.

Theorem 1.1. Let p = 2. Let φ : Γ → S
1 be a homomorphism. If A and V satisfy (1.3) and the following

hold:
(Z0) There exist z ∈ Σφ and a0 > 1 such that

|gz − hz| ≥ a0 μφ(Γz) for all g, h ∈ Γ with Re
(
φ(g)φ(h)

)
< 0,

(AV ) There exist c0 > 0 and κ > μφ(Γz)
√

V∞ such that

|A(x)|, ∣∣|A(x)|2 + V (x)
∣∣ ≤ c0e

−κ|x| for all x ∈ R
N ,

then (1.1) has at least one vortex-type solution u, which satisfies (1.4) and (1.6).

Let us look at an example. Fix k ∈ N, k ≥ 2 and let Γk be the cyclic group of order k generated by
ξ := ei 2π

k . If N is even, let us consider the action of Γk on R
N ≡ C

N/2 given by complex multiplication on
each complex coordinate. Assume that A and V satisfy (1.3) for this action. For example, the magnetic
potential A(z1, . . . , zN/2) = (iz1, . . . , izN/2) associated with the constant magnetic field B = curlA has
this property for every k. For each m ∈ N,m ≥ 1, consider the homomorphism φm : Γk → S

1 given
by φm(ξ) = ξm. Observe that the kernel of φm is the group Γt being t = gcd(k,m). Since Γk acts
freely on R

N
� {0},Σφ = S

N−1. We assert that assumption (Z0) is satisfied for any z ∈ S
N−1 provided

k > 4m. Indeed, if k > 4m, then for n = 0, 1, . . . , k − 1,Re
(
φ(ξn+1)φ(ξn)

)
= cos 2πm

k > 0 and so
μφ(Γz) := |ei 2π

k − 1| = 2 sin π
k . Now, if s, n ∈ N are such that 0 ≤ s < n ≤ k − 1 and Re

(
φ(ξn)φ(ξs)

)
=

cos 2πm
k (n − s) < 0, from 0 < 2πm

k < π
2 , one has that 1 < n − s < k − 1 and thus

|ξnz − ξsz| = |ei 2π
k (n−s) − 1| = 2 sin

π

k
(n − s) > μφ(Γz).
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This proves the assertion. Hence, if, additionally, A and V satisfy (AV ), Theorem 1.1 yields at least one
solution to problem (1.1) satisfying (1.4) and (1.6).

Observe that Theorem 1.1 deals with the case in which |A|2 + V is nontrivial and takes nonnegative
values. To our knowledge, this is the first existence result for this kind of potentials in the magnetic
setting. The problem of existence without symmetries is open and seems to be nowhere studied in the
literature.

Note also that the speed of convergence of |A|2 + V depends on the distance between the elements of
a certain orbit of R

N . Weaker conditions on the decay of the potentials require stronger conditions on
the symmetries.

The argument we are going to apply to prove Theorem 1.1 follows the same pattern of that used in
[8] to produce multiple solutions.

It would be interesting to establish an analogous result to Theorem 1.1 for p > 2. Unfortunately, in
the case when 2 < p ≤ 4, the approach used in [8] to obtain the asymptotic estimates does not work,
while when p > 4, the inequality p < 2N−α

N−2 holds only for N = 3 and α ∈ (0, 2); however, condition (Z0)
cannot be realized in dimension N = 3.

On the other hand, we remark that the techniques used in [8] can be applied to obtain Γ-invariant
solutions to the magnetic problem (1.1). In fact, if φ ≡ 1, defining μΓ := infz∈Σφ μφ(Γz), we observe that
[8, Theorem 1.3] can be extended to the magnetic setting in the following way.

Theorem 1.2. Let p ≥ 2 and �(Γ) ≥ 3. If A and V satisfy (1.3) and the following holds
(AV1), there exist c0 > 0 and κ > μΓ

√
V∞ such that∣∣|A(x)|2 + V (x)
∣∣ ≤ c0e

−κ|x| for all x ∈ R
N ,

then (1.1) has at least one solution u which is Γ-invariant and satisfies (1.6).

To prove this theorem, we just follow the same lines of the proof of [8, Theorem 1.3] taking into
account Lemma 4.3 below.

As it is remarked in [8], when N is even, there are many groups satisfying the symmetry assumption
in Theorem 1.2. Particularly, the group Γk in the above example satisfies �(Γ) = k. In contrast, when
N is odd, not many groups satisfy �(Γ) ≥ 3. For example, if N = 3, the only subgroups of O(3) which
satisfy this condition are the rotation groups of the icosahedron, octahedron, and tetrahedron, I,O and
T , and the groups I × Z

c
2, O × Z

c
2, T × Z

c
2 and O− described in [2, Appendix A].

Finally, we remark that it is possible to remove assumption (1.2) from the statement of Cingolani,
Clapp, and Secchi’s result [3, Theorem 1.2.] thanks to a recent analysis on the qualitative properties and
decay asymptotics of the ground states of (1.5) given by Moroz and Van Schaftingen [17].

The outline of this paper is the following. In Sect. 2, we discuss the variational setting for problem
(1.1). In Sect. 3, we collect some asymptotic estimates given in [8] to control the energy of the interaction
between positive minimizers of (1.5) and we derive some others that are required to estimate the energy
of the interaction between positive minimizers and the absolute value of the magnetic potential. Finally,
Sect. 4 is devoted to a careful estimate of the energy of a suitable test function. This, combined with
a result given by Cingolani et al. [3, Proposition 3.1], which establishes a lower bound for the lack of
compactness of the variational functional associated with (1.1) in the appropriate symmetric subspaces
of H1(RN ), enables us to conclude that the infimum of the variational functional is attained on the
symmetric Nehari manifold and so we get a vortex-type solution of problem (1.1).

2. The variational framework

From now on, we shall assume without loss of generality that V∞ = 1. Let ∇Au := ∇u+iAu, and consider
the real Hilbert space

H1
A(RN , C) :=

{
u ∈ L2(RN , C) : ∇Au ∈ L2(RN , CN )

}
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with the scalar product

〈u, v〉A,V := Re
∫
RN

(∇Au · ∇Av + (1 + V (x)) uv
)
. (2.1)

Assumption (V0) guarantees that the induced norm

‖u‖A,V :=

⎛
⎝ ∫

RN

(
|∇Au|2 + (1 + V (x)) |u|2

)⎞⎠
1/2

is equivalent to the usual one, defined by taking V ≡ 0 [10, Definition 7.20]. If A ≡ 0 ≡ V , we write 〈u, v〉
and ‖u‖ instead of 〈u, v〉0,0 and ‖u‖0,0.

We define

D(u) :=
∫
RN

(
1

|x|α ∗ |u|p
)

|u|p =
∫
RN

∫
RN

|u(x)|p|u(y)|p
|x − y|α dx dy

and set r := 2N
2N−α . As p ∈ ( 2N−α

N , 2N−α
N−2 ), one has that pr ∈ (2, 2N

N−2 ). Thus, the Hardy–Littlewood–
Sobolev inequality [10, Theorem 4.3] implies the existence of a positive constant C̄ = C̄(α,N) such
that

D(u) ≤ C̄|u|2p
pr for all u ∈ H1

A(RN , C),

where |u|q :=
(∫

RN |u|q)1/q is the norm in Lq(RN ). This proves that D is well defined.
We shall assume from now on that p ∈ [2, 2N−α

N−2

)
. Thus, the energy functional JA,V : H1

A(RN , C) → R

associated with problem (1.1), defined by

JA,V (u) :=
1
2

‖u‖2
A,V − 1

2p
D(u)

is of class C2. Its derivative is given by

J ′
A,V (u)v = 〈u, v〉A,V − Re

∫
RN

(
1

|x|α ∗ |u|p
)

|u|p−2uv̄.

Hence, the solutions to problem (1.1) are the critical points of JA,V .
The homomorphism φ : Γ → S

1 induces an orthogonal action of Γ on H1
A(RN , C) as follows: for γ ∈ Γ

and u ∈ H1
A(RN , C), we define γu ∈ H1

A(RN , C) by

(γu)(x) := φ(γ)u(γ−1x).

Since the functional JA,V is Γ-invariant, the principle of symmetric criticality [20,27] guarantees that the
critical points of the restriction of JA,V to the fixed point space of this action, namely

H1
A(RN , C)φ : =

{
u ∈ H1

A(RN , C) : γu = u ∀γ ∈ Γ
}

=
{
u ∈ H1

A(RN , C) : u(γx) = φ(γ)u(x) ∀γ ∈ Γ, ∀x ∈ R
N
}

,

are the solutions to problem (1.1) that satisfy (1.4). The nontrivial ones lie on the Nehari manifold

N φ
A,V :=

{
u ∈ H1

A(RN , C)φ : u �= 0, ‖u‖2
A,V = D(u)

}
,

which is of class C2 and radially diffeomorphic to the unit sphere in H1
A(RN , C)φ.

Now, the radial projection π : H1
A(RN , C)φ

� {0} −→ N φ
A,V onto the Nehari manifold is given by

π(u) :=

(
‖u‖2

A,V

D(u)

) 1
2(p−1)

u
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and so, for every u ∈ H1
A(RN , C)φ

� {0}, one has that

JA,V (π(u)) =
p − 1
2p

(
‖u‖2

A,V

D(u)
1
p

) p
p−1

. (2.2)

We set

cφ
A,V := inf

N φ
A,V

JA,V .

For the limit problem {
−Δu + u =

(
1

|x|α ∗ |u|p
)

|u|p−2u,

u ∈ H1(RN ),
(2.3)

we write J∞,N∞, and c∞ instead of J0,0,N φ
0,0 and cφ

0,0 with φ ≡ 1.
It is known that c∞ is attained at a positive function ω ∈ H1(RN ) (see for example [17, Theorem 3]).

The behavior of the ground states to problem (2.3) was recently described in [3,17].
We denote by ∇JA,V the gradient of JA,V with respect to the scalar product (2.1). We shall say that

JA,V : H1
A(RN , C)φ → R satisfies condition (PS)φ

c if every sequence (un) such that

un ∈ H1
A(RN , C)φ, JA,V (un) → c, ∇JA,V (un) → 0,

contains a convergent subsequence in H1
A(RN , C).

Proposition 2.1. JA,V : H1
A(RN , C)φ → R satisfies condition (PS)φ

c for all

c < �(Γ) c∞.

Proof. See Proposition 3.1 in [3] with G = Γ and τ = φ. �

We write ∇N JA,V (u) for the orthogonal projection of ∇JA,V (u) onto the tangent space TuN φ
A,V to

the Nehari manifold N φ
A,V at the point u ∈ N φ

A,V . We say that JA,V satisfies condition (PS)φ
c on N φ

A,V

if every sequence (un) such that

un ∈ N φ
A,V , JA,V (un) → c, ∇N JA,V (un) → 0,

has a convergent subsequence in H1
A(RN , C).

Corollary 2.2. JA,V satisfies condition (PS)φ
c on N φ

A,V for all

c < �(Γ)c∞.

Proof. The proof is similar to that of Corollary 3.2 in [7]. �

3. Preliminary asymptotic estimates

In what follows, ω will denote a positive ground state of problem (2.3) which is radially symmetric with
respect to the origin. The existence, qualitative properties, and decay asymptotics of ω have been recently
studied in [3,17]. In particular, it is known that ω ∈ L1(RN )∩C∞(RN ) and that ω is monotone decreasing
in the radial direction with respect to the origin. Moreover, from [17, Theorem 4], it can be deduced that
ω has the following asymptotic behavior:

Lemma 3.1.

lim
|x|→∞

ω(x)|x|N−1
2 ea|x| =

{
∞ if a > 1,

0 if a ∈ (0, 1).
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Proof. See Lemma 3.2 in [8]. �

For ζ ∈ R
N , we define

wζ(x) := w(x − ζ) I(ζ) :=
∫
RN

(
1

|x|α ∗ ωp

)
ωp−1ωζ . (3.1)

In the next proposition, we collect some asymptotic estimates that were proved in [8] and that are going
to be useful to prove Theorem 1.1.

Proposition 3.2. Set b := N−1
2 . The following hold

(1) For each a ∈ (0, 1),

lim
|ζ|→∞

∫
RN

ω ωζ |ζ|bea|ζ| = 0 (3.2)

lim
|ζ|→∞

I(ζ) |ζ|b ea|ζ| = 0. (3.3)

(2) For every a > 1, there exists a positive constant ka such that

I(ζ)|ζ|bea|ζ| ≥ ka for all |ζ| ≥ 1. (3.4)

Lemma 3.3. Let M ∈ (0, 2) and z, z′ ∈ R
N with |z| = |z′| = 1. If |A(x)|, ∣∣|A(x)|2 + V (x)

∣∣ ≤ ce−k|x| for
all x ∈ R

N with c > 0 and k > M, then

lim
R→∞

∫
RN

∣∣|A(x)|2 + V (x)
∣∣ωRz ωRz′ dx R

N−1
2 eMR = 0 (3.5)

and

lim
R→∞

∫
RN

|A(x)|ωRz |∇ωRz′ |dx R
N−1

2 eMR = 0. (3.6)

Proof. Fix ν ∈ (0, 1) such that M < 2 ν < k. Lemma 3.1 insures the existence of a positive constant Cν

such that

ω(x) ≤ Cνe−ν|x| for all x ∈ R
N .

Hence, ∫
RN

∣∣|A(x)|2 + V (x)
∣∣ωRz ωRz′ dx ≤ C

∫
RN

e−k|x|e−ν|x−Rz|e−ν|x−Rz′| dx

= C

∫
RN

e−ν(|x|+|x−Rz|)e−ν(|x|+|x−Rz′|)e−(k−2ν)|x| dx

≤ Ce−2νR

∫
RN

e−(k−2ν)|x| dx

= Ce−2νR,

where C denotes different positive constants depending only on ν.
Consequently,

0 ≤
∫
RN

∣∣|A(x)|2 + V (x)
∣∣ωRz ωRz′ dx R

N−1
2 eMR ≤ CR

N−1
2 e−(2ν−M)R.

This implies (3.5).
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On the other hand, by Lemma 3.1 and Proposition A.2 in [3], we have that, for each ν ∈ (0, 1), there
exists a constant Cν > 0 such that

|∇ω(x)| ≤ Cνe−ν|x| for all x ∈ R
N .

This, combined with the decay assumption on |A|, allows us to argue as above to prove (3.6). �

4. The existence of a vortex-type solution

Let φ : Γ → S
1 be a continuous group homomorphism. Let ω ∈ H1(RN ) be a positive ground state of

problem (2.3) which is radially symmetric about the origin. Thus, for z ∈ Σφ and R > 0, the function

σRz :=
∑

gz∈Γz

φ(g)ωRgz, where ωζ(x) := ω(x − ζ),

is well defined and satisfies (1.4).
We shall prove the following result.

Proposition 4.1. Let p = 2. If A and V satisfy (AV ) and (Z0) holds, then there exist C0, R0 > 0 and
β > 1 such that

‖σRz‖2
A,V

D(σRz)
1
p

≤ (�(Γ) ‖ω‖2) p−1
p − C0e

−βR for anyR ≥ R0. (4.1)

Consequently, cφ
A,V < �(Γ) c∞.

To prove this proposition, we require some additional asymptotic estimates which will be derived from
the results in the previous section.

Observe that, since ω is a solution of problem (2.3), for any z, z′ ∈ R
N , one has that J ′

∞(ωz)ωz′ = 0,
which is equivalent to ∫

RN

[∇ωz · ∇ωz′ + ωzωz′ ] =
∫
RN

(
1

|x|α ∗ ωp
z

)
ωp−1

z ωz′ .

Performing a change of variable in the right-hand side of this inequality, one can express it as

〈ωz, ωz′〉 = I(z′ − z) for all z, z′ ∈ R
N , (4.2)

where 〈·, ·〉 is the usual scalar product in H1
A(RN , C) with A ≡ 0 and I is the function defined in (3.1).

We denote by Fz := {(gz, hz) ∈ Γz × Γz : gz �= hz} and define

εRz :=
∑

(gz,hz)∈Fz

Re
(
φ(g)φ(h)

)
>0

Re
(
φ(g)φ(h)

)
I(Rgz − Rhz),

ε̂Rz := − ∑
(gz,hz)∈Fz

Re
(
φ(g)φ(h)

)
<0

Re
(
φ(g)φ(h)

)
I(Rgz − Rhz) if φ �≡ 1,

and ε̂Rz := 0 if φ ≡ 1. Let z ∈ Σφ be as in condition (Z0). We choose gz, hz ∈ Γ such that

|gzz − hzz| = μφ(Γz) := min{|gz − hz| : g, h ∈ Γ, gz �= hz, Re
(
φ(g)φ(h)

)
> 0}

and set

ξz := gzz − hzz.

The proof of the following lemma is similar to that of Lemma 5.5 in [8]. However, we include it here for
the sake of completeness.
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Lemma 4.2. If (Z0) holds, then

ε̂Rz = o (εRz) .

Proof. Let a0 > 1 be as in condition (Z0). Choosing â ∈ (0, 1) such that a := âa0 > 1, we obtain that
a |ξz| = aμφ(Γz) ≤ â |gz − hz| for any g, h ∈ Γ with gz �= hz and Re

(
φ(g)φ(h)

)
< 0. From (3.4), it follows

that there exists a constant ka > 0 such that

I(Rξz)|Rξz|bea|Rξz| ≥ ka if R ≥ μφ(Γz)−1,

where b := N−1
2 . So, setting C := k−1

a , we get

I(Rgz − Rhz)
I(Rξz)

≤ I(Rgz − Rhz) |Rgz − Rhz|b eâ|Rgz−Rhz|

I(Rξz)|Rξz|bea|Rξz|

≤ CI(Rgz − Rhz) |Rgz − Rhz|b eâ|Rgz−Rhz| if R ≥ μφ(Γz)−1.

Let ε > 0. By (3.3), there exists S > 0 such that I(ζ) |ζ|b eâ|ζ| < ε if |ζ| > S. Since â |Rgz − Rhz| ≥
Raμφ(Γz) > 0, we may take R0 := max{ âS

aμφ(Γz)
, μφ(Γz)−1} to conclude that

0 ≤ ε̂Rz

εRz
≤ ∑

gz �=hz∈Γz

Re
(
φ(g)φ(h)

)
<0

I(Rgz − Rhz)
I(Rξz)

≤ �(Γ)2Cε if R ≥ R0.

�
Lemma 4.3. If A and V satisfy (AV ) and (Z0) holds, then∑

(gz,hz)∈Γz×Γz

∫
RN

∣∣|A|2 + V
∣∣ωRgzωRhz = o(εRz).

Proof. Assumption (Z0) guarantees that μφ(Γz) < 2. Let κ > μφ(Γz) be as in assumption (AV ) (recall
that V∞ = 1 is assumed). We fix a > 1 such that M := aμφ(Γz) < min{2, κ}. By (3.4), there exists a
positive constant ka such that

I(Rξz)|Rξz|bea|Rξz| ≥ ka if R ≥ μφ(Γz)−1,

where b := N−1
2 . Since MR = aRμφ(Γz) = a|Rξz|, we have that∫

RN

∣∣|A|2 + V
∣∣ωRgzωRhz

εRz
≤ C

∑
gz∈Γz

∫
RN

∣∣|A|2 + V
∣∣ωRgzωRhz

I(Rξz)

≤ C
∑

gz∈Γz

∫
RN

∣∣|A|2 + V
∣∣ωRgzωRhzR

beMR

I(Rξz)|Rξz|bea|Rξz|

≤ C
∑

gz∈Γz

∫
RN

∣∣|A|2 + V
∣∣ωRgzωRhzR

beMR,

if R ≥ μφ(Γz)−1. Here, C denotes distinct positive constants. Taking (3.5) into account, we get

lim
R→∞

∫
RN

∣∣|A|2 + V
∣∣ωRgzωRhz

εRz
= 0

as claimed. �
Lemma 4.4. If A and V satisfy (AV ) and (Z0) holds, then

∑
(gz,hz)∈Γz×Γz

Im
(
φ(g)φ(h)

)
Im

⎛
⎝ ∫

RN

∇AωRgz · ∇AωRhz

⎞
⎠ = o(εRz).
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Proof. First note that

Im

⎛
⎝ ∫

RN

∇AωRgz · ∇AωRhz

⎞
⎠ =

∫
RN

ωRgz A · ∇ωRhz −
∫
RN

ωRhz A · ∇ωRgz

and so, it is enough to prove that ∣∣∣∣∣∣
∫
RN

ωRgz A · ∇ωRhz

∣∣∣∣∣∣ = o(εRz).

Since ∣∣∣∣∣∣
∫
RN

ωRgz A · ∇ωRhz

∣∣∣∣∣∣ ≤
∫
RN

|A|ωRgz |∇ωRhz|

and (3.6) holds, we can argue as in the proof of Lemma 4.3 to get the conclusion. �

Lemma 4.5. Let g, h, η, γ ∈ Γ be such that Re
(
φ(η)φ(γ)

)
< 0. If (Z0) holds, then

∫
RN

(
1

|x|α ∗ (ωRgz ωRhz

))
ωRηz ωRγz = o(εRz).

Proof. Since 1
|x|α ∗ (ωRgz ωRhz

) ∈ L∞(RN ), then
∫
RN

(
1

|x|α ∗
(
ωRgz ωRhz

))
ωRηz ωRγz ≤ C

∫
RN

ωRηz ωRγz = C

∫
RN

ω ωRηz−Rγz.

From (3.2), it follows that, for ε > 0 given,∫
RN

(
1

|x|α ∗
(
ωRgz ωRhz

))
ωRηz ωRγz|Rηz − Rγz|eâ|Rηz−Rγz| < ε

provided R > μφ(Γz)−1 and â ∈ (0, 1). Therefore, if Re
(
φ(η)φ(γ)

)
< 0, we may argue as in the proof of

Lemma 4.2 to get the conclusion. �

Finally, we need the following result.

Lemma 4.6. Let ψ : (0,∞) → R be the function given by

ψ(t) :=
a + t + o(t)

(a + bt + o(t))β
,

where a > 0, β ∈ (0, 1) and bβ > 1. Then, there exist constants C0, t0 > 0 such that

ψ(t) ≤ a1−β − C0t for all t ∈ (0, t0).

Proof. See Lemma 5.9 in [8]. �

Lemma 4.7. If A and V satisfy (AV ) and (Z0) holds, then

‖σRz‖2
A,V ≤ �(Γ) ‖ω‖2 + εRz + o(εRz).
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Proof. From

〈φ(g)ωRgz, φ(h)ωRhz〉A,V = Re
(
φ(g)φ(h)

)〈ωRgz, ωRhz〉A,V − Im
(
φ(g)φ(h)

)
Im
∫
RN

∇AωRgz · ∇AωRhz

and

〈ωRgz, ωRhz〉A,V = 〈ωRgz, ωRhz〉 +
∫
RN

(|A|2 + V (x)
)
ωRgzωRhz,

we obtain that

‖σRz‖2
A,V =

〈 ∑
gz∈Γz

φ(g)ωRgz,
∑

hz∈Γz

φ(h)ωRhz

〉

A,V

=
∑

(gz,hz)∈Γz×Γz

〈φ(g)ωRgz, φ(h)ωRhz〉A,V

=
∑

(gz,hz)∈Γz×Γz

Re
(
φ(g)φ(h)

)〈ωRgz, ωRhz〉

+
∑

(gz,hz)∈Γz×Γz

Re
(
φ(g)φ(h)

) ∫
RN

(|A|2 + V (x)
)
ωRgzωRhz

−
∑

(gz,hz)∈Γz×Γz

Im
(
φ(g)φ(h)

)
Im
∫
RN

∇AωRgz · ∇AωRhz.

Taking into account Lemmas 4.2, 4.3, and 4.4, we deduce that

‖σRz‖2
A,V ≤ �(Γ) ‖ω‖2 + εRz + o(εRz).

�

Lemma 4.8. Let p = 2. If (Z0) holds, then

D(σRz) ≥ �(Γ) D(ω) + 4 εRz + o(εRz).

Proof. Let z be as in assumption (Z0). Recall that if z1, . . . , zn ∈ C, then∣∣∣∣∣
n∑

j=1

zj

∣∣∣∣∣
2

=
n∑

j=1

|zj |2 + 2
n−1∑
k=1

n∑
j=k+1

Re (zkzj) .

Hence, ∣∣∣∣∣
∑

gz∈Γz

φ(g)ωRgz

∣∣∣∣∣
2

=
∑

gz∈Γz

ω2
Rgz +

∑
(gz,hz)∈Fz

Re
(
φ(g)φ(h)

)
ωRgz ωRhz.

Observe that ∣∣∣∣∣
∑

gz∈Γz

φ(g)ωRgz(x)

∣∣∣∣∣
2 ∣∣∣∣∣

∑
gz∈Γz

φ(g)ωRgz(y)

∣∣∣∣∣
2

≥ ∑
gz∈Γz

ω2
Rgz(x)ω2

Rgz(y)

+2
∑

(gz,hz)∈Fz

Re
(
φ(g)φ(h)

)
ω2

Rgz(x)ωRgz(y)ωRhz(y)

+2
∑

(gz,hz)∈Fz

Re
(
φ(g)φ(h)

)
ω2

Rgz(y)ωRgz(x)ωRhz(x)
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−C1

∑
Re(φ(g)φ(h))>0

Re(φ(η)φ(γ))<0

ωRgz(x)ωRhz(x)ωRηz(y)ωRγz(y)

−C2

∑
Re(φ(g)φ(h))<0

Re(φ(η)φ(γ))>0

ωRgz(x)ωRhz(x)ωRηz(y)ωRγz(y),

where C1, C2 are positive constants. Therefore, using Lemmas 4.2 and 4.5, we conclude that

D(σRz) ≥ � (Γ) D(ω) + 4 εRz + o(εRz).

�

Proof of Proposition 4.1. Lemmas 4.7 and 4.8 yield

‖σRz‖2
A,V

D(σRz)
1
2

≤ �(Γ) ‖ω‖2 + εRz + o(εRz)

(�(Γ)D(ω) + 4 εRz + o(εRz))
1
2
.

Consequently, since ‖ω‖2 = D(ω) and εRz → 0 as R → ∞, the assumptions of Lemma 4.6 are satisfied
and so there exist c1, R1 > 0 such that

‖σRz‖2
A,V

D(σRz)
1
2

≤ (�(Γ) ‖ω‖2) 1
2 − c1εRz

for R ≥ R1. Using (3.4), we conclude that there exist C0, R0 > 0 and β > 1 such that

‖σRz‖2
A,V

D(σRz)
1
2

≤ (�(Γ) ‖ω‖2) 1
2 − C0e

−βR for any R ≥ R0,

which is inequality (4.1). Finally, since πσRz ∈ N φ
A,V and (2.2) implies

JA,V (π(σRz)) =
1
4

(
‖σRz‖2

A,V

D(σRz)
1
2

)2

<
1
4

�(Γ) ‖ω‖2 = �(Γ) c∞,

one has that cφ
A,V < �(Γ) c∞. �

Proof of Theorem 1.1. Proposition 4.1 guarantees that

cφ
A,V := inf

N φ
A,V

JA,V < �(Γ)c∞.

Corollary 2.2 implies that this infimum is attained. �
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