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Why Is It Hard to Obtain a Dichotomy for Consistent
Query Answering?

GAËLLE FONTAINE, University of Chile

A database may for various reasons become inconsistent with respect to a given set of integrity constraints.
In the late 1990s, the formal approach of consistent query answering was proposed in order to query such
databases. Since then, a lot of efforts have been spent to classify the complexity of consistent query answering
under various classes of constraints. It is known that for the most common constraints and queries, the
problem is in CONP and might be CONP-hard, yet several relevant tractable classes have been identified.
Additionally, the results that emerged suggested that given a set of key constraints and a conjunctive query,
the problem of consistent query answering is either in PTIME or is CONP-complete. However, despite all the
work, as of today this dichotomy remains a conjecture.

The main contribution of this article is to explain why it appears so difficult to obtain a dichotomy result in
the setting of consistent query answering. Namely, we prove that such a dichotomy with respect to common
classes of constraints and queries is harder to achieve than a dichotomy for the constraint satisfaction
problem, which is a famous open problem since the 1990s.
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1. INTRODUCTION

1.1. Querying Inconsistent Databases

One way to control databases is to impose integrity constraints upon them, that is,
semantic properties that the database must obey. However, in many situations, control
can be lost (e.g., in the context of data integration or exchange [Lenzerini 2002; Arenas
et al. 2014]). This gives rise to inconsistent databases, which no longer satisfy the
constraints.

To overcome the problem, one option is to restore consistency using data cleaning.
The approach consists of arbitrarily transforming the database into a well-behaved one.
Another approach, introduced by Arenas et al. [1999], is to directly query the original
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7:2 G. Fontaine

database, as inconsistent as it is. The consistent answer of a query q on an inconsistent
database D is then defined as the intersection of the answers of q on all the consistent
databases that differ from D in a “minimal way.”

The approach is elegant and principled. However, the abstraction of the method is
counterbalanced by a high computational complexity. Since the seminal work of Arenas
et al. [1999], the computational complexity of consistent query answering has been stud-
ied for various classes of constraints. Initially, the focus was on functional constraints,
inclusion dependencies, and denial constraints (see the overviews of Bertossi [2006] and
Chomicki [2007]). More recently, other classes of constraints such as LAV constraints,
GAV constraints, tuple-generating dependencies (tgds), and equality-generating de-
pendencies (egds) [Staworko and Chomicki 2010; Arenas and Bertossi 2010; ten Cate
et al. 2012] have also been considered. Those constraints play a central role in data
integration [Lenzerini 2002] and data exchange [Fagin et al. 2003; Arenas et al. 2014].

As an attempt to classify the complexity of consistent query answering, the question
of the existence of a dichotomy result for the problem of consistent query answering
under a set of key constraints has been raised. The conjecture is that given a conjunctive
query q and a set of key constraints �, the problem of consistent query answering of q
under � should either be in PTIME or CONP-complete. Recall that if PTIME �= NP, there
are infinitely many intermediate problems in CONP that neither are CONP-complete nor
belong to PTIME [Ladner 1975]. A dichotomy conjecture states that the considered class
of problems does not contain any intermediate problem.

The question has been actively explored recently, yet only few results, and in very
restricted settings, have been obtained. The first of these results is a necessary and
sufficient condition for first-order rewriting of acyclic conjunctive queries without self-
joins [Wijsen 2010] (note that first-order rewritability implies tractability for consistent
query answering). Given that condition, Kolaitis and Pema [2012] proved a dichotomy
theorem for queries containing only two atoms and no self-joins. Even with such strong
restrictions, the proof turned out to be involved.

We show that there is actually a very good reason for the difficulties encountered. We
prove that a dichotomy result for consistent query answering would imply a solution
for a famous long-standing open problem, namely, the dichotomy conjecture for the
constraint satisfaction problem.

1.2. Constraint Satisfaction Problem

The constraint satisfaction problem (CSP) [Meseguer 1989; Tsang 1993; Vardi 2000] is
a fundamental topic in computer science, the main reason being that CSP provides a
common framework for a wide range of problems arising in theoretical computer science
and artificial intelligence. An instance of CSP is determined by a set of variables, a set
of values, and a set of constraints. The goal is to assign a value to each variable in such
a way that the constraints are satisfied.

In general, CSP is in NP and there are families of instances (e.g., Boolean satisfi-
ability) that are known to be NP-complete. An impressive amount of effort has been
devoted to isolate tractable cases and develop heuristics. The classes of instances that
received the most attention are the nonuniform constraint satisfaction problems. Each
of those classes is characterized by a fixed set of allowed constraint relations; examples
include Boolean satisfiability, graph coloring, and systems of equations.

The first major result [Schaefer 1978] concerning nonuniform CSP establishes that
every Boolean nonuniform CSP is either polynomial or NP-complete, where an instance
of CSP is said to be Boolean if its set of values contains exactly two elements. Feder
and Vardi [1998] postulated that the result holds for arbitrary nonuniform CSP; that
is, each nonuniform CSP is either solvable in polynomial time or NP-complete. This
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conjecture is known as the dichotomy conjecture for CSP and is the most important
open problem in the field.

Initially, and despite the considerable attention received by the problem, progress
was slow. However, after the adoption of an algebraic approach, some significant re-
sults have been obtained. The most recent developments include a dichotomy theorem
for nonuniform CSP over sets of values with three elements [Bulatov 2006] and a di-
chotomy theorem for nonuniform conservative CSP [Bulatov 2003; Barto 2011], that is,
nonuniform CSP over a constraint language containing all unary relations. The proofs
of those results are highly complex.

1.3. Linking Two Conjectures About Separation

Our goal is to explain why it appears so difficult to obtain a dichotomy result in the
setting of consistent query answering. We do so by proving that if such a dichotomy
result holds, then so does the dichotomy conjecture for CSP. We were not able to
prove such a result in the setting described by Afrati and Kolaitis (i.e., key constraints
and conjunctive queries). The solution is to turn our attention to GAV constraints
and unions of conjunctive queries (UCQ), which are common well-studied classes of
constraints and queries.

The main result establishes that if the dichotomy conjecture holds for consistent
query answering of UCQs w.r.t a set of GAV constraints, then so does the dichotomy
conjecture for CSP. Given the fact that the dichotomy conjecture for CSP is still open
and that a proof would be the most fundamental breakthrough in the study of CSP, our
result means that there is very little hope in pursuing a dichotomy result for consistent
query answering in its most general form.

Concerning key constraints, even though we do not have a result similar to our main
theorem, we prove that a dichotomy result for consistent query answering of UCQs
with constants with respect to key constraints would yield to an alternative proof of
the dichotomy theorem for conservative CSP. Considering the time and the effort spent
to obtain a dichotomy for conservative CSP, this shows that a dichotomy for consistent
query answering in the setting described earlier is a highly difficult task.

Our third result establishes that a dichotomy result for consistent query answering
of UCQs with respect to egds would yield an alternative proof of the dichotomy theorem
for conservative CSP. Compared to our second result, this shows that if we are willing
to consider egd constraints instead of key constraints, then we do not need constants
in the queries.

The three results presented provide a formal explanation of the difficulty of proving
a dichotomy for consistent query answering; they also emphasize the close connection
between consistent query answering and CSP. It does not mean, though, that no fur-
ther investigation of a dichotomy for consistent query answering in restricted settings
should be pursued and that no meaningful understanding will be gained.

1.4. Related Work

Links between the dichotomy conjecture for (nonuniform) CSP and a possible dichotomy
result for problems arising in database theory have been previously explored. Feder
and Vardi [1998] proved that the logic MMSNP and nonuniform CSP are polynomially
equivalent. Hence, the dichotomy conjecture holds for CSP iff it holds for MMSNP.
Finally, let us mention the results of Calvanese et al. [2000] establishing a connection
between the tractable instances of CSP and the instances of query rewriting that
admit a perfect rewriting in polynomial time. Those results do not prove, though, that
a dichotomy theorem in one setting implies a dichotomy result in the other setting.

This article is an extended version of Fontaine [2013]. It contains the proofs of
Theorem 4.1 and Theorem 4.2. The techniques used in those proofs are nontrivial and
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might offer some insight on how to extend the main result in the case of key constraints,
that is, how to prove that a dichotomy result for consistent query answering of UCQs
with respect to key constraints would yield to a dichotomy theorem for CSP. The case of
key constraints is of particular interest, as this is the setting of the original dichotomy
conjecture.

Organization of the article. In Section 2, we introduce the basics of consistent query
answering and CSP. In Section 3, we present our main result, namely, that a dichotomy
result for consistent query answering of UCQs with respect to GAV constraints implies
a dichotomy theorem for CSP. Finally, in Section 4, we mention two other results
establishing a connection between conservative CSP and consistent query answering
of UCQs with respect to key constraints and egds. Concluding remarks can be found in
Section 5.

2. PRELIMINARIES

2.1. Consistent Query Answering

A schema σ is a set of relation symbols with associated arities. A database D over
the schema σ assigns to each relation symbol Ri with arity ni a finite ni-ary relation
RD

i . The active domain is the set of all elements that occur in any of the relations RD
i .

Databases can be seen as first-order structures by taking the domain to be the active
domain.

If (a1, . . . , an) belongs to RD
i , we say that Ri(a1, . . . , an) is a fact of D. Each database

can be identified with the set of its facts.
A set of constraints � is a set of first-order formulas over σ . A database is consis-

tent with respect to � if it satisfies the formulas in �. Otherwise, the database is
inconsistent. In this article, we focus on the following constraints.

Definition 2.1 [Beeri and Vardi 1984; Lenzerini 2002]. A tuple-generating dependency
(tgd) is a first-order formula of the form

∀x∃y(φ(x) → ψ(x, y)),

where φ and ψ are conjunctions of atomic formulas and x and y are tuples of variables.
Such a tgd is a local-as-view dependency (LAV) if φ consists of a single atomic formula.

A global-as-view dependency (GAV) is a tgd of the form

∀x(φ(x) → R(x′)),

where x and x′ are tuples of variables and the variables in x′ occur in x.
An equality-generating dependency (egd) is a first-order formula of the form

∀x(φ(x) → y = z),

where φ is a conjunction of atomic formulas, x is a tuple of variables, and y and z are
variables occurring in x.

A key constraint is a first-order formula of the form

∀x, y, z(R(x, y) ∧ R(x, z) → y = z),

where x and y and z are tuples of variables.1 Here, two tuples y = (y1, . . . , yn) and
z = (z1, . . . , zn) are equal if yi = zi for all 1 ≤ i ≤ n.

For the sake of readability, we will drop the universal quantifiers when writing
constraints.

1Note that in order to simplify notations, we assumed that the variables in x occur in the first positions of
R. In general, this does not need to be the case.
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Tuple-generating-dependencies (tgds) and egds play a fundamental role in data ex-
change [Fagin et al. 2003; Arenas et al. 2014] and data integration [Lenzerini 2002];
they are used to express the relationship between a local source database and a global
target database. Typically, the relation symbols occurring on the left side of the impli-
cation of a tgd belong to the schema of the source database, while the symbols occurring
on the right side belong to the schema of the target database. Hence, a tgd specifies
how conditions verified by the source imply conditions on the target.

Among the class of tgds, two important subclasses have been extensively studied:
the LAV (local-as-view) dependencies and the GAV dependencies. In the case of GAV,
since only one relation symbol occurs on the right side of the implication, each relation
of the target database is defined in terms of the relations in the source database. In the
case of LAV, relations of the source are described in terms of the relations of the target.

Our main result is concerned with the problem of querying databases that do not sat-
isfy a given set of GAV constraints. The approach of querying inconsistent databases
introduced by Arenas et al. [1999] has been developed around the notion of repair.
Intuitively, a database is a repair of an inconsistent database if it satisfies the con-
straints and differs from the original database in a “minimal way.” Several notions of
minimality have been introduced, giving rise to different definitions of repairs. Here,
we opt for a standard notion of minimality, based on the set inclusion order. If D and
E are databases, we denote by D ⊕ E the symmetric difference of D and E, that is, the
set D\E ∪ E\D.

Definition 2.2 (Repair). Let � be a set of constraints. A database E is a repair of a
database D with respect to � if E � � and there is no database E′ such that E′ � �
and E′ ⊕ D � E ⊕ D.

The queries that we consider in this work are unions of conjunctive queries (UCQs).
Recall that a conjunctive query (CQ) is a formula of the form

q(x) = ∃yφ(x, y),

where φ is a conjunction of atomic formulas. If a variable x occurs in x and not in
y, x is a free variable. A conjunctive query with constants is a CQ for which we allow
the use of constants in the atomic formulas. We stick to the usual convention that the
interpretation of a constant on a database is the constant itself. UCQs also correspond
to the select-project-join-union fragment of relational algebra.

Conjunctive queries are the most fundamental class of queries in database theory
and form the core of all practical query languages. UCQs are disjunctions of conjunctive
queries; they are easily seen to be equivalent to the existential and positive fragment
of first-order logic.

A UCQ is Boolean if it does not contain any free variable. If D is a database and q
an UCQ, we denote by q(D) the set of tuples that belong to the evaluation of q over D.
The answers of a query on an inconsistent database D are obtained by evaluating the
query over all the repairs of D and taking the intersection.

Definition 2.3 (Consistent query answering). Let � be a set of constraints, D a
database, and q a query. The consistent answers of q on D with respect to �, denoted
by CQA(q, D, �), is defined as the set

⋂
{q(E) : E is a repair of D with respect to �}.

If q is a Boolean query, we write CQA(q, D, �) = � if q is true in all the repairs of D
with respect to �. Otherwise, CQA(q, D, �) = ⊥.

The consistent query answering problem of q with respect to �, denoted by CQA(q, �),
is the following problem: given a database D and a tuple, determine whether the
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tuple is a consistent answer of q on D with respect to �. We write CQA(q, �) for the
following problem: given a database D and a tuple, determine whether the tuple is not
a consistent answer of q on D with respect to �.

As mentioned in the introduction, the complexity of consistent query answering
under various classes of constraints has been deeply investigated since the late 1990s.
Since here we only consider constraints that are GAV, egds, or keys, we simply recall
that in each of those cases, the consistent query answering problem is known to be in
CONP [Chomicki and Marcinkowski 2005; Staworko 2007].

The study of the complexity of consistent query answering was pushed further by in-
vestigating the problem of deciding the complexity of CQA(q, �). Although the original
conjecture was stated for key constraints and conjunctive queries, we give here a more
general formulation.

Definition 2.4 (Dichotomy conjecture). Let C be a class of constraints and let Q be a
class of queries such that for all subsets � of C and for all queries q ∈ Q, CQA(q, �) is
in CONP. The dichotomy conjecture with respect to C and Q states that for all subsets
� of C and for all queries q ∈ Q, CQA(q, �) is either in PTIME or is CONP-complete.

CONJECTURE 2.5. The dichotomy conjecture with respect to key constraints and con-
junctive queries holds.

As mentioned earlier, the most recent contribution to the previous conjecture is a
dichotomy result for the case of CQs with two atoms and no self-joins [Kolaitis and
Pema 2012].

2.2. Constraint Satisfaction Problem

An instance of the constraint satisfaction is defined by a set of values, a set of variables,
and a set of constraints and asks whether there is a way to assign a value to each
variable such that the constraints are satisfied. For our purpose, we adopt an equivalent
formulation of the constraint satisfaction problem in terms of homomorphisms [Feder
and Vardi 1998].

Recall that a map h : A → B between two structures is a homomorphism if for all
relation symbols R and for all (a1, . . . , an) ∈ RA, (h(a1), . . . , h(an)) belongs to RB.

Given a map h : A → B and a tuple a = (a1, . . . , an) of elements in A, we denote by
h(a) the tuple (h(a1), . . . , h(an)). Moreover, we denote by A the domain of the structure
A and by B the domain of B.

Definition 2.6. Let B be a structure. The (nonuniform) constraint satisfaction problem
CSP(B) is the following problem: given a structure A, determine whether there is a
homomorphism h : A → B.

The dichotomy conjecture for CSP states that for every structure B, CSP(B) is ei-
ther in PTIME or is NP-complete. It follows from various results [Jeavons et al. 1997;
Bulatov et al. 2000] that this dichotomy is equivalent to the dichotomy for the pointed
homomorphism problem.

Definition 2.7 (Pointed homomorphism problem). Let B be a structure. We define the
pointed homomorphism problem pHom(B) as the following problem: given a structure
A and a partial homomorphism f : A → B, determine whether there is a homomor-
phism g : A → B extending f . Recall that a partial homomorphism from A to B is a
homomorphism from a substructure of A to B.

The dichotomy conjecture for the pointed homomorphism problems states that for
every structure B, pHom(B) is either in PTIME or is NP-complete.
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It was shown [Jeavons et al. 1997] that if B′ is the core of B, then CSP(B) and CSP(B′)
are polynomially equivalent. The core of a structure B is the minimal substructure
(with respect to inclusion) that is a homomorphic image of B.

Moreover, Bulatov et al. [2000] established that if B′ is a core, CSP(B′) is tractable
(resp. NP-complete) iff pHom(B′) is tractable (resp. NP-complete), where pHom(B′) is
the pointed homomorphism problem as defined later. Hence, in order to prove the
dichotomy conjecture, we may restrict ourselves to the study of the pointed homomor-
phism problem.

PROPOSITION 2.8 [JEAVONS ET AL. 1997; BULATOV ET AL. 2000]. The dichotomy conjecture
for the pointed homomorphism problems holds iff the dichotomy conjecture for CSP
holds.

Finally, we recall the dichotomy result proved by Bulatov [2003] for CSP over a
schema containing all unary relations. In terms of homomorphisms, the result is for-
mulated as follows.

Definition 2.9. Let B be a structure. The conservative homomorphism satisfaction
problem cHom(B) is the following problem: given a structure A and given for each a ∈ A,
a set La ⊆ B, determine whether there is a homomorphism h : A → B such that h(a)
belongs to La for all a ∈ A.

THEOREM 2.10 [BULATOV 2003; BARTO 2011]. The dichotomy conjecture for the conser-
vative homomorphism satisfaction problems holds.

Note that if La = A for all a ∈ A, then there is a homomorphism h : A → B such
that h(a) belongs to La (for all a ∈ A) iff there is a homomorphism h : A → B. Hence,
if the complexity of the problem cHom(B) is polynomial, so is the complexity of the
problem CSP(B). However, the converse is not true. This is why the dichotomy result
for the conservative homomorphism satisfaction problems does not imply a dichotomy
for CSP.

3. MAIN RESULT

Our main result establishes a connection between the dichotomy conjecture for CSP
and the dichotomy conjecture for consistent query answering of UCQs with respect to
GAV constraints.

THEOREM 3.1. If the dichotomy conjecture for consistent query answering of UCQs
with respect to GAV constraints holds, then so does the dichotomy conjecture for the
constraint satisfaction problems.

By Proposition 2.8, in order to prove Theorem 3.1, it is sufficient to show that if
the dichotomy conjecture for consistent query answering of UCQs with respect to GAV
constraints holds, then so does the dichotomy conjecture for the pointed homomorphism
problems. This is a direct consequence of Proposition 3.2 proved next.

PROPOSITION 3.2. For each structure B, we can compute a Boolean UCQ q and a set
� of GAV constraints such that pHom(B) and CQA(q, �) are polynomially equivalent;
that is, there is a polynomial reduction from pHom(B) to CQA(q, �) and vice versa.

Note that the exact complexity of the computation of q and � (given the structure B
over a schema σ ) is irrelevant for us in order to infer 2 Theorem 3.1. It is only important
that

2Let us observe that it follows from the proof that the complexity of that computation is polynomial in the
size of B and exponential in the maximal arity occurring in σ .
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—pHom(B) is tractable iff CQA(q, �) is tractable,
—pHom(B) is in CONP iff CQA(q, �) is IN CONP.

This is guaranteed by the fact that pHom(B) and CQA(q, �) are polynomially
equivalent.

PROOF. Let B be a structure over a signature σ . We define � and q over a schema σ ′
in the following way. The schema σ ′ consists of the following symbols:

{Nb : b ∈ B} ∪ {R, CR : R ∈ σ } ∪ {O, S},
where the Nbs are unary, O and S are unary, and R and CR are of arity n if R ∈ σ is of
arity n.

Before defining � and q, we give some intuition about the roles played by each
constraint and by the query. For the sake of the explanation, we only focus on one
reduction, from pHom(B) to CQA(q, �).

Suppose that we want to check for the existence of a homomorphism from a given
structure A to the structure B. We associate with A a database D that contains all
the relations RA and a unary relation SD consisting of the domain of A. Then, we will
define the constraints � in such a way that each repair E of D encodes a partial map
f E : A → B. Moreover, if q is false in E, this will ensure that f E is a homomorphism
and its domain is the domain of A.

The way we encode a partial map in a repair E is by introducing a unary relation Nc
for each c ∈ B. The fact Nc(a) holds in a repair E if the map f E sends the element a to
an element that is not c. For all b ∈ B, we abbreviate the formula

∧
{Nc(x) : c ∈ B, c �= b}

by φb(x). Hence, φb(a) holds in a repair E if f E maps a to b.
Let R be a relation symbol of arity n and let b = (b1, . . . , bn) be a tuple in Bn. If

R(b) /∈ B, we let ψR(b) be the following constraint:

φb1 (x1) ∧ · · · ∧ φbn(xn) → CR(x1, . . . , xn).

In the databases in which q (that we will define later) is false, we will think of CR
as being a subset of the complement of the relation R. Hence, the meaning of the
constraint ψR(b) is as follows. If f E maps ai to bi (for all 1 ≤ i ≤ n) and R(b1, . . . , bn)
does not belong to B, then the tuple (a1, . . . , an) must belong to the complement of R.
That is, the map f E is a homomorphism.

For all b ∈ B, we define χb as the constraint

φb(x) ∧ S(x) → O(x).

In the databases in which q is false, the interpretation of O is the empty set. Recall
that if φb(a) holds in a repair E of a database D, it means that the map f E maps a to b.
The formulas χbs basically say that the set SE and the domain of the map associated
with E have an empty intersection.

Moreover, using the minimality condition of the repairs, we will show that this
implies that those two sets not only have an empty intersection but actually form a
partition of SD.

Next, we let � be the following set of constraints:

{χb : b ∈ B} ∪ {ψR(b) : R(b) /∈ RB}.
We define q as the query

∃xO(x) ∨ ∃xS(x) ∨
∨

{∃x(R(x) ∧ CR(x)) : R ∈ σ }.
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Given a database D, the query q is false in a repair E iff O and S are empty in E and
for all relation symbols R, the intersection R ∩ CR is empty in E. The fact that the
intersection R ∩ CR is empty in E means that CR is a subset of the complement of R.

The intuition behind the fact that S is empty is a bit more complicated. Recall that
in a repair E of a database D in which q is false, the constraints χbs ensure that the
set SE and the domain of the map f E form a partition of SD. In that case, the fact that
SE is empty means that all the elements of SD have an image, or more informally, that
the domain of the map associated with E is “big enough” for our purpose.

In order to prove that pHom(B) and CQA(q, �) are polynomially equivalent, we have
to show that

(a1) there is a polynomial reduction form pHom(B) to CQA(q, �), and
(b1) there is a polynomial reduction from CQA(q, �) to pHom(B).

Before proving that (a) and (b) hold, we proceed with the following claims.

CLAIM 1. Let E be a repair of a database D with respect to �. Then

OD ⊆ OE, SE ⊆ SD,
NE

b ⊆ ND
b , RE = RD,

CD
R ⊆ CE

R,

for all b ∈ B and all relation symbols R. In particular, if E � φb(a), then D � φb(a).

PROOF. Intuitively, the claim follows from the facts that R does not occur in �, S and
Nb only occur on the left sides of logical implications, and CR and O only occur on the
right sides of logical implications.

Formally, let E be a repair of D with respect to �. We define E0 as the following
database:

OE0 = OD ∪ OE, SE0 = SD ∩ SE,
NE0

b = ND
b ∩ NE

b , RE0 = RD,
CE0

R = CE
R ∪ CD

R ,

for all b ∈ B and all relation symbols R. We can check that if � is true in E, then �
remains true in E0. Moreover, D⊕ E0 ⊆ D⊕ E by definition of E0. We can conclude that
E = E0 since E is a repair of D with respect to �. The claim follows.

CLAIM 2. Let E be a repair of a database D with respect to �. Suppose that q is false
in E. Let f be a map such that for all a ∈ dom( f ) and for all b ∈ B,

D � φb(a) iff b = f (a). (1)

We define AD as the induced structure with domain SD. Then there is a homomorphism
g : AD → B such that for all a ∈ dom( f ), g(a) = f (a).

PROOF. We start by proving that

for all a ∈ SD, there is ba ∈ B s. t. E � φba(a) (2)
and if a ∈ dom( f ), then ba = f (a). (3)

Let a be an element of SD. Suppose for contradiction that there is no b such that φb(a)
holds in E. We define E0 as the instance obtained by adding the tuple S(a) to the
database E.

We prove that � is true in E0. Since � is true in E and E0 is obtained by adding S(a)
to E, the constraints � can only be false in E0 if

φb0 (a) ∧ S(a) → O(a)
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is false in E0, for some b0 ∈ B. If this is the case, then φb0 (a) holds in E0. By definition
of E0, this implies that φb0 (a) holds in E, which contradicts the fact that there is no b
such that φb(a) holds in E. Therefore, � is true in E0.

Since q is false in E, SE is empty. Together with the fact that S(a) holds in D and E0,
this implies that

D ⊕ E0 � D ⊕ E.

Since � is true in E0, this contradicts the fact that E is a repair and this finishes the
proof of Equation (2).

Next, we prove Equation (3). Suppose that for some a ∈ dom( f ), we have E � φba(a).
By Claim 1, this implies that D � φba(a). By Equation (1), this can only happen if
ba = f (a). This finishes the proof of Equation (3).

It follows from Equations (2) and (3) that we may pick a map g : AD → B such that

—g(a) = f (a) for all a ∈ dom( f )
—E � φg(a)(a) for all a ∈ SD.

We prove that g is a homomorphism.
Suppose for contradiction that g is not a homomorphism. That is, there are a relation

symbol R of arity n and a tuple a = (a1, . . . , an) such that R(a) holds in AD, but R(g(a))
does not hold in RB. By definition of g,

φg(a1)(a1) ∧ · · · ∧ φg(an)(an) (4)

holds in E. Since � is true in E and R(g(a)) does not belong to B, ψR(g(a)), given by

φg(a1)(x1) ∧ · · · ∧ φg(an)(xn) → CR(x1, . . . , xn),

is true in E. Together with Equation (4), we obtain that CR(a) holds in E.
Since R(a) holds in AD, the tuple R(a) holds in D. By Claim 1, this implies that R(a)

holds in E. Putting everything together, we have

CR(a) ∈ E and R(a) ∈ E.

This contradicts the fact that q is false in E.

We start by proving (a1). That is, there is a polynomial reduction from pHom(B) to
CQA(q, �). Let A be a structure. Let f be a partial homomorphism from A to B. We let
D0 be the following database:

SD0 = A,

OD0 = ∅,

ND0
b = a ∈ dom( f ) : f (a) �= b ∪ dom( f ),

CD0
R = An\RA,

RD0 = RA,

where b ∈ B and R is a relation symbol of arity n. In order to prove (a1), it is sufficient
to show that

CQA(q, �, D0) = ⊥ iff (A, f ) ∈ pHom(B). (5)

For the direction from left to right of Equation (5), suppose that the consistent answer
of q is false. Let E0 be a repair of D0 with respect to � in which q is false. By Claim 2,
there is a homomorphism g0 : AD0 → B such that for all a ∈ dom( f ), g0(a) = f (a).

Hence, in order to prove that (A, f ) belongs to pHom(B), it is sufficient to prove that
AD0 is equal to A. This follows from the definitions of D0 and AD0 .
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Now we show the direction from right to left of Equation (5). Suppose that there is a
homomorphism g1 : A → B such that g1(a) = f (a) for all a ∈ dom( f ). We define F0 as
the following database:

SF0 = ∅,

OF0 = ∅,

CF0
R = An\RA,

RF0 = RA,

NF0
b = {a ∈ A : g1(a) �= b},

where b ∈ Band R is a relation symbol of arity n. It is a simple exercise to prove that � is
true in F0. Intuitively, each constraint χb is true because SF0 is empty. Each constraint
ψR(b) (where R(b) /∈ B) is true because g1 is a homomorphism and CF0

R contains the
complement of RA.

Since � is true in F0, there exists a repair F1 of D0 with respect to � such that

D0 ⊕ F1 ⊆ D0 ⊕ F0. (6)

We show that q is false in F1. This will imply that CQA(q, �, D0) = ⊥.
By definition, the query q is false in F1 iff OF1 = ∅, SF1 = ∅ and for all relation

symbols R, RF1 ∩ CF1
R is empty. Since OF0 = OD0 , it follows from Equation (6) that

OF1 = OD0 . That is, OF1 = ∅.
Next, we prove that for all relation symbols R,

RF1 ∩ CF1
R = ∅. (7)

Let R be a relation symbol of arity n. Since RF0 = RD0 and CF0
R = CD0

R , it follows
from Equation (6) that RF1 = RD0 and CF1

R = CD0
R . This means that RF1 = RA and

CF1
R = An\RA. It follows that Equation (7) holds.
In order to prove that q is false in F1, it remains to show that SF1 = ∅. Suppose

for contradiction that S(a) holds in F1 for some a ∈ A. Since g1(a′) = f (a′) (for all
a′ ∈ dom( f )), it follows from the definition of F0 and D0 that NF0

b ⊆ ND0
b for all b ∈ B.

Together with Equation (6), this implies that for all b ∈ B,

NF0
b ⊆ NF1

b . (8)

It also follows from the definition of F0 that for all a ∈ A,

φg1(a)(a) =
∧

{Nb(a) : b ∈ B, b �= g1(a)}
holds in F0. Together with Equation (8), we obtain that φg1(a)(a) holds in F1. Recall that
we assume that S(a) holds in F1. Hence,

φg1(a)(a) ∧ S(a)

holds in F1. Since χg1(a) given by

φg1(a)(x) ∧ S(x) → O(x)

is true in F1, this implies that O(a) holds in F1, but this contradicts the emptiness of
OF1 proved earlier. This finishes the proof that SF1 = ∅.

Next, we prove (b). That is, there is a polynomial reduction from CQA(q, �) to
pHom(B). Let D be a database. We define X0 as the set

{a : for some b ∈ B, D � ¬Nb(a) ∧ φb(a)}.
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Note that for all a ∈ X0, there is a unique b ∈ B such that D � ¬Nb(a) ∧ φb(a).
Indeed, suppose for contradiction that for some c is distinct from b, then we have
D � ¬Nb(a) ∧ φb(a) and D � ¬Nc(a) ∧ φc(a). By definition of φc and since b �= c, D � φc(a)
implies that a belongs to ND

b , which is a contradiction.
For all a ∈ X0, we let f D(a) be the unique element b ∈ B such that

D � ¬Nb(a) ∧ φb(a).

Next, we define X as the set

{a : for some b ∈ B, D � φb(a)}.
Note that X0 ⊆ X, and if a belongs to X\X0, then D � Nb(a) for all b ∈ B. We will make
sure that the domain of structure associated with D is a subset of X. Intuitively, X0
contains the elements a that can only be mapped to f D(a), while the elements in X\X0
can have an arbitrary image.

We define AD as in Claim 2. That is, AD is the induced substructure with domain SD.
In order to prove (b1), we exhibit a set of three conditions (the satisfiability of which

can be checked in polynomial time) such that if D satisfies one of those conditions, then
it is clear that the consistent answer of q is true; and if D does not satisfy any of those
conditions, then

(AD, f D) ∈ pHom(B) iff CQA(q, D, �) = ⊥.

This will show that there is a polynomial reduction from CQA(q, �) to pHom(B).
The three conditions are given by

(C1) for some relation symbol R, RD ∩ CD
R �= ∅,

(C2) SD\X �= ∅,
(C3) OD �= ∅.

We prove that

(A1) if (C1), (C2), or (C3) holds, then CQA(q, D, �) = �;
(B1) if neither (C1) nor (C2) nor (C3) holds, then

(AD, f D) ∈ pHom(B) iff CQA(q, D, �) = ⊥. (9)

We start by showing (A1). We pick a repair G0 of D with respect to �. Suppose that
(C1) holds. That is, R(a) and CR(a) belong to D for some relation symbol R and some
tuple a. By Claim 1, this implies that R(a) and CR(a) belong to G0. Hence, q is true in G0.

Next, suppose that (C2) holds. Suppose that there exists a such that S(a) holds in D
and a does not belong to X. Let G1 be the database obtained by adding the tuple S(a)
to the database G0. We prove that � is true in G1.

Since � is true in G0 and G1 is obtained from G0 by adding S(a), the only way for �
to be false in G0 is if the constraint

S(a) ∧ φb(a) → O(a)

is false in �, for some b ∈ B. Suppose that S(a)∧φb(a) holds in G1 for some b ∈ B. Since
φb(a) holds in G1, it follows from Claim 1 that φb(a) holds in D. Hence, a belongs to X,
which is a contradiction. This finishes the proof that � is true in G1.

It follows from definition of G1 that D ⊕ G1 ⊆ D ⊕ G0. Since G0 is a repair of D with
respect to �, this can only happen if G0 = G1. Hence, S(a) holds in G0. By definition of
q, this implies that q is true in G0.

Now assume that (C3) holds. That is, OD �= ∅. By Claim 1, this means that OG0 �= ∅.
Hence, q is true in G0.

ACM Transactions on Computational Logic, Vol. 16, No. 1, Article 7, Publication date: March 2015.



Why Is It Hard to Obtain a Dichotomy for Consistent Query Answering? 7:13

Next, we prove (B1). Suppose that neither (C1) nor (C2) nor (C3) holds. For the
direction from right to left of Equation (9), suppose that the consistent answer of q is
false. It follows from Claim 2 that there is a homomorphism h0 : AD → B such that
h0(a) = f D(a) for all a ∈ dom( f D). Hence, (AD, f D) belongs to pHom(B).

For the direction from left to right of Equation (9), suppose that there is a homo-
morphism h1 : AD → B such that h1(a) = f D(a) for all a ∈ dom( f D). We let H0 be the
following database:

RH0 = RD,

CH0
R = CD

R ∪ {a ∈ (SD)n : h1(a) /∈ RB},
SH0 = ∅,

OH0 = ∅,

NH0
b = {a ∈ SD : h1(a) �= b},

where b ∈ B and R is a relation symbol of arity n. It is easy to show that � is true in H0.
Basically, this follows from the facts that SH0 is empty and that h1 is a homomorphism.
Since � is true in H0, there is a repair H1 of D with respect to � such that D ⊕ H1 ⊆
D ⊕ H0.

We show that q is false in H1. We start by proving that ∃xO(x) is false is H1. Since
(C3) does not hold, OD is empty. Together with OH0 = ∅ and D ⊕ H1 ⊆ D ⊕ H0, we
obtain that OH1 = ∅.

Next, we prove that ∃xS(x) is false in H1. Suppose that there is a fact S(a) in H1. We
will derive a contradiction by showing that

φh1(a)(a) ∧ S(a) → O(a) (10)

is false in H1, which is impossible as H1 is a repair with respect to �.
We proved previously that OH1 = ∅. We also assume that S(a) holds in H1. Hence,

Equation (10) is false iff φh1(a)(a) holds in H1. Since D ⊕ H1 ⊆ D ⊕ H0, in order to show
that φh1(a)(a) holds in H1, it is sufficient to prove that

H0 � φh1(a)(a) and D � φh1(a)(a). (11)

The fact that φh1(a)(a) holds in H0 follows from the definition of H0. Next, we prove that
φh1(a)(a) is true in D.

Since SH0 = ∅, S(a) holds in H1, and D ⊕ H1 ⊆ D ⊕ H0, S(a) must belong to D. Since
(C2) does not hold, a belongs to X.

—If a belongs to X\X0, then Nb(a) holds in D for all b ∈ B. In particular, φh1(a)(a) is true
in D.

—If a belongs to X0, then φ f D(a)(a) holds in D. Since f D(a′) = h1(a′) for all a′ ∈ dom( f D),
this implies that φh1(a)(a) is true in D.

This finishes the proof of Equation (11) and the proof that ∃xS(x) is false in H1.
Since OH1 = ∅ and SH1 = ∅, in order to show that q is false in H1, it remains to be

proven that for all relation symbols R,

∃x(R(x) ∧ CR(x))

is false in H1. Suppose for contradiction that there exists a tuple a such that R(a) and
CR(a) belong to H1. We prove that this implies

R(a) ∈ D and CR(a) ∈ H0. (12)
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By Claim 1, since R(a) holds in H1, R(a) holds in D. Since D ⊕ H1 ⊆ D ⊕ H0 and
CD

R ⊆ CH0
R , we have CH1

R ⊆ CH0
R . In particular, if CR(a) holds in H1, then CR(a) holds in

H0. Hence, Equation (12) holds.
Since (C1) does not hold, Equation (12) can only happen if

R(a) ∈ D and CR(a) ∈ H0 and CR(a) /∈ D.

By definition of H0, this means that h1(a) does not belong to RB. Since h1 is a homomor-
phism, it follows that R(a) does not belong to AD. This contradicts the fact that R(a)
holds in D. This completes the proof that (B1) holds, hence the proof of the existence of
a polynomial reduction from CQA(q, �) to pHom(B).

4. OTHER RELATED RESULTS

As mentioned in the introduction, we were not able to adapt the proof of Proposition 3.2
to the setting of key constraints. However, if we restrict our attention to conservative
CSP, we can prove a similar result.

THEOREM 4.1. There is a key constraint φ such that for each structure B, we can
compute a Boolean UCQ q using constants such that cHom(B) and CQA(q, φ) are poly-
nomially equivalent.

As a consequence, a dichotomy result for consistent query answering with respect to
keys and UCQs with constants would provide an alternative proof for the dichotomy
theorem for conservative CSP.

If we accept trading keys for egds, we can prove a similar result without using
constants in the queries.

THEOREM 4.2. For each structure B, we can compute a Boolean UCQ q and a set of
egds � such that cHom(B) and CQA(q, �) are polynomially equivalent.

We provide now the proof the two previous results. We start with Theorem 4.1.

PROOF (OF THEOREM 4.1). Let B be a structure over a signature σ . We define φ and q
over a schema σ ′ in the following way. The schema σ ′ consists of the following symbols:

{F} ∪ {R : R ∈ σ },
where F is binary and R is of arity n if R ∈ σ is of arity n.

Before defining q and φ, we give some intuition, and for that purpose, we only
focus on the reduction from cHom(B) to CQA(q, φ). Fix a structure A and a family
L = {La ⊆ B : a ∈ A}. Suppose that we want to check whether (A,L) ∈ cHom(B).

We associate with (A,L) a database D. The database D contains all the relations RA

and for each (a, b) such that b ∈ La, D contains the fact F(a, b). In other words, the
presence of F(a, b) in D means that we are allowed to map a to b. The key φ is defined
in such a way that each repair E of the database encodes a map f E : A → B such that
f E(a) = b iff F(a, b) ∈ E. So the key must express that for each a, there is at most one
element b such that F(a, b) ∈ E. We let φ be the following key:

F(x, u) ∧ F(x, v) → u = v.

Next, the query q is defined such that q is false in a repair E iff then f E is a homo-
morphism. For all R(b) with b = (b1, . . . , bn), we let qR(b) be the following conjunctive
query:

∃x1, . . . , xn(R(x1, . . . , xn) ∧ F(x1, b1) ∧ · · · ∧ F(xn, bn)).
We define q by

∨
{qR(b) : R(b) /∈ B}.
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We will show that q is false in a repair E iff f E is an homomorphism. This finishes
the definition of q and φ. Now we show that cHom(B) and CQA(q, φ) are polynomially
equivalent. That is, we have to prove

(a2) there is a polynomial reduction from cHom(B) to CQA(q, φ), and
(b2) there is a polynomial reduction from CQA(q, φ) to cHom(B).

The proof that (a2) and (b2) hold is based on the following claim. Given a database
D, we define AD as the set

{a : for some b ∈ B, F(a, b) ∈ D},
and we define AD as the induced substructure with domain AD. For all a ∈ AD, we let
LD

a be the set {b ∈ B : F D(a, b)} and we let LD be the set {LD
s : s ∈ AD}.

CLAIM 3. Let D be a database. We assume that AD and LD are defined as earlier. Then,

CQA(q, D, φ) = ⊥ iff (AD,LD) ∈ cHom(B). (13)

PROOF. Suppose first that AD is empty. Then it is clear that (AD,LD) belongs to
cHom(B). Moreover, it can easily be seen that in case AD is empty, CQA(q, D, φ) is false.

So assume that AD is not empty. For the implication from left to right, suppose that
CQA(q, D, φ) = ⊥. Hence, there is a repair E of D such that E � q. First, we show that

for all a ∈ AD, there is a unique b such that F(a, b) ∈ E. (14)

Since φ is true in E, for all a ∈ AD, there is at most one element b such that F(a, b)
holds in E.

Next, suppose for contradiction that for some a ∈ AD, there is no b such that F(a, b)
holds in E. By definition of AD, there exists b0 ∈ B such that F(a, b0) holds in D. We let
E0 be the database obtained from the database E by adding the tuple F(a, b0). The key
constraint φ remains true in E0, and moreover, E � E0 ⊆ D. This contradicts the fact
that E is a repair of D. This finishes the proof of Equation (14).

It follows that there is a unique map f : AD → B such that

F(a, f (a)) holds in E for all a ∈ A. (15)

In order to show that (AD,LD) belongs to cHom(B), it is sufficient to prove that f (a)
belongs to LD

a for all a ∈ AD and f is a homomorphism.
We start by proving that f (a) belongs to LD

a for all a ∈ AD. Let a be an element of AD.
Since F(a, f (a)) belongs to E, this implies that F(a, f (a)) also belongs to D. Therefore,
f (a) belongs to LD

a .
Next, we prove that f is a homomorphism. Suppose for contradiction that f is not a

homomorphism. That is, there is a tuple a = (a1, . . . , an) and a relation symbol R such
that R(a) holds in AD and R( f (a)) does not belong to B. By definition of AD, if R(a) holds
in AD, then R(a) belongs to D. Since R does occur in the constraint φ, this implies that
R(a) holds in E. Together with Equation (15), we obtain

E � R(a) ∧ F(a1, f (a1)) ∧ · · · ∧ F(an, f (an)).

That is, qR( f (a)) is true in E. Since R( f (a)) does not belong to B, this implies that q is
true in E, which is a contradiction. This finishes the proof that f is a homomorphism.

We show now the implication from right to left of Equation (13). Assume that there
is a homomorphism g : AD → B such that for all a ∈ AD, g(a) ∈ LD

a . We define XD as the
set

{r /∈ AD : for some s, F(r, s) ∈ D}.
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We pick an arbitrary map h with domain XD such that for all a ∈ XD, F D(a, h(a)) holds.
We define the database G by

FG = {(a, g(a)) : a ∈ AD} ∪ {(a, h(a)) : a ∈ XD},
RG = RD,

for all relation symbols R. The database G is a repair of D with respect to φ. Hence, in
order to prove the implication from right to left of Equation (13), it is sufficient to show
that q is false in G.

Suppose for contradiction that q is true in G. By definition of q, this means that there
is a tuple R(b) /∈ B with b = (b1, . . . , bn) such that qR(b) is true in G. That is, there exists
a1, . . . , an such that

G � R(a1, . . . , an) ∧ F(a1, b1) ∧ . . . F(an, bn).

We prove that this implies that

R(a1, . . . , an) ∈ AD and R(g(a1), . . . , g(an)) /∈ B, (16)

which contradicts the fact that g is a homomorphism. For all 1 ≤ i ≤ n, since bi belongs
to B and F(ai, bi) belongs to G, ai belongs to AD. Since (a1, . . . , an) belongs to (AD)n and
R(a1, . . . , an) holds in G, R(a1, . . . , an) holds in AD.

In order to prove Equation (16), it remains to be shown that R(g(a1), . . . , g(an)) does
not belong to B. Recall that we proved that ai belongs to AD for all 1 ≤ i ≤ n. By definition
of FG, if ai belongs to AD and F(ai, bi) holds in G, then bi = g(ai). Recall also that R(b)
does not belong to B. Together with bi = g(ai), this implies that R(g(a1), . . . , g(an)) does
not belong to B.

Now that we finished the proof of the claim, we start properly the proof of the fact
that cHom(B) and CQA(q, φ) are polynomially equivalent. First we prove that there is
a polynomial reduction from cHom(B) to CQA(q, φ). Let A be a structure and for all
a ∈ A, let La be a subset of B. We let L be the set {La : a ∈ A}. Without loss of generality,
we may assume that La �= ∅ for all a ∈ A. We define a database D0 by

F D0 = {(a, b) ∈ A× B : b ∈ La},
RD0 = RA,

for all relation symbols R. In order to prove (a), it is sufficient to show that

CQA(q, D0, φ) = ⊥ iff (A,L) ∈ cHom(B). (17)

It follows from the claim that

CQA(q, D0, φ) = ⊥ iff (AD0 ,LD0 ) ∈ cHom(B).

It also follows from the definition of D0 that AD0 = A and LD0
a = La for all a ∈ A.

Together with the previous equivalence, we obtain Equation (17). This finishes the
proof of the existence of polynomial reduction from cHom(B) to CQA(q, φ).

Next, we prove that there is a polynomial reduction from CQA(q, φ) to cHom(B). Let
D be a database. It follows from the previous claim that

CQA(q, D, φ) = ⊥ iff (AD,LD) ∈ cHom(B).

This implies that there is a polynomial reduction from CQA(q, φ) to cHom(B).

We prove now Theorem 4.2. Recall that Theorem 4.2 is the following result. For each
structure B, we can compute a Boolean UCQ q and a set of egds � such that cHom(B)
and CQA(q, �) are polynomially equivalent.
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PROOF (OF THEOREM 4.2). Let B be a structure over a signature σ . We define � and q
over a schema σ ′ in the following way. The schema σ ′ consists of the following symbols:

{Fb : b ∈ B} ∪ {R : R ∈ σ } ∪ {Q},
where Q is unary, Fb is unary, and R is of arity n if R ∈ σ is of arity n.

We give some intuition about the constraints � and the query q that we introduce,
and we focus first on the reduction from cHom(B) to CQA(q, �). Fix a structure A and
a family L = {La ⊆ B : a ∈ A}. We want to check whether (A,L) belongs to cHom(B).

We define a database DA containing the facts R(a) for all a ∈ RA and the facts Fb(a),
where a ∈ A and b ∈ La. Moreover, DA contains a special fact Q(⊥0) where ⊥0 /∈ A∪ B.
The idea is that in each repair E, either QE is empty or E encodes a map f E : A → B
such that f E(a) = b iff Fb(a) ∈ E.

If QE �= ∅, the way we ensure that E encodes a map is by introducing for all b, c ∈ B
such that b �= c, the egd φb,c given by

Fb(x) ∧ Fc(x) ∧ Q(y) → x = y.

Since QE is not empty and for all b, QE ∩ FE
b = ∅, the constraints φb,cs express that for

each a, there is at most one b such that Fb(a) holds in E. If QE consists of exactly one
element and for all b, QE ∩ Fb = ∅, we say that QE is well behaved.

In general, if we are given an arbitrary database D (and not a database of the form
DA), there is no guarantee that in each repair E of D, either QE is empty or QE is well
behaved. We enforce this by introducing the following constraint and query. We let φ
be the egd given by

Q(x) ∧ Q(y) → x = y.

The egd φ ensures that Q has at most one element in each repair. Next, we define q1
as the query

∨
{∃x(Q(x) ∧ Fb(x)) : b ∈ B}.

If a repair E satisfies φ and falsifies q1, then either QE = ∅ or QE is well behaved.
Next, we introduce a query q2 such that q2 is false in a repair E encoding a map f E

(as defined earlier) iff f E is a homomorphism. For all R(b) with b = (b1, . . . , bn), we let
qR(b) be the following conjunctive query:

∃x1, . . . , xn(R(x1, . . . , xn)) ∧ Fb1 (x1) ∧ · · · ∧ Fbn(xn)),

and we let q2 by the query given by
∨

{qR(b) : R(b) /∈ B}.
Let E be a repair for which there is a map f E : A → B such that f E(a) = b iff Fb(a) ∈ E.
We can prove that q2 is true in E iff f E is not a homomorphism.

Finally, we define � as the set of constraints

{φb,c : b, c ∈ B, b �= c} ∪ {φ},
and we let q be the query q1 ∨q2. To summarize our informal intuition: in the repairs E
of a database D in which QE �= ∅ and q1 is false, QE is well behaved, E encodes a map
f E : A → B, and f E is a homomorphism iff q2 is false.

Now we prove formally that cHom(B) and CQA(q, �) are polynomially equivalent.
That is, we have to show that

(a3) there is a polynomial reduction from cHom(strB) to CQA(q, �), and
(b3) there is a polynomial reduction from CQA(q, �) to cHom(B).
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We now proceed with the proof that (a3) and (b3) hold. We start with the following
claim. Given a database D, we define AD as the set

F D
b1

∪ · · · ∪ F D
bk

,

and we define AD as the structure with domain AD and

RA
D = RD ∩ (AD)n

for all relation symbols R of arity n.

CLAIM 4. Let D be a database. The structure AD is defined as earlier. Assume that
QD �= ∅ and � is true in D. Then, if q1 is false in D, there is a unique map f D : AD → B
such that for all a ∈ AD, Fb(a) holds in D, where b = f D(a). Moreover,

f D is a homomorphism iff D � q2.

PROOF. It follows from the definition of AD that there is a map f : AD → B such that
for all a ∈ AD, Ff (a)(a) holds in D. Suppose that q1 is false in D. We prove that such a
map is uniquely defined. If this is not the case, there exist a ∈ AD and b, c ∈ B such
that b �= c and Fb(a) and Fc(a) belong to D. Since QD �= ∅, we can pick ⊥0 such that
⊥0 ∈ QD. Thus,

Fb(a) ∧ Fc(a) ∧ Q(⊥0)

holds in D. Since � is true in D, this implies that a = ⊥0. That is,

D � Fb(a) ∧ Q(a).

This contradicts the fact that q1 is false in D.
Next, we prove that

D � q2 iff f is not a homomorphism. (18)

Hence, we may define f D as the map f .
The formula q2 is true in D iff there is a tuple R(b) /∈ B with b = (b1, . . . , bn) such that

qR(b) is true in D. The query qR(b) is true in D iff there exists a tuple a = (a1, . . . , an)
such that

D � R(a1, . . . , an) ∧ Fb1 (a1) ∧ · · · ∧ Fbn(an).

Observe that since Fbi (ai) ∈ D, the element ai belongs to AD for all 1 ≤ i ≤ n. Hence, by
definition of AD,

R(a1, . . . , an) ∈ D iff R(a1, . . . , an) ∈ AD.

Moreover, it follows from the unicity of f that Fbi (ai) ∈ D iff bi = f (ai) for all 1 ≤ i ≤ n.
Putting everything together, we obtain that q2 is true in D iff there are a tuple

R(b) /∈ B and a tuple (a1, . . . , an) such that

R(a1, . . . , an) ∈ AD, f (a1) = b1, . . . , f (an) = bn,

where b = (b1, . . . , bn). This happens iff f is not a homomorphism.

CLAIM 5. Let E be a repair of a database D with respect to � such that QE = ∅. Then,
RE = RD and FE

b = F D
b for all b ∈ B and for all relation symbols R.

PROOF. Let G be the following database:

QG = ∅,

RG = RD,

FG
b = F D

b ,
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where b ∈ B and R is a relation symbol. Since QE = ∅, we have E ⊆ G ⊆ D. Moreover,
since QG = ∅, it is easy to check that � is true in G. As E is a repair of D with respect
to �, this can only happen if E = G. The claim follows.

Now that we finished the proof of the two claims, we start properly the proof of the
fact that cHom(B) and CQA(q, �) are polynomially equivalent. First we show that there
is a polynomial reduction from cHom(B) to CQA(q, �). Let A be a structure and for all
a ∈ A, let La be a subset of A. Without loss of generality, we may assume that La �= ∅
for all a ∈ A. We let L be the set {La : a ∈ A}. We define a database D0 by

QD0 = {⊥0},
F D0

b = {a ∈ A : b ∈ La},
RD0 = RA,

where b ∈ B and R is a relation symbol. In order to show (a), it is sufficient to prove
that

CQA(q, D0, �) = ⊥ iff (A,L) ∈ cHom(B). (19)

Suppose that CQA(q, D0, �) = ⊥. Hence, there is a repair E0 of D0 such that E0 � q.
We make the following case distinction:

—Suppose that QE0 = ∅. Let f : A → B be an arbitrary map such that for all a ∈ A,
f (a) ∈ La. We prove that f is a homomorphism. Suppose for contradiction that f is
not a homomorphism. Hence, there are tuples b = (b1, . . . , bn) and a = (a1, . . . , an)
such that

a ∈ RA, b /∈ RB, and f (ai) = bi

for all 1 ≤ i ≤ n. As f (ai) and bi are equal, bi belongs to Lai . By definition of F D0
b , this

implies that Fbi (ai) ∈ D0. Together with the facts a ∈ RA and RD0 = RA, we obtain

D0 � R(a1, . . . , an) ∧ Fb1 (a1) ∧ . . . Fbn(an).

Since QE0 = ∅, by Claim 5, this implies that

E0 � R(a1, . . . , an) ∧ Fb1 (a1) ∧ . . . Fbn(an).

That is, qR(b) is true in E0. Since b /∈ RB, this implies that q is true in E0, which is a
contradiction.

—Next, suppose that QE0 �= ∅. It follows from Claim 4 that there is a homomorphism
f E0 : AE0 → B such that Fb(a) holds in E0, for all a ∈ AE0 and where b = f E0 (a).
Hence, in order to prove that (A,L) belongs to cHom(B), it is sufficient to show that

AE0 = A and for all a ∈ A, f E0 (a) ∈ La.

We prove that for all a ∈ A, f E0 (a) belongs to La. Let a be an element of A and let b
be the image f E0 (a). Since Fb(a) holds in E0 and E0 is a subset of D0, Fb(a) holds in
D0. By definition of F D0 , b belongs to La.

Next, we show that AE0 = A. By definition of AE0 , this is equivalent to show that
AE0 is equal to A. Since E0 is a subset of D0, it is immediate that AE0 is a subset of
AD0 . Moreover, since F D0

b is a subset of A (for all b), it is clear that AD0 is a subset of
A. Hence, AE0 is a subset of A.

Now suppose for contradiction that AE0 is a proper subset of A. That is, for some
a ∈ A, there is no b such that Fb(a) holds in E0. Since La �= ∅, there exists b0 ∈ A
such that Fb0 (a) holds in D0. We let E1 be the database obtained from the database
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E0 by adding the tuple Fb0 (a). The constraint � remains true in E1, and moreover,
E0 � E1 ⊆ D0. This contradicts the fact that E0 is a repair of D0. This finishes the
proof that AE0 = A.

We show now the implication from right to left of Equation (19). Assume that there
is a homomorphism g : A → B such that for all a ∈ A, g(a) ∈ La. We have to find a
repair G0 of D0 with respect to � in which q is false. We define the database G0 by

QG0 = {⊥0},
FG0

b = {a ∈ A : g(a) = b},
RG0 = RD0 ,

where b ∈ B and R is a relation symbol. The instance G0 is a repair of D0 with respect
to �. We show that q is false in G0.

Since QG0 ∩ FG0
b is empty (for all b), q1 is false in G0. Next, we prove that q2 is false

in G0. Since q1 is false in G0 and QG0 �= ∅, it follows from Claim 4 that in order to
prove that q2 is false in G0, it is enough to show that f G0 is a homomorphism. As g is
a homomorphism, it is sufficient to prove that f G0 = g. Recall that f G0 is the unique
map such that Fb(a) holds in G0, for all a ∈ AG0 and where b = f G0 (a). By definition of
G0,

Fg(a)(a) ∈ G0 for all a ∈ A.

Hence, f G0 = g and this finishes the proof that q is false in G0.
Next, we prove (b3). That is, there is a polynomial reduction from CQA(q, �) to

cHom(B). Let D1 be a database. We let AD1 and {LD1
a : a ∈ AD1} be as defined in Claim 4.

That is,

AD1 =
⋃

{Fb : b ∈ B},
RA

D1 = RD1 ∩ (AD1 )n,

La = {b ∈ B : Fb(a) ∈ D1},
where R is a relation symbol of arity n and a ∈ A. In order to make notation easier, we
abbreviate AD1 by A1, AD1 by A1, and LD1

a by L1
a. We let L1 be the set {L1

a : a ∈ A1}.
In the proof, we make use of the notion of Q-compatibility that we define as follows.

We say that an element x is Q-compatible if x belongs to QD1 and for all a ∈ A1\{x},
there is a unique b such that Fb(a) holds in D1. The intuition behind the notion of
Q-compatibility is as follows: a database D admits a Q-compatible element iff in each
repair E, QE is not empty. We prove this property later.

It is clear that CQA(q, D1, �) = ⊥ iff

—either there is a repair H1 such that QH1 = ∅ and H1 � q,
—or there is a repair H2 such that QH2 �= ∅ and H2 � q.

We will show that

(A3) [there is a repair H1 such that H1 � q and QH1 = ∅] iff [D1 � q2 and there is no
Q-compatible x], and

(B3) [there is a repair H2 such that H2 � q and QH2 �= ∅] iff [(A1,L1) ∈ cHom(B) and

D1 � ∃x(Q(x) ∧ ¬Fb1 (x) ∧ · · · ∧ ¬Fbk(x))]. (20)

Recall that {b1, . . . , bk} is the domain of B.

Provided that (A3) and (B3) hold, we obtain that CQA(q, D1, �) = ⊥ iff
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—either D1 � q2 and there is no x Q-compatible,
—or (A1,L1) ∈ cHom(B) and Equation (20) holds.

Since checking for the existence of a Q-compatible element, the satisfaction of Equa-
tion (20), and the fact that D � q2 can be performed in polynomial time, this equivalence
shows that there is a polynomial reduction from CQA(q, �) to cHom(B).

Hence, in order to prove (b3), it is sufficient to show that (A3) and (B3) hold. We start
by proving that (A3) holds. We do so by showing that

(i) there is a repair H1 such that QH1 = ∅ iff there is no Q-compatible element, and
(ii) if H1 is a repair such that QH1 = ∅, H1 � q iff D1 � q2.

First we prove (i). For the direction from left to right, let H1 be a repair such that
QH1 = ∅ and suppose for contradiction that there is an element ⊥1 that is Q-compatible.
We define I1 as the database obtained by adding the fact Q(⊥1) to H1.

Using the fact that ⊥1 is Q-compatible, we check that the constraints � remain true
in I1. Since ⊥1 is the only element in QI1 , the egd φ is true in I1. Next, let b, c ∈ B be
such that b �= c. We have to prove that φb,c is true in I1. Suppose that

I1 � Fb(a) ∧ Fc(a) ∧ Q(a′). (21)

We have to prove that a = a′. Suppose for contradiction that a �= a′. By definition of I1,
we have that I1 � Q(a′) implies a′ = ⊥1. Hence, a �= ⊥1. Together with the fact that ⊥1 is
Q-compatible, this implies that there is a unique element ba ∈ B such that Fba(a) ∈ D1.
Since I1 is a subset of D1, Equation (21) implies that Fb(a) and Fc(a) belong to D1, which
contradicts the unicity of ba. This finishes the proof that the constraints of � are true
in I1.

Moreover, since QH1 = ∅, we have H1 � I1 ⊆ D1. This contradicts the fact that H1 is
a repair of D1 with respect to �.

Next, we prove the implication from right to left of (i). Suppose that there is no
element Q-compatible. We define H1 as the following database

QH1 = ∅,

RH1 = RD1 ,

F H1
b = F D1

b ,

where b ∈ B and R is a relation symbol. We show that H1 is a repair. Suppose for
contradiction that H1 is not a repair. Since H1 � �, there is a repair I2 such that
H1 � I2 ⊆ D1. By definition of H1, this can only happen if there is a fact of the form
Q(⊥2) in I2.

We prove that ⊥2 is Q-compatible, which is a contradiction. Recall that ⊥2 is Q-
compatible iff ⊥2 holds in QD1 , and for all a ∈ A1\{⊥2}, there is a unique b such that
Fb(a) ∈ D1.

By definition, Q(⊥2) holds in I2, and since I2 ⊆ D1, we have that Q(⊥2) belongs to
D1. Next, we prove that for all a ∈ A1\{⊥2}, there is a unique b0 such that F D1

b0
(a). Take

a ∈ A1\{⊥2}. For all c, d ∈ B such that c �= d, and

Fc(a) ∧ Fd(a) ∧ Q(⊥2) → ⊥2 = a

holds in I2. Since a �= ⊥2, this implies that there is a unique b0 such that Fb0 (a) ∈ I2.
Together with F D1

c = F I2
c (for all c ∈ B), this means that there is a unique b0 such that

Fb0 (a) ∈ D1. This finishes the proof of Q-compatibility.
Next, we prove (ii). That is, if H1 is a repair such that QH1 = ∅, then H1 � q iff

D1 � q2. Let H1 be a repair such that QH1 = ∅. For the implication from right to left,
suppose that q2 is false in D1. Since � consists of egds, a repair of D1 with respect
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to � is a substructure of D1. Intuitively, an egd is not a constraint that can help us
“generate” new facts. Since H1 is a substructure of D1 and q2 is false in D1, q2 is also
false in H1. Moreover, as QH1 = ∅, q1 is also false in H1. Hence, H1 � q.

Next, we prove the implication from left to right of (ii), suppose that q is false in H1.
Since QH1 = ∅, it follows from Claim 5 that

RH1 = RD1 and F H1
b = F D1

b (22)

for all relation symbols R and for all b ∈ B. Since q is false in H1, q2 is false in H1.
Observe that the only symbols occurring in q2 are the relation symbols Rs and Fbs.
Together with Equation (22) and the fact that q2 is false in H1, this means that q2 is
false in D1.

We show now that (B3) holds. That is, there is a repair H2 such that H2 � q and
QH2 �= ∅ iff (A1,L1) ∈ cHom(B) and

D1 � ∃x(Q(x) ∧ ¬Fb1 (x) ∧ · · · ∧ ¬Fbk(x)). (23)

First we prove the direction from left to right of (B3). Suppose that there is a repair H2
such that H2 � q and QH2 �= ∅. Let ⊥3 be an element in QH2 . We start by showing that
(A1,L1) ∈ cHom(B). Since QH2 �= ∅ and q is false in H2, it follows from Claim 4 that
there is a homomorphism f H2 : AH2 → B such that for every a ∈ AH2 , Fb(a) holds in H2
and b = f H2 (a). In order to prove that (A1,L1) ∈ cHom(B), it is enough to show that

AH2 = AD1 (24)

and for all a ∈ AH2 , f H2 (a) ∈ L1
a. (25)

By definitions of AH2 and AD1 , Equation (24) holds iff AH2 = AD1 . Since � is a set of egds
and H2 is repair of D1, H2 is a subset of D1. Hence, AH2 ⊆ AD1 .

Suppose for contradiction that AH2 is a proper subset of AD1 . That is, there is a
fact Fb(a) in D1 and there is no c ∈ B such that Fc(a) ∈ H2. We let H3 be the database
obtained from H2 by adding the tuple Fb(a). Since there is no c ∈ Bsuch that Fc(a) ∈ H2,
� remains true in H3. Moreover,

H2 � H3 ⊆ D1.

This contradicts the fact that H2 is a repair and proves Equation (24).
Next, we show Equation (25). Let a be an element of AH2 . By definition of f H2 , if

b = f H2 (a), then Fb(a) holds in H2. Since H2 is a subset of D1, this implies that Fb(a)
holds in D1. By definition of L1

a, this implies that b belongs to L1
a. This finishes the proof

that (A1,L1) ∈ cHom(B).
Next, we show Equation (23) by proving that

D1 � Q(⊥3) ∧ ¬Fb1 (⊥3) ∧ · · · ∧ ¬Fbk(⊥3). (26)

Since ⊥3 belongs to QH2 , the element ⊥3 also belongs to QD1 . Suppose for contradiction
that Fb(⊥3) holds in D1 for some b in B. Hence, ⊥3 belongs to AD1 . By Equation (24),
⊥3 belongs to AH2 . That is, for some c ∈ B, Fc(⊥3) holds in H2. Since ⊥3 belongs to QH2 ,
this implies that

∃x(Q(x) ∧ Fc(x))

is true in H2. This is not possible, as q is false in H2. This contradiction finishes the
proof of Equation (26) and the proof of the implication from left to right of (B3).

Now we prove the implication from right to left of (B3). Suppose that (A1,L1) belongs
to cHom(B) and that there is an element ⊥4 such that

D1 � Q(⊥4) ∧ ¬Fb1 (⊥4) ∧ · · · ∧ ¬Fbk(⊥4). (27)
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We pick a homomorphism g1 : A1 → B such that g1(a) belongs to L1
a for all a ∈ A1. We

define J1 as the following subset of D1:

QJ1 = {⊥4},
RJ1 = RD1 ,

F J1
b = {a ∈ A1 : g1(a) = b},

where R is a relation symbol and b ∈ B. The database J1 is a repair of D1 with respect
to �. Next, we prove that J1 � q.

First, we prove that q1 is false in J1. Suppose for contradiction that q1 is true in J1.
Then there are b ∈ B and a ∈ A1 such that

J1 � Q(a) ∧ Fb(a).

Since QJ1 = {⊥4}, this implies that J1 � Fb(⊥4). Since J1 is a subset of D1, we also have
that D1 � Fb(⊥4), which contradicts Equation (27).

Next, we prove that q2 is false in J1. Since QJ1 �= ∅ and q1 is false in J1, it follows
from Claim 4 that there is a unique map f J1 : AJ1 → B such that Fb(a) holds in J1
for all a ∈ AJ1 and where b = f J1 (a). By definition of J1, this implies that f J1 = g1.
Moreover, we obtain from Claim 4 that

f J1 is a homomorphism iff J1 � q2.

Since g1 is a homomorphism and f J1 = g1, this implies that q2 is false in H1.

5. CONCLUSION

We proved that if the dichotomy conjecture holds for consistent query answering with
respect to GAV constraints and unions of conjunctive queries, then so does the di-
chotomy conjecture for CSP. One question left open is whether a similar result could be
achieved for other classes of constraints and queries. The case of key constraints and
conjunctive queries would be of particular interest, as this is the setting of the original
dichotomy conjecture stated by Afrati and Kolaitis [2009].

Another open question is whether we can prove the opposite implication of our main
result. That is, is it true that if there is a dichotomy result for CSP, then there is
a dichotomy result for consistent query answering with respect to given classes of
constraints and queries?
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