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Abstract There is considerable evidence that shows that for a large class of materials the relationship between
the stress and the strain is nonlinear even in the range of strain that is considered small enough for the
classical linearized theory of elasticity to be applicable (see Saito et al. in Science 300:464–467, 2003; Li
et al. in Phys Rev Lett 98:105503, 2007; Talling et al. in Scr Mater 59:669–672, 2008; Withey et al. in
Mater Sci Eng A 493:26–32, 2008; Zhang et al. in Scr Mater 60:733–736, 2009). A proper description of
the experiments requires an alternative theory which when linearized would allow the possibility of such a
nonlinear relationship between the stress and the strain. Recently, such a theory of elastic bodies has been
put into place (see Rajagopal in Appl Math 48:279–319, 2003; Bustamante in Proc R Soc A 465:1377–1392,
2009; Rajagopal in Math Mech Solids 16:536–562, 2011). In this paper, we consider a special class of bodies
that belong to the new generalization of response relations for elastic bodies that have a nonlinear relationship
between the linearized strain and the stress. We use the special class of bodies that exhibit limited small strain
to study two boundary value problems, the first concerning the telescopic shearing and inflation of a tube and
the second being the extension, inflation and circumferential shearing of a tube. The results that we obtain for
the models under consideration are markedly different from the predictions of the classical linearized elastic
model with regard to the same boundary value problems.

1 Introduction

Recent experiments on Gummetal and various metallic alloys (see Saito et al. [1], Li et al. [2], Talling et al. [3],
Withey et al. [4], Zhang et al. [5] and others) clearly document the need for a model for an elastic body, wherein
the relationship between the stress and strain is nonlinear in the small strain range. The current conventional
wisdom within the context of classical elasticity theory dictates the use of the linearized elastic model, which
would be impotent to describe the experimental results.1 Other long-standing problems that also point to
the inadequacy of the classical linearized elastic model are those, wherein singularities or unacceptably high
strains are predicted within the classical linearized theory, for example, problems concerning cracks, notches,
inclusions, defects. These inadequacies of the classical linearized elasticmodel can be overcome by considering
the linearization of implicit constitutive models, which have been proposed to describe the elastic response of

1 There is a similar need in the case of modelling the behaviour of other inelastic materials such as rock and concrete
(assuming as a first approximation that they behave as elastic bodies). Such materials clearly show nonlinear behaviour in the
small strain range, see, for example, [9–14].
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bodies by Rajagopal [6,15], and its various sub-classes. Rajagopal [16] has described the nonlinear response
observed in Saito et al. [1] with a nonlinear relationship between the linearized strain and the stress that arises
out of the linearization of a new class of constitutive relations; such a nonlinear relationship would be an
impossibility were we to consider Cauchy elastic bodies or the set of Green elastic bodies (which is a subset
of Cauchy elastic bodies,2 see [20]) and linearized the same. Such a procedure of Cauchy elastic bodies would
lead inevitably to the classical linearized elastic body.

A thermodynamic basis for the more general class of elastic bodies has been introduced by Rajagopal
and Srinivasa [21,22] and Bridges [23] (see also [6,15]). Several studies of a variety of initial and boundary
value problems have been carried out within the context of sub-classes of such models. Bustamante and
Rajagopal [24] studied plane problems within the context of such models, and Bustamante and Rajagopal
have studied a variety of other problems within the context of various sub-classes of the new class of elastic
bodies (see [25,26]). Rajagopal [27] has studied boundary value problems, such as tension, and inhomogeneous
deformations such as torsion and circumferential shear. Bustamante [7] studied what could be interpreted as
the Green elastic counterpart to the class of models introduced by Rajagopal. In [6], Rajagopal considered
the possibility that the Helmholtz potential in non-dissipative solids could depend on both the stress and the
deformation gradient.3

Studies have been carried out concerning the development of stresses and strains at crack tips by Rajagopal
and Walton [29], and Gou et al. [30] with regard to the existence of cracks in brittle elastic solids wherein
cracks propagate without the advent of inelastic response. Ortiz-Bernardin et al. [31,32] have studied the stress
concentration due to the presence of circular and elliptic holes in the new class of elastic bodies, and Kulvait
et al. [33] have studied the state of the stress and strain at the vicinity of the tip of a notch within the new class.
Dynamic problems have also been studied within the context of the new class of elastic bodies, but there are
few such studies. Recently, wave propagation in such bodies has been considered by, for example, Kannan
et al. [34], who studied waves in slabs of a stress power-law material. Kambapalli et al. [35] have studied
circumferential stress waves in annular regions for stress power-law materials, and Bustamante and Sfyris
[36] have obtained a general exact solution for a 1D bar, and also some numerical solutions for a constitutive
equation showing limiting strain behaviour.

The usefulness of implicit elastic bodies to applications to biological models has been addressed in the
papers by Freed and Einstein [37] and in the recent book on soft matter, where an extensive discussion of
the utility of such bodies has been articulated (see Freed [28]). Criscione and Rajagopal [38] have studied the
response of soft materials within the new class of elastic bodies and show that such models can very effectively
describe rubber-likematerials. They show that suchmodels can capture quite accurately the experimental results
available for such bodies such as those of Penn [39]. Bustamante and Rajagopal [40,41] have generalized the
new class of elastic bodies to take into account the effect of electrical fields.

The present study is yet another example of the articulation of the utility and the need for the use of the
new class of constitutive relations to describe the non-dissipative response of solids. Bridges and Rajagopal
[23] have investigated the response of annular domains, both spherical and cylindrical, within a sub-class of
the new class of elastic bodies. The study carried out here is within the context of a different sub-class and the
boundary value problems are also more general in that we consider the possibilities of circumferential shear
and axial stress in the body.

The organization of the paper is as follows: in Sect. 2, somebasic relations for the kinematics of deformation,
the equilibrium equation and constitutive relations are presented. In Sect. 3, the problem of telescopic shear
and inflation of a tube is studied, while in Sect. 4, an analysis of the circumferential shear and inflation of a
tube is presented.

2 Basic equations

2.1 Kinematics

Let X, where X = κr (X), denote the position of a particle X of a body B in the reference configuration κr (B).
It is assumed that there exists a one-to-onemapping χ such that at any time t it assigns the position x = χ(X, t)

2 See [17,18]. Carroll [19] has shown that a Cauchy elastic body that is not Green elastic would lead to a body, which would
be an infinite source of energy. This result was anticipated in the seminal work of Green [17,18].

3 Rajagopal considered the one-dimensional case, when the Helmholtz potential depends on the one-dimensional stress and
strain. Recently, Freed [28] has considered three-dimensional models, wherein the Helmholtz potential depends on the stress and
the deformation gradient.



Solutions of some boundary value problems for a new class of elastic bodies 1817

to the particle X , in the current configuration κt (B). The displacement field u is defined as:

u = x − X. (1)

The deformation gradientF, the right and left Cauchy-Green deformation tensorC,B, the LagrangianGreen-St.
Venant strain tensor E and the linearized strain tensor ε are defined by:

F = ∂χ

∂F
, C = FTF, B = FFT, E = 1

2
(C − I), ε = 1

2
(∇Xu + ∇XuT), (2.1–5)

where ∇X is the gradient operator defined with respect to the reference configuration. We shall henceforth
assume that J = det F > 0. For more details about the kinematical definitions given above see, for example,
[42,43].

In this Part I of the paper, we shall be considering problems which are best analysed within the context of
cylindrical coordinates, we list the kinematical relations between strains and displacements in such a coordinate
system (see, for example, [44]), where the displacement field has components ur , uθ and uz , and from (2.5)
we obtain:

εrr = ∂ur
∂r

, εθθ = 1

r

∂uθ

∂θ
+ ur

r
, εzz = ∂uz

∂z
, (3)

εrθ = 1

2

(
1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r

)
, εr z = 1

2

(
∂ur
∂z

+ ∂uz
∂r

)
, εθ z = 1

2

(
∂uθ

∂z
+ 1

r

∂uz
∂θ

)
. (4)

2.2 Equilibrium equations

If we neglect the effect of body forces and if we consider quasi-static problems, the equation of motion reduces
to:

div T = 0. (5)

In the case of cylindrical coordinates (5) reads [44]:

∂Trr
∂r

+ 1

r

∂Trθ
∂θ

+ ∂Trz
∂z

+ 1

r
(Trr − Tθθ ) = 0, (6)

∂Trθ
∂r

+ 1

r

∂Tθθ

∂θ
+ ∂Tθ z

∂z
+ 2

r
Trθ = 0, (7)

∂Trz
∂r

+ 1

r

∂Tθ z

∂θ
+ ∂Tzz

∂z
+ 1

r
Trz = 0. (8)

2.3 Constitutive relations

In this work, we consider a nonlinear relation between the linearized strain tensor and the Cauchy stress tensor,
which stems from a potential W of the form [7,31,32]:

ε = ∂W

∂T
, (9)

which is a special case of ε = f(T), where we have assumed the existence of a scalar functionW = W (T) such
that f(T) = ∂W

∂T . The relation ε = f(T) can be obtained as a special case of a more general class of constitutive
relations of the form4 F(T,B) = 0, which has been proposed by Rajagopal and co-workers [6,15,21,22].

We consider a body5 wherein W = W (I1, I2, I3), where

I1 = tr T, I2 = 1

2
tr T2, I3 = 1

3
tr T3, (10)

4 Such models can be considered as counterparts of Green elastic solids. In general, the potential can depend on both the stress
and the strain. The relation ε = f(T) can be obtained as a special case ofF(T,B) = 0 considering the approximationB ≈ 2ε+ I,
which is valid when |∇Xu|∼ O(δ), δ � 1. For more details, see, for example, §2.2 of [32].

5 The notion of material symmetry has only been considered recently, and it has not been studied within the context of the
potential depending on both the stress and the deformation gradient [45].
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Table 1 Values for the constants used in (13), (14).

α β γ ι E ν

1/Pa 1/Pa 1/Pa2 Pa

0.01 9.27681 × 10−8 4.01995 × 10−9 10−14 323387085 0.3

and in such a case (9) becomes
ε = W1I + W2T + W3T2 (11)

where we have defined Wi = ∂W
∂ Ii

, i = 1, 2, 3.
Let us consider the following particular expression for W :

W (I1, I2) = −α

β
ln[cosh(β I1)] + γ

ι

√
1 + 2ιI2 (12)

where α, β, γ and ι are constant. The exact physical meaning of that particular expression for W will be
discussed later on. From (11), (12), we obtain

ε = −α tanh(β I1)I + γ√
1 + 2ιI2

T. (13)

We will compare the results obtained for some boundary value problems within the context of (13), with
the case of the classical constitutive equation for isotropic linearized elastic bodies:

ε = − ν

E
I1I + (ν + 1)

E
T, (14)

where E is Young’s modulus and ν is Poisson’s ratio.
In order to be able to compare the results, some relationships between the constants α, β, γ and ι and E , ν

need to be established; to do so, consider the linearization of (9) (in index notation and with regard to Cartesian
coordinates)

εi j ≈ ∂W

∂Ti j
(0) + ∂2W

∂Ti j∂Tkl
(0)Tkl , (15)

which in the case of the particular expression for W given in (12), after some simple calculations, leads to

ε ≈ −αβ I1I + γT. (16)

Therefore, from (14), we obtain the relations

ν

E
= αβ,

1

E
= γ − αβ. (17)

Let us study the behaviour of a cylinder under the influence of the uniform stress distributionT = σzez⊗ez ,
where σz is constant. We assume that stress distribution causes a uniform strain distribution of the form
ε = εrrer ⊗ er + εθθeθ ⊗ eθ + εzzez ⊗ ez , where εrr , εθθ and εzz are assumed to be constant. Using such
distributions for the stresses and strains, from (13), we have

εzz = −α tanh(βσz) + γ√
1 + ισ 2

z

σz, εrr = εθθ = −α tanh(βσz). (18)

We use the values for the constants that appear in (13) as presented in Table 1; the values for E and ν that
are obtained from (17) are presented in the same table.

We must remark that the constitutive theory presented here has been developed very recently and that we
have not proposed (13) based on real experimental data. Experimental results pertaining to the relationship
between the linearized strain and the stress being nonlinear can be found, for example, in the experimental
papers [1–3,9,10] and the references cited therein. However, these experiments present one-dimensional data,
and as infinity of three-dimensionalmodels can lead to the sameone-dimensional representation, it is impossible
to decide the appropriate three-dimensional model on the basis of such experiments (see Karra and Rajagopal
[46]).
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Fig. 1 Results for εzz(σz) and εrr (σz) for a cylinder under the effect of the uniform axial stress distribution T = σzez ⊗ ez .
Comparison of the predictions of the nonlinear model (13), and the linearized Eq. (14). Axial stress σz in (Pa)
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Fig. 2 Results for ε12(τ ) for a slab under the effect of the uniform shear stress distributionT = τ(e1 ⊗e2 +e2 ⊗e1). Comparison
of the predictions of the nonlinear model (13), and the linearized Eq. (14). The shear stress τ is in (Pa)

In Fig. 1 we portray the variations of εzz(σz) and εrr (σz) that correspond to the two constitutive relations
(13), (14) and the values of the constants presented in Table 1. We see that the use of (13) implies a strain-
limiting behaviour for the axial and also for the radial components of the strain. Using (17), the linearized
constitutive equation (14) gives approximately the same result as the nonlinear model for ‘small’ stresses; also
the nonlinear model and the linear model agree, when the strains are below 1%, but diverge for strains larger
than 1%.

Let us consider a slab, defined in Cartesian coordinates, in the undeformed configuration defined by
−L1 ≤ x1 ≤ L1, L2 ≤ x2 ≤ L2, L2 ≤ x3 ≤ L3, under the effect of the uniform stress distribution
T = τ(e1 ⊗ e2 + e2 ⊗ e1). Let us further suppose that the body is defined by the constitutive relations (13) or
(14), with the material constants as given in Table 1. The behaviour for ε12(τ ) is depicted in Fig. 2, where again
we observe a strain limiting behaviour if we use (13), and as in the earlier case the results for the linearized
body and the nonlinear model are similar when the shear stress τ is ‘small’.
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Table 2 Cases to be considered for the tube under axial shear and pressure applied on the inner surface.

Outer radius ro (m) Inner radial normal stress Pi (Pa) C0 (N/m)

Case A
0.11 109 −2 × 108

0.2 2 × 109 −2 × 108

10 2 × 107 −106

Case B
0.11 7 × 107 −2 × 108

0.2 6 × 108 −2 × 108

10 2 × 107 −106
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Fig. 3 Influence of the mesh density for the three examples of tubes presented in Table 2, which are under the effect of an axial
shear and an inner radial normal stress. Dimensionless azimuthal stress T̄θθ = Tθθ

Pi
and dimensionless radial displacement ūr = ur

ri
evaluated at r = ri, vs the natural logarithm of the degrees of freedom DOF

2.4 Summary of the boundary value problems

In Sects. 3 and 4, we study some boundary value problems, within the context of nonhomogeneous distributions
of stresses, generating nonhomogeneous distributions for the displacement field and strains, using the new class
of constitutive relation (13). We compare the results that we obtain with the results for the classical constitutive
equation for isotropic linearized elastic bodies (14), for different values of the material constants provided in
Table 1. We solve the boundary value problems using (9) in the following manner:

• We appeal to the semi-inverse methodology and assume a simplified expression for the stress tensor T,
which satisfies the equilibrium equation (5) (ignoring the body force field):

div T = 0.
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Fig. 4 Tubeunder axial shear and inner radial normal stress. Influenceof the parameter C̄0 on the dimensionless radial displacement
ūr = ur

ri
, and the dimensionless axial component of the displacement ūz = uz

ri
, which are evaluated at r = ri. A comparison is

presented between the results obtained considering a linearized elastic body (L) [Eq. (14), the scale for each plot is on the right],
and the nonlinear model (NL) [see Eq. (13), the scale for the each plot is on the left]. The radii ro = 0.11; 0.2; 10 m indicate the
three different tubes considered (see Table 2). The parameter C̄0 is negative

• Using the kinematic relation (2) and the above stress tensor, we solve the equation

1

2
(∇u + ∇uT) = ∂W

∂T
.

The equations are solved to find simultaneously the components of the stress tensor and the displacement
field, as illustrated in Sects. 3 and 4. It is worth observing that when the unknowns are the stress and the
displacement field, the compatibility of strains is a non-issue (see Rajagopal and Srinivasa [47]).

• For the above problem, we consider ‘directly’ the usual boundary conditions u = û, which is known on
∂κr (B)u , and Tn = t̂, where t is an external traction on ∂κr (B)t , where ∂κr (B)u ∪ ∂κr (B)t = ∂κr (B) and
∂κr (B)u ∩ ∂κr (B)t = Ø.

3 A tube under telescopic shear and inflation

In this problem, we study the behaviour of a tube defined by ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π , 0 ≤ z ≤ L under
the effect of the stress distribution T = T(r), which we assume is caused by an internal pressure and the
application of a surface shear. If Ti j = Ti j (r) the equilibrium equations (6)–(8) are satisfied if:

Tθθ = r
dTrr
dr

+ Trr , Trθ = C1

r2
, Trz = C0

r
, (19.1–3)

where C1, C0 are constants. For simplicity, in this section, we assume that C1 = 0. We further assume now
that the stress distribution is of the form:

T = Trr (r)er ⊗ er + Tθθ (r)eθ ⊗ eθ + Tzz(r)ez ⊗ ez + C0

r
er ⊗ ez, (20)
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A comparison is presented between the results obtained considering a linearized elastic body (L) [Eq. (14)] and the nonlinear
model (NL) [see Eq. (13)]. The radii ro = 0.11; 0.2; 10m indicate the three different tubes considered (see Table 2). The influence
of Pi is studied indirectly considering the dimensionless radial normal stress P̄i = riPi

C0
.

which produces a the displacement field of the form6

u = ur (r)er + uz(r)ez . (21)

From (3), (4), we observe that the nonzero components of the linearized strain tensor are:

εrr = dur
dr

, εθθ = ur
r

, εr z = 1

2

duz
dr

. (22)

Substituting (20) and (22) in (11) we obtain:

dur
dr

= W1 + W2Trr + W3

(
T 2
rr + C2

0

r2

)
, (23)

ur
r

= W1 + W2

(
r
dTrr
dr

+ Trr

)
+ W3

(
r
dTrr
dr

+ Trr

)2

, (24)

0 = W1 + W2Tzz + W3

(
T 2
zz + C2

0

r2

)
, (25)

1

2

duz
dr

= W2
C0

r
+ W3

C0

r
(Trr + Tzz). (26)

We need to solve (23)–(26) to find Trr (r), Tzz(r), ur (r) and uz(r). In particular, Eq. (25) could be used in
order to find Tzz .

6 It is possible that the choices made for the stress field and the displacement field might not be compatible. Also, even if a
solution of the form sought exists, it is possible that the problem under consideration might have solutions other than that sought
as the problem is nonlinear.
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Fig. 6 Tube under axial shear and inner radial normal stress. Results for the radial and azimuthal components of the strain using
the boundary conditions defined as Case (A) [see (27) and Table 2], considering the constitutive equations (14) for linearized
elastic bodies (L), and the nonlinear model (13) (NL), versus the dimensionless radius r̄ = r

ri
. The radii ro = 0.11; 0.2; 10 m

indicate the three different tubes considered in Table 2. For the tube ro = 10 m results are presented for a limited range of r̄ .

Regarding the boundary conditions we consider two cases:

(A) : Trr (ri) = −Pi, ur (ro) = 0, uz(ro) = 0, (27)

(B) : Trr (ri) = −Pi, Trr (ro) = 0, uz(ro) = 0. (28)

In the first case, we assume that the inner surface of the tube is under the effect of a normal stress Pi, while the
radial and axial components of the displacement are constrained on the outer surface of the tube. In the second
case, we assume the same normal stress is applied on the inner surface, while on the outer surface, there is no
external radial traction. In both cases, we have the effect of an external normal stress, and besides that load we
need to consider the influence of C0. If C0 ≤ 0, then C0/ri corresponds to an axial external applied shear on
the inner surface of the tube.

Now, we obtain solutions to (23)–(26), in the case we have a linearized elastic body (14), and also in the
case of the new constitutive relation (13). For linearized elastic bodies (14), Eqs. (23)–(26) can be solved
exactly and in Case (A) [see (27)] we have (see Chapter XIV of [48]):

Trr = − Pir2i [r2 + r2o (1 − 2ν)]
r2[r2i + r2o (1 − 2ν)] , Tθθ = − Pir2i [r2 + r2o (2ν − 1)]

r2[r2i + r2o (1 − 2ν)] , (29)

Tzz = − 2Pir2i ν

[r2i + r2o (1 − 2ν)] , (30)

ur = Pir2i (r2 − r2o )(2ν2 + ν − 1)

Er [r2i + r2o (1 − 2ν)] , uz = 2C0(1 + ν)

E
log

(
r

ro

)
, (31.1,2)
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Fig. 7 Tube under the influence of axial shear and inner radial normal stress [in the case of boundary conditions defined as Case
(A); see (27) and Table 2]. Results for the dimensionless radial, azimuthal and axial components of the stress tensor T̄rr = Trr

Pi
,

T̄θθ = Tθθ

Pi
and T̄zz = Tzz

Pi
, respectively, as functions of the dimensionless radius r̄ = r

ri
. The radii ro = 0.11; 0.2; 10 m indicate

the three different tubes considered (see Table 2). For each figure results are presented for a linearized elastic body (14) (L), and
the new class of constitutive relations (13) (NL). For the tube with ro = 10 m results are presented for a limited range of r̄

while in Case (B) [see (28)] we obtain:

Trr = Pr2i (r2o − r2)

r2(r2i − r2o )
, Tθθ = − Pr2i (r2o + r2)

r2(r2i − r2o )
, Tzz = − 2Pir2i ν

(r2i − r2o )
, (32)

ur = Pr2i (1 + ν)[r2(2ν − 1) − r2o ]
Er(r2i − r2o )

, (33)

and the expression for uz(r) is the same as in (31.2).
When the constitutive relation (13) is used, we solve (23)–(26) using a numerical method. We use the

finite element method, for which we need to manipulate (23)–(26). Equations (23), (24) can be reduced to the
following nonlinear second-order differential equation for Trr (r):

d

dr

{
r

[
W1 + W2

(
r
dTrr
dr

+ Trr

)
+ W3

(
r
dTrr
dr

+ Trr

)2
]}

= W1 + W2Trr + W3

(
T 2
rr + C2

0

r2

)
, (34)
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ū
z

ū
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Fig. 8 Tube under the influence of axial shear and radial normal stress applied on r = ri [for the boundary conditions indicated
as Case (A); see (27) and Table 2]. Results are presented for the dimensionless radial and axial components of the displacement
vector ūr = ur

ri
, ūz = uz

ri
, as functions of the dimensionless radius r̄ = r

ri
. The radii ro = 0.11; 0.2; 10 m indicate the three

different tubes considered. For each figure results are presented for a linearized elastic body (14) (L), and the new class of
constitutive relations (13) (NL). For the tube with ro = 10 m results are presented for a limited range of r̄

which, if we define Γ = r

[
W1 + W2

(
r dTrr

dr + Trr
)

+ W3

(
r dTrr

dr + Trr
)2]

and F = W1 + W2Trr +

W3

(
T 2
rr + C2

0
r2

)
, can be written as

dΓ

dr
= F, (35)

which can be solved with a standard nonlinear finite element code. Regarding Eq. (25), which could be used
to find, for example, Tzz(r), a solution is found by solving the second- order differential equation

d

dr

{
W1 + W2

dh

dr
+ W3

[(
dh

dr

)2

+ C2
0

r2

]}
= 0, (36)

where we have defined Tzz = dh
dr . Finally, regarding (26), if we define uz(r) = dg

dr , we obtain

d2g

dr2
= W2

C0

r
+ W3

C0

r

(
Trr + dh

dz

)
. (37)

The three nonlinear coupled second-order differential equations (34), (36) and (37) are solved using the
finite element method in order to find Trr (r), h(r) and g(r). Regarding the boundary conditions, from (27) for
Case (A) we have the conditions:
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Fig. 9 Tube under the effect of axial shear and radial normal stress applied on the surface r = ri. Results for the radial and
azimuthal components of the strain, for the boundary conditions indicated as Case (B) [see (28) and Table 2], for the constitutive
equation (14) for linearized elastic bodies (L), and the nonlinear model (13) (NL), versus the dimensionless radius r̄ = r

ri
. The

radii ro = 0.11; 0.2; 10 m indicate the three different tubes considered. For the tube with ro = 10 m results are presented for a
limited range of r̄

Trr (ri) = −Pi,

{
r

[
W1 + W2

(
r
dTrr
dr

+ Trr

)
+ W3

(
r
dTrr
dr

+ Trr

)2
]}

r=ro

= 0, (38.1,2)

h(ri) = 0,

{
W1 + W2

dh

dr
+ W3

[(
dh

dr

)2

+ C2
0

r2

]}
r=ro

= 0, (39)

g(ri) = 0,
dg

dr

∣∣∣∣
r=ro

= 0. (40)

When considering (28) for Case (B) condition (38.2) changes to Trr (ro) = 0 and the rest of the conditions
remains the same.

Three examples are considered for the tube, where the external radii are different, but the internal radius
ri = 0.1 m is kept the same. These three cases are presented in Table 2.

For each case, we list the maximum radial normal stress and value of C0 that we were able to use without
having problems with regard to the convergence of the numerical scheme. Equations (35)–(37) are solved
using the programme Comsol 4.2 [49].
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Fig. 10 Tube under the effect of axial shear and radial normal stress applied on the surface r = ri. Results for the dimensionless
radial, azimuthal and axial components of the stress tensor T̄rr = Trr

Pi
, T̄θθ = Tθθ

Pi
and T̄zz = Tzz

Pi
, respectively, as functions of the

dimensionless radius r̄ = r
ri
. Results are obtained for the boundary conditions defined as Case (B) [see (28) and Table 2], for the

constitutive equation (14) for linearized elastic bodies (L), and the nonlinear model (13) (NL). The radii ro = 0.11; 0.2; 10 m
indicate the three different tubes considered. For the tube with ro = 10 m results are presented for a limited range of r̄

In the different plots to be presented in this section, we consider the following dimensionless quantities:

r̄ = r

ri
, T̄rr = Trr

Pi
, T̄θθ = Tθθ

Pi
, T̄zz = Tzz

Pi
ūr = ur

ri
, ūz = uz

ri
, (41.1–6)

C̄0 = C0

riPi
, P̄i = 1

C̄0
. (42)

In order to evaluate the influence of the mesh density when solving (35)–(37) using the finite element
method, in Fig. 3 we present results for the azimuthal component of the stress and the radial displacement for
the tube [in the case of the nonlinear model (13)], which are evaluated at r = ri for the three tubes presented
in Table 2 as (Case A), versus the natural logarithm of the degrees of freedom.

In Fig. 4, we depict the behaviour of ūr (ri) and ūz(ri) for the three different tubes considered in Table 2
indicated as (Case A), as functions of the constant C0 (the parameter C̄0). A comparison between the results
obtained considering (13) and (14) is presented, where L denotes the use of the linearized constitutive relation
(14), and NL denotes the use of the nonlinear model (13). In the case of (14), it is easy to see that there is no
influence of C0 on ur , and therefore for such plots, we observe that ūr (ri) is constant [see (31.2)].

In Fig. 5, results are presented for ūr (ri) and ūz(ri) for the three different tubes considered in Table 2 (Case
A), as functions of the inner pressure Pi (presented indirectly through the dimensionless pressure P̄i = 1

C̄0
).

In this case, for linearized elastic bodies [denoted L in the figure, see Eq. (14)], we see that ūz(P̄i) is constant.
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Fig. 11 Tube under the effect of axial shear and normal radial stress applied on the surface r = ri. Results for the dimensionless
radial and axial components of the displacement vector ūr = ur

ri
, ūz = uz

ri
, as functions of the dimensionless radius r̄ = r

ri
.

Results are obtained for the boundary conditions indicated as Case (B) [see (28) and Table 2], for the constitutive equation (14)
for linearized elastic bodies (L), and the nonlinear model (13) (NL). The radii ro = 0.11; 0.2; 10 m indicate the three different
tubes considered. For the tube with ro = 10 m results are presented for a limited range of r̄ .

Table 3 Cases to be considered for the tube under circumferential shear and radial normal stress applied on the inner surface

Outer radius ro (m) Inner radial normal stress Pi (Pa) C0 (N) λz

Case A
0.11 1.5 × 108 −105 1.02
0.2 1.5 × 108 −105 1.01
10 107 −105 1.02
Case B
0.11 7 × 106 −105 1.02
0.2 1.5 × 107 −105 1.01
10 107 −105 1.02

Regarding ūr (P̄i) from (31.1), we see that the behaviour is linear.
In Fig. 6, we portray results for the radial and azimuthal components of the linearized strain tensor, in

terms of the dimensionless radius r̄ = r
ri
, for the three different tubes presented in Table 2, for the linearized

constitutive equation (14) (L) and the nonlinear model (13) (NL), corresponding to the boundary conditions
Case (A) [see (27) and Table 2]. In the case of the linearized constitutive equations, in particular for the tubes
ro = 0.11; 0.2 m (first and second figures from top to bottom in Fig. 6), we notice immediately that the
magnitude of such components is well above the limits considered for the linearized theory and the domain
wherein the linearized strain tensor is applicable. On the other hand, the results obtained for the nonlinear
constitutive relation (13) (NL), the strains remain small, and the maximum value is less than 0.04.

In Fig. 7, we have results for the normal components of the stress tensor, for the boundary conditions
indicated as Case (A) [see (27) and Table 2]. The figure corresponding to ro = 0.11(a), ro = 0.2(a) and
ro = 10(a) display results for the dimensionless radial component T̄rr = Trr

Pi
of the stress tensor for the tubes
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Fig. 12 Influence of the mesh density for the three examples presented in Table 3 for a tube under the influence of circumferential
shear, axial extension and inner radial normal stress. Results for the dimensionless stress T̄θθ = Tθθ

Pi
and the dimensionless radial

displacement ūr = ur
ri

(evaluated at r = ri), versus the natural logarithm of the degrees of freedom

with outer radii ro = 0.11; 0.2; 10 m, respectively; while figures corresponding to ro = 0.11(b), ro = 0.2(b)
and ro = 10(b) portray results for the dimensionless azimuthal component T̄θθ = Tθθ

Pi
of the stress tensor; finally,

the plots corresponding to ro = 0.11(c), ro = 0.2(c) and ro = 10(c) provide results for the dimensionless axial
component T̄zz = Tzz

Pi
of the stress tensor. From these results, we can see that the largest difference between

the results for the linearized elastic body (14) and the new class of elastic bodies (13) manifests itself in the
case ro = 0.11 m. A very significant difference can be observed for T̄θθ and T̄zz , where in particular we notice
that such components of the stress can be very large in the case of the linearized elastic solid thereby violating
the basic assumption within which the approximation is derived, while from Fig. 6 we notice that the strains
remain small for the new class of constitutive relations (13).

Finally, regarding the boundary conditions indicated as Case (A) [see (27) and Table 2], in Fig. 8 we
present results for the dimensionless radial and axial components of the displacement field ūr = ur

ri
, ūz = uz

ri
,

comparing results using the linearized constitutive relation (14) (L), and the new class of elastic bodies (13)
(NL).

In Figs. 9, 10 and 11, we find results similar to those presented in Figs. 6, 7 and 8, respectively, for the case
of boundary conditions defined as Case (B) [see (28) and Table 2].

4 Circumferential shear and inflation of a tube

We now study the same tube considered in Sect. 3 defined by: ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π , 0 ≤ z ≤ L ,
subjected to the stress distribution T = T(r), which we assume is caused by an internal pressure and a surface
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Fig. 13 Tube under the influence of circumferential shear, stretch and radial normal stress applied on the inner surface r = ri.
Influence of the parameter C̄0 on the dimensionless radial displacement ūr = ur

ri
, and the θ component of the displacement uθ ,

which are evaluated at r = ri. A comparison of the results obtained for a linearized elastic body (L) [Eq. (14), see the scale on
the right of each plot] and the nonlinear model (NL) [see Eq. (13)] are presented (notice the scale on the left for each plot). The
radii ro = 0.11; 0.2; 10 m indicate the three different tubes considered. The parameter C̄0 is negative

shear that is different from that considered previously in Sect. 3. In the earlier section, we had ignored the
circumferential shearing and assumed that the tube was only subject to telescopic shearing. In this section, we
ignore the telescopic shearing and include circumferential shearing. If Ti j = Ti j (r) the equilibrium equations
(6)–(8) are satisfied if (19) holds. In this section, we assume that Trθ = C0

r2
and Trz = 0, and we add the effect

of an axial stretching of the tube, we therefore have the stress distribution [where Tθθ is given by (19.1)]:

T = Trr (r)er ⊗ er + Tθθ (r)eθ ⊗ eθ + Tzz(r)ez ⊗ ez + C0

r2
er ⊗ eθ (43)

which we assume produces the displacement field

u = ur (r)er + uθ (r)eθ + (λz − 1)zez, (44)

where λz > 0 is a constant. This displacement field leads to the following nonzero components for the strain
tensor [see (3)–(4)]:

εrr = dur
dr

, εθθ = ur
r

, εzz = λz − 1, εrθ = 1

2

duθ

dr
− 1

2r
uθ . (45)

Using (43) and (45) in (11), we obtain the following system of 4 nonlinear equations:

dur
dr

= W1 + W2Trr + W3

(
T 2
rr + C2

0

r4

)
, (46)

ur
r

= W1 + W2

(
r
dTrr
dr

+ Trr

)
+ W3

[(
r
dTrr
dr

+ Trr

)2

+ C2
0

r4

]
, (47)

λz − 1 = W1 + W2Tzz + W3T
2
zz, (48)

1

2

(
duθ

dr
− uθ

r

)
= W2

C0

r2
+ W3

C0

r2

(
2Trr + r

dTrr
dr

)
. (49)
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Fig. 14 Tube under the influence of circumferential shear, axial stretch and radial normal stress applied on the inner surface
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Regarding the boundary conditions, as in Sect. 3, we consider two cases:

(A) : Trr (ri) = −Pi, ur (ro) = 0, uz(ro) = 0, (50)

(B) : Trr (ri) = −Pi, Trr (ro) = 0, uz(ro) = 0. (51)

We study the effect of Pi, C0 and λz on the displacements, strains, and stresses.
If we consider the constitutive equation for a linearized elastic body (14), from (46)–(49) for Case (A) we

obtain the following exact solutions (see Chapter XIV of [48]):

Trr = −
{
E(r2i − r2)r2o (λz − 1)ν + Pir2i [r2 + r2o (1 − 2ν)](1 + ν)

}
r2[r2i + r2o (1 − 2ν)](1 + ν)

, (52)

Tθθ = −
{
E(r2 + r2i )r2o (1 − λz)ν + Pir2i (1 + ν)[r2 + r2o (2ν − 1)]}

r2[r2i + r2o (1 − 2ν)](1 + ν)
, (53)

Tzz = −
{
2Pir2i ν(1 + ν) + E(1 − λz)[r2i (1 + ν) − r2o (ν − 1)]}

[r2i + r2o (1 − 2ν)](1 + ν)
, (54)

ur = r2i (r2 − r2o )[E(1 − λz)ν + Pi(2ν2 + ν − 1)]
Er [r2i + r2o (1 − 2ν)] , uθ = C0(r2 − r2o )(1 + ν)

Err2o
, (55.1,2)

while in the case of the boundary conditions defined as Case (B) we obtain:

Trr = Pir2i (r2o − r2)

r2(r2i − r2o )
, Tθθ = − Pir2i (r2o + r2)

r2(r2i − r2o )
, Tzz = E(λz − 1) − 2Pir2i ν

(r2i − r2o )
, (56)

ur =
{
Er2(r2i − r2o )(1 − λz)ν + Pir2i (1 + ν)[r2(2ν − 1) − r2o ]}

Er(r2i − r2o )
, (57)
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Fig. 15 Tube under the influence of circumferential shear, axial stretch, and radial normal stress applied on the inner surface
r = ri. Influence of the stretching λz on the dimensionless radial displacement ūr = ur

ri
portrayed as (a), on the θ component of

the displacement field uθ depicted in (b), on the axial dimensionless component of the stress T̄zz = Tzz
Pi

provided in (c), and the

dimensionless component of the stress T̄θθ = Tθθ

Pi
presented in (d). A comparison is provided between the results for considering

linearized elastic bodies (L) [see (14)], and the nonlinear model (NL) [see (13)]. The radii ro = 0.11; 0.2; 10 m indicate the three
different tubes considered (see Table 3)

and the expression for uθ (r) is the same as in (55.2).
When we work with the new nonlinear class of elastic bodies (13), Eqs. (46)–(49) subject to the boundary

conditions (50), (51) can be solved numerically. We use the finite element method, and for brevity, we do not
discuss the details of the procedure as they have been discussed previously.

Three examples are considered for the tube, where the external radii are different, but with the same internal
radius ri = 0.1 m. These three cases are presented in Table 3.
For each case, we list the maximum radial normal stress that was possible for us to apply without having
problems with the convergence of the numerical scheme.

In the different plots that are presented, we consider the same dimensionless quantities documented in
(41.1–5) and

C̄0 = C0

r2i Pi
, P̄i = 1

C̄0
. (58)

In Fig. 12, we present results for the Tθθ component of the stress and the radial displacement for the tube,
evaluated at r = ri, for the three tubes presented in Table 3 (Case A), versus the natural logarithm of the
degrees of freedom.

In Fig. 13, we study the influence of the parameter C0 [see (43)] on the radial and the θ components of
the displacement, which are evaluated at r = ri, where we compare the results obtained using the linearized
constitutive equation (14) and the new class of nonlinear constitutive relations (13), working with the boundary
conditions indicated as Case (A) [see (50) and Table 3]. From (55.1) it is easy to see that ur (r) is constant in
terms of C0 in the case of linearized isotropic bodies (14), but there is a slight influence of C0 on ūr for the
new class of elastic bodies (13).



Solutions of some boundary value problems for a new class of elastic bodies 1833

−0.029

−0.028

−0.027

1 1.05 1.1 1.15
−6

−5

−4
x 107

0

0.5

1

1.5

2

2.5

3
x 10−3

1 1.05 1.1 1.15
0

1

2

3

4

5

6
x 106

−0.03

−0.029

−0.028

−0.027

−0.026

−0.025

−0.024

1 1.2 1.4 1.6 1.8 2
−8

−7

−6

−5

−4

−3

−2
x 107

0

0.005

0.01

0.015

0.02

0.025

0.03

1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
x 107

−0.015

−0.01

−0.005

0

0 5 10 15 20
−6

−4

−2

0
x 105

0

0.01

0.02

0 5 10 15 20
0

5

10
x 105

r̄r̄

r̄r̄

r̄r̄

ε r
r

ε r
r

ε r
r

ε θ
θ

ε θ
θ

ε θ
θ

ro = 0.11 ro = 0.11

ro = 0.2 ro = 0.2

ro = 10
ro = 10

NLNL

NL
NL

NL

NL

LL

L
L

L

L

Fig. 16 Tube under the influence of circumferential shear, axial stretch and radial normal stress applied at the inner surface
r = ri. Results for the radial and θ components of the strain tensor for the boundary conditions indicated as Case (A) [see (50)
and Table 3], for the constitutive equation (14) for linearized elastic bodies (L), and the nonlinear model [see (13)] (NL), versus the
dimensionless radius r̄ = r

ri
. The radii ro = 0.11; 0.2; 10 m indicate the three different tubes considered. For the tube ro = 10 m

results are presented for a limited range of r̄

In the case of uθ (r) from (55.2), we see that for linearized isotropic elastic bodies (14), uθ depends linearly
on C0, as can be noted from the same Fig. 3. Approximately the same relationship can be observed for the
new class of elastic bodies (13).

In Fig. 14, we study the effect of Pi on the radial and θ components of the displacement field, which are
evaluated at r = ri, for the nonlinear and linearized constitutive relations defined respectively by (14) and
(13). From (55) it is easy to see that ur depends linearly on Pi and that uθ is constant (as a function of such a
radial normal stress) for linearized elastic bodies (14). That is not the case when working with the nonlinear
model (13), as can be observed from the same plots.

To the problem that was considered, we add an axial stretching λz to the tube, and in Fig. 15, we present
results wherein we study the influence of the parameter with regard to the solution for the problem. We have
assumed that ro = 0.11; 0.2; 10(a) portrays the results for ūr = ur

ri
evaluated at r = ri, for the boundary

conditions defined as Case (A) in Table 3. Similar results are presented for uθ wherein we have assumed that
ro = 0.11; 0.2; 10(b), for T̄zz = Tzz

Pi
and T̄θθ = Tθθ

Pi
(see the other plots corresponding to ro = 0.11; 0.2; 10(c)

and ro = 0.11; 0.2; 10(d), respectively). For linearized elastic bodies (L) (14), from (55), we see that ur
depends linearly on λz , while uθ is constant with regard to that parameter, as can be observed from Fig. 15,
which is not the case when working with (13). From (53), (54) we notice that Tzz and Tθθ depend linearly on
λz for linearized elastic bodies (14), but the response is nonlinear when working with (13).

The results presented in Fig. 16 are interesting and worth discussing in some detail. In that figure, we have
results for the components of the strain tensor, for the boundary conditions indicated as Case (A) (see Table
3), using the linearized constitutive equation (14), and the new class of constitutive relations (13), as functions
of the dimensionless radius r̄ = r

ri
. We notice that the strains are excessively large for the linearized elastic

bodies (L), which once again contradicts the basic assumptions under which the approximation is derived,
whereas for the new class of elastic bodies (13), the strains remain small in all the cases considered.
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Fig. 17 Tube under the influence of circumferential shear, axial stretch and radial normal stress applied at the inner surface
r = ri, for the boundary conditions indicated as Case (A) [see (50) and Table 3]. Results for the dimensionless radial, θ and
axial components of the stress tensor T̄rr = Trr

Pi
, T̄θθ = Tθθ

Pi
and T̄zz = Tzz

Pi
, respectively, as functions of the dimensionless radius

r̄ = r
ri
. The radii ro = 0.11; 0.2; 10 m indicate the three different tubes considered (see Table 3). In each plot results are presented

for a linearized elastic body [see (14)] (L), and the nonlinear model (13) (NL). For the tube ro = 10 m results are presented for a
limited range of r̄

Finally, for the boundary conditions indicated as Case (A) (see Table 3), in Figs. 17, 18, we present
results for the components of the dimensionless stress tensor T̄rr , T̄θθ and T̄zz , and the two components of the
displacement field ūr and uθ .

In Figs. 19, 20 and 21 we present results for the components of the strain, stress and the displacement
fields, for the boundary conditions indicated as Case (B) (see Eq. (51) and Table 3).

5 Concluding remarks

In this paper, we have studied boundary value problems within the context of a new class of elastic bodies
described by constitutive relations, wherein the linearized strain depends nonlinearly on the stress. We have
picked two boundary value problems that have been studied within the context of the classical linearized
constitutive relation, and which admit explicit exact solutions. As the relationship between the stress and
the strain is linear, at sufficiently large stresses, the strain becomes large, violating the basic assumption
under which the approximate model is derived. On the other hand, for the class of models considered, the
strains do not become large enough to violate the assumption under which the linearization is effected. The
problems considered are in geometries and loading conditions that have interesting practical relevance. The
problems considered are the telescopic shearing and inflation of a cylindrical annulus and the extension and
circumferential shear of a cylindrical annulus. Results are presented for two types of boundary conditions,
both of which have practical relevance. Unlike the classical problem, one cannot substitute the expression for
the stress into the equilibrium equation and obtain a partial differential equation for the displacement field,
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alike the Navier equations for a linearized elastic body. In the case of the nonlinear model considered, one
has to solve the strain displacement relation and the constitutive relation simultaneously. This does not accord
us the possibility to find exact solutions. The governing equations are solved numerically, and the results are
presented in a series of figures that clearly indicate themarked difference between the prediction of the classical
linearized elastic model and the nonlinear constitutive relations.
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