
Contents lists available at ScienceDirect

Information Systems

Information Systems 47 (2015) 15–32
http://d
0306-43

☆ An
n Corr
E-m
1 Fu
2 Fu
3 Fu

Xunta d
AP2010
journal homepage: www.elsevier.com/locate/infosys
The wavelet matrix: An efficient wavelet tree
for large alphabets$

Francisco Claude a,1, Gonzalo Navarro b,n,2, Alberto Ordóñez c,3

a Esc. Inf. & Tel., Univ. Diego Portales, Chile
b Department of Computer Science, University of Chile, Chile
c Database Laboratory, Univ. da Coruña, Spain
a r t i c l e i n f o

Article history:
Received 17 October 2013
Received in revised form
28 May 2014
Accepted 12 June 2014

Recommended by: J. Van den Bussche

matrix, an alternative representation for large alphabets that retains all the properties
Available online 25 June 2014

Keywords:
Succinct data structures
Compressed sequence representations
x.doi.org/10.1016/j.is.2014.06.002
79/& 2014 Elsevier Ltd. All rights reserved.

early partial versions of this article appeared
esponding author.
ail addresses: fclaude@recoded.cl (F. Claude)
nded in part by CONICYT Fondecyt Iniciació
nded in part by Millennium Nucleus Inform
nded by CDTI EXP 000645663/ITC-2013306
e Galicia (Partially by FEDER) ref. GRC201
-6038 (FPU Program).
a b s t r a c t

The wavelet tree is a flexible data structure that permits representing sequences S½1;n� of
symbols over an alphabet of size σ, within compressed space and supporting a wide range
of operations on S. When σ is significant compared to n, current wavelet tree representa-
tions incur in noticeable space or time overheads. In this article we introduce the wavelet

of wavelet trees but is significantly faster. We also show how the wavelet matrix can be
compressed up to the zero-order entropy of the sequence without sacrificing, and actually
improving, its time performance. Our experimental results show that the wavelet matrix
outperforms all the wavelet tree variants along the space/time tradeoff map.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In many applications related to text indexing and succinct data structures, it is necessary to represent a sequence S½1;n�
over an integer alphabet ½0;σÞ so as to support the following functionality:
�
 accessðS; iÞ returns S½i�.

�
 rankaðS; iÞ returns the number of occurrences of symbol a in S½1; i�.

�
 selectaðS; jÞ returns the position in S of the j-th occurrence of symbol a.
Some examples where this problem arises are indexes for supporting indexed pattern matching on strings [35,36,28,
29,52], indexes for solving computational biology problems on sequences [63,11], simulation of inverted indexes over

natural language text collections [14,2], representation of labeled trees and XML structures [12,3,27,1,8], representation of
binary relations and graphs [7,21,5,8], solving document retrieval problems [66,31], and many more.

An elegant data structure to solve this problem is the wavelet tree [35]. In its most basic form, this is a balanced tree of
OðσÞ nodes storing bitmaps. It requires n lg σþoðn lg σÞþOðσ lg nÞ bits to represent S and solves the three queries in time
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, gnavarro@dcc.uchile.cl (G. Navarro), alberto.ordonez@udc.es (A. Ordóñez).
n 11130104.
ation and Coordination in Networks ICM/FIC P10-024F, Chile.
2 (CDTI, Ministerio de Economía y Competitividad-MEC-, and Axencia Galega de Innovación -AGI-),
3/053, and by MICINN (PGE and FEDER) refs. TIN2009-14560-C03-02, TIN2010-21246-C02-01, and

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.06.002
http://dx.doi.org/10.1016/j.is.2014.06.002
http://dx.doi.org/10.1016/j.is.2014.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.06.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.06.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.06.002&domain=pdf
mailto:fclaude@recoded.cl
mailto:gnavarro@dcc.uchile.cl
mailto:alberto.ordonez@udc.es
http://dx.doi.org/10.1016/j.is.2014.06.002


4  7  6  5  3  2  1  0  2  1  4  1  7
1  1  1  1  0  0  0  0  0  0  1  0  1

3  2  1  0  2  1  1
1  1  0  0  1  0  0

4  7  6  5  4  7
0  1  1  0  0  1

1  0  1  1 
1  0  1  1

3  2  2
1  0  0

4 5 4
0 1 0

7 6 7
1 0 1

1 1 10 2 2 3 4 4 5 6 7 7

4  7  6  5  3  2  1  0  2  1  4  1  7
1  1  1  1  0  0  0  0  0  0  1  0  1
3  2  1  0  2  1  1  4  7  6  5  4  7
1  1  0  0  1  0  0  0  1  1  0  0  1
1  0  1  1  3  2  2  4  5  4  7  6  7
1  0  1  1  1  0  0  0  1  0  1  0  1
0  0  0  1  2  2  3  4  4  5  6  7  7

Fig. 1. On the left, the standard wavelet tree over a sequence. The subsequences Sv are not stored. The bitmaps Bv, in bold, are stored, as well as the tree
topology. On the right, its pointerless version. The divisions into nodes are not stored but computed on the fly.
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Oðlg σÞ. The wavelet tree supports not only the three queries we have mentioned, but more general range search operations
that find applications in representing geometric grids [17,13,15,5,55] and text indexes based on them [50,28,45,18,22,42,53],
complex queries on numeric sequences [32,42,30], and many others. Various recent surveys [52,26,37,47,51] are dedicated,
partially or totally, to the number of applications of this versatile data structure.

In various applications, the alphabet size σ is significant compared to the length n of the sequence. Some examples are
sequences of words (seen as integer tokens) when simulating inverted indexes, sequences of XML tags, and sequences of
document numbers in document retrieval. When using wavelet trees to represent grids, the sequence length n becomes the
width of the grid and the alphabet size becomes the height of the grid, and both are equal in most cases. Finally, the problem
arises when a sequence is indexed as many short sequences, each of which is relatively short compared to the alphabet [41].

A large value of σ affects the space usage of wavelet trees. A pointerless wavelet tree [45] concatenates all the bitmaps levelwise
and removes the Oðσ lg nÞ bits from the space. It retains the time complexity of pointer-based wavelet trees, albeit it is slower in
practice. This representation can be made to use nH0ðSÞþoðn lg σÞ bits, where H0ðSÞr lg σ is the per-symbol zero-order entropy of
S, by using compressed bitmaps [61,35]. This makes the wavelet tree traversal even slower in practice, however.

A pointer-based wavelet tree, instead, can achieve zero-order compression by replacing the balanced tree by the Huffman tree
[39]. Then, evenwithout compressing the bitmaps, the storage space becomes nðH0ðSÞþ1ÞþoðnðH0ðSÞþ1ÞÞþOðσ lg nÞ bits. Adding
bitmap compression removes the n bits of the Huffman redundancy. In addition, this technique is faster than the basic one, as the
average access time is OðH0ðSÞÞ. By using canonical Huffman codes [64], a pointerless Huffman-shaped wavelet tree is also possible
[68]. This removes the Oðσ lg nÞ bits of the pointers, whereas those of the Huffman model can be reduced to σ lg σþOðσÞ, and
even Oðσ lg lg nÞ, in the case of a canonical code [56]. Therefore the total space can be written as nH0ðSÞþoðnðH0ðSÞþ1ÞÞþ
Oðσ lg lg nÞ bits.

Other than wavelet trees, Golynski et al. [33] proposed a sequence representation for large alphabets, which uses
n lg σþoðn lg σÞ bits (no compression) and offers much faster time complexities to support the three operations, Oðlg lg σÞ.
Later, Barbay et al. [6] built on this idea to obtain zero-order compression, nH0ðSÞþoðnðH0ðSÞþ1ÞÞ bits, while retaining the
times. This so-called “alphabet-partitioned” representation does not, however, offer the richer functionality of wavelet trees.
Moreover, as shown in their experiments [4], its sublinear space terms are higher in practice than those of a zero-order
compressed wavelet tree (yet their better complexity does show up in practice). There are recent theoretical developments
slightly improving those complexities [10], but their sublinear space terms would be even higher in practice.

Our contribution: In this article we introduce the wavelet matrix. This is an alternative representation of the balanced
pointerless wavelet tree that reorders the nodes in each level, in a way that retains all the wavelet tree functionality while
the traversals needed to carry out the operations are simplified and sped up. The wavelet matrix then retains all the
capabilities of wavelet trees, is resistant to large alphabets, and its speed gets close to that of pointer-based wavelet trees. It
can also obtain zero-order compression by compressing the bitmaps (which slows it down).

Then, we focus on combining wavelet matrices with Huffman-shaped wavelet trees, so as to obtain Huffman-shaped
wavelet matrices. These yield simultaneously zero-order compression and fast operations. It turns out, however, that the
canonical Huffman codes cannot be directly combined with the node numbering induced by the wavelet matrix, so we
derive an alternative code assignment scheme that is also optimal and compatible with the wavelet matrix.

We implement all the variants and test them over various real-life sequences, showing that a few versions of the wavelet matrix
dominate all the wavelet tree variants across the space/time tradeoff map, on diverse sequences over large alphabets and point grids.
2. Basic concepts

2.1. Wavelet trees

A wavelet tree [35] for sequence S½1;n� over alphabet ½0‥σÞ is a complete balanced binary tree, where each node handles a
range of symbols. The root handles ½0‥σÞ and each leaf handles one symbol. Each node v handling the range ½αv;ωvÞ represents
the subsequence Sv½1;nv� of S formed by the symbols in ½αv;ωvÞ, but it does not explicitly store Sv. Rather, internal nodes v store a
bitmap Bv½1;nv�, so that Bv½i� ¼ 0 if Sv½i�oαvþ2⌈lgðωv �αvÞ⌉�1 and Bv½i� ¼ 1 otherwise. That is, we partition the alphabet interval
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½αv;ωvÞ into two roughly equal parts: a “left” one, ½αv;αvþ2⌈lgðωv �αvÞ⌉�1Þ and a “right” one, ½αvþ2⌈lgðωv �αvÞ⌉�1;ωvÞ. These are
handled by the left and right children of v. No bitmaps are stored for the leaves. Fig. 1 (left) gives an example.

The tree has height ⌈lg σ⌉, and it has exactly σ leaves and σ�1 internal nodes. If we regard it level by level, we can see that it
holds, in the Bv bitmaps, up to n bits per level (all the leaves in each level appear to the right of the internal nodes). Thus it stores
at most n⌈lg σ⌉ bits. Storing the tree pointers, and pointers to the bitmaps, requires Oðσ lg nÞ further bits, if we use the minimum
of lg n bits for the pointers.

To access S½i�, we start from the root node ν, setting iν ¼ i. If Bν½iν� ¼ 0, this means that S½i� ¼ Sν½iν�o2⌈lg σ⌉�1 and that the
symbol is represented in the subsequence Sνl of the left child νl of the root. Otherwise, Sν½iν�Z2⌈lg σ⌉�1 and it is represented
in the subsequence Sνr of the right child νr of the root. In the first case, the position of Sν½iν� in Sνl is iνl ¼ rank0ðBν; iνÞ,
whereas in the second, the position in Sνr is iνr ¼ rank1ðBν; iνÞ. We continue recursively, extracting Sv½iv� from node v¼ νl or
v¼ νr , until we arrive at a leaf representing the alphabet interval ½a; a�, where we can finally report S½i� ¼ a.

Therefore, the maximum cost of operation access is that of ⌈lg σ⌉ binary rank operations on bitmaps Bv. Binary
rank and select operations can be carried out in constant time using only oðnvÞ bits on top of Bv [40,49,19].

The process to compute rankaðS; iÞ is similar. The difference is that we do not descend according to whether Bv½i� equals 0
or 1, but rather according to the bits of aA ½0;σÞ: the highest bit of a tells us whether to go left or right, and the lower bits are
used in the next levels. When moving to a child u of v, we compute iu ¼ rank0=1ðBv; ivÞ to be the number of times the current
bit of a appears in Bv½1; iv�. When we arrive at the leaf u handling the range ½a; a�, the answer to rankaðS; iÞ is iu.

Finally, to compute selectaðS; jÞ we must proceed upwards. We start at the leaf u that handles the alphabet range ½a; a�.
So we want to track the position of Su½ju�, ju ¼ j, towards the root. If u is the left child of its parent v, then the corresponding
position at the parent is Sv½jv�, where jv ¼ select0ðBv; juÞ. Else, the corresponding position is jv ¼ select1ðBv; juÞ. When we
finally arrive at the root ν, the answer to the query is jν.

Thus the maximum cost of query rankaðS; iÞ is ⌈lg σ⌉ binary rank operations (just like accessðS; iÞ), and the maximum
cost of query selectaðS; iÞ is ⌈lg σ⌉ binary select operations. Algorithm 1 gives the pseudocode (the recursive form is
cleaner, but recursion can be easily removed).
Algorithm 1. Standard wavelet tree algorithms: On the wavelet tree of sequence S rooted at ν, accðν; iÞ returns S½i�;
rnkðν; a; iÞ returns rankaðS; iÞ; and selðν; a; jÞ returns selectaðS; jÞ. The left/right children of v are called vl=vr .
4 In practice the effect is not so large be
thus the impact on query select is lower
cause of cache effects when sv is close to ev. In a
.

accðv; iÞ
 rnkðv; a; iÞ
 selðv; a; jÞ

if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
return αv
 return i
 return j
endif
 end if
 end if

if Bv½i� ¼ 0 then
 if ao2⌈lgðωv �αv Þ⌉�1 then
 if ao2⌈lgðωv �αv Þ⌉�1 then
i’rank0ðBv; iÞ
 i’rank0ðBv; iÞ
 j’selðvl ; a; jÞ

return accðvl ; iÞ
 return rnkðvl ; a; iÞ
 return select0ðBv ; jÞ
else
 else
 else

i’rank1ðBv; iÞ
 i’rank1ðBv; iÞ
 j’selðvr ; a; jÞ

return accðvr ; iÞ
 return rnkðvr ; a; iÞ
 return select1ðBv ; jÞ
end if
 end if
 end if
2.2. Pointerless wavelet trees

Since the internal nodes at each level of the wavelet tree are all to the left, it is possible to concatenate all the bitmaps at each
level and still retain the same functionality [45]. Instead of a bitmap per node v, there will be a single bitmap per level ℓ, ~Bℓ½1;n�.
Fig. 1 (right) illustrates this arrangement. The main problem is how to keep track of the range ~Bℓ½sv; ev� corresponding to a node v

of depth ℓ.
The strict variant: The strict variant [45] stores no data apart from the ⌈lg σ⌉ pointers to the level bitmaps. Keeping track

of the node ranges is not hard if we start at the root (as in access and rank). Initially, we know that ½sν; eν� ¼ ½1;n�, that is,
the whole bitmap ~B0 is equal to the bitmap of the root, Bν. Now, imagine that we have navigated towards a node v at depth
ℓ, and know ½sv; ev�. The two children of v share the same interval ½sv; ev� at ~Bℓþ1. The split point is m¼ rank0

ð ~Bℓ; evÞ�rank0ð ~Bℓ; sv�1Þ, the number of 0s in ~Bℓ½sv; ev�. Then, if we descend to the left child vl, we will have
½svl ; evl � ¼ ½sv; svþm�1�. If we descend to the right child vr, we will have ½svr ; evr � ¼ ½svþm; ev�.

Things are a little bit harder for select, because we must proceed upwards. In the strict variant, the way to carry out
selectaðS; jÞ is to first descend to the leaf corresponding to symbol a, and then track the leaf position j up to the root as we
return from the recursion.

Algorithm 2 gives the pseudocode (we use p¼ s�1 instead of s¼ sv). Note that, compared to the standard version, the
strict variant requires two extra binary rank operations per original binary rank, on the top-down traversals (i.e., for
queries access and rank). For query select, the strict variant requires two extra binary rank operations per original
binary select. Thus the times may up to triple for these traversals.4
ddition, binary select is more expensive than rank in practice,
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Algorithm 2. Pointerless wavelet tree algorithms (strict variant): On the wavelet tree of sequence S, accð0; i;0;nÞ returns
S½i�; rnkð0; a; i;0;nÞ returns rankaðS; iÞ; and selð0; a; j;0;nÞ returns selectaðS; jÞ. For simplicity we have omitted the
computation of ½αv;ωvÞ.

accðℓ; i; p; eÞ
 rnkðℓ; a; i; p; eÞ
 selðℓ; a; j; p; eÞ

if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
return αv

return i
 return j
end if
 end if
 end if

l’rank0ð ~Bℓ; pÞ
 l’rank0ð ~Bℓ ;pÞ
 l’rank0ð ~Bℓ; pÞ

r’rank0ð ~Bℓ; eÞ
 r’rank0ð ~Bℓ ; eÞ
 r’rank0ð ~Bℓ; eÞ

if ~Bℓ½i� ¼ 0 then
 if ao2⌈lgðωv �αv Þ⌉�1 then
 if ao2⌈lgðωv �αv Þ⌉�1then
z’rank0ð ~Bℓ ; pþ iÞ
 z’rank0ð ~Bℓ; pþ iÞ
 j’selðℓþ1; a; j; p; pþr� lÞ

return accðℓþ1, z� l; p; pþr� lÞ
 return rnkðℓþ1; a; z� l;p; pþr� lÞ
 return select0ð ~Bℓ ; lþ jÞ�p
else
 else
 else

z’rank1ð ~Bℓ ; pþ iÞ
 z’rank1ð ~Bℓ; pþ iÞ
 j’selðℓþ1; a; j; pþr� l; eÞ
return accðℓþ1, z�ðp� lÞ; pþr� l; eÞ
 return rnkðℓþ1; a; z�ðp� lÞ; pþr� l; eÞ
 return select1ð ~Bℓ ; ðp� lÞþ jÞ�p

end if
 end if
 end if
The extended variant: The extended variant [20], instead, stores an array C½0;σ�1� of pointers to the σ starting positions of
the symbols in the (virtual) array of the leaves, or said another way, C½a� is the number of occurrences of symbols smaller
than a in S. Note this array requires Oðσ lg nÞ bits (or at best Oðσ lgðn=σÞÞþoðnÞ if represented as a compressed bitmap [61]),
but the constant is much lower than on a pointer-based tree (which stores the left child, the right child, the parent, the value
nv, the pointer to bitmap Bv, pointers to the leaves, etc.). We also need to indicate the level in which each leaf is found.

With the help of array C, the number of operations becomes closer to the standard version, since C lets us compute the
ranges: The range of any node v is simply ½sv; ev� ¼ ½C½αv�þ1;C½ωv��. In the algorithms for queries access and rank, where
we descend from the root, the values αv and ωv are easily maintained. Thus we do not need to compute r in Algorithm 2, as
it is used only to compute e¼ ev ¼ C½ωv�. Thus we require only one extra binary rank operation per level.

This is slightly more complicated when solving query selectaðS; jÞ. We start at offset j in the interval ½C½αu�þ1;C½ωu�� for
ðαu;ωuÞ ¼ ða; aþ1Þ and track this position upwards: Assume the leaf u is at the deepest level. If it is the left child of its parent v (i.e.,
if αu is even), then the parent's range (in the deepest bitmap ~Bℓ) is ðαv;ωvÞ ¼ ðαu;ωuþ1Þ. Instead, if the leaf is a right child of its
parent, then the parent's range is ðαv;ωvÞ ¼ ðαu�1;ωuÞ. We use binary select on the range ½C½αv�þ1;C½ωv�� to map the position
j to the parent's range. Now we proceed similarly at the parent w of v. If αv ¼ 0 mod 4, then v is the left child of w, otherwise it is
the right child. In the first case, the range ofw in bitmap ~Bℓ�1 is ðαw;ωwÞ ¼ ðαv;ωvþ2Þ, otherwise it is ðαw;ωwÞ ¼ ðαv�2;ωvÞ. We
continue until the root, where j is the answer. In this case we need only one extra binary rank operation per level. Algorithm 3
details the algorithms.

Algorithm 3. Pointerless wavelet tree algorithms (extended variant): On the wavelet tree of sequence S, accð0; iÞ returns S½i�;
rnkð0; a; iÞ returns rankaðS; iÞ; and selða; jÞ returns selectaðS; jÞ. For simplicity we have omitted the computation of ½αv;ωvÞ,
except on selða; jÞ, where for simplicity we assume C½a� refers to level ℓ¼ ⌈lg σ⌉, and thus d starts in 1.
accðℓ; iÞ
 rnkðℓ; a; iÞ
 selða; jÞ

if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
 ℓ’⌈lg σ⌉, d’1
return αv

return i
 while ℓZ0
end if
 end if
 if a mod 2d ¼ 0 then

l’rank0ð ~Bℓ;C½αv�Þ
 l’rank0ð ~Bℓ;C½αv�Þ
 l’rank0ð ~Bℓ ;C½αv�Þ

z’rank0ð ~Bℓ ;C½αv�þ iÞ
 z’rank0ð ~Bℓ ;C½αv�þ iÞ
 j’select0ð ~Bℓ ; lþ jÞ

if ~Bℓ½i� ¼ 0 then
 if ao2⌈lgðωv �αv Þ⌉�1 then
 else
return accðℓþ1; z� lÞ
 return rnkðℓþ1; a; z� lÞ
 αv’αv�2d�1
else
 else
 l’rank1ð ~Bℓ ;C½αv�Þ

return accðℓþ1; i�ðz� lÞÞ
 return rnkðℓþ1; a; i�ðz� lÞÞ
 j’select1ð ~Bℓ ; lþ jÞ
end if
 end if
 end if

j’j�C½αv�

ℓ’ℓ�1, d’dþ1

end while

return j
2.3. Huffman shaped wavelet trees

Given the frequencies of the σ symbols in S½1;n�, the Huffman algorithm [39] produces an optimal variable-length
encoding so that (1) it is prefix-free, that is, no code is a prefix of another; (2) the size of the compressed sequence is
minimized. If symbol aA ½0;σÞ appears na times in S, then the Huffman algorithm will assign it a codeword of length ℓa so
that the sum L¼∑anaℓa is minimized. Then the file is compressed to L bits by replacing each symbol S½i� ¼ a by its code of
length ℓa. The empirical zero-order entropy [25] of S is H0ðSÞ ¼∑aðna=nÞ lgðn=naÞr lg σ, and no statistical compressor based
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on individual symbol probabilities can output less than nH0ðSÞ bits. The output size of Huffman compression can be bounded
by ∑anaℓaonðH0ðSÞþ1Þ bits, which is off the optimum by less than 1 bit per symbol.

Huffman [39] showed how to build a so-called Huffman tree to obtain these codes. The tree leaves will contain the
symbols, whose codes are obtained by following the tree path from the root to their leaves. Each branch of the tree is labeled
with 0 (say, the left child) or 1 (say, the right child), and the code associated with a symbol a is obtained by concatenating
the labels found in the path from the tree root to the leaf that contains symbol a.

Building a balanced wavelet tree is equivalent to using a fixed-length encoding. Instead, by giving the wavelet tree the
shape of the Huffman tree, the total number of bits stored is exactly the output size of the Huffman compressor [35,51]: The
leaf of a is at depth ℓa, and each of the na occurrences induces one bit in the bitmap of each of the ℓa ancestors of the leaf.
The size of this tree, plus rank/select overheads, is thus upper bounded by nðH0ðSÞþ1ÞþoðnðH0ðSÞþ1ÞÞþOðσ lg nÞ bits.
Fig. 2 depicts a Huffman-shaped wavelet tree.

The wavelet tree operations are performed verbatim on Huffman-shaped wavelet trees. Moreover, they become faster on
average: If iA ½1;n� is chosen at random for accessðS; iÞ, or a is chosen with probability na=n in operations rankaðS; iÞ and
selectaðS; jÞ (which is the typical case in most applications), then the average time is OðH0ðSÞþ1Þ. By rebalancing deep
leaves, the space and average time are maintained and the worst-case time of the operations is limited to Oð lg σÞ [9].

Zero-order compression can also be achieved on the balanced wavelet tree, by using a compressed representation of the
bitmaps [61]. The time remains the same and the space decreases to nH0ðSÞþoðn lg σÞ bits [35]. Combining the compressed
bitmap representation with Huffman shape, we obtain nH0ðSÞþoðnðH0ðSÞþ1ÞÞþOðσ lg nÞ bits. This combination works well
in practice [20], although the compressed bitmap representation is in practice slower than the plain one.

2.4. Wavelet trees on point grids

As mentioned in the Introduction, wavelet trees are not only useful to support access, rank and select operations on
sequences. They are also frequently used to represent point grids [17,51], where they can for example count or list the points
that lie in a rectangular area. Typically the grid is square, of n� n cells, and contains n points, exactly one point per row and
per column (other arrangements are routinely mapped to this simplified case). Then it can be regarded as a sequence S½1;n�
over a large alphabet of size σ ¼ n. In this case, pointer-based wavelet trees perform poorly, as the space for the pointers is
dominant. Similarly, zero-order compression is ineffective. The balanced wavelet trees without pointers [45] are the most
successful representation.

The pseudocode for range searches using standard wavelet trees is easily available, see for example Gagie et al. [31].
Algorithm 4 shows the algorithms adapted to pointerless wavelet trees. We consider the two basic operations
countðP; x1; x2; y1; y2Þ and reportðP; x1; x2; y1; y2Þ, which count and list, respectively, the points within the rectangle
½x1; x2� � ½y1; y2� from the point set represented in sequence P½1;n�. The time complexities can be shown to be Oðlg nÞ for
count and Oðk lgðn=kÞÞ for a report operation that lists k points. In practical terms, compared to the standard versions, the
pointerless algorithms require twice the number of rank operations.

Algorithm 4. Range search algorithms on pointerless wavelet trees: countð0; x1; x2; y1; y2;0;nÞ returns countðP;x1;

x2;y1;y2Þ on the wavelet tree of sequence P; and reportð0; x1; x2; y1; y2;0;nÞ outputs all those y, where a point with
coordinate y1ryry2 appears in P½x1; x2�. For simplicity we have omitted the computation of ½αv;ωvÞ.

countðℓ; x1 ; x2 ; y1 ; y2 ; p; eÞ
 reportðv; x1 ; x2; y1 ; y2 ; p; eÞ
if x14x23 ½αv ;ωv� \ ½y1; y2� ¼ | then
 if x14x23 ½αv;ωv� \ ½y1 ; y2� ¼ | then

return 0
 return
else if ½αv;ωv�D ½y1; y2�
 else if ωv�αv ¼ 1 then

return x2�x1þ1
 output αv
else
 else

l’rank0ð ~Bℓ ; pÞ
 l’rank0ð ~Bℓ ;pÞ

r’rank0ð ~Bℓ; eÞ
 r’rank0ð ~Bℓ ; eÞ

xl1’rank0ð ~Bℓ; x1�1Þ� lþ1
 xl1’rank0ð ~Bℓ ; x1�1Þ� lþ1
xl2’rank0ð ~Bℓ; x2Þ� l
 xl2’rank0ð ~Bℓ ; x2Þ� l
xr1’x1�xl1þ1, xr2’x2�xl2
 xr1’x1�xl1þ1, xr2’x2�xl2

return countðℓþ1; xl1 ; x

l
2; y1 ; y2 ; p; pþr� lÞ
 reportðℓþ1; xl1 ; x

l
2 ; y1 ; y2 ; p; pþr� lÞ
þcountðℓþ1; xr1 ; x
r
2; y1; y2 ;pþr� l; eÞ
 reportðℓþ1; xr1 ; x

r
2 ; y1 ; y2 ; pþr� l; eÞ
end if
 end if
3. Pointerless Huffman shaped wavelet trees

In this section we revisit the technique [68] to use canonical Huffman codes [64] to represent Huffman-shaped wavelet
trees without pointers, this way removing the main component of the Oðσ lg nÞ extra bits and retaining the advantages of
reduced space and OðH0ðSÞþ1Þ average traversal time.

The problem that arises when storing a standard Huffman-shaped wavelet tree in levelwise form is that a leaf that
appears in the middle of a level leaves a “hole” that ruins the calculations done at the nodes to the right of it to find their
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Fig. 2. On the left, the same wavelet tree of Fig. 1. On the right, its Huffman-shaped version.
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position in the next level. Canonical Huffman codes choose one of the many optimal Huffman trees that, among other
interesting benefits [64,62], yields a set of codes in which longer codes appear to the left of shorter codes.5 As a
consequence, all the leaves of a level appear grouped to the right, and therefore do not alter the navigation calculations for
the other nodes. The levelwise deployment of the tree can be seen as a sequence of “contiguous” bitmaps of varying length.

The navigation procedures of Algorithm 2 can then be used verbatim, except for a few alphabet mappings that must be
carried out: For accessðS; iÞ, we need to maintain the Huffman tree so that, given the 0/1 labels of the traversed path, we
determine the alphabet symbol corresponding to that leaf of the Huffman tree. For rankaðS; iÞ, we need to convert the
symbol a to its variable-length code, in order to follow the corresponding path in the wavelet tree. Finally, for selectaðS; iÞ,
we need the same as for rank for the strict variant, or a pointer to the corresponding leaf area in some bitmap ~Bℓ, for the
extended variant. The mappings are also used to determine when to stop a top-down traversal. The mapping information
amounts to Oðσ lg nÞ bits as well, but it is much less in practice than what is stored for pointer-based wavelet trees, as
explained. Moreover, in the case of canonical codes, σ lg σþOðσÞ bits are sufficient to represent the mappings. It has also
been shown that they can be represented within Oðσ lg lg nÞ bits as well [56].

The maximum number of levels in a Huffman tree is Oðlg nÞ, and as explained it can be made Oðlg σÞwithout affecting the
asymptotic performance. Thus the pointers to the levels add up to a negligible Oðlg2 nÞ bits. The rest of the space is as for
standard Huffman-shaped wavelet trees: nðH0ðSÞþ1ÞþoðnðH0ðSÞþ1ÞÞ bits. Moreover, by using compressed bitmaps [61], the
space is reduced to nH0ðSÞþoðnðH0ðSÞþ1ÞÞ bits, albeit in practice the navigation is slowed down.

The algorithm to compute a canonical Huffman code [64] starts from the code length assignments ℓa produced by the
standard Huffman algorithm, and produces a particular Huffman tree with the same code lengths. First, it computes ℓmin and
ℓmax, the minimum and maximum code lengths, and array nCodes½ℓmin;ℓmax�, where nCodes½ℓ� is the number of codes of
length ℓ. Then, the algorithm assigns the codes as follows:
1.
 fst½ℓmin� ¼ 0ℓmin (i.e., ℓmin 0s) is the first code of length ℓmin.

2.
 All the codes of a given length ℓ are consecutive numbers, from fst½ℓ� to last½ℓ� ¼ fst½ℓ�þnCodes½ℓ��1.

0

3.
 The first code of the next length ℓ04ℓ that has nCodes½ℓ0�40 is fst½ℓ0� ¼ 2ℓ �ℓðlast½ℓ�þ1Þ.
Note that rule 2 ensures that all codes of a given level are consecutive numbers and the first of their length, whereas rule
3 guarantees that the set of produced codes is prefix-free. By interpreting the bit 0 as the right child and the bit 1 as the left
child, we have that all the leaves at any level are the rightmost nodes. Fig. 3 illustrates the standard and the levelwise
deployment of a canonical Huffman code.
4. The wavelet matrix

The idea of the wavelet matrix is to break the assumption that the children of a node v, at interval ~Bℓ½sv; ev�, must be
aligned to it and occupy the interval ~Bℓþ1½sv; ev�. Freeing the structure from this assumption allows us to design a much
simpler mapping mechanism from one level to the next: all the zeros of the level go left, and all the ones go right. For each
level, we will store a single integer zℓ that tells the number of 0s in level ℓ. This requires just Oðlg n lg σÞ bits, which is
insignificant, and allows us to implement the pointerless mechanisms in a simpler and faster way.

More precisely, if ~Bℓ½i� ¼ 0, then the corresponding position at level ℓþ1 will be rank0ð ~Bℓ; iÞ. If ~Bℓ½i� ¼ 1, the position at
level ℓþ1 will be zℓþrank1ð ~Bℓ; iÞ. Note that we can map the position without knowledge of the boundaries of the node the
position belongs. Still, every node v at level ℓ occupies a contiguous range in ~Bℓ, as proved next.

Proposition 1. All the bits in any bitmap ~Bℓ
0
of the pointerless wavelet tree that correspond to a wavelet tree node v are also

contiguous in the bitmap ~Bℓ of the wavelet matrix.
5 It is usually to the right, but this way is more convenient for us.
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Fig. 3. On the left, the pointer-based canonical Huffman code for our running example. On the right, its levelwise representation. Note that from now on
we interpret the bit 0 as going right and the bit 1 as going left.
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Proof. This is obviously true for the root v¼ ν, as it corresponds to the whole ~B0
0 ¼ ~B0. Now, assuming it is true for a node v,

with interval ~Bℓ½sv; ev�, all the positions with ~Bℓ½i� ¼ 0 for svr irev will be mapped to consecutive positions
~Bℓþ1½rank0ð ~Bℓ; iÞ�, and similarly with positions ~Bℓ½i� ¼ 1. □

Fig. 4 illustrates the wavelet matrix, where it can be seen that the blocks of the wavelet tree are maintained, albeit in
different order. We now describe how to carry out the operations under the strict and the extended variants.

The strict variant: To carry out accessðS; iÞ, we first set i0 to i. Then, if ~B0½i0� ¼ 0, we set i1 to rank0ð ~B0; i0Þ. Else we set i1 to
z0þrank1ð ~B0; i0Þ. Now we descend to level 1, and continue until reaching a leaf. The sequence of bits ~Bℓ½iℓ� read along the
way form the value S½i� (or, said another way, we maintain the interval ½αv;ωvÞ and upon reaching the leaf it holds S½i� ¼ αv).
Note that we have carried out only one binary rank operation per level, just as the standard wavelet tree.

Consider now the computation of rankaðS; iÞ. This time we need to keep track of the position i, and also of the position preceding
the range, initially p0 ¼ 0. At each node v of depth ℓ, if ao2⌈lgðωv �αvÞ⌉�1, then we go “left” by mapping pℓþ1 to rank0ð ~Bℓ;pℓÞ and
iℓþ1 to rank0ð ~Bℓ; iℓÞ. Otherwise, we go “right” by mapping pℓþ1 to zℓþrank1ð ~Bℓ; pℓÞ and iℓþ1 to zℓþrank1ð ~Bℓ; iℓÞ. When we
arrive at the leaf level, the answer is iℓ�pℓ. Note that we have needed one extra binary rank operation per original rank operation of
the standard wavelet tree, instead of the two extra operations required by the (strict) pointerless variant.

Finally, consider operation selectaðS; jÞ. We first descend towards the leaf of a just as done for rankaðS; iÞ, keeping track
only of pℓ. When we arrive at the last level, pℓ precedes the range corresponding to the leaf of a, and thus we wish to track
upwards position jℓ ¼ pℓþ j. The upward tracking of a position ~Bℓ½jℓ� is simple: If we went left from level ℓ�1, then this
position was mapped from a 0 in ~Bℓ�1, and therefore it came from jℓ�1 ¼ ~Bℓ�1½select0ð ~Bℓ; jℓÞ�. Otherwise, position jℓ was
mapped from a 1, and thus it came from jℓ�1 ¼ ~Bℓ�1½select1ð ~Bℓ; jℓ�zℓÞ�. When we arrive at the root bitmap, j0 is the
answer. Note that we have needed one extra binary rank per original binary select required by the standard wavelet tree.
We remind that in practicerank is much less demanding, so this overhead is low. Algorithm 5 gives the pseudocode.

Algorithm 5. Wavelet matrix algorithms (strict variant): On the wavelet matrix of sequence S, accð0; iÞ returns S½i�;
rnkð0; a; i;0Þ returns rankaðS; iÞ; and selð0; a; j;0Þ returns selectaðS; jÞ. For simplicity we have omitted the computation of
½αv;ωvÞ.

accðℓ; iÞ
 rnkðℓ; a; i; pÞ
 selðℓ; a; j; pÞ
if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
return αv

return i�p
 return pþ j
end if
 end if
 end if

if ~Bℓ½i� ¼ 0 then
 if ao2⌈lgðωv �αv Þ⌉�1 then
 if ao2⌈lgðωv �αv Þ⌉�1 then
i’rank0ð ~Bℓ; iÞ
 p’rank0ð ~Bℓ ; pÞ
 p’rank0ð ~Bℓ ; pÞ

else
 i’rank0ð ~Bℓ; iÞ
 j’selðℓþ1; a; j; pÞ
i’rank1ð ~Bℓ; iÞ
 else
 return select0ð ~Bℓ ; jÞ

end if
 p’zℓþrank1ð ~Bℓ ;pÞ
 else
return accðℓþ1; iÞ
 i’zℓþrank1ð ~Bℓ ; iÞ
 p’zℓþrank1ð ~Bℓ ; pÞ

end if
 j’selðℓþ1; a; j; pÞ

return rnkðℓþ1; a; i;pÞ
 return select1ð ~Bℓ ; j�zℓÞ
end if
The extended variant: We can speed up rank and select operations if the array C that points to the starting positions of
each symbol in its bitmap is available. First, we note that for rankaðS; iÞwe do not need anymore to keep track of pℓ, since all
we need at the end is to return iℓ�C½a�. Thus the cost becomes similar to that of the standard wavelet tree, which was not
achieved with the extended variant of the pointerless wavelet tree.
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Fig. 4. On the left, the pointerless wavelet tree of Fig. 1. On the right, the wavelet matrix over the same sequence. One vertical line per level represents the
position stored in the zℓ values.
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For selectaðS; jÞ we can avoid the first downward traversal, as in the pointerless wavelet tree, and use the same
technique to determine whether we came from the left or from the right in the parent bitmap. Once again, the cost becomes
the same as in a standard wavelet tree, with no extra rank operations required. Algorithm 6 gives the detailed algorithm.

Algorithm 6. Wavelet matrix algorithms (extended variant): On the wavelet matrix of sequence S, accð0; iÞ returns S½i�;
rnkð0; a; iÞ returns rankaðS; iÞ; and selða; jÞ returns selectaðS; jÞ. For simplicity we have omitted the computation of ½αv;ωvÞ,
and in selða; jÞ we assume C½a� refers to level ℓ¼ ⌈lg σ⌉.

accðℓ; iÞ
 rnkðℓ; a; iÞ
 selða; jÞ

if ωv�αv ¼ 1 then
 if ωv�αv ¼ 1 then
 ℓ’⌈ lg σ⌉, d’1
return αv

return i�C½a�
 j’C½a�þ j
end if
 end if
 while ℓZ0 do

if ~Bℓ½i� ¼ 0 then
 if ao2⌈lgðωv �αv Þ⌉�1 then
 if a mod 2d ¼ 0 then
i’rank0ð ~Bℓ ; iÞ
 i’rank0ð ~Bℓ ; iÞ
 j’select0ð ~Bℓ ; jÞ

else
 else
 else
i’rank1ð ~Bℓ ; iÞ
 i’zℓþrank1ð ~Bℓ; iÞ
 j’select1ð ~Bℓ ; j�zℓÞ

end if
 end if
 end if

return accðℓþ1; iÞ
 return rnkðℓþ1; a; iÞ
 ℓ’ℓ�1, d’dþ1
end while

return j
Range searches: Range searches for rectangles ½x1; x2� � ½y1; y2� require essentially that we are able to track the points x1
and x2 downwards in the tree. Thus the same wavelet matrix mechanism for rankcan be used. Since we are only interested
in the value x2�x1 at the traversed nodes, we do not need to keep track of p, even in the strict variant (the extended variant
requires too much space in this scenario). As a result, we need the same number of rank operations as in a pointer-based
representation, and get rid of the two extra rank operations required by the pointerless wavelet tree. Algorithm 7 gives the
pseudocode.

Algorithm 7. Range search algorithms on the wavelet matrix: countð0; x1; x2; y1; y2Þ returns countðP;x1;x2;y1;y2Þ on the
wavelet tree of sequence P; and reportð0; x1; x2; y1; y2Þ outputs all those y, where a point with coordinate y1ryry2 appears
in P½x1; x2�. For simplicity we have omitted the computation of ½αv;ωvÞ.

countðℓ; x1; x2 ; y1 ; y2Þ
 reportðv; x1 ; x2 ; y1 ; y2Þ
if x14x23 ½αv;ωv� \ ½y1 ; y2� ¼ | then
 if x14x23 ½αv ;ωv� \ ½y1 ; y2� ¼ | then

return 0
 return
else if ½αv ;ωv�D ½y1 ; y2� then
 else if ωv�αv ¼ 1 then

return x2�x1þ1
 output αv
else
 else

xl1’rank0ð ~Bℓ ; x1�1Þþ1
 xl1’rank0ð ~Bℓ ; x1�1Þþ1
xl2’rank0ð ~Bℓ ; x2Þ
 xl2’rank0ð ~Bℓ ; x2Þ

xr1’x1�xl1þ1, xr2’x2�xl2
 xr1’x1�xl1þ1, xr2’x2�xl2

return countðℓþ1; xl1 ; x

l
2 ; y1 ; y2Þ
 reportðℓþ1; xl1; x

l
2 ; y1 ; y2Þ
þcountðℓþ1; xr1 ; x
r
2; y1 ; y2Þ
 reportðℓþ1; xr1; x

r
2 ; y1 ; y2Þ
end if
 end if
Construction: Construction of the wavelet matrix is simple. At the first level we keep in bitmap ~B0 the highest bits of the
symbols in S, and then stably sort S by those highest bits. Now we keep in bitmap ~B1 the next-to-highest bits, and stably sort
S by those next-to-highest bits. We continue until considering the lowest bit. This takes Oðn lg σÞ time.

Indeed, we can build the wavelet matrix almost in place, by removing the highest bits after using them and packing the
symbols of S. This frees n bits, where we can store the bitmap ~B0 we have just generated, and keep doing the same for the
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next levels. We generate the oðn lg σÞ-space indexes at the end. Thus the construction space is n⌈lg σ⌉þmaxðn; oðn lg σÞÞ bits.
Other more sophisticated techniques [24,65] may use even less space.

5. The compressed wavelet matrix

Just as on the pointerless wavelet tree, we can achieve zero-order entropy with the wavelet matrix by replacing the plain
representations of bitmaps ~Bℓ by compressed ones [61], the space becoming nH0ðSÞþoðn lg σÞ bits. Compared to obtaining
zero-order entropy using Huffman-shaped trees, this solution has several disadvantages, as explained: (1) the compressed
bitmaps are slower to operate than in a plain representation; (2) the number of operations on a Huffman-shaped tree is
lower on average than on a balanced tree; (3) the Huffman-shaped wavelet tree is more compact, as it reduces the
redundancy from oðn lg σÞ to oðnðH0ðSÞþ1ÞÞ (albeit a small Oðσ lg nÞ�bit space term is added to hold the Huffman model);
(4) the bitmap compression can be additionally combined with the Huffman shape, obtaining further compression (yet
higher time).

The idea is the same as in Section 3: Arrange the codes so that all the leaves are grouped to the right of the bitmaps ~Bℓ.
However, because of the reordering of nodes produced by the wavelet matrix, the use of canonical Huffman codes does not
guarantee that the leaves of the same level are contiguous. In the wavelet matrix, the position of a code c in ~Bℓþ1 depends
only on the position of c in ~Bℓ and on the bit of c in that level, c½ℓ�. Fig. 5 illustrates an example of a canonical set of codes
where the first 16 shortest codewords take values from 00000 to 01111 and the remaining 32 from 100000 to 111110. The
figure shows the relative positions of the codes at successive levels of the wavelet matrix for a sequence …c8; c12; c32; c48…,
where c8 ¼ 01000, c12 ¼ 01100, c32 ¼ 100000, and c48 ¼ 110000. As we can see, codes c8 and c12 finish at level 5 but they are
not contiguous since there is a c48 between them.

We require a different mechanism to design an optimal prefix-free code that guarantees that, under the shuffling rules of
the wavelet matrix, all the leaves at any level form a contiguous area to the right of the bitmap.

We start by studying how the wavelet matrix sorts the codes at each level. Consider a pair of codes c1½1;ℓ1� and c2½1;ℓ2�.
Depending on their bits at a given level ℓ of the wavelet matrix, two cases are possible: (a) c1½ℓ� ¼ c2½ℓ� and then the relative
positions of c1 and c2 stay the same at level ℓþ1, or (b) c1½ℓ�ac2½ℓ� and then their relative positions in level ℓþ1 depend on
the relation between c1½ℓ� and c2½ℓ�. This yields the following proposition:

Proposition 2. In a wavelet matrix, given any pair of codes c1 and c2, c1 appears before (after) c2 in ~Bℓ if, for some 0r ioℓ, it
holds c1½ℓ� i;ℓ�1� ¼ c2½ℓ� i;ℓ�1� and c1½ℓ� i�1� ¼ 0ð1Þac2½ℓ� i�1�.

Proof. If c1½ℓ� i;ℓ�1� ¼ c2½ℓ� i;ℓ�1�, then c1 and c2 transitively keep their relative positions from level ℓ� i to level ℓ.
Instead, c1½ℓ� i�1�ac2½ℓ� i�1� makes their ordering in level ℓ� i dependent only on how c1½ℓ� i�1� and c2½ℓ� i�1�
compare to each other. □

As a second step, assume we want to design a set of fixed-length codes fca; aA ½0;σÞg such that caocb iff the area of ca is
before that of cb in ~B⌈lg σ⌉. That is, we want the codes to be listed in order in the last level. Let inv: f0;1gNþ �Nþ-f0;1gNþ

be
defined as invðc½1;ℓ�;ℓÞ ¼ c�1½1;ℓ�, where c�1½i� ¼ c½ℓ� iþ1� for all 1r irℓ. That is, invðc;ℓÞ takes number c as a codeword
of ℓ bits and returns the code obtained by reading c backwards. Then, the following proposition holds:

Proposition 3. Given any two values i; jA ½0;σÞ where io j, code invði; ⌈lg σ⌉Þ is located to the left of code invðj; ⌈lg σ⌉Þ in the
bitmap ~B⌈lg σ⌉ of a wavelet matrix that uses such codes.

Proof. Let τi ¼ invði; ⌈lg σ⌉Þ and τj ¼ invðj; ⌈lg σ⌉Þ. If τi and τj do not share any common suffix, then their relative positions in
~B⌈lg σ⌉ depend only on their last bit and the relation is given by that bit. Otherwise, τi and τj share a common suffix of length
⌈lg σ⌉�δþ1A ½1; ⌈lg σ⌉�, that is, τi½δ; ⌈lg σ⌉� ¼ τj½δ; ⌈lg σ⌉�. Then, according to Proposition 2, τi is before τj iff τi½δ�oτj½δ�. In
both cases the relation is given by the last distinct bit of the codes, or the first if they are read backwards. Since the codes are
of the same length, comparing by the first distinct bit is equivalent to comparing numerically. That is, τi is before τj iff
invðτi; ⌈lg σ⌉Þo invðτj; ⌈lg σ⌉Þ. In turn, since invðinvðc;ℓÞ;ℓÞ ¼ c, this is equivalent to io j. □

The proposition gives a way to force a desired order in a set of fixed-length codes: Given symbols aA ½0;σÞ, we can assign
them codes ca ¼ invða; ⌈lg σ⌉Þ to ensure that the areas become ordered in ~B⌈lg σ⌉. As a side note, we observe that we could
have retained the symbol order natively in the wavelet matrix if we had chosen to decompose the symbols from their least
to their most significant bit, and not the other way (in this case the wavelet matrix is actually radix-sorting the values). This
Fig. 5. Example of a sequence of canonical codes along wavelet matrix levels, showing that the leaves do not span a contiguous area. The the vertical bar “j”
marks the points zℓ .
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Fig. 6. On the left, the Huffman tree resulting from our code reassignment algorithm on the running example. On the right, the resulting Huffman-shaped
wavelet matrix.
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brings problems in the extended variants, however, because the resulting range of codes has unused entries if σ is not a
power of 2. For example, consider alphabet 0;1;2;3;4¼ 000;…;100; after reversing the bits we obtain numbers 0;1;2;4;6,
so we need to allocate 7 cells for C instead of 5. The size of C can double in the worst case. We cannot either directly use the
idea of reversing the canonical Huffman codes, because the codes could not be prefix-free anymore. A more sophisticated
scheme, based on Proposition 3, is required.

Assume we have obtained the desired code lengths ℓa, as well as the array nCodes from the canonical Huffman
construction. We generate the final Huffman tree in levelwise order. The simplest description is as follows. We start with a
set of valid codes C¼ f0;1g and level ℓ¼ 1. At each level ℓ, we remove from C the nCodes½ℓ� codes c with minimum invðc;ℓÞ
value. The removed nodes are assigned to the nCodes½ℓ� symbols that require codes of length ℓ. Now we replace each code c
remaining in C, by two new codes, c:0 and c:1, and continue with level ℓþ1. It is clear that this procedure generates a
prefix-free set of codes that, when reversed, satisfy that the codes finishing at a level are smaller than those that continue.

It is not hard to see that the total cost of this algorithm is linear. There are two kind of codes inserted in C: those that will
be chosen for a code and those that will not. There are exactly σ nodes of the first class, whereas for each node of the second
class we insert other two codes in C. Therefore the total number of codes ever inserted in C adds up to OðσÞ. The codes to use
at each level ℓ can be obtained by linear-time selection over the set of codes just extended (sorting codes by invðc;ℓÞ), thus
adding up to OðσÞ time as well.

Fig. 6 gives an example of the construction.
6. Experimental results

Our implementations build over the wavelet tree implementations of LIBCDS, a library implementing several space-
efficient data structures.6 For each wavelet tree/matrix variant we present two versions, CM and RRR. The first one
corresponds to using the rank=select enabled bitmap implementation [34] of the proposals of Clark [19] and Munro [49],
choosing 5% space overhead over the plain bitmap. The second version, RRR, corresponds to using the bitmap
implementation [20] of the compressed bitmaps of Raman, Raman and Rao [61]. The variants compared are the following:
�
 WT: standard pointer-based wavelet tree;

�
 WTNP: the (extended) pointerless wavelet tree (“No Pointers”);

�
 WM: the (extended) wavelet matrix (Section 4);

�
 HWT: the Huffman-shaped standard pointer-based wavelet tree;

�
 HWTNP: the Huffman-shaped extended levelwise wavelet tree (Section 3);

�
 HWM: the Huffman-shaped (extended) wavelet matrix (Section 5);

�
 AP: the alphabet-partitioned data structure of Barbay et al. [4], which is the best state-of-the-art alternative to

wavelet trees.
These names are composed with the bitmap implementations by appending the bitmap representation name. For
example, we call WT-RRR the standard pointer-based wavelet tree with all bitmaps represented with Raman, Raman and
Rao's compressed bitmaps. AP uses always CM bitmaps, which is the best choice for this structure.

Note that all the pointerless structures use the array C. The extended versions generally achieve space very close to the
strict ones and perform much faster.
6 https://github.com/fclaude/libcds.

https://github.com/fclaude/libcds
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6.1. Datasets

In order to evaluate the performance of access, rank and select, we use four different datasets7:
�
 ESWiki: Sequence of word identifiers generated by stemming the Spanish Wikipedia8 with the Snowball algorithm. The
sequence has length n¼ 200;000;000, alphabet size σ ¼ 1;634;145, and zero-order entropy H0¼11.12. This sequence can
be used to simulate a positional inverted index [20,2,14].
�
 BWT: The Burrows–Wheeler transform (BWT) [16] of ESWiki. The length and size of the alphabet, as well as the zero-
order entropy, match those of ESWiki. However, BWT has a much lower high-order entropy [48]. Many full-text
compressed self-indexes [28,29,52] use the BWT of the text they represent.
�
 Indochina: The concatenation of all adjacency lists of Web graph Indochina2004, available at the WebGraph project.9

The length of the sequence is n¼ 100;000;000, the alphabet size σ ¼ 2;705;024, and the entropy is H0¼15.69. This
representation has been used to support forward and backward traversals on the graph [20,21].
�
 INV: Concatenation of inverted lists for a random sample of 2;961;510 documents from the English Wikipedia.10 This
sequence has length n¼ 338;027;430 and its alphabet size is σ ¼ 2;961;510. From this sequence we extract the first
n¼ 180;000;000 elements with an alphabet of size σ ¼ 1;590;398 and an entropy of H0¼19.01. This sequence has been
used to simulate document inverted indexes [58,31].

In order to evaluate the range search performance over discrete grids, we use the following three datasets formed by
synthetic and real collections of MBRs (Minimum Bounding Rectangles of objects). We insert the two opposite corners of
each MBR as points in our dataset.
�
 Zipf: A synthetic collection of 1;000;000 MBRs with a Zipfian distribution (world size¼1;000� 1;000, ρ¼ 1Þ.11

�
 Gauss: A synthetic collection of contains 1;000;000 MBRs with a Gaussian distribution (world size¼1;000� 1;000,
μ¼ 500;σ ¼ 200Þ (see footnote 11).
�
 Tiger: A real collection of 2;249;727 MBRs from California roads, available at the U.S. Census Bureau.12

For range searches we cannot use Huffman compression, because the order of the symbols is not maintained at the
leaves. AP also shuffles the alphabet, so it cannot be used in this scenario. Extended variants are not a good option either,
because in this case it holds σ ¼ n. Thus we test only the strict variants of WTNP and WM.

6.2. Measurements

To measure performance we generated 100;000 inputs for each query and averaged their execution time, running each
query 10 times. The accessðS; iÞ queries were generated by choosing positions i uniformly at random in ½1;n�. Queries
rankaðS; iÞ were generated by choosing i uniformly at random, and then setting a¼ S½i�. Each selectaðS; jÞ query was
generated by first choosing a position i at random in ½1;n�, then setting a¼ S½i�, and finally choosing j at random in
½1;rankaðS;nÞ�. The resulting distribution is the most common in applications, and it obtains the OðH0ðSÞþ1Þ average time
performance in the Huffman-shaped variants.

To measure the performance on point grids, for synthetic collections we generate sets of queries covering 0.001%, 0.01%,
0.1%, and 1% of the grid area. The sets contain 1,000 queries, each with a ratio between both axes varying uniformly at
random between 0.25 and 2.25. For the real data set Tiger, we use as queries the following four collections (also available
for downloading at the Web site of Tiger): Block (groups of buildings), BG (block groups), SD (elementary, secondary, and
unified school districts), and COUSUB (country subdivisions).

The machine used is an Intel(R) Xeon(R) E5620 running at 2.40 GHz with 96 GB of RAMmemory. The operating system is
GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64. All our implementations use a single thread and are coded
in Cþþ . The compiler is gcc version 4.4.3, with -O9 optimization.

6.3. Results on sequences

Figs. 7, 8 and 9 show the time and space for the different data structures and configurations for access, rank and
select queries, respectively. The black vertical bar on the plots shows the value of H0. The bitmaps are parametrized by
setting their sampling values to 32, 64, and 128. In the case of AP, these bitmap samplings are combined with permutation
samplings 4, 16, and 64, respectively, and all are run with ℓmin ¼ 10, as in previous work [4].
7 Left at http://lbd.udc.es/research/ECWTLA.
8 http://es.wikipedia.orgdated 03/02/2010.
9 http://law.dsi.unimi.it.
10 http://en.wikipedia.org.
11 http://lbd.udc.es/research/serangequerying.
12 http://www.census.gov/geo/www/tiger.

http://lbd.udc.es/research/ECWTLA
http://es.wikipedia.org
http://law.dsi.unimi.it
http://en.wikipedia.org
http://lbd.udc.es/research/serangequerying
http://www.census.gov/geo/www/tiger


Fig. 7. Running time per access query over the four datasets.

Fig. 8. Running time per rank query over the four datasets.
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Space: We start by discussing the space usage, which we measure in bits per symbol (bps). First we note that the WM

variants use always the same space as the corresponding WTNP variants (while being faster, as we discuss soon). The space of
WTNP-CM and WM-CM is obviously close to ⌈lg σ⌉ bps. The extra space incurred by WT-CM is the overhead of the wavelet tree
pointers, and is roughly proportional to σ=n (times some implementation-dependent constant). This amounts to nearly
4 bps in ESWiki and BWT, but 3.5 times more (14 bps) in Indochina, as expected from its larger alphabet size, and again
4 bps in INV. On the other hand, the space of HWTNP-CM and HWM-CM is always close to H0 bits per symbol, plus a small extra
to store the Huffman model. The space overhead of HWT-CM on top of those corresponds, again, to the wavelet tree pointers.

The sampling parameter affects more sharply the RRR variants, as they store more data per sample. The difference
between WTNP-RRR or WM-RRR and WT-RRR is also proportional to σ=n, but this time the constant is higher because the RRR

implementation needs more constants to be stored per bitmap (i.e., per wavelet tree node). Thus the penalty is 6 bps on
ESWiki and BWT, 21 bps (3.5 times more) on Indochina, and 7 bps on INV. The same differences can be observed between



Fig. 9. Running time per select query over the four datasets.
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HWTNP-RRR or HWM-RRR and HWT-RRR. We return later to the fact that HWM-RRR takes more space than HWTNP-RRR on
Indo and INV.

Finally, how WTNP-RRR/WM-RRR and HWTNP-RRR/HWM-RRR compare to HWTNP-CM/WM-CM depends strongly on the type of
sequence. In general, RRR compression achieves the zero-order entropy as an upper bound, but it can reach much less when the
sequence has local regularities. On the other hand, RRR representation poses an additive overhead of 27% of lg σ, which
corresponds to the oðn lg σÞ overhead in this implementation [20]. When combining Huffman and bitmap compression, this 27%
overhead acts over H0 and not over lg σ, which brings it down, but on the other hand we must add the overhead of storing the
Huffman model. On ESWiki, which has no special properties, the 27% overhead is around 5.7 bps, showing that RRR compression
reaches around 8.3 bps, well below H0. When combining with Huffman compression, this overhead becomes 14%, that is, nearly
3 bps. Added to the 8.3 bps and to the 1 bps of the Huffman model overhead, we still get slightly more space than plain Huffman
compression, which is the best choice and reaches only 10% overhead over the zero-order entropy.

The picture changes when we consider BWT. The Burrows–Wheeler transform of ESWiki boosts its higher-order
compressibility [48], which is captured by RRR compression [44], making RRR compression reach the same space of
Huffman compression, despite its 27% space overhead. When combining both compressions, the result breaks the zero-
order entropy barrier by more than 10% and becomes the best choice in terms of space.

RRR gives another surprising result on Indochina and INV, where bitmap compression alone is more space-effective
than in combination with Huffman compression, and breaks the zero-order entropy by a large margin. This cannot be
explained by high-order compressibility, as in this case the combination with Huffman would not harm. This behavior
corresponds to the special nature of these sequences: the adjacency lists of the graph and the inverted lists are sorted in
increasing order. Long increasing sequences induce long runs of 0s and 1s in the bitmaps of the wavelet trees and matrices.
Those are retained in deeper levels when our partitioning by the most significant bit is used.13 The Huffman algorithm,
instead, combines the nodes in unpredictable ways and destroys those long runs. Still, our Huffman algorithm maintains the
order between those symbols whose codewords have the same length, and thus the impact of this reordering is not as high
as it could be. Instead, the Huffman wavelet matrix completely reshuffles the symbols. As a result, for example, the space of
HWM-RRR exceeds that of HWTNP-RRR by around 5 bps on Indo and 6–7 bps on INV.

Time: The time results are rather consistent across collections. Let us first consider operation access. If we start
considering the variants that do not use Huffman compression, we have that WT-RRR is about 10–25% slower than WT-CM,
which is explained by a more complex implementation [20]. Instead, the pointerless variant, WTNP-CM, is 20–25% slower
(recall that, in their extended variant, these require twice the number of rank operations, but locality of reference makes
them faster than twice the cost of one rank operation). However, WTNP-RRR is about 40% slower than WT-RRR, as the rank

operation is slower and its higher number impacts more on the total time (but still locality of reference makes the
percentage much less than 100%). The wavelet matrix, instead, carries out the same number of rank operations than the
pointer-based wavelet tree, so this time penalty disappears. Actually, WM-CM is 8–14% faster than WT-CM, and
13 This is another advantage over using the least significant bit, which would break the runs faster.



F. Claude et al. / Information Systems 47 (2015) 15–3228
WM-RRR is up to 4% faster than WT-RRR. This may be due to less memory usage, which increases locality of reference. Finally,
the use of Huffman compression improves times by about H0=lg σ, as expected: times are reduced to about 50–60% on
ESWiki and BWT, to about 65–85% on Indochina, and there is almost no reduction on INV.

The situation is basically the same for operation rank, as expected from the algorithms. The times are usually slightly
lower because it is not necessary to access the bitmaps as we descend. The use of the wavelet matrix still gives essentially
the same time (and even slightly faster) than a pointer-based wavelet tree, and the use of Huffman-shaped trees reduces the
times by the same factors as for access, as expected.

The times of operation select show less difference between the standard and the pointerless variants, because
performing one extra rank operation is less relevant compared to the original (slower) select operation on the bitmaps.
One can see that WTNP-CM is 30–40% slower than WT-CM and that WTNP-RRR is 35–50% slower than WT-RRR. The difference
between plain and compressed bitmaps does not vary much, on the other hand: WT-RRR is 25–30% slower than WT-CM.
What is more surprising is that the wavelet matrix is clearly slower than the pointer-based wavelet trees: WM-CM is 10%–15%
slower than WT-CM and WM-RRR is 20%–30% slower than WT-RRR. The reason is that the implementations of select [34,20]
proceed by binary search on the sampled values, thus their cost has in practice a component that is logarithmic on the
bitmap length. The bitmaps on the wavelet tree nodes are shorter than n, whereas in the wavelet matrix (and the pointerless
wavelet tree) they are always of length n. Indeed, the wavelet matrix is faster than the pointerless wavelet tree: WM-CM is
20–25% faster than WTNP-CM and WM-RRR is 12–15% faster than WTNP-RRR. Once again, the use of Huffman reduces all the
times by about the same space fraction obtained by zero-order compression.

Bottom line: On ESWiki, where zero-order compression is the dominant space factor, our Huffman-shaped wavelet
matrix, HWM-CM, obtains the best space (only 10% off the zero-order entropy) and the best time, by a good margin.

On BWT, where higher-order compression is exploited by RRR, the space-time tradeoff map is dominated by the
combination of HWM-RRR (minimum space) and HWM-CM (minimum time), the two variants of our Huffman-shaped wavelet
matrix. The former breaks the zero-order entropy barrier by about 10%.

On Indochina and INV, where RRR achieves space gains that are only degraded by Huffman compression, the dominant
techniques are variants of the wavelet matrix: WM-RRR (least space) and HWM-CM (least time). The former takes about 75% of
the zero-order entropy.

Summarizing, the wavelet matrix variants obtain the same space of the pointerless wavelet trees, but they operate in
about 65% of their time, reaching basically the same performance of the pointer-based variants but much less space. As a
result, they are always the dominant technique. Which variant is the best, HWM-CM, HWM-RRR or WM-RRR, depends on the
nature of the collection.

The comparison with AP is interesting. In collections similar to ESWiki, Barbay et al. [4] show that AP generally achieves
the best space and time among the alternatives WTNP-RRR, WTNP-CM, WT-CM, and WT-RRR, thus becoming an excellent
choice in that group. The pointerless Huffman-shaped alternatives, however, clearly outperform AP in space: pointerless
Huffman compression, and in particular Huffman wavelet matrices, improve upon the old wavelet tree alternatives in both
space and time, using much less space than AP. Still, AP is a faster representation, only slightly faster in operations access
and rank, and definitely faster in operation select. The other collections also demonstrate that wavelet trees and matrices
can exploit other compressibility features of the sequences apart from H0, whereas AP is blind to those (this is also apparent
in their experiments [4], even using the basic wavelet tree variants).

Note that, for simplicity and uniformity, we have built our prototypes and experiments on the implementations of LIBCDS.
Other ones could be tried. For example, there exists an alternative RRR implementation [57] that, at the price of some
(further) increase in time, reduces the 27% space overhead to 10% on a 64-bit architecture. This would multiply the space of
all the RRR alternatives by up to 0.86, making them even more space-attractive (and making HWM-RRR the most space-
efficient choice on ESWiki). On the other collections, our conclusions above would not change. Moreover, on those
collections the space fraction is likely to be higher than 0.86, as these benefit from locality in compression. The alternative
implementation [57] captures zero-order entropy of 63-bit chunks, and thus it is less local than the implementation we
used, which takes 15-bit chunks. As another example, one could add more efficient implementations of bitwise select

[60,67,57], which would make the impact of the better wavelet matrix organization more clear.

6.4. Results on point grids

Figs. 10 and 11 show the performance of WTNP and WM for count and report queries, respectively. It turns out that, in
the first level of each wavelet tree, the number of zeros and ones is highly unbalanced when the grid size is far from the next
power of 2. This makes the entropy of the first bitmap rather low, whereas the other bitmaps are more balanced. On the
other hand, the range search algorithms spend just a few rank operations on the first bitmap. To take advantage of this
feature, we compress the bitmap of the first level of both data structures, WTNP and WM, with RRR and with a sampling of 32.
The rest of bitmaps are represented using CM with sampling rates of 32, 64, and 128.

In both Figs. 10 and 11 we append to the name of the data structure the name of the query set. This takes values in
fQ0001;Q001;Q01;Q1g in case of synthetic collections. In case of the real collection Tiger, it takes values in {BLock, BG, SD,
COUSUB}.

The results for the counting queries show that the time worsens as the query is less selective. The wavelet matrix is
always faster than the pointerless wavelet tree, while using the same space. The difference in time is proportional to the cost



Fig. 10. Running time per count query over the three datasets.
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for each selectivity, but additive with respect to the sampling. For example, it becomes about 25% faster when using the
most space. We note in passing that the space is basically 21 bps for the synthetic spaces and 23 bps for the Tiger dataset,
which is essentially lg σ ¼ lg n.

In the case of reporting queries, we show the time per reported item, which decreases as the query is less selective. Once
again the wavelet matrix is faster than the pointerless wavelet tree, albeit this time by a smaller margin: usually below 10%.

7. Conclusions

The levelwise wavelet tree [43,45], designed to avoid the Oðσ lg nÞ space overhead of standard wavelet trees [35], was
unnecessarily slow in practice. We have redesigned this data structure so that its time overhead over standard wavelet
trees is significantly lower. The result, dubbed wavelet matrix, enjoys all the good properties of levelwise wavelet trees
but performs significantly faster in practice. It requires n lg σþoðn lg σÞ bits of space, and can be built in Oðn lg σÞ time



Fig. 11. Running time of report query over the three datasets.
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and almost in-place. We have also adapted pointerless Huffman-shaped wavelet trees to become Huffman-shaped
wavelet matrices. This required a nontrivial redesign of the variable-length code assignment mechanism. Our
experimental results show that the compressed wavelet matrix dominates the space/time tradeoff map for all the
real-life sequences we considered, also outperforming in most cases other structures designed for large alphabets [4].
We also showed that the wavelet matrix is the best choice to represent point grids that support orthogonal range
queries.

An interesting future work is to adapt multiary wavelet trees [29] to wavelet matrices. The only difference is that, instead
of a single accumulator zℓ per level, we have an array of ρ�1 accumulators in a ρ-ary wavelet matrix. As the useful values
for ρ are Oðlg nÞ, the overall space is still negligible, Oðlg2 n lg σÞ. The real challenge is to translate the reduction in depth into
a reduction of actual execution times.

Dynamic wavelet trees [46,38,59] can immediately be translated into wavelet matrices. It would be interesting to
consider newer, theoretically more efficient dynamic versions [54], and obtain practically efficient implementations over
wavelet matrices.
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