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The determination of the (in-)stability of the long-lived consensus problem is a funda-
mental open problem in distributed systems. We concentrate on the memoryless binary 
case with geodesic paths. For this case, we offer a conjecture on the instability, measured 
by the parameter inst, exhibit two classes of colourings which attain the conjectured 
bound, and improve the known lower bounds for all colourings. We also introduce a related 
parameter, winst, which measures the stability only for certain geodesics, and for which we 
also prove lower bounds.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The consensus problem in distributed systems consists of the following: given a set of values, each coming from a pro-
cessor or sensor, decide on a representative value, meaning the consensus of the given values. The long-lived consensus 
problem consists of repeatedly solving related instances of the consensus problem. Dolev and Rajsbaum [5] introduced the 
concept of stability of long-lived consensus, where one wishes the representative values, produced by an algorithm for a 
sequence of input instances, to change as few times as possible (there might be some cost associated with a change). So 
the question is how to choose the outputs in a way that they are stable in time. In the case with memory, the algorithm 
may use the value produced for the previous instances in the sequence to decide on the value of the current instance. This 
is not allowed in the so-called memoryless case. See also [1].

We will consider binary-valued consensus, with the input sequences being a geodesic path. The case with memory is 
completely solved in [5] and also, for the memoryless case, some bounds for the minimum number of changes are shown. 
Related work includes multi-valued consensus [3], binary and ternary consensus with random walks instead of geodesic 
paths [2,8], and multi-valued consensus with oblivious paths (in which at most a certain number of components change) [4].

We need a few definitions in order to properly state the problem. The n-hypercube is Hn := {0, 1}n . Write 0n for 
(0, 0, . . . , 0), and similar. The ball Bt(0n) of radius t around 0n consists of all elements of Hn with at most t entries identical 
to 1. In the same way, we define Bt(1n).

✩ A short version [6] of the present paper has appeared in the LAGOS 2011 Proceedings.
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A colouring of Hn is a function f :Hn → {0, 1}. We say that a colouring f respects Bt(0n) and Bt(1n) if f (x) = 0 for each 
x in Bt(0n) and f (x) = 1 for each x in Bt(1n). Observe that if n < 2t + 1, the two balls Bt(0n) and Bt(1n) intersect, and no 
colouring can respect Bt(0n) and Bt(1n). As we are not interested in this case, we say t is valid (for n) if n ≥ 2t + 1.

A geodesic P (in Hn) is a sequence (x0, x1, . . . , xn) with xi ∈ Hn for i = 0, 1, . . . , n, so that there is a permutation 
(p1, . . . , pn) of (1, . . . , n) such that the �th entry of x j differs from the �th entry of x j−1 if and only if j = p� . We then say 
that P fixed the �th entry at time j.

We denote by inst( f , P ), for instability, the number of colour-jumps of P in the colouring f , that is, the number of 
indices i where f (xi) �= f (xi−1). Any such index i shall be called a jump of P (in f ). Let inst( f ) be the maximum value of 
inst( f , P ) over all geodesics P .

The connection of these concepts and the memoryless consensus problem in distributed systems is as follows. Each 
point of Hn represents a set of n input values (one from each sensor). A colouring of Hn corresponds to an assignment of 
a representative value for each possible set of input values. We prefer colourings that respect the balls of a certain radius 
as the output value should in some way be representative. A geodesic stands for a slowly changing system of inputs (one 
sensor at a time), and its instability is the number of changes of the representative value. We remark that, if one considers 
arbitrary paths instead of geodesics, there is no bound on the instability as the path might go back and forth between two 
points with a different output value (see [5]).

Now, a colouring that respects Bt(0n) and Bt(1n) and has low instability is a good candidate for a consensus algorithm. 
One is therefore interested in the lowest possible instability.

Problem 1.1. (See Dolev & Rajsbaum [5].) Given n ∈ N, and t valid for n, find the minimum value inst(n, t) for inst( f ) over 
all colourings f of Hn that respect Bt(0n) and Bt(1n).

Dolev and Rajsbaum [5] proved the following special cases: inst(n, t) ≥ 1 for n > 4t , inst(n, 0) = 1, inst(n, 1) = 3, and 
inst(2t + 1, t) = 2t + 1. We establish a lower bound of � t−1

n−2t � + 	 t−1
n−2t 
 + 3 on inst(n, t) that holds for all values of n and 

t ≥ 1 (cf. Theorem 4.1(b)). The idea of the proof is using a geodesic that visits the two balls alternately.
A similar lower bound holds for the related parameter winst(n, t), which measures the maximum instability of a colour-

ing considering only a special class of geodesics, namely those that start or end next to one of the balls, but in the opposite 
colour.

We consider the special case of n = 2t + 2, which is simpler, as every point outside the balls is neighbouring simul-
taneously the two balls, and so has neighbours in both colours. For t ≥ 2, we improve our bounds to inst(2t + 2, t) ≥
winst(2t + 2, t) ≥ t + 3 (Theorem 4.2). The basic tool for this result is Lemma 4.3, which serves for extending lower bounds 
for winst for smaller values of t to larger values of t . This tool is generalised for arbitrary values of n in Proposition 4.5. We 
apply Proposition 4.5 to the case n = 2t + 3 to obtain a lower bound for winst and inst which again improves the ones given 
by Theorem 4.1.

As for upper bounds for inst, in [5] an example is given which shows that inst(n, t) ≤ 2t + 1, and here, we provide more 
such examples (see below). We conjecture that the bound 2t + 1 is indeed the correct value.

Conjecture 1.2 (Main conjecture). Let n ∈N, and t be valid for n. Then inst(n, t) = 2t + 1.

If one can solve Problem 1.1, it would be interesting to find all optimal colourings, i.e., all colourings for which the bound 
inst(n, t) is attained. We exhibit two new classes, majt(k) and bk

t , of colourings that have instability exactly 2t + 1. The only 
earlier example (majt(2t + 1) in our language) is the one from [5].

The paper is organised as follows. In Section 2, we exhibit the two new classes of colourings with instability 2t + 1. The 
parameter winst is introduced and motivated in Section 3. In Section 4, we establish the new lower bound on inst(n, t), 
and in Sections 4.2 and 4.3 we present better lower bounds for the cases n = 2t + 2 and n = 2t + 3 respectively. Section 5
contains some final remarks.

2. Candidates for optimal colourings

We present two classes of colourings that respect the balls Bt (0n) and Bt(1n) and have instability 2t + 1.

2.1. The majority colourings

For a positive odd value k, define majt(k) to be the colouring that assigns to each point x ∈Hn not in Bt(0n) ∪ Bt(1n) the 
colour that appears on the majority of the first k entries of x. The balls Bt(0n) and Bt(1n) are coloured canonically with 0 
and 1, respectively.

For a positive even value k, define the auxiliary class maj′t(k) as the class of colourings f that assign to each point x
outside Bt(0n) and Bt(1n) (which are coloured canonically) the colour that appears on the majority of the first k entries 
of x, if there is such a (strict) majority, and an arbitrary colour if both colours appear equally often in the first k entries of x. 
We say a colouring f in maj′t(k) is symmetric if, for every x and y outside Bt(0n) ∪ Bt(1n), f (x) �= f (y) whenever x and y, 



1212 C.G. Fernandes, M. Stein / Journal of Computer and System Sciences 81 (2015) 1210–1220
restricted to their first k entries, are the complement of each other. Let majt(k) be the class of all symmetric colourings in 
maj′t(k).

Note that, for even k, the class majt(k) is non-empty. Indeed, we can obtain a symmetric colouring f in maj′t(k) in the 
following way. For all points x ∈ Hk that have equally many 0’s and 1’s, and moreover start with a 0, we assign any colour 
cx to all points outside Bt(0n) ∪ Bt(1n) that start with x. Then, we assign the complement colour 1 − cx to all points outside 
Bt(0n) ∪ Bt(1n) that start with the complement of x. The total number of points of Hn coloured 0 in f equals the total 
number of points of Hn coloured 1 (which is also true for majt(k) when k is odd).

In what follows, we often abuse notation and, for a positive even value k, write majt(k) for an arbitrary element 
of majt(k).

Proposition 2.1. Let k, t, n ∈N, with 0 < k ≤ 2t + 1 ≤ n. Then inst(majt(k)) = 2t + 1.

The proof of Proposition 2.1 splits into two parts: in Lemma 2.2 we show that no geodesic jumps more than 2t + 1 in 
any majt(k), and in Lemma 2.3 we present a geodesic that jumps at least 2t + 1 in any majt(k).

Before we turn to these lemmas, let us remark that, for k > 2t + 1 and odd, it is easy to find a geodesic that jumps 
k times in majt(k). Indeed, we may start at the point (01)�n/2�0 and then at each step switch an entry, from the first 
to the last. Each of the k first steps is a jump. This shows that majt(k), for k large and odd, has instability larger than 
2t + 1.

The remainder of this section is devoted to the proof of Proposition 2.1, i.e., to Lemma 2.2 and Lemma 2.3. For a 
geodesic P = (x0, x1, . . . , xn−1, xn), the path Q = (xn, xn−1, . . . , x1, x0) is also a geodesic, and is called the reverse of P . 
Clearly, inst( f , P ) = inst( f , Q ) for any colouring f .

Lemma 2.2. If 0 < k ≤ 2t + 1 ≤ n, then inst(majt(k)) ≤ 2t + 1.

Proof. Suppose otherwise. Then there is a geodesic P = (x0, x1, x2, . . . , xn) in Hn with inst(majt(k), P ) ≥ 2t + 2. Let m be so 
that the mth jump of P is the first jump that fixes one of the last n −k entries (as k < 2t +2, there is such an m, 1 ≤ m ≤ n). 
Suppose that, among all geodesics as above, P is chosen such that m = m(P ) is as large as possible. Our plan is to modify P
to a geodesic P ′ with at least 2t + 2 jumps and m(P ′) > m(P ), thus obtaining a contradiction.

Let i + 1 be the first jump of P , and let � be the (2t + 2)nd jump of P . We assume that majt(k)(x�) = 1, and thus 
majt(k)(xi) = 1. The other case is analogous.

As � is the (2t + 2)nd jump of P , there are t + 1 jumps j with j < � and majt(k)(x j) = 0. Hence, P fixed (t + 1) 0’s 
before time �, and therefore x� /∈ Bt(1n). Thus, since majt(k)(x�) = 1, the majority of the first k entries of x� is not 0: it is 1
or k is even and x� has as many 0’s as 1’s in its first k entries. We can use the same argument on the reverse of P to obtain 
that xi /∈ Bt(1n), and thus the majority of the first k entries of xi is 1 or k is even and xi has as many 0’s as 1’s in its first k
entries. Thus we showed that

the first k entries of xi contain at least as many 1’s as 0’s, and the same holds for x�. (1)

Because majt(k)(xi) = majt(k)(x�) = 1, the first k entries of xi and of x� are not the complement of each other. So, by (1), 
at least one entry within the k first, say the first entry, is 1 in both xi and x� . This implies that all x j with i ≤ j ≤ � start 
with a 1.

Let S be the set of those of the first k entries of xi that do not change in P between xi and x� . We have just seen that 
s := |S| ≥ 1. Let z1 be obtained from xi by changing the first entry to 0, and for 1 < j ≤ s let z j be obtained from z j−1 by 
changing another of the entries in S . Then

the first k entries of zs are the complement of the first k entries of x�. (2)

Let h be the (2t + 1)st jump of P . Then majt(k)(xh−1) = 1 and majt(k)(xh) = 0. There are t jumps j ≤ h − 1 with 
majt(k)(x j) = 1, each fixing a 1 distinct from the first entry. Thus in total xh and x�−1 have at least (t + 1) 1’s, and cannot 
be in Bt(0n). In the same way, we see that xi+1 /∈ Bt(0n).

Consider P ′ = (zs, zs−1, . . . , z1, xi, xi+1, . . . , x�, y0, y1, . . . , yn−s−�+i−1), where the y j ’s are arbitrarily chosen to complete 
P ′ to a geodesic. Note that P ′ jumps at least 2t + 2 times, as it has the same jumps as P between xi and x� . We claim that

P ′ has a jump in its first s + 1 steps. (3)

Then we are done because the first m + 1 jumps of P ′ fix one of the first k entries, contradicting our choice of P .
It remains to prove (3). As xi+1 /∈ Bt(0n) and majt(k)(xi+1) = 0, there are at least as many 0’s as 1’s among the first k

entries of xi+1. So, since the first entry of xi is 1, but the first entry of z1 is 0, there are also at least as many 0’s as 1’s 
among the first k entries of z1.

Now, as xi /∈ Bt(1n), also z1 /∈ Bt(1n). Hence, if the first k entries of z1 contain more 0’s than 1’s, it follows that 
majt(k)(z1) = 0. As majt(k)(xi)=1, the geodesic P ′ has the jump xi , which is as desired for (3). So we may assume that 
the first k entries of z1 contain exactly as many 0’s as 1’s. (It is because of this possibility that we add not only z1 but 
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also zs, . . . , z2 to P ′ .) By (1) and (2), and by the definition of zs , it follows that zs has at least as many 0’s as 1’s in its first 
k entries, and so at least as many 0’s as z1 has. So, z1 /∈ Bt(1n) implies that zs /∈ Bt(1n) and hence, majt(k)(zs) = 0. This 
finishes the proof of (3), and thus the proof of the lemma. �

For the proof of the second lemma, and later on, the following definition will turn out to be useful. We call a geodesic 
in Hn an m-geodesic if it starts in a point of Hn which has exactly m entries equal to 1. (It then ends in a point which has 
exactly m entries that equal 0.)

For even k ≤ 2t + 1, the statement of the second lemma is slightly stronger than we first claimed. Indeed, we present a 
geodesic that jumps 2t + 1 times for a subclass of maj′t(k) larger than majt(k). We say a colouring f in maj′t(k) is k-defined
if f (x) = f (y) whenever x and y coincide in the first k entries, for every x and y outside Bt(0n) ∪ Bt(1n). Let majt(k) denote 
the set of all k-defined colourings in maj′t(k) for which there is a point coloured 1 which has exactly t + 1 entries equal 
to 1. Let us argue that majt(k) ⊆ majt(k).

First, observe that if f is symmetric then f is k-defined. Indeed, consider a point x in Hk with the same number of 1’s 
and 0’s, and its complement x̄. As f is symmetric, f (xy) �= f (x̄z) for every y and z in Hn−k such that xy and x̄z are not in 
Bt(0n) ∪ Bt(1n). Further, note that for every xy outside Bt(0n) ∪ Bt(1n) there is a point x̄z outside Bt(0n) ∪ Bt(1n), namely x̄ ȳ. 
Thus f (xy) = f (xy′) for every y and y′ in Hn−k such that xy and xy′ are not in Bt(0n) ∪ Bt(1n).

Second, for k ≤ 2t + 1 ≤ n, let us show that, for any majt(k), there is a point coloured 1 with exactly t + 1 entries equal 
to 1. Consider the point

x = 1	k/2
0�k/2�1t+1−	k/2
0n−t−1−�k/2�.

Note that this point is well-defined, as 	k/2
 ≤ t + 1 and n ≥ 2t + 1 ≥ t + 1 +�k/2�. Further, x has exactly t + 1 entries equal 
to 1. If k is odd, then the majority of the first k entries is 1, and so x has colour 1. If k is even, then there is a tie on the 
first k entries. Consider the point

y = 0k/21k/21t+1−k/20n−t−1−k/2.

Note that also y has exactly t + 1 entries equal to 1. By symmetry, one of x, y has colour 1, and is thus the point we were 
looking for.

Lemma 2.3. If 0 < k ≤ 2t + 1 ≤ n, then inst(majt(k)) ≥ 2t + 1 and, if k is even, inst(majt(k)) ≥ 2t + 1.

Proof. Let f = majt(k) if k is odd, and let f be an arbitrary colouring in majt(k) if k is even. We will prove the following 
stronger assertion.

For 0 < k ≤ 2t + 1 ≤ n, there exists a (t + 1)-geodesic P such that

inst( f , P ) ≥ 2t + 1 (4)

and the first point of P is coloured 1.

We shall prove (4) by using induction on t , keeping k fixed, but letting n vary. More precisely, fix k > 0, then, at each step t , 
the assertion is shown to hold for t if k ≤ 2t + 1, and for all choices of n which satisfy the inequality 2t + 1 ≤ n.

We start the induction with t = �k/2�, that is, k = 2t or k = 2t + 1. Let x be a point coloured 1 with exactly t + 1 entries 
equal to 1, and exactly �k/2� 0’s within the first k entries. Say x = 1t 0t 10n−2t−1. Consider the (t + 1)-geodesic

P = ( 1t0t10n−2t−1, [1]
1t0t0n−2t, [0]
1t+10t−10n−2t, [1]
01t0t−10n−2t, [0]
01t+10t−20n−2t, [1]
021t0t−20n−2t, [0]
021t+10t−30n−2t, [1]
031t0t−30n−2t, [0]
. . .

0t1t0n−2t, [0]
0t1t0n−2t−11, [0]
0t1t0n−2t−212, [0]
. . .

0t1t01n−2t−1), [0].
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Note that, within the first 2t + 2 points in P , every second point lies in Bt(0n) and thus has colour 0. The first point is x, 
and thus has colour 1. The remaining of the first 2t + 2 points are not in Bt(0n) and have a majority of 1’s on their first k
entries, so they are coloured 1. Hence P jumps 2t + 1 times within its first 2t + 2 points, and is a geodesic as desired.

So, for the induction step, suppose that k ≤ 2t − 1. Then, n ≥ 2t + 1 ≥ k + 2. Consider f on

H̃n := {x ∈ Hn : x(n − 1) = 0 and x(n) = 1},
and observe that this is equivalent to considering majt−1(k − 2) on Hn−2 for odd k, or majt−1(k − 2) on Hn−2 for even k. 
Indeed, outside Bt(0n) ∪ Bt(1n), the majority on the first k entries rules and, for even k, if there is a tie on the first k entries, 
this still determines exactly one colour, and there is a point coloured 1 with exactly t + 1 entries equal to 1, and exactly k/2
0’s within the first k entries.

Hence, by induction, we know that there exists a t-geodesic P̃ in Hn−2 that is as in (4) for k − 2 and t − 1. In particular, 
P̃ jumps at least 2(t − 1) + 1 = 2t − 1 times. Abusing notation slightly, we shall consider P̃ as a path in H̃n .

Now we extend P̃ to a geodesic in Hn adding two more jumps. By (4), we know that P̃ starts at a point y =
(y(1), y(2), . . . , y(n − 2), 0, 1) with f (y) = 1, and with exactly t + 1 entries equal to 1 (among these the last entry). We add 
the points y′′ := (y(1), y(2), . . . , y(n − 2),1,0) and y′ := (y(1), y(2), . . . , y(n − 2),0,0) to the beginning of P̃ and obtain a 
geodesic P as desired. Indeed, y′ ∈ Bt(0n) as y′ has exactly t entries equal to 1, hence f (y′) = 0, and so we have our first 
extra jump. Note that y′′ has exactly as many 1’s as y (in particular, y′′ /∈ Bt(0n)) and, moreover, y′′ has the same first k
entries as y. Thus, f (y′′) = 1, and we have the second extra jump, implying that P is as desired for (4). �
2.2. The partition colourings

We present a second class of colourings, the colourings bk
t , which respect the balls Bt(0n) and Bt(1n) and have instability 

2t + 1. Before that, we define the auxiliary colouring aQj that will be used in the definition of bk
t .

Let m, s, and t be such that m ≥ (s + 1)(t + 1). Let Q be a partition of [m] into s + 1 sets of size at least t + 1 each. For 
j = 0, 1, let aQj be the following colouring of Hn .

We define the colouring aQ0 by letting aQ0 (x) = 0 if and only if, in at least one of the sets in Q, all entries are 0. As the 
sets in Q have size at least t + 1, it is not difficult to see that aQ0 respects Bt(1m) (because, for aQ0 (x) = 0, at least t + 1

entries of x must be 0). Also, as Q has s + 1 sets, aQ0 respects Bs(0m) (because, for aQ0 (x) = 1, point x must have at least 
one entry 1 for each of the s + 1 sets).

The second colouring, aQ1 , is defined by setting aQ1 (x) = 1 if and only if, in at least one of the sets in Q, all entries are 1. 
Similarly as for aQ0 , we see that aQ1 respects both Bs(1m) and Bt(0m).

Consider a geodesic P = (x0, x1, . . . , xm) in Hm . Note that, if i is a jump of P in aQj , then for some set Q in Q we have 
that x�(q) = j for all q ∈ Q either for � = j − 1 or for � = j, but not for both. We say that the jump i is associated with this 
set Q . Thus there are at most two jumps in P associated with the same set Q in Q. This implies that aQj jumps at most 
2|Q| = 2(s + 1) times.

Now, let k, s, t , and n be such that k is odd, s ≥ −1, t = s + (k + 1)/2, and n ≥ (s + 1)(t + 1) + k. Note that k ≤ 2t + 1
because s ≥ −1. Let Q be a partition of [n − k] into s + 1 sets of size at least t + 1 each. (If s = −1, then n = k and Q = ∅.) 
We shall define the colouring bk

t = bk
t (Q) using aQ0 and aQ1 in Hn−k . We abuse notation and assume that aQj (y) = 1 − j if 

Q or y is empty.
For each point x, if the majority of the first k entries of x is 1, then let bk

t (x) = aQ0 (x′), where x′ is x without the first k
entries. If the majority of the first k entries of x is 0, then let bk

t (x) = aQ1 (x′). In both cases, we sometimes abuse notation 
and write that bk

t = aQj in x.

It is not difficult to see that bk
t respects the balls Bt(0n) and Bt(1n). Indeed, let us suppose the majority of the first k

entries of some point x is 1, and hence bk
t = aQ0 (the other case is symmetric). If x has at most t entries equal to 0, clearly 

no set in Q can only consist of 0’s, and so bk
t (x) = 1. On the other hand, if x has at most t 1’s, then x′ has at most 

t − (k + 1)/2 = s 1’s and therefore, as |Q| = s + 1, there is a set in Q that only consists of 0’s. Thus bk
t (x) = 0 in this case. 

Hence, in either case, bk
t (x) is as desired.

Observe that, for t = 0 and k = 1, we have s = −1, and hence n = 1. In this case, b1
0 = maj0(1).

Proposition 2.4. Let k, t, n ∈ N be such that k is odd, k ≤ 2t + 1 and n ≥ (t + 1 − k+1
2 )(t + 1) + k = (t+1)(2t+1)−k(t−1)

2 . Then 
inst(bk

t ) = 2t + 1.

Proof. Let P be a geodesic in Hn . To prove that P jumps at most 2t +1 times in bt
k , first note that at most k jumps of P are 

associated with its first k entries. Second, note that P has at most two jumps associated with each set Q in Q. Indeed, if 
P has one jump associated with Q while bk

t = aQj , then P has at most one more jump associated with Q while bk
t = aQ1− j . 

Similarly, if P has two jumps associated with Q while bk
t = aQ , then P has no jumps associated with Q while bk

t = aQ .
j 1− j
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Also, it is not hard to find a geodesic in Hn that jumps 2t + 1 times in bk
t . Consider a point x0 with (k + 1)/2 1’s in the 

first k entries, and exactly one 1 in each of the sets in Q. Then x0 has exactly t + 1 entries equal to 1. Take a geodesic that 
starts in x0, and jumps k times by changing alternatively 1’s to 0’s and 0’s to 1’s within the first k entries. After that, we 
have that bk

t = aQ1 . So we can jump twice per set Q in Q by changing all entries in Q to 1 first, and then changing the 
unique entry in Q that started with a 1 to a 0. �
3. Well-ending geodesics and k-defined colourings

If we try to determine inst( f ) for some given colouring f , in general it is not necessary to calculate inst( f , P ) for all
geodesics P . A geodesic P that starts deep inside Bt(0n), for instance, will jump at most as much as any geodesic P ′ we 
obtain from P by cutting off the first few steps, and prolonging it arbitrarily at the end. So we may restrict our attention to 
geodesics that start outside the ball Bt(0n), or on its border.

In this section, we will introduce an even more restricted class of geodesics, that are easier to handle, and might be useful 
for attacking Conjecture 1.2. We need some notation for this. Let f be some colouring of Hn . We say f is a (t + 1)-colouring
of Hn if f respects Bt(0n) and Bt(1n) but f does not respect Bt+1(0n) and Bt+1(1n). In particular, if f (0n) = 1 or f (1n) = 0, 
then f is a 0-colouring of Hn . Note that every colouring of Hn is a (t + 1)-colouring for a unique t . Now, let f be a 
(t + 1)-colouring. By our definition of an m-geodesic above (before Lemma 2.3), a (t + 1)-geodesic starts in a point with 
exactly t + 1 entries equal to 1, that is, right next to the ball Bt(0n).

If P is a geodesic whose first point is coloured 1 in f , or whose last point is coloured 0 in f , we say P ends well (in f ). 
Let winst( f ) denote the maximum value of inst( f , P ), taken over all well-ending (t + 1)-geodesics P , where t is such that 
f is a (t + 1)-colouring of Hn . In analogy to Problem 1.1, we ask the following.

Problem 3.1. Given t valid for n, which is the smallest value winst(n, t) such that winst(n, t) = winst( f ) for some 
(t + 1)-colouring f ?

Observe that winst( f ) ≤ inst( f ) for every colouring f . Moreover, maxt≤s≤(n−1)/2{winst(n, s)} ≤ inst(n, t) for all t valid 
for n.

Here we extend the definition of k-defined given in Subsection 2.1. Call a colouring f k-defined3 if there are k indices 
such that f (x) = f (y) for any two points x, y ∈ Hn \ (Bt(0n) ∪ Bt(1n)) that coincide in all entries given by these k indices. 
A k-defined colouring that is not (k−1)-defined is called strictly k-defined. For instance, majt(k) is strictly k-defined and aQ0
is strictly n-defined.

Let t be valid for n. For the next lemma, let F n(t) denote the set of all strictly n-defined (t + 1)-colourings of Hn , and 
let F <n−2t(t) denote the set of all strictly k-defined (t + 1)-colourings of Hn with 0 ≤ k < n − 2t .

Lemma 3.2. If winst( f ′) ≥ 2t′ + 1 for all t′ valid for n and all f ′ ∈ F n(t′), then winst( f ) ≥ 2t + 1 for all t valid for n and all 
f ∈ F <n−2t(t).

This lemma might be used as a step towards a solution of Problem 1.1. Indeed, if we could prove that winst( f ) ≥ 2t + 1
for every (t + 1)-colouring f that is strictly k-defined with k ≥ n − 2t , then Lemma 3.2 would assure this bound holds for 
all colourings of Hn , and thus imply Conjecture 1.2. The proof of a slightly more general version of Lemma 3.2 can be found 
in [7].

4. Lower bounds on inst(n, t) and winst(n, t)

4.1. The zig-zag bound

In this section, we prove lower bounds for inst(n, t) and winst(n, t). Recall that any lower bound on winst( f ) also serves 
as a lower bound for inst( f ). We start with a bound for all values of n and valid t , which we obtain from a zig-zag argument.

In Theorem 4.2 we will improve the bounds from Theorem 4.1 for the special case n = 2t + 2 and, in Corollaries 4.7
and 4.9, Theorem 4.1 will be improved for n = 2t + 3.

Theorem 4.1 (The zig-zag bound). Let n ∈N and let t ≥ 0 be valid for n. Then

(a) winst(n, t) ≥ � t
n−2t � + 	 t

n−2t 
 + 1,

(b) inst(n, t) ≥ � t−1
n−2t � + 	 t−1

n−2t 
 + 3, if t ≥ 1.

3 We remark that in [5, p. 39], one-bit defined colourings are introduced. This definition differs from ours (for k = 1) as we canonically colour the balls 
Bt (0n) and Bt (1n). For instance, majt (1) is 1-defined, but not one-bit defined.
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We remark that Theorem 4.1(a) proves Conjecture 1.2 for t = 0 and Theorem 4.1(b) proves Conjecture 1.2 for t = 1. This 
has been shown earlier in [5].

We dedicate the rest of this subsection to the proof of Theorem 4.1.

Proof of Theorem 4.1. Let f be a (t + 1)-colouring with t ≥ 0. For (a), our aim is to find a well-ending (t + 1)-geodesic P
that jumps at least � t

n−2t � + 	 t
n−2t 
 + 1 times in f .

As f is a (t + 1)-colouring, there is a point x ∈Hn that has exactly (t + 1) 1’s or (t + 1) 0’s, and that is coloured 1 or 0, 
respectively. Say the former holds for x (the other case is symmetric).

We let P start in x, then enter Bt(0n), then go to Bt(1n), come back to Bt(0n), go to Bt(1n) again, etc., until P has used 
up all of its entries. For example, if x = 1t+10n−t−1, we let P pass next through 1t 0n−t and then through 1t 0t 1n−2t , through 
1t−(n−2t)0n−t 1n−2t , through 1t−(n−2t)0t 12n−4t , and so on.

We can do this until one of the following two things happens. Firstly, coming from Bt (0n), we might end in the comple-
ment of x with (t + 1) 0’s (just before reaching Bt(1n)). This will happen exactly when n = �(n − 2t) for some odd value �, 
which is the case if and only if n − 2t divides t . Then we will have jumped at least � times and

� = n

n − 2t
= 2t

n − 2t
+ 1 =

⌊
t

n − 2t

⌋
+

⌈
t

n − 2t

⌉
+ 1.

Secondly, on our way from Bt(1n) to Bt(0n), we might reach a point of Hn \ (Bt(0n) ∪ Bt(1n)) which has no more 
unused 1’s. This happens if and only if n − 2t does not divide t . Then we have to return in the direction of Bt(1n) to end in 
the complement of x (if we are not already there). In this case, we have jumped at least

1 + 2 ·
⌊

n − (n − 2t)

2(n − 2t)

⌋
+ 1 = 2 ·

⌊
t

n − 2t

⌋
+ 2 =

⌊
t

n − 2t

⌋
+

⌈
t

n − 2t

⌉
+ 1

times, because at least one jump is achieved during the n − 2t steps (the first step is a jump), then we get at least two 
jumps for every 2(n − 2t) steps, and finally we jump at least once more in the last part of P when entering Bt(1n). Note 
that, by the construction of P , we have to end up in one of the two situations just described. This completes the proof 
of (a).

For (b), the proof is similar, the difference being that we let P start inside Bt(0n), have x as its second point, then 
re-enter Bt(0n), and then go on in a zig-zag fashion as before. We will obtain two jumps in the first two steps of P , at least 
one jump during the next n − 2t steps, and then two jumps every 2(n − 2t) steps. Finally, we might ensure another jump 
depending on whether n − 2 = �(n − 2t) for some odd value � or not. More precisely, if n − 2 = �(n − 2t) for some odd 
value �, that is, if n − 2t divides t − 1, then we get

� + 2 = n − 2

n − 2t
+ 2 =

⌊
t − 1

n − 2t

⌋
+

⌈
t − 1

n − 2t

⌉
+ 3

jumps, and otherwise we also get

2 + 1 + 2 · �n − 2 − (n − 2t)

2(n − 2t)
� + 1 =

⌊
t − 1

n − 2t

⌋
+

⌈
t − 1

n − 2t

⌉
+ 3

jumps, which is as desired. Clearly, we need here that t ≥ 1, because otherwise we could not enter Bt(0n) twice in the 
beginning. �
4.2. Better bounds for one strip

In this subsection we will concentrate on the case in which Hn contains, besides the balls, only one ‘strip’ of points 
which all have the same number of entries equal to 0 and equal to 1. That is, we treat the case n = 2t + 2.

From Theorem 4.1, we have that inst(2t + 2, t) ≥ t + 2 for t ≥ 1, and winst(2t + 2, t) ≥ t + 1. The following result improves 
these bounds.

Theorem 4.2. inst(2t + 2, t) ≥ winst(2t + 2, t) ≥ t + 3 for all t ≥ 2.

We will prove Theorem 4.2 by combining the next two lemmas. The first of these is a tool for extending bounds for 
small values of t to larger values of t .

Lemma 4.3. Let y0 , t0 and t ∈ N with t ≥ t0 . If winst(2t0 + 2, t0) ≥ y0 for some t0 ≥ 0 then winst(2t + 2, t) ≥ y0 + t − t0 .

Proof. We proceed by induction on t . The base, for t = t0, follows directly from the hypothesis of the lemma. For t > t0, 
consider a (t + 1)-colouring f of the hypercube Hn of dimension n = 2t + 2.
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Define a colouring g of the hypercube Hn−2 by assigning to each x′ in Hn−2 the value g(x′) = f (01x′). Then g is a 
t-colouring of Hn−2. Indeed, any point of Hn−2 \ (Bt−1(0n−2) ∪ Bt−1(1n−2)) is a witness to this. We may thus apply the 
induction hypothesis to obtain a well-ending t-geodesic P̃ in Hn−2 that jumps at least y0 + t − 1 − t0 times in g . Extending 
each point x̃ of P̃ to the point 01x̃ of Hn , we obtain a path P ′ in Hn that jumps at least y0 + t − 1 − t0 times in f .

Let 01a and 01z be the first and last point of P ′ respectively. We extend P ′ to P by adding to its beginning the points 00a
and 10a if g(01a) = 1, and the points 11a and 10a otherwise. As we thus pass once more through either Bt(0n) or Bt(1n), 
our extension P of P ′ jumps at least once more than P ′ , that is, y0 + t − t0 times in total. Clearly, P is a (t +1)-geodesic, and 
so is its reverse, because n = 2t + 2. Now at least one of the two, P or its reverse, has to be well-ending, which completes 
the proof of the lemma. �

The next lemma takes care of the base case t = t0 for Lemma 4.3. Together with a previous upper bound of Dolev and 
Rajsbaum [5], it implies that inst(2t + 2, t) = 2t + 1 for t = 0, 1, 2. So it confirms Conjecture 1.2 for n = 2t + 2 and small 
values of t .

Lemma 4.4. winst(2t + 2, t) ≥ 2t + 1 for t = 0, 1, 2.

Proof. The case t = 0 is trivial. For t = 1, let f be a 2-colouring of H4. Note that there are two points x and y in H4
with exactly t + 1 = 2 entries equal to 1, differing in exactly two entries (that is, such that ||x − y||2 = 2), and such 
that f (x) = f (y). For example, two of the three points 1100, 1010, 1001 must have the same colour in f . Now it is 
easy to construct a well-ending 2-geodesic that starts in x, goes through B1((1 − f (x))4), through y, and again through 
B1((1 − f (x))4) and which jumps at least three times.

For t = 2, let f be a 3-colouring of H6. Observe that we only need to find three points x, y, z, all with exactly t + 1 = 3
entries equal to 1, such that ||x − y||2 = ||y − z||2 = 2, ||x − z||2 = 4, and f (x) = f (y) = f (z). Indeed, if we have such points, 
it is easy to construct a well-ending 3-geodesic that starts in x and jumps at least five times.

The proof of the existence of x, y and z is a case analysis. By rearranging the order of the entries, we may assume the 
points x = 111000 and y = 110100 have the same colour j in f . If one among x′ = 100110, y′ = 100101, and z′ = 010101
has colour j, then we may take it as our third point z. If not, then x′ , y′ , and z′ all have colour 1 − j and form a triple of 
points as desired. �
Proof of Theorem 4.2. The statement is an immediate consequence of Lemma 4.3 and Lemma 4.4 for t = 2. �
4.3. The extension method for more strips

We now extend the results from the previous subsection to the general case, when we have more ‘strips’. The main 
result of this subsection, Proposition 4.5, is an extension of Lemma 4.3 for this case. We also include a version of the result 
for the parameter inst (Proposition 4.5(b)).

Proposition 4.5. Let n, y0, t0 ∈ N and let t ≥ t0 be valid for n. Suppose n − 2t divides t − t0 .

(a) If winst(n, t0) ≥ y0 , then winst(n, t) ≥ y0 + 2 t−t0
n−2t .

(b) If inst(n, t0) ≥ y0 , then inst(n, t) ≥ y0 + 2 t−t0
n−2t .

Clearly, Proposition 4.5 can be used in the same way as Lemma 4.3 to improve Theorem 4.1. We will do so for part (a) of 
Theorem 4.1, which deals with the parameter winst. The next lemma takes care of the base case t = t0 for Proposition 4.5(a), 
for the case n = 2t + 3. It also confirms Conjecture 1.2 for n = 5 and t = 1. The proof of Proposition 4.5 will be presented at 
the end of this subsection.

Lemma 4.6. winst(5, 1) ≥ 3, winst(7, 2) ≥ 4, and winst(9, 3) ≥ 4.

Proof. We start by proving that winst(5, 1) ≥ 3. Let f be a 2-colouring of H5. We say a point x in H5 is good (in f ) if there 
is a j = j(x) ∈ {0, 1} so that x has exactly two entries equal to j and f (x) = j. Also, we say that two points x and y in H5
are neighbours if ||x − y||2 = 2 and they have the same number of entries equal to 1.

First of all, we observe that, if there are two good points x and y that are neighbours, then it is easy to construct a 
well-ending 2-geodesic that jumps the required number of times (in the same way as in the proof of Lemma 4.4). So we 
may assume that

if x and y are good in f , then they are not neighbours. (5)

Second, we may assume that

if x is good in f then its complement is not good in f . (6)
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Indeed, if a point x and its complement are good in f , then we may obtain a well-ending 2-geodesic as desired by starting 
out at x, going to B1( j(x)5), then going to B1((1 − j(x))5), and then ending at the complement of x.

As f is a 2-colouring, there is a point w that is good in f . By symmetry, we can assume that w = 00011. Now, because 
of (5), at most one of the points 11000, 10100, and 01100 is good. So, one of them (in fact, two of them), say 11000, has 
colour 0 in f . Consider the 2-geodesic

(00011[1],00001[0],01001[0],11001[?],11000[0],11100[1]).
Its third point has colour 0 because of (5), and its last point has colour 1 because of (6). So this well-ending 2-geodesic only 
jumps less than three times if f (11001) = 0.

But in this case, we use (5) to see that f (11010) = 1 and f (10010) = 0, and consider the well-ending 2-geodesic

(00011[1],00010[0],10010[0],11010[1],11000[0],11100[1]),
that jumps 4 > 3 times. This concludes the proof that winst(5, 1) ≥ 3.

The idea for the other cases is similar to the one used in the proof of Lemma 4.3. We reduce the problem to 5 entries, 
obtaining as above a ‘partial’ geodesic that jumps at least three times, and extend it so that it jumps at least four times, as 
needed.

For winst(7, 2), let f be a 3-colouring of H7. Let w be a point in H7 with exactly 3 entries equal to j and such that 
f (w) = j. By symmetry, we may assume that the first two entries of w are 01. Define a colouring g of the hypercube H5
by assigning to each x′ in H5 the value g(x′) = f (01x′). Then g is a 2-colouring of H5. Indeed, the point w ′ in H5 such 
that w = 01w ′ serves as a witness to this.

As winst(5, 1) ≥ 3, there is a well-ending 2-geodesic P̃ in H5 that jumps at least three times in g . Extending each point 
x′ of P̃ to the point 01x′ of H7, we obtain a path P ′ in H7 that jumps at least three times in f . If P̃ jumps exactly three 
times, then it ends well in both of its ends. Thus we can extend P ′ in one of its ends, passing by the neighbouring ball, so 
that it jumps once more, and the result will be a well-ending 3-geodesic as desired. If, on the other hand, P̃ jumps at least 
four times, then we just extend it in any way so that the resulting 3-geodesic is still well-ending. This completes the proof 
that winst(7, 2) ≥ 4. The proof that winst(9, 3) ≥ 4 is analogous, so we omit it. �
Corollary 4.7. Let t ≥ 1. Then winst(2t + 3, t) ≥ 2t+(t mod 3)

3 + 2.

Proof. We obtain the bound by applying Proposition 4.5 to n = 2t + 3 and the base cases obtained from Lemma 4.6: t0 = 1
with y0 = 3, t0 = 2 with y0 = 4, and t0 = 3 with y0 = 4. �

This bound improves by one the bound from Theorem 4.1(a) for n = 2t + 3 and t mod 3 = 0 or 1, and by two for 
t mod 3 = 2.

Lemma 4.8. inst(7, 2) ≥ 5 and inst(9, 3) ≥ 5.

Proof. We first show that inst(9, 3) ≥ 5. Let f be a 4-colouring of H9. Let w be a point in H9 with exactly 4 entries equal 
to j and such that f (w) = j. By symmetry, we may assume that the first two entries of w are 01. Define a colouring g
of the hypercube H7 by assigning to each x′ in H7 the value g(x′) = f (01x′). Then g is a 3-colouring of H7. Indeed, the 
point w ′ in H7 with w = 01w ′ serves as a witness to this.

As winst(7, 2) ≥ 4 by Lemma 4.6, there is a well-ending 3-geodesic P̃ in H7 that jumps at least four times in g . Extending 
each point x′ of P̃ to the point 01x′ of H9, we obtain a path P ′ in H9 that jumps at least four times in f . As P̃ ends well 
in one of its ends, we can extend P̃ there, entering and exiting the neighbouring ball, so that it jumps at least once more, 
and the result is a geodesic. This completes the proof that inst(9, 3) ≥ 5.

To prove that inst(7, 2) ≥ 5, we use a similar argument and the fact that winst(5, 1) ≥ 3 by Lemma 4.6. Now, we dis-
tinguish three cases, namely whether P̃ jumps exactly 3 times, exactly 4 times, or at least 5 times. In the latter case, we 
only need to extend P̃ to a geodesic in H7, and in the case that P̃ jumps exactly 4 times, we extend it as above at its 
well-ending end. In the first case, when P̃ jumps exactly three times, it has to end well in both its endpoints. Thus we may 
extend P̃ at both ends to obtain a geodesic in H7 that jumps five times. �
Corollary 4.9. Let t ≥ 2 be such that t mod 3 �= 1. Then

inst(2t + 3, t) ≥ 2t + (t mod 3)

3
+ 3.

Proof. We obtain the bound by applying Proposition 4.5 to n = 2t + 3 and the base cases obtained from Lemma 4.8: t0 = 2
and 3 with y0 = 5. �

This bound improves by one the bound from Theorem 4.1(b) for n = 2t + 3 and t mod 3 �= 1.
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The rest of this section is dedicated to the proof of Proposition 4.5.

Proof of Proposition 4.5. We first show (a). We proceed by induction on i = i(n, t) := t−t0
n−2t . The base, for i = 0 (i.e., t = t0), 

follows directly from the hypothesis of the lemma. For i > 0, consider a (t + 1)-colouring f of the hypercube Hn .
As f is a (t + 1)-colouring, there is an x in Hn with exactly t + 1 entries equal to f (x). As t is valid for n, we know that 

x has at least t entries equal to 1 − f (x). So, as n − 2t ≤ t − t0 ≤ t , we may assume that x = 0n−2t 1n−2t x′ , where x′ ∈Hn′ for 
n′ := n − 2(n − 2t).

Define a colouring g of the hypercube Hn′ by assigning to each x′′ in Hn′ the value g(x′′) = f (0n−2t 1n−2t x′′). Then g is 
a (t′ + 1)-colouring of Hn′ , where t′ := t − (n − 2t). Indeed, g respects the balls Bt′ (0n′

) and Bt′ (1n′
) because f respects the 

balls Bt(0n) and Bt(1n), and the point x′ has exactly t − (n − 2t) + 1 = t′ + 1 entries equal to g(x′) = f (x).
Note that t′ is valid for n′ and that n′ − 2t′ = n − 2t divides t′ − t0. Moreover,

i(n′, t′) = t − t0 − (n − 2t)

n − 2t
= i(n, t) − 1.

So, we may apply the induction hypothesis to Hn′ and g to obtain a well-ending (t′ + 1)-geodesic P̃ in Hn′ that jumps at 
least y0 + 2 t−t0

n−2t − 2 times in g . We suppose that the first point ã of P̃ is such that g(ã) = 1. In other words, we suppose 
that P̃ ends well in its first point. The other case is analogous.

Extending each point x′′ of P̃ to the point 0n−2t 1n−2t x′′ of Hn , we obtain a path P ′ in Hn that jumps at least y0 +
2 t−t0

n−2t − 2 times in f . Let z = 0n−2t 1n−2t z′ be the last point of P ′ . If f (z) = 0, then we extend P ′ to P by adding to its end 
the points

0n−2t−11n−2t+1z′,
0n−2t−1101n−2t−1z′,
0n−2t−11021n−2t−2z′,
. . .

0n−2t−110n−2t z′,
10n−2t−210n−2t z′,
120n−2t−310n−2t z′,
. . .

1n−2t0n−2t z′.

As we thus pass once through Bt(1n), and then through Bt(0n), our geodesic P jumps at least two times more than P ′ .
On the other hand, if f (z) = 1, then we extend P ′ to P by adding to its end the points

0n−2t+11n−2t−1z′,
0n−2t+21n−2t−2z′,
0n−2t+31n−2t−3z′,
. . .

02n−4t−11z′,
102n−4t−21z′,
1202n−4t−31z′,
. . .

1n−2t0n−2t−11z′,
1n−2t0n−2t z′.

We passed once through Bt(0n), and then through Bt(1n), thus again our geodesic P has at least two more jumps 
than P ′ .

So, in either case, P jumps at least y0 + 2 t−t0
n−2t times in total. By construction, P is a well-ending (t + 1)-geodesic, as 

desired.
For (b), we proceed similarly. For the induction step, we consider the restriction g of f in the hypercube Hn′ , with 

n′ := n − 2(n − 2t), which assigns to each x′′ in Hn′ the value g(x′′) = f (0n−2t 1n−2t x′′). Then t′ := t − (n − 2t) is valid for n′ , 



1220 C.G. Fernandes, M. Stein / Journal of Computer and System Sciences 81 (2015) 1210–1220
and the induction hypothesis yields a geodesic P̃ in Hn′ that jumps at least y0 + 2 t−t0
n−2t − 2 times in g . As above, we turn P̃

into a path P ′ in Hn .
Now, if P ′ ends in a point with less than t entries equal to 0 or less than t entries equal to 1, then it is not difficult to 

change the beginning and the ending of P ′ in a way that the obtained path starts and ends in points with at least t 0’s and 
at least t 1’s, and still jumps at least as often in f as P ′ does. So assume P ′ starts and ends in points with at least t 0’s and 
at least t 1’s. Now, depending on the colour of the last point 0n−2t 1n−2t z on P ′ , we extend P ′ to a geodesic P by first going 
to Bt(0n) and then to Bt(1n), or first going to Bt(1n) and then to Bt(0n), but in either case ending in 1n−2t 0n−2t z. This gives 
two more jumps, as desired. �
5. Final remarks

We considered the memoryless case of the binary-valued consensus problem, previously studied by Dolev and Rajs-
baum [5]. A measure of the minimum instability of consensus functions that are representative is studied. Namely, the 
value of the parameter inst(n, t) is presented and bounds for its value are derived, in general and for specific cases. The 
problem of determining the precise value of the parameter inst(n, t) for arbitrary values of n and t seems quite challenging.

A conjecture that inst(n, t) = 2t + 1 for every (valid) t is presented and a few results that point towards the conjecture 
are proved. As there are examples that show that inst(n, t) ≤ 2t + 1, good lower bounds on inst(n, t) are of interest. Some of 
the results we presented allow to derive better lower bounds for arbitrary t from better lower bounds for small values of t . 
Stronger versions of these results, as well as improvements on the lower bounds for small values of t , would help to close 
the gap between the best lower bound and the conjectured value.
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