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This paper deals with the problem of finding the globally optimal subset of h elements from a larger set of n

elements in d space dimensions so as to minimize a quadratic criterion, with an special emphasis on appli-

cations to computing the Least Trimmed Squares Estimator (LTSE) for robust regression. The computation of

the LTSE is a challenging subset selection problem involving a nonlinear program with continuous and binary

variables, linked in a highly nonlinear fashion. The selection of a globally optimal subset using the branch

and bound (BB) algorithm is limited to problems in very low dimension, typically d � 5, as the complexity of

the problem increases exponentially with d. We introduce a bold pruning strategy in the BB algorithm that

results in a significant reduction in computing time, at the price of a negligeable accuracy lost. The novelty

of our algorithm is that the bounds at nodes of the BB tree come from pseudo-convexifications derived using

a linearization technique with approximate bounds for the nonlinear terms. The approximate bounds are

computed solving an auxiliary semidefinite optimization problem. We show through a computational study

that our algorithm performs well in a wide set of the most difficult instances of the LTSE problem.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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1. Introduction

In this article we deal with a nonlinear subset selection problem

arising in the computation of linear regression estimators with strong

robustness properties.

Before entering into the details of the problem we introduce the

problem of robust estimation through an example from Rousseeuw

and Leroy (1987). In Fig. 1 (left) we show, for each year from 1950

to 1973, the number of outgoing international phone calls from

Belgium. The bulk of the data follows a linear model; nonetheless,

there are 6 observations that deviate from the majority. In fact,

during the period between 1964 and 1969, there was a change on

the record system, which actually recorded the total duration, in

minutes, of the international phone calls instead of the number of

calls. We plot the regression line obtained by a robust method (solid

line) and that obtained by the method of least squares (dashed line).

The least squares estimation is strongly affected by the outliers.

A more appealing example (Jalali-Heravi & Konouz, 2002) where

a subpopulation acts differently, is shown in Fig. 1 (right). There are

plotted, for 32 chemical compounds, a quantity called Krafft point

versus a molecular descriptor called heat of formation. There is a
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ain group that follows a regression line, correctly estimated by a

obust estimator (solid line); there is also, besides some few outliers

t right, a second, smaller group forming what seems to be another

egression line. The observations in the second group correspond to

ulfonates. The least squares estimator (dashed line) is not helpful to

etect the presence of the second group.

As the reader can figure out, in higher dimensions, where visual in-

pection is not longer an alternative for detecting outliers, specifically

uited methods are needed to deal with outliers. This is what robust

stimators are about. Besides robustness, in a sense to be specified

oon, robust regression estimators satisfy statistical properties such

s asymptotic normality, square-root rate of convergence and equiv-

riance properties (Maronna, Martin, & Yohai, 2006). Unfortunately,

he use of robust estimators is not as widespread as one may ex-

ect because their computation is very time-consuming. Unlike other

roblems arising in Statistics, the difficult problems involved in com-

uting robust estimators remain almost unknown to O.R. specialists.

.1. Description of the motivating problem

We have at our disposal a sample consisting of n observations

f the explicative variables {x1, . . . , xn} ⊆ R
d. To each observation of

xplicative variables it corresponds a response or dependent variable,

athered together in a vector y = (y1, . . . , yn) ∈ R
n. We assume that

he random variables x and y are related through a linear model, which
(EURO) within the International Federation of Operational Research Societies (IFORS).
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Fig. 1. Some real data containing outliers. At the left: phone calls from Belgium; at the right: Krafft point of chemical compounds.
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mplies the existence of a vector β ∈ R
d such that

i = x�
i β + δi, (1)

ith δi i.i.d., E[δi] = 0, Var[δi] = σ 2. The objective of linear regression

s to estimate the parameter β .

For convenience, we put the explicative variables as rows of a

atrix X ∈ R
n× d,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

...
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(1)
1 x(2)

1 · · · x(d)
1

x(1)
2 x(2)

2 · · · x(d)
2

...
...

...
...

...
...

...
...

x(1)
n x(2)

n · · · x(d)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

or β ∈ R
d, we denote by r(β) the vector of residuals r = y − Xβ ,

ith components ri = yi − x�
i
β . The Least Squares (LS) estimator is

btained by minimizing the sum of the squared residuals:

in
∈Rd

n∑
i=1

ri(β)2.

Hereafter we adopt the robustness notion introduced by Donoho

nd Huber (1983), which is based on the concept of Breakdown Point

BDP). The BDP of an estimator on a sample is defined as the minimum

raction of observations that need to be replaced by arbitrary ones for

he estimator to take on arbitrary values. The BDP of the common LS

stimator is 1/n, since it suffices to control just one observation to

ake the estimator divergent. Therefore, the asymptotic BDP of the

S estimator as n grows to infinity is 0 percent. The same is true if the

S estimator is replaced by any estimator obtained by minimizing a

onvex function of the residuals. Since the pioneer Least Median of

quares (LMS) estimator (see Rousseeuw and Leroy, 1987, for a pre-

ise description), there has been a continuous improvement leading

o high BDP estimators with optimal statistical properties, such as

symptotic normality, speed of convergence and efficiency. In this ar-

icle we focus on the Least Trimmed Squares estimator, which has the

est statistical properties and is defined through a well structured op-

imization problem. Let h be an integer number comprised between

/2 and n, and denote by |r|1:n � |r|2:n � ��� � |r|n:n the residuals, or-

ered by increasing absolute value. The Least Trimmed Squares (LTS)

stimator is defined as a solution of the problem:

in
∈Rd

h∑
i=1

r(β)2
i:n. (LTS)

n words, the LTSE is the vector of regression coefficients β̂ that min-

mizes the sum of the h smallest squared distances from the hy-

erplane defined by β̂ to the observations y . The LTSE attains the
i
aximum asymptotic BDP of 50 percent by taking h = �n/2� + �(d +
)/2� (Rousseeuw & Leroy, 1987).

.2. State of the art

The first approaches to the optimal subset selection problem ap-

eared in the field of pattern recongnition (Chen, 2003; Narendra &

ukunaga, 1977; Somol, Pudil, & Kittler, 2004; Yu & Yuan, 1993). Un-

ike robust regression, the feature selection problem addressed there

s a maximization problem, whose difficulties are somehow different

rom ours. To the best of our knowledge, the LTSE is the only reported

pplication of subset selection involving minimization.

The exact computation of high-BDP estimators for d greater than,

ay, 5 is a difficult global optimization problem (Bernholt, 2005;

rickson, Har-Peled, & Mount, 2006; Mount, Netanyahu, Piatko,

ilverman, & Wu, 2014). Indeed, Erickson et al. (2006) provide results

uggesting that any exact algorithm for the related LMS requires,

or large n, a time superior to k · nd for some constant k > 0. Mount

t al. (2014) extend this result to the LTSE under consideration here

roving that, up to a constant, the time required for computing

he LTSE for a given coverage level h must be, for large n, bounded

etween (n/h)d and nd + 1.

For this reason, the overwhelming majority of the literature on

omputation of robust estimators is focused on stochastic approx-

mation algorithms. Most of these algorithms are constructed upon

he basic resampling algorithm proposed originally by Rousseeuw

nd Leroy (1987) for computing the LMS estimator. Rousseeuw and

an Driessen (2006) developed a refined version including local

mprovements and adapted to the LTSE. Recently, Torti, Perrotta,

tkinson, and Riani (2012) conducted a benchmark of stochastic

lgorithms for approximating high-BDP linear regression estimators.

he interested reader can find in that article an up-to-date account

f stochastic approximation algorithms for robust (though not

igh-BDP) linear regression. Stochastic approximation algorithms

ipically provide good approximations to the actual estimator for

roblems with a number of observations in the hundreds or even

n the few thousands. However, they have some shortcomings

s well. Two different runs or different implementations of the

lgorithm may give different results. Also, as it is not guaranteed

hat the obtained solution is a global minimum, nothing can be said

bout the actual breakdown point of such approximations. Even a

eterministic, constant-factor approximation to a high breakdown

oint estimator may have a very low breakdown point.

That being said, for small or medium-sized datasets one may be

isposed to invest more time to have a guaranteed global solution

n return. Unfortunately, despite the notable literature dedicated to

tochastic approximations there exist very few deterministic algo-

ithms for computing robust estimators, exactly or approximately. We
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can mention the proposals by Steele and Steiger (1986) and Stromberg

(1993) for computing the LMS estimator; both based on enumeration

of elemental subsets. For the particular case of LMS regression with

two predictors (d = 2), Mount, Netanyahu, Romanik, Silverman, and

Wu (2007) devised a Branch and Bound algorithm with an asymptotic

running time of O(nlog2n).

The first great step forward in the computation of the LTSE came

with the Branch and Bound algorithm (BBA) of Agulló (2001). The

BBA is an adaptation for minimization problems of the ‘feature subset

selection’ branch and bound maximization algorithm by Narendra

and Fukunaga (1977) and relies on the monotonicity of the problem.

At a glance, the BBA enumerates all the subsets of h observations out

of the n, by starting from the empty set and adding one observation

at a time. Since the sum of the squared residuals increases when an

additional observation is added to the LS fit, if a subset of observations

with cardinality k < h is found to give a sum of squared residuals

larger than that of the incumbent set, then by monotonicity all the

sets containing that set can be discarded from further examination.

The BBA is reported to be efficient in datasets with up to about n = 50

observations and d = 5 features. To a large extent, the difficulty of the

BBA in tackling larger problems stems from the following limitations

of the monotonicity bound

– It does not provide useful information for small subsets: since in

dimension d it is always possible to fit d observations exactly, it is

impossible to obtain a non-trivial (positive) lower bound for the

sum of squared residuals for a fit of h observations containing a

given subset of d or less observations. In the enumeration tree,

this amounts to not having a lower bound to prune at the top d

levels.

– It does not look ahead: for instance, if n = 15 and h = 6 it gives “the

sum of the squared residuals of a regression over six observations

comprising observations 2, 5 and 8 is greater than the sum of the

squared residuals of the regression over observations 2, 5 and 8”

without quantifying the increase in sum of squared residuals due

to the incorporation of three more observations.

Consequently, as the dimension of the explicative variables in-

creases, the BBA must examine a large number of elemental subsets,

since pruning is possible only at the bottom levels of the enumera-

tion tree, even if a good global upper bound is available beforehand.

On the other hand, the BBA uses a quite efficient explicit formula for

computing the increase in sum of squared residuals when adding one

observation, which makes his algorithm quite efficient at the lower

levels of the enumeration tree.

Hofmann, Gatu, and Kontoghiorghes (2010) extended the BBA for

obtaining the LTSE for many coverage values h at once, besides im-

proving the numerical linear algebra used to compute lower bounds.

Very recently, Bertsimas and Mazumder (2014) proposed a linear

Mixed Integer Optimization (MIO) formulation of the Least Quantile

of Squares (and in particular the LMS) regression problem. They re-

port good results at solving to provable optimality problems of small

(n = 100) and medium (n = 500) size for d = 3. Some impressive

results are reported for approximate (albeit deterministic) solutions

for problems with d � 20 and n in the order of 104. The BDP of the

regression performed with approximate solutions is not reported.

1.3. Innovations and contributions

We model the computation of the LTSE as a nonconvex optimiza-

tion problem comprising continuous and binary variables with non-

linear interdependence. Since, the nonlinear coupling of the variables

makes obtaining bounds on the continuous variables impractical, we

devise a technique to obtain approximate bounds on the continu-

ous variables; this is done by solving a Semi-Definite Programming

(SDP) problem only once. Then we use the approximate bounds to ob-

tain, via the Relaxation-Linearization Technique (RLT), a Second Order
one Programming (SOCP) problem whose solution approximates the

olution of the original nonconvex problem. Finally, the SOCP approx-

mations are carefully used to obtain useful lower bounds at the top

evels of the subset enumeration tree, where existing algorithms just

ass through.

.4. Outline of the paper

We begin by showing, in Section 2, the alternative formulations

f the problem that permit to get rid of the order statistics involved

n Problem (LTS). More specifically, we show that the problem can

e cast as a nonlinear mixed-integer program or a concave program,

oth particular cases of the best subset selection problem. Then, in

ection 3 we introduce approximate convexifications for products

nvolving binary variables and nonlinear continuous terms when an

pper bound for the continuous variables is not available. We anal-

se the validity of the relaxation obtained using an estimation of the

ound on the continuous variables and their applicability in a branch

nd bound algorithm. In Section 4 we show how to obtain an esti-

ation of the bound on the continuous variables to be used for the

pproximate convexification using a known SDP reformulation of the

oncave maximization problem. Section 5 describes the actual im-

lementation of a branch and bound algorithm incorporating bounds

rom approximate convexifications. In Section 6 we present the re-

ults of a computational study showing the performance gains in a

ranch and bound algorithm due to SOCP bounds in a large set of

roblems. Finally, Section 7 concludes the paper with a discussion on

urther avenues for research in this subject.

. Formulation as a best subset problem

Problem (LTS) can be written as a mixed integer nonlinear program

sing the fact that for arbitrary r ∈ R
n, if r1:n � r2:n � ��� � rn:n denote

ts ordered components, then

h

i=1

ri:n = min

{
n∑

i=1

wiri

∣∣∣∣∣w ∈ {0, 1}n,

n∑
i=1

wi = h

}
,

nd

h

i=1

r(β)2
i:n = min

w∈Ch

n∑
i=1

wiri(β)2,

here Ch = {w ∈ {0, 1}n,
∑n

i=1 wi = h} is a representation of all the

ubsets of {1, . . . , n} of size h.

Therefore our original Problem (LTS) is equivalent to the following

ixed-integer nonlinear programming problem:

min

n∑
i=1

wkr2
k ,

s.t
r + Xβ = y,

e�w = h,

w ∈ {0, 1}n, β ∈ R
d, r ∈ R

n,

(2)

here e is the n × 1 vector of ones.

By splitting the variables of Problem (2) we see that it is equivalent

o

in{ v(w) | w ∈ Ch}, (3)

here v(w) is the value of the weighted LS problem

(w) = inf

{
n∑

k=1

wkr2
k : β ∈ R

d, r = y − Xβ

}
(4)

btained by minimizing over β and r for fixed w ∈ Ch in (2). Hence,

roblem (2) amounts to selecting the subset of h observations with

he least sum of squared residuals. The function v defined in (4)
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Fig. 2. The BB tree for n = 6 and h = 3.
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s concave, therefore Problem (LTS) can be thought as a concave

inimization problem. Giloni and Padberg (2002) were the first

o show this property, and used it to devise a local minimization

rocedure. Nguyen and Welsch (2010) revisited this formulation

nd derived an SDP formulation of the corresponding maximization

roblem. Unfortunately, the degeneracy of the feasible domain makes

t difficult to apply concave minimization algorithms to problem

LTS). In this paper we tackle the problem in the form given in (2).

.1. The enumeration tree

In Fig. 2 we depict the enumeration tree constructed by the branch

nd bound algorithm, in a small example with h = 3 and n = 6.

The circled nodes are the leaves; each leaf represents a subset of 3

bservations (an element of Ch), which is obtained adding recursively

he parent of each node until the root � is reached. For example, at

he end of the second branch from right to left there are two leaves,

he leaf at the right is associated to the subset of observations 6, 4

nd 3, and that at left to observations 5, 4 and 3. In terms of the

ptimization variable w, they are associated to the points (0, 0, 1, 1,

, 1)� and (0, 0, 1, 1, 1, 0)� respectively. Any node has associated

wo index sets S0 and S1 representing the variables fixed to 0 and 1

espectively, each of cardinality J0 and J1. Using these two quantities

e can compute the number of child nodes as n − J0 − h + 1 and

he number of leaves that can be reached from the lth child node as
n−J1−J0−l

h−J1+1

)
.

.2. The monotonocity lower bound

The value of the function v at a point w � [0, 1]n gives the least

um of weighted squares of residuals with weights w. In particular if

� {0, 1}n, wi = 1 for i � J�{1, . . . , n} and wi = 0 for i � J, then v(w) is

he sum of squares of the fit to the subset of observations J. The value

f v(w) is finite as long as the matrix M(w) = X�D(w)X is invertible,

nd in this case (Agulló, 2001),

(w + ej) = v(w)+ rj(w)2

1 + x�
j

M(w)−1xj

, (5)

here D(w) is the diagonal matrix formed from the vector w, rj(w) is

he jth residual obtained from the weighted least squares problem (4)

ith weights w, and ej is the jth euclidean basis vector. Formula (5)

ives the change in the sum of squared residuals by adding observa-

ion j to the fit J, provided that J contains at least d linearly independent

is. Note that v(w + ej) − v(w) 	 0, which means that the objective

unction is non-decreasing from one node to any of its children. There-

ore, the RSS at one node is a lower bound for the objective function of

ts children. If the tree is examined using a depth-first search strategy,

t is possible to keep a Cholesky factorization of M(w) from which to

erform rank-one updates in order to quickly compute the quantities
�
j

M(w)−1xj. The shorthands of the monotonicity bound were already

entioned: Formula (5) requires M(w) = X�D(w)X to be invertible,

hus it is not applicable at the d top levels of the tree, and it provides

oose bounds when J1 is far from h (when there are few more than d

bservations).
. Pseudo-convexifications with approximate bounds

At each node of the tree we need to (under) estimate the value of

he problem:

min

n∑
i=1

wkr2
k ,

s.t
r + Xβ = y,

e�w = h,

0 ≤ w ≤ 1,

β ∈ R
d, r ∈ R

n

(6)

ith the additional constraints

wk = 1, k ∈ S1

wk = 0, k ∈ S0
(7)

or two index sets S1, S0 particular to each node. Suppose that we

ad an upper bound �k for each quadratic term r2
k

; then we can

pply a linearization technique (Adams, Forrester, & Glover, 2004;

dams & Sherali, 1990; 1993; Glover, 1975) to get rid of the product

f the continuous term r2
k

with the binary variable wk. This is done

y constructing a new continuous variable uk to replace each product

kr2
k

, and adding a number of additional constraints in order to ensure

hat the value of the variable uk equals the product wkr2
k

at any feasible

oint of the new problem. Applied to Problem (6) this procedure yields

o the following SOCP problem

min

n∑
k=1

uk

s.t

r2
k

−�k(1 − wk) ≤ uk, 1 ≤ k ≤ n
wk = 1, k ∈ S1

wk = 0, k ∈ S0

〈e, w〉 = h
r + Xβ = y,

u ∈ R
n
+, r ∈ R

n, β ∈ R
d, w ∈ {0, 1}n.

(P)

rom the standard theory of Glover (1975), if �k ≥ r̄2
k

, where r̄ are

he residuals at a solution to Problem (LTS), then Problem (P) coin-

ides with (LTS) for any binary realization of w. Unfortunately, as we

how in the following section, the nonlinear coupling of the variables

estrains us from efficiently obtaining a guaranteed upper bound for

he residuals of Problem (LTS). For this reason we introduce pseudo-

onvexifications, which are instances of problem (P) for an approxi-

ate upper bound (�k)1 � k � n. We say that a solution to (P) is consis-

ent if r2
k

< �k for any k = 1, . . . , n at the optimal r. Consistency of the

olution to a pseudo-convexification is a necessary condition for being

n actual convexification, but in general it is not sufficient. As a con-

equence, using bounds obtained from a pseudo-convexification in a

ranch and bound algorithm can lead to pruning branches potentially

ielding a new solution. Of course, this drawback can be avoided by

iving very large values to �. Nevertheless, larger values of � yields

o weaker lower bounds when relaxing the binary constraint. There-

ore, we are led to find a compromise between a large bound ensuring

he equivalence of problems (LTS) and (P), and a smaller bound pro-

oting tight lower bounds for Problem (6). In the next section we

escribe a strategy for obtaining bounds achieving that comprise.

. Obtaining good approximate bounds

It is customary when linearizing polynomial programs to suppose

hat the optimization takes place on a bounded separable polytope,

nd that upper and lower bounds for each variable exists and can be

omputed by linear programming. This does not hold in our case. In

ur problem the variable w ranges over the unit cube in R
n, and all the

ther variables have a nonlinear dependency on w. Indeed, for each
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Fig. 3. A taxonomy of regression outliers.
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w there exists an unique feasible βw, as seen from (4); even more,

βw is the unique solution to the system X�D(w)Xβ = X�D(w)y. The

residuals are linked to β , and therefore to w, by the linear constraint

r + Xβ = y. Therefore, an exact upper bound for r2
k

can be obtained by

solving the following auxiliary problem

max
w

r2
k

s.t
e�w = h
r + Xβ = y,

X�D(w)r = 0
0 ≤ w ≤ 1.

(Ak)

Problem (Ak) is a maximization problem on w only but, unlike

Problem (3), it is not a concave maximization problem. Even it it

could be done efficiently, solving n problems would be cumbersome.

For that reason we look for one single bound for all the residuals

that can be efficiently computed. A closely related problem is that of

maximizing the weighted sum of squared residuals, which amounts

to maximizing the function v defined in (4),

max v(w)
s.t

e�w = q,

0 ≤ w ≤ 1,

(8)

for some 1 � q � n. This is a concave maximization problem, therefore

a global minimum can be efficiently computed. In fact, Nguyen and

Welsch (2010) showed that Problem (8) can be cast as an SDP problem,

therefore it can be solved using standard widely-available software.

If d + 1 � q � n and we force the variables to be binary, the solution

to Problem (8) is the subset of q observation with the largest sum of

squared residuals. In any case, the value of the problem is monotone

non-decreasing for 1 � q � n. Moreover, it has the property of going

to +
 if any subset of the observations is replaced by divergent ones.

After extensive numerical experiments we found that solving (8) for

q = d/2 yields to an effective approximation of the upper bound for

the residuals.

5. A branch and bound algorithm with SOCP bounds (S-BB)

In our implementation, the Narendra–Fukunaga tree described in

Section 2.1 is examined using a depth-first search strategy. We per-

form an in-level node ordering to take advantage of the unbalanced

structure of the tree, as leftmost branches have many more children

than those at the right. The innovations of our algorithm take place

at the d top levels of the tree; at level d + 1 and below the algorithm

behaves like the BBA of Agulló (2001).

5.1. Preliminaries

We used the LS estimator as an initial solution; as a consequence,

our algorithm is deterministic. As indicated in Section 4, we set �

equal to the optimal value of Problem (8) with q = d/2. Problem (8) is

solved using the SDPT3 interior-point solver (Tütüncü, Toh, & Todd,

2003).

5.2. Lower bounds

Problem (P) with the binary constraint relaxed to 0 � wk � 1 is

denoted as (P). The quadratic constraint r2
k

− �(1 − wk) ≤ uk can be

cast as a SOCP constraint, for that reason we call Problem (P) the SOCP

relaxation. Problem (P)was solved using CPLEX 12.5. At each node we

first check the size of the subtree below each child node. Even nodes

at top levels of the tree can have very few leaves below, in which case

it is not worth spending time solving the SOCP relaxation. We launch

the SOCP relaxation only for children with more than 106 leaves. If

the solution to Problem (P) results to be consistent, and the value of
he problem is greater than the current upper bound, the branch is

runed. Otherwise, the residuals of the solution are still useful for

anking the children and performing the in-level ordering, by putting

he observations with the largest residuals at the left, to promote

ubsequent pruning of large branches.

.2.1. Adjusting the bounds on r

A look at problem (P) shows that the optimal values of �k can

e anticipated for k � S0 � S1. For k � S1 the upper bound does not

nter into play, we always have uk = wkr2
k

; on the contrary, for k � S0

e should always have uk = 0, therefore we set �k = 10 · �, where

is the upper bound obtained by solving Problem (8) and used for

� S0 � S1. In practice this forces uk = 0, and does not spoil the

onditioning of the SOCP problems as a huge number would do (in

heory, we should set those �k to +
).

.3. Local improvements

Another innovation of our BB algorithm is the incorporation of a

ocal search. Each time a leaf is examined, we apply the concentration

teps of Rousseeuw and Van Driessen (2006) to obtain an eventu-

lly better incumbent solution, and use it to update the global upper

ound of the algorithm.

. Computational study

Now we illustrate through a computational study the impact of

ncorporating the SOCP lower bound in a branch-and-bound algo-

ithm. In order to perform a systematic study, we generated synthetic

atasets with sizes in a controlled range. It is known that the struc-

ure of the outliers, and not only their magnitudes, strongly affects the

egression technique as well as the behaviour of the approximating

lgorithm. In Fig. 3 we illustrate the taxonomy of linear regression

utliers (Rousseeuw & van Zomeren, 1990). Outliers are called verti-

al if only the y component (the response) is contaminated. Vertical

utliers are the more benign ones, and even some convex estimators,

uch as the �1 estimator, can cope with them to some extent (Giloni

Padberg, 2004). Leverage points are points whose explicative vari-

bles are corrupted. In contrast to vertical outliers, leverage outliers

an be very harmful. Excepting the case of the “good leverage points”

llustrated in Fig. 3, which are in general not considered as outliers,

ad leverage points are the most adversarial type of contamination.

For our study we generate synthetic data with outliers in the fol-

owing way:

– We generate regular observations following model (1), with δ
standard normal, for different number of cases (n) and explica-

tive variables (d).
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Table 1

Computing times (in tens of seconds) for high leverage outliers.

d

Alg. n 12 13 14 15 16 17 18

BBA 30 0.51 0.35 0.51 0.26 0.36 0.14 0.18

35 5.19 4.79 7.99 5.68 8.72 5.02 7.29

40 22.15 23.68 40.85 33.59 56.63 38.99 59.27

S-BB 30 0.49 0.34 0.51† 0.26 0.35 0.14 0.18

35 4.60 4.21 6.80 5.05† 7.65† 4.45 6.41†
40 22.53 20.89 34.90 26.91 45.44 29.87 46.49

Table 2

Computing times (in tens of seconds) for heavy tail outliers.

d

Alg. n 12 13 14 15 16 17 18

BBA 30 0.52 0.35 0.52 0.26 0.35 0.14 0.19

35 5.26 4.81 8.07 5.67 8.69 5.03 7.29

40 21.41 23.90 41.41 34.82 56.57 39.71 59.47

S-BB 30 0.50 0.34 0.52 0.26† 0.35 0.14 0.19

35 4.52 4.21 6.86 4.83 7.71 4.48† 6.53

40 22.11 21.43 34.70 27.46 44.54† 31.44 46.72

Table 3

Success rates of the S-BB algorithm.

n

Percent 30 35 40 Average

High leverage outliers 99.55 98.66 100 99.40

Heavy tail outliers 99.55 99.55 99.55 99.55

Average 99.55 99.10 99.77 99.47
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– On each dataset we replace 10 regular observations by bad lever-

age outliers.

The bad leverage outliers were obtained by shifting randomly se-

ected observations in two different ways: by a large, deterministic

hift (high leverage outliers) and by adding a random term drawn

orm a Laplace distribution (heavy tail outliers).

For each combination n/d/type-of-contamination we drew 25

atasets as described above and measured the total time spent by

he S-BB algorithm described in Section 5 and by the BBA (Agulló,

001) in computing the LTSE with a breakdown point of 50 percent

h = �n/2� + �(d + 1)/2�).

All computations were done in MATLAB version R2008b on a 64-

it Linux machine, with 8 cores and 6 Gigabyte RAM. For the SOCP

elaxations we used IBM ILOG CPLEX Studio v. 12.5 via its MATLAB

nterface.

The computing times in tens of seconds, averaged over the 25

epetitions, are shown in Tables 1 and 2 respectively. The impact of

he SOCP bounds is, as expected, more important as the number of

xplicative variables increases, and more pronounced for larger n. The

eduction in computing time exceeds the 20 percent for n = 40 and d

reater than 15. The accuracy of the solution is largely preserved; in

able 3 we show the rate of success, which is larger than 99 percent

n all but one of the cases. The computing times in Tables 1 and 2

arked with a dagger are averages excluding the run that did not

ave the exact solution.

Further reductions in computing time are possible by relaxing the

ptimality goal. In this direction, we can mention that the fraction

f the SOCP relaxations resulting in inconsistent solutions is not neg-

igeable; using those solutions to derive bounds could result in a great

erformance improvement. Another way to do the same thing is by

ecreasing the parameter q used to obtain the approximate bound �.

owever, the goal of this work was to improve the computation of

he LTSE with the least possible lost in accuracy, and it was achieved.
. Conclusions and perspectives

We have presented an approximate convex relaxation for the LTS

roblem. Its incorporation in a branch-and-bound algorithm yields

o significant savings in computing time at the price of a negligeable

ccuracy lost. Our standpoint is that of improving the computation of

n estimator with well-studied statistical properties. Now then, with

he understanding of the underlying problem gained with this study

ne could propose alternative techniques yielding to robust estima-

ors defined with an eye on computability. Concretely, think of the

stimator defined as the solution to Problem (P), with � obtained

y solving (8) for some 1 � q � n. If the binary constraint is relaxed,

uch an estimator is defined by two convex optimization problems,

ith a range of applicability in the thousands of observations; if the

inary constraint is kept, we dispose of SOCP convex relaxations at

ny node of the BB tree, without wasting time with inconsistent re-

axations. The study of the statistical and computational aspects of

hat proposal will be the subject of a future work.
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