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The complex processes involved in the determination of the availability of power from renewable energy
sources, such as wind power, impose great challenges in the forecasting processes carried out by trans-
mission system operators (TSOs). Nowadays, many of these TSOs use operation planning tools that take
into account the uncertainty of the wind-power. However, most of these methods typically require strict
assumptions about the probabilistic behavior of the forecast error, and usually ignore the dynamic nature
of the forecasting process.

In this paper a methodological framework to obtain Robust Unit Commitment (UC) policies is pre-
sented; such methodology considers a novel scenario-based uncertainty model for wind power applica-
tions. The proposed method is composed by three main phases. The first two phases generate a sound
wind-power forecast using a bootstrap predictive inference approach. The third phase corresponds to
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modeling and solving a one-day ahead Robust UC considering the output of the first phase.

The performance of proposed approach is evaluated using as case study a new wind farm to be incor-
porated into the Northern Interconnected System (NIS) of Chile. A projection of wind-based power instal-
lation, as well as different characteristic of the uncertain data, are considered in this study.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The incorporation of renewable sources in electricity produc-
tion has unquestionable benefits; low operating costs, near zero
emissions and stability of their prices, to mention a few of them.
Nonetheless, and particular in the case of wind power, the high
levels of variability and uncertainty involved impose new chal-
lenges, especially in the operational planning carry out by trans-
mission system operators (TSOs) [1,2].

Generation planning is usually performed by solving the
well-known Unit Commitment (UC) Problem [3-6]. The UC is a
fundamental problem that has been exhaustively studied from a
practical and theoretical point of view. The UC optimizes the oper-
ational costs of the system during a specific period of time ensuring
that the produced power will satisfy a given level of demand. Tra-
ditionally, the technical constraints considered in the optimization
process are related to the operational limits of the generation units
(such as minimum and maximum power capacity, up and down
ramp rates, among others), transmission capacity of the system,
and operational security constraints for the whole system.

* Corresponding author at: Industrial Engineering Department, Universidad de
Talca, Merced 437, Curicé, Chile. Tel.: +56 075 201706.
E-mail address: ealvarez@utalca.cl (E. Alvarez-Miranda).

http://dx.doi.org/10.1016/j.enconman.2015.05.039
0196-8904/© 2015 Elsevier Ltd. All rights reserved.

A critical issue when using wind energy from a UC perspective
is having reliable models for short-term forecasting of wind-power
(see[2,7, and the references therein]). Nowadays, many power sys-
tems with high levels of wind-power generation use UC planning
approaches that take into account the inherent uncertainty due
to wind-power forecasting (see, e.g., [8,9]).

Typically, forecasting errors are incorporated into the decision
process by means of stochastic modeling techniques (e.g.,
[10,11]), or by rather simple approaches such as fixed intervals
(e.g., [12-14]). The premise of decision-makers is that forecasting
error is unavoidable and it must be incorporated into the
decision-making process, precisely in order to reduce its effect
and find reliable and/or robust solutions.

The use of stochastic techniques usually yields the definition of
a set of wind-power scenarios (see, e.g., [15,16]), whose probability
of occurrence must be known a priori. This requires very strict, and
possibly artificial assumptions about the stochastic behavior of the
wind forecast error (see, e.g., [10,8]). On the one hand, an accurate
representation of the possible outcomes requires to generate many
scenarios, burdening the computational efficacy of such model; on
the other hand, if a wrong scenario selection is done (which is
likely to occur), the resulting solution lacks of practical value
[17]. Moreover, in [18], it is studied how the typical forecasting
error models fail in representing its true behavior.
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The wuse of closed deterministic intervals for modeling
wind-power uncertainty is becoming a common practice with
the outburst of Robust Optimization [19,12,20,21]. Deterministic
means that no probability distribution is needed to characterize
how the wind-power distributes within the interval. So, instead
of optimizing a stochastic function, one is interested in optimizing
a worst-case measure. Although this model avoids the need of
assumptions regarding the stochasticity of the wind-power, it
has some drawbacks. In order to capture all the possible outcomes
of wind-power, one needs to define sufficiently wide intervals; in
addition, the worst-case emphasis of the robust models leads to
focus only on the midpoint or lower limit of the intervals, ignoring
information contained in the whole interval. This behavior, that
yields over-conservative solutions, has been somehow tackled by
introducing the so-called uncertainty budget (see, e.g., [19,21]).

1.1. Contribution and paper outline

The main contribution of this paper is the development of a
methodological framework for obtaining one-day ahead robust
UC policies in power systems with wind-power penetration. The
proposed framework is comprised by specially revised methods
of forecasting, uncertainty modeling and mathematical optimiza-
tion. As it will be shown with a real case study, the combination
of these methods yield UC policies that perform reasonably well
regardless the actual wind-power values.

The paper is organized as follows. In Section 2.1 the forecasting
method proposed in this paper is presented; the obtained forecast
data is then used in a scenario generation scheme which is pre-
sented in Section 2.2. In Section 2.3 a modeling approached based
on the concept of budget of uncertainty is presented; in the same
section, a Mixed Integer Linear Programming (MILP) model for
the Two-Stage Robust UC problem (TSRUC) is formulated. The case
study is described in Section 3. In Section 4 numerical results ana-
lyzing different aspects of the methodology are reported. Finally,
conclusions and paths for future work are presented in Section 5.

2. Methodology

The methodological framework proposed in this paper is
designed to generate one-day ahead Robust UC policies consider-
ing wind-power generation uncertainty. Such framework is com-
posed by three elements: (i) a wind-power forecasting approach
via bootstrapping, (ii) a technique for generating wind-power sce-
narios, and (iii) a two-stage robust optimization model. In Fig. 1 a
block diagram of the proposed methodology is shown. As can be
seen, the framework requires wind-power measurements as input,
which will be first used for forecasting and then for defining the
scenarios. These two phases of the methodology are referred to
as Uncertainty Modeling phase, since it yields a scenario-based
model of uncertain wind-power values. The generated scenarios
are then introduced in the optimization model (TSRUC), whose
constraints are given by the operational characteristics of the
power system (e.g., generator capacities, generator ramps, power
demand, etc.). The final result is a one-day ahead robust UC espe-
cially suitable for high levels of uncertainty.

In the following, each of the elements of the proposed approach
will be described.

2.1. Wind-power forecast via bootstrapping

The core of the forecasting method is the use of the bootstrap-
ping re-sample procedure proposed in [22] (and later used in dif-
ferent areas (see, e.g., [23,24])).

Suppose that it is required to forecast the wind-speed that will
be observed, hourly, tomorrow (denoted as day D*). The strategy

assumes the existence of wind-speed measurements of a period
of time (e.g, a whole week), including the day (D" — 1) in which
the forecasting is being carried out. Based on this real data, several
possible data realizations of the first time-window of t periods are
forecast; for instance if T = 3 and an hourly basis is considered, the
first periods would be 01:00 h, 02:00 h and 03:00 h. Then, for each
of these periods an average forecast value is calculated, these esti-
mated values are aggregated to the real data set, and the same
forecasting procedure is applied for the following 7 = 3 periods
(e.g., 04:00 h, 05:00 h and 06:00 h). This procedure is performed
sequentially, until forecasts for all periods of day D* have been cal-
culated. In this case, it will be said that the model is refreshed each
T periods (e.g., 3 h).

The forecasting procedure for the first T periods (hours) of day
D" is done as follows:

Step 1 Given a series of wind speed data (e.g., of two days), which
is assumed to be available, a time series model is fitted to
it [25]." A result of this is shown in Fig. 2(a) between periods
0-48.

Step 2 The residuals of the model are then calculated, i.e., the dif-
ferences between the real values (measurements) and
those obtained from the fitted model.

Step 3 A bootstrap series using a recursion function (which is
characterized by the time series parameters and the calcu-
lated residuals) is generated, and the linear estimates of
the forecasting function are then calculated.

Step 4 A bootstrap future or forecast path (or series of values) is
obtained for the next T periods using the estimators calcu-
lated in Step 3. An example of a 3 h path of forecast data is
shown in Fig. 2(a).

Step 5 Repeat P times Steps 3 and 4. This is depicted in Fig. 2(b),
where the paths obtained for P = 30 are shown.

Once the paths for the first T hours are obtained, the average
value for each period using the P paths is calculated (see dark blue?
line in Fig. 2(b)), these values are “concatenated” to the real data
(refreshment), and Steps 1-5 are performed again in order to
obtained the P paths for the following t periods.

As result of applying this process consecutively for the 24 h of
day D", it is possible to obtain for each period, say t, an interval
given by the maximum forecast value ws/"* (for a given path

given path p,;, € {1,...,P}). Intuitively, due to the refreshment
strategy, the interval [ws" ws"®] (at the beginning of the a
time-window) is expected to be narrower than the interval
[Ws{';i”r), wste ). This, because it is likely that the quality of the fore-
casting decreases, i.e., the magnitude of the residuals increases,
between period t and period ¢t + 7. This is shown in Fig. 3(a), where
a summary of the forecast values is shown for a complete day. It is
clear how the induced interval (see gray lines) becomes wider
along the periods between refreshment points.

2.2. Scenario generation

The forecasting strategy described before yields to intervals that
are likely to contain the real wind-speed that will be realized. Once
these intervals are calculated, the intervals can be transformed

! For the considered data (see Section 4) an ARIMA model was used since it
provided the best goodness-of-fit, which was measured by the AIC, ACF and FACF
tests (see [25, for fruther details]). Note that different data sets might be character-
ized by different time series models.

2 For interpretation of color in Figs. 2 and 3, the reader is referred to the web
version of this article.
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Fig. 2. Examples of the bootstrapping-based forecast procedure.

into wind power intervals [g/", g"¥] (by choosing a wind power
generator) and they can be incorporated into the decision model

by means, for example, of an interval-data-based robust approach
(see, e.g., [20,12]), or by means of a single-point scenario-based
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Fig. 3. Representation of the scenario generation.

(stochastic) method (see, e.g., [26,17]). The pros and cons of these
alternatives are described in Section 1.

In this work, a scenario-based model of uncertainty that combi-
nes both uncertainty models mentioned above is proposed. In this
novel model of uncertainty, a discrete set of scenarios is given, and
each scenario is characterized by wind-speed intervals, one per
period. In addition, no assumption is made with respect to the
probability of occurrence of these scenarios nor the probability dis-
tribution of the values within the intervals. This model of uncer-
tainty allows to cope two of the main drawbacks of the other
two models: (i) intervals do not require to be too wide in order
to capture the whole spectrum of values defined by the forecasting
process, and (ii) only a reduced number of scenarios is enough to
ensure that most of the possible realizations of values are sampled
into the calculated scenarios.

The scenarios are generated as follows. After generating P boot-
strapping paths (as described above), for each 7 periods, a pair of
paths that enclose at least the 90% of the forecast values is taken.
Such pairs define an area that is likely to contain the true value
of wind-speed in the corresponding period. This is depicted in
Fig. 3(a), where these pairs are shown by red dashed lines and
the true values are shown by dark blue points. Once these paths
are calculated, a set of scenarios is defined; each of them character-
ized by one interval per period. These intervals have as midpoint
the average value calculated considering the P bootstrapping esti-
mations. The upper limits are randomly (and uniformly) taken
between this average and the corresponding upper path; likewise,
the lower limits are randomly (and uniformly) taken between this

average and the corresponding lower path. In Fig. 3(b) an example
of these interval-based scenarios is shown. In the figure four sce-
narios are depicted in green, blue, black and red, respectively.
The dark blue points connected by dashed lines correspond to
the aforementioned average values (and midpoint of the
corresponding intervals). As one can see in this example (which
corresponds to a day of the case study), only these four scenarios
are enough to cover a broad spectrum of possible data realizations.
This process is applied to generate a discrete set Q of scenarios; for
a given scenario w € Q,[q”",q®*] corresponds to the uncertain
interval (with midpoint g®) corresponding to the wind-power pro-
duced by a wind-power field of ¢/ generators at period t if scenario
w is realized. Note that no assumption is made regarding the prob-
abilistic distribution of wind-power, nor about the probabilistic
distribution of the forecasting error. This element is crucial when
compared with other forecasting and error characterization
techniques.

As it will be shown in Section 2.3, the two-stage robust opti-
mization approach exploits this model of uncertainty by hedging
against data realizations that are either too optimistic (i.e., high
wind-speed) or too pessimistic (i.e., low wind-speed). Clearly, such
cases might be induced by scenarios where wind-power is at the
upper or lower interval limits, respectively. In this way, it is not
only ensured that a robust fulfillment of the operating constraints
and power demand, but the system is also protected against large
fluctuations of wind-power output, which might induce problems
in the system operation due to the violation of ramp constraints.

2.2.1. Comparison with persistence model

Currently, the TSO of the power system we will consider as a
study case uses as forecasting model the well-known Persistence
model (PM) (also called naive predictor, see [18]). Intuitively speak-
ing, the PM assumes that tomorrow (D*) will happen what hap-
pened today. Although very simple, the PM is broadly used since
it performs well for short prediction horizons (e.g., a few minutes
or hours). Moreover, the PM is frequently used to compare the per-
formance of newly proposed forecasting models. In Fig. 4 we show
a schematic comparison between the PM and our scenario-based
model. Real data of two days (D" — 1 corresponds to November
19th, and D* to November 20th) is shown with a black line; the
PM used to forecast the wind speed of D* is shown by a green line,
and the overlapped intervals (and the corresponding midpoints)
resulting of generating five scenarios are shown in blue. From this
graphic it is possible to see that model proposed in this paper is
able, in most cases, of containing the true values within the corre-
sponding intervals. As it will be shown later, the fact that true val-
ues are contained within the intervals enable the optimization

Wind speed [m/s]

il

|
Real values { _ Persistence model ! —e—  Our model
ay D*-1 Day D*

D:
T T

0 50 100 150 200 250
Periods

Fig. 4. Comparison between Persistence Model and our Scenario-based Model
(November 20th).
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model to provide, in average, more robust operation policies (in
terms of their cost) than those provided by the PM.

2.3. An optimization model for the TSRUC

The third element of the methodology is modeling the
Two-Stage Robust UC problem (TSRUC), using as input data the
generated scenarios of the proposed uncertainty modeling phase.

2.3.1. Hedging against wind power fluctuation

So far, it has been presented a methodology to define a sound
set of wind-speed scenarios that naturally embodies the uncer-
tainty of wind-power. Now, it is necessary to develop a procedure
to plug-in this information into the optimization framework. The
method follows the idea of budget of uncertainty coined in [27],
and it is a revisited version of the method applied for the same
problem in [12].

Assume that day D" is divided into T periods (for example, 24
periods of 1 h each). Now, for a given scenario w € Q, there is an
interval [q¢~,q®*] (with midpoint g®) for each period
t € {1,...,T}. From the power generation point of view, a good data
realization is such that the actual wind-power is g®*; on the con-
trary, a bad one is g~

Let I'* be maximum number of periods that the wind-power is
at the upper limit, and let I'" be minimum number of periods that
the wind-power is at the lower limit. Therefore, if I'¥ =T~ =0,
then it is assumed that all wind-power values will be at the corre-
sponding midpoints; if I'* =24 and I'" = 0, then g, can take any
value within [q¥~,q®"]; if " =24 (and regardless the value of
T'"), then wind-power values will be restricted to the correspond-
ing lower bounds. Parameters I'" and I~ enable the
decision-maker to control the level of uncertainty so that the
obtained solutions can be protected against scenarios with large
fluctuations from the midpoints. Note that in [27], and later in
[12], only one parameter I' is considered, which in this context
would correspond to I'*.

For better comprehension of the model, the following notation
is needed: B, is the set of buses; A, is the set of generators at
bus b € B(A = [J,sAp); and Q, is the set of scenarios (wy, ..., wyg).

Let g € RZ;"7, be a vector of real-valued variables such that
each element, g, indicates the actual wind-power used at bus b
in period ¢, if the scenario w is realized (MW). For simplicity, let
apt = (g —qp) and g5 = (G — q). We define the auxiliary
variables z* € {0, 1} and z- € {0,1}®*®"T  such that the
wind-power output at given bus beB, at a given period
te{1,...,T} and for a given scenario w € Q, is at its upper limit
(z;; =1 and z,, = 0), or at its lower limit (z;, =0 and z,, = 1), or
at its midpoint (z;, = z,, = 0). Variables q, z" and z~ are related
as follows:

q =qn+42tz, — a4z, Vte{l,...,T}, VbeB Q.1)
T T

>z <T'"and) 7z, >T", VbeB Q2)
t=1 t=1

Z,+z, <1Vte{l,...,T}, VbeB Q.3)
(z*,z7) € {0,1)}2*BixiexT (Q.4)

Therefore, the corresponding uncertainty set, for a given scenario
w € Q, is given by

(I, 1) = {a” e RETI(Q.1)—(Q4) | Q

Intuitively, '~ controls the level of conservatism, and I'" the level of
optimism. This uncertainty set, which is determined by I'* and '™,

will be then tackled when embedded into the mathematical opti-
mization model presented next.

2.3.2. MILP Formulation for the TSRUC
In addition to the previously introduced notation, the following
parameters will be used for the MILP formulation.

2.3.2.1. Parameters. T, number of time periods in the planning hori-
zon, with each period t € {1,...,T} being one hour; Sf, start-up
cost for generator i at bus b ($); SDf’, shut down cost for generator
iat bus b ($); Gf’, (minimum-up time) minimum time that genera-
tor i, at bus b (h), must be operating after it is turned on; Hf’.
(minimum-down time) minimum time that generator i, at bus b
(h), must be down after it is turned off; R’, ramp-up limit for
generator i at bus b (MW); P?, ramp-down limit for thermal gener-
ator i at bus b (MW); L?, minimal output of electricity if generator i
at bus b is on (MW); Uf? , maximal output of electricity if generator i
at bus b is on (MW); Dy, total demand on the system in time period
t (MW) (it also includes an estimation of the system losses); g5,
lower limit of the wind-power interval at bus b, in period t, if sce-
nario w is realized (MW); q;", upper limit of the wind-power
interval at bus b, in period ¢, if scenario w is realized (MW); g,
midpoint of the wind-power interval at bus b, in period t, if sce-
nario o is realized (MW).

The optimization problem is divided in two stages. The variable
involved in each stage are follows.

2.3.2.2. Decision variables of first stage. y € {0, 1}F*A<T+1 'yector of
binary decision variables such that each element, y%, indicates if
generator i at bus b is on in period ¢ (3 = 1); u € {0, 1}**""T vec-
tor of binary decision variables such that each element, v, indi-
cates if generator i at bus b is started up in period ¢;
v € {0,1}BI"T 'vector of binary decision variables such that each
element, %, indicates if thermal generator i at bus b is shut down
in period t. Note that for practical purposes, y variables are also
defined for t = 0.

2.3.2.3. Decision variables of second stage. x € RZ;**1*"T vector of
real-valued variables such that each element, x}”, indicates the
amount of power generated by generator i at bus b in period t, if

the scenario ® is realized (MW); &e REZ;™ T vector of

real-valued variables such that each element, 65, indicates the

amount of slack (unused) power of generator i at bus b in period

qce R‘}B‘;‘Q‘XT'

real-valued variables such that each element, ¢*”, indicates the
actual wind-power used at bus b in period ¢, if the scenario o is
realized (MW).

t, if the scenario w is realized (MW); vector of

2.3.2.4. Generation cost function. The generation cost of a generator
i€ Ay, at bus b e B, in period t € {1,...,T}, and in scenario w € Q,
is given by the function ff’ : x2® — R0, whose structure depends,
in principle, on the type of generator. In this work a piecewise
linear function has been considered.

As said before, the formulation defines a two-stage (robust)
problem. In the first stage, the decision about the state of each gen-
erating unit (on/off) is defined. Intuitively speaking, it is decided
today which generating unit will be working tomorrow, and for
how long. In the second stage, the so-called dispatching problem
has to be solved. This means that it is defined how much energy
will be produced tomorrow by each of the committed generating
units, taking into account the UC defined in the first stage, the
power demand and the wind-power availability (the later subject
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to the realized scenario). The goal is to find a cost efficient one-day
ahead operation policy, i.e. a unit commitment schedule for tomor-
row, such that it minimizes a worst-case measure of the operating
cost of the second-stage decisions.

A first-stage UC must satisfy two operating constraints: (i) if a
unit i at bus b is turned on, then it must remain on at least the
minimum-up time (Gf-’); (ii) if a unit i at bus b is shut down, then
it must remain down at least the minimum-down time (Hf’). These
two constraints are modeled as follows:

VitV —Yh <0, VbeBVie AVt k
e{t,t+1,...,cf’+t—1} (FS.1)
Yoy —Vh+yh<1, = VbeBVieAy,Vtk
e{rt+1,...,H§’+t—1} (FS.2)
Yy +Yh—ub <0, VbeBVieA,Vte{l,....T}  (FS3)
Yoeq —Vh—vh<0, VbeBVie Ay, Vte{l,... T} (FS.4)
yh =0, VieAyVbeB (FS.5)

ye {07]}\B\><|A\><(T+1)7 ue {071}\B|X\A\><T and ve {071}|B\><\A\><T

(FS.6)

Constraints (FS.1) and (FS.2) model the two operating constraints
described above. Constraints (FS.3) and (FS.4) relate variables
yb, ub and ¢f. Constraint (FS.5) defines the boundary conditions
for any feasible units scheduling. Constraint (FS.6) imposes that
all first-stage variables must be binary. Finally, note that the cost
of the UC (in other words, the first-stage cost), is given by

Y. w V) =3 S Dien, (Sf’uf’[ +SD} Vb)
Given a feasible UC, i.e., a collection (y,u, V) satisfying (FS.1)-

(FS.6), a pair (I'",I'7), and a scenario w € Q, the corresponding
second-stage dispatching problem is given by

Py, 0, v, @ mmz Z Zf xbe) (DP.1)
t=1 b=1 ieA,
st Lyl <xbo < Ubyh vte{l,...,T} (DP.2)
X =X < (2= Yl — )L+
(145 —y,-[)R?, Vte{2,...,T} (DP.3)
X?((t{l) X < (2 ylt 1) yf’f)Lf’+
(1 =Yy +92)P, Vee{2,...T} (DP.4)
X0 < UP — 82 and &5 < UPyh (DP.5)
Z oo = nax {x”‘“ , Vte{l,...,T} (DP.6)
b=1 ieAy
Z(Zx +qfw) >D, Vte{l,... T} (DP.7)
b=1 \ieAy

Constraints DP.2, DP.3, DP.4 hold Vi€ A, and Vb € B(DP.8)

qec Q’(I'",I7), xe R‘g‘g"“xm‘” and

& € REGIN-enT (DP.9)
The objective function (DP.1) corresponds to the minimum total
generation cost of the units. In other words, it corresponds to the
minimum dispatching cost induced by y, @, Vv in case scenario ®
is realized. Constraint (DP.2) ensures that if a generating unit is

operative (y} = 1), then it must produce at least Lf’ and at most

Uf’. Constraints (DP.3) and (DP.4) correspond to the ramp-up and
ramp-down constraints, respectively.> Constraints (DP.5) and
(DP.6) model the so-called (N — 1)-primary-reserve constraints. This
requirement ensures that, in every period, the system will be able to
withstand the outage of the largest single generating unit without
activating load shedding schemes [28]. This criterion is also used
in several other works (see, e.g., [29,30]). Constraint (DP.7) imposes
that the total generated power, including wind-power, is at least the
total demand in every period plus system losses. Constraint (DP.8)
ensures the correctness of the model, and constraint (DP.9) charac-
terize the nature of the variables.

For a given first-stage solution (y,w,v) the robust dispatching
cost R(y,W, V) corresponds to the maximum (minimum) dispatch-
ing cost among all w € Q, i.e,,

R, 4,%) = maxp(y. ., v, o) (RD)
weQ

Combining (FS.1)-(FS.6), (DP.1)-(DP.9) and (RD), the Two-Stage
Robust UC is formally defined as

OPTy = ZZZ(S?uﬁ+SDb vh) + R0, ) 1)

t=1 beB icA,

st.  (FS.1)—(FS.6) and(DP.1)—(DP.9) )

An optimal first-stage UC (y,u,Vv) is robust because it guaran-
tees that, regardless which scenario actually occurs, the
second-stage dispatching decisions will be: (i) economically effi-
cient (due to the minimization of the worst case); (ii) protected
against large fluctuations of wind-power (which is given by the
combined effect of (I'*, T"7)); and (iii) reliable with respect to pos-
sible errors of the wind-power forecasting (due to the tailored pro-
cedure to generate forecast data).

2.3.3. Algorithmic alternatives and further considerations

There is a plethora of algorithmic techniques for solving the UC
and its corresponding Stochastic and Robust counterparts. Recent
reformulation and exact approaches for obtaining optimal or near
optimal solutions for different variants of the UC can be found in
[31-34]. Likewise, specially tailored metaheuristics for the UC have
been recently proposed in [35-40]. Due to the structure of both
Stochastic and Robust UC, decomposition approaches such as Ben-
ders Decomposition are effective tools tackle to problem and pro-
vide good solutions. This type of approach can be found in
[41,42,10] for the Stochastic UC, and in [12,20,13,14] for the Robust
ucC.

Besides wind power uncertainty, authors have addressed UC
considering demand uncertainty (see, e.g. [43]), incorporating con-
straints on emissions with stochastic behavior (see, e.g. [44]), or
combining transmission network decisions (see, e.g. [45]), to men-
tion just few possible generalizations or extensions of the basic UC
problem.

3. Power system under study: NIS

The electricity system in the northern part of Chile (NIS) is a
small isolated 50Hz system with a current peak load of
2200 MW. The system is characterized by a pure thermal genera-
tion mix with a total installed capacity of 4500 MW based on die-
sel, coal, natural gas and oil. The system load is characterized by
90% industrial load (mining industry), and the remaining 10% cor-
responds to residential customers.

3 In this paper, ramp constraints combine ramp-rate limit restriction when a
generator is on and first-hour/last-hour minimum generation restriction.
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Fig. 5. Diagram of the NIS.

The case study considers 39 units based on diesel (41%), coal
(33%), natural gas (21%) and oil (5%). Detailed technical informa-
tion about the 39 units is provided in Table 2 in Appendix A. The
purpose of this study is to evaluate a new wind-power plant con-
nected to the NIS. This plant is expected to be located near the city
of Sierra Gorda (latitude 22.92S, longitude 69.04E), an important
area since many mines are located in the surroundings. Detailed
wind-speed measurements from the studied area (for 2012 and
2013) are available in [46]. These measurements are incorporated
into the forecasting machinery presented in Section 2.1 in order to
generate wind-speed estimations for different days of 2013. The
wind-power plant under evaluation is composed by Vestas
V90-3.0 wind turbines (see [47]); settings of 33, 45 and 66 units
(i.e., U =33, U=45 and U = 66) will be considered as possible
sizes of the wind-power plant. The wind-speed to wind-power
conversion was made using the available datasheet of the turbine
taking into account that the wind-speed measurements were made
at 80 m and the turbine tower is 80 m tall. To illustrate the net-
work structure and the location of the wind-power plant in the
network, a simplified diagram of the NIS is shown in Fig. 5.

4. Numerical results

The experiments consist of solving the TSRUC, given by model
(1) and (2), considering different input data: different days under
study, different number of scenarios (|Q|), and different values of
(rt, ).

We have been provided with load data observed in 2013; since
our goal is to assess the behavior of the model, the use of real
demand records enables us to draw better conclusions. However,
when finally implementing this method as part of the tools of
the NIS management, load estimation will not represent an impor-
tant challenge. This is justified due to the strong industrial charac-
teristics of the NIS demand (load factor close to one), which leads
to a quite flat load profile during the year [48].

Wind-power scenario sets for 12 different days (one day at ran-
dom of every month) are generated. It has been considered

Q=1, |Q =2 and [Q=5 (1, 2 and 5 scenarios, respectively).
Evidently, the larger the value of |Q|, the more possible data real-
izations are taken into account, and the better the quality of the
corresponding optimal first-stage unit scheduling policy. Without
loss of generality, it is assumed that for each of the selected days
it is verified that y% = 0, for all i € A, and for all b € B.

The resulting MILP formulations are solved by means of the
commercial solver CPLEX™ 12.5; this strategy proved to be suc-
cessful for the data used in this work. Experiments were performed
on an Intel Core™ i7 (4702QM) 2.2 GHz machine (8 cores) with
16 GB RAM. A time limit of 1200 s was imposed for every run of
the code.

4.1. Sensitivity analysis

In order to analyze the performance of the model with respect
to the different parameters, it has been performed a sensitivity
analysis. The analysis consists of measuring the reduction of the
operating costs derived by including the above discussed wind
farm when compared to the operating cost of the current system
(only fossil-fuel generators). The cost reduction is calculated with
respect to the total cost (UC + dispatching/generation cost), the
first-stage cost (the UC cost), and the second-stage cost (the dis-
patching/generation cost).

Total cost reductions induced by including wind power is an
obvious effect. Therefore, the purpose of this sensitivity analysis
is not to show that including renewables yields savings in the oper-
ation cost; instead, the goal is to show how the proposed robust
optimization model is able to manage the uncertainty of wind
power production according to the decision maker preferences
regarding the level of uncertainty.

The experimental settings considers: (i) different values of |Q|
(1, 2 and 5); (ii) different values of (I'",T"") (0, 12 and 24, both
of them).

In Table 1, the results obtained for ¢/ = 45 and different combi-
nations of |Q| (column 1) and (I'*,T") (columns 2 and 3, respec-
tively) are summarized. These results correspond to the average
values calculated on the 12 studied days. Column “Red. total (%)”
corresponds to the average reduction (expressed as a percentage)
in the total operating cost (unit scheduling + dispatching), column
“Red. 1stage (%)” corresponds to the reduction of the first-stage UC
cost, and column “Red. 2stage (%)” shows the average reduction of
the second-stage dispatching cost. Column “No. Cuts” reports the
number of cutting planes added by CPLEX during the execution
of the algorithm, column “No. Nodes” reports the number of
branch-and-bound nodes explored by CPLEX, and column “Gap
(%)” reports the optimality gap attained by CPLEX when reaching
the time limit.

From Table 1, one can observe the following: (i) For a fixed
value of |Q| (number of scenarios) and a fixed value of I'* (number
of periods that wind-power can be at the upper limit), increasing
the value of I'" (number of periods that wind-power can be at
the lower limit) yields a diminishing of the total and
second-stage cost reductions. (ii) For a fixed value of |Q| and a fixed
value of I'", increasing the value of I'* yields, generally, an aug-
mentation of the total and second-stage cost reductions. (iii) For
a fixed pair (I'",I""), increasing the value of |Q| yields in a dimin-
ishing of the total and second-stage cost reductions. Intuitively
speaking, these observations can be explained as follows: (i) if
one assumes that more bad events can occur (by increasing I'"),
then the max objective of the robust dispatching cost will
push-up the dispatching costs (because I'" variables z,, will be
forced to be 1), resulting in a higher second-stage cost; (ii) if one
assumes that more good events can occur (by increasing I'"), then
the combined effect of the uncertainty set (more z}, variables will
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Table 1
Operating cost reductions and algorithmic performance, ¢/ = 45.
Q T+ I Red Red. Red. No. No. Gap
total (%) 1stage (%) 2stage (%) cuts nodes (%)
1 0 0 3.10 3.00 3.11 664 101 0.30
1 0 12 285 3.76 2.81 718 321 0.17
1 0 24 172 1.06 1.75 675 93 0.34
1 12 0 433 3.26 4.37 703 367 0.19
1 12 12 3382 4.03 3.81 692 290 0.21
1 12 24 1.72 1.06 1.75 679 104 0.33
1 24 0 475 3.22 4.81 657 90 0.34
1 24 12 381 3.67 3.82 710 451 0.16
1 24 24 172 1.06 1.75 680 105 0.32
2 0 0 3.07 2.47 3.09 1160 14 0.37
2 0o 12 279 2.67 2.79 1215 18 0.38
2 0 24 166 1.07 1.68 1240 17 0.39
2 12 0 412 3.14 4.16 1193 19 0.37
2 12 12 3.64 3.03 3.66 1199 7 0.38
2 12 24 1.67 113 1.69 1240 17 0.38
2 24 0 450 3.75 4.53 1212 18 0.40
2 24 12 3.69 3.64 3.69 1202 19 0.32
2 24 24 1.66 1.04 1.68 1238 17 0.39
5 0 0 293 2.67 2.94 2712 2 0.54
5 0 12 249 1.79 2.52 2668 1 0.87
5 0 24 154 0.45 1.59 2772 3 0.51
5 12 0 347 1.15 3.57 2399 1 1.45
5 12 12 3.03 0.88 3.12 2189 1 1.80
5 12 24 153 0.19 1.59 2753 3 0.52
5 24 0 418 1.90 428 2795 3 0.58
5 24 12 3.10 1.24 3.18 2290 1 141
5 24 24 157 0.46 1.61 2755 3 0.49

tend to be 1) and the min objective of the TSRUC will push-down
the dispatching cost; (iii) if more scenarios are considered, then a
new worst-case scenario might appear, so a higher second-stage
cost will be induced due to the definition of the robust dispatching
cost (see (RD)).

From the values reported in the column “Red total (%)” it is pos-
sible to conclude that, if a wind farm of 45 units (135 MW) is incor-
porated into the current power system, the daily operative cost
might experience an average reduction between 1.54 and 4.18%.
Therefore, this type of analysis can be used by the TSOs for defining
the values of I'" and I'" that suit better to their preferences.

From column “Gap (%)”, we can see that, in average, we have a
guarantee that the obtained solutions are not further than 0.5%
from the optimal ones. From columns “No. Cuts” and “No. Nodes”,
we see that the more scenarios we consider, the more difficult the
problem becomes: more cutting planes have to be added to
improve the bounds and less nodes are explored (because the lin-
ear programming relaxations become considerably harder).

From Table 1 it is possible to see that the proposed modeling
and optimization strategy obtains sound results without any
sophisticated implementation in quite reasonable running times
(20 min), allowing real time applications. This means that the TSOs
at NIS might not require complex algorithmic frameworks for
obtaining their UC policies and, instead, they can use a more
straightforward method as simply giving the resulting MILP formu-
lation to a solver (such as CPLEX). As a matter of fact, one can
retrieve detailed information of the units on/off scheduling by
looking at the values attained by the y variables; likewise, the
power that is expected to be produced by each unit can be also
straightforwardly known by inspecting the X variables. In Table 3,
in Appendix A, the generation hourly scheduling (corresponding to
July 1st, 2013) of the 39 thermal units comprising the NIS is
shown; likewise, the total power produced by these units, and its
relation with respect to the total load and the wind power gener-
ation, is displayed in Fig. 9 in Appendix A.

4.1.1. Measuring robustness

When solving problem (1) and (2) with a particular setting of
Q, I'" and I'", one obtains today a scheduling of the working
regime of (fossil-fuel) generators for tomorrow. Once the true
wind-speed data is realized tomorrow, the obtained scheduling is
expected to perform well in terms of the generation cost exhibited
by the corresponding dispatching scheme.

To measure how well the obtained solutions actually perform,
one needs more than just compare their cost with the cost induced
by the system without the wind farm under evaluation. Indeed,
one needs to test the obtained robust first-stage solution under
many possible wind-speed realizations (and not only the
worst-case scenario induced by the uncertainty sets Q“). This is
done as follows:

Step 1 Calculate a first-stage UC (y,a, V), for a given day and a
given uncertainty setting (Q,T'",T"). Let R(y, @, V) be the
robust dispatching cost (RD).

Step 2 Randomly generate a wind-power realization s contained
in Q.

Step 3 Calculate the optimal (second-stage) dispatching induced
by (y,4,v) and the wind-power realization s. Let
r(y,,v,s) be the cost of the obtained dispatching.

Step 4 Calculate the relative difference between R(y,,Vv) and
r(y,a,v,s) as

,V.S)

A(s) = RO UV) 1YW V.S) | a0g,
ry.a,v,s)
Step 5 Repeat 250 times Steps 2-4. Let A the vector with all the
values A(s) calculated in Step 4. (This number of replica-

tions has been decided for illustrative purposes.)

Clearly, if A(s) > 0 is obtained for a given realization s, it means
that the corresponding UC (y,w, V), along with the setting (I'", "),
underestimates the real wind-power potential because a cheaper
dispatching can be obtained (r(y,,v,s) < R(y, @, v)). On the con-
trary, if A(s) < 0, it means that the solution (y, @, v) and the setting
(", '), are such that overestimate the real wind-power potential
(because the actual dispatching cost is more expensive). Therefore,
a more robust setting (I'", I'") is the one that induces UC solutions
verifying A(s) < 0.

Some results obtained by carrying out the method described
above are shown in Fig. 6. In this figure are displayed the boxplots
of the values of associated with A, obtained for different combina-
tions of (I'",T'") when having |Q] =1 (Fig. 6(a)) and |Q|=5
(Fig. 6(b)) (the graphics are obtained for July 1st). For each boxplot,
both the maximum (above each boxplot) and average (marked
with e) values are displayed. From the graphic, one can conclude
the following: (i) for a fixed I'", increasing I'~ yields solutions that,
in average, perform better (lower costs) than the corresponding
worst-case (the differences tend to be greater than 0%); (ii) for a
fixed I'", increasing I'" yields solutions that, in average, perform
worse (highers costs) than the corresponding worst-case (the dif-
ferences tend do be less than 0%), (iii) having 5 scenarios produces
marginal differences in the results, meaning that a single scenario
is already effective in capturing the nature of the uncertain data, at
least for this particular data.

The above described behavior can be explained as follows: (i)
Increasing I' ", forces the uncertainty set to be defined by more val-
ues at the lower bounds (yielding a higher dispatching cost); after-
ward, when generating a random scenario, this scenario is likely to
be given by values that are greater than the lower limits, which
induces a lower dispatching cost. (ii) Increasing I'*, allow the
uncertainty set to be defined by more values at the upper limit
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Fig. 6. Boxplots of the differences between the worst-case dispatching cost and the
optimal dispatching costs of 250 realizations (July 1st, 2013).

=45

(yielding a lower dispatching cost); then, when generating a ran-
dom realization, this realization is likely to be given by values that
are less than the upper limits, which induces a higher dispatching
cost.

The results shown in Fig. 6 allow to conclude that: (i) only if an
over-conservative position is taken (I'” = 24) the obtained solu-
tions systematically underestimate the actual potential of the
wind-power generation (A > 0%); and, on the opposite side, (ii)
models as those proposed in [12,21] (I'" = 0) will lead to (over-)
optimistic solutions (A < 0%). The second behavior is explained
by the effect of the max-min objective of the second-stage compo-
nent (RD), which focuses only on those scenarios where the
wind-power of I'" periods is at the corresponding upper limit.
The proposed model overcomes this two extreme cases by intro-
ducing two types of parameters to control the budget of uncer-
tainty, I'" and I'", which leads to solutions that are better
protected against different wind-power realizations, ensuring to
be cost-efficient regardless the realized scenario. This is clear when
looking at the boxplots obtained for I'* =12 and I'" = 12, where
the values of A are closer to 0.0%.

4.2. Comparison with persistence model

In this part the proposed forecasting model is compared with
the PM. In order to carry out the comparison, the following proce-
dure is carried out.

) for a given day D* and a
*,T7). Let R(y, @, V) be the

Step 1 Calculate a first-stage UC (y, G
given uncertainty setting (Q,I"
robust dispatching cost (RD).

Step 2 Calculate a first-stage UC (y,u, V), for a given day D* using
the PM. Let PM(y,u, V) be the corresponding dispatching
cost.

Step 3 Calculate the optimal (second-stage) dispatching induced
by (y,a, V) using the real wind-power values r of day D
(which are assumed to be known). Let r;(y, @, v,r) be the
cost of the obtained dispatching.

Step 4 Calculate the optimal (second-stage) dispatching induced
by (y,u,Vv) using the real wind-power values r of day D".
Let r,(y,u, v,r) be the cost of the obtained dispatching.

Step 5 Calculate A(ry) = RIBN-MOAYS) o 100%, and
A(ry) = MOAMROAYD o 100,

Therefore, if a given setting (Q, ", T"") produces A(ry) < A(r2),
it means that the scenario-based uncertainty model allows to find
a better solution than the one obtained with the PM.

In Fig. 7 are shown the results of applying Steps 1-5 for D* = July
1st, considering different combinations of (Q,I'",I'"). From the
results displayed in the Figure is clear that the proposed forecast-
ing model leads to policies that respond better to wind-power vari-
ability than the solution obtained by the PM. An analysis of the
results allows to draw the following conclusions: (i) only for
over-conservative cases (I'” = 24) the obtained solution underesti-
mates the real wind-power availability, A(ry) > 0; (ii) the PM fails
in finding a good policy, yielding a solution that turns out to be
more expensive than the one that would have been chosen if the

true data would have been known in advance, A(r;) > 0.

4.3. The effect of including spinning reserves

To complement the results shown so far, the consideration of
spinning reserves has been incorporated to the model. More pre-
cisely, constraint (DP.6) has been replaced by

S S > ma () O e 1, T)

beB icAy

(DP.6a)

where O; accounts for the spinning reserves. In particular, this term
has been modeled as

O; = m;D; + mymax qu“’,
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Fig. 7. Cost-based comparison between the PM and the proposed modeling
framework (U = 45, July 1st, 2013).
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Fig. 8. Influence of different levels of Spinning Reserves on the total production cost
considering different levels of wind power penetration (July 1st, 2013).

for m; € [0,1] (load factor) and 7, € [0, 1] (wind factor). This means
that the spinning reserve at period t is equal to the ;% of the total
load at period t plus the 7% of the total (maximum) wind-power
expected at period t. By this way, we incorporate the fact that the
additional amount of operating reserves required due to the vari-
ability and uncertainty of wind generation is dependent of its pen-
etration level. This approach assumed a dynamic reserve
requirement, i.e. one that is not constant for all hours of the opti-
mization horizon but in fact a function of the wind penetration
level. For these cases, it has been considered I'” = 12 and I'* = 12.

The results obtained when considering m;, m, = {0.5,1.0}
(which leads to 4 combinations) are displayed in Fig. 8. Each curve,
that corresponds to a given pair 7;, 7m,, shows the relation
between the total operating cost and different levels of wind power
(U =33, U=45 and U = 66).

The curves in Fig. 8 show that the way in which the spinning
reserve O, is defined has a direct impact on the total production
cost of the system. However, since the considered wind penetra-
tion levels are not significant with respect to system demand Dy,
increasing m; from 0.5 to 1.0 has a stronger influence on the total
cost increase than increasing 7, from 0.5 to 1.0.

This is an expected result from a power system perspective,
since the difference between a wind farm of 33 or 66 wind turbines
is not relevant when considering a total system demand of
2200 MW. Nevertheless for higher wind penetration levels the
inclusion of the spinning reserves constraint should influence the
total operating costs of the system.

Besides the impact on the total production cost, the incorpora-
tion of spinning reserves did not influence on the computational
time.

5. Conclusions

In this paper a methodological framework to obtain Robust Unit
Commitment policies, considering a novel scenario-based uncer-
tainty model for wind power applications, is presented. The pro-
posed method is composed by three main phases. The first two
phases generate a sound wind-power forecast using a bootstrap
predictive inference approach. The third phase corresponds to
modeling and solving a one-day ahead Robust UC considering the
output of the first phase.

The performance of the proposed framework was tested consid-
ering a new wind farm interconnected to the power system of the
North of Chile. Using real data of wind-speed measurements,
power demand and current generation infrastructure, robust UC
policies were calculated for different parameter settings.

The obtained results suggest that the proposed methodology, as
a whole, is effective in capturing the variability of wind-power and

yielding unit commitment solutions that exhibit robustness. More-
over, the benefits of the proposed approach with respect to existing
methods have been pointed out.

An important conclusion from the practical point of view, is that
the methodological framework allows to obtain sound solutions, in
short resolution times, and without any significant implementa-
tion effort, thus allowing it real time implementation.

As path for future work we would expect to apply this tech-
nique to other sources of renewable energies as photovoltaic or
solar thermal power.
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Appendix A

See Tables 2, 3 and Fig. 9.

Table 2
Detailed description of the 39 thermal units currently comprising the NIS.

Bus Unit Type I up Gt HP RP P
D (MW)  (MW) () (h) (MW/h) (MW/h)

1 1 Diesel 95.00 12035 1 1 10 10
2 Diesel 95.00 12035 1 1 10 10
3 Diesel 120.00 13530 1 2 8 8
4 Diesel 95.00 12276 1 1 10 10
5 Diesel 95.00 117.75 1 1 10 10
6 Diesel 8290 13530 1 2 8 8
7 Diesel 2.10 14.32 1 1 40 1.6
8 Diesel 0.65 2.68 1 1 0 0
9 Diesel 0.85 6.62 12 1 10 0
10 Diesel 10.00 42.11 5 1 10 0
11 Diesel 2.00 2792 5 1 3 0.1
12 Diesel 8.00 9898 1 1 0.22 1
13 Diesel 1.03 10.86 1 1 10.32 1

2 14 Gas 115.00 20495 6 1 13 13
15 Gas 115.00 20495 6 1 13 13
16 Gas 115.00 22281 24 4 7 7
17 Coal 100.00 152.60 72 48 1 1
18 Coal 150.00 244.03 48 48 2 5
19 Coal 150.00 24427 48 48 235 5
20 Coal 100.00 153.90 72 48 1 1

3 21 Coal 90.00 15490 120 48 3 3
22 Coal 90.00 164.00 120 48 3 3
23 Gas 100.00 151.56 1 1 6 6
24 Gas 60.00 9167 24 1 6 6
25 Diesel 10.00 2460 5 1 10 10
26 Gas 75.00 27510 1 1 14.5 14.5
27 Gas 83.60 11790 30 12 115 115
28 Diesel 10.00 2483 5 1 10 10
29 Gas 10.00 3720 5 1 10 10
30 Fuel Oil 15.00 36.00 24 8 6 6

No.6
31 Fuel Oil 1500 36.00 24 8 6 6
No.6

4 32 Coal 50.00 7958 48 24 4 4
33 Coal 50.00 79.77 48 24 4 4
34 Coal 75.00 127.67 48 24 5 5
35 Coal 75.00 12406 48 24 2 2
36 Coal 65.00 127.44 48 48 3 3
37 Coal 65.00 131.87 48 48 3 3
38 Coal 100.00 14852 48 48 0.75 3
39 Diesel 8.00 2365 1 1 10 10
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Table 3

Hourly scheduling of the 39 thermal units comprising the NIS (I =T'" =12, |Q| =5, U = 45, July 1st, 2013).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 0 0 95 0 95 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 0
2 0 0 95 95 0 95 0 0 0 0 0 0 0 0 95 0 0 0 95 0 0 0 0 95
3 0 0 0 0 0 120 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 120
4 0 95 104 114 114 123 113 103 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 9 105 95 0 95 0 0 0 1} 0 0 0 0 95 0 0 0 95 0 0 0 0 95
6 83 83 83 90 83 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 2 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2
8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
10 0 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2
12 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 8 8 8 8 0 8 0 0 8
13 0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
14 115 128 141 154 167 180 167 180 193 180 192 205 192 192 205 192 192 205 205 192 205 192 192 205
15 115 128 141 154 167 180 167 179 192 179 192 205 192 192 205 192 192 205 205 192 205 192 192 205
16 115 122 129 136 143 150 157 164 171 178 185 192 199 206 213 209 216 223 223 216 223 216 216 223
17 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
18 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 185 187 189
19 150 152 155 157 159 162 164 166 169 171 174 176 178 181 183 185 188 190 192 195 197 192 194 197
20 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 119 120 121
21 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 147 150 153
22 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159
23 0 0 100 106 106 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 60 66 72 78 84 90 84 78 84 80 86 92 86 80 86 80 81 87 92 86 92 86 86 92
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 75 90 104 119 133 148 133 119 104 90 75 75 0 0 0 0 0 75 90 76 91 76 75 90
27 84 95 107 118 118 118 107 95 103 92 103 115 103 107 118 107 107 118 118 107 118 107 107 118
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 10 20 30 37 27 17 13 10 10 20 10 10 20 10 16 26 36 26 36 26 16 26
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 50 54 58 62 66 70 66 62 66 70 74 78 74 70 74 70 74 78 80 76 80 76 76 80
33 50 54 58 62 66 70 66 64 68 72 76 80 76 73 77 73 72 76 80 76 80 76 76 80
34 75 80 85 90 95 100 98 103 108 113 118 123 118 123 128 123 123 128 128 123 128 123 123 128
35 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121
36 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 122 124 127
37 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 126 129 132
38 100 101 102 102 103 104 105 105 106 107 108 108 109 110 111 111 112 113 114 114 115 116 117 117
39 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2100
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1234567 8 91011121314151617 181920 21222324
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Fig. 9. Hourly-based comparison of total load (demand + losses + reserves, MW),
the total thermal generation (MW), and the wind energy power (MW)
(I =T* =12,|Q| =5, U =45, July 1st, 2013).
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