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We present the analytical solutions for the evolution of matter density perturbations, for a model
with a constant dark energy equation of state w but when the effects of the dark energy perturbations
are properly taken into account. We consider two cases, the first when the sound speed of the
perturbations is zero c2s = 0 and the general case 0 < c2s ≤ 1. In the first case our solution is
exact, while in the second case we found an approximate solution which works to better than 0.3%
accuracy for k > 10H0 or equivalently k/h > 0.0033Mpc−1. We also estimate the corrections to the
growth index γ(z), commonly used to parametrize the growth-rate. We find that these corrections
due to the DE perturbations affect the growth index γ at the 3% level. We also compare our new
expressions for the growth index with other expressions already present in the literature and we find
that the latter are less accurate than the ones we propose here. Therefore, our analytical calculations
are necessary as the theoretical predictions for the fundamental parameters to be constrained by the
upcoming surveys need to be as accurate as possible, especially since we are entering in the precise
cosmology era where parameters will be measured to the percent level.

PACS numbers: 95.36.+x, 98.80.-k, 98.80.Es

I. INTRODUCTION

Under the assumptions that the Universe at large
scales is homogeneous and isotropic, that it can be de-
scribed by General Relativity or some other modified
gravity theory, such as f(R) or any other metric theory
whose effects at the perturbations level can be taken into
account by the effective Newtonian constant Geff(a), see
Refs. [1–4], and finally under the subhorizon approxima-
tion (k � aH), then it can be shown that the growth of
matter is governed by the second order differential equa-
tion:

δ′′(a)+

(
3

a
+
H ′(a)

H(a)

)
δ′(a)− 3

2

Ωm0
Geff(a)/GNδ(a)

a5H(a)2/H2
0

= 0,

(1)

where δ = δρm
ρm

is the matter density contrast that de-

scribes the growth of matter (known as the growth fac-
tor), H(a) is the Hubble parameter, Ωm0 is the matter
density today and H0 is the Hubble constant.

Making the assumption that the dark energy com-
ponent can be described by a constant equation of
state w and negligible dark energy perturbations, i.e.
Geff(a)/GN = 1, then Eq. (1) can be easily solved an-
alytically. The differential equation (1) has in general
two solutions that correspond to two different physical
modes, a decaying and a growing one, that in a mat-
ter dominated Universe in GR behave as δ = a−3/2 and
as δ = a respectively. Since we are only interested in

∗Electronic address: savvas.nesseris@unige.ch
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the latter, we demand that at early times ain � 1, usu-
ally during matter domination, the initial conditions have
to be chosen as δ(ain) ' ain and δ′(ain) ' 1. When
Geff(a)/GN = 1 we get GR as a subcase, while in gen-
eral for modified gravity theories, the term Geff can be
scale and time dependent.

For a flat GR model with a constant dark energy equa-
tion of state w, the exact solution of Eq. (1) for the grow-
ing mode, neglecting the dark energy perturbations, is
given by [6–8]

δ(a) = a 2F1

[
− 1

3w
,

1

2
− 1

2w
; 1− 5

6w
; a−3w(1− Ω−1

m0
)

]
for H(a)2/H2

0 = Ωm0
a−3 + (1− Ωm0

)a−3(1+w), (2)

where 2F1(a, b; c; z) is a hypergeometric function, see
Ref. [9] for more details. In more general cases, for in-
stance admitting that the dark energy equation of state
parameter is a function of time, it is impossible to find a
closed form analytical solution for Eq. (1).

However, when we take into account the effect of the
dark energy perturbations, even though the effect is
small, the analytical solution (2) is no longer valid. The
reason for this is that, as shown in Ref. [5], the dark en-
ergy perturbations can be included effectively as a Geff

in Eq. (1), given by:

Geff(a, k)/GN = 1 +
1− Ωm0

Ωm0

(1 + w)
a−3w

1− 3w +
2k2c2sa

3H2
0Ωm0

.

(3)
Depending on the values of the equation of state parame-
ter w and sound speed c2s the density contrast of the dark
energy can be of the order of ∆de ∼ 0.06∆m and of the
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order of ∆de ∼ 0.01∆m, for w = −0.8 and w = −0.95
respectively (of course if w = −1 we are dealing with a
cosmological constant and hence, by definition it has no
perturbations).

As mentioned before, the dark energy fluid considered
in this paper should be thought as an effective dark en-
ergy component, so the values of the equation of state w
and sound speed c2s are effective parameters, hence not
always they have a physical meaning but rather they are
a representation of the particular model taken into con-
sideration. In practice, considering for instance a value
of c2s = 0 does not necessarily means that we are deal-
ing with a dark energy fluid that behaves like dark mat-
ter but it might be due to a particular modified gravity
model expressed in terms of fluid parameters which has
a value of c2s equal to zero (or very small), see [10]. It is
also worth mentioning that the Eq. (3) has been evalu-
ated under the condition of constant in time sound speed,
however the sound speed can depend on the scale.

The paper is organized as followed: in Section II we
find exact analytical expressions for the evolution of the
matter density contrast sourced by the dark energy per-
turbations and in Section IV we compare them to nu-
merical solutions and test their accuracy; in Section III
we find the new growth index γ and we compare it with
other parameterizations, while in Section VI we present
our conclusions.

II. THE SOLUTION FOR THE MATTER
DENSITY CONTRAST

In what follows we will find the analytic solution to the
matter density contrast when dark energy perturbation
are properly taken into account. To solve the second
order differential equation for δm we will consider two
different limits: first when the sound speed is effectively
zero (c2s = 0), and second when the sound speed is 0 <
c2s ≤ 1.

We start by rewriting Eq. (1) in terms of G(a) de-
fined as δ(a) ≡ aG(a), the dimensionless Hubble pa-
rameter E(a) ≡ H(z)/H0 and the parameter Q(a, k) ≡
Geff(a, k)/GN , so Eq. (1) becomes

a2G′′(a) +

[
5 + a

E′(a)

E(a)

]
aG′(a)

+

[
3 + a

E′(a)

E(a)
− 3

2

Ωm0

a3E(a)2
Q(a)

]
G(a) = 0 . (4)

We need to express the function Q(a, k) which accounts
for the dark energy perturbations1. In this paper we use
the expressions found in [11]. In the latter the authors
solved analytically the full system of differential equa-
tions for dark matter and dark energy. In order to find

1 we would like to remind the reader the Geff and Q are the same,
hence we use them interchangeably

analytic solutions to matter and dark energy density con-
trasts, some assumptions had to be made, in particular
that the equation of state parameter w and the sound
speed of the dark energy component have to be constant
in time or at least slowly varying (however the sound
speed can depend on the scale k). Once the analytic so-
lutions for matter and dark energy were found then it was
possible to express the quantity Q(a, k) which is defined
as the ratio

Q(a, k) = 1 +
ρDE∆DE

ρm∆m
. (5)

which is a phenomenological function that takes into ac-
count the relative growth of the dark energy perturba-
tions. This function enters directly into the gravitational
potential k2φ = −4πGa2Q(a, k)ρm∆m, that is the reason
why Q(a, k) enters only in third term into Eq. (4).

Another interesting issue is the initial conditions for
matter and dark energy. In our case dark energy per-
turbations are sourced by the dark matter perturbations
via the gravitational potential; because we are in linear
order perturbation theory then all k-modes evolve inde-
pendently and as a consequence each k-mode depends
linearly on a normalization factor which is constant in
time however it depends on k, say δ0(k). The value of
this constant is given by inflation at very early times. In
this scenario, setting the initial conditions means to set
the constant δ0. However, as stated, the factor δ0 enters
as multiplicative factor to both dark matter and dark
energy, hence the quantity Q(a, k), which is the main
concern of this paper, has no direct dependence on δ0.
A detailed analysis on the initial conditions for the dark
energy perturbations and the decaying modes of the so-
lutions can be found in [11]. The general solution, see
Ref. [11], is:

Q(a, k) = 1 +
1− Ωm0

Ωm0

(1 + w)
a−3w

1− 3w +
2k2c2sa

3H2
0Ωm0

where c2s is the sound speed of dark energy.

A. The case c2s = 0

When the dark energy sound speed is equal to zero,
then the Q(a, k) parameter which gives us the amount of
the dark energy perturbations can be written as

Q = 1 +Q0a
−3w (6)

where

Q0 =
1− Ωm0

Ωm0

1 + w

1− 3w
. (7)

Before inserting the above equation into Eq. (4), we can
make the following change of variables to simplify the
problem even more. Let us consider the new variable

u =
1− Ωm0

Ωm0

a−3w → a
d

da
= −3wu

d

du
(8)
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then the Eq. (4) becomes

u2G̈+

[
1− 5

6w
+

1

2

u

1 + u

]
u

3w
Ġ+

+
1

6w2

1− w − q0

1 + u
uG = 0 (9)

where q0 = (1 + w)/(1 − 3w). Eq. (9) can be solved
analytically and the solution is

G(a) = 2F1

[
1

4
− 5

12w
+B,

1

4
− 5

12w
−B, 1− 5

6w
;

− 1− Ωm0

Ωm0

a−3w

]
(10)

where

B =
1

12w

√
(1− 3w)

2
+ 24

1 + w

1− 3w
. (11)

B. The case c2s 6= 0

If the dark energy sound speed is not zero, then the
dark energy will have a sound horizon below which per-
turbations cannot grow. The modification to the Newto-
nian potential will be, see [11]:

Q(a)− 1 =
1− Ωm0

Ωm0

(1 + w)
a−3w

1− 3w +
2k2c2sa

3H2
0Ωm0

' (1− Ωm0)
3

2
(1 + w)

H2
0

c2sk
2
a−1−3w , (12)

where we have used the fact that we work in the sub-
horizon approximation (k � aH). As it can be seen,
the Q(a) term is suppressed by a term a−1 the lack of
growth of the dark energy perturbations when they en-
ter the sound horizon. However, inserting Eq. (12) into
Eq. (4) and making the change of variable a → u, we
cannot find an analytic solution to the matter density
contrast because of the extra dependence a−1 in the ex-
pression of Q(a, k). In order to solve Eq. (4) we make
the approximation:

Q(a) = 1 +Q0a
−1−3w ' 1 +Q0a

−3w , (13)

where Q0 = (1 − Ωm0
) 3

2 (1 + w)
H2

0

c2sk
2 ; then the differen-

tial equation that we need to solve will look exactly as
Eq. (12) where now we have a new q0 for modes below the

sound horizon: q0 = 3
2 (1 + w)

H2
0Ωm0

c2sk
2 . In this case we are

overestimating the amount of dark energy perturbations
below the sound horizon as we are taking out the term
a−1 which lowers the clustering of the perturbations.

Then the solution to the Eq. (12) is

G(a) = 2F1

[
1

4
− 5

12w
+B,

1

4
− 5

12w
−B, 1− 5

6w
;

− 1− Ωm0

Ωm0

a−3w

]
(14)

where

B =
1

12w

√
(1− 3w)

2
+ 36Ωm0 (1 + w)

H2
0

k2c2s
. (15)

C. The growth-rate

In the previous section we have found the solution to
the matter density contrast in terms of the hypergeomet-
ric function:

δ(a) = a 2F1

[
1

4
− 5

12w
+B,

1

4
− 5

12w
−B, 1− 5

6w
;

1− 1

Ωm(a)

]
where

B =
1

12w

√
(1− 3w)2 + 24δB (16)

and the parameter δB can accommodate all different
cases if defined as

δB = 0 (No DE perts), (17)

δB =
(1 + w)

1− 3w
(for c2s = 0), (18)

δB =
36

24
Ωm0

(1 + w)
H2

0

k2c2s
(for c2s > 0). (19)

Then, the growth rate f(a) is

f(a) = a
δ′(a)

δ(a)
= 1 +

+ a
Ω′m(a)

Ω2
m(a)

αβ

γ

2F1

[
α+ 1, β + 1, γ + 1; 1− 1

Ωm(a)

]
2F1

[
α, β, γ; 1− 1

Ωm(a)

]
where the coefficients are

α ≡ 1

4
− 5

12w
+B ,

β ≡ 1

4
− 5

12w
−B ,

γ ≡ 1

2
+ α+ β .

It is interesting to notice that the hypergeometric func-
tion can be simplified making use of the relation be-
tween hypergeometric functions and Legendre polyno-
mial Pµν (x). Using Eqs. (15.4.12) and (15.4.21) and
Eqs. (8.5.3) and (8.5.5) of Ref. [9] we find

f(a) = 1 + 3wα

1−
√

Ωm(a)
P

5/6w

2B+ 1
2

[
1/
√

Ωm(a)
]

P
5/6w

2B− 1
2

[
1/
√

Ωm(a)
]
 .

(20)
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If dark energy perturbations are switched to zero we have

f(a) =
√

Ωm(a)
P

5/6w
1/6w

[
1/
√

Ωm(a)
]

P
5/6w
−1/6w

[
1/
√

Ωm(a)
] , (21)

in agreement with the expression found in Ref. [6].

D. Joint solution

Alternatively, we can also find a joint solution to the
equations in order to have one single solution. The dif-
ference in the two solutions comes in the coefficients
of the hypergeometric functions which then account for
the dark energy perturbations, i.e. the coefficients B in
Eqs. (11) and (15). Hence we can think to join these two
coefficients directly. We found that

Bc2s>0 =
1

12w

√
(1− 3w)2 + 36Ωm0

(1 + w)
H2

0

k2c2s

=
1

12w

√
(1− 3w)2 + δB1 (22)

Bc2s=0 =
1

12w

√
(1− 3w)2 + 24

1 + w

1− 3w

=
1

12w

√
(1− 3w)2 + δB2 (23)

for scales above and below the sound horizon, respec-
tively. Joining only the parts that account for dark en-
ergy perturbations we find

Bjoint =
1

12w

√
(1− 3w)2 +

δB1δB2

δB1 + δB2
=

=
1

12w

√
(1− 3w)2 + 24

1 + w

1− 3w + 2
3

k2

H2
0Ωm0

c2s
(24)

We can also add an a dependence to the coefficient. The
reason is that the second term in the square root is ex-
actly Q used, hence the dark energy perturbations, and
we have

Bjoint =
1

12w

√
(1− 3w)2 +

δB1δB2

δB1 + δB2
=

=
1

12w

√
(1− 3w)2 + 24

1 + w

1− 3w + 2
3

a k2

H2
0Ωm0

c2s
.(25)

However, in this paper we consider Eq. (24) for two main
reasons: the presence of the scale factor does not change
the solution for fσ8 (the difference between the two is of
the order of 10−8, and second it is not really clear how
to deal, in the hypergeometric function, with coefficients
that depend on the variable.

The expression found will be very useful for instance
to speed up the code for forecasts, analytic estimates of
γ or fitting the data. The growth index γ will be shown
in the next section to be the same, except that we have
to use now the new δB = 24 1+w

1−3w+ 2
3

k2

H2
0Ωm0

c2s
.

III. THE GROWTH INDEX

Here we present the corrections to the growth index
γ(a) due to the dark energy perturbations. In Ref. [12] it
was shown that the growth rate f(a) ≡ dlnδ

dlna , in the case
of no DE perturbations, can be approximated as

f(a) = Ωm(a)γ(a) (26)

Ωm0
(a) ≡ Ωm0 a

−3

H(a)2/H2
0

(27)

γ(a) =
ln f(a)

ln Ωm(a)
' 3(1− w)

5− 6w
+ · · · (28)

When we want to include the DE perturbations, one way
to do it is via the semianalytic approach of Ref. [15],
where it was shown that the growth index depends on
Geff as

γ =
3(1− w −A(Geff))

5− 6w
, (29)

A(Geff) =
Geff − 1

1− Ωm(a)
. (30)

For other approaches that explore the effects of the dark
energy perturbations or modified gravity in general on
the growth index, see Ref. [16–20]. However, here we
will follow a more straight-forward approach by using
the analytic expressions found in the previous sections.
In what follows we will use the shorthand of Ω to mean
Ωm0

(a) in order to simplify the notation. Then using the
ansatz f(Ω) = Ωγ(Ω) we find that the growth index up
to first order can be written as

γ =
ln(f(Ω))

ln(Ω)

=
3(δB + w − 1)

6w − 5
−

3(Ω− 1)((δB + w − 1)(9δB(4w − 3)− 3w + 2))

2 ((5− 6w)2(12w − 5))
+ · · ·

(31)

The reason we perform the series expansion of γ in terms
of Ω is that it allows us to extract the zero-th order part
of γ, which in the ΛCDM model is 6/11, but also the
first order correction. As a result we can compare with
the other expressions commonly found in the literature,
eg Eq. (28), and compare their accuracy.

It is instructive to split the contributions to the growth
index to two parts:

γ = γm + γDE , (32)

where

γm =
3(w − 1)

6w − 5
+

3(3w − 2)(w − 1)(Ω− 1)

2(5− 6w)2(12w − 5)
+ · · · , (33)

γDE =
3δB

6w − 5
+ (Ω− 1)

(
−3δB(6w(6w − 11) + 29)

2 ((5− 6w)2(12w − 5))
−

27δB2(4w − 3)

2 ((5− 6w)2(12w − 5))

)
+ · · · , (34)
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where the first term γm corresponds to the well known re-
sult from Ref. [12] and the second term γDE corresponds
to the extra contribution of the DE perturbations.

Alternatively, we can follow the procedure of Ref. [12]
to evaluate the growth rate. We can do this by changing
variables from a to Ω and replacing the growth factor

δ(a) with the growth rate f(Ω) = a δ
′(a)
δ(a) . Doing that we

arrive at a differential equation for f(Ω) in terms of Ω:

3w(1− Ω)Ωf ′(Ω) + f(Ω)

(
1

2
− 3

2
w(1− Ω)

)
+

f(Ω)2 − 3

2
ΩGeff(Ω) = 0. (35)

Using the ansatz f(Ω) = Ωγ(Ω) we arrive to the same
result as in Eq. (32).

A. The case c2s = 0

In the case when the sound speed is zero, we can use

Eq. (32) with δB = (w+1)
1−3w to find

γ(Ω) =
3w(3w − 5)

(3w − 1)(6w − 5)
+

15w(3w − 5)
(
9w2 − 5

)
2(12w − 5) (18w2 − 21w + 5)

2 (Ω− 1) · · ·

(36)

Also, we separate the effects of the matter and dark
energy perturbations on γ as

γ = γm + γDE , (37)

where

γm =
3(w − 1)

6w − 5
+

3(3w − 2)(w − 1)(Ω− 1)

2(5− 6w)2(12w − 5)
, (38)

γDE = − 3(w + 1)

18w2 − 21w + 5
+

(Ω− 1)
3(w + 1)(9w(3w(2w − 5) + 8)− 1)

(12w − 5) (18w2 − 21w + 5)
2 .

(39)

We can also compute the ratio of the two quantities
γDE/γm in order to estimate the effect of neglecting the
DE perturbations on the measurement of γ in up-coming
surveys. We find that the ratio can be written as

γDE
γm

= − w + 1

3w2 − 4w + 1
+

9w(w + 1)(3w − 5)(4w − 3)(Ω− 1)

2(1− 3w)2(w − 1)(6w − 5)(12w − 5)
+ · · · .

(40)

In Fig. 1 we show the percent difference of the ef-
fect of the DE perturbations as part of the total and as

-1.2 -1.1 -1.0 -0.9 -0.8
-3

-2

-1

0

1

2

3

w

%
d
if
fe
re
n
c
e

Figure 1: The percent difference of the effect of the DE per-
turbations of γ as part of the total and as a function of the
equation of state w for c2s = 0. In practice we plot 100 ∗ γDE

γm
,

with the latter given by the zero order part of Eq. (40).

Analytic

Numerical HCAMBL

wCDM

Semi-analytic

0.0 0.5 1.0 1.5 2.0
0.50

0.55

0.60

0.65

z

Γ
Hz
L

Figure 2: A comparison of all the different expressions for γ
for (c2s, w,Ωm0) = (0,−0.8, 0.3). The solid black line corre-
sponds to the expression for the analytic solution of Eq. (36),
the dashed black line to the numerical solution from CAMB,
the dotted line to the wCDM model with no DE perturba-
tions, the dot-dashed black line to the semianalytic expression
of Eq. (29), while the red and dashed-red lines correspond to
the zero-order terms for expansions for γ without and with
DE perturbations respectively.

a function of the equation of state w. In practice we
plot 100 ∗ γDE

γm
, with the latter given by Eq. (40). For

w = −1 Eq. (36) gives the expected result γ = 6/11,
but for w 6= −1 there are substantial differences, eg for
w = −0.8 we have γ = 0.533 which is a 3.4% differ-
ence from the result γ = 0.551 found when neglecting
DE perturbations. These differences can be important
as cosmology has moved into a high precision era and
percent accuracies will be sought after in the cosmologi-
cal parameters by the upcoming surveys like DES, LSST
and Euclid, where the relative errors on the growth in-
dex γ are of the order of 0.5− 3% depending if combined
probes are used, see [6], [22], [26], [27].
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In Fig. 2 we show a comparison of all the different ex-
pressions for γ for (c2s, w,Ωm0

) = (0,−0.8, 0.3). The solid
black line corresponds to the expression for the analytic
solution of Eq. (36), the dashed black line to the numer-
ical solution from CAMB, the dotted line to the wCDM
model with no DE perturbations, the dot-dashed black
line to the semianalytic expression of Eq. (29), while the
red and dashed-red lines correspond to the zero-order
terms for expansions for γ without and with DE pertur-
bations respectively.

Clearly, our analytic solution in this case is in excellent
agreement with the numerical one and by far superior
to the semianalytic one. Specifically, the expression of
Eq. (29), which is the dot-dashed curve in Fig. 2, differs
by more than ∼ 6% at z ∼ 0. The reason for this is
that it is a semianalytic approximation derived at high z
and as a result at low redshifts it is significantly different
from both the exact and numerical solutions. Therefore,
we find that it is not suitable for use in Fisher Matrix
analysis or data fitting when the DE perturbations are
taken into account.

Finally, we should mention that we have checked that
using the growth index γ of Eq. (31) to calculate the
growth-rate f and fσ8 by using and integrating Eq. (26)
respectively, is in agreement to better than 0.1% com-
pared to using the full analytical solution of Eq. (10).

B. The case c2s 6= 0

When the sound speed c2s is different from zero, we can
again use Eq. (32) with δB = 36

24κ(1 +w), where we have

set κ ≡ Ωm,0H
2
0

k2c2s
, to find

γ(Ω) =
3(3κ+ (3κ+ 2)w − 2)

2(6w − 5)
− 3(Ω− 1)

8(5− 6w)2(12w − 5)
·(

27κ
(
4w2 + w − 3

)
− 6w + 4

)
·

(3κ+ (3κ+ 2)w − 2) + · · · . (41)

As mentioned earlier in this section and in order to sim-
plify the notation, by writing Ω we actually mean Ωm0

(a)
and Ωm,0 ≡ Ωm0(a = 1).

Also, we can separate the effects of the matter and
dark energy perturbations on γ as

γ = γm + γDE , (42)

where

γm =
3(w − 1)

6w − 5
+

3(3w − 2)(w − 1)(Ω− 1)

2(5− 6w)2(12w − 5)
, (43)

γDE =
9κ(w + 1)

2(6w − 5)
− 9(Ω− 1)κ(w + 1)

8(5− 6w)2(12w − 5)
·(

27κ
(
4w2 + w − 3

)
+ 12w(6w − 11) + 58

)
.

(44)

We can also compute the ratio of the two quantities
γDE/γm in order to estimate the effect of neglecting the

DE perturbations on the measurement of γ in up-coming
surveys. We find that the ratio can be written as

γDE
γm

=
3κ(w + 1)

2(w − 1)
− 27(Ω− 1)κ(w + 1) ·

(4w − 3)(3κ+ (3κ+ 2)w − 2)

8(w − 1)(6w − 5)(12w − 5)
+ · · · .

(45)

IV. COMPARISON WITH THE NUMERICAL
SOLUTION

Here we compare our analytical solution of Eq. (14)
with the parameter B given by Eqs. (11) and Eqs. (15),
with the numerical one for various choices of parameters
and for both cases. Since the data are given in terms of
the parameter fσ8(a) ≡ f(a)σ(a) =

σ8,0

δ(1)aδ
′(a), we will

prefer to compare that and the growth rate f(a) = d ln(δ)
d ln a .

In Fig. 3 (left) we show a comparison of the analyt-
ical solution for fσ8(z) (dashed line) vs the numerical
solution of the full system of differential equations for
the DE perturbations by CAMB (solid black line), the
case with no DE perturbations (dotted line) and the
Ωm(a)γ parametrization with γ given by Eq. (29) (dot-
dashed line) for c2s = 0, k = 200H0 and (w,Ωm0 , σ8,0) =
(−0.8, 0.3, 0.8). The gray points correspond to mock fσ8
data based on the specifications of an LSST-like survey
[14], as it was done in Ref. [13]. As can be seen, the differ-
ence between the cases where we include (black solid or
dashed lines) or neglect DE perturbations (dotted line)
can be significant compared to the small error bars of the
expected data from Euclid or LSST and might bias the
results.

In Fig. 3 (right) we show of the analytical solution
(black dashed line) vs the numerical solution (solid black
line) of the ODE of Eq. (1) for c2s = 1 and k = 10H0.
In this case, we also test the effect of the different scale
k but also the non-zero sound speed and we see that
the difference can be smaller. Our analytical solutions
either exact or approximate were found to be in excellent
agreement with the numerical ones. In Fig. 4 we show
the percent difference between the analytical solution and
the numerical one from CAMB, for various values of the
sound speed c2s and the scale k and as it can be seen, in
all cases we find agreement better than 0.5%.

V. FORECASTS

In this section we test the new expression for the
growth index γ given by Eq. (31) in order to constrain
the cosmological parameters with the upcoming surveys
and we compare the results with the constraints ob-
tained using the growth index given by Eq. (29). To
constrain the cosmological parameters such as the equa-
tion of state parameter w and the sound speed c2s, we
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Figure 3: Left: Comparison of the analytical solution for fσ8(z) (dashed line) vs the numerical solution of the full system
of differential equations for the DE perturbations by CAMB (solid black line), the case with no DE perturbations (dotted
line) and the Ωm(a)γ parametrization with γ given by Eq. (29) (dot-dashed line) for c2s = 0, k = 200H0 and (w,Ωm0 , σ8,0) =
(−0.8, 0.3, 0.8). The gray points correspond to mock fσ8 data based on the specifications of an LSST-like survey [14], as it was
done in Ref. [13]. Right: Comparison of the analytical solution (black dashed line) vs the numerical solution (solid black line)
of the ODE of Eq. (1) for c2s = 1 and k = 10H0.
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Figure 4: The percent difference between the analytical solu-
tion and the numerical one from CAMB, for various values of
the sound speed c2s and the scale k.

adopt the Fisher matrix technique having in mind a set
up similar to LSST experiment [22]. The LSST is ca-
pable of exploring the universe in a range in redshifts of
z ∈ [0, 2] covering an area of about 20000 deg2. The er-
ror on redshift is σz = 0.02(1 + z) which corresponds to
the goal of the LSST; the galaxies are distributed with
n(z) ∝ zα exp

[
−(z/z1)β

]
where α = 2, z1 = 0.5 and

β = 1.

In order to avoid non-linearity problems (both in the
spectrum and in the bias), we evaluate the Fisher ma-
trix up to a limiting kmax(z) at each z: we choose
values from 0.11h/Mpc for low-z bins to 0.3h/Mpc
for the highest z-bins, see Ref. [23–25] for more de-
tails on the Fisher matrix calculations. For the Fisher
matrix we consider the following parameters: θ =[
ωm, ωb, τ, ns,Ωm,0, w, c

2
s, Pshot

]
, where ωm = Ωm0

h2,

ωb = Ωb0h
2 and Pshot the shot noise. The reference cos-

mology used in the analysis is the best-fit given by Planck
[21] with the exception of w = −0.8 and the sound speed
c2s for which we used first a value c2s = 0 and then c2s = 1.

For a sound speed of c2s = 0 we find: {σw, σc2s} =

{0.0089, 1.67 × 10−6} and {σw, σc2s} = {0.0104, 3.69 ×
10−6}, for that of Eq. (29) and our expression respec-
tively. For a sound speed c2s = 1 we find: {σw, σc2s} =
{0.0052, 76.63} and {σw, σc2s} = {0.0058, 94.00}, for the
semianalytic expression and the analytic expression re-
spectively.

Using the expression for the growth index given by
Eq. (31), the errors on the parameters are increased of
about 50% for the sound speed and of about 15% for the
equation of state parameter, for the c2s = 0 case. The
reason can be found looking at the Fig. 2. The semi-
analytic expression for γ(a) especially at low redshifts is
smaller than the full numerical result: the growth rate
f(a) (and also the growth of matter G(a)) are propor-
tional to Ωm(a)γ(a) and so do the derivatives with respect
to the cosmological parameters. The matter density pa-
rameter Ωm(a) is always lower the unity (it is equal to
1 only at very high redshifts during matter domination
era), consequently if the growth index γ is decreased the
overall effect on the growth rate is increased and this is
reflected in Fig. 3. Hence, using the semianalytic expres-
sion overestimates (i.e. reduce) the errors.

VI. CONCLUSIONS

In Ref. [5] it was shown that the effect of the dark
energy perturbations on the matter density perturbations
is to induce a Geff(a, k), as shown in Eqs. (1) and (3).
In this work we have found the analytical solution to
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Eq. (1) for constant w when c2s = 0 and we have explicitly
shown that not only is the solution different from the one
when the DE perturbations are neglected, see Eq. (2),
but the difference is actually large enough to affect the
results of future surveys like Euclid or LSST, see Fig. 3
(right). In the case of 0 < c2s ≤ 1 we presented analytic
approximations that are in excellent agreement with the
numerical solution to Eq. (1).

Furthermore, we also found analytical expressions for
the growth index γ used commonly to parameterize the
growth as f(a) = Ωm0(a)γ . This parameter is given by
γ ' 3−3w

5−6w for a DE model with constant w in GR when

the DE perturbations are ignored and is 6/11 for ΛCDM
(w = −1), but when the DE perturbations are properly

taken into account it is given by γ ' 3w(3w−5)
(3w−1)(6w−5) when

c2s = 0, which however again becomes 6/11 for w = −1
since ΛCDM does not have DE perturbations.

In the case when the DE sound speed is non-zero
we found that the growth index is given by γ '
3(3κ+(3κ+2)w−2)

2(6w−5) , where κ ≡ Ωm,0H
2
0

k2c2s
and has an explicit

scale dependence. Our expression is different but at the
same time more accurate than other expressions that
have appeared in the literature. We found that it works
to better than 0.3% accuracy for k > 10H0 or equiv-
alently k/h > 0.0033Mpc−1, thus making it extremely

useful for use in forecasts for future surveys. We have also
compared our new expressions to that one of Eq. (29),
via a Fisher Matrix approach, and we found that the lat-
ter significantly overestimates the errors compared to the
more accurate growth index of Eq. (31) we presented for
the first time in this paper.

In conclusion, we have shown that using less accu-
rate expressions for the growth index, such as the one
of Eq. (29), or more importantly neglecting completely
the DE perturbations can lead to misleading estimations
of the growth index γ to the percent level, something
which is highly relevant as cosmology today has moved
into a high precision era and percent accuracies will be
sought after in the next generation surveys.
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