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Contributions to local and nonlocal elliptic
differential equations

Abstract

This thesis is divided into four parts. The first part is devoted to study radial
symmetry and monotonicity properties of positive solutions to fractional elliptic
equations in the unit ball or in the whole space, by using the method of moving
planes. In the second part, we consider the decay and symmetry properties of
positive solutions for mixed integro-differential equations in the whole space. In
studying the decay, we construct appropriate super and sub-solutions and then we
use the method of moving planes to prove symmetry results. The third part is to
investigate existence and uniqueness of weak solutions to fractional heat equations
involving Radon measures. Moreover, we analyze the asymptotic behavior of the
weak solution when Radon measure is the Dirac mass. In the fourth part, we
study the existence of solutions to nonlinear elliptic equation which arises from
Micro-Electromechanical Systems devices in the case that the elastic membranae
contacts the ground plate on the boundary. We show how the boundary decay
works on the existence of solutions and pull-in voltage.

Key words: Fractional Laplacian, Decay, Symmetry, Hopf’s Lemma, Moving
Planes, Radon measure, Dirac mass, Self-similar solution, Micro-Electromechanical
Systems, Pull-in voltage, Minimal solution.



Contribuciones para ecuaciones diferenciales
elipticas locales y no locales

Resumen

Esta tesis doctoral esta dividida en cuatro partes. La primera parte esta dedi-
cada al estudio de la simetria radial y las propiedades de monotonicidad de solu-
ciones positivas de ecuaciones elipticas fraccionarias en la bola unitaria o en todo
el espacio, usando el método de planos méviles. En la segunda parte, se con-
sideran propiedades de decaimiento y simetria de las soluciones positivas para
ecuaciones integro-diferenciales en todo el espacio. Estudiamos el decaimiento,
construyendo super y subsoluciones apropiadas y usamos el método de los planos
moviles para probar las propiedades de simetria. La tercera parte es investigar la
existencia y unicidad de soluciones débiles de la ecuacién del calor fraccionaria, in-
volucrando medidas de Radon. Mas atin, analizamos el comportamiento asintético
de la solucién débil cuando la medida de Radon es la masa de Dirac. En la cuarta
parte, estudiamos la existencia de soluciones a problemas elipticos no lineales que
provienen del modelamiento de dispositivos de sistemas micro-electromecanicos en
el caso en que la membrana elastica entra en contacto con la placa inferior en la
frontera. Mostramos, en este caso, como el decaimiento de la membrana afecta la
existencia de soluciones y la tensién pull-in.

Palabras Claves: Laplaciano Fraccional, Decaimiento, Simetria, Lema de Hopf,
Planos Moviles, Medida de Radon, Masa de Dirac, Solucién auto-similar, Sistemas
Micro-Electromecéanicos, Tension Pull-in, Solucién Minimales.
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Introduction

This thesis is to study qualitative properties of positive solutions to semilinear
elliptic equations involving fractional Laplacian, the weak solutions to fractional
heat equations with initial measure data, and the solutions of the second order
elliptic equations arising from Micro-Electromechanical Systems (MEMS).

0.1 Radial symmetry of positive solutions to equa-
tions involving the fractional Laplacian

In recent years, the study of nonlinear elliptic equations involving general
integro-differential operators, especially, the fractional Laplacian, have attracted
the attention of the mathematical community by great applications in physics and
by important links on the theory of Lévy processes, refer to [17], 23], 24], 37, 4T, 45]
and reference therein. In Chapter 1, we consider symmetry and monotonicity prop-
erties of positive solutions for equations involving the fractional Laplacian. We first
study the following fractional elliptic problem

(—A)O‘u = f(U) +g in Bl, (1)
u=20 in BY,
where B; denotes the open unit ball centered at the origin in RY and (—A)® with
a € (0,1) is the fractional Laplacian defined as

o, (N u(z) — u(2)
x € B;. Here P.V. denotes the principal value of the integral, that for notational
simplicity we omit in what follows.

The study of radial symmetry and monotonicity of positive solutions for non-
linear elliptic equations in bounded domains using the moving planes method based
on the maximum principle was initiated with the work by Serrin [83] and Gidas,
Ni and Nirenberg [50], with important subsequent advances by Berestycki and



Nirenberg [8]. We refer to the review by Pacella and Ramaswamy [77] for a more
complete discussion of the method and it various applications. In [§] the maximum
principle for small domain, based on the Aleksandrov-Bakelman-Pucci (ABP) esti-
mate, was used as a tool to obtain much general results, specially avoiding regular-
ity hypothesis on the domain. In a recent work Guillen and Schwab, [54], provided
an ABP estimate for a class of fully non-linear elliptic integro-differential equa-
tions. Motivated by this work, we obtain a version of the maximum principle for
small domains and we apply it with the moving planes method as in [§] to prove
symmetry and monotonicity properties for positive solutions to fractional elliptic
problem (|1)).

We consider the following hypotheses on the functions f and g:

(F'1) The function f : [0,00) — R is locally Lipschitz.

(G) The function g : B; — R is radially symmetric and decreasing in |x|.

Before stating our first theorem we make precise the notion of solution. We
say that a continuous function u : RY — R is a classical solution of equation (1]
if the fractional Laplacian of u is defined at any point of Bj, according to the
definition given in , and if u satisfies the equation and the external condition in
a pointwise sense. Now we are ready for our first theorem on radial symmetry and
monotonicity properties for positive solutions of . It states as follows:

Theorem 0.1.1 Assume that the functions f and g satisfy (F'1) and (G), respec-
tively. If u is a positive classical solution of , then u must be radially symmetric
and strictly decreasing in r = |z|, for r € (0,1).

We devote the second part of Chapter 1 to study symmetry results for a non-
linear equation as , but in RV and with ¢ = 0. For the problem in RY, the
moving planes procedure has to start a different way because we cannot use the
maximum principle for small domain. We refer to the work by Gidas, Ni and
Nirenberg [51], Berestycki and Nirenberg [8], Li [62], and Li and Ni [63], where
these results were studied assuming some additional hypothesis on f, allowing for
decay properties of the solution u. A general result in this direction was obtained
by Li [62] for the equation

—Au = f(u) in RY

with u decaying at infinity and f satisfying the following hypothesis:

(F2) there exists so > 0, v > 0 and C' > 0 such that
MSC(QL—HJW forall 0<u<wv<s. (3)
v—u



Motivated by these results, we are interested in similar properties of positive solu-
tions for equations involving the fractional Laplacian under assumption (F2). Here
is our second main theorem.

Theorem 0.1.2 Assume that the function f satisfies (F1) — (F2) and u is a
positive classical solution for the equation

{(—A)au = f(u) in RV,

u>0 in RY, limg| 00 u(x) = 0.

(4)

Assume further that there exists

2 N
m > max{—a, —_— (5)
vy +2
such that u satisfies
1
u(z) = O(W)’ as |z — oo, (6)
x m

then w is radially symmetric and strictly decreasing about some point in RY.

Felmer, Quaas and Tan in [45] studied the problem (4)) with f(u) = h(u) — u,
that is,

~A)u+u=~h(u) in RY,
{( )M+ (u) o

u>0 in RV, limg| 400 u(z) = 0.

They proved existence and regularity of positive solutions, and also decay and
symmetry results. Precisely, it was proved that the solutions u of satisfy

Cil C

|z|N+2a < u(z) < [N+ | > 1, (8)

for some ¢ > 1, when h is superlinear at 0 in the sense that

h
lim ﬁ = 0.

s—0 S
Moreover, the radial symmetry of the solutions of (7)) is derived by using the
moving planes method in integral form developed in [30), [64], assuming further
that h € C'(R), h is increasing and there exists 7 > 0 such that

lim h <S>

s—0 ST

—0. 9)

We see that Theorem [0.1.2] generalizes the symmetry result in [45], since here we
do not assume f is differentiable and we do not require f to be increasing.
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The third part of Chapter 1 is devoted to study the radial symmetry of non-
negative solutions for the following system of nonlinear equations involving frac-
tional Laplacians with different orders

(—A)alu = fl(/U) + a1 in Bl7
(=A)2v = fo(u)+g, in B, (10)
u=v=0 in BY,

where a1, az € (0,1). We have following results for system (10)):

Theorem 0.1.3 Suppose that f; and fy are locally Lipschitz continuous and in-
creasing functions defined in [0,00) and g1 and go satisfy (G). Assume that (u,v)
are positive, classical solutions of system (@, then u and v are radially symmetric
and strictly decreasing in r = |z| for r € (0,1).

We prove the above theorems using the moving planes method in [50]. The main
difficulty here comes from the fact that the fractional Laplacian is a non-local
operator, and consequently maximum principle and comparison results require
information on the solutions in the whole complement of the domain, not only at
the boundary. To overcome this difficulty, we introduce a new truncation technique
which is well adapted to be used with the method of moving planes.

0.2 Qualitative properties of positive solutions
for mixed integro-differential equations

In Chapter 2, we are concerned with the decay and symmetry results of solutions
to mixed integro-differential equations

{(—A)gu +(=A)yu+u=f(u), (z,y)€RY xR, (11)

u>0 in RY x RM, 1imy (34400 U(T, y) = 0,
where N > 1, M > 1, the operator (—A), denotes the usual Laplacian with

respect to y, while (—A)% denotes the fractional Laplacian of exponent a € (0, 1)
with respect to z, i.e.

(~B)zuley) = [ MU (12)

‘iL‘ _ Z|N+2a

for all (z,y) € RY x RM.



When N = 0, equation becomes the nonlinear Schrodinger equation

{—Au—i—u:f(u) in RM, (13)

uw>0 in RM im0 u(y) =0.
It was the seminal work by Gidas, Ni and Nirenberg [51] that settled the decay and

symmetry properties for when the non-linearity is merely Lipschitz continuous
and superlinear at the zero in the sense that

f(s) =0(s") ass—0, (14)
for some p > 1 and M > 3. They proved that the solutions of are radially
symmetric and they satisfy the precise decay estimate

M-—1

lim u(y)ely|7 =, (15)
[yl—=+o0

for certain constant ¢ > 0. On the other hand, when M = 0, equation ([11]) reduces
to the fractional nonlinear Schrodinger equation (7)) which has been studied by
Felmer, Quaas and Tan [45], especially the decay as and radial symmetry
results.

Both operators, the Laplacian and the fractional Laplacian, are particular cases
of a general class of elliptic operators connected to backward stochastic differential
equations associated to Brownian and Levy-Ito processes, see for example Bar-
les, Buckdahn and Pardoux [2], Benth, Karlsen and Reikvam [6] and Pham [79].
Recently, Barles, Chasseigne, Ciomaga and Imbert in [3, 4] and Ciomaga in [3§]
considered the existence and regularity of solutions for equations involving mixed
integro-differential operators belonging to the general class of backward stochas-
tic differential equations mentioned above. A particular case of elliptic integro-
differential operator of mixed type is the one considering the laplacian in some of
the variables and the fractional laplacian in the others, modeling diffusion sensible
to the direction, such as the operator in equation ([11}).

In view of the known results on decay and symmetry for solutions of equations
and ([7)) just described above, it is interesting to ask if these results still hold for
solutions of the equation of mixed type (11)), where the elliptic operator represents
diffusion depending on the direction in space. Regarding the asymptotic decay
of solution at infinity, the question is interesting since a proper mix of the two
variables should be obtained for the decay estimates. The natural way to estimate
the decay is through the construction of super and sub-solutions involving the
fundamental solution of the elliptic operator. Moreover, the solution of cannot
be radially symmetric, so this property cannot be used to estimate the decay. On
the other hand, regarding symmetry results, we may still have symmetry in z and
y, but the moving planes method would require an adequate version of the Hopf’s



Lemma, that we prove here.

Our first theorem in Chapter 2 concerns the decay of solutions for with
general nonlinearity and it states as follows.

Theorem 0.2.1 Assume that o € (0,1), N > 1, M > 1 and the non-linearity
f:(0,400) = R is a continuous function satisfying

— 00 < B :=liminf 1) < A :=limsup f(v)

v—0t v v—0+ v

< 1. (16)

Let u be a positive classical solution of problem , then for any € > 0 small,
there exists C. > 1 such that for any (z,y) € RY x RM,

O (L [a) V22 <u(a,y) < C(1+ |z]) =20, (17)

where

0b=V1—A—¢c¢ and 6=+1—-B+e. (18)

When we compare estimate with for N = 0, we first observe that
in ours an exponential decay is obtained, but with a constant C. depending on
€, which is a parameter controlling the rate of exponential decay. This is more
clear when A = B = 0. On the other hand we are making much more general
assumptions on f, in particular, we are not making any assumption on the radial
symmetry of the solution, which is crucial in proving . We do not know of a
decay estimate better than

Cle 0l < y(y) < Ce Wy e RM, (19)

for solutions of under assumption for f, and where radial symmetry of
the solutions is not available, like in a case where f may depend on y. On the
other hand, when M = 0, we recover from ([17). For the proof of the decay
estimate we construct suitable super and sub-solutions and we use comparison
principle with a version of Hopf’s lemma.

When we assume further hypothesis we can get sharper estimates for the decay
of the solutions of equation . Precisely, we have the following result:

Theorem 0.2.2 Assume that « € (0,1), N > 1, M > 5 and the non-linearity
f :(0,4+00) — R is a non-negative function satisfying . Let u be a positive
classical solution of , then there exists a constant ¢ > 1 such that for all
(z,y) € RN x RM,

%,;@,y) < u(z,y) < cplz,y)(1+ ly))?, (20)



where the function p is defined as

w ey

BT

. 1 _ _N
p(x,y) = mm{W, e Iyl\y| 2

We notice that this theorem gives the expected exponential decay for positive
solutions, as suggested by , assuming the dimension of the space satisfies M >
5. Moreover, it gives the expected polynomial correction for the lower bound with a
gap in the power for the upper bound. This theorem is proved under the assumption
(14) on the non-linearity, constructing super and sub solutions devised upon the
fundamental solution of (—A)% + (=A), + id. In our argument, a crucial role is
played by the estimate already obtained in Theorem [0.2.1} Since the fundamental
solution of (—=A)® + (—=A), + id has RN x {0} as singular set, we cannot use the
method in [51] in order to derive our estimate. Moreover, some other arguments
in [51] cannot be used either because the solutions of are not radial, since the
differential operator is not radially invariant and there are no solutions depending
only on one of the x or y variables, as can be seen from (20)),

Even though solutions of are not radially symmetric, we can prove partial
symmetry in each of the variables z and y and this is the content of our third
theorem.

Theorem 0.2.3 Assume that o € (0,1), N > 1, M > 1 and the function f :
(0,+00) — R s locally Lipschitz and satisfies (@) We more assume that f
satisfies

(F') there exist ug > 0, v > MLM - o= and ¢ > 0 such that

w§aﬂ for all 0 < u < v < up. (22)

Then every positive classical solution u of equation satisfies
u(z,y) = u(r, s)
and u(r, s) is strictly decreasing in r and s, where r = |z| and s = |y|.

When N = 0, we see that assumption (F') implies v > 0 and coincides
with the assumption considered in [62]. When M = 0, assumption (F') implies
that v > Ni‘ga and it coincides with the assumption considered in [46], when the
solutions is assumed to decay as a power N + 2a at infinity. We remark that
the operator (—A)% + (—A), is a combination of two operators with different
differential orders in x—variable and y—variable, and this produced a combined
polynomial-exponential decay and does not allow for radial symmetry, but only

partial symmetry as stated in Theorem [0.2.3]
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The proof of Theorem is based on the moving planes method as developed
in |46l [62]. In these arguments, the strong maximum principle plays a crucial role
and it is available for the Laplacian and for the fractional Laplacian. However, in
the case of our mixed integro-differential operator some difficulties arise and we
overcome them with a version of the Hopf’s Lemma.

0.3 Fractional heat equations with subcritical ab-
sorption with initial data measure

Chapter 3 is devoted to study weak solutions to fractional heat equations

(9tu —+ (—A)O‘u + h(t, U) — O iIl QOO7

uw(0,)=v in RY (23)

where a € (0,1), h: (0,00) x R — R is a continuous function, Qu, = (0,00) x RY
with N > 2, v belongs to the space M’(RY) of bounded Radon measures in RY.

In a pioneering work, Brezis and Friedman [12] have studied semilinear the heat
equation with measure as initial data

atU—AU+Up:O in Qoov

N (24)
u(0,-) =kdp in RV,

where k£ > 0 and ¢y is the Dirac mass at the origin. They proved that if 1 <
p < (N +2)/N, then for every k > 0 there exists a unique solution wy, to (24).
When p > (N + 2)/N, problem has no solution and even more, they proved
that no nontrivial solution of the above equation vanishing on RY \ {0} at t = 0
exists. When 1 <p <1+ %, Brezis, Peletier and Terman used a dynamical system
technique in [13] to prove the existence of a very singular solution us to

Ou—Au+u?P =0 in Q, (25)

vanishing at ¢ = 0 on R™ \ {0}. This function us is self-similar, i.e. expressed
under the form

uslt,2) = 17 f (%) | (26)

and f is uniquely determined by the following conditions
P (i) £ S - P =0 on Ry
f>0 and fissmooth on R} (27)
f(0)=0 and lim, np%lf(n) = 0.



Furthermore, it satisfies

F) = ce N = O(|2] 2} as - oo

for some ¢; > 0. Later on, Kamin and Peletier in [58] proved that the sequence of
weak solutions u, converges to the very singular solution ug as k — oo. After that,
Marcus and Véron in [70] studied the equation in the framework of the initial trace
theory. They pointed out the role of the very singular solution of in the study
of the singular set of the initial trace, showing in particular that it is the unique
positive solution of satisfying

lim [ w(t,x)de = 0 Ve >0, B, = B.(0), (28)
t—0 B.
and
%ir% u(t,r)de =0 VYK c RV \ {0}, K compact. (29)
“YJK

If one replaces u” by t?u? with p € (1,1 + W), these results were extended by

Marcus and Véron (f > 0) in [70] and then Al Sayed and Véron (8 > —1) in [82].
The initial data problem with measure and general absorption term

Ou— Au+ h(t,z,u) =0 in (0,T) x £,
u=0 in (0,7) x 0%, (30)
u(0,)=v in Q,
in a bounded domain 2 is a domain in RY, has been studied by Marcus and Véron

in [70] in the framework of the initial trace theory. They proved that the following
general integrability condition on A

0 <| h(t,z,7) |< h(t)f(|7]) V(z,t,r) e Q xRy xR

JU R flot? )t 2dt <oo Yo >0 (31)

either h(t) = t* with a > 0 or f is convex,

in order the problem has a unique solution for any bounded measure. In the
particular case with h(t,z,7) = t°|u|P~lu, is fulfilled if 1 < p < 1+ w and
£ > —1, and the very singular solution exists in this range of values.

Motivated by a growing number of applications in physics and by important
links on the theory of Lévy process, semilinear fractional equations has been at-
tracted much interest in last few years, (see e.g. [20, 21|, 26l 27, 31l 37, [44], 146]).
Recently, in [32] we obtained the existence and uniqueness of weak solution to



semilinear fractional elliptic equation

(=A)*u+ f(u)=v in Q,

32
u=0 in €°, (32)

when v is Radon measure and f satisfies a subcritical integrability condition.

One purpose of Chapter 3 is to study the existence and uniqueness of weak
solutions to semilinear fractional heat equation in a measure framework. We
first make precise the notion of weak solution of that we will use in this
chapter.

Definition 0.3.1 We say that u is a weak solution of , if for any T > 0,
u e LYQr), h(t,u) € LY (Qr) and

Jor (w(t, 2) [0 (L, z) + (=A)*(t, x)] + h(t, w)é(t, ) dudt

= [an £(0,2)dv — [RYE(T, 2)u(T, z)dx VéE e Yar, (33)

where Qr = (0,T) x RY and Y, 7 is a space of functions & : [0,T] x RY — R

satisfying

(@) 1€l @r) + 1€l @r) + 10l oo @r) + I(=2)* |1 (@r) < +00;

(17) fort e (0,T), there exist M > 0 and ey > 0 such that for all € € (0, €],
[(=A)2E(E, M Lo @y < M.

Before stating our main theorems, we introduce the subcritical integrability
condition for the nonlinearity h, that is,

(H) (i) The function h : (0,00) x R — R is continuous and for any ¢ € (0, 00),
h(t,0) = 0 and h(t,r1) > h(t,ry) if r1 > 7.

(74) There exist > —1 and a continuous, nondecreasing function g : R, —
R, such that

|h(t,r)] < tﬁg(]r]) Y(t,r) € (0,00) x R

and .
/ 9(3)3_1_1”3(15 < 400, (34)
1
where 20(1 + )
a(l +
=14+ ——7
Ds + N (35)
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We denote by H, : (0,00) x RY x RY — R, the heat kernel for (—A)® in
(0,00) x RN, by H,[v] the associated heat potential of v € 9M°(RY), defined by

Ha.[v](t,z) = [ Ha(t,z,y)dv(y)

RN
and by H,[u] the Duhamel operator defined for (¢,2) € Q7 and any u € LY (Qr)
by

|(t, x) / H, [ [(t — s,x)ds —/ H,(t — s, z,y)u(s,y)dyds.
RN

Now we state our first theorem as follows.

Theorem 0.3.1 Assume that v € M (RY) and the function h satisfies (H). Then
problem admits a unique weak solution u, such that

Ha[lj] - Ha[h("Hoc[V+])] <wu, < Ha[’/] - Hoc[h('a _HG[V—])] n Qooa (36)

where vy and v_ are respectively the positive and negative part in the Jordan de-
composition of v. Furthermore,

(1) if v is nonnegative, so is u,;

(17) the mapping: v — w, is increasing and stable in the sense that if {v,} is
a sequence of positive bounded Radon measures converging to v in the weak
sense of measures, then {u,, } converges to wu, locally uniformly in Q.

According to Theorem [0.3.1], there exists a unique positive weak solution u; to

Opu + (—A)%u + tPuP = 0 n Qo,

37

U(O, ) = k‘éo in RN ( )

where § > —1, k > 0 and p € (0,p}). We observe that u; — oo in (0,00) x RY
as k — oo for p € (0,1], see Prop081t10n u 2| for details. Our next interest of
Chapter 3 is to study the limit of uy as k — oo for p € (1, pﬁ) which exists since

148
Uy} are an increasing sequence of functions, bounded b Hﬁ P , and we
g Yy
set
Uso = lim up In Qu. (38)
k—o0

Actually, uo, and {uy}y are classical solutions to equation
o+ (—=A)u+t°uP =0 in  Qu, (39)
see Proposition for details.
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Definition 0.3.2 (i) A solution u of (39) is called a self-similar solution if

1+

u(t,z) =t Tu(l,t7 %) (1) € Qu.

(ii) A solution u of (39) is called a very singular solution if it vanishes on R\ {0}

att =0 and
u(t,0)

50+ Do (L, 0)

where Ty, := Hy[do] is the fundamental solution of

0 in Qu,
50 in RN.

= —i—OO?

(40)

Ou+ (—A)u =
u(0,-)

We remark that for p € (1,pj), a self-similar solution u of is also a very
singular solution, since

lim To(t,0)t2 = ¢y, (41)

t—0t

for some ¢ > 0. For any self-similar solution u of (39)), v(n) := u(l,t_ix) with
n= t~2ax is a solution of the self-similar equation

1 1
(—A)O‘v—%Vv-n—ptfv+vp:O in RY. (42)
=
Since (;%f) """ is a constant nonzero solution of , the function
14 8\ 7T
U,(t) == (%) £ >0 (43)
p —_—

is a flat self-similar solution of . It is actually the maximal solution of the
ODE ¥ + t%y? = 0 defined on R,. Our next goal in Chapter 3 is to study non-flat
self-similar solutions of .

Theorem 0.3.2 Assume that > —1, uy s defined by @ and

Py <p<Dps

where pg* =1+ % Then us 18 a very singular self-similar solution of
i Qoo. Moreover, there exists c3 > 1 such that
—1
3 c3In(2 + |z|) N
——— < uy(l,2) L ————- r e R, 44
1+ |I|N+20¢ — ( ) — 1_|_ |I|N+2a ( )

When pj* < p < pj with 8 > —1, we observe that u. and U, are self-similar
solutions of and us is non-flat. Now we are ready to consider the uniqueness

12



of non-flat self-similar solution of with decay at infinity, precisely, we study
the uniqueness of self-similar solution to

Ou+ (=A)u+tPuP =0 in Q, (45)

lim |y 00 u(1,2) = 0.

We remark if u is self-similar, then the assumption limp,.u(l,2) = 0 is
equivalent to limy;|—o u(t,z) = 0 for any ¢ > 0. Finally, we state the properties of
Us When 1 < p < pi* as follows.

Theorem 0.3.3 (i) Assume 1 < p < pj" and ue is defined by @) Then s =
Uy, where Uy, is given by .

(ii) Assume p = P5 and ux is defined by @) Then us 1S a self-similar solution
of @ such that

_ N+2a
Ccqt™ 20

Uoo (t, ) > (t,x) € (0,1) x RY, (46)

T 14 [t rag|N42e

for some ¢4 > 0.

We note that Theorem [0.3.3 indicates that there is no self-similar solution of
(39) with initial data u(0,-) = 0 in RY \ {0}, since u., is the least self-similar
solution. In Theorem [0.3.3 part (iz), we do not know if the self-similar solution is
flat or not. From the above theorems, we have the following result.

Theorem 0.3.4 (i) Assume p5* < p < pjs. Then problem admits a minimal
positive solution v, satisfying

. 2a(1+8)
i [n] " »=1" vee (1) = 0. (47)
[n|—o0
Furthermore,
—1
C3 c3 In(2 + |n|) N
- N () [ L VneR 48
11 [N+ = voo(n) < 1+ [N+ n (48)

(ii) Assume 1 < p < ps - Then problem admits no positive solution satisfying

“1).

The question of uniqueness of the very singular solution in the case p5* < p < pj
remains an open problem.
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0.4 On semi-linear elliptic equation arising from
Micro-Electromechanical Systems with con-
tacting elastic membrane

In Chapter 4, we are concerned with the existence of solutions to the nonlinear
elliptic problem
—Au=—25 in Q,

(a—u)

O<u<a in (49)
u=">0 on 012,

where  is a bounded domain in RY, A > 0 and the function a : Q — [0, 1] satisfies
a(x) > kdist(z,092)Y for some k > 0 and v € (0,1). This equation arises from
Micro-Electromechanical Systems devices in the case that the elastic membranae
contacts the ground plate on the boundary.

Micro-Electromechanical Systems (MEMS) are often used to combine electron-
ics with micro-size mechanical devices in the design of various types of microscopic
machinery. They are successfully utilized in components of many commercial sys-
tems, including accelerometers for airbag deployment in automobiles, ink jet printer
heads, optical switches, chemical sensors, etc. In MEMS devices, a key component
is called the electrostatic actuation, which is based on an electrostatic-controlled
tunable, it is a simple idealized electrostatic device. The upper part of this elec-
trostatic device consists of a thin and deformable elastic membrane that is held
fixed along its boundary and which lies above a rigid grounded plate. This elastic
membrane is modeled as a dielectric with a small but finite thickness. The upper
surface of the membrane is coated with a negligibly thin metallic conducting film.
When a voltage A is applied to the conducting film, the thin dielectric membrane
deflects towards the bottom plate, and when A is increased beyond a certain crit-
ical value A*—known as pull-in voltage—the steady state of the elastic membrane
is lost, and proceeds to touchdown or snap through at a finite time creating the
so-called pull-in instability.

A mathematical model of the physical phenomena, leading to a partial differ-
ential equation for the dimensionless deflection of the membrane, was derived and
analyzed in [49] b5, (6L 57, 65, 79, O5] and reference therein. In the damping-
dominated limit, and using a narrow-gap asymptotic analysis, the dimensionless
deflection u of the membrane on a bounded domain  in R? is found to satisfy the

equation

A .
— AU = m 11 Q, (50)

with Dirichlet boundary conditions. Here the term on the right hand side of equa-
tion is the Coulomb force. Later on, Ghoussoub and Guo in [49] 55] studied
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the nonlinear elliptic problem

A M (z) O

U=-—7—7""——5 m

(1 —wu)? (51)

with the Dirichlet boundary condition, which models a simple electrostatic MEMS
device consisting of a thin dielectric elastic membrane with boundary supported at
0 above a rigid ground plate located at 1. Here €2 is a bounded domain of R and
the function f > 0 represents the permittivity profile and A > 0 is a constant which
is increasing with respect to the applied voltage. It is known that for any given
suitable f, there exists a critical value A* (pull-in voltage) such that if A € (0, \*),
problem is solvable, while for A > A\*, no solution for exists.

In an effort to achieve better MEMS design, the membrane can be technologi-
cally fabricated into non-flat shape like the surface of a semi-ball, which contacts
the ground plate along the boundary. In Chapter 4, we study how the shape of
the membranes effects on the pull-in voltage. In what follows, we assume that €2
is a C? bounded domain in RY, with N > 1, the function a :  — [0,1] is in the

class of C7(2) N C(N2) and satisfies
a(x) > kp(x)?, Yrel (52)

for some k > 0 and v € (0,1), where p(x) = dist(z, 0f2) for z € 2. Our purpose of
Chapter 4 is to consider the solutions to semilinear elliptic equation

—Au=-—2= in Q

(a—u)

O<u<a in  Q (53)
u=1>0 on 01,

Y

where parameter A > 0 characterizes the relative strength of the electrostatic and
mechanical forces in the system. Equation models a closed MEMS device,
where the elastic membrane contacts the ground plate on the boundary. The
function a is initially state of the elastic membrane. The solution u of shows
the steady state of deformation for the membrane when we applied voltage to this
device. To this problem, we have the following existence results.

Theorem 0.4.1 Assume that a € C7(Q) NC(Q) satisfies with v € (0, 2] and

'3
Kk > 0, then there exists a finite pull-in voltage \* := \*(k,7y) > 0 such that

(1) for A € (0, %), problem admits a minimal solution uy and the mapping:
A = uy 1S increasing,

(i5) for X > A*, there is no solution for (53);

(1ii) moreover, if there exists co > K such that
a(x) < cop(x)?, x €, (54)
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then there exists A\, = M\.(k,7) € (0, \*] such that for X € (0, \.), uy € Hi () and

1 1 . )
for ~y ?é 5’ _p(x)mm{l,Q—Q'y} S U)\(.CB) S Cp<x)m1n{172—2’y}’ Ve e Q
C
f Lo L - < ua(@) < ep(a) n — Vo e A
or = -, —p(x)In — < uy(z) < cp(r)In —, x 1,
7T ¢’ plx) = g p(x) :

)
where ¢ 2 1 and Ay ={x € Q: p(z) < i}

We remark that the membrane contacts the ground plate on the boundary with
decay rate p?, v € (0, %], there still has a positive finite pull-in voltage \*. The
decay of a plays an important role to study the decay and the regularity of the
minimal solution and the estimate of \* and \,. The decay rate of function a
determines completely non-existence of pull-in voltage when v > % Precisely, we
have the following non-existence result.

Theorem 0.4.2 Assume that a € C(Q) is positive and satisfies with v €
(%, 1) and ¢g > 0. Then problem admits no nonnegative solution for any
A > 0.

From Theorem [0.4.1], we observe that the mapping A — wu, is increasing and
uniformly bounded by function a, then the limit

Upe 1= )\li_}n; uy in € (55)

is well-defined, where u, is the minimal solution of with A € (0, \*). Our final
purpose in Chapter 4 is to prove that uy~ is a solution of in a weak sense.
The extremal solution uy~ always is found in the weak sense and then it could be
improved the regularity up to the classical sense when 1 < N < 7. Before stating
this result, we introduce the definition of weak solution.

Definition 0.4.1 A function u is a weak solution of if 0 <u<a and
/ u(—=A)édr = / dex, VE € C2(Q),
Q o (a—u)

where C%(QY) is the space of all C? functions with compact support in 2.
A solution (or weak solution) u of is stable (resp. semi-stable) if

[verass [ 2 cin e 2). veecxo (o)

Theorem 0.4.3 Assume that X € (0,X*), the function a satisfies (59) and
with cg > k>0, v € (0, %], uy 1s the minimal solution of and uy+ is given by

. Then
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N
(1) ux~ is a weak solution of and uy- € WS’W(Q) for any B € (0,7).
(17) when 1 < N <7, ¢g = k and Q = B1(0), ux« is a classical solution of .
(7ii) uy s a stable solution of when A € (0,\*) and uy- is a semi-stable
weak solution of .
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Chapter 1

Radial symmetry of positive
solutions to equations involving
the fractional Laplacian

Abstract: in this chapte, we study radial symmetry and monotonicity
properties for positive solution of elliptic equations involving the fractional Lapla-
cian.

1.1 Introduction

The purpose of this chapter is to study symmetry and monotonicity properties
of positive solutions for equations involving the fractional Laplacian through the
use of moving planes arguments. The first part of this chapter is devoted to the
following semi-linear Dirichlet problem

{(—A)auzf(uwrg? in B,

u =0, in B,

(1.1)

where B; denotes the open unit ball centered at the origin in RY and (—A)® with
a € (0,1) is the fractional Laplacian defined as

@Awm@:pw/'ﬂﬂlﬂ@@ (1.2)

RN |x_y|N+2a ’

'This chapter is based on the paper: P. Felmer and Y. Wang, Radial symmetry of posi-
tive solutions to equations involving the fractional Laplacian, Communications in Contemporary
Mathematics, Vol. 16, No. 01, (2014).
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x € By. Here P.V. denotes the principal value of the integral, that for notational
simplicity we omit in what follows.

During the last years, non-linear equations involving general integro-differential
operators, especially, fractional Laplacian, have been studied by many authors.
Caffarelli and Silvestre [22] gave a formulation of the fractional Laplacian through
Dirichlet-Neumann maps. Various regularity issues for fractional elliptic equations
has been studied by Cabré and Sire [I7], Caffarelli and Silvestre [23], Capella,
Dévila, Dupaigne and Sire [24], Ros-Oton and Serra [81] and Silvestre [87]. Exis-
tence and related results were studied by Cabré and Tan [37], Dipierro, Palatucci
and Valdinoci [41], Felmer, Quaas and Tan [45], and Servadei and Valdinoci [86].
Great attention has also been devoted to symmetry results for equations involving
the fractional Laplacian in RY, such as in the work by Li [64] and Chen, Li and Ou
[29, 30], where the method of moving planes in integral form has been developed
to treat various equations and systems, see also Ma and Chen [67]. On the other
hand, using the local formulation of Caffarelli and Silvestre, Cabré and Sire [1§]
applied the sliding method to obtain symmetry results for nonlinear equations with
fractional laplacian and Sire and Valdinoci [88] studied symmetry properties for a
boundary reaction problem via a geometric inequality. Finally, in [45] the authors
used the method of moving planes in integral form to prove symmetry results for

(=A)*u +u = h(u) in RN, (1.3)
taking advantage of the representation formula for u given by
u(e) = K «hu)(x), =€RY,

where the kernel IC, associated to the linear part of the equation, plays a key role
in the arguments. This approach is not possible to be used for problem (1.1)), since
a similar representation formula is not available in general.

The study of radial symmetry and monotonicity of positive solutions for non-
linear elliptic equations in bounded domains using the moving planes method based
on the Maximum Principle was initiated with the work by Serrin [83] and Gidas,
Ni and Nirenberg [50], with important subsequent advances by Berestycki and
Nirenberg [§]. We refer to the review by Pacella and Ramaswamy [77] for a more
complete discussion of the method and it various applications. In [§] the Maxi-
mum Principle for small domain, based on the Aleksandrov-Bakelman-Pucci (ABP)
estimate, was used as a tool to obtain much general results, specially avoiding reg-
ularity hypothesis on the domain. In a recent article Guillen and Schwab, [54],
provided an ABP estimate for a class of fully non-linear elliptic integro-differential
equations. Motivated by this work, we obtain a version of the Maximum Principle
for small domain and we apply it with the moving planes method as in [8] to prove
symmetry and monotonicity properties for positive solutions to problem in
the ball and in more general domains.
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We consider the following hypotheses on the functions f and g:

(F'1) The function f : [0,00) — R is locally Lipschitz.

(G) The function g : B; — R is radially symmetric and decreasing in |x|.

Before stating our first theorem we make precise the notion of solution that we
use in this chapter. We say that a continuous function u : RY — R is a classical
solution of equation if the fractional Laplacian of u is defined at any point of
B, according to the definition given in , and if u satisfies the equation and
the external condition in a pointwise sense. This notion of solution is extended in
a natural way to the other equations considered in this chapter.

Now we are ready for our first theorem on radial symmetry and monotonicity
properties for positive solutions of equation (1.1]). It states as follows:

Theorem 1.1.1 Assume that the functions f and g satisfy (F1) and (G), re-
spectively. If u is a positive classical solution of , then uw must be radially
symmetric and strictly decreasing in r = |z| for r € (0,1).

The proof of Theorem [I1.1.1] is given in Section §1.3, where we prove a more
general symmetry and monotonicity result for equation (|1.1]) on a general domain
), which is convex and symmetric in one direction, see Theorem [1.3.1]

We devote the second part of this chapter to study symmetry results for a
non-linear equation as (1.1, but in RY and with g = 0. For the problem in RV,
the moving planes procedure has to start a different way because we cannot use
the Maximum Principle for small domain. We refer to the work by Gidas, Ni and
Nirenberg [51], Berestycki and Nirenberg [8], Li [62], and Li and Ni [63], where
these results were studied assuming some additional hypothesis on f, allowing for
decay properties of the solution u. A general result in this direction was obtained
by Li [62] for the equation

—Au= f(u) in RY,

with u decaying at infinity and f satisfying the following hypothesis:

(F2) There exists so > 0, v > 0 and C > 0 such that
Jw) = () <Cu+wv)? foral 0<u<wv<sp. (1.4)
v—u

Motivated by these results, we are interested in similar properties of positive solu-
tions for equations involving the fractional Laplacian under assumption (F2). Here
is our second main theorem.
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Theorem 1.1.2 Assume that the function [ satisfies (F'1) — (F2) and u is a
positive classical solution for the equation

—A)u = f(u) in RY,
(~ayu= ) )
u>0 in RY, limy e u(z) = 0.
Assume further that there exists
2 N
m > max{—a, —_— (1.6)
vy +2
such that u satisfies
1
u(z) = O(|—|), as |z| — oo, (1.7)
€T m

then u is radially symmetric and strictly decreasing about some point in R .

In [45], Felmer, Quaas and Tan studied symmetry of positive solutions using
the integral form of the moving planes method, assuming that the function f is
such that h(§) = f(§) + £ is super-linear, with sub-critical growth at infinity and

(H) h € C'(R), increasing and there exists 7 > 0 such that
!/
tim ) _ g,
v—0 U7

We see that Theorem [I.1.2] generalizes Theorem 1.3 in [45], since here we do not
assume f is differentiable and we do not require h to be increasing. In Section §1.4
we present an extension of Theorem to f(§) =& — €9, with0<qg<1<p,
that is not covered by the results in [45] either, see Theorem [I.4.1] This non-
linearity was studied by Valdebenito in [92], where decay and symmetry results
were obtained using local extension as in Caffarelli and Silvestre [22] and regular
moving planes.

For the particular case f(u) = uP, for some p > 1, we see that (H) is not
satisfied, but that (F2) does hold. Thus, if we knew the solution of satisfies
decay assumption in this setting, we would have symmetry results in these
cases. See [51] and [62] for the proof of decay properties in the case of the Laplacian.

The third part of this chapter is devoted to investigate the radial symmetry of
non-negative solutions for the following system of non-linear equations involving
fractional Laplacians with different orders,

(—A)"u = fi(v)+ ¢, in By,
(=A)2v = fo(u) + g, in By, (1.8)
u=v=0, in BY,



where aq, as € (0,1). We have following results for system ((1.8)):

Theorem 1.1.3 Suppose that fi and fy are locally Lipschitz continuous and in-
creasing functions defined in [0,00) and g1 and go satisfy (G). Assume that (u,v)
are positive, classical solutions of system @, then v and v are radially symmetric
and strictly decreasing in r = |z| for r € (0,1).

We prove our theorems using the moving planes method. The main difficulty
comes from the fact that the fractional Laplacian is a non-local operator, and
consequently Maximum Principle and Comparison Results require information on
the solutions in the whole complement of the domain, not only at the boundary.
To overcome this difficulty, we introduce a new truncation technique which is well
adapted to be used with the method of moving planes.

1.2 Preliminaries

A key tool in the use of the moving planes method is the Maximum Principle
for small domain, which is a consequence of the ABP estimate. In [54], Guillen and
Schwab showed an ABP estimate (see Theorem 9.1) for general integro-differential
operators. In this section we recall this estimate in the case of the fractional Lapla-
cian in any open and bounded domain. Then we obtain the Maximum Principle
for small domains.

We start with the ABP estimate for the fractional Laplacian, which is stated
as follows:

Proposition 1.2.1 Let Q be a bounded, connected open subset of RY. Suppose
that h: Q — R is in L=(Q) and w € L=®(RY) is a classical solution of

{Aaw(x) < h(z), wel, (1.9)

w(z) > 0, r e RV\ Q.
Then there exists a positive constant C, depending on N and «, such that
~infw < Od |0 150 1 [ (1.10)

where d = diam(2) is the diameter of Q and h*(x) = max{h(x),0}.

Here and in what follows we write A®w(z) = —(—A)*w(z).

We have the following corollary
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Corollary 1.2.1 Under the assumptions of Proposition |1.2.1], with ) not neces-
sarily connected, we have

—infw < Cd*||hF]| (|2 (1.11)

Proof. We let wy € L®(R") be a classical solution of

{A“wo(fv) = [|hllee@xa(z), = € Ba(zo),

wo(z) =0, xr € RN\ By(xy), (1.12)

where xy € Q and Q C By(zg). We observe that By(zg) is connected and that
wo < 0in all RY. By Comparison Principle, we see that

inf wy < inf w,
RN RN

where w is the solution of ([1.9)). Then we use Proposition to obtain that

—infwy = — inf)wo < C(2d)" ||| oo (| U ¥

RN By(zo
and then we conclude
s - _ . < o + - ﬂ‘ D
1%fw ]anwa < Cd||hT | Lo ()| N

Remark 1.2.1 We notice that, under a possibly different constant C > 0, the
ABP estimate for problem with a =1

Aw(z) < h(z), x€Q,
w(x) >0, x € 09,

is precisely with a = 1.

As a consequence of the ABP estimate just recalled, we have the Maximum
Principle for small domain, which is stated as follows:

Proposition 1.2.2 Let Q be an open and bounded subset of RYN. Suppose that
©: Q= Risin L®(Q) and w € L®(RY) is a classical solution of

{A%(z) < plau(z), weQ,

N (1.13)
w(x) >0, r e RV Q.

Then there is 6 > 0 such that whenever |Q2~| < §, w has to be non-negative in

Q. Here Q@ ={z € Q| w(z) < 0}.
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Proof. By (1.13]), we observe that

Aw(z) < p(z)w(z), =€,
w(z) >0, reRY\ Q.

Then, using Corollary with h(z) = p(z)w(z), we obtain that
[wlle@-y = —infw < Cdgll(pw)* ||z Q7]
where constant C' > 0 depends on N and «. Here dy = diam(Q27). Thus
lwll -y < Cdillpll (@ |l z )17 ¥
We see that, if [Q27] is such that Cd§||¢|| 1= @)[27|*/~ < 1, then we must have that
||w||Loo(Qf) = O
This implies that |[2~| = 0 and since 2~ is open, we have Q= = (), completing the

proof. O

1.3 Proof of Theorem I1.1.1.

In this section we provide a proof of Theorem [I.1.1| on the radial symmetry
and monotonicity of positive solutions to equation (1.1]) in the unit ball. For this
purpose we use the moving planes method, for which we give some preliminary
notation. We define

Yy={z=(21,2') € By | x:1 > \}, (1.14)
Ty ={r = (z1,2) € RY | 2, = \}, (1.15)
ur(z) =u(xy) and wy(z) = ur(z) — u(x), (1.16)

where A € (0,1) and z\ = (2\ — x1,2') for o = (2, 2") € RY. For any subset A of
RY, we write Ay = {z) : x € A}, the reflection of A with regard to T}.

Proof of Theorem We divide the proof in three steps.

Step 1: We prove that if A € (0,1) is close to 1, then wy > 0 in X,. For this
purpose, we start proving that if A € (0,1) is close to 1, then wy > 0 in X,. If we
define ¥} = {z € ¥, | wa(x) < 0}, then we just need to prove that if A € (0,1) is
close to 1 then

Xy =0 (1.17)
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By contradiction, we assume (|1.17)) is not true, that is X3 # 0. We denote

) e 277

wi(e) = 4 N TEE (1.18)
0, z €RV\ %7,

wy (z) = " TESy (1.19)
wy(z), xe€RV\X}

and we observe that wy (z) = wy(z) — wy (z) for all z € RY. Next we claim that
for all 0 < A < 1, we have

(~A)Ywy(z) <0, Ve (1.20)

By direct computation, for z € X}, we have

_ wy () — wy (2) / wy(2)
—A) - 2 A g - g
(=) wy () /]RN |z — 2| V420 “ s & — 2|2 o

wy(2)
) |x _ Z‘N+2a

— / dz
(Bi\(B1))U((B1)A\B1

_/ w)(2) dz—/ w(2) d
EnsuEss [T — 2V (mp) [T — 2| NH2e

= -5 —1I,—1Is.

We look at each of these integrals separately. Since u = 0 in (By), \ B; and
uy =01in By \ (B1)x, we have

wy(2)

/(Bl\wl)x)u((Bl)A\Bl) |z — z|NF2e

Ux(z u(z
= / A(1\2+2ad'z _/ ( ]2/+2adz
(B1)x\B1 |5’3 - Z| Bi\(B1)x |CU - Z|
1 1
= ux(z)( - ))dz 20,
/(BI)A\Bl \x _ Z|N+2a |x _ Z}\‘N+2a

since uy > 0 and |z — 25| > |v — 2| for all x € 3| and z € (By), \ B;y. In order to

[1 = dz
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study the sign of I, we first observe that wy(zy) = —wy(2) for any z € RY. Then

wy(2)
[2 = / - - —’x—z|N+2ad2
(EANZUEANED)A

wy (2 wy (2
/ /\(]\f)+2adz+/ ! )]\V)-‘r-2adz
ZA\DY |z — 2| ZA\Y |z — 25|

/ (2)( ! !
= wy (2 —
S\ |z — z|N+2a |z — [N 420

)dz >0,

since wy > 01in Xy \ X} and |z — z)| > |[r — 2| for all z € X} and z € X, \ £}.
Finally, since wy(z) < 0 for z € ¥}, we have

wy(z) wy(zy)
I; = / —dz:/ — . dz
SNEr o S

A

w(2)
= - — " dz>0.
/2; 7 — 2y [Vt =

Hence, we obtain ((1.20)), proving the claim. Now we apply (|1.20)) and linearity of
the fractional laplacian to obtain that, for x € X,

(=A)"wy (z) = (—A)"wi(z) = (=A)%ur(z) — (=A)%u(z). (1.21)
Combining equation (L.1]) with (1.21) and (L.18), for z € £ we have
(—A)*wi () = (=A)%ux(z) — (=A)"u(z)
= flua(z ))+9($A)—f(u($)) 9(x)

uA(w) U(fv)

Let us define p(x) = —(f(ur(z)) — f(u(2)))/(ur(z) —u(x)) for z € X|. By as-
sumption (F'1), we have that ¢ € L>(X)). By assumption (G), we have that
g(z\) > g(z), since for all z € ¥} and 0 < A < 1, we have |z| > |z,|. Hence, we
have

Awi(z) < p(z)w) (z), =€ Xy (1.22)

and since wy” = 0 in (X})° we may apply Proposition Choosing A € (0,1)
close enough to 1 we find that |2} | is small and then

wy = w)\ >0 in Xj.
But this is a contradiction with our assumption so we have

W ZO mn 2)\.
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In order to complete Step 1, we claim that for 0 < A < 1, if wy > 0 and wy Z 0
in Xy, then wy, > 0 in ¥,. Assuming the claim is true, we complete the proof,
since the function u is positive in By and v = 0 on 9By, so that w, is positive in
0B N 0%, and then, by continuity wy # 0 in X,.

Now we prove the claim. Assume there exists xy € X such that wy(zg) = 0,
that is, uy(xo) = u(xp). Then we have that

(=A)%wa(z0) = (=A)%ux(x0) = (=A)%u(z0) = g((0)x) = g(20)-

Since xy € 3y, we have |zg| > |(x¢),|, then by assumption (G) we have g((xg),) >
g(xp) and thus
(—A)*wy(z9) > 0. (1.23)

On the other hand, defining Ay = {(x1,2’) € RY | 2y > A}, since wy(2)) = —wx(2)
for any 2 € RN and wj(z¢) = 0, we find

wy(2) / w(2)
—A)® = - 2= g — A g
( ) wA(l‘o) /AA |:r0 _ Z|N+2a z RM\A, |I0 — Z|N+2°‘ z

—/ —wA(Z]3 5 dz—/ —w’\(ZAjg S—dz
Ay |70 — 2N+ Ay |70 — 2y [N 2

1 1
S - dz.
/m wk(z)(wo N g — Z}\|N+2a) <

Since |zg — 2z)| > |zg — 2| for z € Ay , wy(z) > 0 and wy(2) # 0 in A,, from here
we get
(—A)*wy(z9) <0, (1.24)

which contradicts ([1.23]), completing the proof of the claim.

Step 2: We define Ay = inf{\ € (0,1) | wy >0 in X,} and we prove that Ay = 0.
Proceeding by contradiction, we assume that Ao > 0, then w,, > 0 in X, and
wy, # 0 in Xy,. Thus, by the claim just proved above, we have wy, > 0 in X,,.

Next we claim that if wy > 0 in X for A € (0,1), then there exists € € (0, \)
such that wy, > 0in X _, where A, = A—e. This claim directly implies that A\g = 0,
completing Step 2.

Now we prove the claim. Let D, = {z € X, | dist(z,03)) > p} for p > 0
small. Since wy > 0 in ¥y and D, is compact, then there exists ;1o > 0 such that
wy > o in D,. By continuity of wy(z), for € > 0 small enough and denoting
Ae = A — €, we have that

wy. (z) >0 in D,.

As a consequence,
XN C X \D,

and |} | is small if € and p are small. Using (1.20)) and proceeding as in Step 1,
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we have for all z € E)_\E that

(—A)"wy, (x)

(=8)%ux () = (=A)"u(z)
(=8)%u (z) = (=4)"u(z)
= p@)wy (z) +g(xs) — g(x) = p()wy (2),

where p(z) = —f(“xe((;; iég)

Since wy = 0in (X} )¢ and |} | is small, for € and p small, Proposition m
implies that wy, > 0 in X, . Thus, since A, > 0 and w,, # 0 in X,_, as before we
have wy, > 0 in Y,_, completing the proof of the claim.

— (=4)%wy ()

vV

is bounded by assumption (F'1).

Step 3: By Step 2, we have \g = 0, which implies that u(—z1,2") > u(zy,2’)
for 1 > 0. Using the same argument from the other side, we conclude that
u(—xzy,2") < u(xy,2’) for 1 > 0 and then u(—xzq,2") = w(xy,2’) for z; > 0.
Repeating this procedure in all directions we obtain radial symmetry of w.
Finally, we prove u(r) is strictly decreasing in r € (0,1). Let us consider
0<x;<x<1landlet A\ = % Then, as proved above we have

wy(z) >0 for z € X,.

Then
0 < wx(Z1,0,---,0) = wup(1,0,---,0) —u(zy,0,---,0)
= U(fEl,O,"' 70) _U(ZEDO’”' 70)7
that is u(x1,0,---,0) > u(Z1,0,---,0). Using the radial symmetry of u, we con-
clude from here the monotonicty of u. O

The proof of Theorem [1.1.1] can be applied directly to prove symmetry results
for problem ({1.1]) in more general domains. We have the following definition

Definition 1.3.1 We say that domain Q C RY is convez in the x| direction:
(x1,2"), (21,9) € Q= (x1,ta’ + (1 —t)y) € Q, Vte(0,1).
Now we state the more general theorem:

Theorem 1.3.1 Let Q C RY be an open and bounded set. Assume further that
Q s convex in the x1 direction and symmetric with respect to the plane x; = 0.
Assume that the function [ satisfies (F'1) and g satisfies

(CNJ) The function g : Q0 — R is symmetric with respect to x1 = 0 and decreasing
in the xy direction, for x = (x1,2') € Q, x1 > 0.
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Let u be a positive classical solution of

{(—A)"‘U(ﬂi) = flu(z)) +9(z), =€,

u(z) =0, x € Q°. (1.25)

Then u is symmetric with respect to xy1 and it is strictly decreasing in the x, direc-
tion for v = (x1,2") € Q, 1 > 0.

1.4 Symmetry of solutions in RY

In this section we study radial symmetry results for positive solution of equation
in RY, in particular we will provide a proof of Theorem . In the case
of the whole space, the moving planes procedure needs to be started in a different
way, because we cannot use the Maximum Principle for small domains. We use
the moving plane method as for the second order equation as in the work by Li
[62] (see also [77]).

In this section we use the notation introduced in ([1.14])-(1.16) and we let u be a
classical positive solution of ([1.5)). In order to prove Theorem we need some
preliminary lemmas.

Lemma 1.4.1 Under the assumptions of Theorem[I.1.5, for any X € R, we have
/ (f(ux) — f(u) " (uy —u)tdr < +oo.
DI

Proof. By our hypothesis, for any given A € R, we may choose R > 1 and some
constant ¢ > 1 such that

! < wu(x),up(z) <

W_ _W<SO fO?“CL”l’EBICpL,

where s is the constant in condition (F2).

If uy(z) > u(zx) for some x € ¥\ N B, we have 0 < u(z) < ux(x) < so. Using
(1.4) with v = uy(z), then

Fln(@) = J@) _ o o),
) = u(e)

then

2/Cui () [(ua(z) — u(z))"]*

Cul " (x),

(f (ur(x)) = f(u(@))) " (ur(z) — u(x))

VARVAN
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for certain C' > 0. We observe that, if uy(z) < u(z) for some z € ¥y N B%, then
inequality above is obvious. Therefore,

(f(up) = f(w) T (uy —w)" < Cul™ in )N B

Now we integrate in ¥ N Bf to obtain

L G = sy m—wtar < 6 e

SANBg

< C [ |z dr < +oo,
Br

where the last inequality holds by (1.6). Since u and u, are bounded and f is

locally Lipschitz, we have

/E . (f(uy) — f(u))+(u)\ _ u)+dx < +oo

and the proof is complete. O

It will be convenient for our analysis to define the following function

{(u,\ —u)t(z), x€X,, (1.26)
(ux —u) (x), =z e,

where (uy —u)*(z) = max{(u) —u)(x), 0}, (ux —u)” (x) = min{(uy — u)(z), 0}.

Lemma 1.4.2 Under the assumptions of Theorem there exists a constant
C > 0 such that

N—-2

/E (—A)*(uy — u)(uy — u)"da > 0(/ |w| ¥z d) N (1.27)

DI
Proof. We start observing that, given x € ¥, we have

w(zy) = (ux—u) (x)) = min{(uy — u)(z,), 0} = min{(uv — uy)(z), 0}
= —max{(uy — u)(x), 0} = —(ur — u)*(z) = —w(z)

and similarly w(z) = —w(z,) for x € 3§ so that
w(x) = —w(zy) for zcRY. (1.28)

This implies

2N 2N 2N 2N
/ |w|¥=2dx = |w|¥=2adx + |w|¥=2adx = 2 |w|¥=2adz.  (1.29)
RN A Eg\ Za
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Next we see that for any x € X, Nsupp(w) we have that w(z) = (u) — u)(z) and

(—A)*(ur — w)(z) = (~A)*w(z), ¥z € Ty Nsupp(w),

(ux — u)(2) — w(z)

(~8)"w(e) ~ () —u)e) = | e
_ / (uy — u)(2) Qs 4+ / (uy — u)(2) i
San(supp(w))e [T = 2[VH2e s¢ n(supp(w))e [T — 2|V +22
1 1
- - - dz < 1.
/zm(supp(w))c<w u)(2)( Z— Ve = Z)\|N+20l) 2 <0, (1.30)

where we used that uy —u < 0 in Xy N (supp(w))® and |z — z| < |z — z,] for
x,z € Xy. From ({1.30)), using the equation and Lemma we find that

/E(—A)O‘wwdx < /E(—A)o‘(u,\—u)(u,\—ufrdx (1.31)
< [ () = f) - wtde <o (132

From here the following integrals are finite and, taking into account (1.28]), we
obtain that

/ (=A)Sw|dr = [(—=A)2w|*dx + (=A)2w|*dx
RN

|
b ¢

= 2| |(-A)2w|’dz. (1.33)
DI)N

Now we can use the Sobolev embedding from HY(RY) to L% 2 (RY) to find a
constant C' so that

«@ 1 [e] —ZQ
(C)tuPde = 5 [ () ePdez o[ ol PEdn) T
Z)\ 2 RN RN
= C@2 [ |jw|¥m=dr) V. (1.34)

DI

On the other hand, from (1.28) and (1.31]) we find that

[earupe = [ apuwie=2 [ o ui

PN

< 2/2 (—A)*(uy — u)(uy — u)d. (1.35)
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From ([1.34) and the proof of the lemma is completed. O
Now we are ready to complete the proof of Theorem [1.1.2]

Proof of Theorem We divide the proof into three steps.

Step 1: We show that A := sup{\ | uy < u in X,} is finite. Using (uy — u)* as

a test function in the equation for v and u), using and Holder inequality, for

A big (negative), we find that

=80 = w) o =) da= [ () = ) — "o

Xx
< / [f(U)\) — f<u>]+[(u>\ _ u)-}-]de
N Uy —Uu
§C/ u}\wzdxﬁé/ 25| "™ w?dx
A N
<C([ o ) V([ ) T

By Lemma [I.4.2] there exists a constant C' > 0 such that

([ el < o[ ¥ e T,
Za 2 2

but we have

_ Nm~y
|zp|” 20 dz < /
DI )

so that, using 1} we can choose R > 0 big enough such that CR**™™ < %,
then we obtain

yx\NJZ”dxg/ 2| d = cf A ),

(&3 Cc
A By

/ lw| V2 dy =0, ¥ A< —R.
DI

Thus w = 0 in ¥, and then u), < u in X,, for all A < —R, concluding that
Ao > —R. On the other hand, since u decays at infinity, then there exists A; such
that u(z) < uy,(z) for some x € ¥y,. Hence )\ is finite.

Step 2: We prove that u = uy, in X),. Assuming the contrary, we have u # u,,
and u > uy, in X),. Assume next that there exists xy € X, such that uy,(zg) =
u(xg), then we have

(=8)%uxg(x0) — (=A)%u(x0) = f(uxre(w0)) — flulz0)) = 0. (1.36)
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On the other hand,

(=) s, ) = (=) u(e) = = [ waly) —uly) ,

o Tzo — g2
/ (urg () — () (—— L a0
= - Ung\Y) —U\Y - Y s
Sag ’ lzo — Y|V T2 Jag — gy [V

which contradicts ((1.36]). As a sequence, u > wuy, in 3.

To complete Step 2, we only need to prove that u > uy in X, continues to hold
when \g < A < A\g+¢, where € > 0 small. Let us consider then € > 0, to be chosen
later, and take A € (Ao, Ao + ). Let P = (A,0) and B(P, R) be the ball centered
at P and with radius R > 1 to be chosen later. Define B = ¥, N B(P, R) and let
us consider (uy — u)T test function in the equation for u and wy in Xy, then from
Lemma [[.4.2] we find

( / | )T < C / (f(un) = F))(ur — u)*de. (137)

We estimate the integral on the right. Since f is locally Lipschitz, using Holder
inequality, we have

[ (f(un) — F))(ur — u)*dz < C /B [0 X auppun '+ 42

B

N—2«

= 0|f3>msupp(w—u)+|“’ﬁ(/~ w| ¥z dy) N (1.38)
B

On the other hand, for the integral over X \ B, we assume R and Ry are such that
¥a\ B C BY(P, R) C Bg,(0), proceeding as in Step 1, we have

[ = =i < 0 [ gt

<o JmlFanR (| ol
ZA\B E/\
< CRe™™™( / w| ¥ dz) v (1.39)
Za

Now we choose Ry such that C'Ry>*™™ < 1/2, then choose R so that ¥, \ B C
B¢(P,R) C B% (0) and then choose € > 0 so that C|B N supp(uy — u)™|¥ < 1/2.
With this choice of the parameters, from ((1.37)), (1.38) and (1.39)) it follows that
w = 0 in X, which is a contradiction, completing Step 2.

Step 3: By translation, we may say that A\g = 0. An repeating the argument from
the other side, we find that u is symmetric about x;-axis. Using the same argument
in any arbitrary direction, we finally conclude that u is radially symmetric.
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Finally, we prove that u(r) is strictly decreasing in r > 0, by using the same
arguments as in the case of a ball. This completes the proof. O

At the end of this section we want to give a theorem on radial symmetry of
solutions for equation (|1.5)) in a case where f is only locally Lipschitz in (0, c0),
see [40] and [39] for the case of the Laplacian. In precise terms we have

Theorem 1.4.1 Let u be a positive classical solution of

(=A)u=uP —u? in RY, (1.40)
u>0 in RY, limpy e u(z) =0, '
satisfying o
w(x) =0(|z|” ¢ ) as |z] = oo, (1.41)

where a € (0,1), N > 2 and 0 < ¢ < 1 < p. Then u is radially symmetric and
strictly decreasing about some point.

Proof. We denote f(u) = u? —u? for u > 0, and consider v > 0 and sy small
enough, then for all u, v satisfying 0 < u < v < sg, we have

fw) = fu)

<0< C(u+v),
v—u

for some constant C' > 0, so that (F2) holds. We also observe that for a positive
classical solution u of , u > ¢ in any bounded domain €2, for a constant ¢ > 0
depending on €2 and then, in we may use Lipschitz continuity of f in the
bounded interval [c, supu]. We set m = 2% and v may be chosen so that 1)
holds. The proof of Theorem [1.4.1| goes in the same way as that of Theorem

O

Remark 1.4.1 In a work by Valdebenito [92], the estimate is obtained by
using super solutions and Theorem |1.4.1 is proved using the local extension of
equation as given by Caffarelli and Silvestre in [22] and then using a reg-
ular moving planes argument as developed for elliptic equations with non-linear
boundary conditions by Terracini [91)].

1.5 Symmetry results for system
The aim of this section is to prove Theorem by the moving planes method
applied to a system of equations in the unit ball B;. Let 3, and T) be defined as
in Section §1.3. For z = (z;,7') € RY and A € (0,1) we let zy = (2\ — 21, 2'),
ux(@) =u(zy),  wru(z) =ur(z) — (@),
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ua(z) =v(xy), and wy,(z)=0vr(z)—v().

Proof of Theorem We will split this proof into three steps.

Step 1: We start the moving planes proving that if A is close to 1, then w), and
W), are positive in Xy. For that purpose we define

Y = {r e Xy | wyu(zr) <0} and Yie = {r € X\ | wy,(z) <0}

We show next that Xy is empty for A close to 1. Assume, by contradiction, that
3\, is not empty and define

wk,u(x), T e 2;\7“,
wy,(7) = A (1.42)
0, v €RV\ 3},
and -
wy (z) = " " E S (1.43)
A wiu(r), T ERV\ XY, '

Using the arguments given in Step 1 of the proof of Theorem [1.1.1] we get
(=A)"wy (7)) > (=) wyy(x) and  (=A)Mwy () <0, (1.44)
for all z € X3y . From here, using equation , for z € ¥y, we have
(=A)Mwy,(z) = (=A)"ux(z) — (=A)"u(z)
filua(@)) + g1(z) = f1(v(@)) — g1 (2)

Po(T)wrn() + g1(22) — 91(2)
> pp(z)wi (), (1.45)

where ¢, (z) = (fi(va(x)) — fi(v(z)))/(va(x) — v(x)) and where we used that g; is
radially symmetric and decreasing, with |z| > |z,|. We further observe that, since
f1 is locally Lipschitz continuous, we have that ¢,(-) € L>(2y ). Now we consider
(1.45) together with wy, = 0 in (X} ,)° and wy, < 0 in X}, to use Proposition
to find a constant C' > 0, depending on N and « only, such that

+1l—a + ||
||Loo(12;’u)||<_sovw>\ﬂ)) |L§V(27 ) (146)

Au

”wj\r,uHLoo(E;m) < Cll(—=pvway)
We observe that diam(X} ) < 1. Since f; is increasing, we have

—pywyr,y = fi(v) = fi(va) <0 dn (X,)° and (1.47)
—puwry = fi(v) = fi(vx) >0 in Iy . (1.48)
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Denoting Xy = ¥y N Xy, from , and , we obtain

a1
WX ull oo ) < Cll=Pvwrw) ooy X, (1.49)
Similar to ((1.42)) and (1.43]), we define

Wi (2) = wyy(x), x€ DI
” 0, TR\ 3},

and

- () 0, T € Xy,
wy () =
A wro(r), xeRV\ET,.

With this definition ((1.49)) becomes
e
it ol sy < Ol e [Z517 (1.50)

where we used that ¢, is bounded and we have changed the constant C if necessary.
At this point we observe that if wj{,v = 0 then w;ﬁu = 0 providing a contradiction.
Thus we have that Xy # () and we may argue in a completely analogous way to
obtain
_ 2
||w)tv||L°°(E;’v) < OHw)tu”Loo(z;)m/\ ¥, (1.51)

that combined with (1.50)) yields

aqtag

|3 s ) < CPIER T Lo -

and .
_ a1 Tag
Hw;\r,vHLOO(Z;’U) <CENITH ”w)thLOO(E;’U)‘
Now we just take A close enough to 1 so that 02\2;]%;&2 < 1 and we conclude
that Hw)tu”L‘X’(E;u) = Hw,J\F,UHLoo(z;v) =0, s0 |2;,u| = |Z;,U| = 0 and since X} , and

¥, are open we have that Xy 3, = 0, which is a contradiction.

Thus we have that wy, > 0 in X, when A is close enough to 1. Similarly, we
obtain wy, > 0 in Xy for A close to 1. In order to complete Step 1 we will prove
a bit more general statement that will be useful later, that is, given 0 < A < 1, if
Wry > 0,wx, >0, wy, #0and wy, # 0 in Xy, then wy, > 0 and wy, > 0 in X,.
For proving this property suppose there exists xy € X such that

W (o) = 0. (1.52)
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On one hand, by using similar arguments yielding ({1.24]) we find that
(—A)*wy 4 (x0) < 0. (1.53)

On the other hand, by our assumption we have that wy ,(x¢) = va(xo) — v(xg) > 0
and since |zg| > |(z9),|, from the monotonicity hypothesis on f; and g;, we obtain

fi(oa(zo)) > fi(v(zo)),  g1((z0)r) = g1(x0).
Thus, using , we find
(=A) ™ wru(ro) = fi(valwo)) + 91((z0)r) — fi(v(20)) — 91(20) = 0,

which is impossible with ((1.53)). This completes Step 1.
Step 2: We prove that Ay = 0, where

Ao =inf{A € (0,1) | wry , wr, >0 in Xy}

If not, that is, if A\g > 0 we have that wy, 4, Wx,n > 0 and wyyu, Wx,» Z 0 in Xjy,.
If we use the property we just proved above, we may assume that w),, > 0 and
Wy, > 0 in Xy,. In what follows we argue that the plane can be moved to left,
that is, that there exists € € (0, \) such that w,_, > 0 and wy_, > 0in X,_, where
Ae = Ao — €, providing a contradiction with the definition of A.

Let us consider the set D, = {x € X, | dist(z,0X)) > p} for g > 0 small.
Since wy ., Wy, > 0in Xy and D, is compact, then there exists pp > 0 such that
Wxus Wry > o in D,,. By continuity of wy () and w) ,(z), for € > 0 small enough,
we have that

Wr u, Wr,p >0 in D,

and, as a consequence, ¥y . ¥y C X, \ Dy, and |¥y [ and |3} | are small if
€ and p are small.

Since f; and fy are locally Lipschitz continuous and increasing, g; and gy are
radially symmetric and decreasing, we may repeat the arguments given in Step 1
to obtain e

||w)t,uHL°°(E>_\€7u < 02’2/;'%Hw;\:,u“Lw(E;&u)

and

1+ 2
||w>t,v||Loo(2;M < 02|2/\6 ||w/\6 [ Shew)
where X7 =X} NY5 . Now we may choose € and p small such that C?|X5 |~ s
1, then we obtain ||wA u||Loo(E* )= = [Jw ,\E,vHLw(y -y = 0. From here we argue as

in Step 1 to obtain that wy_, and Wy, p are p081tlve in ¥,_, completing Step 2.

Finally, we obtain that v and v are radially symmetric and strictly decreasing
respect to r = |z| for r € (0,1) in the same way in Step 3 in the proof of Theorem

37



1.6 The case of a non-local operator with non
homogeneous kernel.

The main purpose of this section is to discuss radial symmetry for a problem
with a non-local operator L of fractional order, but with a non-homogeneous kernel.
The operator is defined as follows:

Lule) = PV. [ (ua) = uln) K, = ) (1.54)

where the kernel K, satisfies that

K,(z) e <L (1.55)
xTr) = .
g W%a ‘l" 2 1

with € [0,1] and aq,ay € (0,1). Being more precise, we consider the equation

{EU(x) = [(u(x)) +g(z), =€ By,

(1.56)
u(z) =0, x € BY,

and our theorem states as follows.

Theorem 1.6.1 Assume that the function f satisfies (F1) and g satisfies (G). If
w 18 a positive classical solution of , then uw must be radially symmetric and
strictly decreasing in r = |x| forr € (0,1).

The idea for Theorem is to take advantage of the fact that the non-local
operator L differs from the fractional Laplacian by a zero order operator. Using
this idea, we obtain a Maximum Principle for domains with small volume through
the ABP-estimate given Proposition[I.2.1]and we are able to use the moving planes
method as in the case of the fractional Laplacian. We prove first

Proposition 1.6.1 Let Xy and X, be defined as in the Section §1.3. Suppose that
© € L®(X,) and that wy € L¥(RY) N C(RY) is a solution of

{—Ew)\(x) < p(r)wy(z), x€ Xy,

1.57
wy(x) >0, r e RN\ Xy, (157)

where L was defined in . Then, if |£y]| is small enough, wy is non-negative
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m Xy, that is,
Wy Z 0 in E)\.

Proof. We define wy (x) as in ([1.18)), then we have

+ o+ + L F
Lw;r(x) _ / Wy () Wy (Z)dz 4 ,u/ Wy () Wy <Z)dz
Bi(x) RN\Bj (x)

|l‘ _ Z|N+2a1 |I’ _ Z|N+2a2

= (=A)"wy (x)

v 1
+/ wi(x) —wi(z _ "
RN\Bl(I)( A () —wy ( ))(‘x_Z’N+2a2 |x—z|N+2a1>

< (=AM wi(x) + QOOHIU;\FHLOO(E;) ;T E X,

where Cy = fRN\Bl ‘|y\Nli2a2 — |y\N£2a1 |dy. Thus we have
A“wi (z) < —Lw (x) + 200||wj{||Loo(E;) , TEX. (1.58)

Since K, is radially symmetric and decreasing in |z|, we may repeat the arguments

used to prove ([1.20) to get
Lwy (x) <0, VzekXy, (1.59)

where 0 < A < 1 and wy was defined in (1.19). Using (1.58)), the linearity of L,

(1.59) and equation (1.57), for all x € 3}, we have

A%wy(x) < —Lwa(z) + Lwy (2) + 2C0[[wy || g 55
< —Lwy(z) + 200||w;\“||L00(2;)
< p(@)wa(z) + 2CO||wj\rHLoo(2;) < Cl”wj\rHLoo(E;)a (1.60)
where C} = ||¢|(s,) + 2Co and we notice that wy = wy in 5. Hence, we have

wy (z) =0, zeRYV\ X7,

Then, using Proposition with h(x) = 01||w;f||Loo(Z;), we obtain a constant
C > 0 such that

. e
||wj\r||Loo(2;) = _m_fw;\r < Cdew;\r”Loo(E;)’Z)\ |~
A

where d = diam/(Xy). If |27 | is small enough we conclude that ||wyl|;es—y =
A A L=(33)
||w}\L||Loo(E;) = 0, from where we complete the proof. O

Now we provide a proof for Theorem [1.6.1]
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Proof of Theorem [1.6.1. The proof of this theorem goes like the one for Theorem
where we use Proposition [1.6.1] instead of Proposition and £ instead of
(—A)*. The only place where there is a difference is in the following property: for
0< A<, ifwy>0and wy #0in X,, then wy > 0 in X,.

For 1 € (0,1], since K, is radially symmetric and strictly decreasing, the proof
of the property is similar to that given in Theorem So we only need to
prove it in case u = 0 so the kernel K vanishes outside the unit ball B;. Let
us assume that wy, > 0 and wy #Z 0 in 3, and, by contradiction, let us assume
Yo = {z € X, | wa(x) = 0} # . By our assumptions on w, we have that
Ya\ X0 ={z € 3, | wx(x) > 0} is open and nonempty. Let us consider zy € ¥
such that

dist(zo, Sy \ o) < 1/2, (1.62)

and observe that (X \ Xo) N Bi(zg) is nonempty. Using we have
Lwy(xg) = Luy(zg) — Lu(xg)
= f(ua(xo)) = f(ulwo)) + 9((x0)x) — g(w0)
= 9((20)x) = g(x0) = 0, (1.63)

where the last inequality holds by monotonicity assumption on g and since |zg| >
|(z0)a]. On the other hand, denoting by Ay = {(z1,2') € RY | z; > A}, since

wy(z0) = 0 and wy(z)) = —wy(2) for any z € RY, we have
Lun(zy) = — / wy(2) Koo — 2)dz — / ws(2) Ko(wo — 2)d
Ay RN\AA

= — /AA wy(2)Ko(zg — 2)dz — / wy(2x) Ko(zo — 22)dz

Ay
- —/ wn(2) (Kolzo — 2) — Kolwo — 22))dz.
Ax
Since |xg — 2| > |zo — 2| for z € Ay, by definition of Ky, ¥, and ¥y, we have that
Ko(xg —2) > Ko(zg — 2)) and wy(z) >0 for ze (X,\ Xo) N Bi(xo),

and we also have that wy(z) > 0 and Ky(zo — 2) > Ko(xg — 2zy) for all z € Ay, so
that

Lwy(zg) <0,
contradicting ((1.63). Hence ¥, is empty and then wy > 0 in X, completing the
proof of the theorem. O

Remark 1.6.1 The theorem we just proved can be extended to more general non-
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homogeneous kernels in the following class

(o) = x| N2z e B, (164
0(z), x € B, '

here o € (0,1), r > 0 and the function 0 : B — R satisfies that

(C) 6 € LY(BS) is nonnegative, radially symmetric and such that the kernel K is
decreasing.
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Chapter 2

Qualitative properties of positive
solutions for mixed integro-
differential equations

Abstract: in this chapterfl], we consider the decay and symmetry properties
of solutions to mixed integro-differential equations

{<—A>gu+ (-A)utu=flu) in RYxRY, 2.1)

u >0 in RN % R]V[, lim‘(z7y)|_>+oo u(x, y) = O’

where N > 1, M > 1, the operator (—A), is the laplacian with respect to y, (—A)¢
is the fractional laplacian of exponent o € (0,1) with respect to z. In studying
the decay, we construct appropriate super and sub solutions and then we use the

moving planes method to prove the symmetry properties.

2.1 Introduction

The study of qualitative properties of positive solutions to semi-linear elliptic
equations in R has been the concern of numerous authors along the last several
decades. The asymptotic behavior of the solution at infinity, the actual rate of
decay and symmetry properties have been the most studied qualitative properties
for these equations. It was the seminal work by Gidas, Ni and Nirenberg [51] that

! This chapter is based on the paper: P. Felmer and Y. Wang, Qualitative properties of positive
solutions for mized integro-differential equations, submitted.
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settled these two main qualitative properties for the semi-linear elliptic equation

{—Au—i—u:f(u) in R, 2.2)

w>0 in RM im0 u(y) =0,

when the non-linearity is merely Lipschitz continuous, super-linear at the zero, in
the sense that
f(s)=0(s") ass—0, (2.3)

for some p > 1, and M > 3. Gidas, Ni and Nirenberg proved that the solutions of
(2.2) are radially symmetric and they satisfy the precise decay estimate
M—1

lim u(y)e|y| "= =, (24)

ly|—+o0

for certain constant ¢ > 0. After this work, many authors extended the results
in various directions, generalizing the non-linearity, the elliptic operator or the
hypotheses on the solutions. Out of the very many contributions in this direction
we mention here only a few: Berestycki and Lions [7], Berestycki and Nirenberg
[8], Brock [15], Busca and Felmer [16], Cortazar, Elgueta and Felmer [40], Da Lio
and Sirakov [42], Dolbeault and Felmer [43], Gui [53], Kwong [60], Li and Ni [63]
and Pacella and Ramaswamy [77].

Recently, much attention has been given to the study of elliptic equations of
fractional order. In this direction, Felmer, Quaas and Tan in [45] studied the
problem

{(—A)au—i—u:f(u) in RV 25)

u>0 in RV, limg| 400 u(z) = 0.

They proved existence and regularity of positive solutions, and also decay and

symmetry results. Precisely, it was proved that the solutions u of (2.5)) satisfy
c ! c

v S @) € Ty x| > 1, (2.6)
|z |z

for some ¢ > 1, when f is superlinear at 0 in the sense that

lim &

s—0 8

= 0.

The radial symmetry of the solutions of ([2.5)) is derived by using the moving planes
method in integral form developed in [30, [64], assuming further that f € C1(R), it
is increasing and there exists 7 > 0 such that

lim I'(s)

s—0 87

= 0. (2.7)
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This symmetry result was generalized by the authors in [46], using an appropriate
truncation argument together with the moving planes method with ideas developed
in [62]. We refer to some other papers with more discussions on qualitative prop-
erties of solutions to fractional elliptic problems as Cabré and Sire [18], Caffarelli
and Silvestre [22], Chen, Li and Ou [30], Barles, Chasseigne, Ciomaga and Imbert
[38], Dipierro Palatucci, Valdinoci [41], Li [64], Quaas and Xia [80], Ros-Oton and
Serra [81] and Sire and Valdinoci [8§].

Both operators, the laplacian and the fractional laplacian, are particular cases
of a general class of elliptic operators connected to backward stochastic differential
equations associated to Brownian and Levy-Ito processes, see for example Bar-
les, Buckdahn and Pardoux [2], Benth, Karlsen and Reikvam [6] and Pham [79].
Recently, Barles, Chasseigne, Ciomaga and Imbert in [3, 4] and Ciomaga in [3§]
considered the existence and regularity of solutions for equations involving mixed
integro-differential operators belonging to the general class of backward stochas-
tic differential equations mentioned above. A particular case of elliptic integro-
differential operator of mixed type is the one considering the laplacian in some of
the variables and the fractional laplacian in the others, modeling diffusion sensible
to the direction. In view of and we may write similarly

{(—A)gu + (_A)yu +u= f(u)v <x’y) € RN % RM7 (2.8)

u>0 in RY x RM, 1| ()| 400 u(2, y) = 0,
where N > 1, M > 1. The operator (—A), denotes the usual laplacian with

respect to y, while (—A)¢ denotes the fractional laplacian of exponent a € (0, 1)
with respect to x, i.e.

Aty - [ uz,y) —ulay) (2.9)

RN |£B _ Z|N+2a

for all (x,y) € RY x R™. Here the integral is understood in the principal value
sense.

In view of the known results on decay and symmetry for solutions of equations
(2.2) and just described above, it is interesting to ask if these results still
hold for solutions of the equation of mixed type , where the elliptic operator
represents diffusion depending on the direction in space. Regarding the asymptotic
decay of solution at infinity, the question is interesting since a proper mix of the
two variables should be obtained for the decay estimates. The natural way to
estimate the decay is through the construction of super and sub solutions involving
the fundamental solution of the elliptic operator, which in this case is singular in
RN x {0}. Moreover, the solution of cannot be radially symmetric, so this
property cannot be used to estimate the decay. On the other hand, regarding radial
symmetry, we may still have symmetry in x and y, but the moving planes method
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would require an adequate version of the Hopf’s Lemma, that we prove here.

Our first theorem in this chapter concerns the decay of solutions for (2.8]) with
general nonlinearity and it states as follows.

Theorem 2.1.1 Let « € (0,1), NNM € N, N > 1 and M > 1 and let us assume
that the function f : (0,400) — R is continuous and it satisfies

—00 < B:= liminfM <A:= limsupm <1 (2.10)
v—=0t v v—0+ v
Let u be a positive classical solution of problem (@, then for any € > 0 small,

there exists C. > 1 such that for any (z,y) € RY x RM,
11+ [al) N2 < ua,y) < Cu(L 4 [a) V20N, (2.11)

where

0, =vV1—-A—¢ and 0y=+v1—B-+e. (2.12)

When we compare estimate with for N = 0, we first observe that
in ours an exponential decay is obtained, but with a constant C. depending on
€, which is a parameter controlling the rate of exponential decay. This is more
clear when A = B = 0. On the other hand we are making much more general
assumptions on f and, in particular, we are not making any assumption on the
radial symmetry of the solution, which is crucial in proving . We do not know
of a decay estimate better than

Cle Wl < y(y) < Ce=0l y € RM, (2.13)

for solutions of under assumption for f, and where radial symmetry
of the solutions is not available, like in a case where f may depend on y. On
the other hand, when M = 0, we recover from . For the proof of the
decay estimate we construct suitable super and sub solutions and we use
comparison principle with a version of Hopf’s lemma.

When we assume further hypothesis we can get sharper estimates for the decay
of the solutions of equation (2.8)). Precisely, we have the following result:

Theorem 2.1.2 Assume that « € (0,1), N > 1, M > 5 and the non-linearity
f:(0,400) — R is non-negative and it satisfies . Let u be a positive classical
solution of @, then there exists a constant ¢ > 1 such that for all (z,y) €
RN x RM,

1 1
—pla,y) < ulz,y) < cp(z,y)(1+Jy))2, (2.14)
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where the function p is defined as

1 N M €_|y||y|1_%

p(.’lf,y) = min{m, 67‘y|’y‘7577 , W} (215)

We notice that this theorem gives the expected exponential decay for positive
solutions, as suggested by , assuming the dimension of the space satisfies
M > 5. Moreover, it gives the expected polynomial correction for the lower bound
with a gap in the power for the upper bound. This theorem is proved under
the assumption (2.3) on the non-linearity, constructing super and sub solutions
devised upon the fundamental solution of (—A)% 4+ (—A), +id. In our argument,
a crucial role is played by the estimate already obtained in Theorem [2.1.1} Since
the fundamental solution of (—A)% + (—=A), + id has RY x {0} as singular set,
we cannot use the method in [51] in order to derive our estimate. Moreover, some
other arguments in [5I] cannot be used either because the solutions of are
not radial, since the differential operator is not radially invariant and there are no
solutions depending only on one of the x or y variables, as can be seen from ([2.14)),

Even though solutions of (2.8]) are not radially symmetric, we can prove partial
symmetry in each of the variables x and y and this is the content of our third
theorem.

Theorem 2.1.3 Assume that a € (0,1), N > 1, M > 1 and the function f :
(0, +00) — R is locally Lipschitz and it satisfies . Moreover, we assume that
f also satisfies

(F') there ezist ug > 0, v > MLM - o= and ¢ > 0 such that

w <cew? forall 0<u<wv<ug. (2.16)

Then, every positive classical solution u of equation (@) satisfies
u(z,y) = u(r, s)
and u(r, s) is strictly decreasing in r and s, where r = |z| and s = |y|.

When N = 0, we see that assumption (F') implies v > 0 and coincides
with the assumption considered in [62]. When M = 0, assumption (F') implies
that v > Ni‘ga and it coincides with the assumption considered in [46], when the
solutions is assumed to decay as a power N + 2a at infinity. We remark that
the operator (—A)% + (—A), is a combination of two operators with different
differential orders in x—variable and y—variable, and this produced a combined
polynomial-exponential decay and does not allow for radial symmetry, but only

partial symmetry as stated in Theorem [2.1.3]
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The proof of Theorem is based on the moving planes method as developed
in |46l [62]. In these arguments, the strong maximum principle plays a crucial role
and it is available for the laplacian and for the fractional laplacian. However, in
the case of our mixed integro-differential operator some difficulties arise and we
overcome them with a version of the Hopf’s Lemma.

2.2 Preliminaries

This section is devoted to study the Strong Maximum Principle for mixed
integro-differential operators as in equation (2.8). To this end, we prove first a
suitable form of the Hopf’s Lemma.

However, before to go to this, we recall some basic properties of the Sobolev
embeddings. If we denote the Sobolev spaces

H(RN+M) _ {w c L2(RN+M)|/ / (‘€1|2a_|_ ’52‘2 + 1)‘w<£17€2)|2d§1d£2 < OO}
RM JRN
and

H(RYM) = {w € L*RYY) | (11 + D] (&)[*d¢ < oo},

RN+M

with norms
ol = ([ [ &P+l + Dliter, )P dcadge)?
RM JRN
and
o . 1
Julle = ([ (= + Do) P,
RN+M

respectively, then it is not difficult to see that the following proposition holds.
Proposition 2.2.1 For a € (0, 1), we have that

H(RN™M) ¢ go(RNTM) ¢ [2(RNTM)),

where the first inclusion is continuous and the second inclusion is continuous if

1<p< Ji(ﬁ;ﬁl Moreover,

H(RNTMYy ¢ [P (RNFTM)

loc

2(N+M)
N+M—2a°

1s compact if 1 <p <

We devote the rest of this section to prove the Strong Maximum Principle in
our context and to this end, we start with versions of the Maximum Principle and
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the Hopf’s Lemma. In what follows, given 2 an open subset in RY x RM | we define
its closed cylindrical extension in the direction x as

Q={(v,y) eRY xRM: F 2/ e RN s.t. (z/,y) € Q}.

Given a function h defined in an appropriate domain, we consider the mixed
integro-differential operator

Lw(r,y) = (=A)qw(z,y) + (=A)yw(z,y) + hz,y)w(z,y).

Lemma 2.2.1 Assume that Q0 is an open domain of RN x RM and the function

h:Q — R satisfies h > 0 in Q. If the function w € C(Q2) N L>(Q) satisfies

Lw>0 in , w>0 in Q\Q,
(2.17)

lim inf(x,y)eQ,\(:c,yM—mo w(x, y) Z 0
then w > 0 in Q.
Proof. If not, we may assume that there exists some (g, yo) € €2 such that

w(xg,yo) = min_w(z,y) < 0.

(z,y)EN
Then
a o w(o, Yo) — w(z, Yo)
(—A)ow(xg, yo) = /RN 2o — 2N 2 dz <0
and

(=A)yw(wo,y0) <0

and then, since h is non-negative we have Lw(zg,yo) < 0, which contradicts (2.17)),
completing the proof. O

It what follows we prove a version of the Hopf’s Lemma and for this purpose we
need to give some conditions to the boundary of the domain where the function is
defined. We say that the domain Q C RY x RM satisfies interior cylinder condition
at (wo,yo) € O if there exist r > 0 and § € R™ such that O, = BN (zy) x BM ()
satisfies

O, CQ and (zg,yo) € 00,, (2.18)

where BN (zg) = {z € RN : |z —xo| < r} and BM(g) = {y e RM : |y —g| < r}
and, obviously |§ — yo| = . We define also

T - r
D ={(z,y) € O, : [z — x| < Bk ly =gl > 5} (2.19)
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Lemma 2.2.2 [Hopf’s Lemma/ Let Q be an open set satisfying interior cylinder
condition at (zo,yo) € 0. Assume that h € L>®(D) and w € C(Q) N L2()
satisfies

Lw>0 in Q

and
0= w(x07y0> < W(IL‘,y), V(ZL’,y) € Q.

Further assume that for r > 0 be given in and for any (x,y) € D we have

w(z,y)
————dz > 0. 2.20
/RN\B,{\’(xo) |z — z|N+2e (2:20)
Then -
lim sup %0 %0) = W(@o, 50 +55) (2.21)
s—0+ S
moreover, if the limit exists, then
ow
— <0 2.22

where n is the unit exterior normal vector of Q at the point (o, yo).

Proof. Let us define
puly) = eI — ey e BY(p), (2.23)
where [ > 0 will be chosen later. By direct computation, we have that
— Dpurly) = (2MB — 46°ly — ?)e ", (2.24)

Next we consider the function

v(r,y) = pn(T)em(y), (2,y) € Oy,

where  is the first eigenfunction of Dirichlet problem

{(—A)QSON(JU) = Mpn(z), € ng(ﬁo),

on(x) =0, z € RV \ B, (), (2.25)

where ¢ is positive and bounded in Bf\;Q (x0) and the first eigenvalue Ay, is positive,
see Propositions 9 and 4 in [86] and [85], respectively.
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For (z,y) € D, by (2.24) and (2.25)), we obtain that

Lo(x,y) = omy)(—=A)%on(z) + on(@)(—Aenm(y)) + Mz, y)on(T)oun(y)
= on(®)[Mpa(y) + 2MB — 432y — §1)e I 4 h(z, y)our(y)]
< on(@)e I N + 2MB — B2 + ||hl| L))

where the last inequality holds by the fact that 0 < pa(y) < e ?¥=9” and |y—g| >
r/2 in D. Let us choose 8 > 0 big enough such that

Ly <0 inD. (2.26)

On the other hand, since ¢y (z) = 0 for |[z—x¢| > /2 and ¢ (y) = 0 for |y—g| =7,
it is obvious that v = 0 in A; U Ay where Ay = {(z,y) € D : |z — x| > r/2} and
Ay ={(z,y) € D: |y — | = r}. If we define the set A3 := {(z,y) € D : |y — 7| =
7/2}, we see that D\ D = A; U Ay U A3. We also observe that v is a bounded
function in O, .

Next we prove (2.21)) assuming h > 0. Defining

w(z,y), (z,y) €O,
W(z,y) = {07 .)€ (2.27)

and using ([2.20]), we have that for any (x,y) € D,

LW (z,y) = Lw(z,y) —1—/ Mdz > 0.

RN\BN () |T — 2|V T2
Combining with (2.26]), we have that, for every e > 0
LW —ev) >0 in D. (2.28)

Since v is bounded in O,, the set As is a compact subset of O, and w > 0 in O,,
then there exists € > 0 small such that

W =w>ev in As.

Since v = 0 in A; U Ay, w > 0in O, and (2.27), we have W > 0 = ev in A; U A,.
Consequently, .
W—evw>0 in D\D.

Then we can use Lemma [2.2.1} recalling that h > 0 to obtain that
W—ev>0 in D.

In view of the definition of W, since D C O,, we find that w — ev > 0 in D and
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noticing that w(zg, yo) = v(zo, yo) = 0 we obtain that

w(xo, yo) — w(zo, Yo + 57) < EU(%, Yo) — v(zo, Yo + 57)
S f— )

for all s € (0,7/2). Thus, we have

w(xo, yo) — w(zo, Yo + 57) v(x0, Yo) — v(Z0, Yo + 57)

lim sup < € lim
50+ S s—0+t S
— con(ao) Tim o (Yo) — (Yo + 57)
s—0t S
= —2667“26_57"2@N(a:0)

< 0,

completing the proof of (2.21).

The case for general h can be done simply by replacing h by A™. In fact, since
w > 0 in €, we have

(—A);‘w(x,y) + (_A>yw(37> y) + th(.fL’,y)U)(Q?, y) > 07 <x7y) €
and similarly we obtain that
<—A)3U(QJ, y) + (_A)yv<x7y) + h+(33, y)'U(LU,’y) < 07 (27, y) € Du

so we may proceed as before to get (2.21)) and the proof is complete. O

In order to state the Strong Maximum Principle to be used in our moving planes
procedure, it is convenient to consider property (P):

(P) We say that a function w : Q — R satisfies property (P) if whenever (zg, 1) €
() such that

0=w(zg,y0) = inf w(x,vy),
(z,y)EN

then
w(x,y) =0, VoeRY.

The following lemma is in preparation of the strong maximum principle.

Lemma 2.2.3 Let Q be an open set in RY x RM and w have property (P). We
denote
Qo ={(z,y) € Q: w(w,y) = infw = 0}. (2.29)

If O # Q ; Q, then Q\ Qo satisfies interior cylinder condition at any point
(z0,%0) € 02 N K.
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Proof. Since § # Qy & Q, we have that @ # 0Q, N Q C I(Q\ Q). For any
(z0,y0) € O N, let us denote r = 1dist((zo, o), 02) and let § € RM such that
(z0,7) € Q\ Qo and |§ — yo| = r. Since w has property (P), then w = 0 in Qo,
where ) is the extension of ) in z-direction and as \ 2y is open, we have that
BN(z0) x BM(g) € Q\ Q. Therefore, 2\ Qq satisfies interior cylinder condition
at (1‘0, yo) € 0 N Q.

O

Theorem 2.2.1 [Strong Mazimum Principle] Let Q be an open set of RN x RM

the function h € LS.(Q) and w € C(§2) N L>(2) has the property (P) satisfying

loc

Lw>0 in and w>0 in Q. (2.30)

Assume that Qo # 0 defined by and there exists some (xq,yp) € 0 N €
such that holds in corresponding D.

Then w must be 0 in .

Proof. Assume that Qy # €. By Lemma , 0\ Qq satisfies interior cylin-
der condition at (z¢,10) € 9 N Q and then w(xg,yo) = 0 by w € C(Q) and
the definition of Qy. Furthermore, we observe that D is compact in Q and then
h € L>(D). Using Lemma , we obtain ([2.21)), which is impossible by the fact
of w(xg,yg) = infqw = 0. Therefore, g = Q, i.e. w =0 in Q. Since w has

property (P), then w =0 in . O

2.3 Decay estimate

2.3.1 Proof of Theorem [2.1.1]

In this subsection, we prove Theorem on decay estimates for positive
classical solutions of equation (2.8)). The main work is to construct appropriate
super and sub solutions and then the decay estimate is derived by Lemma [2.2.1}

Before proving Theorem [2.1.1} we introduce some computations gathered in the
next proposition. For o € (0,1) and p > 0, we define the function ¢, : RY — R

as follows N
phRe o <o,

Upu(x) = {Ix|N2a (2.31)

x| > p.

Proposition 2.3.1 For any p > 0, there exists Ry > 3u and ¢ > 0, independent
of u, such that

— CM_2a¢M($) < (FA)*u(x) < _C_IN_QQ@ZJM(I% T € Bp,. (2.32)
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Proof. We consider along the proof that ;> 0 and z € RY satisfies |x| > 3u. We
define

bu(x + 2) + du(x = 2) = 24,(2)

A(p,x, 2) = P , z e RY
and we observe that
1
(—A)4,(z) = —5/ A(p, z, z)dz. (2.33)
RN

Now we compute the integral above by decomposing the domain in various pieces.
First we consider the integral over B (0). We observe that |z + z| > u for all
3

z € B (0), then by ([2.31) we obtain
3

| Ap, 2, 2)dz|
B%(O)
| |.I'+Z|_N_2a—|—‘$—Z|_N_2a—2|x|_N_2ad |
= 2
B ©) 2|V F2a
Il
R |z—|—ex|_N_20‘+\z—ex\_N_Q‘”‘—Zdzl
By (0) 2| V2
3
< oq|p|TN T 2" dz < cy|z| N4 (2.34)
- By |2V T ’ ’ .
1

3

where e, = ﬁ and ¢, co > 0 are independent of . Next we consider the integral
over B (z)\ B,(x). We observe that for all z € B (x) \ B,(z) we have |z + 2| >
3 3

|z — z| > p and then we obtain

/ A(p, x, z)dz

B%(l‘)\BM(w)

B / |£L‘ + Z|7N72a + |ZE _ Z|7N72a _ 2|$|7N72a
Bl (2)\ By (@) |2 V2

dz

3

= |z _N_4‘”/ R "’]\L’i; o 2dz
By (ex)\B i (ex) | 2|V H2e
xT

< Cg|IL‘|_N_4a/ |Z _ €x|_N_2adZ < 04,u_2°‘|9c|_N_2a,
B (ex)\B & (ex)

1
3 [z]

where the first inequality holds since |z 4+ e,| > |z — e, for z € B%(em) \ Bﬁ(ex)
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and |z| > 2 for z € B%(ex). For the inequality on the other side, we obtain

/ A(p, x, z)dz
By (#)\Bp(x)

3

—N—-2«a —N—-2«a
T - Gy — 2
By (ex)\B 1 (ex)

% . |Z|N+2a
xT
s —e |—N—2a 2
> |z _N_4O‘(/ lz—el T dz —/ ———dz)
By (ea\Bu (e) 121N B, (ex) |2IN T2
3 ] 3
> 05\3:]N4a/ ]z—ex]’N’Qadz—cf;\:v]’N"‘a
B%(em)\Bﬁ(ew)
xT

> C7,u_2a|5(]|_N_2a —08|$|_N_4a

Y

where the second inequality holds by |z] < 5 for z € B 1 (ex). Consequently,

07#—20¢|$|—N—2a —Cg|1'|_N_4a S/ A(,LL,JT,Z)dZ S C4/L_2a|ZL'|_N_2a,
BL?(‘T)\BN(E)

(2.35)
where the constants c4,c7,cs > 0 are independent of p. The estimate for the
integral over B (—x) \ B,(—x) is similar.

3
Next we consider the integral over B,(z). We observe that, for z € B,(z) we
have since |z + z| > pu > |r — z| and |z| > || — pu > %, thus

—N—2«a —N—2a __ 2 —N—2«a
[ g [ g,
Bu(l’)

B, (x) || N+2e

—N—-2«
<9 o dz < Cg/L_Qa(|I| _’UJ)—N—Za < CIOM—2a|x|—N—2a
T U 12|V T N

and, for the other inequality

_2|x|—N—2a
Alp, x, z)dz > / ———dz
/Bm Bu 2N

> _CllMN‘x’—N—Za(‘x| o #)—N—2a 2 —612‘$’_N_4a,

where c¢g, c19, c11 and ¢y are positive constant independent of p. Therefore,

—cppla| TN < /B ( )A(,u,x,z)dz < crop” 2| TN (2.36)
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The integral over B,(—z) is exactly the same. Finally, we consider the comple-
mentary integral over D(z) = RY \ (B4 (0) U Bjsj () U Bz (—2)). For |z| > 3pu
3 3 3

and z € D(z), we have that |z + 2| > %, thus

—N—2«a _ o|-N—2« 2 —N—2«a
[ A < R w2 W
D(z) D(z) |z | +2e
1
< 613|x]N2a/ ——dz
RN\B |, (0) || N+2e
3
S C14|.T’7N74a, (237)

where ¢13 > 0 and ¢4 > 0 are independent of u. Therefore, by ([2.34)-(2.37)), there
exist ¢15,c16 > 1 independent of i such that

01—51M—Qa‘x’—N—2a . Clsyx‘—N—4a S / A(N, z, Z)dz
RN
< o™ a7 el N < eppp | N

where we used that |z| > 3u. Choosing Ry > 3u such that cj5 2% — ci5|z| 2% >

e p? for |z| > Ry, together with (2.33), we obtain (2.32). O

In what follows we provide a proof of our first theorem on the decay of the
positive solutions of our equation.

Proof of Theorem By definition of A and B in (2.10)), for any ¢ > 0,
there exits 0, > 0 such that

(B—e)t< f(t) < (A+edt, Yite(0,6). (2.38)

Since u is a positive solution of (2.8)) vanishing at infinity, there exists R, > 0 such
that 0 < u(wz,y) < d. for any (x,y) € Bf_. Therefore,

“Au+ (—Ayu+(1—A—AHu<0 in BS 2.39
x Yy Re

and
(=A)u+ (-A)yu+ (1 —B+€e)u>0 in By, (2.40)

Next we define the function ¢, : RM — R as ¢,(y) = e ¥, where v > 0 and we
find that for y € RM \ {0},

- a6, v (M ) o) (2.41)

Step 1. There ezists C(e) > 1 such that

u(z,y) < C(e)e W (z,y) € RY x RM. (2.42)
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To prove (2.42)) we let Uy (x,y) = ¢, (), for (z,y) € RY x RM and then, by (2.41)),

we have
(=A)2U; + (=A), Uy + (1 — A= AU,

= {91 (% - 91) +1—-A— 62} Uy >0, (2.43)
y

if ¢ < /1 — A. By definition of U; and ¢y, we have that U; = 1 in RY x {0} and
U, > e %% in Br and, since u is bounded, there exists p; > 0 depending on e,
such that

W1 = p1U1 —u >0 1in BRE U (RN X {0})

Combining with , we obtain
(AW + (=A), Wi+ (1—A—€)W; >0 in B; N(RY x {0})".
By Lemma , this implies that W; > 0 in RY x RM and then
u(x,y) < pUi(z,y) = pige, (y) = pre W (2,y) € RY x RM. (2.44)
Step 2. There exists C(€) > 1 such that
u(z,y) < Cle)|x| N2, (z,y) € RY x RM, (2.45)

Let c and Ry be as in Propositionmu = (¢/(2¢7/(1 — A) — 2¢%))2 and consider
the function Us(z,y) = v, (z), for (z,y) € RY x RM. Then, by (2.32)), we have for
all (z,y) € (Bp,(0)) x RM that

(_A)gUQ -+ (—A)yUQ -+ (1 — A — €2>U2
> (—ep ™+ 1—-A—)Uy >0 (2.46)

for 0 < € < /1 — A. Let us denote Wy = p2Us — u, where py > 0 is such that
Wo > pa(Ro+ Re) ™M™ —u >0 in Bp, U(BY (0) x RM).
Combining with , we obtain that
(=AW + (=A),Wo+ (1— A= )W, >0 in By N (BY (0) x RM)e.

By Lemma [2.2.1] we have that Wy = poUs —u > 0 in RN x RM and then, for all
(z,y) € RY x RY,

u(,y) < pols(z,y) = pathu(z) < palz| N2
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Step 3. There exists C(€) > 1 such that
u(z,y) < Cfe)|ax| N2~ (z,y) € RY x RM, (2.47)

Let us consider the function V(x,y) = ¢, (x)dy, (y), for (z,y) € RY x RM with u
as defined above. From (2.32)) and ({2.41]), we have that

(—=A)2V + (A, V+(1-A-E)V

M—1
= [_C,ﬂa o ( Y|

for (z,y) € (B, (0))° x (RM\ {0}) and assuming that 0 < e < v/1— A. Since u,

V are bounded in By, and V is positive, there is p; > 0 large such that

—01)+1—A—e2}‘/20, (2.48)

p1lV —u>0 in Bpg.
By and , we may choose p, > 0 such that
pV —u > ﬁgRO_N_zagbgl(y) —u>0 in % x RM  and
PV —u > popbu(r)—u>0 in RY x {0}.
Taking p = max{p1, p2}, defining W = pV' — u and combining with ([2.48),

we have that

W >0 in Bg U(BY (0) x RM)U (R x {0}) and

(AW + (=A), W+ (1 - A=W 20 in By N((Bg,(0))° x (RM\{0})).

Then, by Lemma [2.2.1] we have that pV —u > 0 in RY x R™. Thus, there exists
C(e) > 1 such that

u(z,y) < Cle)yu(@)da,(y) < Cle)fz| V22 W (2,y) € RY x RM.

Step 4. There exists Cy(e) > 0 and R > 0 such that

u(x,y) > Cy(e)e %W (z,y) € BN(0) x RM. (2.49)

Let Ry be asin Proposition and let R > Ry such that \; < €2, where )\, is the
first eigenvalue of the fractional Dirichlet problem with xg = 0 and r = 4R.
Let ¢ be the first eigenfunction of (2.25) and define Vi(x,y) = on(x)dg,(y) for
(z,y) € RY x RM. From (2.25) and (2.41)), for (z,y) € Byr(0) x (B} (0))° with
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Ry = @, we have

(—A)Vi 4+ (-A),Vi+ (1 - B+

M—-1
= |:>\1+92(T—92>+1—B+62:|‘/1

<[ +0x(e —0) +1— B+ €V, <0, (2.50)

if e < /1 — B. Let us define w; = u — r1 V3, where r; > 0 is such that

wy >0 in Bp, U (BY,(0) x BX(0))

and observe that w; > 0 in (BY,(0))¢ x RM since V; = 0. Combining (2.40)) with
(2.50)), we obtain that

(=A)Swy + (—A)yw; + (1 — B+ )w; >0 in (B%(O) X (B%(O))C) N Bg,
and then, by Lemma [2.2.1, we have that
wi=u—mV; >0 in RY x RM.

Since @y is classical solution of (2.25) with r = 4R and xy = 0 then ¢y(z) is
positive in BY (0) C RY, we can finally choose C(¢) > 0 such that

u(z,y) = rpn (), (y) > Crl)e ™, V(z,y) € BE(0) x RM. (2.51)
Step 5. There exists C(€) > 0 such that, for R and Ry as in Step 4,
u(z,y) > Cilz[7V72 (2,y) € (BR(0))° x B (0). (2.52)

To prove this, we define Va(z,y) = ¥, (z)nu(y) for (z,y) € RY x RM where ny,
is the solution of

(2.53)

{—AnM(y) =Ainu(y), y € BY(0),
nu(y) =0, y € (Bi(0))S,

with Ry, > R; such that \; < €2 Here p = [c(1 — B + 262)]% with ¢ as in

Proposition and 1, defined in (2.31). By (2.32) and (2.53)), for (z,y) €
((BR(0))° x RM) N (RN x B{ (0)), we have that

(=A);Va+ (=A), Vot (1= B+e)h
< (=T M+ 1 =B+ E)V, =0. (2.54)
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Let wy = u — ryVh, with r9 > 0 such that
wy >0 in Br, U(BN(0) x RM) U (RY x (BY(0))°).
Combining with , we obtain that
(—A)swy + (—A)yws + (1 — B+ 62)21}2 >0
in B N ((BR(0) x RM) N (RY x B (0)). By Lemma we have then
Wy =u—19Ve >0 in RY x RM.

Since 1y is positive in B (0) C Byl (0), there exists Cy(e) > 0 such that for any
(z,y) € (BR(0))° x BL(0), we have that

u(@, y) > rau(e)na(y) > Cule)|z] V72
Step 6. There exist Cy(€) > 0 such that, for R as in Step 4,
u(z,y) > Cy(e)|x| V2 %W (2,y) € (BR(0))° x RM. (2.55)

To prove this We let V(x,y) P9, (y), for (x,y) € RY x RM with y as defined

for (z,
above. Using (2.32)) and ( - for (z,y) € (BR(0))° x (BX(0))¢ with Ry = =1,

we have that

(=A)2V + (=A),V +(1 - B+ )V
y
< [fy(e—60y)+1— B+ €V <0, (2.56)

if 0 < € < /1 — B. Since u is positive and V is bounded in Bg,_, we can choose
71 > 0 such that o
u — FIV >0 in BRE'

Since 1, is bounded in By (0), using |D there exists 79 > 0 such that
u— 7V > u—racie ¥ >0 in BN(0) x RM,

and by (2.52)), there exists 75 > 0 such that

u—73V >u—r3lz[ N7 >0 in (B (0)° x BE(0).
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Taking 7 = min{7, 79, 73} and combining (2.40) with (2.56]), we obtain that

w=u—7V >0 in Bp U(BY(0)xRY)U((BF(0) x By (0)) and
(=A)jw + (=A)yw+ (1 = B+ejw >0 in By N((Bg(0))° x (Bg,(0))°).

Thus Lemma we have that w > 0 in RY x R™ and then (2.55) holds.
Finally, Step 1 — Step 6 completes the proof. O

2.3.2 Proof of Theorem 2.1.2]

This subsection is devoted to prove Theorem Our proof is based on the
fundamental solution of the mixed integro-differential operator. We first study the
fundamental solution C for

(~A)u+ (~A)utu=0 in RV x R\ {0}),

which can be characterized by

K(z,y) = /000 e "H(x,y,t)dt, (2.57)

where
H(z,y,t) :/ / e~ 2miley) (G.8) -G +He ) ge ge, . (2.58)
) ) RM RN
In fact, for ¢ € S, we have that
<IC7 ¢> = fRNJrIVI f()Oo fRN+1W 6_2m(m’y).(€1’§2)_t(‘51|2a+|€2‘2+1)¢(x7 y)dgld&dtdxdy

= fRN+M [fooo eGP HE ) g f]RN+M 6_2m(m’y)'(&’£2)¢(aja y)dmdy] d§d&,

— fRNJFM [m f]RNJrM eiQWi(w,y)-@lng)qﬁ(x’y)dxdy] d§1d€2

_ 1

- <|§1\2a+|£2|2+1’f¢> ‘

Next we want to find some properties of H. To this end, we consider

Ha(l’,t) _ / 672m'x.£17t\§1|2ad£1 and 7‘[1(y,t) — / 672m'y-£27t\§2|2d£2.
RN RM
It is well known that the function H, has the following properties:

Ho(z,t) = t_%HQ(t_ix, 1) and lim |z|VT**H4(z,1) = C,

|z| =00
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where C' > 0, which imply that there exists ¢; > 0 and ¢y > such that
1 min{t_%, tlz| N2 < Haolz,t) < o min{t_%, t|z| N2}, (2.59)
see [61], [45]. By the definition of H, we have that

H(z,y,t) = Ho(z, t)Hi(y,1). (2.60)

Since we have ,

Hi(y,t) = (dmt)" 2 e ir (2.61)
see [61], together with (2.57))-(2.60)), for |y| > 2,

K(z,y) — / ¢ Ho (s VM (3, )t
ly|?

o0
> cl/ e_tmin{t_%,t|x|_N_2a}(47rt)_%e_Ttdt
0

B b (N _N—2a M
> ¢ . € min{t 2 t|z| HAmt) "2 e 4t dt
1yl
2

> eyminfeMy| 73 o Ve ),

for some c3 > 0. On the other hand, since for n > 3 we have
o n |y n—3
/ e (dmt)"Eem i dt < cae My (1 + [y)) T
0

with ¢4 > 0 (see [61]), for M > 5 we have that

K(z,y) = /000 e " Ho(z, t)Hy(y, t)dt

M ly

[e.9] |2
: / e min{t = tla N2 (4nt) " E e dt
0

o
N M ly? |y

< esmin{ e (4rt) 2" 2 e at dt, |x]_N_2a/ €_t(4ﬂ't)l—%€_7dt}
0

M-5

>}

L _N_ M_3  \_N_9q — _
< comin{e WyPme M (1 fy])ze TN Wy M (L 4 Jy))
Therefore, for N > 1 and M > 5, there exist cg > ¢7 > 0 such that
1 c
crp(,y) < K(zy) < espz,y)lylz,  (2,y) € RY x (By(0))°, (2.62)

where p(x,y) is defined in (2.15)). In what follows, we construct super and sub-
solutions to obtain the decay estimate given in Theorem [2.1.2]

Proof of Theorem [2.1.2] By the estimate in Theorem [2.1.1] we observe that,
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for constants c;g > ¢ > 0 such that
09(]— + |x|)—N—2a S u(m,y) S 010(1 + |:L,|)—N—20z’ (:E,y) € RN X Bé\/l(o)7

so we only need to prove (2.14)) holds for (z,y) € RY x (BM(0))e.
Step 1: Lower bound. Let u = K % Xpn@)xpMo), Where Xpngyxpm(g) is the
characteristic function of B} (0) x B}(0). By (2.62), we have that

) > eqminde My 757, (14 [TV o, (2.63)
for all (z,y) € RN x (B (0))¢, where ¢;; > 0. By definition of @, we have
(A)za+ (=A)yi+a=0 in RY x (RY\{0})\ (B'(0) x By (0))

and, by (2.62) and Theorem [2.1.1] there exists ¢;2 > 0 such that u > ¢1% in
RN x {y € RM : |y| = 2}. Since f is nonnegative, we use the Comparison Principle
to obtain that, for any (z,y) € RN x (B2(0))°

M

u(z,y) > enii(z,y) > comin{e My 727 %, (14 |2) N2 My 5

Step 2: Upper bound. For y € RM with |y| > 2, there exists 1 <4 < M such that
ly;] > 1, we may assume that y; > 1. Let u(z,y) = K(z,y)(1 — |y1]™"), then by
direct computation
(=A)yu = (1- |yl|_1)(_A)yIC - 2?J1_28y1lC + 2’Cy1_3
> (=A),K(1 = |y ™) + 2Ky,

where the last inequality holds since y; > 0 and 0, K < 0. Therefore, by (2.62),
we have that for (x,y) € RY x (B (0))°,

(=A)zu(z,y) + (=A)yu(z,y) + az,y)

> [(—A)SK + (=), K + KJ(1 = [ya]™") + 2K (z, y)yi® = 2K (2, y) y|
> 2cgmin{eM|y| a7 | TN 2Ty T 2 (2.64)

Since f(u) = O(u?) near u = 0 for some p > 1, by Theorem [2.1.1f with € = %, we
have that

_3ptl
1

(—A)2u+ (—A)yu+u = f(u) < erz(1+ |of) "V F2pe 5

where c13 > 0. We notice that % > 1. By definition of u, |D and Theorem
2.1.1| with e = ”4;;, there exists c14 > 0 such that u < ¢y in RY x {y € RM : |y| =
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2}. By Comparison Principle, we have that

1_ N

u(z,y) < cuulz,y) < cukiz,y)
< a5 min{e—\y||y‘§—%—%, (1+ ‘x|>—N—2ae—‘y||y‘%_%}

for all (z,y) € RY x (B} (0))¢ and some ¢;5 > 0. This complete the proof.

2.4 Symmetry results

In this section, we prove Theorem by moving planes method. Let u be a
classical positive solution of (2.8)) and consider first the y-direction. Let

SV = {(z,y1,y) € RY x Rx RM™ |y > A},

T = {(z,90,9) € RV x Rx RM™! |y = A}

and uy(z,y1,y") = u(x,2A—y1,y’) for A € R. We introduce a preliminary inequality
which plays a crucial role in the procedure of moving planes.

Lemma 2.4.1 Under the assumptions of Theorem for any A € R, there
exists ¢y > 0, independent of A, such that

2(N+M) N+M-—20a

a( [ = )" ¥ dny) 5
A

< /E [(=A) (uy — ) 4 (=A)y(ux — u) + (uy — )] (ux — u) T dzdy < co.

Proof. First we show that the integrals are finite. We observe that u, satisfies the
same equation (2.8)) as u in X¥'. Taking (uy —u)™ as test function in the equations
for u and w,, subtracting and integrating in X', we find

/Ey1 [(=A)3 (un = u) + (= A)y(ur — u) + (ux = u)](ux — u) " dzdy
— /Em (f(un) — f(uw)(uy — u)"dxdy. (2.65)
Now we only need to prove that

/Eyl (f(uy) — f(u))(uy — u)Tdady < +oo. (2.66)
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In fact, for any given A € R, using ([2.11]), we choose R > 1 such that
0 < up(z,y) < C(1+ |x|) N 200l < 5 Y(z,y) € B,

where yy = (2\ — y1,v/) for y = (y1,9') € RM and sq is from (F).
If up(z,y) > u(z,y) for some (z,y) € X' N BE, we have

0 < u(z,y) < ux(z,y) < so.
Using (2.16) with v = uy(z,y), then

flur(z,y)) = fu(z,y))
ux(z,y) — u(x,y)

< cuy(z,y),

then

(f(ur(@, y)) = flulz, ) (ur(e, y) — ulz,y)* < eu)(2,y).

The inequality above is obvious if uy(z,y) < u(z,y) for some (z,y) € X' N BS,.
Then

(flux) — fFu)F(uy —uw)™ <™ in ¥ N B,
Therefore,
[ () = Fa)) (o = ) dedy
2¥1nBg
< c/ ) (x,y)dxdy
2NBg,

< e, / (1 + [a] )~V F20OF2) =20 ey
»i

A

< eCe | (1+ \x|)<N+2a)(V+2)dx/ e~ gy < too,
RN RM

where the last inequality holds by v > WM Since u and uy are bounded
and f is locally Lipschitz, we have

/ZylmB (f(ur) = flu) " (ur — u)"dady < 4oc0.

Therefore, (2.66)) holds. Together with (2.65)), we have the second inequality in the

result.
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Next we show that the first inequality holds in Lemma [2.4.1} Let us denote

uy —u)(z,y), x, a5,
w@,y):{( o). (@)

(2.67)
(U)\ - u)_(x,y), (x,y) € (Egl)c

and

supp(w) = {(z,y) € RN x RM | w(z, y) # 0},

where (uy — u)™(z,y) = max{(uy — u)(z,y), 0}, (ux — w)” (z,y) = min{(uy —
u)(z,y), 0}. We observe that w(z,y1,y") = —w(x,2\ — y1,y') for (z,y1,y") €
RY x R x RM~1 and

w=uy—u in supp(w). (2.68)

It is obvious that for (z,y) € ¥ Nsupp(w), {z € RY| (z,y) € (£{")°} = @ and

RY = {zeR"Y| (z,9) € Z{" Nsupp(w)} U
{z € RY| (2,y) € ¥ N (supp(w))} U {z € RY| (2,y) € (Z{")}.

Combining with (2.68)), then for (z,y) € 5" N supp(w),

(=A)w(z,y) — (—A)S(uy — u)(z,y) = / (ux —u)(z,y) — w(z,y)dz

RN ‘$—2|N+2a

(ur —u)(zy)
} |ZL' _ Z|N+2a

/ dz < 0, (2.69)
{2€RN:(z,y) €T N (supp(w))*

where the last inequality holds by u) —u < 0 in ¥ N (supp(w))©. On one hand,
from (2.69) and w = (uy —u)* > 0 in X' Nsupp(w), we have that

/ (—A)Swwdzdy < / (=A% (uy — u)(uy — u)Tdedy. (2.70)
Ezlﬂsupp(w)

Eil Nsupp(w)

On the other hand, we know that w(z,y) = (uy — u)(z,y) and (—A),w(x,y) =
(—A)y(ur —u)(z,y) for (z,y) € 35" Nsupp(w). Together with (2.70]), then

/ [(=A)Sw + (—A),w + w] wdxdy
21)1\1 Nsupp(w)

</ (=) (un — ) + (~A), (un =) + (un —w))(ur — u) *dudy
£Y! Nsupp(w)
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and then by the fact of w = (uy —u)™ =0 in X§' N (supp(w))®, we have that
/ (—A)2w + (—A)yw + w] wdzdy
=5
< [ A = )+ (A =)+ o = )~ ) (27D
=3

By the definition of w, we have that

/ \w|*dzdy = 2/ |w|*dzdy,
RN+M E?/{l

2(N+M) 2(N+M)
|w|¥+i=2a dxdy = 2 |w| N +i=2a dxdy,
RN+M v1

A

/ (—A)ywwdrdy = 2/ (—A),wwdzdy,
RN+M e

/ (—A)Swwdzdy = 2/ (—A)Sw wdzdy,
RN+M

Y1
E)\

then, together with Proposition [2.2.1] we obtain that

/zyl [(—A)Sw + (—A),w + w] wdzdy

1
= - / [(—A)Sw + (—A),w + w]wdzdy
2 RN+M

N+M—2«a

2(N+M)
> 03(/ ’w’N+J\/I—2a dxdy) N+M
RN+M

(N+M) N+M—2a

- / | P dpdy) R (2.72)
=5t

for some ¢3 > 0. Combining (2.71)) with (2.72)), by w = (u) —u)™ in X', we get
the first inequality in Lemma The proof is complete. O

Lemma 2.4.2 Under the assumptions of Theorem for any A € R, there
exists ¢y > 0 independent of A such that

( ) —2a
04(/ |(un — )| VFoze dady) Vo
=i

A

< D =)+ () o — )+ (= )]0 — )y < o

A

where X3 = {(z1,2",y) E R x RN x RM | 21 > \}.
A
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Proof. The proof proceeds similarly to the proof of Lemma [2.4.1] the only differ-
ence is to show (2.69) with (z,y) € X3' Nsupp(w). It is obvious that

RY = {zeR"Y| (z,9) € X3 Nsupp(w)} U

{2 € RY| (2,y) € 52 N (supp(w)*} U
{z € RY| (2,y) € (3)° N (supp(w))°} U
{z € RY| (2,y) € (Z3)° Nsupp(w)}

and w = u) — u in supp(w), then for (z,y) € X' Nsupp(w),

(—A)fgw(x, y) - (_A)g(u,\ — U,)(l" y) — /RN (u)\ - r;)(_zazyV)V:Q;U(Z?y) dz
T — 21|N+2a - iz — 21|N+2a)(w —u)(z,y)dz

/{zeRNI (2,9)€E3! N(supp(w))©} |
< 0

)

where zy = (2\ — 21,2) for 2 = (21,2') € RY and the last inequality holds by
uy —u < 0 in X3 N (supp(w))°©. O

Theorem 2.4.1 Under the assumptions of Theorem for x € RN, we have

u(x, y) = u(xa |y‘)

and u 18 strictly decreasing in y-direction.

Proof. We divide the proof into three steps.

Step 1: A\ := sup{A | uy < w in X'} is finite. Since u decays at infinity, we
observe that the set {\ | uy < w in %'} is nonempty. Using (u) — u)™ as a test
function in the equation for w and wy, by (2.16) and Hoélder inequality, for A big
(negative), we find that

L;K—AKWA—M+W—AMWA—W+%W—%MWA—MWM@

= [, () = F () (ua — u)*dady
— M[(UA —u) " Pdady < C/ u} [(ux — u) PP dedy

Eil Uy —Uu E’il
S%/ (1+ |z) N *2 eI (0 — u) P ddy
I

2a N+M-—2«a

< 1 —a *b|y>\‘d dy) N+m + %%d d N+M
<ol [ (0 la) e dady) ([ (= ) [ dady)
b b
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y(N+20)(N+M) g — Oy(N+M) we have that
2a 20

. 2aN
where a = . Since y > m,

a > N. Then we can choose R > 0 such that for all A < —R,

e

s / (1 + [a]) e M ddy) ¥ <
=5t

1
1
By Lemma [2.4.1 we obtain that

/ (uy — w)* |V smdedy = 0, YV A< —R.
g

Thus uy < wuin X' for all A < —R and then conclude that A\ > —R. On the other
hand, since u decays at infinity, then there exist Ay € R and (z,y) € %' such that
u(z,y) < uy, (z,y). Hence \g is finite.

Step 2: u = uy, in X3!, Assuming the contrary, we have that u # uy, and u > uy,
in Eg;, in this case the following claim holds.

Claim 1. If u # uy, and u > uy, in X3, then u > uy, in X3..

Let us assume, for the moment, that Claim 1 is true, then for any given \ €
(Xos Ao + €), where € > 0 is chosen later. Let P = (0,---,\,---,0) € TY" and
B(P, R) be the ball centered at P and with radius R > 1 to be chosen later.
Define By = ¥%' N B(P, R) and let us consider (uy — u)* test function in the
equation for u and wy in 3", then from Lemma we obtain

(/ |(U,\ — u)+| ﬁ(ﬁ»ﬂél dftdy) NAM—20
=0

< o [ 1A =)+ (<8)y (= ) + (un = )]s ) dady
= o [, () = f(w) s~ ) dady (2.73)

We estimate the integral on the right. Proceeding as in Step 1, we can choose
R > 1 big enough such that

2

e / (1+ [a]) el dady) ¥ <
YN\ By

N
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ANA2)NEM) o] = DWEM) - ey

for some ¢; > 0, where a =
’ 2a 2

/ (F(un) — F(u))(uy — u)*ddy < ¢ / | (ux — u)* Pdedy
S¥N\By

2¥N\By

o (N+M) —2a
< e / (1 [al) =" ddy) 51 / [(un — w)* [ FFs dady) S
S3\B1 D

A

N+M-—2«a

1
< 2 / (un — u)t|Fo5—s ddy) W (2.74)
e

~4

Now using Claim 1, we choose € > 0 such that cg|B; Nsupp(uy — u)"| AT < 1/4,
for some cg > 0. Since f is locally Lipschitz, using Holder inequality, we have

/B (f(un) = f(w)(ux —u)dwdy < css | (un = u)* [ Xsuppur - ddy

By
a (N+M) —2a
= cs| By N supp(uy — u) [V ([ |(uy — u)*[Na dady) N
By
1 ( ) —2a
< (] (un = w)* ¥ dady) R (2.75)

=1,

From (2.73)), (2.74)) and (2.75)), it follows that (uy —w)" =0 in X¥'. Then uy < u

in X" for A € (Ao, Ao +¢€), which contradicts the definition of Ag. As a consequence,
we have u = uy, in X3’
In order to complete Step 2, we only need to prove Claim 1.

Proof of Claim 1. By contradiction, if there exists (Z,7) € ¥ such that
u(Z,Y) = ur, (T, 7), then

(_A)g<u - UAO)(‘T_:7§) + _A>y(u - qu)(jv g) + (u - U)\())(J_},g)

f(u(Z, 7)) = flu (2,

Since (u — uy,)(Z,y) = minzeﬁ) (u—uyy) = 0, we have (—A),(u —uy,)(Z,7) <0,
then

(=A)5 (u—ux)(7,9) = 0. (2.76)

The other side, we observe that {z € RY| (z,7) € (£%!)°} = O when (z,7) € Y.
By u(Z,y) = uy,(Z,y) and then

(8w @) = [ e
(1= 13,)(2,1)
|i’ _ 2|N+2a

- / dz <0, (2.77)
{zeRN| (z,gj)GEi})}

where the last inequality holds by u > u,, in .
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Combining (2.76]) with (2.77)), we obtain that (—A)%(u — uy,)(Z,y) = 0 and
then from (2.77)), we have that

u(z,§) = uxn(2,7), VzeRY, (2.78)
this means that u — uy, has property (P) and by u # uy, in ¥ we have

(@,7) € (35,)o = {(2,) € B, | (u = uro)(w,y) = infu —uy) =0} 5 25,

20

Moreover, by Proposition with 0 = X!, we observe that X3! \ (X3} )o satisfies
interior cylinder condition at point (zo,y0) € (X3} )o N3}, Then there exist 7 > 0
small and § € RM such that

O, := B (xo) x BY(§) C S8\ (3%)o and  (z0,30) € 0O,.

Let D be defined by ({2.19)). Since u > uy, in X3!, then for any (x,y) € D, we have

Lo s o
RN\BN (z0) |z — 2|

Finally, it is obvious that

(=85 —urg) + (=A)y(u —un) + h(u —uy) =0 in X3,

where h = 1 — LW=/"0) o oo (35, ). Then we use Theorem [2.2.1f to obtain

u—u)\o loc

u=uy, in X3,

which contradicts the condition of u # uy, in XY, then we obtain the results in
Claim 1.

Step 3. By translation, we may say that A\g = 0. Repeating the argument from the
other side, we find that u is symmetric about y;-axis. Using the same argument in
any y-direction, we conclude that

u(w,y) = ulz,lyl), (x,y) € RY xRM.

Finally, we prove that u(z, |y|) is strictly decreasing in |y > 0. Indeed, for any
given y; < 7; < 0 and letting A = % Then, as proved above we have

u>uy, in XY
For any given € R, we observe that (z,7;,0,---,0) € X%*, then
A

u(xaglaof" 70) >u)\(xagla07"' aO) :U(x,yl,o,"' 70)
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Using the result of u(x,y) = u(z, |y|) for all (z,y) € RY x RM and |71| < |y, we
conclude monotonicity of u respect to y. This completes the proof. O

Next we study the symmetry result in x-direction.

Theorem 2.4.2 Under the assumptions of Theorem[2.1.3, for y € RM, we have

u(z,y) = u(|z|,y)

and wu is strictly decreasing in x-direction.

Proof. The proof of this theorem goes like the one for Theorem [2.4.1] The only
place where there is a difference is in the following property: iof u # uy, and u > uy,
in X3!, then u > uy, in X3!, By contradiction, if there exists (z,y) € X3! such
that w(z,y) = uy,(Z,7), then

(A (1 = uxo ) (7, ) + (=A)y (u = ure )(Z,§) + (u = ur (2, 9)
= f(u(z,y)) = fux(z,9)) = 0.

Since u > uy, in X3}, we have (u—ux,)(7,y) = ming= (u—uy,) = 0 and (=A), (u—
0
Uy, )(Z,7) < 0 and then
(=A)3(u = ux)(2,9) = 0.

T

The other side, by direct computation, we have that

<ﬂM%u—w9@@w:4Nﬁ§:j§Z?w
1 1

u)(z,9)dz <0,

where 2y, = (2\g — 21,2') for z = (21,2’) € RY and the last inequality holds by
u > uy, in X3!, Therefore,

u(z,y) = un(2,9), Yz eRY, (2.79)
this means that u — uy, has property (P) and by u # uy, in 5} we have

(@,9) € (55)o = {(2,y) € X3 | (u—wur)(@,y) = inf(u —ux) =0} & =5,
Ao

Moreover, by Proposition 2.2.3 we observe that X3! \ (X3! ), satisfies interior cylin-
der condition at point (7o, yo) € (X5} )oNX3!. Then there exist r; > 0 and j € RM
such that for all r € (0, 7],

Or = B (wo) x B (§) C T\ (B5)o and (a0, 30) € 90,
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Next we show that there exists some r € (0,7] such that for any (z,y) € D,

RNABY (z0)

‘I _ Z|N+2cx

where D is defined by (2.19). Indeed, since u # uy, and u > uy, in X3}, then for
(z,y) € D C X3!, we have that

/ (w—w)zy),

|$ _ Z‘N+2a

Let us define

r(z,y) = sup{r € (0,m] : / (u = u’\O)(Z’y)dz > 0}. (2.81)

RN\BN(z) T — 2|V T2

Let rp,, = inf,y)epr(z,y), it is obvious that r, € [0,7]. Now we prove that
rm > 0. By contradiction, if r,, = 0, then there exist a sequence (x,,y,) € D and
(%,7) € D such that (z,,,y,) — (Z,7) and r(xp, y,) — 0, as n — +oo. Since r(x, y)
is continuous, then r(z,7) = 0. If (z,7) € D\ (X3})o, L.e. u(Z,7) > ux(Z,7), we

have
[ lmwe,
RN

|i. _ Z|N+2a

. 1 1
(’LL - u)\o)(zay)(|i, — Z|N+2a - |J~,‘ _ Z)\O|N+2a)

dz > 0.

/{ZGRN | (2,9) EEf\(l) }

By the continuity of the integration and (2.81)), we obtain that r(Z,y) > 0, which
is impossible.

Then (Z,5) € D N (X3))o, L.e. u(E, §) = ur,(Z, 7). Since the function u — uy,
has property (P), then for any 7 > 0,

[ tomen,
RN\BY () |Z — 2| N+2e

Combining with (2.81)), we obtain that r(z,y) = r; > 0, which contradicts 7(Z, y) =
0. As a consequence, we have that 0 < r,, < ry. Taking r = r,,, then (2.80]) holds
for any (x,y) € D. Finally, it is obvious that

(=A)5 (= ung) + (=A)y(u = ure) + hu —uy,) = 0 in E50,

where h = 1 — LW =/"0) ¢ oo (X3:). Then we use Theorem [2.2.1] to obtain that

u—u)\o loc

u=uy, in XY,
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which contradicts the condition of u # uy, in ¥3!. Then u > wuy, in X!, to
complete the proof. O
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Chapter 3

Fractional heat equations with
subcritical absorption with initial
data measure

Abstract: in this chapte, we study existence and uniqueness of weak so-
lutions to (F) dyu + (—A)%u + h(t,u) = 0 in (0,00) x R with initial condition
u(0,-) = v in RY, where N > 2, the operator (—A)“ is the fractional Laplacian
with a € (0,1), v is a bounded Radon measure and h : (0,00) x R — R is a

continuous function satisfying a subcritical integrability condition.

In particular, if h(t,u) = tuP with > —1 and 0 < p < ps =1+ &Nﬂﬂ, we

prove that there exists a unique weak solution uy to (F) with v = kdy, where 4 is
the Dirac mass at the origin. We obtain that u, — oo in (0,00) x RY as k — oo

for p € (0,1] and the limit of uj, exists as k — oo when 1 < p < pj, we denote it by
Uso. When 1 + % = p§" < p < Pj, Uso is the minimal self-similar solution of
(F)oo O+ (—A)*u+tPuP = 0 in (0, 00) x RY with the initial condition u(0,-) = 0
in R\ {0} and it satisfies u.(0,2) = 0 for  # 0. While if 1 < p < pj*, then
Uso = U,, where U, is the maximal solution of the differential equation y'+t7y? = 0
on R,.

3.1 Introduction

Let h: (0,00) x R — R be a continuous function and Q, = (0,00) x RY with
N > 2. The first object of this chapter is to consider existence and uniqueness of

! This chapter is based on the paper: H. Chen, L. Véron and Y. Wang, Fractional heat equations
with subcritical absorption with initial data measure, arXiv:1401.7187.
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weak solutions to fractional heat equations

atu —+ (—A)au + h(t, U) - O in QOO)

uw(0,)=v in RY (3.1)

where v belongs to the space 9°(RY) of bounded Radon measures in RY and
(—A)* (0 < a < 1) is the fractional Laplacian defined by

(—A)%u(t,z) = lim (—A)%u(t, x),

e—0t

where, for € > 0,

ot = [ e =2

and

e\r) =
Xe(r) 1 if r>e.

{O if re|0,¢,

In a pioneering work, Brezis and Friedman [12] have studied semilinear the heat
equation with measure as initial data

Ou—Au+uP =0 in  Q,

u(0,-) = kéy in RN, (3:2)
where k£ > 0 and ¢y is the Dirac mass at the origin. They proved that if 1 <
p < (N +2)/N, then for every k > 0 there exists a unique solution u, to (3.2).
When p > (N + 2)/N, problem has no solution and even more, they proved
that no nontrivial solution of the above equation vanishing on RY \ {0} at ¢t = 0
exists. When 1 <p <1+ %, Brezis, Peletier and Terman used a dynamical system

technique in [13] to prove the existence of a very singular solution ug to
Ou—Au+u? =0 in Q, (3.3)
vanishing at ¢ = 0 on R™ \ {0}. This function u, is self-similar, i.e. expressed

under the form
|z]

us(t,x) =t 71 f (%> : (3.4)
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and f is uniquely determined by the following conditions

"+ ( 277>f/ 5f—fP=0 on Ry
f>0 and f issmooth on R, (3.5)

F0)=0 and lim, oon7 7 f(n) = 0.

Furthermore, it satisfies

f) = cre” " V{1 = O(la] )} as = oo

for some ¢; > 0. Later on, Kamin and Peletier in [58] proved that the sequence
of weak solutions u; converges to the very singular solution ug as k — oo. After
that, Marcus and Véron in [70] studied the equation in the framework of the initial
trace theory. They pointed out the role of the very singular solution of in the
study of the singular set of the initial trace, showing in particular that it is the
unique positive solution of satisfying

lim [ wu(t,x)dzr = oo Ve >0, B, = B.(0), (3.6)
t—0 B.
and
lim [ w(t,x)de=0 VK c RV \ {0}, K compact. (3.7)
=0 J g

If one replaces u” by t?u? with p € (1,1 + (H’B =2, these results were extended by
Marcus and Véron (f > 0) in [70] and then Al Sayed and Véron (8 > —1) in [82].
The initial data problem with measure and general absorption term

Ou— Au+ h(t,z,u) =0 in (0,T) x £,
u=0 in (0,7) x 0%, (3.8)
u(0,-)=v in Q,

in a bounded domain 2 is a domain in RY, has been studied by Marcus and Véron
in [70] in the framework of the initial trace theory. They proved that the following
general integrability condition on A

0<|ht,z,r) |<h@O)f(r]) Yz t,r)e xR, xR
ST R flot> )t 2dt <oo Yo >0 (3.9)
either h(t) = t* with a > 0 or f is convex,

in order the problem has a unique solution for any bounded measure. In the
particular case with h(t,z,7) = t°|u|P~1u, is fulfilled if 1 < p < 1+ 2(”5) and
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B > —1, and the very singular solution exists in this range of values.

Motivated by a growing number of applications in physics and by important
links on the theory of Lévy process, semilinear fractional equations has been at-
tracted much interest in last few years, (see e.g. [20, 21|, 26l 27, 31l 37, [44], 146]).
Recently, in [32] we obtained the existence and uniqueness of weak solution to
semilinear fractional elliptic equation

(—A)*u+ f(u) =v in Q,

3.10
u=0 in Q°, ( )

when v is Radon measure and f satisfies a subcritical integrability condition.

One purpose of this chapter is to study the existence and uniqueness of weak
solutions to semilinear fractional heat equation (3.1)) in a measure framework. We
first make precise the notion of weak solution of (3.1)) that we will use in this
chapter.

Definition 3.1.1 We say that u is a weak solution of , if for any T > 0,
u € LYQr), h(t,u) € LY(Qr) and

Jo, W(t, 2)[=0&(t, ) + (=A)*¢(t, 2)] + h(t, u)é(t, 7)) dudt
= fRN £(0,z)dv — fRN (T, x)u(T, z)dx V¢ e Yaor,

where Qr = (0,T) x RY and Y, 1 is a space of functions & : [0,T] x RY — R
satisfying

(3.11)

(@) 1€l @r) + 1€l @r) + 10l oo @r) + I(=2)* |1 @r) < +00;

(17) fort e (0,T), there exist M > 0 and ey > 0 such that for all € € (0, €],
[(=A)2&(E, M Loy < M.

Before stating our main theorems, we introduce the subcritical integrability
condition for the nonlinearity h, that is,

(H) (i) The function A : (0,00) x R — R is continuous and for any t € (0, 00),
h(t,0) = 0 and h(t,r1) > h(t,ry) if r1 > 79.

(74) There exist 5 > —1 and a continuous, nondecreasing function g : Ry —
R, such that

h(t,r)| < tPg(r])  V(t,7) € (0,00) x R
and

“+oo
/ g(s)s Pids < +o0, (3.12)
1
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where
. 2a(1+ B)

pg=1+ N (3.13)

We denote by H, : (0,00) x RY x RY — R, the heat kernel for (—A)® in
(0,00) x RN, by H,[v] the associated heat potential of v € 9MP(RY), defined by

Hop)(tr) = [ Ha(t..)dv(y)

and by H,[u] the Duhamel operator defined for (¢,z) € Q7 and any u € L'(Qr)
by

|(t, x) / H, | |(t —s,x)ds —/ H,(t —s,z,y)u(s,y)dyds.
RN
Now we state our first theorem as follows.

Theorem 3.1.1 Assume that v € M (RY) and the function h satisfies (H). Then
problem admits a unique weak solution u, such that

Halv] — Halh( Hal[vs])] < uy < Ha[v] — Halh(, —Ha[r-])] in Quo,  (3.14)

where vy and v_ are respectively the positive and negative part in the Jordan de-
composition of v. Furthermore,

(1) if v is nonnegative, 5o is u,;

(17) the mapping: v — w, is increasing and stable in the sense that if {v,} is
a sequence of positive bounded Radon measures converging to v in the weak
sense of measures, then {u,,} converges to u, locally uniformly in Q.

According to Theorem [3.1.1], there exists a unique positive weak solution u; to

(9tu + (—A)O‘u + tﬂup =0 in QOO7

3.15

u(0,) =kéy in RN (3.15)
where § > —1, k > 0 and p € (0,p}). We observe that u, — oo in (0,00) x RY
as k — oo for p € (0, 1], see Proposmon B.4.2] for details. Our next interest of this
chapter is to study the limit of uy as k — oo for p € (1, pﬁ) Wthh exists since

pl _ﬁ

{uy }r are an increasing sequence of functions, bounded by (Hﬂ > t~ 71 and we
set
Uso = lim up, in Qu. (3.16)
k—o0
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Actually, uo, and {uy}y are classical solutions to equation
o+ (—A)u+tPu? =0 in  Qu, (3.17)

see Proposition for details.
Definition 3.1.2 (i) A solution u of is called a self-similar solution if
u(t,r) =t tu(l,t%r)  (57) € Qu.

(17) A solution u of is called a very singular solution if it vanishes on RV \{0}

att =0 and
u(t,0)

50+ To(t,0)

= +OO,

where Ty, := H,[do] is the fundamental solution of

(3.18)

We remark that for p € (1,pj), a self-similar solution u of (3.17) is also a very
singular solution, since

lim To(t,0)t2 = ¢, (3.19)

t—0t

for some ¢5 > 0. For any self-similar solution u of (3.17), v(n) := u(1,t 2 x) with
n= t~2az is a solution of the self-similar equation

1 1
(—A)av—%Vv-n— pi—fv—kv”:() in RY. (3.20)
Since (;%f) "' is a constant nonzero solution of (3.20) , the function
1 p%l 1
U, (t) = (Lf) £ >0 (3.21)
p —

is a flat self-similar solution of (3.17). It is actually the maximal solution of the
ODE g/ +t%y? = 0 defined on R,.. Our next goal in this chapter is to study non-flat

self-similar solutions of (3.17)).
Theorem 3.1.2 Assume that > —1, uy is defined by and

Py <p<ps
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where pg* =1+ 2;(};5) Then us 1S a very singular self-similar solution of (3.17

i Qoo. Moreover, there exists c3 > 1 such that

1
o c3In(2 + |z])
T3 e = Uee(li®) S 97y

r € RY. (3.22)

When pg* < p < pj with 8 > —1, we observe that uw and U, are self-similar
solutions of (3.17)) and u., is non-flat. Now we are ready to consider the uniqueness
of non-flat self-similar solution of (3.17) with decay at infinity, precisely, we study
the uniqueness of self-similar solution to

ou+ (—A)u+t°u? =0 in Qu,
t ( ) (3.23)
limyg o0 u(1,2) = 0.

We remark if u is self-similar, then the assumption limp,.u(l,2) = 0 is
equivalent to limy|—,oo u(t,z) = 0 for any ¢ > 0. Finally, we state the properties of
Us When 1 < p < pg* as follows.

Theorem 3.1.3 (i) Assume 1 < p < p5 and u is defined by . Then
Uso = U,, where Uy, is given by .
(ii) Assume p = pjy* and us is defined by . Then us 18 a self-similar solution

of such that

_ NA2a
C4t 2a

(t,x) € (0,1) x R, (3.24)

Uso(t, ) >
( ) 1+]t—ix|N+2a

for some cq > 0.

We note that Theorem B.1.3] indicates that there is no self-similar solution of
with initial data w(0,-) = 0 in RY \ {0}, since u,, is the least self-similar
solution. In Theorem [3.1.3| part (iz), we do not know if the self-similar solution is
flat or not. From the above theorems, we have the following result.

Theorem 3.1.4 (i) Assume pg* < p < ps. Then problem admits a minimal
positive solution v, satisfying

20:(148)

lim |n| 7= vy(n) = 0. (3.25)
n|—o0
Furthermore,
—1
C3 csIn(2 + [n]) N
v S Vo) S T viea VneR 3.26
T e = el S v e (3:26)
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(i) Assume 1 < p < pg*. Then problem admits mno positive solution satisfy-

ing (3.25).

The question of uniqueness of the very singular solution in the case p5" < p < pj
remains an open problem.

3.2 Linear estimates

3.2.1 The Marcinkiewicz spaces

We recall the definition and basic properties of the Marcinkiewicz spaces.

Definition 3.2.1 Let © C RY*! be an open domain and p be a positive Borel
measure in ©. For k > 1, k' = r/(k — 1) and u € L, .(©,dp), we set

loc

1
||| ar=(0,du) = inf {c € [0, 0] : / luldp < ¢ </ d,u) " , VE C ©, E Borel set}
E E
(3.1)

and
MO, d) = {u € L (O, dn) : [ullso.m) < o0} (32)

M*(©,du) is called the Marcinkiewicz space of exponent k or weak L* space
and |[|.||ar=(o,4p) is a quasi-norm. The following property holds.

Proposition 3.2.1 [5, [32] Assume that 1 < q < k < 00 and u € L}, (0,du).
Then there exists c5 > 0 dependent of q,k such that

1—q/k
[ bt < csluleco < / du) |
E E

for any Borel set E of ©.

Remark 3.2.1 If Q is a smooth domain of RN, we denote by HS : (0,00) x Q x
Q — R, the heat kernel for (—A)® and, if v € MP(Q), by HYv] the corresponding
heat potential of v defined by

HOW) (1, ) = / HO(t, 2, y)dv(y).

When Q = RY | by Fourier transform, it is easy clear that

1

Hy(t,z,y) = @)V

/ @ U ge = Ho (t, 2 — y, 0).
RN
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Furthermore, ||Hu(t,.,0)||1 is independent of t. This implies
IHR )t e < vl V1< p<oo, Vv e LP(RY). (3.3)

Since HE[V](t +s,.) = HE[HY|(s, )(t,.) for allt,s > 0 (semigroup property) and
v > 0= Hv](t,.) > 0 the semigroup {HZ[](t,.)}i>0 is sub-Markovian. Further-
more, since the operator (—A)® is symmetric in L*(RY), the above semigroup is
analytic in LP(RY) for all1 < p < oo: if 1 < p < oo it follows from a general result
of Sten [89]) and for p =1 it is a consequence of reqularity result from fractional
powers of operators theory (see e.g. [59]). For 1 < p < oo generator A, of the
semigroup in LP(RYN) is the operator —(—A)® with domain

D(A,) :=={v e LP(RY) : (=A)*v € LP(R™)}. (3.4)

and D(A,) is dense since it contains C°(RN). If p = oo, the natural space is the
space Co(RY) of continuous functions in RN tending to 0 at infinity. The domain
of the corresponding operator A., is

D(A.) == {v € CoRY) : (=A)*v € Cy(RM)}. (3.5)

This operator is densely defined in Co(RY). In order to avoid confusion, C.(RY)
(resp. C(RY)) denotes the space of continuous (resp. C*) functions in RN with
compact support. It is a dense subset of Co(RY).

Proposition 3.2.2 For any > —1 and T > 0, there exists cg¢ > 0 dependent of
N, a, B such that for v € M°(Q),

= [l (3.6)

M3 (QP 1 dudt) < csl[v]lo ()
where pj is defined by and Q% = (0,T) x Q.

In order to prove this proposition, we introduce some notations. For A > 0 and
y € (), let us denote

AQ(y) = {(t,2) € Q% : H2(t,2,9) > A} and m2(y) = / .
Ax(y)

We also set A]§N = Ay and m§ = m,.
Lemma 3.2.1 There exists c; > 0 such that for any A > 1,

A\y) € (0, e R x B_ 1 (y), (3.7)
where B,.(y) is the ball with radius v and center y in RY.
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Proof. We observe that H,(t,z,y) = t 2 4(1, (z — y)t "2 ), where
fundamental solution of (3.18)). From [2§], there exists c¢g > 0 such that

C8
Fo(l,2) < —————.
(1,2) < R
This implies in particular
N
Cgt_%
Ha(t,m,y> S ) Nt2o
1+ (t‘%|x - y|>

On the one hand, for (t,z) € A)(y), we have that
720 00(1,0) >t 20 To(1, (z — y)t 20) > A,
which implies
2a 2a
t < T2 (1,000 %,
On the other hand, letting r = |z — y|,

cgt _N _1
_— > o — o
A L Nt2a >t 2 (1, (2 —y)t o) > A,

then 1
r < (cgtA\ )

which, together with (3.9)), implies
r< oA,

for some cg > 0.

I', is the

(3.8)

(3.9)

(3.10)

Proof of Proposition [3.2.2, By Lemma [3.2.1], there exists c¢;g > 0 such that

2a(1+4p8)
N .

my(y) < cloA

Clearly
HY(t,z,y) < Halt,z,y),

then for any Borel set £ C Q% and y € €, we have that

/Hﬁ}(t,x,y)tﬂdxdt < )\/ P dxdt + H,(t, x, y)t’dadt
E E

Ax(y)
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and

fAA ot T y)tﬁdxdt A sdms( ) = Amy(y) + f;oo ms(y)ds
< 610)\ 1+B) T >\+oo Siliza(}\ﬁﬁ) ds
< enn 2a(l+ﬁ)’

where ¢1; = ¢qp (1 + As a consequence, it follows

204(1-1-5))

/ HE(t, 2, y)tPdwdt < \ / t0dxdt + ey h~ N

E

Taking A = (, tﬁdmdt)ﬂvwcﬂvﬂw), we obtain that

/ HE(t, 2, )t dadt < (c1y +1)( / 1B ddt) T3 (3.12)
E E

Since, by Fubini’s theorem,

[ e ntad — [ [ B yd)dd
E EJQ

= [ [ #ows i),
QJE

together with (3.12)), it yields

2a(1+48)

N+2a(1+8)
/ HY(|v|)(t, )t?dzdt < (e + 1)|[v]lme oy ( / tﬁdxdt) .
E E

Thus,

Q
2, v sy < (€0 Do

which ends the proof. O

3.2.2 The non-homogeneous problem

The following proposition is the Kato’s type estimate which is essential tool to
prove the uniqueness of solutions to (3.1). For T' > 0, we denote Q7 = (0, T) x RY.

Proposition 3.2.3 Assume p € L'(Qr) and v € LY(RY). Then there exists a
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unique weak solution u to the problem
(3.13)

and there exists c1o > 0 such that

/ |u|dxdt§012/ |,u\dmdt+012/ lv|dz. (3.14)
T T RN

Moreover, for any £ € Yo, £ > 0, we have that
Jo, [ul(=0i§ + (=A)*)dwdt + [pu [u(T, 2)|E(T, x)dx 8.15)
3.15
< fQT Esign(u)pdrdt + o £(0,2)|v|d

and
Jo, (=0 + (=A)*¢)dxdt + [pn ur (T, 2)E(T, x)dx

< Ji,, Esigny (u)pdudt + [ €0, 2)v,de.

In order to prove Proposition 3.2.3] we introduce the following notations. We

/

say that u: Qr — Ris in C7;7 (Qr) for o,0" € (0,1) if

(3.16)

|u(t, ) —u(s,y)|

o, = oo 7 <
||u||ct7;: (Qr) ||u||L @Qr) T ng |t — S|U n |ZL' — y|g +00
and u € C’tl’ig’QaJm/(QT) if
Py— — @ /7
HUHC;IU’ZO‘JW/(QT) = ||u||L°°(QT) + HatuHCZf,(QT) + ||( A) u”g;f (Qr) < +foo.

Lemma 3.2.2 Let u € C1(Qr) N L=®(Q7), v € L®(RY) and u be a solution of
problem , then there exists o € (0,1) such that u € C/t7** in (T, T) x RY
for any Ty € (0,T). In particular, if | D*v|| Lo @y + [[(=2) V|| g1-a@ny < 00, then
u € CE7 " (Qr).

Proof. Step 1. When || D?V|| oo @) + [[(=A)*V[|g1-a@ny < 00, it follows directly
by [21, (A.1)] that u € C.F7** 7 (Qr).

Step 2. When v € L>®(RY), we use [26, Theorem 6.1] to obtain that u € C’tflg’a(QT)
for some ¢ > 0. For any Ty € (0,7), let n : [0,T] — [0,1] be a C? functions such
that 7 = 0 in [0, 22] and = 1 in [Ty, T] and v = nu in Q7. Then we obtain that
for t € [, 7] and = € R,

v + (=A)% = nu+1'(t),
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where nu+n'(t)u € thlg’a(QT) and v(0,-) = 0 in RY, Then we apply the argument
in Step 1 to obtain that v € CyF7***7(Qr). Therefore, u is Cy+7***” in (Ty, T) x
RY. The proof is complete. O

Lemma 3.2.3 (i) Let p € CY(Qr) N L>®(Q7) and v € CHRY) N L®°(RY), then
problem admits a unique solution u and for some o € (0,1), u is Ci;g’za”
in (Ty, T) x RY for any Ty € (0,7).

(i1) Let p € CHQr) N L®(Qr) N LY (Qr), v € CHRN) N L*(RN) N LY(RYN) and u
be the solution of , then v € LY(Qr), is C’tl’:a’ZaJra in (Ty, T) x RY for any
Ty € (0,T) and for any & € Yo r,

Jo ult. >[—6ts<t x) (—A)E(t, ) dadt

3.17
= fQ E(t, x)dudt + [on £(0,z)vde — [on &( u(T, x)dx. (3.17)
(i) Let p € CYQ7) N L>®(Qr) and v € C*(RY) N L=(RY), then problem
-0+ (—A)%u = in Qr,
t ( ) 2 T (3.18)
w(T,")=v in RY

admits a unique solution u € C’;;“J’QO‘M(QT) for some o € (0,1). Moreover, if
p € CHQr) N L*(Qr) N LYQr) and v € C*RY) N L¥(RY) N LYRY), then
u < YQ’T.

Proof. (i) By [26, Theorem 2.6, Theorem 6.1], there exists a unique viscosity
solution u € thlg’g(QT) with ¢ > 0 to problem (3.13), and then it follows by
Lemma [3.2.2f that u is C;I"/’Qaw in (Tp, T) x RN for any Ty € (0,T) and some
o' € (0,min{Z,0}). Then u is a classical solution of (3.13).

(ii) We claim that u € L*(Qr) and u(t,-) € LY(RY) for t € (0,7). By Duhamel

formula, we have

t
futt Moy < [ (/ Ha<t—s,x,y>m<s,y>|dyds)daz
RN 0 JRN
n / Ha(t, 2, y)|v(y)ldyda
RN JRN

< lpllzigr) + 17 2@y

N

and

T
lullzr@r) :/0 [t o @vydt < T(pller@r + [V @y))-
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In the sequel we denote by H, the operator of L'(Qr) defined for all (z,t) € Qr
by

(x,t) / H, [ (x,t—s)ds —/ H.,(t—s,z,y)u(s,y)dyds. (3.19)
RN

We claim that [|(—A)&u(t, -)|| Loy is uniformly bounded with respect to e € (0, ).
Since u(t,-) € C2Q+U(RN) for some o € (0, min{2 — 2a, 1}), then for z € RY and
y € Bi(0), [u(z +y) +u(z —y) = 2u(z)| < ult, )Hc;a+ff @) ly[***7. Thus,

H(=A)u(t, )@y < sup [ / ulz +y) = ulz)]
RN\ B1(0) |y|N+2e

z€RN
WL ulz +y) + u(z —y) — 2u(@)] ,
9 [y|N+2a Y
(0)\Be(0) Yy
< 2ullun + [l N dlult )z
B1(0)
Next we claim that
E(—A)dudxdt = / u(—A)dEdxdt VE e Y, . (3.20)
Qr Qr

Indeed, using the fact that for any ¢ > 0 there holds

/]RN /RN A $|N+2]f(t’x)><e(|x — z|)dzdx

u(t, ) —u(t, 2)J€(t, 2)
/RN /RN — g[N+2a Xe(|z — z])dzdx,
then we have

fRN £<t7 m)(_A)?u<t7 x)dm
b S f [ ) | () )] ()

L o f MOS0

Similarly,

Jor ult, @) (—A)2E(t, x)dx = %fRN . [ut,z) —u(t,2)][€(t,2) —€(t,)] Ye(|z — z|)dzdz.

[z—z|N+2a

Then (3.20) holds. Since u is C’;;U’QO‘M in (Ty,T) x RY for any Ty € (0,T) and £
belongs to Y,r, (—A)%E(t, ) = (—A)*¢(t, ) and (—A)%u(t, ) — (—A)*u(t,-) as

€
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e = 0in RY and (—A)%E(t,+), (—A)%u(t, ) € L®(RY) and £(t, ), u(t, ) € LY(RY),

€

then it follows by the Dominated Convergence Theorem that

lim E(t,x)(—A) u(t, x)dr = E(t, x)(—A)u(t, x)dx

e—07t RN RN

and

lim (—A)?{(t,z)u(t@)c&z/ (—A)E(t, x)u(t, x)dz.

e=0t JpN RN

Combining this with (3.20)), and letting ¢ — 07, we have that

E(t ) (— A u(t, o) da — / (—A)E(t 2)ult, z)dz.

RN RN

integrating over [0, 7] and by (3.13]), we conclude that (3.17) holds.
(731) End of the proof. Let u be the weak solution of problem (3.13]) and

w(t,z) =uw(T —t,x) (t,x) € [0,T] x RY.

Then w is a solution of and for some o € (0,1), w is C;IU’QQJFU(QT). On the
contrary, if w is a solution of (3.18)), then u(t,z) = w(T—t, x) for (t,z) € [0, T] xRN
is a solution of @, then the uniqueness holds since the solution of is
unique. Since u € Ct7;°’2a+°(QT), then (—A)*u(t,-) € C7 and then (—A)%u(t,-)

is bounded, which implies u € Y,, 7. O

Proof of Proposition |3.2.3| Uniqueness. Let v be a weak solution of

Ov+ (=A)v =0 in Qr,

3.21
v(0,-)=0 in R, (3.21)
We claim that v = 0 a.e. in Q7.
In fact, let w be a Borel subset of Q1 and 7,, be the solution of
—owu+ (—A)*u =, in ,
hu+ (—A) G Qr (3.22)
w(T,)=0 in RN,

where ¢, : Qr — [0,1] is a function C}(Q7) such that
Co = Xo in L®(Qr) asn — oco.

Then n,,, € Yo r by Lemma and

/ v(,dxdt = 0.

T
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Passing to the limit when n — oo, we derive

/ vdzdt = 0.
This implies v = 0 a.e. in Q7.
Existence and estimate . For 6 > 0, we define an even convex function ¢s by

=5 if [t >4,
¢s(t) = (3.23)

£ if [t < d/2.

Then for any t,s € R, |¢5(t)| < 1, ¢s(t) — |t| and ¢j(t) — sign(t) when § — 0F.
Moreover,
Ps(s) — ds(t) = 5(t)(s — 1) (3.24)

Let {i,}, {vn} be two sequences of functions in CZ(Qr), C2(RY), respectively,
such that

lim |\pon, — p|dxdt = 0, hm vy, — v]dz = 0.

n—oo QT RN

We denote by wu, the corresponding solution to (3.13) where u, v are replaced by
[in, Un, Tespectively. By Lemma and Lemma (u), U, € C’t{ Fe2ate(Or) N
L}(Qr) and then we use Lemma 2.3 in [32] and Lemma [3.2.3] (i) to obtain that
for any 6 >0 and £ € Yo r, £ >0,

Jar 9s(un)[=0:& + (=A)*¢ldadt + [on &(T, )¢5 (un(T', x))dw
= Jo, §10005(un) + (=) s (up) dudt + [in €0, 2)ds(vn)dar
< Jo, £ (un)[Orttn + (=) *up)dwdt + [rn £(0, )5 (vn)dz
= Jor §05(un)pndzdt + [ix £(0,2)s(vn)da.

Letting 6 — 0T, we obtain

/ Uy |[—0i€ + (—A)*E]dadt +/ (T, z)|un (T, z)|dx 25)
T 3.25

/ f&gn(un)undxdt—i—/ £(0, x) vy, |dx.
T
Let n; be the solution of

(3.26)
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where ¢, : Qr — [0,1] is a CZ function such that ¢, = 1 in (0,7) X Bj(0). From the
proof of Lemma [3.2.3] 7,(¢, z) := mp(T — t, x) satisfies with (¢, x) = (T — ¢, x)

By Lemma m, i € CLE7*(Qr) with some o € (0,1) and

i S—t)
0<n(t,x) < / / dyds
lt ) BV 14 |(s —t) 2 (y —:U)|N+2°‘ Y

<
= CS/ /RN1+|Z|N+2a
C13

Taking & = n; in (3.25)), we derive that

/ || X (0,7)x By (0)dxdl < ClgT/ \,un|dxdt+013T/ v |de.
RN

T T

Then, letting £k — oo, we have

/|un|d$dt§013T/ |p,n|d$dt+013T/ |V |dx. (3.27)
Qr Qr RN

Similarly,
/ Uy, — Uy |dx < ClgT/ |tn, — pm|dadt + ClgT/ |Un — U |dz. (3.28)
T T RN

Therefore, {un}n is a Cauchy sequence in L'(Qr) and its limit u is a weak so-

lution of Letting n — oo, (3.15) and (3.14) follow by (3.25)) and ( -,
respectlvely The proof of (3 - is similar.

3.3 Proof of Theorem [3.1.1]

If h(t,.) is monotone nondecreasing, for any A > 0, I + Ah(¢,.) is an homeor-
phism of R and the inverse function Jy(¢,.) = (I + Ah(t,.))"! is a contraction. We
define the Yosida approximation by

ha(t,.) = — 2 (3.1)
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The function hy(¢,.) is monotone nondecreasing, vanishes at 0 as h does it and it
is %—Lipsehitz continuous. Furthermore

rhy(t,r) T rh(t,r) asA—0  VrekR, (3.2)

see [11, Chap 2, Prop. 2.6]. If u is a real valued function we will denote by hou
and hy ou respectively the functions (¢, z) — h(t,u(t,z)) and (t,z) — h(t,u(t, x))

Lemma 3.3.1 Assume that h satisfies (H)-(i), X > 0 and ¢ € L*(RY). Then
there exists a unique solution ugs of

Ou+ (—A)u+hyou=0 in Qu,

u(0,)=¢ in RY, (3:3)

Moreover,
Ho[¢] — Halhx 0 Ha[¢4])] < up < Ha[g] — Halhr o (—Halo-])] in Qr, (3.4)
where ¢+ = max{0, £o} and
lug(t,.) —up(t, e < ll¢ =¥l VI<p<oo (3.5)
(i) up >0 if ¢ > 0 in Q;
(1) the mapping ¢ — uy, s increasing.
Proof. Existence is a consequence of the Cauchy-Lipschitz-Picard theorem (see

[25, Chap 4]): we write (3.3)) under the integral form u = T[u| = H,[¢] — Ha|hrou],

ie.
Tll(t,) = Hafol(t,.) - /OT Ha[hs o u)(t — 5, )ds (3.6)
The space C([0,00); L*(RY)) endowed with the norm
lwlless = sup {e aw(t, s : ¢ > 0},
(k > A7'), is a Banach space. Since u — hy(t,u) is 1-Lipschitz continuous, the

mapping 7 is ﬁ—Lipsehitz continuous in X,,. Thus it admits a unique fixed point
ug which is an integral solution of (3.3)).

u¢(t,.):Ha[¢](t,.)—/0 H [ o ug)(t — s, .)ds. (3.7)

The semigroup {H,[.](£,.)}s>0 is analytic in L'(R") since generated by the frac-
tional power of a closed operator. It follows from the classical regularity theory for
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analytic semigroups as it exposed in [52), Sec 6] that that u, is a strong solution of
(3.3). Since it is continuous, it is also a weak solution in the sense that

Jo, (ug[=0i§ + (=A)¢] + Ehy 0 ug) drdt
= fRN 5(07 x)<;5(x)d;1: - fRN f(T, LE)U¢(T, LC)dLE vé € Yoz,T~
(3.8)
If ¢1, ¢ € L*(RY) and uy, are the corresponding solutions of (3.3)), it follows from
the positivity of H, that

(tgy — gy )+ < (Halhr 0 ug, — ha o ug )+ < $Ha[(tg, — ug, )+

Therefore,

1 (T
(g, (t, ) — gy (2, )+ [lr < X/o [[(ug, (t = 8) — ug, (t = )1 || Lo ds,
and by Gronwall inequality

oten (8) — ()l < 5162 — B1)- o
This implies (i) and (ii). As a consequence,
—Ha[o-] < —ug < ug <ug, < Hyloy]
and thus
hyo (—Hay[p-]) < hyo(—up ) < hyouy < hyous, < hyoH,[pL]

Jointly with (3.7)) it yields (3.4)). O

Notation. In the sequel, if n € L*(Q,) and 7 > T, we denote by ¢, , the solution

of
_atgn + (_A)agn =1 in Q;
&(7,.) =0
If n >0, then &, > 0; if n € C(RN™), then n € Y, ,; if n, = n(5), where
n € N, and n € C°(R¥*1) is nonnegative, 0 < n < 1, with value 1 on B; and 0
on B, then &,  T7—tasn — oo.

(3.9)

In the next lemma we prove that we can replace hy by h.

Lemma 3.3.2 Assume that h satisfies (H)-(i) and ¢ € L*(RYN). Then there exists
a unique solution uy € C([0,00); L*(RY) of

Oou+ (—A)*u+hou=0 in Q,

u(0,)=¢ in RN, (3.10)
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Moreover inequality and statements (i) and (1i) in Lemma hold.

Proof. We denote by u, 4 the solution of (3.3).

Step 1- A priori estimate. Let ¢ > 0. If we take £ =&, ; in (3.8) and let n — oo,
we derive

/ (g + (7 = D)y 0 r o) dadt + (r — T) /

T RN

urg(T,.)dr =7 o(z)dz.
RN

(3.11)
For 0 < A < X we set w = uyg — uyg. It follows from (3.16) and inequality
hy ouy g < hyowuyg, that for any nonnegative § in Y, 7,

fQT (Wi [0 + (—A)*E] + & (hy o ung — hy o uy 4) sign, (w)) dzdt
S fQT Wy (h)\/ OUx ¢ — h)\ 9] UA/,¢) dxdt — fRN g(T, x)w+(T, I)dl’,

Since hy(t,.) is nondecreasing, we derive

/ Wi [—0¢ + (—A)Edadt <0 VEE Yar, £>0.

T

If n € C§°(RN*!) is nonnegative, then &, € Y, 7, & > 0 and

/ wyndxdt = 0.
T

This implies UM, S UN -

Step 2- Truncation. We replace ¢ by ¢, = inf{¢,n} for n € N, and denote
by wy 4, the corresponding solution of . By Step 1, the sequence {uy 4, }aso
is decreasing and it converges to some nonnegative ug, when A | 0. Therefore
hyouyg, = houg, a.e. in Qr. It follows from (3.11) and Fatou’s lemma that

/ (ug, + (T —t)howuy,) dxdt—i—(T—T)/

T RN

ug, (., T)dx =7 . On(x)dz. (3.12)

Since 0 < wuy g, <n, then 0 < hyouyy, < howuye, < h(n) by (3.5). If £ C Qr is
a Borel set,

/ hy o uy 4, dzdt < h(n)|E]|.
E

By Vitali convergence theorem hy o uy 4, — howuy, in L'(Qr). Therefore, we can

let A — 0 in identity (3.8]) and conclude that uy, is a weak solution of (3.10) with
initial data ¢,.

Step 3- Existence with ¢ bounded. If ¢ = ¢ — ¢ € LY(RY), set ¢y, =
inf{¢;,n} and ¢_, = inf{¢_,n}. We denote by ur g, ., U, ., Ur—o¢_, and u_q_,
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the corresponding solutions of (3.3)) and (3.10). Then

Ur—¢_ 0 S UNGy =6 < UNg

which implies (3.13)
hyour—¢ , <hyourg, ,—¢ , <haourg, .

Estimate (3.11]) is valid under the form
fQT (u)‘v¢+,n + (7— - t)h/\ o u)\7¢)_‘_’n) dxdt

+(r=1T) f]RN Ung, (-, T)dx = TfRN b4 n(x)dz
(3.14)
and

fQT (U)\’_(ﬁﬂn + (T - t)h,)\ e} uA,—QL,n) dxdt
(3.15)
F (= T) fu oo (o T)de = =7 [ 6 (a)da

Since hyouyg, , and hyouy_g_, are bounded in L'(Qr) independently of A and
n, hyouyg, ,—¢_, endows the same property. Since

Ungy o n = Hal[Oyn — - n] — Halhr o urg, —s_,.]

it follows from [52, Sec 6] that uyg, ,—¢_, remains bounded in the interpolation
space Yy := LY([0,T]; D(A)(RY)) n W=1([0,T]; L*(RY)) for any s € (0,1) where
D(A;) is defined in (3.4). Although a bounded subset K of Y; is not a relatively
compact subset of L'(Qr), for any ball B C RY, the set of restriction to B of
functions belonging to K is relatively compact in L'((0,7') x B). Thus, there exists
a subsequence {A,} such that {uy, 4. ,-¢_,.} converges a.e. to some function U,.
Furthermore {hy, o ux,4,.,.—-¢_,} converges a.e. to h o U,. Since the sequences
{u)\k»_¢—,n})\k? {u)\k7¢+,n}>\k7 {hAk Ou)\k7_¢—,n}/\k and {h‘)\k O U, 7¢+,n}>\k are convergent
in L'(Qr) they are uniformly integrable. Because of @ the same property is
shared by the two sequences {ux, ¢, ,—¢_., fr, and {hx, 0 ux, 6, .—6_ . }r.- Letting
Ar to 0 in the identity

T

U b4 n—— n( ) [¢+ n — ¢—,n] (tv ) - f[) Ha[h/\k © u)\k7¢+,n_¢f,n](t -5 .)dS.
(3.16)
yields
Un(t, ) = Haldrn — & ,l(t, ) — [ Halh o Up)(t — s,.)ds. (3.17)

This implies that U, is an integral solution, thus a weak solution of (3.10]) with
initial data ¢, — ¢_, = sgn(¢)inf{n, |¢|} and then U, = uy,.
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Step 4- Existence with ¢ € L*(RY). By Kato’s inequality (3.15]), we obtain that
Jor (s, = us, [(=0i§ + (=A)%€) + E|h o ug, — houy,|) dvdt
+ fRN |u¢k (T> ‘T) - u¢m(T7 JI)|§(T, :L“)d:)j S fRN 5(0’ x)|¢/€ - ¢m|dx7

for m,k € N, and € € Y, 1, £ > 0. Taking £ =&, , as in (3.9) and letting n — oo
yields

Jor (g, — g, + (1 —t)[houg, — houy,|)drdt

+ (T - T) fRN |U¢k(T7 ) - u¢m(T7 )ldx < TfRN |¢k - ¢m|dx
(3.18)
Since {¢n,} is a Cauchy sequence in L*(RY), {ug,. } and {howuy,,} are also Cauchy
sequences in C(0,T; L*(RY)) and L'(Qr) respectively. Set U = lim,, oo tg,,, then
it satisfies

Jon (U[=0i& + (=A)¢] + Eh o U) dadt
= fRN §<07 $)¢($)dI - fRN §(T, ZL')U(T, x)da: Vf c Ya,T‘

(3.19)
and it is also an integral solution of (3.10)). Thus ugs € C([0, 00); L*(RN)).

Finally, we end the proof with uniqueness which is a consequence of the in-
equality below

Jo, (U=U'|+(r=)[hoU —hol'])dxdt
(3.20)
+ (1 =T) Jou [U(T,.) = U(T, )|dzx < 7 [on |6 — ¢'|d,

valid for two solutions U and U’ of problem (3.10|) with respective initial data ¢ and
@', the proof of which is the same as the one of (3.18)). Notice also that statement
(i) and (ii) as well as inequality (3.5]) follows by the above approximations. O

Remark 3.3.1 By the same method it can be proved that for any p € (1,00) and
¢ € LP(RY) (resp. ¢ € Co(RY)) there exists a unique solution ug € C([0,00); LP(RY))
(resp. uy € C([0,00); Co(RN))) solution of (3.10). Furthermore holds.

Proof of Theorem [3.1.1| Fuxistence for v > 0. We consider a sequence of
nonnegative functions {v,}, C CZ(RY) such that v,, — v as n — oo in the weak
sense of bounded measures, i.e.

lim (vpdr = [ Cdv V¢ € C(RY) N L®(RY). (3.21)
RN

n—oo RN

It follows from the Banach-Steinhaus theorem that ||v, (/o g~y is bounded inde-
pendently of n and we assume that |[v,[|sme@y) < 2[|v||op@yy. By Lemma m
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we denote by u,, the corresponding solution of (3.10) initial data v,,. Then wu,, is
nonnegative and satisfies that

0 <u,, =H,[vn] —Halhou,] <H,v,] in Qr. (3.22)
Jointly with it implies
155 sy < €1 ey (3.23)
We have also the following estimates from and
U, (t,7) < Haln(t, ) < 26t 2 ||[V]lgwayy  V(E,2) € Qp (3.24)
and
Jo, (, + (7 =how,)dvdt + (1 = T) [pw t, (. T)dr = 7 [pn va(v)dw

S 27’||I/||§mb(RN).
(3.25)
As in the proof of Lemma [3.3.2}Step 3, using the regularizing properties of the
semigroup H,[.|(t) (see [52, Sec 6]) infert that there exists a subsequence {u,, }
which converges a.e. in Qr to some function U and {how,, } converges a.e. to
hoU.

For k > 0, we denote S, = {(t,z) € Qr : |u, (t,x)] > Kk} and w(k) =
s t3dxdt. Then for any Borel set E C Qr

ffE ho Uy,,, drdt < ffEﬁ{uunk <w) ho Uy, dxdt + ffEﬁSn ho Uy, dxdt
< g(r) [[ptPdzdt + [[ig t"g(w,, )dzdt
< g(r) [[ytPdadt — [ ocog(s)dw(s),

where
M

/OO g(s)dw(s) = lim g(s)dw(s).

M—oo “
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By ) and - ) < c1y8 ~P5 . thus

- / Mg(s)dw(s) . [g(s)w(s)}SM + [t

S=K

Since limy;_oo M P5g(M) = 0 by (3.12) and [32, Lemma 4.1] and w(s) < 145 7%,
we derive g(k)w(k) < ciuk Pig(r) and then

[ g(sdus) < =2 [T 51w g(s)s.
/H p5+1/

The above quantity on the right-hand side tends to 0 when K — co. The conclusion
follows: for any ¢ > 0 there exists £ > 0 such that

C14 / Silipgg(s)ds <

pg+1

N ™

and there exists § > 0 such that

/ tPdrdt <6 = g(n)/ tPdrdt < <
E E 2

This means that {h,, o u,, } is uniformly integrable in L'(Qr) and by Vitali

convergence theorem hy, 0w, — hoU in LY (Qr) . Letting ny — oo in the
identity

Uy, (t,.) = Halvn,]( / Halh 0wy, (s,.)](t—s,.)ds

for some ¢ > 0 such that u,, (t,.) = U(t,.) a.e. in RY yields

U(t,) = Ho () _/O Ho[ho U(s, )](t — 5, )ds.
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This is valid for almost all ¢+ > 0 and implies that U € C([0,T]; L*(RY)), up to a
modification on a set of ¢ > 0 with zero measure. Moreover

/ (tt, (~OE + (—A)€) + Eh oy, ) dwdt

_ [ 0,2 de — / ty,, (T, 2)E(T, z)d.
RN

RN

where £ € Y, 7 is arbitrary. Thus, using the continuity of ¢t — U(t,.) in L*(RY),
we derive

/ (U(=0& + (—A)¥) + Eho U) dadt

T
— [ co.nve) ~ [ U e
RN RN
From this infers that U is a weak solution of (3.1)).
Ezistence for generalv. For v € MP(RY), a sequence {v,} in CZ(RY) converge to
v in the weak sense of bounded measures. Because of the monotonicity of h(t, -),

—H,[|v,]] < U—fy,| < Uy, < Up,| < Ha[[vn]]-

Then by above analysis, the sequence {hou_y,,|)} and {howy,|)} are relatively
compact in L*(QZ%) for any T' > 0 and ball B and holds for {u,, }. Therefore
{u,,} is relatively locally compact in L'(QZF) and there exist some subsequence
{u,, } and U € L'(Qr) such that

u,,k—>U:>houl,nk%hoU as k — oo ae.in Qr.

n

As in the previous case it implies that U is a weak solution of (3.1) and also an
integral solution.

Uniqueness. Let uy,us be two weak solutions of (3.1) with the same initial v and
w = u; — Uy. Then

dw+ (—A)*w =hous —howu; in Qr.

Since houy —howuy € L'(Qr), then by (3.15)), for £ € Y, 7, £ > 0, we have that
/ |w|[—0,& + (—A)*¢]dxdt + / |w(T, z)|&(T, x)dxdt
T RN

+/ (h oug — howuy)sign(w)édzdt < 0.
T

This impies w = 0 by monotonicity.
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Statements (i) and (ii) and inequality (3.14) follows from the fact that the same
relations holds for w,, by Lemma |3.3.2

Stability is proved by the same approach that existence. If {1, } converges to v in
the weak sense of measures, then ||, ||gne is bounded independently of n. Since the
distribution function of how,, depends only on the supremum of ||v,||gns, this set of
functions is uniformly integrable in (). This, combined with local compactness of
the set {u,, } in L'(Qr), implies the convergence of a subsequence (u,,, , how,, ) to
(uy, hou,) where u, is the solution of . Because of uniqueness, all converging
subsequence have the same limit which imply the convergence of the whole sequence
and stability. O

3.4 Dirac mass as initial data

In this section, we study the properties of solutions to (3.1)) when h(t,r) = t#r?
with > —1 and 0 < p < pj and the initial data is v = kdo with £ > 0.

Proposition 3.4.1 Assume 0 < p < pj and that uy, is the solution of , then
there exists c¢i15 > 0 such that

lim t%uk(t,O) = c15k. (3.1)

=0+
Proof. By it follows that
ug(t,0) < kH,[00](t,0) = kT4 (¢,0) t>0. (3.2)
We claim that there exists ¢4 > 0 independent of &k such that
wp(t,0) > kT (t,0) — cigkPt 2P0 ¢ € (0,1/2). (3.3)
Indeed, from , it infers that
ug(t,0) > kT4 (t,0) — KPW(¢,0) t € (0,1/2),

where

Wi(t,z)= /0 H,,[s® (HP [60)](t — s,2)ds (t,2) € Q.
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For t € (0,1/4), there exists c17, 15 > 0 such that

(t —s) g 5P § 2 :
W (t,0) <cl7/ / dyds
rY 14 ((t —s) 2a|y])N+2°‘ 1+ (s 2a|y|)N+20

< / / P~ 2P dzds
Ci7
(N+2a)p
RN ( t 2&|Z‘) ) (1 + |Z|N+2a>

1
< Cl7t6+1_2ap/ / drdZ
- (N+2a)p
v (H(%) 8 \Z|<N+2a>p) (L+|2|¥+20)

<yt E
Combining 1) and — p + 14 8 > —3-, we obtain that

lim ¢2« W (t,0) = 0.

t—0+t

Therefore, (3.1) holds. a
In what follows we consider the limit of the solution {us} of (3.15) as k — oo
for p € (0, 1].

Proposition 3.4.2 Assume 0 < p <1 and that uy, is the solution of , then

lim up, =00 in Q.
k—o0

Proof. We observe that H,[dy] and H,[t°(H,[d])?] are positive in (0,00) x RY.
By (3.14)), for p € (0,1) and (¢,z) € (0,00) x RY, we have that

up > kH,[0p] — KPW — lim wuy, = oc.

k—o00
For p = 1, it is obvious that uj, = ku; and u; > 0 in (0,00) x RY, then

Iim up, =00 in Qo
k—oo

The proof is complete. O
Now we deal with the range p € (1, p}).

Lemma 3.4.1 Assume 1 < p < pj and that uy is the solution of . Then for
any k > 0,
0<u, <U, in Qc, (3.4)

where U, is given by .
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Proof. Let {f,x} be a sequence of nonnegative functions in C!(R") which con-
verges to kdy as n — co. We denote by u,; the corresponding solution of (3.17)
with initial data by f, k.

We claim that
Unp < U, In Qo, (3.5)

where, we recall it, U, is the maximal solution of the ODE 3 + t°y? = 0 on R,.
Indeed this implies ((3.4)).

Step 1. We claim that

Hm wy,,(t,z) =0 vt > 0. (3.6)

|z|—o0
From [28, [37], there exists cg > 0 such that for any x,y € RY and ¢ € (0, 00),

N
cgt™ 2a

L+ (Jo — yltm2s)Nt2e

0<Ta(t,x—y) <

Then for |z| > 1,

0< Ha[fn,k]<t,$> < CSt_2A<;/ f”;k(y>l
RV 1+ (|Jz — y|t 2« )N+2
fn,k(l‘ - Zti)
RN 1+ |Z‘N+2a

= / —fn’k(x — Zt%>dz + —fn’k(x — Zt%>dz
RN\Br

1+|Z|N+2a Br 1+|Z|N+2a

dy

g CS

N——

where R = %]x|t’i and Bgr = {z € RV : |2| < R}. It is obvious that
|z — zti\ > |x| — ]z|ti > |z|/2 for all z € Bg.

Then

T vao. A2 S Sup Jnxly T LN 2a Z
Br 1+ ’Z|N+2a |y‘2‘%‘ Br 1+ ’Z|N+2

S sup fn,k (y)/R !

S E———— § A
oo ) Jo TR

= (16 SUp fn,k(y)

|z
‘y|27
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and

1
/ fn,k(x_2t2a)dz S/ an,kHL"O(RN)dZ < ClgR_2a _ Clgt
R R

N\Bp 1+ |Z|N+2a N\Bp 1+ |Z|N+2a |x|20¢’
for some ¢;3 > 0 independent of z,t and R. Since f,, € C}(RY), we have that

lim sup fok(y) =0

|z|—o00 ||
MZT

and then for any ¢t > 0, 0 < up, x(¢,2) < Hy[fnx](t,2) — 0 as |z| — oo.

Step 2. We claim that holds. By contradiction, if (3.5 is not verified, there
exists (o, xg) € (0,00) x RY such that

(Up - un,k)(t07 ‘%‘0) = (t,a:)e?(;l,icE)XRN(Up - un,k)(t7 ZE) < 07

since Up(t) > 0 = lim|g 00 Uni(t, @) for any ¢t € (0,00), Up(0) = 0o > fri(z) =
U (0, 2) for x € RY and limy_,o0 Up(t) = limyyo0 Uy 4 (¢, ) = 0 for z € RY. Then
0:(Up — un )(to, x9) = 0. Moreover since

(U, — uni)(to, o) = min{U,(to) — uni(to, z) : x € RV}
= Up(tg) — max{u, (to, z) : € RV}

and
U, 1 (to, To) = max{u, (to, ) : ¥ € RN} = (—=A)*uy, 1 (to, 70) >0
and
0= 94(Up — tne) (to 7o) — (—A) uni(to, m0) + tgUP (to) — toul ,(to, ) < 0,
which is impossible. Thus holds. O

Proposition 3.4.3 (i) Assume 0 < p < pj and that uy, is the solution of .
Then uy, is a classical solution of .

(ii) Assume 1 < p < pjy and that u, is defined by . Then us 1S a classical
solution of .

Proof. (i) Since up < kH,[dg|, it infers that uy is bounded in (Tp,00) x RY
for Ty > 0. Let {gnx} be a sequence of nonnegative functions in C}(RY) which
converges to kdy as n — oo and u,  the corresponding solution of with
initial data g, 5. Then H,[g, 1] — kHa[0o] as n — oo uniformly in [T, 00) x RY
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for any Ty > 0 and by the Comparison Principle, there exists c;9 > 1 such that
0 < uni(t,z) < kHalgnx] < cr9kHa[d] in [T, 00) x RY
and there exists o € (0,1) such that {u,} are uniformly bounded with respect to

n in thlg’a((To, o00) x RY) with Ty > 0. Therefore, by the Arzela-Ascoli theorem,

Up . converges to uy in Ct%;’a,((To,oo) x RY) with ¢/ € (0,0) and then u; is a
viscosity solution of (3.17) in (Tp,o0) x RY. By estimate (A.1) in [21], uy is in
C 1727 ((Ty, 00) x RY) and uy, is a classical solution of (3.17) in (Tp, 00) x RY.

(ii) The proof is the same as part (i), just replacing uy, < kH,[do] by tee < U,. O

3.5 Self-similar and very singular solutions

By Theorem and (3.4), we see that {u} is an increasing sequence of
nonnegative functions bounded from above by U,. Then for p € (1,pj), there
exists Uo, = limg_,o ug, which is a classical solution of (3.17)) by Proposition m

(17) and satisfies
Uso < U, In Qu. (3.1)

Proposition 3.5.1 Assume 1 < p < pj, then uy is a self-similar solution of

.

Proof. For A\ > 0, we set

20(1+8)

Ta[u](t,z) = X =1 u(A\**t, \r) (t,2) € Q.

It is straightforward to verify that T)[ug] is the solution of

O+ (—A)u + tPuP = 0 in Qs
2a(14+3) -N . N (32)
u(0,.) = A" »T ko in RY.
Because of uniqueness, Thlug] = u 20045) - Letting £ — oo and using the
kA~ P
continuity of u +— Ty [u], we have that
lim Ty [ug] = Tatiso] = Uoo
k—o0
which implies that u. is a self-similar solution ((3.17)). O

Let us denote
Uso(2) = uxo(1, 2), z€RY
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and we observe that U, is a classical solution of - It is obvious that the

constant (1+B )P T is a constant positive solution of the self-similar equation (|3.20)).
We observe that N < 2a(1+'8) < N +2a when 1 + 2%(};5) <p<l+ 2a(1+5)

We prove below thls fundamental result that u., is the minimal self similar
solution.
Proposition 3.5.2 Assume that1l < p < 1+20‘(1+5)
solution of (-) Then us < 1.

and u is a positive self-similar

Proof. For any r» > 0, we have that

/ u(t,x)de = t°
r(0)

(1 ¢ x)dx

I
\m 1
\ \o

2)dz

\m
l\)‘z

>
— 400 ast —>0+,

where last inequality holds for t € (0,7**]. Let {¢,} be a sequence positive decreas-
ing numbers converging to 0 as n — oo. For ¢, and k > 0, there exists ¢, > 0

such that
/ Wty kg, x)dr = k.
BEn(O)

We observe that for any fixed k, ¢, — 0 as n — oo since lim,_,o, €, = 0. Let
no : RY — [0,1] be a C? function such that suppny C By(0), 7o = 1 in B;(0) and
na(z) = no(e,'x) for € RY. Choosing {f,x} be a sequence of C? functions such
that

0 < fur(z) < nu(x)u(t, i, ) Vr € RY

and
fok = kéy as n — oo.
Let u,, be the solution of with initial data f, ;, then
Un i (t,2) < u(tnr +1t, ) V(t,z) € Qoo

and by uniqueness of wy, lim,_,o u, x = uy, where uy, is the solution of (3.1)) with
initial data kdy. Then for any k, we have u < @ in (Qo,, which implies that

Uo < U I Qoo
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3.5.1 The case 1+ 2%}55) <p<l+ (1+ﬂ)

We define the function wy by
_1+8 1
wy(t,x) = Mt rTw(t 2 |x]) (t,2) € Quo, (3.3)

_ In(e+s?)
where w(s) = 1 xv2a-

Lemma 3.5.1 Assume 1 + 2%};5) <p<l1l+ (1+B , then there exists Ay > 0
such that for A > Ao,
dyw(t, x) + (—A)*wr(t, 2) + tPuh(t,2) >0 V(t,7) € Q. (3.4)
Proof. By direct computation, we have
Dron(t, 2) = — 2T i) — 2 s ! (% )

p—1

and

(=A) wa(t,2) = M5t (= A) w(t 2= a]),

which implies

O (t, ) + (=A)wy (¢, z) + tPwl (¢, x)

1 3.5
— A [(—A)O‘w(s) — 5=w'(s)s — ;“wa(s) + )\p’lwp(s)] : (3:5)
where s = |z| with z = ¢t2az. Next, for s > 0, we have
1, 1+p N +2a sNT2 1+8 s*(e+s?)!
——w'(s)s — ——w(s) = - - (s).
2 p—1 2 14 sN+22 p—1  «aln(e+ s?)
Since N+2°‘ > Ilf—f, limg_, oo HN% =1 and lim,_, ﬁ = 0, there exists Ry > 0
and og > 0 such that
1 1
_ ﬁuﬂ(s)s — p_l__—fw(s) > oow(s) Vs > Ry. (3.6)
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For |z| > 2, and using the definition of the fractional Laplacian, we have

-apu = [ (BT e i) 2ot ) i

2 1 + |Z + g|N+2a 1 + |Z _ g|N+20¢ 1 + |Z|N+2a |g|N+2a

_wl [ L),

2 Jaw P
(3.7)
where
L(y) = — LT Inlet|ePle. +yl”)
A= |z|N*+2ale, 4+ y|NF22 In(e 4+ |2|?
L+ e lePle —y)
L+ [z|N+2ale, —y[NF2e In(e + |2]?)
and e, = é
We claim that there exists cog > 0 such that
z(y) C20
o dy < ————. (3.8)
/B%(—ez)uByez) yv e w(|z]) |2V

In fact, for y € B%(—ez), there exists co; > 0 such that

1 [z|VH2e In(e + |z[*|e. — y[?)
c
L+ [z|NF2ele, —y[N+2e In(e + |2]?) =
and then
1
I.(y) L[V In(e+ 277°) Ny
—dy < wN/ r T dr + coo
/B%<—ez) |y V2 o 1+ ([z[r)V+2e In(e + [2]?)
ootN_ll t2
=~ el / n<6+ )dt+622
w([z])[zV Jo 14 tNF2e
C23
< —
w(|z])|z[Y

where cg9, 3 > 0 and the last inequality holds since w(|z|)|z|Y — 0 as |z] — oco.
Thus,

/ Iz(y) dy :/ Iz(:U) dy < C23 .
By (e IV By ey [YINT2 T T (]|
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We claim that there exists coq > 0 such that

L.(y)
——dy < co4. 3.9)
/Bé ) [y ’ (

Indeed, since the function I, is C? in B%(O), I,(0) =0 and I,(y) = I.(—y), then
V1,.(0) = 0 and there exists ¢34 > 0 such that

‘D2[z(y)’ < co5 Vy € B%(O)

Then we have
L(y) < caslyl* ¥y € B1(0),

which implies

L.(y) ly|?
dy < 025/ dy < ca4.
/B%(O) |y |V +2e By (0) Y|V T2

1
We claim that there exists cog > 0 such that
L(y)
—dy S Cog, (310)
/A |y[ V2o

where A = RN \ (B% (0)U B%(ez) U B%(—ez)). In fact, for y € A, we observe that
there exists co7 > 0 such that I,(y) < ¢o7 and

Iz(y) / Ca7
dy < s < Cog,
/A |y | V2 RN\B (0) |y| N+

for some c9g > 0. Therefore, by (3.5)-(3.10|), there exists co9 > 0 such that

o c
(=A)*w(|z]) = _W%, 2| > 2. (3.11)

By (3.6) and (3.11)), there exists Ry > Ry + 2 such that for |z| > R;,

(=) wel) = e (eDlel = (=D > oulel) - T
= w(]z|) (Ug - m)

> 0.
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When |z| < Ry, it is clear that there exists c3g > 0 such that
1 1
(=80 (el) = 50/ (Dl = -5 w(e]) 2 e
Then there exists Ag > 0 such that for A > Ay,
« 1 ! 1+ ﬁ —1 N
(=8)%w(]z]) = gowi(|z])l2] - ple(lzD +NTwP(]z]) 20 vVzeRY, (3.12)

which, together with (3.5)), implies that (3.4 holds. O

Next we prove that u., is not a trivial flat solution when 1 + 2%(555 ) < P < ps

Lemma 3.5.2 Assume 1 + 2%(}55) <p<1l+ Qa(]l\,w), that wy, s given in

and Uy 1S given in . Then

Uoo (t, ) < wp, (L, x) V(t,z) € Quo. (3.13)
Moreover,
ling Uso(t,") =0 wuniformly on BS Ve > 0. (3.14)
—

Proof. Let us denote

koln(e + r?
fo(r) = w Vr>0 and for(z) =kn" fo(n|z]) VreRY,
where , )
“In(e+7r%) N1, |
ko = {WN/O T Nt2a +TN+2ar dr .

Then for any n € C.(RY), we have that

. . xXr
i [ fuande =k Y [ follel)n (%) do = kn(0)
RN n—oo RN n

n—oo

Let t, = n~2% and then

1
_146] t;% 2 o118 | 9
on(tmx) = AOtnp_1 n(€+(1 |37|) ) = A/\()n2plf41 n(e+ (n|§|+)22¢
14 (b 2 |z|)N+20 1+ (nfz])

Ay 20048
— _On%*Nano(n’xD

ko

Ag _20048)
> i NN f(nlal) = fu (2),

0
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20(148) _ 22(14+8) N
where n < n and k; = Agnn- »=T . We see that k; = Agn_»—! — 00 as

n — 00, since 20‘;1”%) N > 0. Let u, 4, be the solution of (3.17) with initial data
fnks,- By Lemma L wa, (- + T, -) is a super-solution of (3.17)) with initial data
Wp, (tn, +), that is, for (t z) € Quo,

Oewn(t + tn, ) + (—A)wr(t + t, ) + (¢ + ) Wi (t +t,,2) > 0.
By the Comparison Principle,
Un s, (8, ) < wp, (E+ th, ) V(t,x) € Qoo,
for any n < n. Letting n — oo infers
ug, (t, ) < wp, (L, x) V(t,z) € Quo, (3.15)

where uy is the solution of (3.17)) with k;d¢ initial data. Thus (3.13) is obtained
by letting n — oo. Finally (3.14)) follows by the fact that

lim wy,(t,2) =0 Vo e RY\ {0},

t—0t

which completes the proof. O

Lemma 3.5.3 Assume 1 < p < pj, then there exists c3; > 0 such that

_148
cgt Pl

1+ |t 2ax|N+2°‘

Uso(t, ) > V(t,x) € (0,1) x RY. (3.16)

Proof. We divide the proof into two steps.
Step 1. Let 0o =1+ 3 — 2L(p— 1) > 0, n(t) =2 — t°° for ¢ > 0 and denote

ve(t,z) = en(t)To(t, x),

where T', is the fundamental solution of (3.17)). In this step we prove that there
exists €y > 0 such that
ko > Ve, in (0,1) x RY, (3.17)

where ko = 2¢y and wy, is the solution of (3.17) with initial data kydy. Indeed,

Ove(t,x) = en' (H)To(t, ) + en(t)0 L o (¢, )

and

(—A)%(t,x) = en(t)(—A)*To(t, x).
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Let [y (t72az) = Dy(1,¢ 2 z), then there exists ¢y > 0 such that for any € < ¢
and (t,z) € (0,1) x RY, we have that

Ope(t, ) + (=A) v (t, ) + tPvP(t, )
= e ()t 2Ty (t 20 ) + PP (t)t 2P PTP (¢ 20 1)
< —eopt 2 OO (¢t Ba ) 4 2PePt 2P HATP (1 2m 1) < 0,

the last inequality holds since —% —1+o0p = —%p + (B and I'y is bounded. In
particular, there holds

Ovey (1, 2) + (—A) v (t, ) + PP (t,x) <0 V(t,z) € (0,1) x RN, (3.18)
Let fo(2) = v, (tn, z) with ¢, = n=2%. Since lim;_o+ n(t) = 2, then we have
that f, — 2€90p as n — oo in the weak sense of measures. There exists Ny > 0

such that ¢, € (0, 5) for n > Ny. Let w, be the solution of (3.17) with initial data
fn, then it infers that

Wy (t, ) > v, (E + L,y ) (t,r) € (0,1 —t,) x RY.
Because uy, is uniquely defined, there holds
Wy —> Up, 88 N —> 00 in (0,1) x RY

and
lm ve, (t + tp, ) = v, (L, ) Y(t,z) € (0,1) x RY,
n—oo

which imply (3.17)).
Step 2. We claim that holds. Since

Ve (t, 1) > ot 2Ty (t25z)  (t,z) € (0,1) x RY,

then, along with the relation T\[uy] = u 20048 _,, We observe that for any A > 0,
kA~ P T

2a(1+8)
U 2a(1+3)_N<t,£C) = A\ »I Uko()\2at,>\$)
ko\ P—1
20(1+p)
> A 10 (A2, )
2a(1+6)_
> €A I Nt_%ljl(t_ia:).
2a(148) 11+ 11+5
o _ N N
Let o=\ »1 N t,=(20)% 1 and T, = g% 1, then

0<t,<Ty—0 as o— oo.
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For (t,z) € (t,,T,) x RY, we have that

Ukeo(t, ) > €qot™ 2aF1(t Mx) > EO - F (t~ 2ax)
then
€p,_1+8 _1 N
Uso(t, T) > Et 1T (t 20 x) V(t,z) € (t,,T,) x RY.
which implies (3.16))and completes the proof. O

Proof of Theorem It follows from Proposition and Lemma [3.5.2
that us is a nontrivial self-similar solution of (3.17)) and (3.22)) follows by (3.13)),
(3.16) and In(e + [t~ 2z|?) < 2In(2 4 |t~ 2ax|), which ends the proof. O

We have actually a stronger result which is a consequence of Theorem [3.1.4}(i)
proved in next section:

Corollary 3.5.1 Assume 1+ 2%}55) <p<l+ (HB). Then
either
U> U N Qo (3.19)
or
U= U N Qoo (3.20)
20(145)
3.5.2 Thecase | <p <1+ =F5;
Forl<p<1+ 2%(}:2”6 it follows from Lemma |3.5.3| that
lim ue(t, ) = 00 vz € RY. (3.21)
t—0+

Proof of Theorem [3.1.3) (i). Let f; € C.(R") be a nonnegative function such
that

suppfo C B1(0) and max fo= 1.
mEBl(O)

Denote

Frg(@) = kn®™ fo(n(x — x0)),

where £ < n” with 7 = ;((1—+1'6’)—N—2a) > 0,0 = & and 29 € RY. Since

fork(z) < n” for z € By(zo), fn(m) 0 for x € Bf(zo) and

2a(1+8) —_N—2a
C3gn Pt

(2 + || )N T2

Veo (b, ) > Va € Bi(zo),
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where t, = n72*. Then there exists Ny > 0 such that for any n > Nj,

fn,k(x) < UEO(tn,{L') Vo € Bl(fﬁo).

Since n?N fo(n?(x — 10)) — c4104,, as n — 0o in weak sense of measures, for some

cq1 > 0.
Let w,, 1 be the solution of (3.17)) with initial data f, j, then

Wi k(0,2) = frr(®) < v (tn, ) < Uoo(tn, ) Ve € RY.
Therefore, by the Comparison Principle
Wk (t, T) < Uoo(t + 1y, T) V(t,x) € Qoo-
We observe that
]}Lrgo[nh_)rrolo Wk (t, )] = uso(t, z — x0) V(t,z) € Quo-

Thus, we derive that

Uso (t, & — 20) < Uso(, ) V(t,z) € Quo-

Then ue(t, — 29) = ux(t,z) for all (t,2) € Qw, which implies that uy is inde-

pendent of x. Combining (3.1 and (3.16|), implies that

(1+ﬁ>pil L+
Uoo = | —— t p-1.
p—1

I8y

[

The proof is complete.

2a(148)

In the case of p = 1+ =5=, it derive from Lemma 3.5.3 that
o
Cqot” P c
liminf uo (¢, 2) > lim 0 = ;O Vo € RY.
t—0+ 1=0" ] 4 [t~ zag|N+20 |z N+

Proof of Theorem (7). We note that u. is a self-similar solution of (3.17]).

Moreover, we derive (3.24)) by (3.16)), which ends the proof.

3.5.3 The self-similar equation

In this section we prove Theorem |3.1.4}

Proof of Theorem [3.1.4] (i). We set vo(n) = t%um(l,n). Then relations
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(3.25) and (3.26)) hold from Lemmas|3.5.2/and |3.5.3] Assume @ is another positive

45 . . _ .
solution of (3.20)). Then (t,x) — t~ = 3(t"2ax) is a positive self-similar solution
of (3.23)). By Proposition it is larger than u.. Thus ve < 0. Assume now
that there exists 79 € RY such that v (19) = 9(n0). and set w = © — vo,. Then

(—=A)*w(m) = lim(=A)2w(n) = lim w(no) = w(n)

=0 Jge(ne) |1 — 10|V 2

dn < 0.

Since Vw(ny) we reach a contradiction. O

Proof of Theorem [3.1.4] (iz). It is a consequence of the equality

1
14 8)7
um:Up@UMI(H)

Open problem. We conjecture that in the case 1+ 2a(1+ﬂ) <p<l+ 20‘(]1V+6), Uso

is the unique positive solution of the self-similar equatlon Satlsfymg One
step could be to prove that any positive solution v satisfying (3 sat1sﬁes for
some K > 1,

v < Kvy,  in RY. (3.23)

We also conjecture that v, satisfies the following asymptotic behavior

Voo () = Cnpagln| V2 as |n| = . (3.24)

Thus if any positive solution v endows the same property, the conclusion (and the
uniqueness) follows.
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Chapter 4

On semi-linear elliptic equation
arising from
Micro-Electromechanical Systems
with contacting elastic membrane

Abstract: in this chapte, we consider the solutions to nonlinear elliptic

problem
—AU, = ﬁ in Q,
O<u<a in (4.1)
u=2>0 on 01,

where 2 is a bounded domain in RY, A > 0 and the function a : Q — [0,1]
satisfying a(x) > rkdist(x,02)7 for some £ > 0 and v € (0,1). This equation
arises from Micro-Electromechanical Systems devices in the case that the elastic
membranae contacts the ground plate on the boundary.

4.1 Introduction

Micro-Electromechanical Systems (MEMS) are often used to combine electron-
ics with micro-size mechanical devices in the design of various types of microscopic
machinery. They are successfully utilized in components of many commercial sys-
tems, including accelerometers for airbag deployment in automobiles, ink jet printer
heads, optical switches, chemical sensors, etc. In MEMS devices, a key component
is called the electrostatic actuation, which is based on an electrostatic-controlled

!This chapter is based on the paper: H. Chen, Y. Wang and F. Zhou, On semi-linear el-
liptic equation arising from Micro-Electromechanical Systems with contacting elastic membrane,
preprint.
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tunable, it is a simple idealized electrostatic device. The upper part of this elec-
trostatic device consists of a thin and deformable elastic membrane that is held
fixed along its boundary and which lies above a rigid grounded plate. This elastic
membrane is modeled as a dielectric with a small but finite thickness. The upper
surface of the membrane is coated with a negligibly thin metallic conducting film.
When a voltage A is applied to the conducting film, the thin dielectric membrane
deflects towards the bottom plate, and when A is increased beyond a certain critical
value \*—known as pull-in voltage-the steady state of the elastic membrane is lost,
and proceeds to touchdown or snap through at a finite time creating the so-called
pull-in instability.

A mathematical model of the physical phenomena, leading to a partial differ-
ential equation for the dimensionless deflection of the membrane, was derived and
analyzed in [49 b5, (6L 57, 65, 79, O5] and reference therein. In the damping-
dominated limit, and using a narrow-gap asymptotic analysis, the dimensionless
deflection u of the membrane on a bounded domain  in R? is found to satisfy the

equation
A

with the Dirichlet boundary condition. Here the term on the right hand side of
equation (4.2) is the Coulomb force. Later on, Ghoussoub and Guo in [49, 5]
studied the nonlinear elliptic problem
M (z) .

with the Dirichlet boundary condition, which models a simple electrostatic MEMS
device consisting of a thin dielectric elastic membrane with boundary supported
at 0 above a rigid ground plate located at 1. Here Q is a bounded domain of RY
and the function f > 0 represents the permittivity profile and A > 0 is a constant
which is increasing with respect to the applied voltage. We know that for any given
suitable f, there exists a critical value A* (pull-in voltage) such that if A € (0, A*),
problem (4.3) is solvable, while for A > A*, no solution for (4.3) exists.

In an effort to achieve better MEMS design, the membrane can be technologi-
cally fabricated into non-flat shape like the surface of a semi-ball, which contacts
the ground plate along the boundary. In this chapter, we study how the shape of the
membranes effects on the existence of solutions and pull-in voltage. In what follows,
we assume that 2 is a C? bounded domain in RY with N > 1, p(x) = dist(z, 0)
for x € €, the function a : Q — [0, 1] is in the class of C7(Q) N C(£2) and satisfy

a(x) > kp(x)?, Vel (4.4)

for some k > 0 and v € (0,1). Our purpose of this chapter is to consider the
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solutions to elliptic equation

—Au=—25 in Q

(a—u)

O<u<a in €, (4.5)
u=">0 on 012,

Y

where parameter A > 0 characterizes the relative strength of the electrostatic and
mechanical forces in the system. Equation (53)) models a closed MEMS device,
where the elastic membrane contacts the ground plate on the boundary. The
function a is initially state of the elastic membrane. The solution u of shows
the steady state of deformation for the membrane when we applied voltage to this
device. To this problem, we have the following existence results.

Theorem 4.1.1 Assume that a € C7(Q)NC(Q) satisfies with ~ € (0, 2] and

Kk > 0, then there exists a finite pull-in voltage \* := \*(k,7y) > 0 such that

() for A € (0, %), admits a minimal solution uy and the mapping: X\ — uy
18 INCcreasing;

(i5) for A > N*, there is no solution for (4.5);

(1ii) assume more that there exists co > Kk such that
a(z) < cop(x)?, x €, (4.6)

then there exists M\ = \(K,7) € (0, ] such that for A € (0,\,), uy € H3 () and

1 1 . .
for v 7& 57 C_p(x)mln{1,2—2'y} < U)\(l’) < Clp(aﬂmm{lﬂ—?y}7 Ve e Q)
1
f L L o) —— < uy(x) < erp(x) In — Ve A
or = -, —p(x)In — < uy(x) < ep(x) In —, T 1,
T ) T S ) :

where ¢y > 1 and Ay = {reQ: plx)<il.

(1v) the mappings: v — \i(K,7) and v — X*(k,7) are decreasing. Moreover, if
Q= By(0) and
a(z) = k(1 —|z|)7, Vz € By(0),

then \.(k,7), \*(k,7) have following estimates

4[{3(1—27)(]\[—1-1-2’)/) if v c (0 l]
27 s 30
w3 .
Ak, 7) 2 4 5 if v e (33l
4k3y(1—7) : 1 2
727 7 if v E (57 §]

and
N (5,7) < k(2 — 2),
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where co > 0 independent of 7, k.

We remark that the membrane contacts the ground plate on the boundary with
decay rate p7, v € (0, %], there still has a positive finite pull-in voltage \*, but the
decay of a plays an important role in decay of minimal solution, the regularity of
minimal solution and the estimate of A\*. Theorem (.11l shows that the membrane
of the MEMS device could be designed as the surface of the unit semi-ball, that is,

Q=DB(0) and a(z)=(1- |$|2)%7

which is equivalent to the case that a(z) = p(x)2, so there exists a positive fi-
nite pull-in voltage \*. The decay rate of function a determined completely non-
existence of pull-in voltage when v > % Precisely, we have following non-existence
result.

Theorem 4.1.2 Assume that a € C(Q) is positive and satisfies with v €
(%, 1) and ¢y > 0. Then problem admits no nonnegative solution for any
A> 0.

We notice that for v < % and fixed k, the finite pull-in voltage A* depends on
v, however, when v = %, A" >0and \* =0 for v > % Therefore, there is a gap
at vy = % Next it is challenging to study the extremal solution, i.e. when A = \*.
Especially, the decay of function a makes this issue more subtle. From Theorem
4.1.1] we observe that the mapping A\ — wu, is increasing and uniformly bounded
by function a, then it is well-defined that

uy- = lim uy in Q, (4.7)

A= A*
where wuy is the minimal solution of with A € (0, A*). Our final purpose in
this chapter is to prove that uy« is a solution of in some weak sense and it
is called the extremal solution. The extremal solution always is found in a weak
sense and then it could be improved the regularity up to the classical sense when
1 < N < 7. Before stating this result, we introduce the definition of weak solution.

Definition 4.1.1 A function u is a weak solution of if 0 <u<a and

Q

e :
/Qu(—A)ﬁda:—/ (a—u)zd , VEe CI (),

where C%(QY) is the space of all C* functions with compact support in 2.
A solution (or weak solution) u of is stable (resp. semi-stable) if

/Q\vg|2dx>/g%dx, (resp. >) V&€ C*(Q)\ {0}
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Theorem 4.1.3 Assume that A € (0, \*), the function a satisfies and({.6)
with cg > Kk >0, v € (0, %], uy 1s the minimal solution of and uy- 18 given by

(4-7). Then

(1) uy+ is a weak solution of and uy« € WJNL*H(Q) for any B € (0,7).

(i4) when 1 < N <7, ¢ =k and Q = By(0), uy- is a classical solution of ({.5).

(14i) uy is a stable solution of with A € (0, \*) and uy« is a semi-stable
weak solution of .

4.2 Existence

Denote by Gg the Green kernel of —A in 2 x Q2 and by Gg|-] the Green operator
defined as

Galf](x) = / Gale, ) fw)dy, Vf e L (Qp).

In our analysis of the minimal solution of (4.5)), the following estimates play an
important role.

Lemma 4.2.1 Let 7 € (0,2), A1 ={z € Q: p(z) < i}. Forze Ay, denote

1
2

1 (4.8)

p(x)min{lﬂ'} if 7¢ (0, ].) U (17 2)7
or(z) = p(z) lﬂm’ if =1

and we make C' extension of ¢ into 0\ A% such that o, > 0 in Q\ A%.
Then there exists ¢, > 1 such that

" 0f2) < Galy")(v) < crola), Vr e

Proof. We assume that ; > 0 is such that the distance function p(-) is of class
C? in
As, ={z€Q: p(x) <o}

V@) = {l(:p), r €0\ Ay, (49)

p(x), x € As,

and we define

where 7 is a parameter in (0,1) and the function [ is positive such that V; is C?
in . Our aim is to estimate —AV, near the boundary. By compactness we prove
that the corresponding inequality holds in a neighborhood of any point z € 0f2
and without loss of generality we may assume that 2 =0 and ey = (0,---,0,1) is
the unit normal vector at 0 pointing inside. We only have to consider the points
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{z; = tenx} with t € (0,d1). By geometric results,

32‘@(756]\;)

02V, (tey)
02 e B
N

2 — Y
O;

=7(r—1)t"? and | i=1,2,---,N—1,

where c3 > 0 independent of . Then
(1 — D7 2% —c3 < AV, (tey) < 7(r — D72 4¢3,
that is,
(1= Dp(x) 2 —cy <AV (2) < 7(7 — Dp(2)" %+ ¢4, Vz € As,, (4.10)

where ¢4 > 0.
For 7 € (0,1), one has that 7(7 — 1) < 0 and

—AGQ[,OFQ] — 107'72’

then by Comparison Principle, there exists ¢5 > 1 and d2 € (0, 01] such that

1
_‘/;' S GQ [pT_Q] S 05‘/7' in A52'
Cs

For 7 € (1,2), take W; = tGgq[1]—V;, then from (4.10]), there choosing ¢ suitable
and c¢g > 1 such that

cg'p" A (z) < —AWy(x) < cop” (), Yz € Ay
By Comparison Principle, there exists ¢ > 1 that that

c'Wi(z) < Golp™ ?(z) < cWi(x), Vo € As.

For 7 = 1, we define

V() = {l(m), r e N\ As,

p(z)In ﬁ, T € As,,

where §; € (0, 1] and the function [ is positive such that V; is C? in €. By directly
computation, there is some c; > 0

p(x) ™ —cr < AVi(z) < p(x) P 47, Va € As,.
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Then it follows by Comparison Principle that

1 1 1
—pln= < Gglp '] <cgpln= in Ai,
C8 P P 2

for some cg > 1. The proof complete. O

By Lemma we have following results.
Corollary 4.2.1 For~y € (2,1), we have that

lim Golp™](x)p™ () = +oo. (4.11)

Proof. Take 7 = 2— 27, then it follows by v € (3, 1) that 2—2y < v and for some
Cg > O,
Galp ) (x) > cop® ¥'(x), Vx €L,

which implies (4.11)). O
Proposition 4.2.1 Assume that a € C7(Q2) N C(Q) satisfies with v € (0, 2],

then there exists \* > 0 such that if X € (0, \*), there exists at least one solution

for and if A > \*, there is no solution for .

Moreover,
Jo ~atmydz

a(z
Proof. Without loss of generality, we assume

D(Q):= sup |z —y| < L.
z,y€)

Existence for X small. Let vy = 0 in Q and
' 1
U1 = )\GQ[;] > O,
by (#.4) and Lemma [4.2.1]
— 1 —2 C10
vy = AGQ[E] < AGolp ] < )\?Qz—zw

where ¢19 > 0 depending on  and o is given by (4.8). For v < 2, we have that
min{l,2 — 2y} > v and

v(z) < Ha(x), TeQ,
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Fix any p € (0, k), then choose A such that

c
K—IQA < u <K, (4.13)
then
1 1
v = AGal el 2 AGell = 0
m<A— G (2] < A0
Choose X such that c
10
———A<ypu 4.14
(— u] -

Combining (4.13]) and (4.14)), if A < w then

va(z) < pp’(z), = €

Iterating above process, we have that

1

(@ —vy_1)

Up 1= )\GQ[ 2] > Up_1, neN

and
vn(x) < pp’(z), = €Q.

By standard approximating procedure, uy := lim,_, v, is a classical solution of

(4.5) and it is normal to obtain the following assertions:

(P\) (%) uy is the minimal solution of (4.5));

(27) if (4.5) has a super solution u for A\; > 0, then (4.5) admits a minimal
solution uy for any A € (0, \y];

(7i) the mapping A — u, is increasing.

Nonexistence for \ large. If (4.5) admits a minimal solution uy for A > 0. For

€ > 0, denote
Qe :={r € Q,p(x) > €} (4.15)

For £ € C?(R2), then there exists € such that

supp(§) C (.
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Then V¢ and —A¢ have compact support in Q.. For A € (0, A*), multiply (4.5)) by
¢ and integrate in €2, we have that

/Q (A—ffuz /Q (—Auy)edr = /Q Vi, - Véde = /Q ur(—A)éda (4.16)

a—uy)
Take a sequence {&,} C C%(Q) such that
& — Go[l] in C*(Q) asn — +oo.

Then it follows by (4.16) that

)\/ L)degcn/u)\dxgcn/a(x)dx,
o (a—uy) Q Q

where ¢1; > 0. Therefore, we have that

/Q a(z)dx > /Q ur(@)de = /Q Gol1](2)(—A)ux(z)dx
- )\/ [ (G“[l](x) dezA/Mdaz,

) — ux(v)] a?(z)

which implies that
\ < Jo a(z)dx
= 7 Gafll) g,

a?(x)

Thus, the assertions in Proposition follow by the existence, nonexistence
result and Property (Py). O
Proof of Theorem [4.1.2} If there exists A > 0 such that (4.5)) admits a solution
uy, then

V1 = )\GQ[ L

]

From Corollary [£.2.1) we derive that

<uy<a in Q. (4.17)

I “(x) =
Jim vy (2)p™ (2) = oo,

which, together with (4.17)), implies that

| o
i a(a)p (@) = +oo,

then there is contradiction with (4.6). The proof ends. O

Next we do the boundary decay estimate for uy. First, we need following lemma.
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Lemma 4.2.2 Assume that a satisfies and@) with ¢ > k> 0, v € (0, %]
and u is a super solution of with A > 0 such that

u<fa in €, (4.18)

for some 0 € (0,1), then admits a minimal solution uy such that for some
cra > 0,
uy < cip02-24 in
Proof. We observe that
A
(@ —uy)?

then Lemma with 7 = 2 — 27 implies

Uy = G’Q[ ] = /\/@_29_269 [p—Q'y]’

ur () < c1202-2¢(7).

The proof ends. a

Proposition 4.2.2 Assume that the function a satisfies and@ with co >

k>0,7€(0,3]. Then
(1) for A € (0, \*), there exists c1o > 1 such that

1
C—Q2727(95) Sup(r) <eppp'(x), Voe;
12
(17) there exists A\, < A\* such that for A € (0, \,),

1
C—Q2,27<.T) <up(x) < c1300-24(2), Yr €Q (4.19)
13

for some c13 > 1.

Proof. Lower bound. For A € (0, \*), the minimal solution u, of (4.5) could be
approximated by increasing sequence {v,} defined by

A

Unp — Gg[m

] and wy=0.
By Lemma with 7 = 2 — 2+, we have that

1 )
uy > v = )\GQ[?] > ¢ A\02—9, in By(0).
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Upper bound. The natural upper bound is a(z) > x(1 — |z|)?. For A small, in
the construction of v, defined by

A

Un = GQ[(@ — Un,1)2

] and wy=0.

We may assume that there exists p € (0, k) independent of n such that for any n
vn-1(2) < pp(x)7, Vo € Bi(0)
and then there exists ¢;4 > 0 such that
Un(®) < crapoe-24(x), Vo € Bi(0),
where ¢4 > 0 independent of n. Thus, one infers that
ux(x) < crapoe—2y(x), Vo e By(0).

This means A\* > 0.
For X > 0 if (4.5) admits a minimal solution uy such that

ux(z) < cizo(z), €
Since the mapping A — u, is increasing, then there exists 6 € (0, k) such that for

all \ € (0, \]
ux(z) < fba(x), x €.

By Lemma |4.2.2 we have that for all A € (0, \].

ux(r) < epo(r), T €S

Denote
A = sup{\ > 0: limsupuy(z)o ' (z) < +o0}.
z— 0N
It is obvious that A, < A*. The proof ends. O

Remark 4.2.1 Assume that a satisfies (@) with k>0, v € (0, 2] and uy is the
manimal solution of with A € (0, \*). Then uy satisfies or

limsup uy(x)p(z)™7 > k. (4.20)

p(z)—0+
Proof. If (4.20) fails, there exists ¢, € (0, ) and € > 0 such that

Uy S Hlp'y in Bl(O) \ Bl_E(O).

124



It infers from uy) < a in B;(0) that there exists 6, € (0, k) such that
uy < 620" in Bi_(0),
Taking 6 = max{6;,6,} < k, we have
uy < 0p” in By(0),

then by Lemma [4.2.2] u, satisfies (4.19). O

4.3 Estimates for \* and A\, when 2 = B;(0)

In this section, we do the estimate for A, and A* in the case that Q = B;(0).
Proposition 4.3.1 Assume that 2 = B1(0) and

a(x) = k(1 —|z])7, (4.21)

where >0 and v € (0, 2]. Then

41@3(1—27%g7N—1+2'y) if e (0, %]7
M) > 2 it el (4.22)
4r3y(1— .
1= it el
Proof. Let w(r) = £(1 —r)”, where
1—2y if 76(0,%],
By=13 it v€(3 3l
2l it ve3)
then 3, € [y,1) and
K Ly K 1 — |x|)A1
- Aulfel) = 55,1 = )1~ o)+ 58,V - DET, va e Bi(0)
(4.23)
Since (1 —r)% < (1 —r)7, then
1 2 (2 -2
L Y B, (0). 4.24
(a(x)_wﬂx’))g (SK) ( ‘ID ) Vo € 1(0) ( )

For v € (3, 2], we have that 3, — 2 < —2y < 3, — 1 and (4.23) implies that
K
~du(jal) > 58,1 B)(1 - |e) Ve € By(0)
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Then we have that

A7)
—A > B
B e ()
where A\{(y) = %71_5”) for v € (3, 2].

For v € (0, %], we have that —2y = 3, — 1 and (4.23)) implies that
K _
—Aw(jzl) 2 38, (N = 6,)(1 - )72,z € Bi(0).

Then we have that

M)
—-A > Vo € B1(0
= ) = PO
where Ai(7) = 4n3(1—2'y;(7N—1+2’7) for ~ € (0, %]
By Lemma we obtain that A\, > . O

Next we see an upper bound for A* by (4.12)).

Proposition 4.3.2 Assume that Q2 = B1(0) and a satisfies with k > 0 and
v € (0, %] Then there exists ¢ > 0 independent of v, k such that

N (k,7) < cor®(2 — 27).

Gggjf )dz. Since

Proof. From (4.12)), we have to estimate fBl(O) a(z)dz and fBl(O)
there exists ¢ > 1 such that

¢! (1 = Ja]) < Go[l](x) < c(1 —|al), Vz € Bi(0),

then

1
/ Md:ﬂ > 0_1/42/ (1 — |z "2 da
Bi(0) @ (z) B1(0)

c
>
T (2-2y)R?
Together with
/ a(x)dr < l{/ dz,
B1(0) B,1(0)
it implies from (4.12) that \*(k,v) < cor®(2 — 27). O

Lemma 4.3.1 Assume that Q = By(0), a satisfies with & > 0, v € (0, 3]
and 0 < X < X*(k,7v). Then

126



(1) the mappings: v+ A (K,7) and vy — N*(k,7) are decreasing for fized k > 0;
(17) the mapping: £ — A(K,7) and k — X (k,7) are increasing for fized
v €(0,3].

Proof. Let 0 < 7 < 7 < 2, for A € (0, min{\*(k,71), A*(k,72)}), u1,us are
the minimal solutions of (4.5)) with v = ~; and v = 75 respectively. Denote
a1(z) = k(1 — |z|)™ and ag(z) = k(1 — |z])*, then a; < ay in By(0) and for any

A € (Qf(’ﬁ%)); )\ )\

(a1 —u1)? = (ag —u1)*

Therefore, A € (0, \*(k,¥2)), which implies that

—Aul =

AN(K,72) = N (K, ).

It is similar to obtain the other assertions. O

4.4 Extremal solution

4.4.1 Existence of extremal solution

In this section, our aim is to investigate the extremal solution of (4.5]).

Proposition 4.4.1 Assume that a satisfies and @ with ¢g > k > 0,

v € (0, %] and uy+ s given by . Then uy- is a weak solution of with \*.
Moreover, for B < v, there exists cg > 0 such that

[[ua- w5 @) < ¢ (4.25)
and -
/ p—%dw < cg. (4.26)
o (@ —ux)

Proof. From (4.16)), we have that for A € (0, \*),

Q

/QU)\(—A)fdJZ = / ﬁdw, ¢ € C(Q). (4.27)

Now take a sequence {&,} C C?(£2) such that

& — Ggll] in C?(Q) asn — +oo.
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Then it follows by (4.27) that

/ L)Zd:c < eppA Tt / urdr < ey A7t / a(x)dx,
q (a—uy) Q Q

where cj7 > 0. Again take a sequence {&,} C C?(Q) such that
€n — Golp™' "] in C2.(Q) asn — 4oo,

where 3 € (0,7). Since uy < a, we have that

/ ur(~A)uds < 15 / PP p s < 5,
Q Q

where ¢z > 0 satisfying ¢z — 400 as f§ — a~. It follows by (4.27) and Lemma
[4.2.7] that

P
)\/Q—((I—U,A>2d < 19, (428)

where c19 > 0 is independent of \.
By [10, Theorem 2.6], for any 5 € (0,~) there exists ¢y > 0 such that

Vsl s ) < Caolla@ = ux) Nz, p-san)- (4.29)

Therefore,

-1
|||VU/\|||LNL_B(Q) < CrgA .

That is to say that

HUAHWL%(Q) < oA (4.30)

To prove that uy« is a weak solution. Since the mapping A — u, is increasing
and uniformly bounded by function a, which is in L'(€), then

uy — uy in LY(Q) as A — A

and the mapping A — m is increasing and
A A . *
TIENE — (0= un)? a.e.in 0 as A — A"

Therefore, it follows by (4.28)) that

A A
_>

: Ll 0 *
Gl A n ) in L'(Q) asA— A
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and then \ )
/ S A S
Q

(a —uy)? (@ — uy)?
Thus, passing the limit of (4.27]), uy+ is a extremal solution of (4.5]).

To prove (4.25) and (4.25). From (4.28) and the mapping A — (;\_11;[;2 is
increasing, then there exists ¢y > 0 such that
Apt=F
/ p—Qdilf S Co0.
o (a—u)
Then it follows by (4.29)) that By [10, Theorem 2.6], we have (4.26]). O

Lemma 4.4.1 Assume that a satisfies and with cg > k >0, v € (0, %],
A is given in Theorem and wy is the minimal solution of with A €
(0,\.). Then uy € H3(Q) and for X\ € (0,\,), there exists co1 > 0 such that

u

/ |Vuy|*dr < e;y A and / A dr < ey
Q o (a—uy)?

Proof. By (4.19), for A € (0, \.), there exists 6§ € (0,1) such that a — uy < fa and
then

(i) for v € (0, 3),

/ (a—u—/\u)de < ¢ 072 / p1’27dx < 00
Q A Q

(#17) for vy € (3, 2],

u _ —
/ mdfﬁ <4 2 / p2 Yl < oQ,
Q A Q

where 2 — 4y > —1. Taking a sequence {&,} C C%(2) which converges to uy, then

/ |Vuy|*de = )\/ dex < +00.
Q o (a—uy)

The proof ends. O

Proof of Theorem [4.1.1. The existence of minimal solution for A € (0, A*) and
the nonexistence for A > \* follow by Proposition [4.2.1] And Theorem [1.1.1] (i)
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see Proposition[£.2.2] The estimates of A\, and A* see Proposition [4.3.1], Proposition
132 and Lemma [£.3.1] O

4.4.2 Stability and regularity

Lemma 4.4.2 Assume that A € (0, \*), a satisfies and ([4.6) with ¢y > r > 0,
v € (0, %] Let u be a positive solution of and v be a super solution of .
If ui (A, u) > 0, then
u<v in €.

If py(\,u) = 0, then
u=v in .

Proof. It follows the procedure of the proof of [49, Lemma 4.1] just replaced (1—%)2

by ﬁ, since ﬁ just has the boundary singularity. O

Proposition 4.4.2 Assume that X € (0, \*), a satisfies and (4.6) with co >
k>0, v e (0, %], and uy is the minimal solution of . Then uy s stable.

Proof. Denote

M = sup{\ : uy is a stable solution of (4.5)}.

Step 1. To prove \* > 0. It follows by [71, Theorem 1] that there exists constant
Co9 > 0 such that

/§2p2dx < 022/ |VEPdr, VE € C20). (4.31)
Q Q

For A\ < \,, it follows by Theorem [4.1.1] there exists 6 € (0, 1) such that
uy <0a in K.

Together with v € (0, %], there exists constant such that
@ w) <epp P <ewp? in Q,

where ca3, co4 > 0. Then for A small enough, it follow by (4.31]) that

A / 2 2
dx < Vlidz, VE e C;(Q).
/Q(G—U,\)?’ B Ql d : ®)
This means that u, is a stable solution of (4.5)) for A > 0 small, then \* > 0.
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Step 2. To prove \* = X*. We prove A* = \* by contradiction. It is obvious
that A\* < \* and then we may assume that \* < A\*. Choose \; € (A¥, \*) and uy,
satisfies that for A € (0, \¥), which is not empty from step 1,

A A

“Aus — )
T T 2 T (= )2

Moreover, since the mapping A — m is increasing in L'(Q, p?dz) and then
by (4.28 A 5 A 5 in LY(Q, p?dx) as A — A, Thus, together with u is

» T 7 (aug
stable, we imply that uy; is semistable. By Lemma [£.4.2] we have that uy; = uy,,
which is impossible. Therefore, \* = \*. O

Proposition 4.4.3 Assume that a satisfies (@) with kK > 0, v € (0, %] and uy- 18
given by . Then uy« is semi-stable weak solution of with \*.

Proof. From (4.28) and the stability of u,, then

A\ 2
/Lgdx</|Vgo|2dx
o (a—uy) Q

holds for ¢ = Gp, (py[1]. Therefore,

P>
/ —de < e L
Q (a — uy)

Since the mapping A — ﬁ is strictly increasing and bounded in L'(Q2), Then

.
2 2
1% P R 1
A=A L (2
CEENE — CEETWE as — in (Q)
and A 2 2\* 2
lim Lgdx = / —Spgd:v
A=A g (a—uy) o (a—ux)
Therefore,
/)\*—gazdx < / V|’ dz, Ve € C2()
ola—uy)® = Jg ’ e
that is, uy« is semi-stable. O

We next improve the regularity of uy« and prove when N < 7, the extremal
solution wuy« is a classical solution of (4.5)) with A = A*. To this end, we need the
following lemma, which is inspired by [49].

Lemma 4.4.3 Assume that A\ € (0,\*), a satisfies with K > 0 and v €
(0,2]. Let u be a weak solution of such that for any compact set K C €2,

"3
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there exists co5 > 0 such that

1
a— uHL%(K)

< co5. (4.32)

Then u is a classical solution of and there exists cog > 0 depending on K
such that
inf (a(z) — u(z)) > cop. (4.33)

zeK

Proof. From (4.32)), we have that

1 3N

and then u € WZ%(K ) and by Sobolev’s Theorem we can already deduce that
ueC g(K ") with K’ compact set in interior point set of K. To get more regularity,
it suffices to show that u < a in €. If not, there exists xy € € such that u(zg) =
a(xg). Then we have that

la(z) —u(z)| = la(z) — a(zo)| + [u(z) — u(zo)]
< fu(@) — u(zo)] < |o — mol?,
then

1 _3N.2
+oo> [ ———— > [ |v—xo| 2 3dx = +o0,
o(a—u)z Q

a contradiction, which implies that we have that a — « > 0 in €. O

Proposition 4.4.4 Assume that 1 < N < 7, Q = By(0), a satisfies and
(@) with co =k >0, v € (0, %] and uy« is given by . Then uy- 18 a classical

solution of with A = \*.

Proof. Since the mapping: A\ — wu, is increasing and bounded by a, then from (4.6))
and Lemma 4.4.3] we only have to improve the regularity of uy+ in any compact
set of B1(0). For A € (0, A*), we know that u, is stable, then

AE2 ; 2
/52de = /Q VP de ¥§ € C2(Bi(0)). (4.34)

a—u

Minimal solutions wy is radially symmetric.  Since the minimal solution wu)
could be approximated by the sequence functions



It follows by radially symmetry of v,_; and a that v, is radially symmetry and
then uy is radially symmetric. Then uy~ is radially symmetric.

We will prove that for any r € (0, 1), there exists ¢ > 0 depending on r such
that
a—uy>¢e on 0B,(0).

Conversely, if there is r’ such that
a—uy=0 on 0B.(0).
From (4.30)), we have that
1.-N_
uy € WHor=5(Q2) for 0 < 8 < 7.
Then there is 7o € (0,7’) and ¢y > 0 such that
a(rg) —ux(ro) > e for A€ (0,\").

If not, o
a—uy=0 in By(0)\ B-(0).
there is contradiction with (4.28)).
Choose o
(= (a—uy)'—¢€, in B,(0),
"o in By(0)\ By, (0),

where i € (=2 —1/6,0) and €) = a — uy on 9B,,. Then & € H}(B,(0)). It follows
by (4.34]) with &;, we have that

. i _i2
[ Aow)_dR,
By (0)

(a — u,\)3

IN

[ (- w)lds

By (0)

= 42 / (a —uy)* 2|V (a — uy)|*dz. (4.35)
BTO(O)

On the other hand, from (4.5), we have that

A

_A<G_U)Z_Aa_(a——u)2’

B,,(0). (4.36)
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Multiplying (4.36]) by 1f2¢[<a — uy)?" ! — €%~ and applying integration by parts
yields that

i2 >\ 2i—1 2i—1
1 —2i /Bm«»[_m T a—wplle )T e e

Z'2

_ _ ) o N2i-1
_1_22,/]3T0(0)V(a ) - V(@ — w)* ) de

= 2'2/ (a —ux)* 2|V ((a — uy)|*dw,
Bro (0)
together with (4.35)), then we deduce that

by _ i 112 2 by ) ]
/ [(CL UA) _ 6)\] dz < ? ' / [—Aa _ 2][(@ _ u/\)szl _ eZZ*l]dx,
By, (0) (a—wuy) 1—2 By (0) (a—wu)

thus,

2 1 4\é} 2)\e%
L o A" W
1 =207 Jp, (o) (@ —uy)*% By (0) (a—uy)®i =i B, (0) (@ —uy)3

TO

—Aa ) 21 1
+/ —lzdl' - 6?\11/ Aadx — )\/ A—Qdiﬁ
B, (0) (@ —uy)t=% By, (0) By (0) (a—uy)

0

Since Aa < 0 and €, > ¢, then

2 1 4 —A
A2 - — ,)/ ————dr < / ek —d + -
1 =207 Jp, (o) (@ —uy)*% By (0) (@ —up)? (a —uy)t=2

4" —A
< / Vo g, S Jdu.
B (0) (@ — uy)? (@ —uy)'=>

Therefore, for (2 — 222) > 0, that is, i € (=2 — v/6,0), there exists c; > 0

independent of A such that

1
——————dx < cor. 4.37
/Bro(o) (@) 2 x < Cor ( )

When N <7, % < 3 — 2i, then by Lemma , we have that u, has uniformly
in C27(Q), then uy- is a classical solution of (4.5) with A* and @ —uy- > 0 in Q. O

loc

Proof of Theorem |4.1.3. Proposition 4.4.1| shows that u,- is a weak solution of
([4.5). The stability of uy of with A € (0, A*] follows by Proposition and
Proposition . When 1 < N <7 and Q = B;(0), it from Proposition Uy~
is a classical solution of ({4.5)). O
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