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DEPARTAMENTO DE INGENIERÍA MATEMÁTICA
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Contributions to local and nonlocal elliptic

differential equations

Abstract

This thesis is divided into four parts. The first part is devoted to study radial
symmetry and monotonicity properties of positive solutions to fractional elliptic
equations in the unit ball or in the whole space, by using the method of moving
planes. In the second part, we consider the decay and symmetry properties of
positive solutions for mixed integro-differential equations in the whole space. In
studying the decay, we construct appropriate super and sub-solutions and then we
use the method of moving planes to prove symmetry results. The third part is to
investigate existence and uniqueness of weak solutions to fractional heat equations
involving Radon measures. Moreover, we analyze the asymptotic behavior of the
weak solution when Radon measure is the Dirac mass. In the fourth part, we
study the existence of solutions to nonlinear elliptic equation which arises from
Micro-Electromechanical Systems devices in the case that the elastic membranae
contacts the ground plate on the boundary. We show how the boundary decay
works on the existence of solutions and pull-in voltage.

Key words: Fractional Laplacian, Decay, Symmetry, Hopf’s Lemma, Moving
Planes, Radon measure, Dirac mass, Self-similar solution, Micro-Electromechanical
Systems, Pull-in voltage, Minimal solution.

i



Contribuciones para ecuaciones diferenciales

eĺıpticas locales y no locales

Resumen

Esta tesis doctoral está dividida en cuatro partes. La primera parte está dedi-
cada al estudio de la simetŕıa radial y las propiedades de monotonicidad de solu-
ciones positivas de ecuaciones eĺıpticas fraccionarias en la bola unitaria o en todo
el espacio, usando el método de planos móviles. En la segunda parte, se con-
sideran propiedades de decaimiento y simetŕıa de las soluciones positivas para
ecuaciones integro-diferenciales en todo el espacio. Estudiamos el decaimiento,
construyendo super y subsoluciones apropiadas y usamos el método de los planos
móviles para probar las propiedades de simetŕıa. La tercera parte es investigar la
existencia y unicidad de soluciones débiles de la ecuación del calor fraccionaria, in-
volucrando medidas de Radon. Más aún, analizamos el comportamiento asintótico
de la solución débil cuando la medida de Radon es la masa de Dirac. En la cuarta
parte, estudiamos la existencia de soluciones a problemas eĺıpticos no lineales que
provienen del modelamiento de dispositivos de sistemas micro-electromecánicos en
el caso en que la membrana elástica entra en contacto con la placa inferior en la
frontera. Mostramos, en este caso, como el decaimiento de la membrana afecta la
existencia de soluciones y la tensión pull-in.

Palabras Claves: Laplaciano Fraccional, Decaimiento, Simetŕıa, Lema de Hopf,
Planos Móviles, Medida de Radon, Masa de Dirac, Solución auto-similar, Sistemas
Micro-Electromecánicos, Tensión Pull-in, Solución Minimales.
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Introduction

This thesis is to study qualitative properties of positive solutions to semilinear
elliptic equations involving fractional Laplacian, the weak solutions to fractional
heat equations with initial measure data, and the solutions of the second order
elliptic equations arising from Micro-Electromechanical Systems (MEMS).

0.1 Radial symmetry of positive solutions to equa-

tions involving the fractional Laplacian

In recent years, the study of nonlinear elliptic equations involving general
integro-differential operators, especially, the fractional Laplacian, have attracted
the attention of the mathematical community by great applications in physics and
by important links on the theory of Lévy processes, refer to [17, 23, 24, 37, 41, 45]
and reference therein. In Chapter 1, we consider symmetry and monotonicity prop-
erties of positive solutions for equations involving the fractional Laplacian. We first
study the following fractional elliptic problem{

(−∆)αu = f(u) + g in B1,

u = 0 in Bc
1,

(1)

where B1 denotes the open unit ball centered at the origin in RN and (−∆)α with
α ∈ (0, 1) is the fractional Laplacian defined as

(−∆)αu(x) = P.V.

∫
RN

u(x)− u(z)

|x− z|N+2α
dz, (2)

x ∈ B1. Here P.V. denotes the principal value of the integral, that for notational
simplicity we omit in what follows.

The study of radial symmetry and monotonicity of positive solutions for non-
linear elliptic equations in bounded domains using the moving planes method based
on the maximum principle was initiated with the work by Serrin [83] and Gidas,
Ni and Nirenberg [50], with important subsequent advances by Berestycki and
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Nirenberg [8]. We refer to the review by Pacella and Ramaswamy [77] for a more
complete discussion of the method and it various applications. In [8] the maximum
principle for small domain, based on the Aleksandrov-Bakelman-Pucci (ABP) esti-
mate, was used as a tool to obtain much general results, specially avoiding regular-
ity hypothesis on the domain. In a recent work Guillen and Schwab, [54], provided
an ABP estimate for a class of fully non-linear elliptic integro-differential equa-
tions. Motivated by this work, we obtain a version of the maximum principle for
small domains and we apply it with the moving planes method as in [8] to prove
symmetry and monotonicity properties for positive solutions to fractional elliptic
problem (1).

We consider the following hypotheses on the functions f and g:

(F1) The function f : [0,∞)→ R is locally Lipschitz.

(G) The function g : B1 → R is radially symmetric and decreasing in |x|.

Before stating our first theorem we make precise the notion of solution. We
say that a continuous function u : RN → R is a classical solution of equation (1)
if the fractional Laplacian of u is defined at any point of B1, according to the
definition given in (2), and if u satisfies the equation and the external condition in
a pointwise sense. Now we are ready for our first theorem on radial symmetry and
monotonicity properties for positive solutions of (1). It states as follows:

Theorem 0.1.1 Assume that the functions f and g satisfy (F1) and (G), respec-
tively. If u is a positive classical solution of (1), then u must be radially symmetric
and strictly decreasing in r = |x|, for r ∈ (0, 1).

We devote the second part of Chapter 1 to study symmetry results for a non-
linear equation as (1), but in RN and with g ≡ 0. For the problem in RN , the
moving planes procedure has to start a different way because we cannot use the
maximum principle for small domain. We refer to the work by Gidas, Ni and
Nirenberg [51], Berestycki and Nirenberg [8], Li [62], and Li and Ni [63], where
these results were studied assuming some additional hypothesis on f , allowing for
decay properties of the solution u. A general result in this direction was obtained
by Li [62] for the equation

−∆u = f(u) in RN

with u decaying at infinity and f satisfying the following hypothesis:

(F2) there exists s0 > 0, γ > 0 and C > 0 such that

f(v)− f(u)

v − u
≤ C(u+ v)γ for all 0 < u < v < s0. (3)
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Motivated by these results, we are interested in similar properties of positive solu-
tions for equations involving the fractional Laplacian under assumption (F2). Here
is our second main theorem.

Theorem 0.1.2 Assume that the function f satisfies (F1) − (F2) and u is a
positive classical solution for the equation{

(−∆)αu = f(u) in RN ,

u > 0 in RN , lim|x|→∞ u(x) = 0.
(4)

Assume further that there exists

m > max{2α

γ
,
N

γ + 2
} (5)

such that u satisfies

u(x) = O(
1

|x|m
), as |x| → ∞, (6)

then u is radially symmetric and strictly decreasing about some point in RN .

Felmer, Quaas and Tan in [45] studied the problem (4) with f(u) = h(u) − u,
that is, {

(−∆)αu+ u = h(u) in RN ,

u > 0 in RN , lim|x|→+∞ u(x) = 0.
(7)

They proved existence and regularity of positive solutions, and also decay and
symmetry results. Precisely, it was proved that the solutions u of (7) satisfy

c−1

|x|N+2α
≤ u(x) ≤ c

|x|N+2α
, |x| ≥ 1, (8)

for some c > 1, when h is superlinear at 0 in the sense that

lim
s→0

h(s)

s
= 0.

Moreover, the radial symmetry of the solutions of (7) is derived by using the
moving planes method in integral form developed in [30, 64], assuming further
that h ∈ C1(R), h is increasing and there exists τ > 0 such that

lim
s→0

h′(s)

sτ
= 0. (9)

We see that Theorem 0.1.2 generalizes the symmetry result in [45], since here we
do not assume f is differentiable and we do not require f to be increasing.
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The third part of Chapter 1 is devoted to study the radial symmetry of non-
negative solutions for the following system of nonlinear equations involving frac-
tional Laplacians with different orders

(−∆)α1u = f1(v) + g1 in B1,

(−∆)α2v = f2(u) + g2 in B1,

u = v = 0 in Bc
1,

(10)

where α1, α2 ∈ (0, 1). We have following results for system (10):

Theorem 0.1.3 Suppose that f1 and f2 are locally Lipschitz continuous and in-
creasing functions defined in [0,∞) and g1 and g2 satisfy (G). Assume that (u, v)
are positive, classical solutions of system (10), then u and v are radially symmetric
and strictly decreasing in r = |x| for r ∈ (0, 1).

We prove the above theorems using the moving planes method in [50]. The main
difficulty here comes from the fact that the fractional Laplacian is a non-local
operator, and consequently maximum principle and comparison results require
information on the solutions in the whole complement of the domain, not only at
the boundary. To overcome this difficulty, we introduce a new truncation technique
which is well adapted to be used with the method of moving planes.

0.2 Qualitative properties of positive solutions

for mixed integro-differential equations

In Chapter 2, we are concerned with the decay and symmetry results of solutions
to mixed integro-differential equations{

(−∆)αxu+ (−∆)yu+ u = f(u), (x, y) ∈ RN × RM ,

u > 0 in RN × RM , lim|(x,y)|→+∞ u(x, y) = 0,
(11)

where N ≥ 1, M ≥ 1, the operator (−∆)y denotes the usual Laplacian with
respect to y, while (−∆)αx denotes the fractional Laplacian of exponent α ∈ (0, 1)
with respect to x, i.e.

(−∆)αxu(x, y) =

∫
RN

u(x, y)− u(z, y)

|x− z|N+2α
dz, (12)

for all (x, y) ∈ RN × RM .
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When N = 0, equation (11) becomes the nonlinear Schrödinger equation{
−∆u+ u = f(u) in RM ,

u > 0 in RM , lim|y|→+∞ u(y) = 0.
(13)

It was the seminal work by Gidas, Ni and Nirenberg [51] that settled the decay and
symmetry properties for (13) when the non-linearity is merely Lipschitz continuous
and superlinear at the zero in the sense that

f(s) = O(sp) as s→ 0, (14)

for some p > 1 and M ≥ 3. They proved that the solutions of (13) are radially
symmetric and they satisfy the precise decay estimate

lim
|y|→+∞

u(y)e|y||y|
M−1

2 = c, (15)

for certain constant c > 0. On the other hand, when M = 0, equation (11) reduces
to the fractional nonlinear Schrödinger equation (7) which has been studied by
Felmer, Quaas and Tan [45], especially the decay as (8) and radial symmetry
results.

Both operators, the Laplacian and the fractional Laplacian, are particular cases
of a general class of elliptic operators connected to backward stochastic differential
equations associated to Brownian and Levy-Itô processes, see for example Bar-
les, Buckdahn and Pardoux [2], Benth, Karlsen and Reikvam [6] and Pham [79].
Recently, Barles, Chasseigne, Ciomaga and Imbert in [3, 4] and Ciomaga in [38]
considered the existence and regularity of solutions for equations involving mixed
integro-differential operators belonging to the general class of backward stochas-
tic differential equations mentioned above. A particular case of elliptic integro-
differential operator of mixed type is the one considering the laplacian in some of
the variables and the fractional laplacian in the others, modeling diffusion sensible
to the direction, such as the operator in equation (11).

In view of the known results on decay and symmetry for solutions of equations
(13) and (7) just described above, it is interesting to ask if these results still hold for
solutions of the equation of mixed type (11), where the elliptic operator represents
diffusion depending on the direction in space. Regarding the asymptotic decay
of solution at infinity, the question is interesting since a proper mix of the two
variables should be obtained for the decay estimates. The natural way to estimate
the decay is through the construction of super and sub-solutions involving the
fundamental solution of the elliptic operator. Moreover, the solution of (11) cannot
be radially symmetric, so this property cannot be used to estimate the decay. On
the other hand, regarding symmetry results, we may still have symmetry in x and
y, but the moving planes method would require an adequate version of the Hopf’s
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Lemma, that we prove here.

Our first theorem in Chapter 2 concerns the decay of solutions for (11) with
general nonlinearity and it states as follows.

Theorem 0.2.1 Assume that α ∈ (0, 1), N ≥ 1, M ≥ 1 and the non-linearity
f : (0,+∞)→ R is a continuous function satisfying

−∞ < B := lim inf
v→0+

f(v)

v
≤ A := lim sup

v→0+

f(v)

v
< 1. (16)

Let u be a positive classical solution of problem (11), then for any ε > 0 small,
there exists Cε > 1 such that for any (x, y) ∈ RN × RM ,

C−1
ε (1 + |x|)−N−2αe−θ2|y| ≤ u(x, y) ≤ Cε(1 + |x|)−N−2αe−θ1|y|, (17)

where
θ1 =

√
1− A− ε and θ2 =

√
1−B + ε. (18)

When we compare estimate (17) with (15) for N = 0, we first observe that
in ours an exponential decay is obtained, but with a constant Cε depending on
ε, which is a parameter controlling the rate of exponential decay. This is more
clear when A = B = 0. On the other hand we are making much more general
assumptions on f , in particular, we are not making any assumption on the radial
symmetry of the solution, which is crucial in proving (15). We do not know of a
decay estimate better than

C−1
ε e−θ2|y| ≤ u(y) ≤ Cεe

−θ1|y|, y ∈ RM , (19)

for solutions of (13) under assumption (16) for f , and where radial symmetry of
the solutions is not available, like in a case where f may depend on y. On the
other hand, when M = 0, we recover (8) from (17). For the proof of the decay
estimate (17) we construct suitable super and sub-solutions and we use comparison
principle with a version of Hopf’s lemma.

When we assume further hypothesis we can get sharper estimates for the decay
of the solutions of equation (11). Precisely, we have the following result:

Theorem 0.2.2 Assume that α ∈ (0, 1), N ≥ 1, M ≥ 5 and the non-linearity
f : (0,+∞) → R is a non-negative function satisfying (14). Let u be a positive
classical solution of (11), then there exists a constant c > 1 such that for all
(x, y) ∈ RN × RM ,

1

c
ρ(x, y) ≤ u(x, y) ≤ cρ(x, y)(1 + |y|)

1
2 , (20)

6



where the function ρ is defined as

ρ(x, y) = min{ 1

(1 + |x|)N+2α
, e−|y||y|−

N
2α
−M

2 ,
e−|y||y|1−M2

(1 + |x|)N+2α
}. (21)

We notice that this theorem gives the expected exponential decay for positive
solutions, as suggested by (15), assuming the dimension of the space satisfies M ≥
5. Moreover, it gives the expected polynomial correction for the lower bound with a
gap in the power for the upper bound. This theorem is proved under the assumption
(14) on the non-linearity, constructing super and sub solutions devised upon the
fundamental solution of (−∆)αx + (−∆)y + id. In our argument, a crucial role is
played by the estimate already obtained in Theorem 0.2.1. Since the fundamental
solution of (−∆)αx + (−∆)y + id has RN × {0} as singular set, we cannot use the
method in [51] in order to derive our estimate. Moreover, some other arguments
in [51] cannot be used either because the solutions of (11) are not radial, since the
differential operator is not radially invariant and there are no solutions depending
only on one of the x or y variables, as can be seen from (20),

Even though solutions of (11) are not radially symmetric, we can prove partial
symmetry in each of the variables x and y and this is the content of our third
theorem.

Theorem 0.2.3 Assume that α ∈ (0, 1), N ≥ 1, M ≥ 1 and the function f :
(0,+∞) → R is locally Lipschitz and satisfies (16). We more assume that f
satisfies

(F ) there exist u0 > 0, γ > N
N+M

· 2α
N+2α

and c̄ > 0 such that

f(v)− f(u)

v − u
≤ c̄vγ for all 0 < u < v < u0. (22)

Then every positive classical solution u of equation (11) satisfies

u(x, y) = u(r, s)

and u(r, s) is strictly decreasing in r and s, where r = |x| and s = |y|.

When N = 0, we see that assumption (F ) implies γ > 0 and (22) coincides
with the assumption considered in [62]. When M = 0, assumption (F ) implies
that γ > 2α

N+2α
and it coincides with the assumption considered in [46], when the

solutions is assumed to decay as a power N + 2α at infinity. We remark that
the operator (−∆)αx + (−∆)y is a combination of two operators with different
differential orders in x−variable and y−variable, and this produced a combined
polynomial-exponential decay and does not allow for radial symmetry, but only
partial symmetry as stated in Theorem 0.2.3.

7



The proof of Theorem 0.2.3 is based on the moving planes method as developed
in [46, 62]. In these arguments, the strong maximum principle plays a crucial role
and it is available for the Laplacian and for the fractional Laplacian. However, in
the case of our mixed integro-differential operator some difficulties arise and we
overcome them with a version of the Hopf’s Lemma.

0.3 Fractional heat equations with subcritical ab-

sorption with initial data measure

Chapter 3 is devoted to study weak solutions to fractional heat equations

∂tu+ (−∆)αu+ h(t, u) = 0 in Q∞,

u(0, ·) = ν in RN ,
(23)

where α ∈ (0, 1), h : (0,∞)×R→ R is a continuous function, Q∞ = (0,∞)×RN

with N ≥ 2, ν belongs to the space Mb(RN) of bounded Radon measures in RN .

In a pioneering work, Brezis and Friedman [12] have studied semilinear the heat
equation with measure as initial data

∂tu−∆u+ up = 0 in Q∞,

u(0, ·) = kδ0 in RN ,
(24)

where k > 0 and δ0 is the Dirac mass at the origin. They proved that if 1 <
p < (N + 2)/N , then for every k > 0 there exists a unique solution uk to (24).
When p ≥ (N + 2)/N , problem (24) has no solution and even more, they proved
that no nontrivial solution of the above equation vanishing on RN \ {0} at t = 0
exists. When 1 < p < 1+ 2

N
, Brezis, Peletier and Terman used a dynamical system

technique in [13] to prove the existence of a very singular solution us to

∂tu−∆u+ up = 0 in Q∞, (25)

vanishing at t = 0 on RN \ {0}. This function us is self-similar, i.e. expressed
under the form

us(t, x) = t−
1
p−1f

(
|x|√
t

)
, (26)

and f is uniquely determined by the following conditions

f ′′ +
(
N−1
η

+ 1
2
η
)
f ′ + 1

p−1
f − fp = 0 on R+

f > 0 and f is smooth on R+

f ′(0) = 0 and limη→∞ η
2
p−1f(η) = 0.

(27)

8



Furthermore, it satisfies

f(η) = c1e
−η2

η
2
p−1
−N{1−O(|x|−2)} as η →∞

for some c1 > 0. Later on, Kamin and Peletier in [58] proved that the sequence of
weak solutions uk converges to the very singular solution us as k →∞. After that,
Marcus and Véron in [70] studied the equation in the framework of the initial trace
theory. They pointed out the role of the very singular solution of (25) in the study
of the singular set of the initial trace, showing in particular that it is the unique
positive solution of (25) satisfying

lim
t→0

∫
Bε

u(t, x)dx =∞ ∀ε > 0, Bε = Bε(0), (28)

and

lim
t→0

∫
K

u(t, x)dx = 0 ∀K ⊂ RN \ {0}, K compact. (29)

If one replaces up by tβup with p ∈ (1, 1 + 2(1+β)
N

), these results were extended by
Marcus and Véron (β ≥ 0) in [70] and then Al Sayed and Véron (β > −1) in [82].
The initial data problem with measure and general absorption term

∂tu−∆u+ h(t, x, u) = 0 in (0,T)× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, ·) = ν in Ω,

(30)

in a bounded domain Ω is a domain in RN , has been studied by Marcus and Véron
in [70] in the framework of the initial trace theory. They proved that the following
general integrability condition on h

0 ≤| h(t, x, r) |≤ h̃(t)f(|r|) ∀(x, t, r) ∈ Ω× R+ × R∫ T
0
h̃(t)f(σt

N
2 )t−

N
2 dt <∞ ∀σ > 0

either h̃(t) = tα with α ≥ 0 or f is convex,

(31)

in order the problem has a unique solution for any bounded measure. In the
particular case with h(t, x, r) = tβ|u|p−1u, is fulfilled if 1 < p < 1 + 2(1+β)

N
and

β > −1, and the very singular solution exists in this range of values.

Motivated by a growing number of applications in physics and by important
links on the theory of Lévy process, semilinear fractional equations has been at-
tracted much interest in last few years, (see e.g. [20, 21, 26, 27, 31, 37, 44, 46]).
Recently, in [32] we obtained the existence and uniqueness of weak solution to

9



semilinear fractional elliptic equation

(−∆)αu+ f(u) = ν in Ω,

u = 0 in Ωc,
(32)

when ν is Radon measure and f satisfies a subcritical integrability condition.

One purpose of Chapter 3 is to study the existence and uniqueness of weak
solutions to semilinear fractional heat equation (23) in a measure framework. We
first make precise the notion of weak solution of (23) that we will use in this
chapter.

Definition 0.3.1 We say that u is a weak solution of (23), if for any T > 0,
u ∈ L1(QT ), h(t, u) ∈ L1(QT ) and∫

QT
(u(t, x)[−∂tξ(t, x) + (−∆)αξ(t, x)] + h(t, u)ξ(t, x)) dxdt

=
∫
RN ξ(0, x)dν −

∫
RNξ(T, x)u(T, x)dx ∀ξ ∈ Yα,T ,

(33)

where QT = (0, T ) × RN and Yα,T is a space of functions ξ : [0, T ] × RN → R
satisfying

(i) ‖ξ‖L1(QT ) + ‖ξ‖L∞(QT ) + ‖∂tξ‖L∞(QT ) + ‖(−∆)αξ‖L∞(QT ) < +∞;

(ii) for t ∈ (0, T ), there exist M > 0 and ε0 > 0 such that for all ε ∈ (0, ε0],

‖(−∆)αε ξ(t, ·)‖L∞(RN ) ≤M.

Before stating our main theorems, we introduce the subcritical integrability
condition for the nonlinearity h, that is,

(H) (i) The function h : (0,∞)× R→ R is continuous and for any t ∈ (0,∞),
h(t, 0) = 0 and h(t, r1) ≥ h(t, r2) if r1 ≥ r2.

(ii) There exist β > −1 and a continuous, nondecreasing function g : R+ →
R+ such that

|h(t, r)| ≤ tβg(|r|) ∀(t, r) ∈ (0,∞)× R

and ∫ +∞

1

g(s)s−1−p∗βds < +∞, (34)

where

p∗β = 1 +
2α(1 + β)

N
. (35)
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We denote by Hα : (0,∞) × RN × RN → R+ the heat kernel for (−∆)α in
(0,∞)× RN , by Hα[ν] the associated heat potential of ν ∈Mb(RN), defined by

Hα[ν](t, x) =

∫
RN
Hα(t, x, y)dν(y)

and by Hα[µ] the Duhamel operator defined for (t, x) ∈ QT and any µ ∈ L1(QT )
by

Hα[µ](t, x) =

∫ t

0

Hα[µ(s, .)](t− s, x)ds =

∫ t

0

∫
RN
Hα(t− s, x, y)µ(s, y)dyds.

Now we state our first theorem as follows.

Theorem 0.3.1 Assume that ν ∈Mb(RN) and the function h satisfies (H). Then
problem (23) admits a unique weak solution uν such that

Hα[ν]−Hα[h(.,Hα[ν+])] ≤ uν ≤ Hα[ν]−Hα[h(.,−Hα[ν−])] in Q∞, (36)

where ν+ and ν− are respectively the positive and negative part in the Jordan de-
composition of ν. Furthermore,

(i) if ν is nonnegative, so is uν;

(ii) the mapping: ν 7→ uν is increasing and stable in the sense that if {νn} is
a sequence of positive bounded Radon measures converging to ν in the weak
sense of measures, then {uνn} converges to uν locally uniformly in Q∞.

According to Theorem 0.3.1, there exists a unique positive weak solution uk to

∂tu+ (−∆)αu+ tβup = 0 in Q∞,

u(0, ·) = kδ0 in RN
(37)

where β > −1, k > 0 and p ∈ (0, p∗β). We observe that uk → ∞ in (0,∞) × RN

as k → ∞ for p ∈ (0, 1], see Proposition 3.4.2 for details. Our next interest of
Chapter 3 is to study the limit of uk as k → ∞ for p ∈ (1, p∗β), which exists since

{uk}k are an increasing sequence of functions, bounded by
(

1+β
p−1

) 1
p−1

t−
1+β
p−1 , and we

set
u∞ = lim

k→∞
uk in Q∞. (38)

Actually, u∞ and {uk}k are classical solutions to equation

∂tu+ (−∆)αu+ tβup = 0 in Q∞, (39)

see Proposition 3.4.3 for details.
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Definition 0.3.2 (i) A solution u of (39) is called a self-similar solution if

u(t, x) = t−
1+β
p−1u(1, t−

1
2αx) (t, x) ∈ Q∞.

(ii) A solution u of (39) is called a very singular solution if it vanishes on RN \{0}
at t = 0 and

lim
t→0+

u(t, 0)

Γα(t, 0)
= +∞,

where Γα := Hα[δ0] is the fundamental solution of

∂tu+ (−∆)αu = 0 in Q∞,

u(0, ·) = δ0 in RN .
(40)

We remark that for p ∈ (1, p∗β), a self-similar solution u of (39) is also a very
singular solution, since

lim
t→0+

Γα(t, 0)t
N
2α = c2, (41)

for some c2 > 0. For any self-similar solution u of (39), v(η) := u(1, t−
1

2αx) with

η = t−
1

2αx is a solution of the self-similar equation

(−∆)αv − 1

2α
∇v · η − 1 + β

p− 1
v + vp = 0 in RN . (42)

Since
(

1+β
p−1

) 1
p−1

is a constant nonzero solution of (42), the function

Up(t) :=

(
1 + β

p− 1

) 1
p−1

t−
1+β
p−1 t > 0 (43)

is a flat self-similar solution of (39). It is actually the maximal solution of the
ODE y′+ tβyp = 0 defined on R+. Our next goal in Chapter 3 is to study non-flat
self-similar solutions of (39).

Theorem 0.3.2 Assume that β > −1, u∞ is defined by (38) and

p∗∗β < p < p∗β,

where p∗∗β = 1 + 2α(1+β)
N+2α

. Then u∞ is a very singular self-similar solution of (39)
in Q∞. Moreover, there exists c3 > 1 such that

c−1
3

1 + |x|N+2α
≤ u∞(1, x) ≤ c3 ln(2 + |x|)

1 + |x|N+2α
x ∈ RN . (44)

When p∗∗β < p < p∗β with β > −1, we observe that u∞ and Up are self-similar
solutions of (39) and u∞ is non-flat. Now we are ready to consider the uniqueness
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of non-flat self-similar solution of (39) with decay at infinity, precisely, we study
the uniqueness of self-similar solution to

∂tu+ (−∆)αu+ tβup = 0 in Q∞,

lim|x|→∞ u(1, x) = 0.
(45)

We remark if u is self-similar, then the assumption lim|x|→∞ u(1, x) = 0 is
equivalent to lim|x|→∞ u(t, x) = 0 for any t > 0. Finally, we state the properties of
u∞ when 1 < p ≤ p∗∗β as follows.

Theorem 0.3.3 (i) Assume 1 < p < p∗∗β and u∞ is defined by (38). Then u∞ =
Up, where Up is given by (43).

(ii) Assume p = p∗∗β and u∞ is defined by (38). Then u∞ is a self-similar solution
of (39) such that

u∞(t, x) ≥ c4t
−N+2α

2α

1 + |t− 1
2αx|N+2α

(t, x) ∈ (0, 1)× RN , (46)

for some c4 > 0.

We note that Theorem 0.3.3 indicates that there is no self-similar solution of
(39) with initial data u(0, ·) = 0 in RN \ {0}, since u∞ is the least self-similar
solution. In Theorem 0.3.3 part (ii), we do not know if the self-similar solution is
flat or not. From the above theorems, we have the following result.

Theorem 0.3.4 (i) Assume p∗∗β < p < p∗β. Then problem (42) admits a minimal
positive solution v∞ satisfying

lim
|η|→∞

|η|
2α(1+β)
p−1 v∞(η) = 0. (47)

Furthermore,

c−1
3

1 + |η|N+2α
≤ v∞(η) ≤ c3 ln(2 + |η|)

1 + |η|N+2α
∀η ∈ RN (48)

(ii) Assume 1 < p < p∗∗β . Then problem (42) admits no positive solution satisfying
(47).

The question of uniqueness of the very singular solution in the case p∗∗β < p < p∗β
remains an open problem.
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0.4 On semi-linear elliptic equation arising from

Micro-Electromechanical Systems with con-

tacting elastic membrane

In Chapter 4, we are concerned with the existence of solutions to the nonlinear
elliptic problem 

−∆u = λ
(a−u)2 in Ω,

0 < u < a in Ω,

u = 0 on ∂Ω,

(49)

where Ω is a bounded domain in RN , λ > 0 and the function a : Ω̄→ [0, 1] satisfies
a(x) ≥ κdist(x, ∂Ω)γ for some κ > 0 and γ ∈ (0, 1). This equation arises from
Micro-Electromechanical Systems devices in the case that the elastic membranae
contacts the ground plate on the boundary.

Micro-Electromechanical Systems (MEMS) are often used to combine electron-
ics with micro-size mechanical devices in the design of various types of microscopic
machinery. They are successfully utilized in components of many commercial sys-
tems, including accelerometers for airbag deployment in automobiles, ink jet printer
heads, optical switches, chemical sensors, etc. In MEMS devices, a key component
is called the electrostatic actuation, which is based on an electrostatic-controlled
tunable, it is a simple idealized electrostatic device. The upper part of this elec-
trostatic device consists of a thin and deformable elastic membrane that is held
fixed along its boundary and which lies above a rigid grounded plate. This elastic
membrane is modeled as a dielectric with a small but finite thickness. The upper
surface of the membrane is coated with a negligibly thin metallic conducting film.
When a voltage λ is applied to the conducting film, the thin dielectric membrane
deflects towards the bottom plate, and when λ is increased beyond a certain crit-
ical value λ∗−known as pull-in voltage−the steady state of the elastic membrane
is lost, and proceeds to touchdown or snap through at a finite time creating the
so-called pull-in instability.

A mathematical model of the physical phenomena, leading to a partial differ-
ential equation for the dimensionless deflection of the membrane, was derived and
analyzed in [49, 55, 56, 57, 65, 79, 95] and reference therein. In the damping-
dominated limit, and using a narrow-gap asymptotic analysis, the dimensionless
deflection u of the membrane on a bounded domain Ω in R2 is found to satisfy the
equation

−∆u =
λ

(1− u)2
in Ω, (50)

with Dirichlet boundary conditions. Here the term on the right hand side of equa-
tion (50) is the Coulomb force. Later on, Ghoussoub and Guo in [49, 55] studied
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the nonlinear elliptic problem

−∆u =
λf(x)

(1− u)2
in Ω (51)

with the Dirichlet boundary condition, which models a simple electrostatic MEMS
device consisting of a thin dielectric elastic membrane with boundary supported at
0 above a rigid ground plate located at 1. Here Ω is a bounded domain of RN and
the function f ≥ 0 represents the permittivity profile and λ > 0 is a constant which
is increasing with respect to the applied voltage. It is known that for any given
suitable f , there exists a critical value λ∗ (pull-in voltage) such that if λ ∈ (0, λ∗),
problem (51) is solvable, while for λ > λ∗, no solution for (51) exists.

In an effort to achieve better MEMS design, the membrane can be technologi-
cally fabricated into non-flat shape like the surface of a semi-ball, which contacts
the ground plate along the boundary. In Chapter 4, we study how the shape of
the membranes effects on the pull-in voltage. In what follows, we assume that Ω
is a C2 bounded domain in RN , with N ≥ 1, the function a : Ω̄ → [0, 1] is in the
class of Cγ(Ω) ∩ C(Ω̄) and satisfies

a(x) ≥ κρ(x)γ, ∀ x ∈ Ω (52)

for some κ > 0 and γ ∈ (0, 1), where ρ(x) = dist(x, ∂Ω) for x ∈ Ω. Our purpose of
Chapter 4 is to consider the solutions to semilinear elliptic equation

−∆u = λ
(a−u)2 in Ω,

0 < u < a in Ω,

u = 0 on ∂Ω,

(53)

where parameter λ > 0 characterizes the relative strength of the electrostatic and
mechanical forces in the system. Equation (53) models a closed MEMS device,
where the elastic membrane contacts the ground plate on the boundary. The
function a is initially state of the elastic membrane. The solution u of (53) shows
the steady state of deformation for the membrane when we applied voltage to this
device. To this problem, we have the following existence results.

Theorem 0.4.1 Assume that a ∈ Cγ(Ω)∩C(Ω̄) satisfies (52) with γ ∈ (0, 2
3
] and

κ > 0, then there exists a finite pull-in voltage λ∗ := λ∗(κ, γ) > 0 such that

(i) for λ ∈ (0, λ∗), problem (53) admits a minimal solution uλ and the mapping:
λ 7→ uλ is increasing;

(ii) for λ > λ∗, there is no solution for (53);

(iii) moreover, if there exists c0 ≥ κ such that

a(x) ≤ c0ρ(x)γ, x ∈ Ω, (54)
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then there exists λ∗ = λ∗(κ, γ) ∈ (0, λ∗] such that for λ ∈ (0, λ∗), uλ ∈ H1
0 (Ω) and

for γ 6= 1

2
,

1

c
ρ(x)min{1,2−2γ} ≤ uλ(x) ≤ cρ(x)min{1,2−2γ}, ∀x ∈ Ω

for γ =
1

2
,

1

c
ρ(x) ln

1

ρ(x)
≤ uλ(x) ≤ cρ(x) ln

1

ρ(x)
, ∀x ∈ A 1

2
,

where c ≥ 1 and A 1
2

= {x ∈ Ω : ρ(x) < 1
2
}.

We remark that the membrane contacts the ground plate on the boundary with
decay rate ργ, γ ∈ (0, 2

3
], there still has a positive finite pull-in voltage λ∗. The

decay of a plays an important role to study the decay and the regularity of the
minimal solution and the estimate of λ∗ and λ∗. The decay rate of function a
determines completely non-existence of pull-in voltage when γ > 2

3
. Precisely, we

have the following non-existence result.

Theorem 0.4.2 Assume that a ∈ C(Ω̄) is positive and satisfies (54) with γ ∈
(2

3
, 1) and c0 > 0. Then problem (53) admits no nonnegative solution for any

λ > 0.

From Theorem 0.4.1, we observe that the mapping λ 7→ uλ is increasing and
uniformly bounded by function a, then the limit

uλ∗ := lim
λ→λ∗

uλ in Ω̄, (55)

is well-defined, where uλ is the minimal solution of (53) with λ ∈ (0, λ∗). Our final
purpose in Chapter 4 is to prove that uλ∗ is a solution of (53) in a weak sense.
The extremal solution uλ∗ always is found in the weak sense and then it could be
improved the regularity up to the classical sense when 1 ≤ N ≤ 7. Before stating
this result, we introduce the definition of weak solution.

Definition 0.4.1 A function u is a weak solution of (53) if 0 ≤ u ≤ a and∫
Ω

u(−∆)ξdx =

∫
Ω

λξ

(a− u)2
dx, ∀ξ ∈ C2

c (Ω),

where C2
c (Ω) is the space of all C2 functions with compact support in Ω.

A solution (or weak solution) u of (53) is stable (resp. semi-stable) if∫
Ω

|∇ξ|2dx >
∫

Ω

2λξ2

(a− u)3
dx, (resp. ≥), ∀ξ ∈ C2

c (Ω) \ {0}.

Theorem 0.4.3 Assume that λ ∈ (0, λ∗), the function a satisfies (52) and (54)
with c0 ≥ κ > 0, γ ∈ (0, 2

3
], uλ is the minimal solution of (53) and uλ∗ is given by

(55). Then
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(i) uλ∗ is a weak solution of (53) and uλ∗ ∈ W
1, N
N−β

0 (Ω) for any β ∈ (0, γ).

(ii) when 1 ≤ N ≤ 7, c0 = κ and Ω = B1(0), uλ∗ is a classical solution of (53).

(iii) uλ is a stable solution of (53) when λ ∈ (0, λ∗) and uλ∗ is a semi-stable
weak solution of (53).
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Chapter 1

Radial symmetry of positive
solutions to equations involving
the fractional Laplacian

Abstract: in this chapter1, we study radial symmetry and monotonicity
properties for positive solution of elliptic equations involving the fractional Lapla-
cian.

1.1 Introduction

The purpose of this chapter is to study symmetry and monotonicity properties
of positive solutions for equations involving the fractional Laplacian through the
use of moving planes arguments. The first part of this chapter is devoted to the
following semi-linear Dirichlet problem{

(−∆)αu = f(u) + g, in B1,

u = 0, in Bc
1,

(1.1)

where B1 denotes the open unit ball centered at the origin in RN and (−∆)α with
α ∈ (0, 1) is the fractional Laplacian defined as

(−∆)αu(x) = P.V.

∫
RN

u(x)− u(y)

|x− y|N+2α
dy, (1.2)

1This chapter is based on the paper: P. Felmer and Y. Wang, Radial symmetry of posi-
tive solutions to equations involving the fractional Laplacian, Communications in Contemporary
Mathematics, Vol. 16, No. 01, (2014).
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x ∈ B1. Here P.V. denotes the principal value of the integral, that for notational
simplicity we omit in what follows.

During the last years, non-linear equations involving general integro-differential
operators, especially, fractional Laplacian, have been studied by many authors.
Caffarelli and Silvestre [22] gave a formulation of the fractional Laplacian through
Dirichlet-Neumann maps. Various regularity issues for fractional elliptic equations
has been studied by Cabré and Sire [17], Caffarelli and Silvestre [23], Capella,
Dávila, Dupaigne and Sire [24], Ros-Oton and Serra [81] and Silvestre [87]. Exis-
tence and related results were studied by Cabré and Tan [37], Dipierro, Palatucci
and Valdinoci [41], Felmer, Quaas and Tan [45], and Servadei and Valdinoci [86].
Great attention has also been devoted to symmetry results for equations involving
the fractional Laplacian in RN , such as in the work by Li [64] and Chen, Li and Ou
[29, 30], where the method of moving planes in integral form has been developed
to treat various equations and systems, see also Ma and Chen [67]. On the other
hand, using the local formulation of Caffarelli and Silvestre, Cabré and Sire [18]
applied the sliding method to obtain symmetry results for nonlinear equations with
fractional laplacian and Sire and Valdinoci [88] studied symmetry properties for a
boundary reaction problem via a geometric inequality. Finally, in [45] the authors
used the method of moving planes in integral form to prove symmetry results for

(−∆)αu+ u = h(u) in RN, (1.3)

taking advantage of the representation formula for u given by

u(x) = K ∗ h(u)(x), x ∈ RN ,

where the kernel K, associated to the linear part of the equation, plays a key role
in the arguments. This approach is not possible to be used for problem (1.1), since
a similar representation formula is not available in general.

The study of radial symmetry and monotonicity of positive solutions for non-
linear elliptic equations in bounded domains using the moving planes method based
on the Maximum Principle was initiated with the work by Serrin [83] and Gidas,
Ni and Nirenberg [50], with important subsequent advances by Berestycki and
Nirenberg [8]. We refer to the review by Pacella and Ramaswamy [77] for a more
complete discussion of the method and it various applications. In [8] the Maxi-
mum Principle for small domain, based on the Aleksandrov-Bakelman-Pucci (ABP)
estimate, was used as a tool to obtain much general results, specially avoiding reg-
ularity hypothesis on the domain. In a recent article Guillen and Schwab, [54],
provided an ABP estimate for a class of fully non-linear elliptic integro-differential
equations. Motivated by this work, we obtain a version of the Maximum Principle
for small domain and we apply it with the moving planes method as in [8] to prove
symmetry and monotonicity properties for positive solutions to problem (1.1) in
the ball and in more general domains.
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We consider the following hypotheses on the functions f and g:

(F1) The function f : [0,∞)→ R is locally Lipschitz.

(G) The function g : B1 → R is radially symmetric and decreasing in |x|.

Before stating our first theorem we make precise the notion of solution that we
use in this chapter. We say that a continuous function u : RN → R is a classical
solution of equation (1.1) if the fractional Laplacian of u is defined at any point of
B1, according to the definition given in (1.2), and if u satisfies the equation and
the external condition in a pointwise sense. This notion of solution is extended in
a natural way to the other equations considered in this chapter.

Now we are ready for our first theorem on radial symmetry and monotonicity
properties for positive solutions of equation (1.1). It states as follows:

Theorem 1.1.1 Assume that the functions f and g satisfy (F1) and (G), re-
spectively. If u is a positive classical solution of (1.1), then u must be radially
symmetric and strictly decreasing in r = |x| for r ∈ (0, 1).

The proof of Theorem 1.1.1 is given in Section §1.3, where we prove a more
general symmetry and monotonicity result for equation (1.1) on a general domain
Ω, which is convex and symmetric in one direction, see Theorem 1.3.1.

We devote the second part of this chapter to study symmetry results for a
non-linear equation as (1.1), but in RN and with g ≡ 0. For the problem in RN ,
the moving planes procedure has to start a different way because we cannot use
the Maximum Principle for small domain. We refer to the work by Gidas, Ni and
Nirenberg [51], Berestycki and Nirenberg [8], Li [62], and Li and Ni [63], where
these results were studied assuming some additional hypothesis on f , allowing for
decay properties of the solution u. A general result in this direction was obtained
by Li [62] for the equation

−∆u = f(u) in RN ,

with u decaying at infinity and f satisfying the following hypothesis:

(F2) There exists s0 > 0, γ > 0 and C > 0 such that

f(v)− f(u)

v − u
≤ C(u+ v)γ for all 0 < u < v < s0. (1.4)

Motivated by these results, we are interested in similar properties of positive solu-
tions for equations involving the fractional Laplacian under assumption (F2). Here
is our second main theorem.
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Theorem 1.1.2 Assume that the function f satisfies (F1) − (F2) and u is a
positive classical solution for the equation{

(−∆)αu = f(u) in RN ,

u > 0 in RN , lim|x|→∞ u(x) = 0.
(1.5)

Assume further that there exists

m > max{2α

γ
,
N

γ + 2
} (1.6)

such that u satisfies

u(x) = O(
1

|x|m
), as |x| → ∞, (1.7)

then u is radially symmetric and strictly decreasing about some point in RN .

In [45], Felmer, Quaas and Tan studied symmetry of positive solutions using
the integral form of the moving planes method, assuming that the function f is
such that h(ξ) ≡ f(ξ) + ξ is super-linear, with sub-critical growth at infinity and

(H) h ∈ C1(R), increasing and there exists τ > 0 such that

lim
v→0

h′(v)

vτ
= 0.

We see that Theorem 1.1.2 generalizes Theorem 1.3 in [45], since here we do not
assume f is differentiable and we do not require h to be increasing. In Section §1.4
we present an extension of Theorem 1.1.2 to f(ξ) = ξp − ξq, with 0 < q < 1 < p,
that is not covered by the results in [45] either, see Theorem 1.4.1. This non-
linearity was studied by Valdebenito in [92], where decay and symmetry results
were obtained using local extension as in Caffarelli and Silvestre [22] and regular
moving planes.

For the particular case f(u) = up, for some p > 1, we see that (H) is not
satisfied, but that (F2) does hold. Thus, if we knew the solution of (1.5) satisfies
decay assumption (1.7) in this setting, we would have symmetry results in these
cases. See [51] and [62] for the proof of decay properties in the case of the Laplacian.

The third part of this chapter is devoted to investigate the radial symmetry of
non-negative solutions for the following system of non-linear equations involving
fractional Laplacians with different orders,

(−∆)α1u = f1(v) + g1, in B1,

(−∆)α2v = f2(u) + g2, in B1,

u = v = 0, in Bc
1,

(1.8)

21



where α1, α2 ∈ (0, 1). We have following results for system (1.8):

Theorem 1.1.3 Suppose that f1 and f2 are locally Lipschitz continuous and in-
creasing functions defined in [0,∞) and g1 and g2 satisfy (G). Assume that (u, v)
are positive, classical solutions of system (1.8), then u and v are radially symmetric
and strictly decreasing in r = |x| for r ∈ (0, 1).

We prove our theorems using the moving planes method. The main difficulty
comes from the fact that the fractional Laplacian is a non-local operator, and
consequently Maximum Principle and Comparison Results require information on
the solutions in the whole complement of the domain, not only at the boundary.
To overcome this difficulty, we introduce a new truncation technique which is well
adapted to be used with the method of moving planes.

1.2 Preliminaries

A key tool in the use of the moving planes method is the Maximum Principle
for small domain, which is a consequence of the ABP estimate. In [54], Guillen and
Schwab showed an ABP estimate (see Theorem 9.1) for general integro-differential
operators. In this section we recall this estimate in the case of the fractional Lapla-
cian in any open and bounded domain. Then we obtain the Maximum Principle
for small domains.

We start with the ABP estimate for the fractional Laplacian, which is stated
as follows:

Proposition 1.2.1 Let Ω be a bounded, connected open subset of RN . Suppose
that h : Ω→ R is in L∞(Ω) and w ∈ L∞(RN) is a classical solution of{

∆αw(x) ≤ h(x), x ∈ Ω,

w(x) ≥ 0, x ∈ RN \ Ω.
(1.9)

Then there exists a positive constant C, depending on N and α, such that

− inf
Ω
w ≤ Cdα‖h+‖1−α

L∞(Ω)‖h
+‖αLN (Ω), (1.10)

where d = diam(Ω) is the diameter of Ω and h+(x) = max{h(x), 0}.
Here and in what follows we write ∆αw(x) = −(−∆)αw(x).

We have the following corollary
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Corollary 1.2.1 Under the assumptions of Proposition 1.2.1, with Ω not neces-
sarily connected, we have

− inf
Ω
w ≤ Cdα‖h+‖L∞(Ω)|Ω|

α
N . (1.11)

Proof. We let w0 ∈ L∞(RN) be a classical solution of{
∆αw0(x) = ‖h+‖L∞(Ω)χΩ(x), x ∈ Bd(x0),

w0(x) = 0, x ∈ RN \Bd(x0),
(1.12)

where x0 ∈ Ω and Ω ⊂ Bd(x0). We observe that Bd(x0) is connected and that
w0 ≤ 0 in all RN . By Comparison Principle, we see that

inf
RN

w0 ≤ inf
RN

w,

where w is the solution of (1.9). Then we use Proposition 1.2.1 to obtain that

− inf
RN

w0 = − inf
Bd(x0)

w0 ≤ C(2d)α‖h+‖L∞(Ω)|Ω|
α
N

and then we conclude

− inf
Ω
w = − inf

RN
w ≤ Cdα‖h+‖L∞(Ω)|Ω|

α
N . 2

Remark 1.2.1 We notice that, under a possibly different constant C > 0, the
ABP estimate for problem (1.9) with α = 1{

∆w(x) ≤ h(x), x ∈ Ω,

w(x) ≥ 0, x ∈ ∂Ω,

is precisely (1.10) with α = 1.

As a consequence of the ABP estimate just recalled, we have the Maximum
Principle for small domain, which is stated as follows:

Proposition 1.2.2 Let Ω be an open and bounded subset of RN . Suppose that
ϕ : Ω→ R is in L∞(Ω) and w ∈ L∞(RN) is a classical solution of{

∆αw(x) ≤ ϕ(x)w(x), x ∈ Ω,

w(x) ≥ 0, x ∈ RN \ Ω.
(1.13)

Then there is δ > 0 such that whenever |Ω−| ≤ δ, w has to be non-negative in
Ω. Here Ω− = {x ∈ Ω | w(x) < 0}.
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Proof. By (1.13), we observe that{
∆αw(x) ≤ ϕ(x)w(x), x ∈ Ω−,

w(x) ≥ 0, x ∈ RN \ Ω−.

Then, using Corollary 1.2.1 with h(x) = ϕ(x)w(x), we obtain that

‖w‖L∞(Ω−) = − inf
Ω−

w ≤ Cdα0‖(ϕw)+‖L∞(Ω−)|Ω−|
α
N ,

where constant C > 0 depends on N and α. Here d0 = diam(Ω−). Thus

‖w‖L∞(Ω−) ≤ Cdα0‖ϕ‖L∞(Ω)‖w‖L∞(Ω−)|Ω−|
α
N .

We see that, if |Ω−| is such that Cdα0‖ϕ‖L∞(Ω)|Ω−|α/N < 1, then we must have that

‖w‖L∞(Ω−) = 0.

This implies that |Ω−| = 0 and since Ω− is open, we have Ω− = ∅, completing the
proof. 2

1.3 Proof of Theorem 1.1.1.

In this section we provide a proof of Theorem 1.1.1 on the radial symmetry
and monotonicity of positive solutions to equation (1.1) in the unit ball. For this
purpose we use the moving planes method, for which we give some preliminary
notation. We define

Σλ = {x = (x1, x
′) ∈ B1 | x1 > λ}, (1.14)

Tλ = {x = (x1, x
′) ∈ RN | x1 = λ}, (1.15)

uλ(x) = u(xλ) and wλ(x) = uλ(x)− u(x), (1.16)

where λ ∈ (0, 1) and xλ = (2λ− x1, x
′) for x = (x1, x

′) ∈ RN . For any subset A of
RN , we write Aλ = {xλ : x ∈ A}, the reflection of A with regard to Tλ.

Proof of Theorem 1.1.1. We divide the proof in three steps.

Step 1: We prove that if λ ∈ (0, 1) is close to 1, then wλ > 0 in Σλ. For this
purpose, we start proving that if λ ∈ (0, 1) is close to 1, then wλ ≥ 0 in Σλ. If we
define Σ−λ = {x ∈ Σλ | wλ(x) < 0}, then we just need to prove that if λ ∈ (0, 1) is
close to 1 then

Σ−λ = ∅. (1.17)
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By contradiction, we assume (1.17) is not true, that is Σ−λ 6= ∅. We denote

w+
λ (x) =

{
wλ(x), x ∈ Σ−λ ,

0, x ∈ RN \ Σ−λ ,
(1.18)

w−λ (x) =

{
0, x ∈ Σ−λ ,

wλ(x), x ∈ RN \ Σ−λ
(1.19)

and we observe that w+
λ (x) = wλ(x) − w−λ (x) for all x ∈ RN . Next we claim that

for all 0 < λ < 1, we have

(−∆)αw−λ (x) ≤ 0, ∀ x ∈ Σ−λ . (1.20)

By direct computation, for x ∈ Σ−λ , we have

(−∆)αw−λ (x) =

∫
RN

w−λ (x)− w−λ (z)

|x− z|N+2α
dz = −

∫
RN\Σ−λ

wλ(z)

|x− z|N+2α
dz

= −
∫

(B1\(B1)λ)∪((B1)λ\B1)

wλ(z)

|x− z|N+2α
dz

−
∫

(Σλ\Σ−λ )∪(Σλ\Σ−λ )λ

wλ(z)

|x− z|N+2α
dz −

∫
(Σ−λ )λ

wλ(z)

|x− z|N+2α
dz

= −I1 − I2 − I3.

We look at each of these integrals separately. Since u = 0 in (B1)λ \ B1 and
uλ = 0 in B1 \ (B1)λ, we have

I1 =

∫
(B1\(B1)λ)∪((B1)λ\B1)

wλ(z)

|x− z|N+2α
dz

=

∫
(B1)λ\B1

uλ(z)

|x− z|N+2α
dz −

∫
B1\(B1)λ

u(z)

|x− z|N+2α
dz

=

∫
(B1)λ\B1

uλ(z)(
1

|x− z|N+2α
− 1

|x− zλ|N+2α
))dz ≥ 0,

since uλ ≥ 0 and |x− zλ| > |x− z| for all x ∈ Σ−λ and z ∈ (B1)λ \ B1. In order to
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study the sign of I2 we first observe that wλ(zλ) = −wλ(z) for any z ∈ RN . Then

I2 =

∫
(Σλ\Σ−λ )∪(Σλ\Σ−λ )λ

wλ(z)

|x− z|N+2α
dz

=

∫
Σλ\Σ−λ

wλ(z)

|x− z|N+2α
dz +

∫
Σλ\Σ−λ

wλ(zλ)

|x− zλ|N+2α
dz

=

∫
Σλ\Σ−λ

wλ(z)(
1

|x− z|N+2α
− 1

|x− zλ|N+2α
)dz ≥ 0,

since wλ ≥ 0 in Σλ \ Σ−λ and |x − zλ| > |x − z| for all x ∈ Σ−λ and z ∈ Σλ \ Σ−λ .
Finally, since wλ(z) < 0 for z ∈ Σ−λ , we have

I3 =

∫
(Σ−λ )λ

wλ(z)

|x− z|N+2α
dz =

∫
Σ−λ

wλ(zλ)

|x− zλ|N+2α
dz

= −
∫

Σ−λ

wλ(z)

|x− zλ|N+2α
dz ≥ 0.

Hence, we obtain (1.20), proving the claim. Now we apply (1.20) and linearity of
the fractional laplacian to obtain that, for x ∈ Σ−λ ,

(−∆)αw+
λ (x) ≥ (−∆)αwλ(x) = (−∆)αuλ(x)− (−∆)αu(x). (1.21)

Combining equation (1.1) with (1.21) and (1.18), for x ∈ Σ−λ we have

(−∆)αw+
λ (x) ≥ (−∆)αuλ(x)− (−∆)αu(x)

= f(uλ(x)) + g(xλ)− f(u(x))− g(x)

=
f(uλ(x))− f(u(x))

uλ(x)− u(x)
w+
λ (x) + g(xλ)− g(x).

Let us define ϕ(x) = −(f(uλ(x))− f(u(x)))/(uλ(x)− u(x)) for x ∈ Σ−λ . By as-
sumption (F1), we have that ϕ ∈ L∞(Σ−λ ). By assumption (G), we have that
g(xλ) ≥ g(x), since for all x ∈ Σ−λ and 0 < λ < 1, we have |x| > |xλ|. Hence, we
have

∆αw+
λ (x) ≤ ϕ(x)w+

λ (x), x ∈ Σ−λ (1.22)

and since w+
λ = 0 in (Σ−λ )c we may apply Proposition 1.2.2. Choosing λ ∈ (0, 1)

close enough to 1 we find that |Σ−λ | is small and then

wλ = w+
λ ≥ 0 in Σ−λ .

But this is a contradiction with our assumption so we have

wλ ≥ 0 in Σλ.
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In order to complete Step 1, we claim that for 0 < λ < 1, if wλ ≥ 0 and wλ 6≡ 0
in Σλ, then wλ > 0 in Σλ. Assuming the claim is true, we complete the proof,
since the function u is positive in B1 and u = 0 on ∂B1, so that wλ is positive in
∂B1 ∩ ∂Σλ and then, by continuity wλ 6= 0 in Σλ.

Now we prove the claim. Assume there exists x0 ∈ Σλ such that wλ(x0) = 0,
that is, uλ(x0) = u(x0). Then we have that

(−∆)αwλ(x0) = (−∆)αuλ(x0)− (−∆)αu(x0) = g((x0)λ)− g(x0).

Since x0 ∈ Σλ, we have |x0| > |(x0)λ|, then by assumption (G) we have g((x0)λ) ≥
g(x0) and thus

(−∆)αwλ(x0) ≥ 0. (1.23)

On the other hand, defining Aλ = {(x1, x
′) ∈ RN | x1 > λ}, since wλ(zλ) = −wλ(z)

for any z ∈ RN and wλ(x0) = 0, we find

(−∆)αwλ(x0) = −
∫
Aλ

wλ(z)

|x0 − z|N+2α
dz −

∫
RN\Aλ

wλ(z)

|x0 − z|N+2α
dz

= −
∫
Aλ

wλ(z)

|x0 − z|N+2α
dz −

∫
Aλ

wλ(zλ)

|x0 − zλ|N+2α
dz

= −
∫
Aλ

wλ(z)(
1

|x0 − z|N+2α
− 1

|x0 − zλ|N+2α
)dz.

Since |x0 − zλ| > |x0 − z| for z ∈ Aλ , wλ(z) ≥ 0 and wλ(z) 6≡ 0 in Aλ, from here
we get

(−∆)αwλ(x0) < 0, (1.24)

which contradicts (1.23), completing the proof of the claim.

Step 2: We define λ0 = inf{λ ∈ (0, 1) | wλ > 0 in Σλ} and we prove that λ0 = 0.
Proceeding by contradiction, we assume that λ0 > 0, then wλ0 ≥ 0 in Σλ0 and
wλ0 6≡ 0 in Σλ0 . Thus, by the claim just proved above, we have wλ0 > 0 in Σλ0 .

Next we claim that if wλ > 0 in Σλ for λ ∈ (0, 1), then there exists ε ∈ (0, λ)
such that wλε > 0 in Σλε , where λε = λ−ε. This claim directly implies that λ0 = 0,
completing Step 2.

Now we prove the claim. Let Dµ = {x ∈ Σλ | dist(x, ∂Σλ) ≥ µ} for µ > 0
small. Since wλ > 0 in Σλ and Dµ is compact, then there exists µ0 > 0 such that
wλ ≥ µ0 in Dµ. By continuity of wλ(x), for ε > 0 small enough and denoting
λε = λ− ε, we have that

wλε(x) ≥ 0 in Dµ.

As a consequence,
Σ−λε ⊂ Σλε \Dµ

and |Σ−λε| is small if ε and µ are small. Using (1.20) and proceeding as in Step 1,
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we have for all x ∈ Σ−λε that

(−∆)αw+
λε

(x) = (−∆)αuλε(x)− (−∆)αu(x)− (−∆)αw−λε(x)

≥ (−∆)αuλε(x)− (−∆)αu(x)

= ϕ(x)w+
λε

(x) + g(xλ)− g(x) ≥ ϕ(x)w+
λε

(x),

where ϕ(x) =
f(uλε (x))−f(u(x))

uλε (x)−u(x)
is bounded by assumption (F1).

Since w+
λε

= 0 in (Σ−λε)
c and |Σ−λε | is small, for ε and µ small, Proposition 1.2.2

implies that wλε ≥ 0 in Σλε . Thus, since λε > 0 and wλε 6≡ 0 in Σλε , as before we
have wλε > 0 in Σλε , completing the proof of the claim.

Step 3: By Step 2, we have λ0 = 0, which implies that u(−x1, x
′) ≥ u(x1, x

′)
for x1 ≥ 0. Using the same argument from the other side, we conclude that
u(−x1, x

′) ≤ u(x1, x
′) for x1 ≥ 0 and then u(−x1, x

′) = u(x1, x
′) for x1 ≥ 0.

Repeating this procedure in all directions we obtain radial symmetry of u.

Finally, we prove u(r) is strictly decreasing in r ∈ (0, 1). Let us consider
0 < x1 < x̃1 < 1 and let λ = x1+x̃1

2
. Then, as proved above we have

wλ(x) > 0 for x ∈ Σλ.

Then

0 < wλ(x̃1, 0, · · · , 0) = uλ(x̃1, 0, · · · , 0)− u(x̃1, 0, · · · , 0)

= u(x1, 0, · · · , 0)− u(x̃1, 0, · · · , 0),

that is u(x1, 0, · · · , 0) > u(x̃1, 0, · · · , 0). Using the radial symmetry of u, we con-
clude from here the monotonicty of u. 2

The proof of Theorem 1.1.1 can be applied directly to prove symmetry results
for problem (1.1) in more general domains. We have the following definition

Definition 1.3.1 We say that domain Ω ⊂ RN is convex in the x1 direction:

(x1, x
′), (x1, y

′) ∈ Ω⇒ (x1, tx
′ + (1− t)y′) ∈ Ω, ∀ t ∈ (0, 1).

Now we state the more general theorem:

Theorem 1.3.1 Let Ω ⊂ RN be an open and bounded set. Assume further that
Ω is convex in the x1 direction and symmetric with respect to the plane x1 = 0.
Assume that the function f satisfies (F1) and g satisfies

(G̃) The function g : Ω → R is symmetric with respect to x1 = 0 and decreasing
in the x1 direction, for x = (x1, x

′) ∈ Ω, x1 > 0.
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Let u be a positive classical solution of{
(−∆)αu(x) = f(u(x)) + g(x), x ∈ Ω,

u(x) = 0, x ∈ Ωc.
(1.25)

Then u is symmetric with respect to x1 and it is strictly decreasing in the x1 direc-
tion for x = (x1, x

′) ∈ Ω, x1 > 0.

1.4 Symmetry of solutions in RN

In this section we study radial symmetry results for positive solution of equation
(1.5) in RN , in particular we will provide a proof of Theorem 1.1.2. In the case
of the whole space, the moving planes procedure needs to be started in a different
way, because we cannot use the Maximum Principle for small domains. We use
the moving plane method as for the second order equation as in the work by Li
[62] (see also [77]).

In this section we use the notation introduced in (1.14)-(1.16) and we let u be a
classical positive solution of (1.5). In order to prove Theorem 1.1.2 we need some
preliminary lemmas.

Lemma 1.4.1 Under the assumptions of Theorem 1.1.2, for any λ ∈ R, we have∫
Σλ

(f(uλ)− f(u))+(uλ − u)+dx < +∞.

Proof. By our hypothesis, for any given λ ∈ R, we may choose R > 1 and some
constant c > 1 such that

1

c|x|m
≤ u(x), uλ(x) ≤ c

|x|m
< s0 for all x ∈ Bc

R,

where s0 is the constant in condition (F2).

If uλ(x) > u(x) for some x ∈ Σλ ∩ Bc
R, we have 0 < u(x) < uλ(x) < s0. Using

(1.4) with v = uλ(x), then

f(uλ(x))− f(u(x))

uλ(x)− u(x)
≤ C(u(x) + uλ(x))γ ≤ 2γCuγλ(x),

then

(f(uλ(x))− f(u(x)))+(uλ(x)− u(x))+ ≤ 2γCuγλ(x)[(uλ(x)− u(x))+]2

≤ C̃uγ+2
λ (x),
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for certain C̃ > 0. We observe that, if uλ(x) ≤ u(x) for some x ∈ Σλ ∩ Bc
R, then

inequality above is obvious. Therefore,

(f(uλ)− f(u))+(uλ − u)+ ≤ C̃uγ+2
λ in Σλ ∩Bc

R.

Now we integrate in Σλ ∩Bc
R to obtain∫

Σλ∩BcR
(f(uλ)− f(u))+(uλ − u)+dx ≤ C̃

∫
Σλ∩BcR

uγ+2
λ (x)dx

≤ C

∫
BcR

|x|−m(γ+2)dx < +∞,

where the last inequality holds by (1.6). Since u and uλ are bounded and f is
locally Lipschitz, we have∫

Σλ∩BR
(f(uλ)− f(u))+(uλ − u)+dx < +∞

and the proof is complete. 2

It will be convenient for our analysis to define the following function

w(x) =

{
(uλ − u)+(x), x ∈ Σλ,

(uλ − u)−(x), x ∈ Σc
λ,

(1.26)

where (uλ− u)+(x) = max{(uλ− u)(x), 0}, (uλ− u)−(x) = min{(uλ− u)(x), 0}.

Lemma 1.4.2 Under the assumptions of Theorem 1.1.2, there exists a constant
C > 0 such that∫

Σλ

(−∆)α(uλ − u)(uλ − u)+dx ≥ C(

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N . (1.27)

Proof. We start observing that, given x ∈ Σλ, we have

w(xλ) = (uλ − u)−(xλ) = min{(uλ − u)(xλ), 0} = min{(u− uλ)(x), 0}
= −max{(uλ − u)(x), 0} = −(uλ − u)+(x) = −w(x)

and similarly w(x) = −w(xλ) for x ∈ Σc
λ so that

w(x) = −w(xλ) for x ∈ RN . (1.28)

This implies∫
RN
|w|

2N
N−2αdx =

∫
Σλ

|w|
2N

N−2αdx+

∫
Σcλ

|w|
2N

N−2αdx = 2

∫
Σλ

|w|
2N

N−2αdx. (1.29)
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Next we see that for any x ∈ Σλ ∩ supp(w) we have that w(x) = (uλ − u)(x) and

(−∆)α(uλ − u)(x) ≥ (−∆)αw(x), ∀ x ∈ Σλ ∩ supp(w),

(−∆)αw(x)− (−∆)α(uλ − u)(x) =

∫
RN

(uλ − u)(z)− w(z)

|x− z|N+2α
dz

=

∫
Σλ∩(supp(w))c

(uλ − u)(z)

|x− z|N+2α
dz +

∫
Σcλ∩(supp(w))c

(uλ − u)(z)

|x− z|N+2α
dz

=

∫
Σλ∩(supp(w))c

(uλ − u)(z)(
1

|x− z|N+2α
− 1

|x− zλ|N+2α
)dz ≤ 0, (1.30)

where we used that uλ − u ≤ 0 in Σλ ∩ (supp(w))c and |x − z| ≤ |x − zλ| for
x, z ∈ Σλ. From (1.30), using the equation and Lemma 1.4.1 we find that∫

Σλ

(−∆)αwwdx ≤
∫

Σλ

(−∆)α(uλ − u)(uλ − u)+dx (1.31)

≤
∫

Σλ

(f(uλ)− f(u))+(uλ − u)+dx <∞. (1.32)

From here the following integrals are finite and, taking into account (1.28), we
obtain that∫

RN
|(−∆)

α
2w|2dx =

∫
Σλ

|(−∆)
α
2w|2dx+

∫
Σcλ

|(−∆)
α
2w|2dx

= 2

∫
Σλ

|(−∆)
α
2w|2dx. (1.33)

Now we can use the Sobolev embedding from Hα(RN) to L
2N

N−2α (RN) to find a
constant C so that∫

Σλ

|(−∆)
α
2w|2dx =

1

2

∫
RN
|(−∆)

α
2w|2dx ≥ C(

∫
RN
|w|

2N
N−2αdx)

N−2α
N

= C(2

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N . (1.34)

On the other hand, from (1.28) and (1.31) we find that∫
RN
|(−∆)

α
2w|2dx =

∫
RN

(−∆)αw · wdx = 2

∫
Σλ

(−∆)αw · wdx

≤ 2

∫
Σλ

(−∆)α(uλ − u)(uλ − u)+dx. (1.35)
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From (1.34) and (1.35) the proof of the lemma is completed. 2

Now we are ready to complete the proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. We divide the proof into three steps.

Step 1: We show that λ0 := sup{λ | uλ ≤ u in Σλ} is finite. Using (uλ − u)+ as
a test function in the equation for u and uλ, using (1.4) and Hölder inequality, for
λ big (negative), we find that∫

Σλ

(−∆)α(uλ − u)(uλ − u)+dx=

∫
Σλ

(f(uλ)− f(u))(uλ − u)+dx

≤
∫

Σλ

[
f(uλ)− f(u)

uλ − u
]+[(uλ − u)+]2dx

≤ C

∫
Σλ

uγλw
2dx ≤ C̄

∫
Σλ

|xλ|−mγw2dx

≤ C̄(

∫
Σλ

|xλ|−
Nmγ

2α dx)
2α
N (

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N .

By Lemma 1.4.2, there exists a constant C > 0 such that

(

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N ≤ C(

∫
Σλ

|xλ|−
Nmγ

2α dx)
2α
N (

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N ,

but we have∫
Σλ

|xλ|−
Nmγ

2α dx ≤
∫

Σcλ

|x|−
Nmγ

2α dx ≤
∫
Bc|λ|

|x|−
Nmγ

2α dx = c|λ|
N
2α

(2α−mγ),

so that, using (1.6), we can choose R > 0 big enough such that CR2α−mγ ≤ 1
2
,

then we obtain ∫
Σλ

|w|
2N

N−2αdx = 0, ∀ λ < −R.

Thus w = 0 in Σλ and then uλ ≤ u in Σλ, for all λ < −R, concluding that
λ0 ≥ −R. On the other hand, since u decays at infinity, then there exists λ1 such
that u(x) < uλ1(x) for some x ∈ Σλ1 . Hence λ0 is finite.

Step 2: We prove that u ≡ uλ0 in Σλ0 . Assuming the contrary, we have u 6= uλ0

and u ≥ uλ0 in Σλ0 . Assume next that there exists x0 ∈ Σλ0 such that uλ0(x0) =
u(x0), then we have

(−∆)αuλ0(x0)− (−∆)αu(x0) = f(uλ0(x0))− f(u(x0)) = 0. (1.36)
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On the other hand,

(−∆)αuλ0(x0)− (−∆)αu(x0) = −
∫
RN

uλ0(y)− u(y)

|x0 − y|N+2α
dy

= −
∫

Σλ0

(uλ0(y)− u(y))(
1

|x0 − y|N+2α
− 1

|x0 − yλ0|N+2α
)dy > 0,

which contradicts (1.36). As a sequence, u > uλ0 in Σλ0 .

To complete Step 2, we only need to prove that u ≥ uλ in Σλ continues to hold
when λ0 < λ < λ0 + ε, where ε > 0 small. Let us consider then ε > 0, to be chosen
later, and take λ ∈ (λ0, λ0 + ε). Let P = (λ, 0) and B(P,R) be the ball centered
at P and with radius R > 1 to be chosen later. Define B̃ = Σλ ∩ B(P,R) and let
us consider (uλ − u)+ test function in the equation for u and uλ in Σλ, then from
Lemma 1.4.2 we find

(

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N ≤ C

∫
Σλ

(f(uλ)− f(u))(uλ − u)+dx. (1.37)

We estimate the integral on the right. Since f is locally Lipschitz, using Hölder
inequality, we have∫

B̃

(f(uλ)− f(u))(uλ − u)+dx ≤ C

∫
B̃

|w|2χsupp(uλ−u)+dx

= C|B̃ ∩ supp(uλ − u)+|
2α
N (

∫
B̃

|w|
2N

N−2αdx)
N−2α
N . (1.38)

On the other hand, for the integral over Σλ \ B̃, we assume R and R0 are such that
Σλ \ B̃ ⊂ Bc(P,R) ⊂ Bc

R0
(0), proceeding as in Step 1, we have∫

Σλ\B̃
(f(uλ)− f(u))(uλ − u)+dx ≤ C

∫
Σλ\B̃

uγλw
2dx

≤ C(

∫
Σλ\B̃

|xλ|−
Nmγ

2α dx)
2α
N (

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N

≤ CR0
2α−mγ(

∫
Σλ

|w|
2N

N−2αdx)
N−2α
N . (1.39)

Now we choose R0 such that CR0
2α−mγ < 1/2, then choose R so that Σλ \ B̃ ⊂

Bc(P,R) ⊂ Bc
R0

(0) and then choose ε > 0 so that C|B̃ ∩ supp(uλ − u)+| 2αN < 1/2.
With this choice of the parameters, from (1.37), (1.38) and (1.39) it follows that
w = 0 in Σλ, which is a contradiction, completing Step 2.

Step 3: By translation, we may say that λ0 = 0. An repeating the argument from
the other side, we find that u is symmetric about x1-axis. Using the same argument
in any arbitrary direction, we finally conclude that u is radially symmetric.
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Finally, we prove that u(r) is strictly decreasing in r > 0, by using the same
arguments as in the case of a ball. This completes the proof. 2

At the end of this section we want to give a theorem on radial symmetry of
solutions for equation (1.5) in a case where f is only locally Lipschitz in (0,∞),
see [40] and [39] for the case of the Laplacian. In precise terms we have

Theorem 1.4.1 Let u be a positive classical solution of{
(−∆)αu = up − uq in RN ,

u > 0 in RN , lim|x|→∞ u(x) = 0,
(1.40)

satisfying

u(x) = O(|x|−
N+2α
q ) as |x| → ∞, (1.41)

where α ∈ (0, 1), N ≥ 2 and 0 < q < 1 < p. Then u is radially symmetric and
strictly decreasing about some point.

Proof. We denote f(u) = up − uq for u > 0, and consider γ > 0 and s0 small
enough, then for all u, v satisfying 0 < u < v < s0, we have

f(v)− f(u)

v − u
< 0 ≤ C(u+ v)γ,

for some constant C > 0, so that (F2) holds. We also observe that for a positive
classical solution u of (1.40), u ≥ c in any bounded domain Ω, for a constant c > 0
depending on Ω and then, in (1.38) we may use Lipschitz continuity of f in the
bounded interval [c, supu]. We set m = N+2α

q
and γ may be chosen so that (1.6)

holds. The proof of Theorem 1.4.1 goes in the same way as that of Theorem 1.1.2.

2

Remark 1.4.1 In a work by Valdebenito [92], the estimate (1.41) is obtained by
using super solutions and Theorem 1.4.1 is proved using the local extension of
equation (1.40) as given by Caffarelli and Silvestre in [22] and then using a reg-
ular moving planes argument as developed for elliptic equations with non-linear
boundary conditions by Terracini [91].

1.5 Symmetry results for system

The aim of this section is to prove Theorem 1.1.3 by the moving planes method
applied to a system of equations in the unit ball B1. Let Σλ and Tλ be defined as
in Section §1.3. For x = (x1, x

′) ∈ RN and λ ∈ (0, 1) we let xλ = (2λ− x1, x
′),

uλ(x) = u(xλ), wλ,u(x) = uλ(x)− u(x),
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vλ(x) = v(xλ), and wλ,v(x) = vλ(x)− v(x).

Proof of Theorem 1.1.3. We will split this proof into three steps.

Step 1: We start the moving planes proving that if λ is close to 1, then wλ,u and
wλ,v are positive in Σλ. For that purpose we define

Σ−λ,u = {x ∈ Σλ | wλ,u(x) < 0} and Σ−λ,v = {x ∈ Σλ | wλ,v(x) < 0}.

We show next that Σ−λ,u is empty for λ close to 1. Assume, by contradiction, that

Σ−λ,u is not empty and define

w+
λ,u(x) =

{
wλ,u(x), x ∈ Σ−λ,u,

0, x ∈ RN \ Σ−λ,u
(1.42)

and

w−λ,u(x) =

{
0, x ∈ Σ−λ,u,

wλ,u(x), x ∈ RN \ Σ−λ,u.
(1.43)

Using the arguments given in Step 1 of the proof of Theorem 1.1.1, we get

(−∆)α1w+
λ,u(x) ≥ (−∆)α1wλ,u(x) and (−∆)α1w−λ,u(x) ≤ 0, (1.44)

for all x ∈ Σ−λ,u. From here, using equation (1.8), for x ∈ Σ−λ,u we have

(−∆)α1w+
λ,u(x) ≥ (−∆)α1uλ(x)− (−∆)α1u(x)

= f1(vλ(x)) + g1(xλ)− f1(v(x))− g1(x)

= ϕv(x)wλ,v(x) + g1(xλ)− g1(x)

≥ ϕv(x)wλ,v(x), (1.45)

where ϕv(x) = (f1(vλ(x))− f1(v(x)))/(vλ(x)− v(x)) and where we used that g1 is
radially symmetric and decreasing, with |x| > |xλ|. We further observe that, since
f1 is locally Lipschitz continuous, we have that ϕv(·) ∈ L∞(Σ−λ,u). Now we consider

(1.45) together with w+
λ,u = 0 in (Σ−λ,u)

c and w+
λ,u < 0 in Σ−λ,u, to use Proposition

1.2.1 to find a constant C > 0, depending on N and α only, such that

‖w+
λ,u‖L∞(Σ−λ,u) ≤ C‖(−ϕvwλ,v)+‖1−α1

L∞(Σ−λ,u)
‖(−ϕvwλ,v)+‖α1

LN (Σ−λ,u)
(1.46)

We observe that diam(Σ−λ,u) ≤ 1. Since f1 is increasing, we have

−ϕvwλ,v = f1(v)− f1(vλ) ≤ 0 in (Σ−λ,v)
c and (1.47)

−ϕvwλ,v = f1(v)− f1(vλ) > 0 in Σ−λ,v. (1.48)
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Denoting Σ−λ = Σ−λ,u ∩ Σ−λ,v, from (1.46), (1.47) and (1.48), we obtain

‖w+
λ,u‖L∞(Σ−λ,u) ≤ C‖(−ϕvwλ,v)+‖L∞(Σ−λ )|Σ

−
λ |

α1
N , (1.49)

Similar to (1.42) and (1.43), we define

w+
λ,v(x) =

{
wλ,v(x), x ∈ Σ−λ,v,

0, x ∈ RN \ Σ−λ,v

and

w−λ,v(x) =

{
0, x ∈ Σ−λ,v,

wλ,v(x), x ∈ RN \ Σ−λ,v.

With this definition (1.49) becomes

‖w+
λ,u‖L∞(Σ−λ,u) ≤ C‖w+

λ,v‖L∞(Σ−λ )|Σ
−
λ |

α1
N , (1.50)

where we used that ϕv is bounded and we have changed the constant C, if necessary.
At this point we observe that if w+

λ,v = 0 then w+
λ,u = 0 providing a contradiction.

Thus we have that Σ−λ,v 6= ∅ and we may argue in a completely analogous way to
obtain

‖w+
λ,v‖L∞(Σ−λ,v) ≤ C‖w+

λ,u‖L∞(Σ−λ )|Σ
−
λ |

α2
N , (1.51)

that combined with (1.50) yields

‖w+
λ,u‖L∞(Σ−λ,u) ≤ C2|Σ−λ |

α1+α2
N ‖w+

λ,u‖L∞(Σ−λ,u),

and
‖w+

λ,v‖L∞(Σ−λ,v) ≤ C2|Σ−λ |
α1+α2
N ‖w+

λ,v‖L∞(Σ−λ,v).

Now we just take λ close enough to 1 so that C2|Σ−λ |
α1+α2
N < 1 and we conclude

that ‖w+
λ,u‖L∞(Σ−λ,u) = ‖w+

λ,v‖L∞(Σ−λ,v) = 0, so |Σ−λ,u| = |Σ
−
λ,v| = 0 and since Σ−λ,u and

Σ−λ,v are open we have that Σ−λ,u,Σ
−
λ,v = ∅, which is a contradiction.

Thus we have that wλ,u ≥ 0 in Σλ when λ is close enough to 1. Similarly, we
obtain wλ,v ≥ 0 in Σλ for λ close to 1. In order to complete Step 1 we will prove
a bit more general statement that will be useful later, that is, given 0 < λ < 1, if
wλ,u ≥ 0, wλ,v ≥ 0, wλ,u 6≡ 0 and wλ,v 6≡ 0 in Σλ, then wλ,u > 0 and wλ,v > 0 in Σλ.
For proving this property suppose there exists x0 ∈ Σλ such that

wλ,u(x0) = 0. (1.52)
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On one hand, by using similar arguments yielding (1.24) we find that

(−∆)α1wλ,u(x0) < 0. (1.53)

On the other hand, by our assumption we have that wλ,v(x0) = vλ(x0)− v(x0) ≥ 0
and since |x0| > |(x0)λ|, from the monotonicity hypothesis on f1 and g1, we obtain

f1(vλ(x0)) ≥ f1(v(x0)), g1((x0)λ) ≥ g1(x0).

Thus, using (1.8), we find

(−∆)α1wλ,u(x0) = f1(vλ(x0)) + g1((x0)λ)− f1(v(x0))− g1(x0) ≥ 0,

which is impossible with (1.53). This completes Step 1.

Step 2: We prove that λ0 = 0, where

λ0 = inf{λ ∈ (0, 1) | wλ,u , wλ,v > 0 in Σλ}.

If not, that is, if λ0 > 0 we have that wλ0,u, wλ0,v ≥ 0 and wλ0,u, wλ0,v 6≡ 0 in Σλ0 .
If we use the property we just proved above, we may assume that wλ0,u > 0 and
wλ0,v > 0 in Σλ0 . In what follows we argue that the plane can be moved to left,
that is, that there exists ε ∈ (0, λ) such that wλε,u > 0 and wλε,v > 0 in Σλε , where
λε = λ0 − ε, providing a contradiction with the definition of λ0.

Let us consider the set Dµ = {x ∈ Σλ | dist(x, ∂Σλ) ≥ µ} for µ > 0 small.
Since wλ,u, wλ,v > 0 in Σλ and Dµ is compact, then there exists µ0 > 0 such that
wλ,u, wλ,v ≥ µ0 in Dµ. By continuity of wλ,u(x) and wλ,v(x), for ε > 0 small enough,
we have that

wλε,u, wλε,v ≥ 0 in Dµ

and, as a consequence, Σ−λε,u,Σ
−
λε,v
⊂ Σλε \Dµ, and |Σ−λε,u| and |Σ−λε,v| are small if

ε and µ are small.

Since f1 and f2 are locally Lipschitz continuous and increasing, g1 and g2 are
radially symmetric and decreasing, we may repeat the arguments given in Step 1
to obtain

‖w+
λε,u
‖L∞(Σ−λε,u) ≤ C2|Σ−λε|

α1+α2
N ‖w+

λε,u
‖L∞(Σ−λε,u)

and
‖w+

λε,v
‖L∞(Σ−λε,v) ≤ C2|Σ−λε|

α1+α2
N ‖w+

λε,v
‖L∞(Σ−λε,v)

where Σ−λε = Σ−λε,u∩Σ−λε,v. Now we may choose ε and µ small such that C2|Σ−λε|
α1+α2
N <

1, then we obtain ‖w+
λε,u
‖L∞(Σ−λε,u) = ‖w+

λε,v
‖L∞(Σ−λε,v) = 0. From here we argue as

in Step 1 to obtain that wλε,u and wλε,v are positive in Σλε , completing Step 2.

Finally, we obtain that u and v are radially symmetric and strictly decreasing
respect to r = |x| for r ∈ (0, 1) in the same way in Step 3 in the proof of Theorem
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1.1.1. 2

1.6 The case of a non-local operator with non

homogeneous kernel.

The main purpose of this section is to discuss radial symmetry for a problem
with a non-local operator L of fractional order, but with a non-homogeneous kernel.
The operator is defined as follows:

Lu(x) = P.V.

∫
RN

(u(x)− u(y))Kµ(x− y)dy, (1.54)

where the kernel Kµ satisfies that

Kµ(x) =

{
1

|x|N+2α1
, |x| < 1,

µ
|x|N+2α2

, |x| ≥ 1
(1.55)

with µ ∈ [0, 1] and α1, α2 ∈ (0, 1). Being more precise, we consider the equation{
Lu(x) = f(u(x)) + g(x), x ∈ B1,

u(x) = 0, x ∈ Bc
1,

(1.56)

and our theorem states as follows.

Theorem 1.6.1 Assume that the function f satisfies (F1) and g satisfies (G). If
u is a positive classical solution of (1.56), then u must be radially symmetric and
strictly decreasing in r = |x| for r ∈ (0, 1).

The idea for Theorem 1.6.1 is to take advantage of the fact that the non-local
operator L differs from the fractional Laplacian by a zero order operator. Using
this idea, we obtain a Maximum Principle for domains with small volume through
the ABP-estimate given Proposition 1.2.1 and we are able to use the moving planes
method as in the case of the fractional Laplacian. We prove first

Proposition 1.6.1 Let Σλ and Σ−λ be defined as in the Section §1.3. Suppose that
ϕ ∈ L∞(Σλ) and that wλ ∈ L∞(RN) ∩ C(RN) is a solution of{

−Lwλ(x) ≤ ϕ(x)wλ(x), x ∈ Σλ,

wλ(x) ≥ 0, x ∈ RN \ Σλ,
(1.57)

where L was defined in (1.54). Then, if |Σ−λ | is small enough, wλ is non-negative
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in Σλ, that is,
wλ ≥ 0 in Σλ.

Proof. We define w+
λ (x) as in (1.18), then we have

Lw+
λ (x) =

∫
B1(x)

w+
λ (x)− w+

λ (z)

|x− z|N+2α1
dz + µ

∫
RN\B1(x)

w+
λ (x)− w+

λ (z)

|x− z|N+2α2
dz

= (−∆)α1w+
λ (x)

+

∫
RN\B1(x)

(w+
λ (x)− w+

λ (z))(
µ

|x− z|N+2α2
− 1

|x− z|N+2α1
)dz

≤ (−∆)α1w+
λ (x) + 2C0‖w+

λ ‖L∞(Σ−λ ) , x ∈ Σ−λ ,

where C0 =
∫
RN\B1

| µ
|y|N+2α2

− 1
|y|N+2α1

|dy. Thus we have

∆α1w+
λ (x) ≤ −Lw+

λ (x) + 2C0‖w+
λ ‖L∞(Σ−λ ) , x ∈ Σ−λ . (1.58)

Since Kµ is radially symmetric and decreasing in |x|, we may repeat the arguments
used to prove (1.20) to get

Lw−λ (x) ≤ 0, ∀ x ∈ Σ−λ , (1.59)

where 0 < λ < 1 and w−λ was defined in (1.19). Using (1.58), the linearity of L,
(1.59) and equation (1.57), for all x ∈ Σ−λ , we have

∆α1w+
λ (x) ≤ −Lwλ(x) + Lw−λ (x) + 2C0‖w+

λ ‖L∞(Σ−λ )

≤ −Lwλ(x) + 2C0‖w+
λ ‖L∞(Σ−λ )

≤ ϕ(x)wλ(x) + 2C0‖w+
λ ‖L∞(Σ−λ ) ≤ C1‖w+

λ ‖L∞(Σ−λ ), (1.60)

where C1 = ‖ϕ‖L∞(Σλ) + 2C0 and we notice that wλ = w+
λ in Σ−λ . Hence, we have{

∆α1w+
λ (x) ≤ C1‖w+

λ ‖L∞(Σ−λ ), x ∈ Σ−λ ,

w+
λ (x) = 0, x ∈ RN \ Σ−λ .

(1.61)

Then, using Proposition 1.2.1 with h(x) = C1‖w+
λ ‖L∞(Σ−λ ), we obtain a constant

C > 0 such that

‖w+
λ ‖L∞(Σ−λ ) = − inf

Σ−λ

w+
λ ≤ Cdα1‖w+

λ ‖L∞(Σ−λ )|Σ
−
λ |

α1
N ,

where d = diam(Σ−λ ). If |Σ−λ | is small enough we conclude that ‖wλ‖L∞(Σ−λ ) =

‖w+
λ ‖L∞(Σ−λ ) = 0, from where we complete the proof. 2

Now we provide a proof for Theorem 1.6.1.
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Proof of Theorem 1.6.1. The proof of this theorem goes like the one for Theorem
1.1.1 where we use Proposition 1.6.1 instead of Proposition 1.2.1 and L instead of
(−∆)α. The only place where there is a difference is in the following property: for
0 < λ < 1, if wλ ≥ 0 and wλ 6≡ 0 in Σλ, then wλ > 0 in Σλ.

For µ ∈ (0, 1], since Kµ is radially symmetric and strictly decreasing, the proof
of the property is similar to that given in Theorem 1.1.1. So we only need to
prove it in case µ = 0 so the kernel K0 vanishes outside the unit ball B1. Let
us assume that wλ ≥ 0 and wλ 6≡ 0 in Σλ and, by contradiction, let us assume
Σ0 = {x ∈ Σλ | wλ(x) = 0} 6= Ø. By our assumptions on wλ we have that
Σλ \ Σ0 = {x ∈ Σλ | wλ(x) > 0} is open and nonempty. Let us consider x0 ∈ Σ0

such that
dist(x0,Σλ \ Σ0) ≤ 1/2, (1.62)

and observe that (Σλ \ Σ0) ∩B1(x0) is nonempty. Using (1.56) we have

Lwλ(x0) = Luλ(x0)− Lu(x0)

= f(uλ(x0))− f(u(x0)) + g((x0)λ)− g(x0)

= g((x0)λ)− g(x0) ≥ 0, (1.63)

where the last inequality holds by monotonicity assumption on g and since |x0| >
|(x0)λ|. On the other hand, denoting by Aλ = {(x1, x

′) ∈ RN | x1 > λ}, since
wλ(x0) = 0 and wλ(zλ) = −wλ(z) for any z ∈ RN , we have

Lwλ(x0) = −
∫
Aλ

wλ(z)K0(x0 − z)dz −
∫
RN\Aλ

wλ(z)K0(x0 − z)dz

= −
∫
Aλ

wλ(z)K0(x0 − z)dz −
∫
Aλ

wλ(zλ)K0(x0 − zλ)dz

= −
∫
Aλ

wλ(z)(K0(x0 − z)−K0(x0 − zλ))dz.

Since |x0− zλ| > |x0− z| for z ∈ Aλ, by definition of K0, Σλ and Σ0, we have that

K0(x0 − z) > K0(x0 − zλ) and wλ(z) > 0 for z ∈ (Σλ \ Σ0) ∩B1(x0),

and we also have that wλ(z) ≥ 0 and K0(x0 − z) ≥ K0(x0 − zλ) for all z ∈ Aλ, so
that

Lwλ(x0) < 0,

contradicting (1.63). Hence Σ0 is empty and then wλ > 0 in Σλ, completing the
proof of the theorem. 2

Remark 1.6.1 The theorem we just proved can be extended to more general non-
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homogeneous kernels in the following class

K(x) =

{
|x|−N−2α, x ∈ Br,

θ(x), x ∈ Bc
r,

(1.64)

here α ∈ (0, 1), r > 0 and the function θ : Bc
r → R satisfies that

(C) θ ∈ L1(Bc
r) is nonnegative, radially symmetric and such that the kernel K is

decreasing.
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Chapter 2

Qualitative properties of positive
solutions for mixed integro-
differential equations

Abstract: in this chapter1, we consider the decay and symmetry properties
of solutions to mixed integro-differential equations{

(−∆)αxu+ (−∆)yu+ u = f(u) in RN × RM ,

u > 0 in RN × RM , lim|(x,y)|→+∞ u(x, y) = 0,
(2.1)

where N ≥ 1, M ≥ 1, the operator (−∆)y is the laplacian with respect to y, (−∆)αx
is the fractional laplacian of exponent α ∈ (0, 1) with respect to x. In studying
the decay, we construct appropriate super and sub solutions and then we use the
moving planes method to prove the symmetry properties.

2.1 Introduction

The study of qualitative properties of positive solutions to semi-linear elliptic
equations in RN has been the concern of numerous authors along the last several
decades. The asymptotic behavior of the solution at infinity, the actual rate of
decay and symmetry properties have been the most studied qualitative properties
for these equations. It was the seminal work by Gidas, Ni and Nirenberg [51] that

1This chapter is based on the paper: P. Felmer and Y. Wang, Qualitative properties of positive
solutions for mixed integro-differential equations, submitted.
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settled these two main qualitative properties for the semi-linear elliptic equation{
−∆u+ u = f(u) in RM ,

u > 0 in RM , lim|y|→+∞ u(y) = 0,
(2.2)

when the non-linearity is merely Lipschitz continuous, super-linear at the zero, in
the sense that

f(s) = O(sp) as s→ 0, (2.3)

for some p > 1, and M ≥ 3. Gidas, Ni and Nirenberg proved that the solutions of
(2.2) are radially symmetric and they satisfy the precise decay estimate

lim
|y|→+∞

u(y)e|y||y|
M−1

2 = c, (2.4)

for certain constant c > 0. After this work, many authors extended the results
in various directions, generalizing the non-linearity, the elliptic operator or the
hypotheses on the solutions. Out of the very many contributions in this direction
we mention here only a few: Berestycki and Lions [7], Berestycki and Nirenberg
[8], Brock [15], Busca and Felmer [16], Cortázar, Elgueta and Felmer [40], Da Lio
and Sirakov [42], Dolbeault and Felmer [43], Gui [53], Kwong [60], Li and Ni [63]
and Pacella and Ramaswamy [77].

Recently, much attention has been given to the study of elliptic equations of
fractional order. In this direction, Felmer, Quaas and Tan in [45] studied the
problem {

(−∆)αu+ u = f(u) in RN ,

u > 0 in RN , lim|x|→+∞ u(x) = 0.
(2.5)

They proved existence and regularity of positive solutions, and also decay and
symmetry results. Precisely, it was proved that the solutions u of (2.5) satisfy

c−1

|x|N+2α
≤ u(x) ≤ c

|x|N+2α
, |x| ≥ 1, (2.6)

for some c > 1, when f is superlinear at 0 in the sense that

lim
s→0

f(s)

s
= 0.

The radial symmetry of the solutions of (2.5) is derived by using the moving planes
method in integral form developed in [30, 64], assuming further that f ∈ C1(R), it
is increasing and there exists τ > 0 such that

lim
s→0

f ′(s)

sτ
= 0. (2.7)
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This symmetry result was generalized by the authors in [46], using an appropriate
truncation argument together with the moving planes method with ideas developed
in [62]. We refer to some other papers with more discussions on qualitative prop-
erties of solutions to fractional elliptic problems as Cabré and Sire [18], Caffarelli
and Silvestre [22], Chen, Li and Ou [30], Barles, Chasseigne, Ciomaga and Imbert
[38], Dipierro Palatucci, Valdinoci [41], Li [64], Quaas and Xia [80], Ros-Oton and
Serra [81] and Sire and Valdinoci [88].

Both operators, the laplacian and the fractional laplacian, are particular cases
of a general class of elliptic operators connected to backward stochastic differential
equations associated to Brownian and Levy-Itô processes, see for example Bar-
les, Buckdahn and Pardoux [2], Benth, Karlsen and Reikvam [6] and Pham [79].
Recently, Barles, Chasseigne, Ciomaga and Imbert in [3, 4] and Ciomaga in [38]
considered the existence and regularity of solutions for equations involving mixed
integro-differential operators belonging to the general class of backward stochas-
tic differential equations mentioned above. A particular case of elliptic integro-
differential operator of mixed type is the one considering the laplacian in some of
the variables and the fractional laplacian in the others, modeling diffusion sensible
to the direction. In view of (2.2) and (2.5) we may write similarly{

(−∆)αxu+ (−∆)yu+ u = f(u), (x, y) ∈ RN × RM ,

u > 0 in RN × RM , lim|(x,y)|→+∞ u(x, y) = 0,
(2.8)

where N ≥ 1, M ≥ 1. The operator (−∆)y denotes the usual laplacian with
respect to y, while (−∆)αx denotes the fractional laplacian of exponent α ∈ (0, 1)
with respect to x, i.e.

(−∆)αxu(x, y) =

∫
RN

u(x, y)− u(z, y)

|x− z|N+2α
dz, (2.9)

for all (x, y) ∈ RN × RM . Here the integral is understood in the principal value
sense.

In view of the known results on decay and symmetry for solutions of equations
(2.2) and (2.5) just described above, it is interesting to ask if these results still
hold for solutions of the equation of mixed type (2.8), where the elliptic operator
represents diffusion depending on the direction in space. Regarding the asymptotic
decay of solution at infinity, the question is interesting since a proper mix of the
two variables should be obtained for the decay estimates. The natural way to
estimate the decay is through the construction of super and sub solutions involving
the fundamental solution of the elliptic operator, which in this case is singular in
RN × {0}. Moreover, the solution of (2.8) cannot be radially symmetric, so this
property cannot be used to estimate the decay. On the other hand, regarding radial
symmetry, we may still have symmetry in x and y, but the moving planes method
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would require an adequate version of the Hopf’s Lemma, that we prove here.

Our first theorem in this chapter concerns the decay of solutions for (2.8) with
general nonlinearity and it states as follows.

Theorem 2.1.1 Let α ∈ (0, 1), N,M ∈ N, N ≥ 1 and M ≥ 1 and let us assume
that the function f : (0,+∞)→ R is continuous and it satisfies

−∞ < B := lim inf
v→0+

f(v)

v
≤ A := lim sup

v→0+

f(v)

v
< 1. (2.10)

Let u be a positive classical solution of problem (2.8), then for any ε > 0 small,
there exists Cε > 1 such that for any (x, y) ∈ RN × RM ,

C−1
ε (1 + |x|)−N−2αe−θ2|y| ≤ u(x, y) ≤ Cε(1 + |x|)−N−2αe−θ1|y|, (2.11)

where
θ1 =

√
1− A− ε and θ2 =

√
1−B + ε. (2.12)

When we compare estimate (2.11) with (2.4) for N = 0, we first observe that
in ours an exponential decay is obtained, but with a constant Cε depending on
ε, which is a parameter controlling the rate of exponential decay. This is more
clear when A = B = 0. On the other hand we are making much more general
assumptions on f and, in particular, we are not making any assumption on the
radial symmetry of the solution, which is crucial in proving (2.4). We do not know
of a decay estimate better than

C−1
ε e−θ2|y| ≤ u(y) ≤ Cεe

−θ1|y|, y ∈ RM , (2.13)

for solutions of (2.2) under assumption (2.10) for f , and where radial symmetry
of the solutions is not available, like in a case where f may depend on y. On
the other hand, when M = 0, we recover (2.6) from (2.11). For the proof of the
decay estimate (2.11) we construct suitable super and sub solutions and we use
comparison principle with a version of Hopf’s lemma.

When we assume further hypothesis we can get sharper estimates for the decay
of the solutions of equation (2.8). Precisely, we have the following result:

Theorem 2.1.2 Assume that α ∈ (0, 1), N ≥ 1, M ≥ 5 and the non-linearity
f : (0,+∞)→ R is non-negative and it satisfies (2.3). Let u be a positive classical
solution of (2.8), then there exists a constant c > 1 such that for all (x, y) ∈
RN × RM ,

1

c
ρ(x, y) ≤ u(x, y) ≤ cρ(x, y)(1 + |y|)

1
2 , (2.14)
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where the function ρ is defined as

ρ(x, y) = min{ 1

(1 + |x|)N+2α
, e−|y||y|−

N
2α
−M

2 ,
e−|y||y|1−M2

(1 + |x|)N+2α
}. (2.15)

We notice that this theorem gives the expected exponential decay for positive
solutions, as suggested by (2.4), assuming the dimension of the space satisfies
M ≥ 5. Moreover, it gives the expected polynomial correction for the lower bound
with a gap in the power for the upper bound. This theorem is proved under
the assumption (2.3) on the non-linearity, constructing super and sub solutions
devised upon the fundamental solution of (−∆)αx + (−∆)y + id. In our argument,
a crucial role is played by the estimate already obtained in Theorem 2.1.1. Since
the fundamental solution of (−∆)αx + (−∆)y + id has RN × {0} as singular set,
we cannot use the method in [51] in order to derive our estimate. Moreover, some
other arguments in [51] cannot be used either because the solutions of (2.8) are
not radial, since the differential operator is not radially invariant and there are no
solutions depending only on one of the x or y variables, as can be seen from (2.14),

Even though solutions of (2.8) are not radially symmetric, we can prove partial
symmetry in each of the variables x and y and this is the content of our third
theorem.

Theorem 2.1.3 Assume that α ∈ (0, 1), N ≥ 1, M ≥ 1 and the function f :
(0,+∞)→ R is locally Lipschitz and it satisfies (2.10). Moreover, we assume that
f also satisfies

(F ) there exist u0 > 0, γ > N
N+M

· 2α
N+2α

and c̄ > 0 such that

f(v)− f(u)

v − u
≤ c̄vγ for all 0 < u < v < u0. (2.16)

Then, every positive classical solution u of equation (2.8) satisfies

u(x, y) = u(r, s)

and u(r, s) is strictly decreasing in r and s, where r = |x| and s = |y|.

When N = 0, we see that assumption (F ) implies γ > 0 and (2.16) coincides
with the assumption considered in [62]. When M = 0, assumption (F ) implies
that γ > 2α

N+2α
and it coincides with the assumption considered in [46], when the

solutions is assumed to decay as a power N + 2α at infinity. We remark that
the operator (−∆)αx + (−∆)y is a combination of two operators with different
differential orders in x−variable and y−variable, and this produced a combined
polynomial-exponential decay and does not allow for radial symmetry, but only
partial symmetry as stated in Theorem 2.1.3.
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The proof of Theorem 2.1.3 is based on the moving planes method as developed
in [46, 62]. In these arguments, the strong maximum principle plays a crucial role
and it is available for the laplacian and for the fractional laplacian. However, in
the case of our mixed integro-differential operator some difficulties arise and we
overcome them with a version of the Hopf’s Lemma.

2.2 Preliminaries

This section is devoted to study the Strong Maximum Principle for mixed
integro-differential operators as in equation (2.8). To this end, we prove first a
suitable form of the Hopf’s Lemma.

However, before to go to this, we recall some basic properties of the Sobolev
embeddings. If we denote the Sobolev spaces

H(RN+M) = {w ∈ L2(RN+M)|
∫
RM

∫
RN

(|ξ1|2α + |ξ2|2 + 1)|ŵ(ξ1, ξ2)|2dξ1dξ2 <∞}

and

Hα(RN+M) = {w ∈ L2(RN+M) |
∫
RN+M

(|ξ|2α + 1)|ŵ(ξ)|2dξ <∞},

with norms

‖w‖H = (

∫
RM

∫
RN

(|ξ1|2α + |ξ2|2 + 1)|ŵ(ξ1, ξ2)|2dξ1dξ2)
1
2

and

‖w‖Hα = (

∫
RN+M

(|ξ|2α + 1)|ŵ(ξ)|2dξ)
1
2 ,

respectively, then it is not difficult to see that the following proposition holds.

Proposition 2.2.1 For α ∈ (0, 1), we have that

H(RN+M) ⊂ Hα(RN+M) ⊂ Lp(RN+M),

where the first inclusion is continuous and the second inclusion is continuous if
1 ≤ p ≤ 2(N+M)

N+M−2α
. Moreover,

H(RN+M) ⊂ Lploc(R
N+M)

is compact if 1 ≤ p < 2(N+M)
N+M−2α

.

We devote the rest of this section to prove the Strong Maximum Principle in
our context and to this end, we start with versions of the Maximum Principle and
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the Hopf’s Lemma. In what follows, given Ω an open subset in RN×RM , we define
its closed cylindrical extension in the direction x as

Ω̃ = {(x, y) ∈ RN × RM : ∃ x′ ∈ RN s.t. (x′, y) ∈ Ω̄}.

Given a function h defined in an appropriate domain, we consider the mixed
integro-differential operator

Lw(x, y) = (−∆)αxw(x, y) + (−∆)yw(x, y) + h(x, y)w(x, y).

Lemma 2.2.1 Assume that Ω is an open domain of RN × RM and the function
h : Ω→ R satisfies h ≥ 0 in Ω. If the function w ∈ C(Ω̄) ∩ L∞(Ω̃) satisfies{

Lw ≥ 0 in Ω, w ≥ 0 in Ω̃ \ Ω,

lim inf(x,y)∈Ω,|(x,y)|→∞w(x, y) ≥ 0
(2.17)

then w ≥ 0 in Ω̃.

Proof. If not, we may assume that there exists some (x0, y0) ∈ Ω such that

w(x0, y0) = min
(x,y)∈Ω̃

w(x, y) < 0.

Then

(−∆)αxw(x0, y0) =

∫
RN

w(x0, y0)− w(z, y0)

|x0 − z|N+2α
dz < 0

and
(−∆)yw(x0, y0) ≤ 0

and then, since h is non-negative we have Lw(x0, y0) < 0, which contradicts (2.17),
completing the proof. 2

It what follows we prove a version of the Hopf’s Lemma and for this purpose we
need to give some conditions to the boundary of the domain where the function is
defined. We say that the domain Ω ⊂ RN×RM satisfies interior cylinder condition
at (x0, y0) ∈ ∂Ω if there exist r > 0 and ỹ ∈ RM such that Or = BN

r (x0)× BM
r (ỹ)

satisfies
Or ⊂ Ω and (x0, y0) ∈ ∂Or, (2.18)

where BN
r (x0) = {x ∈ RN : |x − x0| < r} and BM

r (ỹ) = {y ∈ RM : |y − ỹ| < r}
and, obviously |ỹ − y0| = r. We define also

D = {(x, y) ∈ Or : |x− x0| <
r

2
, |y − ỹ| > r

2
}. (2.19)

48



Lemma 2.2.2 [Hopf’s Lemma] Let Ω be an open set satisfying interior cylinder
condition at (x0, y0) ∈ ∂Ω. Assume that h ∈ L∞(D) and w ∈ C(Ω̄) ∩  L∞(Ω̃)
satisfies

Lw ≥ 0 in Ω

and
0 = w(x0, y0) < w(x, y), ∀(x, y) ∈ Ω.

Further assume that for r > 0 be given in (2.19) and for any (x, y) ∈ D we have∫
RN\BNr (x0)

w(z, y)

|x− z|N+2α
dz ≥ 0. (2.20)

Then

lim sup
s→0+

w(x0, y0)− w(x0, y0 + sỹ)

s
< 0, (2.21)

moreover, if the limit exists, then

∂w

∂n
(x0, y0) < 0, (2.22)

where n is the unit exterior normal vector of Ω at the point (x0, y0).

Proof. Let us define

ϕM(y) = e−β|y−ỹ|
2 − e−βr2

, y ∈ B̄M
r (ỹ), (2.23)

where β > 0 will be chosen later. By direct computation, we have that

−∆ϕM(y) = (2Mβ − 4β2|y − ỹ|2)e−β|y−ỹ|
2

. (2.24)

Next we consider the function

v(x, y) = ϕN(x)ϕM(y), (x, y) ∈ Õr,

where ϕN is the first eigenfunction of Dirichlet problem{
(−∆)αϕN(x) = λ1ϕN(x), x ∈ BN

r/2(x0),

ϕN(x) = 0, x ∈ RN \BN
r/2(x0),

(2.25)

where ϕN is positive and bounded in BN
r/2(x0) and the first eigenvalue λ1, is positive,

see Propositions 9 and 4 in [86] and [85], respectively.
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For (x, y) ∈ D, by (2.24) and (2.25), we obtain that

Lv(x, y) = ϕM(y)(−∆)αϕN(x) + ϕN(x)(−∆ϕM(y)) + h(x, y)ϕN(x)ϕM(y)

= ϕN(x)[λ1ϕM(y) + (2Mβ − 4β2|y − ỹ|2)e−β|y−ỹ|
2

+ h(x, y)ϕM(y)]

≤ ϕN(x)e−β|y−ỹ|
2

(λ1 + 2Mβ − β2r2 + ‖h‖L∞(D)),

where the last inequality holds by the fact that 0 ≤ ϕM(y) < e−β|y−ỹ|
2

and |y− ỹ| >
r/2 in D. Let us choose β > 0 big enough such that

Lv ≤ 0 in D. (2.26)

On the other hand, since ϕN(x) = 0 for |x−x0| ≥ r/2 and ϕM(y) = 0 for |y−ỹ| = r,
it is obvious that v = 0 in A1 ∪ A2 where A1 = {(x, y) ∈ D̃ : |x − x0| ≥ r/2} and
A2 = {(x, y) ∈ D̄ : |y − ỹ| = r}. If we define the set A3 := {(x, y) ∈ D̄ : |y − ỹ| =
r/2}, we see that D̃ \ D = A1 ∪ A2 ∪ A3. We also observe that v is a bounded
function in Õr.

Next we prove (2.21) assuming h ≥ 0. Defining

W (x, y) =

{
w(x, y), (x, y) ∈ Ōr,

0, (x, y) ∈ Õr \ Ōr

(2.27)

and using (2.20), we have that for any (x, y) ∈ D,

LW (x, y) = Lw(x, y) +

∫
RN\BNr (x0)

w(z, y)

|x− z|N+2α
dz ≥ 0.

Combining with (2.26), we have that, for every ε > 0

L(W − εv) ≥ 0 in D. (2.28)

Since v is bounded in Õr, the set A3 is a compact subset of Or and w > 0 in Or,
then there exists ε > 0 small such that

W = w ≥ εv in A3.

Since v = 0 in A1 ∪ A2, w ≥ 0 in Ōr and (2.27), we have W ≥ 0 = εv in A1 ∪ A2.
Consequently,

W − εv ≥ 0 in D̃ \D.

Then we can use Lemma 2.2.1, recalling that h ≥ 0 to obtain that

W − εv ≥ 0 in D.

In view of the definition of W , since D ⊂ Ōr, we find that w − εv ≥ 0 in D and
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noticing that w(x0, y0) = v(x0, y0) = 0 we obtain that

w(x0, y0)− w(x0, y0 + sỹ)

s
≤ ε

v(x0, y0)− v(x0, y0 + sỹ)

s
,

for all s ∈ (0, r/2). Thus, we have

lim sup
s→0+

w(x0, y0)− w(x0, y0 + sỹ)

s
≤ ε lim

s→0+

v(x0, y0)− v(x0, y0 + sỹ)

s

= εϕN(x0) lim
s→0+

ϕM(y0)− ϕM(y0 + sỹ)

s

= −2εβr2e−βr
2

ϕN(x0)

< 0,

completing the proof of (2.21).

The case for general h can be done simply by replacing h by h+. In fact, since
w > 0 in Ω, we have

(−∆)αxw(x, y) + (−∆)yw(x, y) + h+(x, y)w(x, y) ≥ 0, (x, y) ∈ Ω

and similarly we obtain that

(−∆)αxv(x, y) + (−∆)yv(x, y) + h+(x, y)v(x, y) ≤ 0, (x, y) ∈ D,

so we may proceed as before to get (2.21) and the proof is complete. 2

In order to state the Strong Maximum Principle to be used in our moving planes
procedure, it is convenient to consider property (P ):

(P ) We say that a function w : Ω̃→ R satisfies property (P ) if whenever (x0, y0) ∈
Ω such that

0 = w(x0, y0) = inf
(x,y)∈Ω

w(x, y),

then
w(x, y0) ≡ 0, ∀x ∈ RN .

The following lemma is in preparation of the strong maximum principle.

Lemma 2.2.3 Let Ω be an open set in RN × RM and w have property (P ). We
denote

Ω0 = {(x, y) ∈ Ω : w(x, y) = inf
Ω
w = 0}. (2.29)

If ∅ 6= Ω0 $ Ω, then Ω \ Ω0 satisfies interior cylinder condition at any point
(x0, y0) ∈ ∂Ω0 ∩ Ω.
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Proof. Since ∅ 6= Ω0 $ Ω, we have that Ø 6= ∂Ω0 ∩ Ω ⊂ ∂(Ω \ Ω0). For any
(x0, y0) ∈ ∂Ω0 ∩ Ω, let us denote r = 1

4
dist((x0, y0), ∂Ω) and let ỹ ∈ RM such that

(x0, ỹ) ∈ Ω \ Ω0 and |ỹ − y0| = r. Since w has property (P ), then w = 0 in Ω̃0,
where Ω̃0 is the extension of Ω0 in x-direction and as Ω \Ω0 is open, we have that
BN
r (x0) × BM

r (ỹ) ⊂ Ω \ Ω0. Therefore, Ω \ Ω0 satisfies interior cylinder condition
at (x0, y0) ∈ ∂Ω0 ∩ Ω.

2

Theorem 2.2.1 [Strong Maximum Principle] Let Ω be an open set of RN ×RM ,
the function h ∈ L∞loc(Ω) and w ∈ C(Ω̄) ∩ L∞(Ω̃) has the property (P ) satisfying

Lw ≥ 0 in Ω and w ≥ 0 in Ω. (2.30)

Assume that Ω0 6= ∅ defined by (2.29) and there exists some (x0, y0) ∈ ∂Ω0 ∩ Ω
such that (2.20) holds in corresponding D.

Then w must be 0 in Ω̃.

Proof. Assume that Ω0 6= Ω. By Lemma 2.2.3, Ω \ Ω0 satisfies interior cylin-
der condition at (x0, y0) ∈ ∂Ω0 ∩ Ω and then w(x0, y0) = 0 by w ∈ C(Ω̄) and
the definition of Ω0. Furthermore, we observe that D̄ is compact in Ω and then
h ∈ L∞(D̄). Using Lemma 2.2.2, we obtain (2.21), which is impossible by the fact
of w(x0, y0) = infΩ w = 0. Therefore, Ω0 = Ω, i.e. w ≡ 0 in Ω. Since w has
property (P ), then w ≡ 0 in Ω̃. 2

2.3 Decay estimate

2.3.1 Proof of Theorem 2.1.1

In this subsection, we prove Theorem 2.1.1 on decay estimates for positive
classical solutions of equation (2.8). The main work is to construct appropriate
super and sub solutions and then the decay estimate is derived by Lemma 2.2.1.

Before proving Theorem 2.1.1, we introduce some computations gathered in the
next proposition. For α ∈ (0, 1) and µ > 0, we define the function ψµ : RN → R
as follows

ψµ(x) =

{
µ−N−2α, |x| < µ,

|x|−N−2α, |x| ≥ µ.
(2.31)

Proposition 2.3.1 For any µ > 0, there exists R0 > 3µ and c > 0, independent
of µ, such that

− cµ−2αψµ(x) ≤ (−∆)αψµ(x) ≤ −c−1µ−2αψµ(x), x ∈ Bc
R0
. (2.32)
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Proof. We consider along the proof that µ > 0 and x ∈ RN satisfies |x| > 3µ. We
define

A(µ, x, z) =
ψµ(x+ z) + ψµ(x− z)− 2ψµ(x)

|z|N+2α
, z ∈ RN

and we observe that

(−∆)αψµ(x) = −1

2

∫
RN
A(µ, x, z)dz. (2.33)

Now we compute the integral above by decomposing the domain in various pieces.
First we consider the integral over B |x|

3

(0). We observe that |x ± z| ≥ µ for all

z ∈ B |x|
3

(0), then by (2.31) we obtain

|
∫
B |x|

3

(0)

A(µ, x, z)dz|

= |
∫
B |x|

3

(0)

|x+ z|−N−2α + |x− z|−N−2α − 2|x|−N−2α

|z|N+2α
dz|

= |x|−N−4α|
∫
B 1

3
(0)

|z + ex|−N−2α + |z − ex|−N−2α − 2

|z|N+2α
dz|

≤ c1|x|−N−4α

∫
B 1

3
(0)

|z|2

|z|N+2α
dz ≤ c2|x|−N−4α, (2.34)

where ex = x
|x| and c1, c2 > 0 are independent of µ. Next we consider the integral

over B |x|
3

(x) \Bµ(x). We observe that for all z ∈ B |x|
3

(x) \Bµ(x) we have |x+ z| ≥
|x− z| ≥ µ and then we obtain∫

B |x|
3

(x)\Bµ(x)

A(µ, x, z)dz

=

∫
B |x|

3

(x)\Bµ(x)

|x+ z|−N−2α + |x− z|−N−2α − 2|x|−N−2α

|z|N+2α
dz

= |x|−N−4α

∫
B 1

3
(ex)\B µ

|x|
(ex)

|z + ex|−N−2α + |z − ex|−N−2α − 2

|z|N+2α
dz

≤ c3|x|−N−4α

∫
B 1

3
(ex)\B µ

|x|
(ex)

|z − ex|−N−2αdz ≤ c4µ
−2α|x|−N−2α,

where the first inequality holds since |z + ex| ≥ |z − ex| for z ∈ B 1
3
(ex) \ B µ

|x|
(ex)
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and |z| ≥ 2
3

for z ∈ B 1
3
(ex). For the inequality on the other side, we obtain

∫
B |x|

3

(x)\Bµ(x)

A(µ, x, z)dz

= |x|−N−4α

∫
B 1

3
(ex)\B µ

|x|
(ex)

|z + ex|−N−2α + |z − ex|−N−2α − 2

|z|N+2α
dz

≥ |x|−N−4α(

∫
B 1

3
(ex)\B µ

|x|
(ex)

|z − ex|−N−2α

|z|N+2α
dz −

∫
B 1

3
(ex)

2

|z|N+2α
dz)

≥ c5|x|−N−4α

∫
B 1

3
(ex)\B µ

|x|
(ex)

|z − ex|−N−2αdz − c6|x|−N−4α

≥ c7µ
−2α|x|−N−2α − c8|x|−N−4α,

where the second inequality holds by |z| ≤ 4
3

for z ∈ B 1
3
(ex). Consequently,

c7µ
−2α|x|−N−2α − c8|x|−N−4α ≤

∫
B |x|

3

(x)\Bµ(x)

A(µ, x, z)dz ≤ c4µ
−2α|x|−N−2α,

(2.35)
where the constants c4, c7, c8 > 0 are independent of µ. The estimate for the
integral over B |x|

3

(−x) \Bµ(−x) is similar.

Next we consider the integral over Bµ(x). We observe that, for z ∈ Bµ(x) we

have since |x+ z| > µ > |x− z| and |z| ≥ |x| − µ ≥ 2|x|
3

, thus∫
Bµ(x)

A(µ, x, z)dz =

∫
Bµ(x)

|x+ z|−N−2α + µ−N−2α − 2|x|−N−2α

|z|N+2α
dz

≤ 2

∫
Bµ(x)

µ−N−2α

|z|N+2α
dz ≤ c9µ

−2α(|x| − µ)−N−2α ≤ c10µ
−2α|x|−N−2α

and, for the other inequality∫
Bµ(x)

A(µ, x, z)dz ≥
∫
Bµ(x)

−2|x|−N−2α

|z|N+2α
dz

≥ −c11µ
N |x|−N−2α(|x| − µ)−N−2α ≥ −c12|x|−N−4α,

where c9, c10, c11 and c12 are positive constant independent of µ. Therefore,

−c12|x|−N−4α ≤
∫
Bµ(x)

A(µ, x, z)dz ≤ c10µ
−2α|x|−N−2α. (2.36)
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The integral over Bµ(−x) is exactly the same. Finally, we consider the comple-
mentary integral over D(x) = RN \ (B |x|

3

(0) ∪ B |x|
3

(x) ∪ B |x|
3

(−x)). For |x| > 3µ

and z ∈ D(x), we have that |x± z| ≥ |x|
3

, thus

|
∫
D(x)

A(µ, x, z)dz| ≤
∫
D(x)

|x+ z|−N−2α + |x− z|−N−2α + 2|x|−N−2α

|z|N+2α
dz

≤ c13|x|−N−2α

∫
RN\B |x|

3

(0)

1

|z|N+2α
dz

≤ c14|x|−N−4α, (2.37)

where c13 > 0 and c14 > 0 are independent of µ. Therefore, by (2.34)-(2.37), there
exist c15, c16 > 1 independent of µ such that

c−1
15 µ

−2α|x|−N−2α − c15|x|−N−4α ≤
∫
RN
A(µ, x, z)dz

≤ c16µ
−2α|x|−N−2α + c16|x|−N−4α ≤ c15µ

−2α|x|−N−2α,

where we used that |x| > 3µ. Choosing R0 > 3µ such that c−1
15 µ

−2α − c15|x|−2α ≥
1
2
c−1

15 µ
−2α for |x| ≥ R0, together with (2.33), we obtain (2.32). 2

In what follows we provide a proof of our first theorem on the decay of the
positive solutions of our equation.

Proof of Theorem 2.1.1. By definition of A and B in (2.10), for any ε > 0,
there exits δε > 0 such that

(B − ε2)t ≤ f(t) ≤ (A+ ε2)t, ∀ t ∈ (0, δε). (2.38)

Since u is a positive solution of (2.8) vanishing at infinity, there exists Rε > 0 such
that 0 < u(x, y) < δε for any (x, y) ∈ Bc

Rε
. Therefore,

(−∆)αxu+ (−∆)yu+ (1− A− ε2)u ≤ 0 in Bc
Rε (2.39)

and
(−∆)αxu+ (−∆)yu+ (1−B + ε2)u ≥ 0 in Bc

Rε . (2.40)

Next we define the function φν : RM → R as φν(y) = e−ν|y|, where ν > 0 and we
find that for y ∈ RM \ {0},

−∆φν(y) = ν

(
M − 1

|y|
− ν
)
φν(y). (2.41)

Step 1. There exists C(ε) > 1 such that

u(x, y) ≤ C(ε)e−θ1|y|, (x, y) ∈ RN × RM . (2.42)
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To prove (2.42) we let U1(x, y) = φθ1(y), for (x, y) ∈ RN×RM and then, by (2.41),
we have

(−∆)αxU1 + (−∆)yU1 + (1− A− ε2)U1

=

[
θ1

(
M − 1

|y|
− θ1

)
+ 1− A− ε2

]
U1 ≥ 0, (2.43)

if ε ≤
√

1− A. By definition of U1 and φθ1 we have that U1 = 1 in RN × {0} and
U1 ≥ e−θ1Rε in B̄Rε and, since u is bounded, there exists ρ1 > 0 depending on ε,
such that

W1 = ρ1U1 − u ≥ 0 in B̄Rε ∪ (RN × {0}).

Combining (2.39) with (2.43), we obtain

(−∆)αxW1 + (−∆)yW1 + (1− A− ε2)W1 ≥ 0 in B̄c
Rε ∩ (RN × {0})c.

By Lemma 2.2.1, this implies that W1 ≥ 0 in RN × RM and then

u(x, y) ≤ ρ1U1(x, y) = ρ1φθ1(y) = ρ1e
−θ1|y|, (x, y) ∈ RN × RM . (2.44)

Step 2. There exists C(ε) > 1 such that

u(x, y) ≤ C(ε)|x|−N−2α, (x, y) ∈ RN × RM . (2.45)

Let c and R0 be as in Proposition 2.3.1 µ = (c/(2ε
√

(1− A)− 2ε2))
1

2α and consider
the function U2(x, y) = ψµ(x), for (x, y) ∈ RN ×RM . Then, by (2.32), we have for
all (x, y) ∈ (BN

R0
(0))c × RM that

(−∆)αxU2 + (−∆)yU2 + (1− A− ε2)U2

≥ (−cµ−2α + 1− A− ε2)U2 ≥ 0 (2.46)

for 0 < ε <
√

1− A. Let us denote W2 = ρ2U2 − u, where ρ2 > 0 is such that

W2 ≥ ρ2(R0 +Rε)
−N−2α − u ≥ 0 in B̄Rε ∪ (BN

R0
(0)× RM).

Combining (2.39) with (2.46), we obtain that

(−∆)αxW2 + (−∆)yW2 + (1− A− ε2)W2 ≥ 0 in B̄c
Rε ∩ (BN

R0
(0)× RM)c.

By Lemma 2.2.1, we have that W2 = ρ2U2 − u ≥ 0 in RN × RM and then, for all
(x, y) ∈ RN × RM ,

u(x, y) ≤ ρ2U2(x, y) = ρ2ψµ(x) ≤ ρ2|x|−N−2α.
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Step 3. There exists C(ε) > 1 such that

u(x, y) ≤ C(ε)|x|−N−2αe−θ1|y|, (x, y) ∈ RN × RM . (2.47)

Let us consider the function V (x, y) = ψµ(x)φθ1(y), for (x, y) ∈ RN ×RM , with µ
as defined above. From (2.32) and (2.41), we have that

(−∆)αxV + (−∆)yV + (1− A− ε2)V

≥
[
−cµ−2α + θ1

(
M − 1

|y|
− θ1

)
+ 1− A− ε2

]
V ≥ 0, (2.48)

for (x, y) ∈ (BN
R0

(0))c × (RM \ {0}) and assuming that 0 < ε <
√

1− A. Since u,
V are bounded in B̄Rε and V is positive, there is ρ̄1 > 0 large such that

ρ̄1V − u ≥ 0 in B̄Rε .

By (2.42) and (2.44), we may choose ρ̄2 > 0 such that

ρ̄2V − u ≥ ρ̄2R
−N−2α
0 φθ1(y)− u ≥ 0 in BN

R0
(0)× RM and

ρ̄2V − u ≥ ρ̄2ψµ(x)− u ≥ 0 in RN × {0}.

Taking ρ̄ = max{ρ̄1, ρ̄2}, defining W = ρ̄V − u and combining (2.39) with (2.48),
we have that

W ≥ 0 in B̄Rε ∪ (BN
R0

(0)× RM) ∪ (RN × {0}) and

(−∆)αxW + (−∆)yW + (1− A− ε2)W ≥ 0 in B̄c
Rε ∩ ((BN

R0
(0))c × (RM \ {0})).

Then, by Lemma 2.2.1, we have that ρ̄V − u ≥ 0 in RN × RM . Thus, there exists
C(ε) > 1 such that

u(x, y) ≤ C(ε)ψµ(x)φθ1(y) ≤ C(ε)|x|−N−2αe−θ1|y|, (x, y) ∈ RN × RM .

Step 4. There exists C1(ε) > 0 and R > 0 such that

u(x, y) ≥ C1(ε)e−θ2|y|, (x, y) ∈ BN
R (0)× RM . (2.49)

Let R0 be as in Proposition 2.3.1 and let R > R0 such that λ1 < ε2, where λ1 is the
first eigenvalue of the fractional Dirichlet problem (2.25) with x0 = 0 and r = 4R.
Let ϕN be the first eigenfunction of (2.25) and define V1(x, y) = ϕN(x)φθ2(y) for
(x, y) ∈ RN × RM . From (2.25) and (2.41), for (x, y) ∈ BN

2R(0) × (BM
R1

(0))c with

57



R1 = M−1
ε

, we have

(−∆)αxV1 + (−∆)yV1 + (1−B + ε2)V1

=

[
λ1 + θ2

(
M − 1

|y|
− θ2

)
+ 1−B + ε2

]
V1

≤ [ε2 + θ2(ε− θ2) + 1−B + ε2]V1 ≤ 0, (2.50)

if ε <
√

1−B. Let us define w1 = u− r1V1, where r1 > 0 is such that

w1 ≥ 0 in BRε ∪ (BN
2R(0)×BM

R1
(0))

and observe that w1 ≥ 0 in (BN
2R(0))c × RM since V1 = 0. Combining (2.40) with

(2.50), we obtain that

(−∆)αxw1 + (−∆)yw1 + (1−B + ε2)w1 ≥ 0 in (BN
2R(0)× (BM

R1
(0))c) ∩Bc

Rε

and then, by Lemma 2.2.1, we have that

w1 = u− r1V1 ≥ 0 in RN × RM .

Since ϕN is classical solution of (2.25) with r = 4R and x0 = 0 then ϕN(x) is

positive in BN
R (0) ⊂ RN , we can finally choose C1(ε) > 0 such that

u(x, y) ≥ r1ϕN(x)φθ2(y) ≥ C1(ε)e−θ2|y|, ∀(x, y) ∈ BN
R (0)× RM . (2.51)

Step 5. There exists C1(ε) > 0 such that, for R and R1 as in Step 4,

u(x, y) ≥ C1|x|−N−2α, (x, y) ∈ (BN
R (0))c ×BM

R1
(0). (2.52)

To prove this, we define V2(x, y) = ψµ(x)ηM(y) for (x, y) ∈ RN × RM , where ηM
is the solution of {

−∆ηM(y) = λ̄1ηM(y), y ∈ BM
R2

(0),

ηM(y) = 0, y ∈ (BM
R2

(0))c,
(2.53)

with R2 > R1 such that λ̄1 < ε2. Here µ = [c(1 − B + 2ε2)]
−1
2α with c as in

Proposition 2.3.1 and ψµ defined in (2.31). By (2.32) and (2.53), for (x, y) ∈
((BN

R (0))c × RM) ∩ (RN ×BM
R2

(0)), we have that

(−∆)αxV2 + (−∆)yV2 + (1−B + ε2)V2

≤ (−c−1µ−2α + λ̄1 + 1−B + ε2)V2 = 0. (2.54)
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Let w2 = u− r2V2, with r2 > 0 such that

w2 ≥ 0 in B̄Rε ∪ (BN
R (0)× RM) ∪ (RN × (BM

R2
(0))c).

Combining (2.40) with (2.54), we obtain that

(−∆)αxw2 + (−∆)yw2 + (1−B + ε2)w2 ≥ 0

in Bc
Rε
∩ ((BN

R (0))c × RM) ∩ (RN ×BM
R2

(0)). By Lemma 2.2.1, we have then

w2 = u− r2V2 ≥ 0 in RN × RM .

Since ηM is positive in BM
R1

(0) ⊂ BM
R2

(0), there exists C1(ε) > 0 such that for any

(x, y) ∈ (BN
R (0))c ×BM

R1
(0), we have that

u(x, y) ≥ r2ψµ(x)ηM(y) ≥ C1(ε)|x|−N−2α.

Step 6. There exist C1(ε) > 0 such that, for R as in Step 4,

u(x, y) ≥ C1(ε)|x|−N−2αe−θ2|y|, (x, y) ∈ (BN
R (0))c × RM . (2.55)

To prove this we let Ṽ (x, y) = ψµ(x)φθ2(y), for (x, y) ∈ RN×RM with µ as defined
above. Using (2.32) and (2.41), for (x, y) ∈ (BN

R (0))c × (BM
R1

(0))c with R1 = M−1
ε

,
we have that

(−∆)αx Ṽ + (−∆)yṼ + (1−B + ε2)Ṽ

≤
[
−c−1µ−2α + θ2

(
M − 1

|y|
− θ2

)
+ 1−B + ε2

]
Ṽ

≤ [θ2(ε− θ2) + 1−B + ε2]Ṽ ≤ 0, (2.56)

if 0 < ε <
√

1−B. Since u is positive and V is bounded in BRε , we can choose
r̃1 > 0 such that

u− r̃1V ≥ 0 in BRε .

Since ψµ is bounded in BN
R (0), using (2.51), there exists r̃2 > 0 such that

u− r̃2V ≥ u− r̃2c1e
−θ2|y| ≥ 0 in BN

R (0)× RM ,

and by (2.52), there exists r̃3 > 0 such that

u− r̃3V ≥ u− r̃3|x|−N−2α ≥ 0 in (BN
R (0))c ×BM

R1
(0).
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Taking r̃ = min{r̃1, r̃2, r̃3} and combining (2.40) with (2.56), we obtain that

w = u− r̃V ≥ 0 in B̄Rε ∪ (BN
R (0)× RM) ∪ ((BN

R (0))c ×BM
R1

(0)) and

(−∆)αxw + (−∆)yw + (1−B + ε)w ≥ 0 in B̄c
Rε ∩ ((BN

R (0))c × (BM
R1

(0))c).

Thus Lemma 2.2.1, we have that w ≥ 0 in RN × RM and then (2.55) holds.

Finally, Step 1 − Step 6 completes the proof. 2

2.3.2 Proof of Theorem 2.1.2

This subsection is devoted to prove Theorem 2.1.2. Our proof is based on the
fundamental solution of the mixed integro-differential operator. We first study the
fundamental solution K for

(−∆)αxu+ (−∆)yu+ u = 0 in RN × (RM \ {0}),

which can be characterized by

K(x, y) =

∫ ∞
0

e−tH(x, y, t)dt, (2.57)

where

H(x, y, t) =

∫
RM

∫
RN
e−2πi(x,y)·(ξ1,ξ2)−t(|ξ1|2α+|ξ2|2)dξ1dξ2. (2.58)

In fact, for φ ∈ S, we have that

〈K, φ〉 =
∫
RN+M

∫∞
0

∫
RN+M e

−2πi(x,y)·(ξ1,ξ2)−t(|ξ1|2α+|ξ2|2+1)φ(x, y)dξ1dξ2dtdxdy

=
∫
RN+M

[∫∞
0
e−t(|ξ1|

2α+|ξ2|2+1)dt
∫
RN+M e

−2πi(x,y)·(ξ1,ξ2)φ(x, y)dxdy
]
dξ1dξ2

=
∫
RN+M

[
1

|ξ1|2α+|ξ2|2+1

∫
RN+M e

−2πi(x,y)·(ξ1,ξ2)φ(x, y)dxdy
]
dξ1dξ2

=
〈

1
|ξ1|2α+|ξ2|2+1

,Fφ
〉
.

Next we want to find some properties of H. To this end, we consider

Hα(x, t) =

∫
RN
e−2πix·ξ1−t|ξ1|2αdξ1 and H1(y, t) =

∫
RM

e−2πiy·ξ2−t|ξ2|2dξ2.

It is well known that the function Hα has the following properties:

Hα(x, t) = t−
N
2αHα(t−

1
2αx, 1) and lim

|x|→∞
|x|N+2αHα(x, 1) = C,
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where C > 0, which imply that there exists c1 > 0 and c2 > such that

c1 min{t−
N
2α , t|x|−N−2α} ≤ Hα(x, t) ≤ c2 min{t−

N
2α , t|x|−N−2α}, (2.59)

see [61, 45]. By the definition of H, we have that

H(x, y, t) = Hα(x, t)H1(y, t). (2.60)

Since we have

H1(y, t) = (4πt)−
M
2 e−

|y|2
4t , (2.61)

see [61], together with (2.57)-(2.60), for |y| > 2,

K(x, y) =

∫ ∞
0

e−tHα(x, t)H1(y, t)dt

≥ c1

∫ ∞
0

e−t min{t−
N
2α , t|x|−N−2α}(4πt)−

M
2 e−

|y|2
4t dt

≥ c1

∫ |y|
2

+1

|y|
2

e−t min{t−
N
2α , t|x|−N−2α}(4πt)−

M
2 e−

|y|2
4t dt

≥ c3 min{e−|y||y|−
N
2α
−M

2 , |x|−N−2αe−|y||y|1−
M
2 },

for some c3 > 0. On the other hand, since for n ≥ 3 we have∫ ∞
0

e−t(4πt)−
n
2 e−

|y|2
4t dt ≤ c4e

−|y||y|2−n(1 + |y|)
n−3

2

with c4 > 0 (see [61]), for M ≥ 5 we have that

K(x, y) =

∫ ∞
0

e−tHα(x, t)H1(y, t)dt

≤ c2

∫ ∞
0

e−t min{t−
N
2α , t|x|−N−2α}(4πt)−

M
2 e−

|y|2
4t dt

≤ c5 min{
∫ ∞

0

e−t(4πt)−
N
2α
−M

2 e−
|y|2
4t dt, |x|−N−2α

∫ ∞
0

e−t(4πt)1−M
2 e−

|y|2
4t dt}

≤ c6 min{e−|y||y|2−
N
α
−M(1 + |y|)

N
2α

+M
2
− 3

2 , |x|−N−2αe−|y||y|4−M(1 + |y|)
M−5

2 }

Therefore, for N ≥ 1 and M ≥ 5, there exist c8 > c7 > 0 such that

c7ρ(x, y) ≤ K(x, y) ≤ c8ρ(x, y)|y|
1
2 , (x, y) ∈ RN × (BM

2 (0))c, (2.62)

where ρ(x, y) is defined in (2.15). In what follows, we construct super and sub-
solutions to obtain the decay estimate given in Theorem 2.1.2.

Proof of Theorem 2.1.2. By the estimate in Theorem 2.1.1, we observe that,
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for constants c10 > c9 > 0 such that

c9(1 + |x|)−N−2α ≤ u(x, y) ≤ c10(1 + |x|)−N−2α, (x, y) ∈ RN ×BM
2 (0),

so we only need to prove (2.14) holds for (x, y) ∈ RN × (BM
2 (0))c.

Step 1: Lower bound. Let ũ = K ∗ χBN1 (0)×BM1 (0), where χBN1 (0)×BM1 (0) is the

characteristic function of BN
1 (0)×BM

1 (0). By (2.62), we have that

ũ(x, y) ≥ c11 min{e−|y||y|−
N
2α
−M

2 , (1 + |x|)−N−2αe−|y||y|1−
M
2 }, (2.63)

for all (x, y) ∈ RN × (BM
2 (0))c, where c11 > 0. By definition of ũ, we have

(−∆)αx ũ+ (−∆)yũ+ ũ = 0 in RN × (RM \ {0}) \ (BN
1 (0)×BM

1 (0))

and, by (2.62) and Theorem 2.1.1, there exists c12 > 0 such that u ≥ c11ũ in
RN ×{y ∈ RM : |y| = 2}. Since f is nonnegative, we use the Comparison Principle
to obtain that, for any (x, y) ∈ RN × (BM

2 (0))c

u(x, y) ≥ c11ũ(x, y) ≥ c12 min{e−|y||y|−
N
2α
−M

2 , (1 + |x|)−N−2αe−|y||y|1−
M
2 }.

Step 2: Upper bound. For y ∈ RM with |y| ≥ 2, there exists 1 ≤ i ≤M such that
|yi| > 1, we may assume that y1 > 1. Let ū(x, y) = K(x, y)(1 − |y1|−1), then by
direct computation

(−∆)yū = (1− |y1|−1)(−∆)yK − 2y−2
1 ∂y1K + 2Ky−3

1

≥ (−∆)yK(1− |y1|−1) + 2Ky−3
1 ,

where the last inequality holds since y1 > 0 and ∂y1K < 0. Therefore, by (2.62),
we have that for (x, y) ∈ RN × (BM

2 (0))c,

(−∆)αx ū(x, y) + (−∆)yū(x, y) + ū(x, y)

≥ [(−∆)αxK + (−∆)yK +K](1− |y1|−1) + 2K(x, y)y−3
1 ≥ 2K(x, y)|y|−3

≥ 2c8 min{e−|y||y|−
N
2α
−M

2
−3, |x|−N−2αe−|y||y|−

M
2
−2}. (2.64)

Since f(u) = O(up) near u = 0 for some p > 1, by Theorem 2.1.1 with ε = p−1
4p

, we
have that

(−∆)αxu+ (−∆)yu+ u = f(u) ≤ c13(1 + |x|)−(N+2α)pe−
3p+1

4
|y|,

where c13 > 0. We notice that 3p+1
4

> 1. By definition of ū, (2.62) and Theorem

2.1.1 with ε = p−1
4p

, there exists c14 > 0 such that u ≤ c14ū in RN ×{y ∈ RM : |y| =
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2}. By Comparison Principle, we have that

u(x, y) ≤ c14ū(x, y) ≤ c14K(x, y)

≤ c15 min{e−|y||y|
1
2
− N

2α
−M

2 , (1 + |x|)−N−2αe−|y||y|
3
2
−M

2 }

for all (x, y) ∈ RN × (BM
2 (0))c and some c15 > 0. This complete the proof.

2

2.4 Symmetry results

In this section, we prove Theorem 2.1.3 by moving planes method. Let u be a
classical positive solution of (2.8) and consider first the y-direction. Let

Σy1

λ = {(x, y1, y
′) ∈ RN × R× RM−1 | y1 > λ},

T y1

λ = {(x, y1, y
′) ∈ RN × R× RM−1 | y1 = λ}

and uλ(x, y1, y
′) = u(x, 2λ−y1, y

′) for λ ∈ R. We introduce a preliminary inequality
which plays a crucial role in the procedure of moving planes.

Lemma 2.4.1 Under the assumptions of Theorem 2.1.3, for any λ ∈ R, there
exists c1 > 0, independent of λ, such that

c1(

∫
Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤
∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy <∞.

Proof. First we show that the integrals are finite. We observe that uλ satisfies the
same equation (2.8) as u in Σy1

λ . Taking (uλ−u)+ as test function in the equations
for u and uλ, subtracting and integrating in Σy1

λ , we find∫
Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy

=

∫
Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy. (2.65)

Now we only need to prove that∫
Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy < +∞. (2.66)
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In fact, for any given λ ∈ R, using (2.11), we choose R > 1 such that

0 < uλ(x, y) ≤ Cε(1 + |x|)−N−2αe−θ1|yλ| < s0, ∀(x, y) ∈ Bc
R,

where yλ = (2λ− y1, y
′) for y = (y1, y

′) ∈ RM and s0 is from (F ).

If uλ(x, y) > u(x, y) for some (x, y) ∈ Σy1

λ ∩Bc
R, we have

0 < u(x, y) < uλ(x, y) < s0.

Using (2.16) with v = uλ(x, y), then

f(uλ(x, y))− f(u(x, y))

uλ(x, y)− u(x, y)
≤ c̄uγλ(x, y),

then

(f(uλ(x, y))− f(u(x, y)))+(uλ(x, y)− u(x, y))+ ≤ c̄uγ+2
λ (x, y).

The inequality above is obvious if uλ(x, y) ≤ u(x, y) for some (x, y) ∈ Σy1

λ ∩ Bc
R.

Then

(f(uλ)− f(u))+(uλ − u)+ ≤ c̄uγ+2
λ in Σy1

λ ∩B
c
R.

Therefore, ∫
Σ
y1
λ ∩B

c
R

(f(uλ)− f(u))+(uλ − u)+dxdy

≤ c̄

∫
Σ
y1
λ ∩B

c
R

uγ+2
λ (x, y)dxdy

≤ c̄Cε

∫
Σ
y1
λ

(1 + |x|)−(N+2α)(γ+2)e−(γ+2)θ1|yλ|dxdy

≤ c̄Cε

∫
RN

(1 + |x|)−(N+2α)(γ+2)dx

∫
RM

e−(γ+2)θ1|y|dy < +∞,

where the last inequality holds by γ > 2αN
(N+M)(N+2α)

. Since u and uλ are bounded
and f is locally Lipschitz, we have∫

Σ
y1
λ ∩BR

(f(uλ)− f(u))+(uλ − u)+dxdy < +∞.

Therefore, (2.66) holds. Together with (2.65), we have the second inequality in the
result.

64



Next we show that the first inequality holds in Lemma 2.4.1. Let us denote

w(x, y) =

{
(uλ − u)+(x, y), (x, y) ∈ Σy1

λ ,

(uλ − u)−(x, y), (x, y) ∈ (Σy1

λ )c
(2.67)

and
supp(w) = {(x, y) ∈ RN × RM | w(x, y) 6= 0},

where (uλ − u)+(x, y) = max{(uλ − u)(x, y), 0}, (uλ − u)−(x, y) = min{(uλ −
u)(x, y), 0}. We observe that w(x, y1, y

′) = −w(x, 2λ − y1, y
′) for (x, y1, y

′) ∈
RN × R× RM−1 and

w = uλ − u in supp(w). (2.68)

It is obvious that for (x, y) ∈ Σy1

λ ∩ supp(w), {z ∈ RN | (z, y) ∈ (Σy1

λ )c} = Ø and

RN = {z ∈ RN | (z, y) ∈ Σy1

λ ∩ supp(w)} ∪
{z ∈ RN | (z, y) ∈ Σy1

λ ∩ (supp(w))c} ∪ {z ∈ RN | (z, y) ∈ (Σy1

λ )c}.

Combining with (2.68), then for (x, y) ∈ Σy1

λ ∩ supp(w),

(−∆)αxw(x, y)− (−∆)αx(uλ − u)(x, y) =

∫
RN

(uλ − u)(z, y)− w(z, y)

|x− z|N+2α
dz

=

∫
{z∈RN :(z,y)∈Σ

y1
λ ∩(supp(w))c}

(uλ − u)(z, y)

|x− z|N+2α
dz ≤ 0, (2.69)

where the last inequality holds by uλ − u ≤ 0 in Σy1

λ ∩ (supp(w))c. On one hand,
from (2.69) and w = (uλ − u)+ > 0 in Σy1

λ ∩ supp(w), we have that∫
Σ
y1
λ ∩supp(w)

(−∆)αxwwdxdy ≤
∫

Σ
y1
λ ∩supp(w)

(−∆)αx(uλ − u)(uλ − u)+dxdy. (2.70)

On the other hand, we know that w(x, y) = (uλ − u)(x, y) and (−∆)yw(x, y) =
(−∆)y(uλ − u)(x, y) for (x, y) ∈ Σy1

λ ∩ supp(w). Together with (2.70), then∫
Σ
y1
λ ∩supp(w)

[(−∆)αxw + (−∆)yw + w]wdxdy

≤
∫

Σ
y1
λ ∩supp(w)

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy
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and then by the fact of w = (uλ − u)+ = 0 in Σy1

λ ∩ (supp(w))c, we have that∫
Σ
y1
λ

[(−∆)αxw + (−∆)yw + w]wdxdy

≤
∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+. (2.71)

By the definition of w, we have that∫
RN+M

|w|2dxdy = 2

∫
Σ
y1
λ

|w|2dxdy,

∫
RN+M

|w|
2(N+M)
N+M−2αdxdy = 2

∫
Σ
y1
λ

|w|
2(N+M)
N+M−2αdxdy,∫

RN+M

(−∆)ywwdxdy = 2

∫
Σ
y1
λ

(−∆)ywwdxdy,∫
RN+M

(−∆)αxwwdxdy = 2

∫
Σ
y1
λ

(−∆)αxwwdxdy,

then, together with Proposition 2.2.1, we obtain that∫
Σ
y1
λ

[(−∆)αxw + (−∆)yw + w]wdxdy

=
1

2

∫
RN+M

[(−∆)αxw + (−∆)yw + w]wdxdy

≥ c3(

∫
RN+M

|w|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

= c3(2

∫
Σ
y1
λ

|w|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M , (2.72)

for some c3 > 0. Combining (2.71) with (2.72), by w = (uλ − u)+ in Σy1

λ , we get
the first inequality in Lemma 2.4.1. The proof is complete. 2

Lemma 2.4.2 Under the assumptions of Theorem 2.1.3, for any λ ∈ R, there
exists c4 > 0 independent of λ such that

c4(

∫
Σ
x1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤
∫

Σ
x1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy <∞,

where Σx1
λ = {(x1, x

′, y) ∈ R× RN−1 × RM | x1 > λ}.
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Proof. The proof proceeds similarly to the proof of Lemma 2.4.1, the only differ-
ence is to show (2.69) with (x, y) ∈ Σx1

λ ∩ supp(w). It is obvious that

RN = {z ∈ RN | (z, y) ∈ Σx1
λ ∩ supp(w)} ∪

{z ∈ RN | (z, y) ∈ Σx1
λ ∩ (supp(w))c} ∪

{z ∈ RN | (z, y) ∈ (Σx1
λ )c ∩ (supp(w))c} ∪

{z ∈ RN | (z, y) ∈ (Σx1
λ )c ∩ supp(w)}

and w = uλ − u in supp(w), then for (x, y) ∈ Σx1
λ ∩ supp(w),

(−∆)αxw(x, y)− (−∆)αx(uλ − u)(x, y) =

∫
RN

(uλ − u)(z, y)− w(z, y)

|x− z|N+2α
dz

=

∫
{z∈RN | (z,y)∈Σ

x1
λ ∩(supp(w))c}

(
1

|x− z|N+2α
− 1

|x− zλ|N+2α
)(uλ − u)(z, y)dz

≤ 0,

where zλ = (2λ − z1, z
′) for z = (z1, z

′) ∈ RN and the last inequality holds by
uλ − u ≤ 0 in Σx1

λ ∩ (supp(w))c. 2

Theorem 2.4.1 Under the assumptions of Theorem 2.1.3, for x ∈ RN , we have

u(x, y) = u(x, |y|)

and u is strictly decreasing in y-direction.

Proof. We divide the proof into three steps.

Step 1: λ0 := sup{λ | uλ ≤ u in Σy1

λ } is finite. Since u decays at infinity, we
observe that the set {λ | uλ ≤ u in Σy1

λ } is nonempty. Using (uλ − u)+ as a test
function in the equation for u and uλ, by (2.16) and Hölder inequality, for λ big
(negative), we find that∫

Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy

=

∫
Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy

=

∫
Σ
y1
λ

f(uλ)− f(u)

uλ − u
[(uλ − u)+]2dxdy ≤ c̄

∫
Σ
y1
λ

uγλ[(uλ − u)+]2dxdy

≤ c5

∫
Σ
y1
λ

(1 + |x|)−γ(N+2α)e−γθ1|yλ|[(uλ − u)+]2dxdy

≤ c5(

∫
Σ
y1
λ

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M (

∫
Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M ,
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where a = γ(N+2α)(N+M)
2α

and b = θ1γ(N+M)
2α

. Since γ > 2αN
(N+2α)(N+M)

, we have that
a > N . Then we can choose R > 0 such that for all λ < −R,

c5(

∫
Σ
y1
λ

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M ≤ 1

4
.

By Lemma 2.4.1, we obtain that∫
Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy = 0, ∀ λ < −R.

Thus uλ ≤ u in Σy1

λ for all λ < −R and then conclude that λ0 ≥ −R. On the other
hand, since u decays at infinity, then there exist λ1 ∈ R and (x, y) ∈ Σy1

λ such that
u(x, y) < uλ1(x, y). Hence λ0 is finite.

Step 2: u ≡ uλ0 in Σy1

λ0
. Assuming the contrary, we have that u 6≡ uλ0 and u ≥ uλ0

in Σy1

λ0
, in this case the following claim holds.

Claim 1. If u 6≡ uλ0 and u ≥ uλ0 in Σy1

λ0
, then u > uλ0 in Σy1

λ0
.

Let us assume, for the moment, that Claim 1 is true, then for any given λ ∈
(λ0, λ0 + ε), where ε > 0 is chosen later. Let P = (0, · · · , λ, · · · , 0) ∈ T y1

λ and
B(P,R) be the ball centered at P and with radius R > 1 to be chosen later.
Define B1 = Σy1

λ ∩ B(P,R) and let us consider (uλ − u)+ test function in the
equation for u and uλ in Σy1

λ , then from Lemma 2.4.1 we obtain

(

∫
Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤ c6

∫
Σ
y1
λ

[(−∆)αx(uλ − u) + (−∆)y(uλ − u) + (uλ − u)](uλ − u)+dxdy

= c6

∫
Σ
y1
λ

(f(uλ)− f(u))(uλ − u)+dxdy. (2.73)

We estimate the integral on the right. Proceeding as in Step 1, we can choose
R > 1 big enough such that

c7(

∫
Σ
y1
λ \B1

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M ≤ 1

4
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for some c7 > 0, where a = γ(N+2α)(N+M)
2α

and b = θ1γ(N+M)
2α

. Then∫
Σ
y1
λ \B1

(f(uλ)− f(u))(uλ − u)+dxdy ≤ c̄

∫
Σ
y1
λ \B1

uγλ|(uλ − u)+|2dxdy

≤ c7(

∫
Σ
y1
λ \B1

(1 + |x|)−ae−b|yλ|dxdy)
2α

N+M (

∫
Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤ 1

4
(

∫
Σ
y1
λ

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M . (2.74)

Now using Claim 1, we choose ε > 0 such that c8|B1 ∩ supp(uλ − u)+|
2α

N+M < 1/4,
for some c8 > 0. Since f is locally Lipschitz, using Hölder inequality, we have∫

B1

(f(uλ)− f(u))(uλ − u)+dxdy ≤ c46

∫
B1

|(uλ − u)+|2χsupp(uλ−u)+dxdy

= c8|B1 ∩ supp(uλ − u)+|
2α

N+M (

∫
B1

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M

≤ 1

4
(

∫
B1

|(uλ − u)+|
2(N+M)
N+M−2αdxdy)

N+M−2α
N+M . (2.75)

From (2.73), (2.74) and (2.75), it follows that (uλ − u)+ = 0 in Σy1

λ . Then uλ ≤ u
in Σy1

λ for λ ∈ (λ0, λ0 +ε), which contradicts the definition of λ0. As a consequence,
we have u ≡ uλ0 in Σy1

λ0
.

In order to complete Step 2, we only need to prove Claim 1.

Proof of Claim 1. By contradiction, if there exists (x̄, ȳ) ∈ Σy1

λ0
such that

u(x̄, ȳ) = uλ0(x̄, ȳ), then

(−∆)αx(u− uλ0)(x̄, ȳ) + (−∆)y(u− uλ0)(x̄, ȳ) + (u− uλ0)(x̄, ȳ)

= f(u(x̄, ȳ))− f(uλ0(x̄, ȳ)) = 0.

Since (u − uλ0)(x̄, ȳ) = minΣ
y1
λ0

(u − uλ0) = 0, we have (−∆)y(u − uλ0)(x̄, ȳ) ≤ 0,

then
(−∆)αx(u− uλ0)(x̄, ȳ) ≥ 0. (2.76)

The other side, we observe that {z ∈ RN | (z, ȳ) ∈ (Σy1

λ0
)c} = Ø when (x̄, ȳ) ∈ Σy1

λ0
.

By u(x̄, ȳ) = uλ0(x̄, ȳ) and then

(−∆)αx(u− uλ0)(x̄, ȳ) = −
∫
RN

(u− uλ0)(z, ȳ)

|x̄− z|N+2α
dz

= −
∫
{z∈RN | (z,ȳ)∈Σ

y1
λ0
}

(u− uλ0)(z, ȳ)

|x̄− z|N+2α
dz ≤ 0, (2.77)

where the last inequality holds by u ≥ uλ0 in Σy1

λ0
.
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Combining (2.76) with (2.77), we obtain that (−∆)αx(u − uλ0)(x̄, ȳ) = 0 and
then from (2.77), we have that

u(z, ȳ) = uλ0(z, ȳ), ∀z ∈ RN , (2.78)

this means that u− uλ0 has property (P ) and by u 6= uλ0 in Σy1

λ0
we have

(x̄, ȳ) ∈ (Σy1

λ0
)0 := {(x, y) ∈ Σy1

λ0
| (u− uλ0)(x, y) = inf

Σ
y1
λ0

(u− uλ0) = 0} $ Σy1

λ0
.

Moreover, by Proposition 2.2.3 with Ω = Σy1

λ0
, we observe that Σy1

λ0
\ (Σy1

λ0
)0 satisfies

interior cylinder condition at point (x0, y0) ∈ ∂(Σy1

λ0
)0∩Σy1

λ0
. Then there exist r > 0

small and ỹ ∈ RM such that

Or := BN
r (x0)×BM

r (ỹ) ⊂ Σy1

λ0
\ (Σy1

λ0
)0 and (x0, y0) ∈ ∂Or.

Let D be defined by (2.19). Since u ≥ uλ0 in Σy1

λ0
, then for any (x, y) ∈ D, we have∫

RN\BNr (x0)

(u− uλ0)(z, y)

|x− z|N+2α
dz ≥ 0.

Finally, it is obvious that

(−∆)αx(u− uλ0) + (−∆)y(u− uλ0) + h(u− uλ0) = 0 in Σy1

λ0
,

where h = 1− f(u)−f(uλ0
)

u−uλ0
∈ L∞loc(Σ

y1

λ0
). Then we use Theorem 2.2.1 to obtain

u ≡ uλ0 in Σ̃y1

λ0
,

which contradicts the condition of u 6= uλ0 in Σy1

λ0
, then we obtain the results in

Claim 1.

Step 3. By translation, we may say that λ0 = 0. Repeating the argument from the
other side, we find that u is symmetric about y1-axis. Using the same argument in
any y-direction, we conclude that

u(x, y) = u(x, |y|), (x, y) ∈ RN × RM .

Finally, we prove that u(x, |y|) is strictly decreasing in |y| > 0. Indeed, for any
given y1 < ỹ1 < 0 and letting λ = y1+ỹ1

2
. Then, as proved above we have

u > uλ in Σy1

λ .

For any given x ∈ RN , we observe that (x, ỹ1, 0, · · · , 0) ∈ Σy1

λ , then

u(x, ỹ1, 0, · · · , 0) > uλ(x, ỹ1, 0, · · · , 0) = u(x, y1, 0, · · · , 0).
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Using the result of u(x, y) = u(x, |y|) for all (x, y) ∈ RN × RM and |ỹ1| < |y1|, we
conclude monotonicity of u respect to y. This completes the proof. 2

Next we study the symmetry result in x-direction.

Theorem 2.4.2 Under the assumptions of Theorem 2.1.3, for y ∈ RM , we have

u(x, y) = u(|x|, y)

and u is strictly decreasing in x-direction.

Proof. The proof of this theorem goes like the one for Theorem 2.4.1. The only
place where there is a difference is in the following property: if u 6≡ uλ0 and u ≥ uλ0

in Σx1
λ0

, then u > uλ0 in Σx1
λ0

. By contradiction, if there exists (x̄, ȳ) ∈ Σx1
λ0

such
that u(x̄, ȳ) = uλ0(x̄, ȳ), then

(−∆)αx(u− uλ0)(x̄, ȳ) + (−∆)y(u− uλ0)(x̄, ȳ) + (u− uλ0)(x̄, ȳ)

= f(u(x̄, ȳ))− f(uλ0(x̄, ȳ)) = 0.

Since u ≥ uλ0 in Σx1
λ0

, we have (u−uλ0)(x̄, ȳ) = minΣ
x1
λ0

(u−uλ0) = 0 and (−∆)y(u−
uλ0)(x̄, ȳ) ≤ 0 and then

(−∆)αx(u− uλ0)(x̄, ȳ) ≥ 0.

The other side, by direct computation, we have that

(−∆)αx(u− uλ0)(x̄, ȳ) =

∫
RN

(uλ0 − u)(z, ȳ)

|x̄− z|N+2α
dz

=

∫
{z∈RN | (z,ȳ)∈Σ

x1
λ0
}
(

1

|x̄− z|N+2α
− 1

|x̄− zλ0|N+2α
)(uλ0 − u)(z, ȳ)dz ≤ 0,

where zλ0 = (2λ0 − z1, z
′) for z = (z1, z

′) ∈ RN and the last inequality holds by
u ≥ uλ0 in Σx1

λ0
. Therefore,

u(z, ȳ) = uλ0(z, ȳ), ∀z ∈ RN , (2.79)

this means that u− uλ0 has property (P ) and by u 6= uλ0 in Σx1
λ0

we have

(x̄, ȳ) ∈ (Σx1
λ0

)0 := {(x, y) ∈ Σx1
λ0
| (u− uλ0)(x, y) = inf

Σ
x1
λ0

(u− uλ0) = 0} $ Σx1
λ0
.

Moreover, by Proposition 2.2.3, we observe that Σx1
λ0
\(Σx1

λ0
)0 satisfies interior cylin-

der condition at point (x0, y0) ∈ ∂(Σx1
λ0

)0∩Σx1
λ0

. Then there exist r1 > 0 and ỹ ∈ RM

such that for all r ∈ (0, r1],

Or := BN
r (x0)×BM

r (ỹ) ⊂ Σx1
λ0
\ (Σx1

λ0
)0 and (x0, y0) ∈ ∂Or.
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Next we show that there exists some r ∈ (0, r1] such that for any (x, y) ∈ D,∫
RN\BNr (x0)

(u− uλ0)(z, y)

|x− z|N+2α
dz ≥ 0, (2.80)

where D is defined by (2.19). Indeed, since u 6≡ uλ0 and u ≥ uλ0 in Σx1
λ0

, then for
(x, y) ∈ D ⊂ Σx1

λ0
, we have that∫

RN

(u− uλ0)(z, y)

|x− z|N+2α
dz > 0.

Let us define

r(x, y) = sup{r ∈ (0, r1] :

∫
RN\BNr (x0)

(u− uλ0)(z, y)

|x− z|N+2α
dz ≥ 0}. (2.81)

Let rm = inf(x,y)∈D r(x, y), it is obvious that rm ∈ [0, r1]. Now we prove that
rm > 0. By contradiction, if rm = 0, then there exist a sequence (xn, yn) ∈ D and
(x̃, ỹ) ∈ D̄ such that (xn, yn)→ (x̃, ỹ) and r(xn, yn)→ 0, as n→ +∞. Since r(x, y)
is continuous, then r(x̃, ỹ) = 0. If (x̃, ỹ) ∈ D̄ \ (Σx1

λ0
)0, i.e. u(x̃, ỹ) > uλ0(x̃, ỹ), we

have ∫
RN

(u− uλ0)(z, ỹ)

|x̃− z|N+2α
dz

=

∫
{z∈RN | (z,ỹ)∈Σ

x1
λ0
}
(u− uλ0)(z, ỹ)(

1

|x̃− z|N+2α
− 1

|x̃− zλ0|N+2α
)dz > 0.

By the continuity of the integration and (2.81), we obtain that r(x̃, ỹ) > 0, which
is impossible.

Then (x̃, ỹ) ∈ D̄ ∩ (Σx1
λ0

)0, i.e. u(x̃, ỹ) = uλ0(x̃, ỹ). Since the function u − uλ0

has property (P ), then for any r̃ > 0,∫
RN\BNr̃ (x0)

(u− uλ0)(z, ỹ)

|x̃− z|N+2α
dz = 0.

Combining with (2.81), we obtain that r(x̃, ỹ) = r1 > 0, which contradicts r(x̃, ỹ) =
0. As a consequence, we have that 0 < rm ≤ r1. Taking r = rm, then (2.80) holds
for any (x, y) ∈ D. Finally, it is obvious that

(−∆)αx(u− uλ0) + (−∆)y(u− uλ0) + h(u− uλ0) = 0 in Σx1
λ0
,

where h = 1− f(u)−f(uλ0
)

u−uλ0
∈ L∞loc(Σ

x1
λ0

). Then we use Theorem 2.2.1 to obtain that

u ≡ uλ0 in Σ̃x1
λ0
,
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which contradicts the condition of u 6= uλ0 in Σx1
λ0

. Then u > uλ0 in Σx1
λ0

, to
complete the proof. 2
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Chapter 3

Fractional heat equations with
subcritical absorption with initial
data measure

Abstract: in this chapter1, we study existence and uniqueness of weak so-
lutions to (F) ∂tu + (−∆)αu + h(t, u) = 0 in (0,∞) × RN , with initial condition
u(0, ·) = ν in RN , where N ≥ 2, the operator (−∆)α is the fractional Laplacian
with α ∈ (0, 1), ν is a bounded Radon measure and h : (0,∞) × R → R is a
continuous function satisfying a subcritical integrability condition.

In particular, if h(t, u) = tβup with β > −1 and 0 < p < p∗β := 1 + 2α(1+β)
N

, we
prove that there exists a unique weak solution uk to (F) with ν = kδ0, where δ0 is
the Dirac mass at the origin. We obtain that uk → ∞ in (0,∞) × RN as k → ∞
for p ∈ (0, 1] and the limit of uk exists as k →∞ when 1 < p < p∗β, we denote it by

u∞. When 1 + 2α(1+β)
N+2α

:= p∗∗β < p < p∗β, u∞ is the minimal self-similar solution of

(F )∞ ∂tu+(−∆)αu+ tβup = 0 in (0,∞)×RN with the initial condition u(0, ·) = 0
in RN \ {0} and it satisfies u∞(0, x) = 0 for x 6= 0. While if 1 < p < p∗∗β , then

u∞ ≡ Up, where Up is the maximal solution of the differential equation y′+tβyp = 0
on R+.

3.1 Introduction

Let h : (0,∞)× R→ R be a continuous function and Q∞ = (0,∞)× RN with
N ≥ 2. The first object of this chapter is to consider existence and uniqueness of

1This chapter is based on the paper: H. Chen, L. Véron and Y. Wang, Fractional heat equations
with subcritical absorption with initial data measure, arXiv:1401.7187.
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weak solutions to fractional heat equations

∂tu+ (−∆)αu+ h(t, u) = 0 in Q∞,

u(0, ·) = ν in RN ,
(3.1)

where ν belongs to the space Mb(RN) of bounded Radon measures in RN and
(−∆)α (0 < α < 1) is the fractional Laplacian defined by

(−∆)αu(t, x) = lim
ε→0+

(−∆)αε u(t, x),

where, for ε > 0,

(−∆)αε u(t, x) =

∫
RN

u(t, x)− u(t, z)

|z − x|N+2α
χε(|x− z|)dz

and

χε(r) =

{
0 if r ∈ [0, ε],

1 if r > ε.

In a pioneering work, Brezis and Friedman [12] have studied semilinear the heat
equation with measure as initial data

∂tu−∆u+ up = 0 in Q∞,

u(0, ·) = kδ0 in RN ,
(3.2)

where k > 0 and δ0 is the Dirac mass at the origin. They proved that if 1 <
p < (N + 2)/N , then for every k > 0 there exists a unique solution uk to (3.2).
When p ≥ (N + 2)/N , problem (3.2) has no solution and even more, they proved
that no nontrivial solution of the above equation vanishing on RN \ {0} at t = 0
exists. When 1 < p < 1+ 2

N
, Brezis, Peletier and Terman used a dynamical system

technique in [13] to prove the existence of a very singular solution us to

∂tu−∆u+ up = 0 in Q∞, (3.3)

vanishing at t = 0 on RN \ {0}. This function us is self-similar, i.e. expressed
under the form

us(t, x) = t−
1
p−1f

(
|x|√
t

)
, (3.4)
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and f is uniquely determined by the following conditions

f ′′ +
(
N−1
η

+ 1
2
η
)
f ′ + 1

p−1
f − fp = 0 on R+

f > 0 and f is smooth on R+

f ′(0) = 0 and limη→∞ η
2
p−1f(η) = 0.

(3.5)

Furthermore, it satisfies

f(η) = c1e
−η2

η
2
p−1
−N{1−O(|x|−2)} as η →∞

for some c1 > 0. Later on, Kamin and Peletier in [58] proved that the sequence
of weak solutions uk converges to the very singular solution us as k → ∞. After
that, Marcus and Véron in [70] studied the equation in the framework of the initial
trace theory. They pointed out the role of the very singular solution of (3.3) in the
study of the singular set of the initial trace, showing in particular that it is the
unique positive solution of (3.3) satisfying

lim
t→0

∫
Bε

u(t, x)dx =∞ ∀ε > 0, Bε = Bε(0), (3.6)

and

lim
t→0

∫
K

u(t, x)dx = 0 ∀K ⊂ RN \ {0}, K compact. (3.7)

If one replaces up by tβup with p ∈ (1, 1 + 2(1+β)
N

), these results were extended by
Marcus and Véron (β ≥ 0) in [70] and then Al Sayed and Véron (β > −1) in [82].
The initial data problem with measure and general absorption term

∂tu−∆u+ h(t, x, u) = 0 in (0,T)× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, ·) = ν in Ω,

(3.8)

in a bounded domain Ω is a domain in RN , has been studied by Marcus and Véron
in [70] in the framework of the initial trace theory. They proved that the following
general integrability condition on h

0 ≤| h(t, x, r) |≤ h̃(t)f(|r|) ∀(x, t, r) ∈ Ω× R+ × R∫ T
0
h̃(t)f(σt

N
2 )t−

N
2 dt <∞ ∀σ > 0

either h̃(t) = tα with α ≥ 0 or f is convex,

(3.9)

in order the problem has a unique solution for any bounded measure. In the
particular case with h(t, x, r) = tβ|u|p−1u, is fulfilled if 1 < p < 1 + 2(1+β)

N
and
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β > −1, and the very singular solution exists in this range of values.

Motivated by a growing number of applications in physics and by important
links on the theory of Lévy process, semilinear fractional equations has been at-
tracted much interest in last few years, (see e.g. [20, 21, 26, 27, 31, 37, 44, 46]).
Recently, in [32] we obtained the existence and uniqueness of weak solution to
semilinear fractional elliptic equation

(−∆)αu+ f(u) = ν in Ω,

u = 0 in Ωc,
(3.10)

when ν is Radon measure and f satisfies a subcritical integrability condition.

One purpose of this chapter is to study the existence and uniqueness of weak
solutions to semilinear fractional heat equation (3.1) in a measure framework. We
first make precise the notion of weak solution of (3.1) that we will use in this
chapter.

Definition 3.1.1 We say that u is a weak solution of (3.1), if for any T > 0,
u ∈ L1(QT ), h(t, u) ∈ L1(QT ) and∫

QT
(u(t, x)[−∂tξ(t, x) + (−∆)αξ(t, x)] + h(t, u)ξ(t, x)) dxdt

=
∫
RN ξ(0, x)dν −

∫
RN ξ(T, x)u(T, x)dx ∀ξ ∈ Yα,T ,

(3.11)

where QT = (0, T ) × RN and Yα,T is a space of functions ξ : [0, T ] × RN → R
satisfying

(i) ‖ξ‖L1(QT ) + ‖ξ‖L∞(QT ) + ‖∂tξ‖L∞(QT ) + ‖(−∆)αξ‖L∞(QT ) < +∞;

(ii) for t ∈ (0, T ), there exist M > 0 and ε0 > 0 such that for all ε ∈ (0, ε0],

‖(−∆)αε ξ(t, ·)‖L∞(RN ) ≤M.

Before stating our main theorems, we introduce the subcritical integrability
condition for the nonlinearity h, that is,

(H) (i) The function h : (0,∞)× R→ R is continuous and for any t ∈ (0,∞),
h(t, 0) = 0 and h(t, r1) ≥ h(t, r2) if r1 ≥ r2.

(ii) There exist β > −1 and a continuous, nondecreasing function g : R+ →
R+ such that

|h(t, r)| ≤ tβg(|r|) ∀(t, r) ∈ (0,∞)× R

and ∫ +∞

1

g(s)s−1−p∗βds < +∞, (3.12)
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where

p∗β = 1 +
2α(1 + β)

N
. (3.13)

We denote by Hα : (0,∞) × RN × RN → R+ the heat kernel for (−∆)α in
(0,∞)× RN , by Hα[ν] the associated heat potential of ν ∈Mb(RN), defined by

Hα[ν](t, x) =

∫
RN
Hα(t, x, y)dν(y)

and by Hα[µ] the Duhamel operator defined for (t, x) ∈ QT and any µ ∈ L1(QT )
by

Hα[µ](t, x) =

∫ T

0

Hα[µ(s, .)](t− s, x)ds =

∫ t

0

∫
RN
Hα(t− s, x, y)µ(s, y)dyds.

Now we state our first theorem as follows.

Theorem 3.1.1 Assume that ν ∈Mb(RN) and the function h satisfies (H). Then
problem (3.1) admits a unique weak solution uν such that

Hα[ν]−Hα[h(.,Hα[ν+])] ≤ uν ≤ Hα[ν]−Hα[h(.,−Hα[ν−])] in Q∞, (3.14)

where ν+ and ν− are respectively the positive and negative part in the Jordan de-
composition of ν. Furthermore,

(i) if ν is nonnegative, so is uν;

(ii) the mapping: ν 7→ uν is increasing and stable in the sense that if {νn} is
a sequence of positive bounded Radon measures converging to ν in the weak
sense of measures, then {uνn} converges to uν locally uniformly in Q∞.

According to Theorem 3.1.1, there exists a unique positive weak solution uk to

∂tu+ (−∆)αu+ tβup = 0 in Q∞,

u(0, ·) = kδ0 in RN
(3.15)

where β > −1, k > 0 and p ∈ (0, p∗β). We observe that uk → ∞ in (0,∞) × RN

as k →∞ for p ∈ (0, 1], see Proposition 3.4.2 for details. Our next interest of this
chapter is to study the limit of uk as k → ∞ for p ∈ (1, p∗β), which exists since

{uk}k are an increasing sequence of functions, bounded by
(

1+β
p−1

) 1
p−1

t−
1+β
p−1 , and we

set
u∞ = lim

k→∞
uk in Q∞. (3.16)
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Actually, u∞ and {uk}k are classical solutions to equation

∂tu+ (−∆)αu+ tβup = 0 in Q∞, (3.17)

see Proposition 3.4.3 for details.

Definition 3.1.2 (i) A solution u of (3.17) is called a self-similar solution if

u(t, x) = t−
1+β
p−1u(1, t−

1
2αx) (t, x) ∈ Q∞.

(ii) A solution u of (3.17) is called a very singular solution if it vanishes on RN\{0}
at t = 0 and

lim
t→0+

u(t, 0)

Γα(t, 0)
= +∞,

where Γα := Hα[δ0] is the fundamental solution of

∂tu+ (−∆)αu = 0 in Q∞,

u(0, ·) = δ0 in RN .
(3.18)

We remark that for p ∈ (1, p∗β), a self-similar solution u of (3.17) is also a very
singular solution, since

lim
t→0+

Γα(t, 0)t
N
2α = c2, (3.19)

for some c2 > 0. For any self-similar solution u of (3.17), v(η) := u(1, t−
1

2αx) with

η = t−
1

2αx is a solution of the self-similar equation

(−∆)αv − 1

2α
∇v · η − 1 + β

p− 1
v + vp = 0 in RN . (3.20)

Since
(

1+β
p−1

) 1
p−1

is a constant nonzero solution of (3.20), the function

Up(t) :=

(
1 + β

p− 1

) 1
p−1

t−
1+β
p−1 t > 0 (3.21)

is a flat self-similar solution of (3.17). It is actually the maximal solution of the
ODE y′+tβyp = 0 defined on R+. Our next goal in this chapter is to study non-flat
self-similar solutions of (3.17).

Theorem 3.1.2 Assume that β > −1, u∞ is defined by (3.16) and

p∗∗β < p < p∗β,
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where p∗∗β = 1 + 2α(1+β)
N+2α

. Then u∞ is a very singular self-similar solution of (3.17)
in Q∞. Moreover, there exists c3 > 1 such that

c−1
3

1 + |x|N+2α
≤ u∞(1, x) ≤ c3 ln(2 + |x|)

1 + |x|N+2α
x ∈ RN . (3.22)

When p∗∗β < p < p∗β with β > −1, we observe that u∞ and Up are self-similar
solutions of (3.17) and u∞ is non-flat. Now we are ready to consider the uniqueness
of non-flat self-similar solution of (3.17) with decay at infinity, precisely, we study
the uniqueness of self-similar solution to

∂tu+ (−∆)αu+ tβup = 0 in Q∞,

lim|x|→∞ u(1, x) = 0.
(3.23)

We remark if u is self-similar, then the assumption lim|x|→∞ u(1, x) = 0 is
equivalent to lim|x|→∞ u(t, x) = 0 for any t > 0. Finally, we state the properties of
u∞ when 1 < p ≤ p∗∗β as follows.

Theorem 3.1.3 (i) Assume 1 < p < p∗∗β and u∞ is defined by (3.16). Then
u∞ = Up, where Up is given by (3.21).

(ii) Assume p = p∗∗β and u∞ is defined by (3.16). Then u∞ is a self-similar solution
of (3.17) such that

u∞(t, x) ≥ c4t
−N+2α

2α

1 + |t− 1
2αx|N+2α

(t, x) ∈ (0, 1)× RN , (3.24)

for some c4 > 0.

We note that Theorem 3.1.3 indicates that there is no self-similar solution of
(3.17) with initial data u(0, ·) = 0 in RN \ {0}, since u∞ is the least self-similar
solution. In Theorem 3.1.3 part (ii), we do not know if the self-similar solution is
flat or not. From the above theorems, we have the following result.

Theorem 3.1.4 (i) Assume p∗∗β < p < p∗β. Then problem (3.20) admits a minimal
positive solution v∞ satisfying

lim
|η|→∞

|η|
2α(1+β)
p−1 v∞(η) = 0. (3.25)

Furthermore,

c−1
3

1 + |η|N+2α
≤ v∞(η) ≤ c3 ln(2 + |η|)

1 + |η|N+2α
∀η ∈ RN (3.26)

80



(ii) Assume 1 < p < p∗∗β . Then problem (3.20) admits no positive solution satisfy-
ing (3.25).

The question of uniqueness of the very singular solution in the case p∗∗β < p < p∗β
remains an open problem.

3.2 Linear estimates

3.2.1 The Marcinkiewicz spaces

We recall the definition and basic properties of the Marcinkiewicz spaces.

Definition 3.2.1 Let Θ ⊂ RN+1 be an open domain and µ be a positive Borel
measure in Θ. For κ > 1, κ′ = κ/(κ− 1) and u ∈ L1

loc(Θ, dµ), we set

‖u‖Mκ(Θ,dµ) = inf

{
c ∈ [0,∞] :

∫
E

|u|dµ ≤ c

(∫
E

dµ

) 1
κ′

, ∀E ⊂ Θ, E Borel set

}
(3.1)

and
Mκ(Θ, dµ) = {u ∈ L1

loc(Θ, dµ) : ‖u‖Mκ(Θ,dµ) <∞}. (3.2)

Mκ(Θ, dµ) is called the Marcinkiewicz space of exponent κ or weak Lκ space
and ‖.‖Mκ(Θ,dµ) is a quasi-norm. The following property holds.

Proposition 3.2.1 [5, 32] Assume that 1 ≤ q < κ < ∞ and u ∈ L1
loc(Θ, dµ).

Then there exists c5 > 0 dependent of q, κ such that∫
E

|u|qdµ ≤ c5‖u‖Mκ(Θ,dµ)

(∫
E

dµ

)1−q/κ

,

for any Borel set E of Θ.

Remark 3.2.1 If Ω is a smooth domain of RN , we denote by HΩ
α : (0,∞)× Ω×

Ω→ R+ the heat kernel for (−∆)α and, if ν ∈Mb(Ω), by HΩ
α [ν] the corresponding

heat potential of ν defined by

HΩ
α [ν](t, x) =

∫
Ω

HΩ
α (t, x, y)dν(y).

When Ω = RN , by Fourier transform, it is easy clear that

Hα(t, x, y) =
1

(2π)N/2

∫
RN
ei(x−y)·ζ−t|ζ|2αdζ = Hα(t, x− y, 0).
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Furthermore, ‖Hα(t, ., 0)‖L1 is independent of t. This implies

‖HΩ
α [ν](t, .)‖Lp ≤ ‖ν‖Lp ∀1 ≤ p ≤ ∞ , ∀ν ∈ Lp(RN). (3.3)

Since HΩ
α [ν](t+ s, .) = HΩ

α [HΩ
α [ν](s, .)](t, .) for all t, s > 0 (semigroup property) and

ν ≥ 0 =⇒ HΩ
α [ν](t, .) ≥ 0 the semigroup {HΩ

α [.](t, .)}t≥0 is sub-Markovian. Further-
more, since the operator (−∆)α is symmetric in L2(RN), the above semigroup is
analytic in Lp(RN) for all 1 ≤ p <∞: if 1 < p <∞ it follows from a general result
of Sten [89]) and for p = 1 it is a consequence of regularity result from fractional
powers of operators theory (see e.g. [59]). For 1 ≤ p < ∞ generator Ap of the
semigroup in Lp(RN) is the operator −(−∆)α with domain

D(Ap) := {ν ∈ Lp(RN) : (−∆)αν ∈ Lp(RN)}. (3.4)

and D(Ap) is dense since it contains C∞0 (RN). If p =∞, the natural space is the
space C0(RN) of continuous functions in RN tending to 0 at infinity. The domain
of the corresponding operator Ac0 is

D(Ac0) := {ν ∈ C0(RN) : (−∆)αν ∈ C0(RN)}. (3.5)

This operator is densely defined in C0(RN). In order to avoid confusion, Cc(RN)
(resp. C∞c (RN)) denotes the space of continuous (resp. C∞) functions in RN with
compact support. It is a dense subset of C0(RN).

Proposition 3.2.2 For any β > −1 and T > 0, there exists c6 > 0 dependent of
N,α, β such that for ν ∈Mb(Ω),

‖HΩ
α [|ν|]‖

M
p∗
β (QΩ

T ,t
βdxdt)

≤ c6‖ν‖Mb(Ω), (3.6)

where p∗β is defined by (3.13) and QΩ
T = (0, T )× Ω.

In order to prove this proposition, we introduce some notations. For λ > 0 and
y ∈ Ω, let us denote

AΩ
λ (y) = {(t, x) ∈ QΩ

T : HΩ
α (t, x, y) > λ} and mΩ

λ (y) =

∫
Aλ(y)

tβdxdt.

We also set ARN
λ = Aλ and mΩ

λ = mλ.

Lemma 3.2.1 There exists c7 > 0 such that for any λ > 1,

Aλ(y) ⊂ (0, c7λ
− 2α
N ]×B

c7λ
− 1
N

(y), (3.7)

where Br(y) is the ball with radius r and center y in RN .
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Proof. We observe that Hα(t, x, y) = t−
N
2αΓα(1, (x − y)t−

1
2α ), where Γα is the

fundamental solution of (3.18). From [28], there exists c8 > 0 such that

Γα(1, z) ≤ c8

1 + |z|N+2α
.

This implies in particular

Hα(t, x, y) ≤ c8t
− N

2α

1 +
(
t−

1
2α |x− y|

)N+2α
. (3.8)

On the one hand, for (t, x) ∈ Aλ(y), we have that

t−
N
2αΓα(1, 0) ≥ t−

N
2αΓα(1, (x− y)t−

1
2α ) > λ,

which implies

t < Γ
2α
N
α (1, 0)λ−

2α
N . (3.9)

On the other hand, letting r = |x− y|,

c8t

t1+ N
2α + rN+2α

≥ t−
N
2αΓα(1, (x− y)t−

1
2α ) > λ,

then
r ≤ (c8tλ

−1)
1

N+2α , (3.10)

which, together with (3.9), implies

r ≤ c9λ
− 1
N ,

for some c9 > 0. 2

Proof of Proposition 3.2.2. By Lemma 3.2.1, there exists c10 > 0 such that

mλ(y) ≤ c10λ
−1− 2α(1+β)

N .

Clearly
HΩ
α (t, x, y) ≤ Hα(t, x, y), (3.11)

then for any Borel set E ⊂ QΩ
T and y ∈ Ω, we have that∫

E

HΩ
α (t, x, y)tβdxdt ≤ λ

∫
E

tβdxdt+

∫
Aλ(y)

Hα(t, x, y)tβdxdt
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and ∫
Aλ(y)

Hα(t, x, y)tβdxdt = −
∫ +∞
λ

sdms(y) = λmλ(y) +
∫ +∞
λ

ms(y)ds

≤ c10λ
− 2α(1+β)

N + c10

∫ +∞
λ

s−1− 2α(1+β)
N ds

≤ c11λ
− 2α(1+β)

N ,

where c11 = c10

(
1 + N

2α(1+β)

)
. As a consequence, it follows∫

E

HΩ
α (t, x, y)tβdxdt ≤ λ

∫
E

tβdxdt+ c11λ
− 2α(1+β)

N .

Taking λ = (
∫
E
tβdxdt)−

N
N+2α(1+β) , we obtain that∫

E

HΩ
α (t, x, y)tβdxdt ≤ (c11 + 1)(

∫
E

tβdxdt)
2α(1+β)

N+2α(1+β) . (3.12)

Since, by Fubini’s theorem,∫
E

HΩ
α [|ν|](t, x)tβdxdt =

∫
E

∫
Ω

HΩ
α (t, x, y)d|ν(y)|tβdxdt

=

∫
Ω

∫
E

HΩ
α (t, x, y)tβdxdtd|ν(y)|,

together with (3.12), it yields

∫
E

HΩ
α [|ν|](t, x)tβdxdt ≤ (c11 + 1)‖ν‖Mb(Ω)

(∫
E

tβdxdt

) 2α(1+β)
N+2α(1+β)

.

Thus,

‖HΩ
α [|ν|]‖

M1+
2α(1+β)

N (QΩ
T ,t

βdxdt)
≤ (c11 + 1)‖ν‖Mb(Ω),

which ends the proof. 2

3.2.2 The non-homogeneous problem

The following proposition is the Kato’s type estimate which is essential tool to
prove the uniqueness of solutions to (3.1). For T > 0, we denote QT = (0, T )×RN .

Proposition 3.2.3 Assume µ ∈ L1(QT ) and ν ∈ L1(RN). Then there exists a

84



unique weak solution u to the problem

∂tu+ (−∆)αu = µ in QT ,

u(0, ·) = ν in RN
(3.13)

and there exists c12 > 0 such that∫
QT

|u|dxdt ≤ c12

∫
QT

|µ|dxdt+ c12

∫
RN
|ν|dx. (3.14)

Moreover, for any ξ ∈ Yα,T , ξ ≥ 0, we have that∫
QT
|u|(−∂tξ + (−∆)αξ)dxdt+

∫
RN |u(T, x)|ξ(T, x)dx

≤
∫
QT
ξsign(u)µdxdt+

∫
RN ξ(0, x)|ν|dx

(3.15)

and∫
QT
u+(−∂tξ + (−∆)αξ)dxdt+

∫
RN u+(T, x)ξ(T, x)dx

≤
∫
QT
ξsign+(u)µdxdt+

∫
RN ξ(0, x)ν+dx.

(3.16)

In order to prove Proposition 3.2.3, we introduce the following notations. We
say that u : QT → R is in Cσ,σ′

t,x (QT ) for σ, σ′ ∈ (0, 1) if

‖u‖
Cσ,σ

′
t,x (QT )

:= ‖u‖L∞(QT ) + sup
QT

|u(t, x)− u(s, y)|
|t− s|σ + |x− y|σ′

< +∞

and u ∈ C1+σ,2α+σ′

t,x (QT ) if

‖u‖
C1+σ,2α+σ′
t,x (QT )

:= ‖u‖L∞(QT ) + ‖∂tu‖Cσ,σ′t,x (QT )
+ ‖(−∆)αu‖

Cσ,σ
′

t,x (QT )
< +∞.

Lemma 3.2.2 Let µ ∈ C1(QT ) ∩ L∞(QT ), ν ∈ L∞(RN) and u be a solution of
problem (3.13), then there exists σ ∈ (0, 1) such that u ∈ C1+σ,2α+σ

t,x in (T0, T )×RN

for any T0 ∈ (0, T ). In particular, if ‖D2ν‖L∞(RN ) + ‖(−∆)αν‖C1−α
x (RN ) <∞, then

u ∈ C1+σ,2α+σ
t,x (QT ).

Proof. Step 1. When ‖D2ν‖L∞(RN ) + ‖(−∆)αν‖C1−α
x (RN ) < ∞, it follows directly

by [21, (A.1)] that u ∈ C1+σ,2α+σ
t,x (QT ).

Step 2. When ν ∈ L∞(RN), we use [26, Theorem 6.1] to obtain that u ∈ C
σ
2α
,σ

t,x (QT )
for some σ > 0. For any T0 ∈ (0, T ), let η : [0, T ] → [0, 1] be a C2 functions such
that η = 0 in [0, T0

4
] and η = 1 in [T0, T ] and v = ηu in QT . Then we obtain that

for t ∈ [T0

4
, T ] and x ∈ RN ,

∂tv + (−∆)αv = ηµ+ η′(t)u,
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where ηµ+η′(t)u ∈ C
σ
2α
,σ

t,x (QT ) and v(0, ·) = 0 in RN , Then we apply the argument

in Step 1 to obtain that v ∈ C1+σ,2α+σ
t,x (QT ). Therefore, u is C1+σ,2α+σ

t,x in (T0, T )×
RN . The proof is complete. 2

Lemma 3.2.3 (i) Let µ ∈ C1(QT ) ∩ L∞(QT ) and ν ∈ C1(RN) ∩ L∞(RN), then
problem (3.13) admits a unique solution u and for some σ ∈ (0, 1), u is C1+σ,2α+σ

t,x

in (T0, T )× RN for any T0 ∈ (0, T ).

(ii) Let µ ∈ C1(QT ) ∩ L∞(QT ) ∩ L1(QT ), ν ∈ C1(RN) ∩ L∞(RN) ∩ L1(RN) and u
be the solution of (3.13), then u ∈ L1(QT ), is C1+σ,2α+σ

t,x in (T0, T ) × RN for any
T0 ∈ (0, T ) and for any ξ ∈ Yα,T ,∫

QT
u(t, x)[−∂tξ(t, x) + (−∆)αξ(t, x)]dxdt

=
∫
QT
µ(t, x)ξ(t, x)dxdt+

∫
RN ξ(0, x)νdx−

∫
RN ξ(T, x)u(T, x)dx.

(3.17)

(iii) Let µ ∈ C1(QT ) ∩ L∞(QT ) and ν ∈ C2(RN) ∩ L∞(RN), then problem

−∂tu+ (−∆)αu = µ in QT ,

u(T, ·) = ν in RN
(3.18)

admits a unique solution u ∈ C1+σ,2α+σ
t,x (QT ) for some σ ∈ (0, 1). Moreover, if

µ ∈ C1(QT ) ∩ L∞(QT ) ∩ L1(QT ) and ν ∈ C2(RN) ∩ L∞(RN) ∩ L1(RN), then
u ∈ Yα,T .

Proof. (i) By [26, Theorem 2.6, Theorem 6.1], there exists a unique viscosity

solution u ∈ C
σ
2α
,σ

t,x (QT ) with σ > 0 to problem (3.13), and then it follows by

Lemma 3.2.2 that u is C1+σ′,2α+σ′

t,x in (T0, T ) × RN for any T0 ∈ (0, T ) and some
σ′ ∈ (0,min{ σ

2α
, σ}). Then u is a classical solution of (3.13).

(ii) We claim that u ∈ L1(QT ) and u(t, ·) ∈ L1(RN) for t ∈ (0, T ). By Duhamel
formula, we have

‖u(t, ·)‖L1(RN ) ≤
∫
RN

(∫ t

0

∫
RN
Hα(t− s, x, y)|µ(s, y)|dyds

)
dx

+

∫
RN

∫
RN
Hα(t, x, y)|ν(y)|dydx

≤ ‖µ‖L1(QT ) + ‖ν‖L1(RN )

and

‖u‖L1(QT ) =

∫ T

0

‖u(t, ·)‖L1(RN )dt ≤ T (‖µ‖L1(QT ) + ‖ν‖L1(RN )).
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In the sequel we denote by Hα the operator of L1(QT ) defined for all (x, t) ∈ QT

by

Hα[µ](x, t) =

∫ t

0

Hα[µ(., s)](x, t− s)ds =

∫ t

0

∫
RN
Hα(t− s, x, y)µ(s, y)dyds. (3.19)

We claim that ‖(−∆)αε u(t, ·)‖L∞(RN ) is uniformly bounded with respect to ε ∈ (0, ε0).
Since u(t, ·) ∈ C2α+σ

x (RN) for some σ ∈ (0,min{2 − 2α, 1}), then for x ∈ RN and
y ∈ B1(0), |u(x+ y) + u(x− y)− 2u(x)| ≤ ‖u(t, ·)‖C2α+σ

x (RN )|y|2α+σ. Thus,

‖|(−∆)αε u(t, ·)|‖L∞(RN ) ≤ sup
x∈RN

[∫
RN\B1(0)

|u(x+ y)− u(x)|
|y|N+2α

dy

+
1

2

∫
B1(0)\Bε(0)

|u(x+ y) + u(x− y)− 2u(x)|
|y|N+2α

dy

]
≤ 2‖u‖L1(RN ) +

∫
B1(0)

|y|σ−Ndy‖u(t, ·)‖C2α+σ
x (RN ).

Next we claim that∫
QT

ξ(−∆)αε udxdt =

∫
QT

u(−∆)αε ξdxdt ∀ξ ∈ Yα,T . (3.20)

Indeed, using the fact that for any t > 0 there holds∫
RN

∫
RN

[u(t, z)− u(t, x)]ξ(t, x)

|z − x|N+2α
χε(|x− z|)dzdx

=

∫
RN

∫
RN

[u(t, x)− u(t, z)]ξ(t, z)

|z − x|N+2α
χε(|x− z|)dzdx,

then we have∫
RN ξ(t, x)(−∆)αε u(t, x)dx

= −1
2

∫
RN
∫
RN

[
(u(t,z)−u(t,x))ξ(t,x)

|z−x|N+2α + (u(t,x)−u(t,z))ξ(t,z)
|z−x|N+2α

]
χε(|x− z|)dzdx

= 1
2

∫
RN
∫
RN

[u(t,z)−u(t,x)][ξ(t,z)−ξ(t,x)]
|z−x|N+2α χε(|x− z|)dzdx.

Similarly,∫
RN u(t, x)(−∆)αε ξ(t, x)dx = 1

2

∫
RN
∫
RN

[u(t,z)−u(t,x)][ξ(t,z)−ξ(t,x)]
|z−x|N+2α χε(|x− z|)dzdx.

Then (3.20) holds. Since u is C1+σ,2α+σ
t,x in (T0, T )× RN for any T0 ∈ (0, T ) and ξ

belongs to Yα,T , (−∆)αε ξ(t, ·) → (−∆)αξ(t, ·) and (−∆)αε u(t, ·) → (−∆)αu(t, ·) as
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ε→ 0 in RN and (−∆)αε ξ(t, ·), (−∆)αε u(t, ·) ∈ L∞(RN) and ξ(t, ·), u(t, ·) ∈ L1(RN),
then it follows by the Dominated Convergence Theorem that

lim
ε→0+

∫
RN
ξ(t, x)(−∆)αε u(t, x)dx =

∫
RN
ξ(t, x)(−∆)αu(t, x)dx

and

lim
ε→0+

∫
RN

(−∆)αε ξ(t, x)u(t, x)dx =

∫
RN

(−∆)αξ(t, x)u(t, x)dx.

Combining this with (3.20), and letting ε→ 0+, we have that∫
RN
ξ(t, x)(−∆)αu(t, x)dx =

∫
RN

(−∆)αξ(t, x)u(t, x)dx,

integrating over [0, T ] and by (3.13), we conclude that (3.17) holds.

(iii) End of the proof. Let u be the weak solution of problem (3.13) and

w(t, x) = u(T − t, x) (t, x) ∈ [0, T ]× RN .

Then w is a solution of (3.18) and for some σ ∈ (0, 1), w is C1+σ,2α+σ
t,x (QT ). On the

contrary, if w is a solution of (3.18), then u(t, x) = w(T−t, x) for (t, x) ∈ [0, T ]×RN

is a solution of (3.13), then the uniqueness holds since the solution of (3.13) is
unique. Since u ∈ C1+σ,2α+σ

t,x (QT ), then (−∆)αu(t, ·) ∈ Cσ
x and then (−∆)αε u(t, ·)

is bounded, which implies u ∈ Yα,T . 2

Proof of Proposition 3.2.3. Uniqueness. Let v be a weak solution of

∂tv + (−∆)αv = 0 in QT ,

v(0, ·) = 0 in RN .
(3.21)

We claim that v = 0 a.e. in QT .

In fact, let ω be a Borel subset of QT and ηω,n be the solution of

−∂tu+ (−∆)αu = ζn in QT ,

u(T, ·) = 0 in RN ,
(3.22)

where ζn : Q̄T → [0, 1] is a function C1
c (QT ) such that

ζn → χω in L∞(Q̄T ) as n→∞.

Then ηω,n ∈ Yα,T by Lemma 3.2.3, and∫
QT

vζndxdt = 0.
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Passing to the limit when n→∞, we derive∫
ω

vdxdt = 0.

This implies v = 0 a.e. in QT .

Existence and estimate (3.15). For δ > 0, we define an even convex function φδ by

φδ(t) =

{
|t| − δ

2
if |t| ≥ δ,

t2

2δ
if |t| < δ/2.

(3.23)

Then for any t, s ∈ R, |φ′δ(t)| ≤ 1, φδ(t) → |t| and φ′δ(t) → sign(t) when δ → 0+.
Moreover,

φδ(s)− φδ(t) ≥ φ′δ(t)(s− t). (3.24)

Let {µn}, {νn} be two sequences of functions in C2
0(QT ), C2

0(RN), respectively,
such that

lim
n→∞

∫
QT

|µn − µ|dxdt = 0, lim
n→∞

∫
RN
|νn − ν|dx = 0.

We denote by un the corresponding solution to (3.13) where µ, ν are replaced by
µn, νn, respectively. By Lemma 3.2.2 and Lemma 3.2.3(ii), un ∈ C1+σ,2α+σ

t,x (QT ) ∩
L1(QT ) and then we use Lemma 2.3 in [32] and Lemma 3.2.3 (ii) to obtain that
for any δ > 0 and ξ ∈ Yα,T , ξ ≥ 0,∫

QT
φδ(un)[−∂tξ + (−∆)αξ]dxdt+

∫
RN ξ(T, x)φδ(un(T, x))dx

=
∫
QT
ξ[∂tφδ(un) + (−∆)αφδ(un)]dxdt+

∫
RN ξ(0, x)φδ(νn)dx

≤
∫
QT
ξφ′δ(un)[∂tun + (−∆)αun]dxdt+

∫
RN ξ(0, x)φδ(νn)dx

=
∫
QT
ξφ′δ(un)µndxdt+

∫
RN ξ(0, x)φδ(νn)dx.

Letting δ → 0+, we obtain∫
QT

|un|[−∂tξ + (−∆)αξ]dxdt+

∫
RN
ξ(T, x)|un(T, x)|dx

≤
∫
QT

ξsign(un)µndxdt+

∫
RN
ξ(0, x)|νn|dx.

(3.25)

Let ηk be the solution of

−∂tu+ (−∆)αu = ςk in QT ,

u(T, ·) = 0 in RN ,
(3.26)
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where ςk : QT → [0, 1] is a C2
0 function such that ςk = 1 in (0, T )×Bk(0). From the

proof of Lemma 3.2.3, η̃k(t, x) := ηk(T − t, x) satisfies with ς̃k(t, x) = ςk(T − t, x)

∂tu+ (−∆)αu = ς̃k in QT ,

u(0, ·) = 0 in RN .

By Lemma 3.2.2, η̃k ∈ C1+σ,2α+σ
t,x (QT ) with some σ ∈ (0, 1) and

0 ≤ η̃k(t, x) ≤ c8

∫ T

t

∫
RN

(s− t)− N
2α

1 + |(s− t)− 1
2α (y − x)|N+2α

dyds

≤ c8

∫ T

t

∫
RN

dz

1 + |z|N+2α
ds

= c13(T − t).

Taking ξ = ηk in (3.25), we derive that∫
QT

|un|χ(0,T )×Bk(0)dxdt ≤ c13T

∫
QT

|µn|dxdt+ c13T

∫
RN
|νn|dx.

Then, letting k →∞, we have∫
QT

|un|dxdt ≤ c13T

∫
QT

|µn|dxdt+ c13T

∫
RN
|νn|dx. (3.27)

Similarly,∫
QT

|un − um|dx ≤ c13T

∫
QT

|µn − µm|dxdt+ c13T

∫
RN
|νn − νm|dx. (3.28)

Therefore, {un}n is a Cauchy sequence in L1(QT ) and its limit u is a weak so-
lution of (3.13). Letting n → ∞, (3.15) and (3.14) follow by (3.25) and (3.27),
respectively. The proof of (3.16) is similar. 2

3.3 Proof of Theorem 3.1.1

If h(t, .) is monotone nondecreasing, for any λ > 0, I + λh(t, .) is an homeor-
phism of R and the inverse function Jλ(t, .) = (I + λh(t, .))−1 is a contraction. We
define the Yosida approximation by

hλ(t, .) =
I − Jλ(t, .)

λ
. (3.1)
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The function hλ(t, .) is monotone nondecreasing, vanishes at 0 as h does it and it
is 1

λ
-Lipschitz continuous. Furthermore

rhλ(t, r) ↑ rh(t, r) as λ→ 0 ∀r ∈ R, (3.2)

see [11, Chap 2, Prop. 2.6]. If u is a real valued function we will denote by h ◦ u
and hλ ◦u respectively the functions (t, x) 7→ h(t, u(t, x)) and (t, x) 7→ hλ(t, u(t, x))

Lemma 3.3.1 Assume that h satisfies (H)-(i), λ > 0 and φ ∈ L1(RN). Then
there exists a unique solution uφ of

∂tu+ (−∆)αu+ hλ ◦ u = 0 in Q∞,

u(0, ·) = φ in RN ,
(3.3)

Moreover,

Hα[φ]−Hα[hλ ◦Hα[φ+])] ≤ uφ ≤ Hα[φ]−Hα[hλ ◦ (−Hα[φ−])] in QT , (3.4)

where φ± = max{0,±φ} and

‖uφ(t, .)− uψ(t, .)‖L1 ≤ ‖φ− ψ‖L1 ∀1 ≤ p ≤ ∞. (3.5)

(i) uφ ≥ 0 if φ ≥ 0 in Ω;

(ii) the mapping φ 7→ uφ is increasing.

Proof. Existence is a consequence of the Cauchy-Lipschitz-Picard theorem (see
[25, Chap 4]): we write (3.3) under the integral form u = T [u] = Hα[φ]−Hα[hλ◦u],
i.e.

T [u](t, .) = Hα[φ](t, .)−
∫ T

0

Hα[hλ ◦ u](t− s, .)ds (3.6)

The space C([0,∞);L1(RN)) endowed with the norm

‖w‖C−L1 = sup
{
e−kt‖w(t, .)‖L1 : t ≥ 0

}
,

(k > λ−1), is a Banach space. Since u 7→ hλ(t, u) is 1
λ
-Lipschitz continuous, the

mapping T is 1
λk

-Lipschitz continuous in Xp. Thus it admits a unique fixed point
uφ which is an integral solution of (3.3).

uφ(t, .) = Hα[φ](t, .)−
∫ T

0

Hα[hλ ◦ uφ](t− s, .)ds. (3.7)

The semigroup {Hα[.](t, .)}t≥0 is analytic in L1(RN) since generated by the frac-
tional power of a closed operator. It follows from the classical regularity theory for
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analytic semigroups as it exposed in [52, Sec 6] that that uφ is a strong solution of
(3.3). Since it is continuous, it is also a weak solution in the sense that∫
QT

(uφ[−∂tξ + (−∆)αξ] + ξhλ ◦ uφ) dxdt

=
∫
RN ξ(0, x)φ(x)dx−

∫
RN ξ(T, x)uφ(T, x)dx ∀ξ ∈ Yα,T .

(3.8)
If φ1, φ2 ∈ L1(RN) and uφj are the corresponding solutions of (3.3), it follows from

the positivity of Hα that

(uφ2 − uφ1)+ ≤ (Hα[hλ ◦ uφ2 − hλ ◦ uφ1 ])+ ≤ 1
λ
Hα[(uφ2 − uφ1)+].

Therefore,

‖(uφ2(t, .)− uφ1(t, .))+‖Lp ≤
1

λ

∫ T

0

‖(uφ2(t− s)− uφ1(t− s))+‖Lpds,

and by Gronwall inequality

‖(uφ2(t)− uφ1(t))+‖Lp ≤ e
t
λ‖(φ2 − φ1)+‖Lp .

This implies (i) and (ii). As a consequence,

−Hα[φ−] ≤ −uφ− ≤ uφ ≤ uφ+ ≤ Hα[φ+]

and thus

hλ ◦ (−Hα[φ−]) ≤ hλ ◦ (−uφ−) ≤ hλ ◦ uφ ≤ hλ ◦ uφ+ ≤ hλ ◦Hα[φ+].

Jointly with (3.7) it yields (3.4). 2

Notation. In the sequel, if η ∈ L1(Qτ ) and τ ≥ T , we denote by ξη,τ the solution
of

−∂tξη + (−∆)αξη = η in Qτ

ξη(τ, .) = 0
(3.9)

If η ≥ 0, then ξη,τ ≥ 0; if η ∈ C∞0 (RN+1), then η ∈ Yα,τ ; if ηn = η( .
n
), where

n ∈ N∗ and η ∈ C∞0 (RN+1) is nonnegative, 0 ≤ η ≤ 1, with value 1 on B1 and 0
on Bc

2, then ξηn,τ ↑ τ − t as n→∞.

In the next lemma we prove that we can replace hλ by h.

Lemma 3.3.2 Assume that h satisfies (H)-(i) and φ ∈ L1(RN). Then there exists
a unique solution uφ ∈ C([0,∞);L1(RN) of

∂tu+ (−∆)αu+ h ◦ u = 0 in Q∞,

u(0, ·) = φ in RN ,
(3.10)
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Moreover inequality (3.5) and statements (i) and (ii) in Lemma 3.3.1 hold.

Proof. We denote by uλ,φ the solution of (3.3).

Step 1- A priori estimate. Let φ ≥ 0. If we take ξ = ξηn,τ in (3.8) and let n→∞,
we derive∫

QT

(uλ,φ + (τ − t)hλ ◦ uλ,φ) dxdt+ (τ − T )

∫
RN
uλ,φ(T, .)dx = τ

∫
RN
φ(x)dx.

(3.11)
For 0 < λ < λ′ we set w = uλ,φ − uλ′,φ. It follows from (3.16) and inequality
hλ′ ◦ uλ,φ ≤ hλ ◦ uλ,φ, that for any nonnegative ξ in Yα,T ,∫

QT

(
w+[−∂tξ + (−∆)αξ] + ξ (hλ ◦ uλ,φ − hλ ◦ uλ′,φ) sign+(w)

)
dxdt

≤
∫
QT
w+ (hλ′ ◦ uλ′,φ − hλ ◦ uλ′,φ) dxdt−

∫
RN ξ(T, x)w+(T, x)dx,

Since hλ(t, .) is nondecreasing, we derive∫
QT

w+[−∂tξ + (−∆)αξ]dxdt ≤ 0 ∀ξ ∈ Yα,T , ξ ≥ 0.

If η ∈ C∞0 (RN+1) is nonnegative, then ξη ∈ Yα,T , ξη ≥ 0 and∫
QT

w+ηdxdt = 0.

This implies uλ,φ ≤ uλ′,φ.

Step 2- Truncation. We replace φ by φn = inf{φ, n} for n ∈ N∗ and denote
by uλ,φn the corresponding solution of (3.3). By Step 1, the sequence {uλ,φn}λ>0

is decreasing and it converges to some nonnegative uφn when λ ↓ 0. Therefore
hλ ◦ uλ,φn → h ◦ uφn a.e. in QT . It follows from (3.11) and Fatou’s lemma that∫

QT

(uφn + (τ − t)h ◦ uφn) dxdt+(τ−T )

∫
RN
uφn(., T )dx = τ

∫
RN
φn(x)dx. (3.12)

Since 0 ≤ uλ,φn ≤ n, then 0 ≤ hλ ◦ uλ,φn ≤ h ◦ uλ,φn ≤ h(n) by (3.5). If E ⊂ QT is
a Borel set, ∫

E

hλ ◦ uλ,φndxdt ≤ h(n)|E|.

By Vitali convergence theorem hλ ◦ uλ,φn → h ◦ uφn in L1(QT ). Therefore, we can
let λ→ 0 in identity (3.8) and conclude that uφn is a weak solution of (3.10) with
initial data φn.

Step 3- Existence with φ bounded. If φ = φ+ − φ− ∈ L1(RN), set φ+,n =
inf{φ+, n} and φ−,n = inf{φ−, n}. We denote by uλ,φ+,n , uφ+,n , uλ,−φ−,n and u−φ−,n
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the corresponding solutions of (3.3) and (3.10). Then

uλ,−φ−,n ≤ uλ,φ+,n−φ−,n ≤ uλ,φ+,n

which implies
hλ ◦ uλ,−φ−,n ≤ hλ ◦ uλ,φ+,n−φ−,n ≤ hλ ◦ uλ,φ+,n .

(3.13)

Estimate (3.11) is valid under the form∫
QT

(
uλ,φ+,n + (τ − t)hλ ◦ uλ,φ+,n

)
dxdt

+ (τ − T )
∫
RN uλ,φ+,n(., T )dx = τ

∫
RN φ+,n(x)dx.

(3.14)
and∫

QT

(
uλ,−φ−,n + (τ − t)hλ ◦ uλ,−φ−,n

)
dxdt

+ (τ − T )
∫
RN uλ,−φ−,n(., T )dx = −τ

∫
RN φ−,n(x)dx.

(3.15)

Since hλ ◦ uλ,φ+,n and hλ ◦ uλ,−φ−,n are bounded in L1(QT ) independently of λ and
n, hλ ◦ uλ,φ+,n−φ−,n endows the same property. Since

uλ,φ+,n−φ−,n = Hα[φ+,n − φ−,n]−Hα[hλ ◦ uλ,φ+,n−φ−,n ]

it follows from [52, Sec 6] that uλ,φ+,n−φ−,n remains bounded in the interpolation
space Y1 := L1([0, T ];D(A1)(RN)) ∩W s,1([0, T ];L1(RN)) for any s ∈ (0, 1) where
D(A1) is defined in (3.4). Although a bounded subset K of Y1 is not a relatively
compact subset of L1(QT ), for any ball B ⊂ RN , the set of restriction to B of
functions belonging to K is relatively compact in L1((0, T )×B). Thus, there exists
a subsequence {λk} such that {uλk,φ+,n−φ−,n} converges a.e. to some function Un.
Furthermore {hλk ◦ uλk,φ+,n−φ−,n} converges a.e. to h ◦ Un. Since the sequences
{uλk,−φ−,n}λk , {uλk,φ+,n}λk , {hλk ◦uλk,−φ−,n}λk and {hλk ◦uλk,φ+,n}λk are convergent
in L1(QT ) they are uniformly integrable. Because of (3.13) the same property is
shared by the two sequences {uλk,φ+,n−φ−,n}λk and {hλk ◦ uλk,φ+,n−φ−,n}λk . Letting
λk to 0 in the identity

uλk,φ+,n−φ−,n(t, .) = Hα[φ+,n − φ−,n](t, .)−
∫ T

0
Hα[hλk ◦ uλk,φ+,n−φ−,n ](t− s, .)ds.

(3.16)
yields

Un(t, .) = Hα[φ+,n − φ−,n](t, .)−
∫ T

0
Hα[h ◦ Un](t− s, .)ds. (3.17)

This implies that Un is an integral solution, thus a weak solution of (3.10) with
initial data φ+,n − φ−,n = sgn(φ) inf{n, |φ|} and then Un = uφn .
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Step 4- Existence with φ ∈ L1(RN). By Kato’s inequality (3.15), we obtain that∫
QT

(|uφk − uφm|(−∂tξ + (−∆)αξ) + ξ|h ◦ uφk − h ◦ uφm|) dxdt

+
∫
RN |uφk(T, x)− uφm(T, x)|ξ(T, x)dx ≤

∫
RN ξ(0, x)|φk − φm|dx,

for m, k ∈ N∗ and ξ ∈ Yα,T , ξ > 0. Taking ξ = ξηn,τ as in (3.9) and letting n→∞
yields∫

QT
(|uφk − uφm|+ (τ − t)|h ◦ uφk − h ◦ uφm|) dxdt

+ (τ − T )
∫
RN |uφk(T, .)− uφm(T, .)|dx ≤ τ

∫
RN |φk − φm|dx.

(3.18)
Since {φm} is a Cauchy sequence in L1(RN), {uφm} and {h ◦uφm} are also Cauchy
sequences in C(0, T ;L1(RN)) and L1(QT ) respectively. Set U = limm→∞ uφm , then
it satisfies∫

QT
(U [−∂tξ + (−∆)αξ] + ξh ◦ U) dxdt

=
∫
RN ξ(0, x)φ(x)dx−

∫
RN ξ(T, x)U(T, x)dx ∀ξ ∈ Yα,T .

(3.19)
and it is also an integral solution of (3.10). Thus uφ ∈ C([0,∞);L1(RN)).

Finally, we end the proof with uniqueness which is a consequence of the in-
equality below∫

QT
(|U − U ′|+ (τ − t)|h ◦ U − h ◦ U ′|) dxdt

+ (τ − T )
∫
RN |U(T, .)− U ′(T, .)|dx ≤ τ

∫
RN |φ− φ

′|dx,
(3.20)

valid for two solutions U and U ′ of problem (3.10) with respective initial data φ and
φ′, the proof of which is the same as the one of (3.18). Notice also that statement
(i) and (ii) as well as inequality (3.5) follows by the above approximations. 2

Remark 3.3.1 By the same method it can be proved that for any p ∈ (1,∞) and
φ ∈ Lp(RN) (resp. φ ∈ C0(RN)) there exists a unique solution uφ ∈ C([0,∞);Lp(RN))
(resp. uφ ∈ C([0,∞);C0(RN))) solution of (3.10). Furthermore (3.5) holds.

Proof of Theorem 3.1.1. Existence for ν ≥ 0. We consider a sequence of
nonnegative functions {νn}n ⊂ C2

0(RN) such that νn → ν as n → ∞ in the weak
sense of bounded measures, i.e.

lim
n→∞

∫
RN
ζνndx =

∫
RN
ζdν ∀ζ ∈ C(RN) ∩ L∞(RN). (3.21)

It follows from the Banach-Steinhaus theorem that ‖νn‖Mb(RN ) is bounded inde-
pendently of n and we assume that ‖νn‖Mb(RN ) ≤ 2‖ν‖Mb(RN ). By Lemma 3.3.1,

95



we denote by uνn the corresponding solution of (3.10) initial data νn. Then un is
nonnegative and satisfies that

0 ≤ uνn = Hα[νn]−Hα[h ◦ uνn ] ≤ Hα[νn] in QT . (3.22)

Jointly with (3.6) it implies

‖uνn‖Mp∗
β (QT ,tβdxdt)

≤ c5‖ν‖Mb(RN ). (3.23)

We have also the following estimates from (3.8) and (3.12)

uνn(t, x) ≤ Hα[νn](t, x) ≤ 2c8t
− N

2α‖ν‖Mb(RN ) ∀(t, x) ∈ QT (3.24)

and ∫
QT

(uνn + (τ − t)h ◦ uνn) dxdt+ (τ − T )
∫
RN uνn(., T )dx = τ

∫
RN νn(x)dx

≤ 2τ‖ν‖Mb(RN ).

(3.25)
As in the proof of Lemma 3.3.2-Step 3, using the regularizing properties of the
semigroup Hα[.](t) (see [52, Sec 6]) infert that there exists a subsequence {uνnk}
which converges a.e. in QT to some function U and {h ◦ uνnk} converges a.e. to
h ◦ U .

For κ > 0, we denote Sκ = {(t, x) ∈ QT : |unk(t, x)| > κ} and ω(κ) =∫
Sκ
tβdxdt. Then for any Borel set E ⊂ QT∫∫

E
h ◦ uνnkdxdt ≤

∫∫
E∩{uνnk≤κ}

h ◦ uνnkdxdt+
∫∫

E∩Sκ h ◦ uνnkdxdt

≤ g(κ)
∫∫

E
tβdxdt+

∫∫
{Sκ t

βg(uνnk )dxdt

≤ g(κ)
∫∫

E
tβdxdt−

∫
κ
∞g(s)dω(s),

where ∫ ∞
κ

g(s)dω(s) = lim
M→∞

∫ M

κ

g(s)dω(s).
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By (3.1) and (3.23), ω(s) ≤ c14s
−p∗β , thus

−
∫ M

κ

g(s)dω(s) = −
[
g(s)ω(s)

]s=M
s=κ

+

∫ M

κ

ω(s)dg(s)

≤ g(κ)ω(κ)− g(M)ω(M) + c14

∫ M

κ

s−p
∗
βdg(s)

≤ g(κ)ω(κ)− g(M)ω(M) + c14

(
M−p∗βg(M)− κ−p∗βg(κ)

)
+

c14

p∗β + 1

∫ M

κ

s−1−p∗βg(s)ds.

Since limM→∞M
−p∗βg(M) = 0 by (3.12) and [32, Lemma 4.1] and ω(s) ≤ c14s

−p∗β ,
we derive g(κ)ω(κ) ≤ c14κ

−p∗βg(κ) and then

−
∫ ∞
κ

g(s)dω(s) ≤ c14

p∗β + 1

∫ ∞
κ

s−1−p∗βg(s)ds.

The above quantity on the right-hand side tends to 0 when κ→∞. The conclusion
follows: for any ε > 0 there exists κ > 0 such that

c14

p∗β + 1

∫ ∞
κ

s−1−p∗βg(s)ds ≤ ε

2

and there exists δ > 0 such that∫
E

tβdxdt ≤ δ =⇒ g(κ)

∫
E

tβdxdt ≤ ε

2
.

This means that {hnk ◦ uνnk} is uniformly integrable in L1(QT ) and by Vitali
convergence theorem hnk ◦ uνnk → h ◦ U in L1(QT ) . Letting nk → ∞ in the
identity

uνnk (t, .) = Hα[νnk ](t, .)−
∫ T

0

Hα[h ◦ uνnk (s, .)](t− s, .)ds

for some t > 0 such that uνnk (t, .)→ U(t, .) a.e. in RN yields

U(t, .) = Hα[ν](t, .)−
∫ T

0

Hα[h ◦ U(s, .)](t− s, .)ds.
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This is valid for almost all t > 0 and implies that U ∈ C([0, T ];L1(RN)), up to a
modification on a set of t > 0 with zero measure. Moreover∫

QT

(
uνnk (−∂tξ + (−∆)αξ) + ξh ◦ uνnk

)
dxdt

=

∫
RN
ξ(0, x)νnkdx−

∫
RN
uνnk (T, x)ξ(T, x)dx.

where ξ ∈ Yα,T is arbitrary. Thus, using the continuity of t 7→ U(t, .) in L1(RN),
we derive∫

QT

(U(−∂tξ + (−∆)αξ) + ξh ◦ U) dxdt

=

∫
RN
ξ(0, x)dν(x)−

∫
RN
U(T, x)ξ(T, x)dx.

From this infers that U is a weak solution of (3.1).

Existence for general ν. For ν ∈Mb(RN), a sequence {νn} in C2
0(RN) converge to

ν in the weak sense of bounded measures. Because of the monotonicity of h(t, ·),

−Hα[|νn|] ≤ u−|νn| ≤ uνn ≤ u|νn| ≤ Hα[|νn|].

Then by above analysis, the sequence {h ◦ u−|νn|)} and {h ◦ u|νn|)} are relatively
compact in L1(QB

T ) for any T > 0 and ball B and (3.23) holds for {uνn}. Therefore
{uνn} is relatively locally compact in L1(QB

T ) and there exist some subsequence
{uνnk} and U ∈ L1(QT ) such that

uνnk → U =⇒ h ◦ uνnk → h ◦ U as k →∞ a.e. in QT .

As in the previous case it implies that U is a weak solution of (3.1) and also an
integral solution.

Uniqueness. Let u1, u2 be two weak solutions of (3.1) with the same initial ν and
w = u1 − u2. Then

∂tw + (−∆)αw = h ◦ u2 − h ◦ u1 in QT .

Since h ◦ u2 − h ◦ u1 ∈ L1(QT ), then by (3.15), for ξ ∈ Yα,T , ξ ≥ 0, we have that∫
QT

|w|[−∂tξ + (−∆)αξ]dxdt+

∫
RN
|w(T, x)|ξ(T, x)dxdt

+

∫
QT

(h ◦ u2 − h ◦ u1)sign(w)ξdxdt ≤ 0.

This impies w = 0 by monotonicity.
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Statements (i) and (ii) and inequality (3.14) follows from the fact that the same
relations holds for uνn by Lemma 3.3.2.

Stability is proved by the same approach that existence. If {νn} converges to ν in
the weak sense of measures, then ‖νn‖Mb is bounded independently of n. Since the
distribution function of h◦uνn depends only on the supremum of ‖νn‖Mb , this set of
functions is uniformly integrable in QT . This, combined with local compactness of
the set {uνn} in L1(QT ), implies the convergence of a subsequence (uνnk , h◦uνnk ) to
(uν , h ◦ uν) where uν is the solution of (3.1). Because of uniqueness, all converging
subsequence have the same limit which imply the convergence of the whole sequence
and stability. 2

3.4 Dirac mass as initial data

In this section, we study the properties of solutions to (3.1) when h(t, r) = tβrp

with β > −1 and 0 < p < p∗β and the initial data is ν = kδ0 with k > 0.

Proposition 3.4.1 Assume 0 < p < p∗β and that uk is the solution of (3.15), then
there exists c15 > 0 such that

lim
t→0+

t
N
2αuk(t, 0) = c15k. (3.1)

Proof. By (3.14) it follows that

uk(t, 0) ≤ kHα[δ0](t, 0) = kΓα(t, 0) t > 0. (3.2)

We claim that there exists c16 > 0 independent of k such that

uk(t, 0) ≥ kΓα(t, 0)− c16k
pt−

N
2α
p+1+β t ∈ (0, 1/2). (3.3)

Indeed, from (3.14), it infers that

uk(t, 0) ≥ kΓα(t, 0)− kpW (t, 0) t ∈ (0, 1/2),

where

W (t, x) =

∫ T

0

Hα[sβ(Hp
α[δ0]](t− s, x)ds (t, x) ∈ Q∞.
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For t ∈ (0, 1/4), there exists c17, c18 > 0 such that

W (t, 0) ≤ c17

∫ t

0

∫
RN

(t− s)− N
2α sβ

1 + ((t− s)− 1
2α |y|)N+2α

(
s−

N
2α

1 + (s−
1

2α |y|)N+2α

)p

dyds

≤ c17

∫ t

0

∫
RN

sβ−
N
2α
pdzds(

1 +
(

( t−s
s

)
1

2α |z|
)(N+2α)p

)
(1 + |z|N+2α)

≤ c17t
β+1−Np

2α

∫ 1

0

∫
RN

dτdZ(
1 +

(
1−τ
τ

) (N+2α)p
2α |Z|(N+2α)p

)
(1 + |Z|N+2α)

≤ c18t
β+1−Np

2α .

Combining (3.19) and − N
2α
p+ 1 + β > − N

2α
, we obtain that

lim
t→0+

t
N
2αW (t, 0) = 0.

Therefore, (3.1) holds. 2

In what follows we consider the limit of the solution {uk} of (3.15) as k → ∞
for p ∈ (0, 1].

Proposition 3.4.2 Assume 0 < p ≤ 1 and that uk is the solution of (3.15), then

lim
k→∞

uk =∞ in Q∞.

Proof. We observe that Hα[δ0] and Hα[tβ(Hα[δ0])p] are positive in (0,∞) × RN .
By (3.14), for p ∈ (0, 1) and (t, x) ∈ (0,∞)× RN , we have that

uk ≥ kHα[δ0]− kpW =⇒ lim
k→∞

uk =∞.

For p = 1, it is obvious that uk = ku1 and u1 > 0 in (0,∞)× RN , then

lim
k→∞

uk =∞ in Q∞.

The proof is complete. 2

Now we deal with the range p ∈ (1, p∗β).

Lemma 3.4.1 Assume 1 < p < p∗β and that uk is the solution of (3.15). Then for
any k > 0,

0 ≤ uk ≤ Up in Q∞, (3.4)

where Up is given by (3.21).
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Proof. Let {fn,k} be a sequence of nonnegative functions in C1
c (RN) which con-

verges to kδ0 as n → ∞. We denote by un,k the corresponding solution of (3.17)
with initial data by fn,k.

We claim that
un,k ≤ Up in Q∞, (3.5)

where, we recall it, Up is the maximal solution of the ODE y′ + tβyp = 0 on R+.
Indeed this implies (3.4).

Step 1. We claim that

lim
|x|→∞

un,k(t, x) = 0 ∀t > 0. (3.6)

From [28, 37], there exists c8 > 0 such that for any x, y ∈ RN and t ∈ (0,∞),

0 < Γα(t, x− y) ≤ c8t
− N

2α

1 + (|x− y|t− 1
2α )N+2α

.

Then for |x| > 1,

0 ≤ Hα[fn,k](t, x) ≤ c8t
− N

2α

∫
RN

fn,k(y)

1 + (|x− y|t− 1
2α )N+2α

dy

= c8

∫
RN

fn,k(x− zt
1

2α )

1 + |z|N+2α
dz

= c8

(∫
RN\BR

fn,k(x− zt
1

2α )

1 + |z|N+2α
dz +

∫
BR

fn,k(x− zt
1

2α )

1 + |z|N+2α
dz

)
,

where R = 1
2
|x|t− 1

2α and BR = {z ∈ RN : |z| < R}. It is obvious that

|x− zt
1

2α | ≥ |x| − |z|t
1

2α ≥ |x|/2 for all z ∈ BR.

Then ∫
BR

fn,k(x− zt
1

2α )

1 + |z|N+2α
dz ≤ sup

|y|≥ |x|
2

fn,k(y)

∫
BR

1

1 + |z|N+2α
dz

≤ sup
|y|≥ |x|

2

fn,k(y)

∫
RN

1

1 + |z|N+2α
dz

= c16 sup
|y|≥ |x|

2

fn,k(y)
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and ∫
RN\BR

fn,k(x− zt
1

2α )

1 + |z|N+2α
dz ≤

∫
RN\BR

‖fn,k‖L∞(RN )

1 + |z|N+2α
dz ≤ c18R

−2α =
c18t

|x|2α
,

for some c18 > 0 independent of x, t and R. Since fn,k ∈ C1
0(RN), we have that

lim
|x|→∞

sup
|y|≥ |x|

2

fn,k(y) = 0

and then for any t > 0, 0 ≤ un,k(t, x) ≤ Hα[fn,k](t, x)→ 0 as |x| → ∞.

Step 2. We claim that (3.5) holds. By contradiction, if (3.5) is not verified, there
exists (t0, x0) ∈ (0,∞)× RN such that

(Up − un,k)(t0, x0) = min
(t,x)∈(0,∞)×RN

(Up − un,k)(t, x) < 0,

since Up(t) > 0 = lim|x|→∞ un,k(t, x) for any t ∈ (0,∞), Up(0) = ∞ > fn,k(x) =
un,k(0, x) for x ∈ RN and limt→∞ Up(t) = limt→∞ un,k(t, x) = 0 for x ∈ RN . Then
∂t(Up − un,k)(t0, x0) = 0. Moreover since

(Up − un,k)(t0, x0) = min{Up(t0)− un,k(t0, x) : x ∈ RN}
= Up(t0)−max{un,k(t0, x) : x ∈ RN}

and

un,k(t0, x0) = max{un,k(t0, x) : x ∈ RN} =⇒ (−∆)αun,k(t0, x0) ≥ 0

and

0 = ∂t(Up − un,k)(t0, x0)− (−∆)αun,k(t0, x0) + tβ0U
p
p (t0)− tβ0u

p
n,k(t0, x0) < 0,

which is impossible. Thus (3.5) holds. 2

Proposition 3.4.3 (i) Assume 0 < p < p∗β and that uk is the solution of (3.15).
Then uk is a classical solution of (3.17).

(ii) Assume 1 < p < p∗β and that u∞ is defined by (3.16). Then u∞ is a classical
solution of (3.17).

Proof. (i) Since uk ≤ kHα[δ0], it infers that uk is bounded in (T0,∞) × RN

for T0 > 0. Let {gn,k} be a sequence of nonnegative functions in C1
0(RN) which

converges to kδ0 as n → ∞ and un,k the corresponding solution of (3.17) with
initial data gn,k. Then Hα[gn,k] → kHα[δ0] as n → ∞ uniformly in [T0,∞) × RN
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for any T0 > 0 and by the Comparison Principle, there exists c19 > 1 such that

0 ≤ un,k(t, x) ≤ kHα[gn,k] ≤ c19kHα[δ0] in [T0,∞)× RN

and there exists σ ∈ (0, 1) such that {un,k} are uniformly bounded with respect to

n in C
σ
2α
,σ

t,x ((T0,∞) × RN) with T0 > 0. Therefore, by the Arzela-Ascoli theorem,

un,k converges to uk in C
σ′
2α
,σ′

t,x ((T0,∞) × RN) with σ′ ∈ (0, σ) and then uk is a
viscosity solution of (3.17) in (T0,∞) × RN . By estimate (A.1) in [21], uk is in

C1+σ′,2α+σ′

t,x ((T0,∞)×RN) and uk is a classical solution of (3.17) in (T0,∞)×RN .

(ii) The proof is the same as part (i), just replacing uk ≤ kHα[δ0] by u∞ ≤ Up. 2

3.5 Self-similar and very singular solutions

By Theorem 3.1.1 and (3.4), we see that {uk} is an increasing sequence of
nonnegative functions bounded from above by Up. Then for p ∈ (1, p∗β), there
exists u∞ = limk→∞ uk, which is a classical solution of (3.17) by Proposition 3.4.3
(ii) and satisfies

u∞ ≤ Up in Q∞. (3.1)

Proposition 3.5.1 Assume 1 < p < p∗β, then u∞ is a self-similar solution of
(3.17).

Proof. For λ > 0, we set

Tλ[u](t, x) = λ
2α(1+β)
p−1 u(λ2αt, λx) (t, x) ∈ Q∞.

It is straightforward to verify that Tλ[uk] is the solution of

∂tu+ (−∆)αu+ tβup = 0 in Q∞

u(0, .) = λ
2α(1+β)
p−1

−Nkδ0 in RN .
(3.2)

Because of uniqueness, Tλ[uk] = u
kλ

2α(1+β)
p−1 −N . Letting k → ∞ and using the

continuity of u 7→ Tλ[u], we have that

lim
k→∞

Tλ[uk] = Tλ[u∞] = u∞

which implies that u∞ is a self-similar solution (3.17). 2

Let us denote
U∞(z) = u∞(1, z), z ∈ RN
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and we observe that U∞ is a classical solution of (3.20). It is obvious that the

constant (1+β
p−1

)
1
p−1 is a constant positive solution of the self-similar equation (3.20).

We observe that N < 2α(1+β)
p−1

< N + 2α when 1 + 2α(1+β)
N+2α

< p < 1 + 2α(1+β)
N

.

We prove below this fundamental result that u∞ is the minimal self similar
solution.

Proposition 3.5.2 Assume that 1 < p < 1+ 2α(1+β)
N

and ũ is a positive self-similar
solution of (3.23). Then u∞ ≤ ũ.

Proof. For any r > 0, we have that∫
Br(0)

ũ(t, x)dx = t−
1+β
p−1

∫
Br(0)

ũ(1, t−
1

2αx)dx

= t−
1+β
p−1

+ N
2α

∫
B
t
− 1

2α r
(0)

ũ(1, z)dz

≥ t−
1+β
p−1

+ N
2α

∫
B1(0)

ũ(1, z)dz

→ +∞ as t→ 0+,

where last inequality holds for t ∈ (0, r2α]. Let {εn} be a sequence positive decreas-
ing numbers converging to 0 as n → ∞. For εn and k > 0, there exists tn,k > 0
such that ∫

Bεn (0)

ũ(tn,k, x)dx = k.

We observe that for any fixed k, tn,k → 0 as n → ∞ since limn→∞ εn = 0. Let
η0 : RN → [0, 1] be a C2 function such that supp η0 ⊂ B̄2(0), η0 = 1 in B1(0) and
ηn(x) = η0(ε−1

n x) for x ∈ RN . Choosing {fn,k} be a sequence of C2 functions such
that

0 ≤ fn,k(x) ≤ ηn(x)ũ(tn,k, x) ∀x ∈ RN

and

fn,k → kδ0 as n→∞.

Let un,k be the solution of (3.1) with initial data fn,k, then

un,k(t, x) ≤ u(tn,k + t, x) ∀(t, x) ∈ Q∞

and by uniqueness of uk, limn→∞ un,k = uk, where uk is the solution of (3.1) with
initial data kδ0. Then for any k, we have uk ≤ ũ in Q∞, which implies that

u∞ ≤ ũ in Q∞.
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2

3.5.1 The case 1 + 2α(1+β)
N+2α < p < 1 + 2α(1+β)

N

We define the function wλ by

wλ(t, x) = λt−
1+β
p−1w(t−

1
2α |x|) (t, x) ∈ Q∞, (3.3)

where w(s) = ln(e+s2)
1+sN+2α .

Lemma 3.5.1 Assume 1 + 2α(1+β)
N+2α

< p < 1 + 2α(1+β)
N

, then there exists Λ0 > 0
such that for λ ≥ Λ0,

∂twλ(t, x) + (−∆)αwλ(t, x) + tβwpλ(t, x) ≥ 0 ∀(t, x) ∈ Q∞. (3.4)

Proof. By direct computation, we have

∂twλ(t, x) = −λ(1 + β)

p− 1
t−

1+β
p−1
−1w(t−

1
2α |x|)− λ

2α
t−

1+β
p−1
− 1

2α
−1|x|w′(t−

1
2α |x|)

and
(−∆)αwλ(t, x) = λt−

1+β
p−1
−1(−∆)αw(t−

1
2α |x|),

which implies

∂twλ(t, x) + (−∆)αwλ(t, x) + tβwpλ(t, x)

= λt−
1+β
p−1
−1
[
(−∆)αw(s)− 1

2α
w′(s)s− 1+β

p−1
w(s) + λp−1wp(s)

]
,

(3.5)

where s = |z| with z = t−
1

2αx. Next, for s > 0, we have

− 1

2α
w′(s)s− 1 + β

p− 1
w(s) =

[
N + 2α

2α

sN+2α

1 + sN+2α
− 1 + β

p− 1
− s2(e+ s2)−1

α ln(e+ s2)

]
w(s).

Since N+2α
2α

> 1+β
p−1

, lims→∞
sN+2α

1+sN+2α = 1 and lims→∞
1

ln(e+s2)
= 0, there exists R0 > 0

and σ0 > 0 such that

− 1

2α
w′(s)s− 1 + β

p− 1
w(s) ≥ σ0w(s) ∀s ≥ R0. (3.6)
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For |z| > 2, and using the definition of the fractional Laplacian, we have

−(−∆)αw(|z|) =
1

2

∫
RN

(
ln(e+ |z + ỹ|2)

1 + |z + ỹ|N+2α
+

ln(e+ |z − ỹ|2)

1 + |z − ỹ|N+2α
− 2 ln(e+ |z|2)

1 + |z|N+2α

)
dỹ

|ỹ|N+2α

=
w(|z|)
2|z|2α

∫
RN

Iz(y)

|y|N+2α
dy,

(3.7)
where

Iz(y) =
1 + |z|N+2α

1 + |z|N+2α|ez + y|N+2α

ln(e+ |z|2|ez + y|2)

ln(e+ |z|2)

+
1 + |z|N+2α

1 + |z|N+2α|ez − y|N+2α

ln(e+ |z|2|ez − y|2)

ln(e+ |z|2)
− 2

and ez = z
|z| .

We claim that there exists c20 > 0 such that∫
B 1

2
(−ez)∪B 1

2
(ez)

Iz(y)

|y|N+2α
dy ≤ c20

w(|z|)|z|N
. (3.8)

In fact, for y ∈ B 1
2
(−ez), there exists c21 > 0 such that

1 + |z|N+2α

1 + |z|N+2α|ez − y|N+2α

ln(e+ |z|2|ez − y|2)

ln(e+ |z|2)
≤ c21

and then∫
B 1

2
(−ez)

Iz(y)

|y|N+2α
dy ≤ ωN

∫ 1
2

0

1 + |z|N+2α

1 + (|z|r)N+2α

ln(e+ |z|2r2)

ln(e+ |z|2)
rN−1dr + c22

≤ ωN
w(|z|)|z|N

∫ ∞
0

tN−1 ln(e+ t2)

1 + tN+2α
dt+ c22

≤ c23

w(|z|)|z|N
,

where c22, c23 > 0 and the last inequality holds since w(|z|)|z|N → 0 as |z| → ∞.
Thus, ∫

B 1
2

(ez)

Iz(y)

|y|N+2α
dy =

∫
B 1

2
(−ez)

Iz(y)

|y|N+2α
dy ≤ c23

w(|z|)|z|N
.
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We claim that there exists c24 > 0 such that∫
B 1

2
(0)

Iz(y)

|y|N+2α
dy ≤ c24. (3.9)

Indeed, since the function Iz is C2 in B̄ 1
2
(0), Iz(0) = 0 and Iz(y) = Iz(−y), then

∇Iz(0) = 0 and there exists c34 > 0 such that

|D2Iz(y)| ≤ c25 ∀y ∈ B 1
2
(0).

Then we have
Iz(y) ≤ c25|y|2 ∀y ∈ B 1

2
(0),

which implies ∫
B 1

2
(0)

Iz(y)

|y|N+2α
dy ≤ c25

∫
B 1

2
(0)

|y|2

|y|N+2α
dy ≤ c24.

We claim that there exists c26 > 0 such that∫
A

Iz(y)

|y|N+2α
dy ≤ c26, (3.10)

where A = RN \ (B 1
2
(0) ∪ B 1

2
(ez) ∪ B 1

2
(−ez)). In fact, for y ∈ A, we observe that

there exists c27 > 0 such that Iz(y) ≤ c27 and∫
A

Iz(y)

|y|N+2α
dy ≤

∫
RN\B 1

2
(0)

c27

|y|N+2α
≤ c28,

for some c28 > 0. Therefore, by (3.5)-(3.10), there exists c29 > 0 such that

(−∆)αw(|z|) ≥ − c29

1 + |z|N+2α
, |z| ≥ 2. (3.11)

By (3.6) and (3.11), there exists R1 ≥ R0 + 2 such that for |z| > R1,

(−∆)αw(|z|)− 1

2α
w′(|z|)|z| − 1 + β

p− 1
w(|z|) ≥ σ0w(|z|)− c29

1 + |z|N+2α

= w(|z|)
(
σ0 −

c29

ln(e+ |z|2)

)
≥ 0.
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When |z| ≤ R1, it is clear that there exists c30 > 0 such that

(−∆)αw(|z|)− 1

2α
w′(|z|)|z| − 1 + β

p− 1
w(|z|) ≥ −c30.

Then there exists Λ0 > 0 such that for λ ≥ Λ0,

(−∆)αw(|z|)− 1

2α
w′(|z|)|z| − 1 + β

p− 1
w(|z|) + λp−1wp(|z|) ≥ 0 ∀z ∈ RN , (3.12)

which, together with (3.5), implies that (3.4) holds. 2

Next we prove that u∞ is not a trivial flat solution when 1 + 2α(1+β)
N+2α

< p < p∗β.

Lemma 3.5.2 Assume 1 + 2α(1+β)
N+2α

< p < 1 + 2α(1+β)
N

, that wΛ0 is given in (3.3)
and u∞ is given in (3.16). Then

u∞(t, x) ≤ wΛ0(t, x) ∀(t, x) ∈ Q∞. (3.13)

Moreover,
lim
t→0

u∞(t, ·) = 0 uniformly on Bc
ε ∀ε > 0. (3.14)

Proof. Let us denote

f0(r) =
k0 ln(e+ r2)

1 + rN+2α
∀ r ≥ 0 and fn,k(x) = knNf0(n|x|) ∀x ∈ RN ,

where

k0 =

[
ωN

∫ ∞
0

ln(e+ r2)

1 + rN+2α
rN−1dr

]−1

.

Then for any η ∈ Cc(RN), we have that

lim
n→∞

∫
RN
fn,kηdx = k lim

n→∞

∫
RN
f0(|x|)η

(x
n

)
dx = kη(0).

Let tn = n−2α and then

wΛ0(tn, x) = Λ0t
− 1+β
p−1

n
ln(e+ (t

− 1
2α

n |x|)2)

1 + (t
− 1

2α
n |x|)N+2α

= Λ0n
2α(1+β)
p−1

ln(e+ (n|x|)2)

1 + (n|x|)N+2α

=
Λ0

k0

n
2α(1+β)
p−1

−NnNf0(n|x|)

≥ Λ0

k0

ñ
2α(1+β)
p−1

−NnNf0(n|x|) = fn,kñ(x),

108



where ñ ≤ n and kñ = Λ0ñ
2α(1+β)
p−1

−N . We see that kñ = Λ0ñ
2α(1+β)
p−1

−N → ∞ as
ñ→∞, since 2α(1+β)

p−1
−N > 0. Let un,kñ be the solution of (3.17) with initial data

fn,kñ . By Lemma 3.5.1, wΛ0(·+ tn, ·) is a super-solution of (3.17) with initial data
wΛ0(tn, ·), that is, for (t, x) ∈ Q∞,

∂twλ(t+ tn, x) + (−∆)αwλ(t+ tn, x) + (t+ tn)βwpλ(t+ tn, x) ≥ 0.

By the Comparison Principle,

un,kñ(t, x) ≤ wΛ0(t+ tn, x) ∀(t, x) ∈ Q∞,

for any ñ ≤ n. Letting n→∞ infers

ukñ(t, x) ≤ wΛ0(t, x) ∀(t, x) ∈ Q∞, (3.15)

where ukñ is the solution of (3.17) with kñδ0 initial data. Thus (3.13) is obtained
by letting ñ→∞. Finally (3.14) follows by the fact that

lim
t→0+

wΛ0(t, x) = 0 ∀x ∈ RN \ {0},

which completes the proof. 2

Lemma 3.5.3 Assume 1 < p < p∗β, then there exists c31 > 0 such that

u∞(t, x) ≥ c31t
− 1+β
p−1

1 + |t− 1
2αx|N+2α

∀(t, x) ∈ (0, 1)× RN . (3.16)

Proof. We divide the proof into two steps.

Step 1. Let σ0 = 1 + β − N
2α

(p− 1) > 0, η(t) = 2− tσ0 for t > 0 and denote

vε(t, x) = εη(t)Γα(t, x),

where Γα is the fundamental solution of (3.17). In this step we prove that there
exists ε0 > 0 such that

uk0 ≥ vε0 in (0, 1)× RN , (3.17)

where k0 = 2ε0 and uk0 is the solution of (3.17) with initial data k0δ0. Indeed,

∂tvε(t, x) = εη′(t)Γα(t, x) + εη(t)∂tΓα(t, x)

and
(−∆)αvε(t, x) = εη(t)(−∆)αΓα(t, x).
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Let Γ1(t−
1

2αx) = Γα(1, t−
1

2αx), then there exists ε0 > 0 such that for any ε ≤ ε0
and (t, x) ∈ (0, 1)× RN , we have that

∂tvε(t, x) + (−∆)αvε(t, x) + tβvpε (t, x)

= εη′(t)t−
N
2αΓ1(t−

1
2αx) + εpηp(t)t−

N
2α
p+βΓp1(t−

1
2αx)

≤ −εσ0t
− N

2α
−1+σ0Γ1(t−

1
2αx) + 2pεpt−

N
2α
p+βΓp1(t−

1
2αx) ≤ 0,

the last inequality holds since − N
2α
− 1 + σ0 = − N

2α
p + β and Γ1 is bounded. In

particular, there holds

∂tvε0(t, x) + (−∆)αvε0(t, x) + tβvpε0(t, x) ≤ 0 ∀(t, x) ∈ (0, 1)× RN . (3.18)

Let fn(x) = vε0(tn, x) with tn = n−2α. Since limt→0+ η(t) = 2, then we have
that fn → 2ε0δ0 as n → ∞ in the weak sense of measures. There exists N0 > 0
such that tn ∈ (0, 1

8
) for n ≥ N0. Let wn be the solution of (3.17) with initial data

fn, then it infers that

wn(t, x) ≥ vε0(t+ tn, x) (t, x) ∈ (0, 1− tn)× RN .

Because uk0 is uniquely defined, there holds

wn → uk0 as n→∞ in (0, 1)× RN

and
lim
n→∞

vε0(t+ tn, x) = vε0(t, x) ∀(t, x) ∈ (0, 1)× RN ,

which imply (3.17).

Step 2. We claim that (3.16) holds. Since

vε0(t, x) ≥ ε0t
− N

2αΓ1(t−
1

2αx) (t, x) ∈ (0, 1)× RN ,

then, along with the relation Tλ[uk] = u
kλ

2α(1+β)
p−1 −N , we observe that for any λ > 0,

u
k0λ

2α(1+β)
p−1 −N (t, x) = λ

2α(1+β)
p−1 uk0(λ2αt, λx)

≥ λ
2α(1+β)
p−1 vε0(λ2αt, λx)

≥ ε0λ
2α(1+β)
p−1

−N t−
N
2αΓ1(t−

1
2αx).

Let % = λ
2α(1+β)
p−1

−N , t% = (2%)
1

N
2α−

1+β
p−1 and T% = %

1
N
2α−

1+β
p−1 , then

0 < t% < T% → 0 as %→∞.
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For (t, x) ∈ (t%, T%)× RN , we have that

uk0%(t, x) ≥ ε0%t
− N

2αΓ1(t−
1

2αx) ≥ ε0
2
t−

1+β
p−1 Γ1(t−

1
2αx),

then
u∞(t, x) ≥ ε0

2
t−

1+β
p−1 Γ1(t−

1
2αx) ∀(t, x) ∈ (t%, T%)× RN .

which implies (3.16)and completes the proof. 2

Proof of Theorem 3.1.2. It follows from Proposition 3.5.1 and Lemma 3.5.2
that u∞ is a nontrivial self-similar solution of (3.17) and (3.22) follows by (3.13),

(3.16) and ln(e+ |t− 1
2αx|2) ≤ 2 ln(2 + |t− 1

2αx|), which ends the proof. 2

We have actually a stronger result which is a consequence of Theorem 3.1.4-(i)
proved in next section:

Corollary 3.5.1 Assume 1 + 2α(1+β)
N+2α

< p < 1 + 2α(1+β)
N

. Then

either
ũ > u∞ in Q∞ (3.19)

or
ũ ≡ u∞ in Q∞. (3.20)

3.5.2 The case 1 < p < 1 + 2α(1+β)
N+2α

For 1 < p < 1 + 2α(1+β)
N+2α

, it follows from Lemma 3.5.3 that

lim
t→0+

u∞(t, x) =∞ ∀x ∈ RN . (3.21)

Proof of Theorem 3.1.3 (i). Let f0 ∈ Cc(RN) be a nonnegative function such
that

suppf0 ⊂ B1(0) and max
x∈B1(0)

f0 = 1.

Denote
fn,k(x) = knθNf0(nθ(x− x0)),

where k ≤ nτ with τ = 1
2
(2α(1+β)

p−1
− N − 2α) > 0, θ = τ

N
and x0 ∈ RN . Since

fn,k(x) ≤ nτ for x ∈ B1(x0), fn(x) = 0 for x ∈ Bc
1(x0) and

vε0(tn, x) ≥ c39n
2α(1+β)
p−1

−N−2α

(2 + |x0|)N+2α
∀x ∈ B1(x0),
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where tn = n−2α. Then there exists N0 > 0 such that for any n ≥ N0,

fn,k(x) ≤ vε0(tn, x) ∀x ∈ B1(x0).

Since nθNf0(nθ(x− x0))→ c41δx0 , as n→∞ in weak sense of measures, for some
c41 > 0.

Let wn,k be the solution of (3.17) with initial data fn,k, then

wn,k(0, x) = fn,k(x) ≤ vε0(tn, x) ≤ u∞(tn, x) ∀x ∈ RN .

Therefore, by the Comparison Principle

wn,k(t, x) ≤ u∞(t+ tn, x) ∀(t, x) ∈ Q∞.

We observe that

lim
k→∞

[ lim
n→∞

wn,k(t, x)] = u∞(t, x− x0) ∀(t, x) ∈ Q∞.

Thus, we derive that

u∞(t, x− x0) ≤ u∞(t, x) ∀(t, x) ∈ Q∞. (3.22)

Then u∞(t, x − x0) = u∞(t, x) for all (t, x) ∈ Q∞, which implies that u∞ is inde-
pendent of x. Combining (3.1) and (3.16), implies that

u∞ =

(
1 + β

p− 1

) 1
p−1

t−
1+β
p−1 .

The proof is complete. 2

In the case of p = 1 + 2α(1+β)
N+2α

, it derive from Lemma 3.5.3 that

lim inf
t→0+

u∞(t, x) ≥ lim
t→0+

c40t
− 1+β
p−1

1 + |t− 1
2αx|N+2α

=
c40

|x|N+2α
∀x ∈ RN .

Proof of Theorem 3.1.3 (ii). We note that u∞ is a self-similar solution of (3.17).
Moreover, we derive (3.24) by (3.16), which ends the proof. 2

3.5.3 The self-similar equation

In this section we prove Theorem 3.1.4.

Proof of Theorem 3.1.4 (i). We set v∞(η) = t
1+β
p−1u∞(1, η). Then relations
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(3.25) and (3.26) hold from Lemmas 3.5.2 and 3.5.3. Assume ṽ is another positive

solution of (3.20). Then (t, x) 7→ t−
1+β
p−1 ṽ(t−

1
2αx) is a positive self-similar solution

of (3.23). By Proposition 3.5.2 it is larger than u∞. Thus v∞ ≤ ṽ. Assume now
that there exists η0 ∈ RN such that v∞(η0) = ṽ(η0). and set w = ṽ − v∞. Then

(−∆)αw(η0) = lim
ε→0

(−∆)αε w(η0) = lim
ε→0

∫
Bcε (η0)

w(η0)− w(η)

|η − η0|N+2α
dη < 0.

Since ∇w(η0) we reach a contradiction. 2

Proof of Theorem 3.1.4 (ii). It is a consequence of the equality

u∞ = Up ⇐⇒ v∞ =

(
1 + β

p− 1

) 1
p−1

Open problem. We conjecture that in the case 1 + 2α(1+β)
N+2α

< p < 1 + 2α(1+β)
N

, v∞
is the unique positive solution of the self-similar equation satisfying (3.25). One
step could be to prove that any positive solution ṽ satisfying (3.25) satisfies, for
some K > 1,

ṽ ≤ Kv∞ in RN . (3.23)

We also conjecture that v∞ satisfies the following asymptotic behavior

v∞(η) = cN,p,α,β|η|−N−2α as |η| → ∞. (3.24)

Thus if any positive solution ṽ endows the same property, the conclusion (and the
uniqueness) follows.
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Chapter 4

On semi-linear elliptic equation
arising from
Micro-Electromechanical Systems
with contacting elastic membrane

Abstract: in this chapter1, we consider the solutions to nonlinear elliptic
problem 

−∆u = λ
(a−u)2 in Ω,

0 < u < a in Ω,

u = 0 on ∂Ω,

(4.1)

where Ω is a bounded domain in RN , λ > 0 and the function a : Ω̄ → [0, 1]
satisfying a(x) ≥ κdist(x, ∂Ω)γ for some κ > 0 and γ ∈ (0, 1). This equation
arises from Micro-Electromechanical Systems devices in the case that the elastic
membranae contacts the ground plate on the boundary.

4.1 Introduction

Micro-Electromechanical Systems (MEMS) are often used to combine electron-
ics with micro-size mechanical devices in the design of various types of microscopic
machinery. They are successfully utilized in components of many commercial sys-
tems, including accelerometers for airbag deployment in automobiles, ink jet printer
heads, optical switches, chemical sensors, etc. In MEMS devices, a key component
is called the electrostatic actuation, which is based on an electrostatic-controlled

1This chapter is based on the paper: H. Chen, Y. Wang and F. Zhou, On semi-linear el-
liptic equation arising from Micro-Electromechanical Systems with contacting elastic membrane,
preprint.
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tunable, it is a simple idealized electrostatic device. The upper part of this elec-
trostatic device consists of a thin and deformable elastic membrane that is held
fixed along its boundary and which lies above a rigid grounded plate. This elastic
membrane is modeled as a dielectric with a small but finite thickness. The upper
surface of the membrane is coated with a negligibly thin metallic conducting film.
When a voltage λ is applied to the conducting film, the thin dielectric membrane
deflects towards the bottom plate, and when λ is increased beyond a certain critical
value λ∗−known as pull-in voltage-the steady state of the elastic membrane is lost,
and proceeds to touchdown or snap through at a finite time creating the so-called
pull-in instability.

A mathematical model of the physical phenomena, leading to a partial differ-
ential equation for the dimensionless deflection of the membrane, was derived and
analyzed in [49, 55, 56, 57, 65, 79, 95] and reference therein. In the damping-
dominated limit, and using a narrow-gap asymptotic analysis, the dimensionless
deflection u of the membrane on a bounded domain Ω in R2 is found to satisfy the
equation

−∆u =
λ

(1− u)2
in Ω (4.2)

with the Dirichlet boundary condition. Here the term on the right hand side of
equation (4.2) is the Coulomb force. Later on, Ghoussoub and Guo in [49, 55]
studied the nonlinear elliptic problem

−∆u =
λf(x)

(1− u)2
in Ω (4.3)

with the Dirichlet boundary condition, which models a simple electrostatic MEMS
device consisting of a thin dielectric elastic membrane with boundary supported
at 0 above a rigid ground plate located at 1. Here Ω is a bounded domain of RN

and the function f ≥ 0 represents the permittivity profile and λ > 0 is a constant
which is increasing with respect to the applied voltage. We know that for any given
suitable f , there exists a critical value λ∗ (pull-in voltage) such that if λ ∈ (0, λ∗),
problem (4.3) is solvable, while for λ > λ∗, no solution for (4.3) exists.

In an effort to achieve better MEMS design, the membrane can be technologi-
cally fabricated into non-flat shape like the surface of a semi-ball, which contacts
the ground plate along the boundary. In this chapter, we study how the shape of the
membranes effects on the existence of solutions and pull-in voltage. In what follows,
we assume that Ω is a C2 bounded domain in RN with N ≥ 1, ρ(x) = dist(x, ∂Ω)
for x ∈ Ω, the function a : Ω̄→ [0, 1] is in the class of Cγ(Ω) ∩ C(Ω̄) and satisfy

a(x) ≥ κρ(x)γ, ∀ x ∈ Ω (4.4)

for some κ > 0 and γ ∈ (0, 1). Our purpose of this chapter is to consider the
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solutions to elliptic equation
−∆u = λ

(a−u)2 in Ω,

0 < u < a in Ω,

u = 0 on ∂Ω,

(4.5)

where parameter λ > 0 characterizes the relative strength of the electrostatic and
mechanical forces in the system. Equation (53) models a closed MEMS device,
where the elastic membrane contacts the ground plate on the boundary. The
function a is initially state of the elastic membrane. The solution u of (53) shows
the steady state of deformation for the membrane when we applied voltage to this
device. To this problem, we have the following existence results.

Theorem 4.1.1 Assume that a ∈ Cγ(Ω)∩C(Ω̄) satisfies (4.4) with γ ∈ (0, 2
3
] and

κ > 0, then there exists a finite pull-in voltage λ∗ := λ∗(κ, γ) > 0 such that

(i) for λ ∈ (0, λ∗), (4.5) admits a minimal solution uλ and the mapping: λ 7→ uλ
is increasing;

(ii) for λ > λ∗, there is no solution for (4.5);

(iii) assume more that there exists c0 ≥ κ such that

a(x) ≤ c0ρ(x)γ, x ∈ Ω, (4.6)

then there exists λ∗ = λ∗(κ, γ) ∈ (0, λ∗] such that for λ ∈ (0, λ∗), uλ ∈ H1
0 (Ω) and

for γ 6= 1

2
,

1

c1

ρ(x)min{1,2−2γ} ≤ uλ(x) ≤ c1ρ(x)min{1,2−2γ}, ∀x ∈ Ω

for γ =
1

2
,

1

c1

ρ(x) ln
1

ρ(x)
≤ uλ(x) ≤ c1ρ(x) ln

1

ρ(x)
, ∀x ∈ A 1

2
,

where c1 ≥ 1 and A 1
2

= {x ∈ Ω : ρ(x) < 1
2
}.

(iv) the mappings: γ 7→ λ∗(κ, γ) and γ 7→ λ∗(κ, γ) are decreasing. Moreover, if
Ω = B1(0) and

a(x) = κ(1− |x|)γ, ∀x ∈ B1(0),

then λ∗(κ, γ), λ∗(κ, γ) have following estimates

λ∗(κ, γ) ≥


4κ3(1−2γ)(N−1+2γ)

27
if γ ∈ (0, 1

3
],

κ3

27
if γ ∈ (1

3
, 1

2
],

4κ3γ(1−γ)
27

if γ ∈ (1
2
, 2

3
]

and
λ∗(κ, γ) ≤ c2κ

3(2− 2γ),
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where c2 > 0 independent of γ, κ.

We remark that the membrane contacts the ground plate on the boundary with
decay rate ργ, γ ∈ (0, 2

3
], there still has a positive finite pull-in voltage λ∗, but the

decay of a plays an important role in decay of minimal solution, the regularity of
minimal solution and the estimate of λ∗. Theorem 4.1.1 shows that the membrane
of the MEMS device could be designed as the surface of the unit semi-ball, that is,

Ω = B1(0) and a(x) = (1− |x|2)
1
2 ,

which is equivalent to the case that a(x) = ρ(x)
1
2 , so there exists a positive fi-

nite pull-in voltage λ∗. The decay rate of function a determined completely non-
existence of pull-in voltage when γ > 2

3
. Precisely, we have following non-existence

result.

Theorem 4.1.2 Assume that a ∈ C(Ω̄) is positive and satisfies (4.6) with γ ∈
(2

3
, 1) and c0 > 0. Then problem (4.5) admits no nonnegative solution for any

λ > 0.

We notice that for γ ≤ 2
3

and fixed κ, the finite pull-in voltage λ∗ depends on
γ, however, when γ = 2

3
, λ∗ > 0 and λ∗ = 0 for γ > 2

3
. Therefore, there is a gap

at γ = 2
3
. Next it is challenging to study the extremal solution, i.e. when λ = λ∗.

Especially, the decay of function a makes this issue more subtle. From Theorem
4.1.1, we observe that the mapping λ 7→ uλ is increasing and uniformly bounded
by function a, then it is well-defined that

uλ∗ := lim
λ→λ∗

uλ in Ω̄, (4.7)

where uλ is the minimal solution of (4.5) with λ ∈ (0, λ∗). Our final purpose in
this chapter is to prove that uλ∗ is a solution of (4.5) in some weak sense and it
is called the extremal solution. The extremal solution always is found in a weak
sense and then it could be improved the regularity up to the classical sense when
1 ≤ N ≤ 7. Before stating this result, we introduce the definition of weak solution.

Definition 4.1.1 A function u is a weak solution of (4.5) if 0 ≤ u ≤ a and∫
Ω

u(−∆)ξdx =

∫
Ω

λξ

(a− u)2
dx, ∀ξ ∈ C2

c (Ω),

where C2
c (Ω) is the space of all C2 functions with compact support in Ω.

A solution (or weak solution) u of (4.5) is stable (resp. semi-stable) if∫
Ω

|∇ξ|2dx >
∫

Ω

2λξ2

(a− u)3
dx, (resp. ≥) ∀ξ ∈ C2

c (Ω) \ {0}.
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Theorem 4.1.3 Assume that λ ∈ (0, λ∗), the function a satisfies (4.4) and(4.6)
with c0 ≥ κ > 0, γ ∈ (0, 2

3
], uλ is the minimal solution of (4.5) and uλ∗ is given by

(4.7). Then

(i) uλ∗ is a weak solution of (4.5) and uλ∗ ∈ W
1, N
N−β

0 (Ω) for any β ∈ (0, γ).

(ii) when 1 ≤ N ≤ 7, c0 = κ and Ω = B1(0), uλ∗ is a classical solution of (4.5).

(iii) uλ is a stable solution of (4.5) with λ ∈ (0, λ∗) and uλ∗ is a semi-stable
weak solution of (4.5).

4.2 Existence

Denote by GΩ the Green kernel of −∆ in Ω×Ω and by GΩ[·] the Green operator
defined as

GΩ[f ](x) =

∫
Ω

GΩ(x, y)f(y)dy, ∀f ∈ L1(Ω, ρ−1).

In our analysis of the minimal solution of (4.5), the following estimates play an
important role.

Lemma 4.2.1 Let τ ∈ (0, 2), A 1
2

= {x ∈ Ω : ρ(x) < 1
2
}. For x ∈ A 1

2
, denote

%τ (x) =

{
ρ(x)min{1,τ} if τ ∈ (0, 1) ∪ (1, 2),

ρ(x) ln 1
ρ(x)

, if τ = 1
(4.8)

and we make C1 extension of % into Ω \ A 1
2

such that %τ > 0 in Ω \ A 1
2
.

Then there exists cτ > 1 such that

1

c τ
%(x) ≤ GΩ[ρτ−2](x) ≤ cτ%(x), ∀x ∈ Ω.

Proof. We assume that δ1 > 0 is such that the distance function ρ(·) is of class
C2 in

Aδ1 := {x ∈ Ω : ρ(x) < δ1}

and we define

Vτ (x) =

{
l(x), x ∈ Ω \ Aδ1 ,
ρ(x)τ , x ∈ Aδ1 ,

(4.9)

where τ is a parameter in (0, 1) and the function l is positive such that Vτ is C2

in Ω. Our aim is to estimate −∆Vτ near the boundary. By compactness we prove
that the corresponding inequality holds in a neighborhood of any point x̄ ∈ ∂Ω
and without loss of generality we may assume that x̄ = 0 and eN = (0, · · · , 0, 1) is
the unit normal vector at 0 pointing inside. We only have to consider the points
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{xt = teN} with t ∈ (0, δ1). By geometric results,

∂2Vτ (teN)

∂x2
N

= τ(τ − 1)tτ−2 and |∂
2Vτ (teN)

∂x2
i

| ≤ c3, i = 1, 2, · · · , N − 1,

where c3 > 0 independent of t. Then

τ(τ − 1)tτ−2 − c3 ≤ ∆Vτ (teN) ≤ τ(τ − 1)tτ−2 + c3,

that is,

τ(τ − 1)ρ(x)τ−2 − c4 ≤ ∆Vτ (x) ≤ τ(τ − 1)ρ(x)τ−2 + c4, ∀x ∈ Aδ1 , (4.10)

where c4 > 0.

For τ ∈ (0, 1), one has that τ(τ − 1) < 0 and

−∆GΩ[ρτ−2] = ρτ−2,

then by Comparison Principle, there exists c5 > 1 and δ2 ∈ (0, δ1] such that

1

c5

Vτ ≤ GΩ[ρτ−2] ≤ c5Vτ in Aδ2 .

For τ ∈ (1, 2), take Wt = tGΩ[1]−Vτ , then from (4.10), there choosing t suitable
and c6 ≥ 1 such that

c−1
6 ρτ−2(x) ≤ −∆Wt(x) ≤ c6ρ

τ−2(x), ∀x ∈ Aδ1 .

By Comparison Principle, there exists c > 1 that that

c−1Wt(x) ≤ GΩ[ρτ−2](x) ≤ cWt(x), ∀x ∈ Aδ1 .

For τ = 1, we define

V1(x) =

{
l(x), x ∈ Ω \ Aδ1 ,
ρ(x) ln 1

ρ(x)
, x ∈ Aδ1 ,

where δ1 ∈ (0, 1
2
] and the function l is positive such that Vτ is C2 in Ω. By directly

computation, there is some c7 > 0

ρ(x)−1 − c7 ≤ ∆V1(x) ≤ ρ(x)−1 + c7, ∀x ∈ Aδ1 .
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Then it follows by Comparison Principle that

1

c8

ρ ln
1

ρ
≤ GΩ[ρ−1] ≤ c8ρ ln

1

ρ
in A 1

2
,

for some c8 > 1. The proof complete. 2

By Lemma 4.2.1, we have following results.

Corollary 4.2.1 For γ ∈ (2
3
, 1), we have that

lim
x→∂Ω

GΩ[ρ−2γ](x)ρ−γ(x) = +∞. (4.11)

Proof. Take τ = 2−2γ, then it follows by γ ∈ (2
3
, 1) that 2−2γ < γ and for some

c9 > 0,
GΩ[ρ−2γ](x) ≥ c9ρ

2−2γ(x), ∀x ∈ Ω,

which implies (4.11). 2

Proposition 4.2.1 Assume that a ∈ Cγ(Ω)∩C(Ω̄) satisfies (4.4) with γ ∈ (0, 2
3
],

then there exists λ∗ > 0 such that if λ ∈ (0, λ∗), there exists at least one solution
for (4.5) and if λ > λ∗, there is no solution for (4.5).

Moreover,

λ∗ ≤
∫

Ω
a(x)dx∫

Ω
GΩ[1](x)
a(x)2 dx

. (4.12)

Proof. Without loss of generality, we assume

D(Ω) := sup
x,y∈Ω

|x− y| ≤ 1.

Existence for λ small. Let v0 ≡ 0 in Ω̄ and

v1 := λGΩ[
1

a2
] > 0,

by (4.4) and Lemma 4.2.1,

v1 = λGΩ[
1

a2
] ≤ λGΩ[ρ−2γ] ≤ λ

c10

κ2
%2−2γ,

where c10 > 0 depending on Ω and % is given by (4.8). For γ ≤ 2
3
, we have that

min{1, 2− 2γ} ≥ γ and

v1(x) ≤ c10

κ2
λργ(x), x ∈ Ω.
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Fix any µ ∈ (0, κ), then choose λ such that

c1

κ2
λ ≤ µ < κ, (4.13)

then

v2 := λGΩ[
1

(a− u1)2
] ≥ λGΩ[

1

a2
] = v1

v2 ≤ λ
1

(κ− µ)2
GΩ[ρ−2γ] ≤ λ

c10

(κ− µ)2
%2−2γ.

Choose λ such that
c10

(κ− µ)2
λ ≤ µ (4.14)

Combining (4.13) and (4.14), if λ ≤ µmin{κ3,(κ−µ)3}
c10

then

v2(x) ≤ µργ(x), x ∈ Ω.

Iterating above process, we have that

vn := λGΩ[
1

(a− vn−1)2
] ≥ vn−1, n ∈ N

and
vn(x) ≤ µργ(x), x ∈ Ω.

By standard approximating procedure, uλ := limn→∞ vn is a classical solution of
(4.5) and it is normal to obtain the following assertions:

(Pλ) (i) uλ is the minimal solution of (4.5);

(ii) if (4.5) has a super solution u for λ1 > 0, then (4.5) admits a minimal
solution uλ for any λ ∈ (0, λ1];

(iii) the mapping λ 7→ uλ is increasing.

Nonexistence for λ large. If (4.5) admits a minimal solution uλ for λ > 0. For
ε > 0, denote

Ωε := {x ∈ Ω, ρ(x) > ε}. (4.15)

For ξ ∈ C2
c (Ω), then there exists ε such that

supp(ξ) ⊂ Ωε.
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Then ∇ξ and −∆ξ have compact support in Ωε. For λ ∈ (0, λ∗), multiply (4.5) by
ξ and integrate in Ω, we have that∫

Ω

λξ

(a− uλ)2
dx =

∫
Ω

(−∆uλ)ξdx =

∫
Ω

∇uλ · ∇ξdx =

∫
Ω

uλ(−∆)ξdx.(4.16)

Take a sequence {ξn} ⊂ C2
c (Ω) such that

ξn → GΩ[1] in C2(Ω) as n→ +∞.

Then it follows by (4.16) that

λ

∫
Ω

ρ(x)

(a− uλ)2
dx ≤ c11

∫
Ω

uλdx ≤ c11

∫
Ω

a(x)dx,

where c11 > 0. Therefore, we have that∫
Ω

a(x)dx ≥
∫

Ω

uλ(x)dx =

∫
Ω

GΩ[1](x)(−∆)uλ(x)dx

= λ

∫
Ω

GΩ[1](x)

[a(x)− uλ(x)]2
dx ≥ λ

∫
Ω

GΩ[1](x)

a2(x)
dx,

which implies that

λ ≤
∫

Ω
a(x)dx∫

Ω
GΩ[1](x)
a2(x)

dx
.

Thus, the assertions in Proposition 4.2.1 follow by the existence, nonexistence
result and Property (Pλ). 2

Proof of Theorem 4.1.2. If there exists λ > 0 such that (4.5) admits a solution
uλ, then

v1 = λGΩ[
1

a2
] ≤ uλ < a in Ω. (4.17)

From Corollary 4.2.1, we derive that

lim
x→∂Ω

v1(x)ρ−γ(x) = +∞,

which, together with (4.17), implies that

lim
x→∂Ω

a(x)ρ−γ(x) = +∞,

then there is contradiction with (4.6). The proof ends. 2

Next we do the boundary decay estimate for uλ. First, we need following lemma.
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Lemma 4.2.2 Assume that a satisfies (4.4) and(4.6) with c0 ≥ κ > 0, γ ∈ (0, 2
3
]

and u is a super solution of (4.5) with λ > 0 such that

u ≤ θa in Ω, (4.18)

for some θ ∈ (0, 1), then (4.5) admits a minimal solution uλ such that for some
c12 > 0,

uλ ≤ c12%2−2γ in Ω.

Proof. We observe that

uλ = GΩ[
λ

(a− uλ)2
] = λκ−2θ−2GΩ[ρ−2γ],

then Lemma 4.2.1 with τ = 2− 2γ implies

uλ(x) ≤ c12%2−2γ(x).

The proof ends. 2

Proposition 4.2.2 Assume that the function a satisfies (4.4) and(4.6) with c0 ≥
κ > 0, γ ∈ (0, 2

3
]. Then

(i) for λ ∈ (0, λ∗), there exists c12 ≥ 1 such that

1

c12

%2−2γ(x) ≤ uλ(x) ≤ c12ρ
γ(x), ∀x ∈ Ω;

(ii) there exists λ∗ ≤ λ∗ such that for λ ∈ (0, λ∗),

1

c13

%2−2γ(x) ≤ uλ(x) ≤ c13%2−2γ(x), ∀x ∈ Ω (4.19)

for some c13 ≥ 1.

Proof. Lower bound. For λ ∈ (0, λ∗), the minimal solution uλ of (4.5) could be
approximated by increasing sequence {vn} defined by

vn = GΩ[
λ

(a− vn−1)2
] and v0 = 0.

By Lemma 4.2.1 with τ = 2− 2γ, we have that

uλ ≥ v1 = λGΩ[
1

a2
] ≥ cτλ%2−2γ in B1(0).
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Upper bound. The natural upper bound is a(x) ≥ κ(1 − |x|)γ. For λ small, in
the construction of vn defined by

vn = GΩ[
λ

(a− vn−1)2
] and v0 = 0.

We may assume that there exists µ ∈ (0, κ) independent of n such that for any n

vn−1(x) ≤ µρ(x)γ, ∀x ∈ B1(0)

and then there exists c14 > 0 such that

vn(x) ≤ c14µ%2−2γ(x), ∀x ∈ B1(0),

where c14 > 0 independent of n. Thus, one infers that

uλ(x) ≤ c14µ%2−2γ(x), ∀x ∈ B1(0).

This means λ∗ > 0.

For λ′ > 0 if (4.5) admits a minimal solution uλ′ such that

uλ′(x) ≤ c15%(x), x ∈ Ω.

Since the mapping λ 7→ uλ is increasing, then there exists θ ∈ (0, κ) such that for
all λ ∈ (0, λ′]

uλ(x) ≤ θa(x), x ∈ Ω.

By Lemma 4.2.2, we have that for all λ ∈ (0, λ′].

uλ(x) ≤ c16%(x), x ∈ Ω.

Denote
λ∗ = sup{λ > 0 : lim sup

x→∂Ω
uλ(x)%−1(x) < +∞}.

It is obvious that λ∗ ≤ λ∗. The proof ends. 2

Remark 4.2.1 Assume that a satisfies (4.6) with κ > 0, γ ∈ (0, 2
3
] and uλ is the

minimal solution of (4.5) with λ ∈ (0, λ∗). Then uλ satisfies (4.19) or

lim sup
ρ(x)→0+

uλ(x)ρ(x)−γ ≥ κ. (4.20)

Proof. If (4.20) fails, there exists θ1 ∈ (0, κ) and ε > 0 such that

uλ ≤ θ1ρ
γ in B1(0) \B1−ε(0).
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It infers from uλ < a in B1(0) that there exists θ2 ∈ (0, κ) such that

uλ ≤ θ2ρ
γ in B1−ε(0),

Taking θ = max{θ1, θ2} < κ, we have

uλ ≤ θργ in B1(0),

then by Lemma 4.2.2, uλ satisfies (4.19). 2

4.3 Estimates for λ∗ and λ∗ when Ω = B1(0)

In this section, we do the estimate for λ∗ and λ∗ in the case that Ω = B1(0).

Proposition 4.3.1 Assume that Ω = B1(0) and

a(x) = κ(1− |x|)γ, (4.21)

where κ > 0 and γ ∈ (0, 2
3
]. Then

λ∗(κ, γ) ≥


4κ3(1−2γ)(N−1+2γ)

27
if γ ∈ (0, 1

3
],

κ3

27
if γ ∈ (1

3
, 1

2
],

4κ3γ(1−γ)
27

if γ ∈ (1
2
, 2

3
],

(4.22)

Proof. Let w(r) = κ
3
(1− r)βγ , where

βγ =


1− 2γ if γ ∈ (0, 1

3
],

1
2

if γ ∈ (1
3
, 1

2
],

γ if γ ∈ (1
2
, 2

3
],

then βγ ∈ [γ, 1) and

−∆w(|x|) =
κ

3
βγ(1− βγ)(1− |x|)βγ−2 +

κ

3
βγ(N − 1)

(1− |x|)βγ−1

|x|
, ∀x ∈ B1(0).

(4.23)
Since (1− r)βγ ≤ (1− r)γ, then

1

(a(x)− w(|x|))2
= (

2

3
κ)−2(1− |x|)−2γ, ∀x ∈ B1(0). (4.24)

For γ ∈ (1
3
, 2

3
], we have that βγ − 2 ≤ −2γ < βγ − 1 and (4.23) implies that

−∆w(|x|) ≥ κ

3
βγ(1− βγ)(1− |x|)βγ−2, ∀x ∈ B1(0).
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Then we have that

−∆w(|x|) ≥ λ1(γ)

(a(x)− w(|x|))2
, ∀x ∈ B1(0),

where λ1(γ) = 4κ3βγ(1−βγ)

27
for γ ∈ (1

3
, 2

3
].

For γ ∈ (0, 1
3
], we have that −2γ = βγ − 1 and (4.23) implies that

−∆w(|x|) ≥ κ

3
βγ(N − βγ)(1− |x|)βγ−2, x ∈ B1(0).

Then we have that

−∆w(|x|) ≥ λ1(γ)

(a(x)− w(|x|))2
, ∀x ∈ B1(0),

where λ1(γ) = 4κ3(1−2γ)(N−1+2γ)
27

for γ ∈ (0, 1
3
].

By Lemma 4.2.2, we obtain that λ∗ ≥ λ1. 2

Next we see an upper bound for λ∗ by (4.12).

Proposition 4.3.2 Assume that Ω = B1(0) and a satisfies (4.21) with κ > 0 and
γ ∈ (0, 2

3
]. Then there exists c > 0 independent of γ, κ such that

λ∗(κ, γ) ≤ c0κ
3(2− 2γ).

Proof. From (4.12), we have to estimate
∫
B1(0)

a(x)dx and
∫
B1(0)

GΩ[1](x)
a2(x)

dx. Since

there exists c > 1 such that

c−1(1− |x|) ≤ GΩ[1](x) ≤ c(1− |x|), ∀x ∈ B1(0),

then ∫
B1(0)

GΩ[1](x)

a2(x)
dx ≥ c−1κ2

∫
B1(0)

(1− |x|)1−2γdx

≥ c

(2− 2γ)κ2
.

Together with ∫
B1(0)

a(x)dx ≤ κ

∫
B1(0)

dx,

it implies from (4.12) that λ∗(κ, γ) ≤ c0κ
3(2− 2γ). 2

Lemma 4.3.1 Assume that Ω = B1(0), a satisfies (4.21) with κ > 0, γ ∈ (0, 2
3
]

and 0 < λ < λ∗(κ, γ). Then
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(i) the mappings: γ 7→ λ∗(κ, γ) and γ 7→ λ∗(κ, γ) are decreasing for fixed κ > 0;

(ii) the mapping: κ 7→ λ∗(κ, γ) and κ 7→ λ∗(κ, γ) are increasing for fixed
γ ∈ (0, 2

3
].

Proof. Let 0 < γ2 ≤ γ1 ≤ 2
3
, for λ ∈ (0,min{λ∗(κ, γ1), λ∗(κ, γ2)}), u1, u2 are

the minimal solutions of (4.5) with γ = γ1 and γ = γ2 respectively. Denote
a1(x) = κ(1 − |x|)γ1 and a2(x) = κ(1 − |x|)γ2 , then a1 < a2 in B1(0) and for any
λ ∈ (0, γ∗(κ, γ1)),

−∆u1 =
λ

(a1 − u1)2
≥ λ

(a2 − u1)2
.

Therefore, λ ∈ (0, λ∗(κ, γ2)), which implies that

λ∗(κ, γ2) ≥ λ∗(κ, γ1).

It is similar to obtain the other assertions. 2

4.4 Extremal solution

4.4.1 Existence of extremal solution

In this section, our aim is to investigate the extremal solution of (4.5).

Proposition 4.4.1 Assume that a satisfies (4.4) and (4.6) with c0 ≥ κ > 0,
γ ∈ (0, 2

3
] and uλ∗ is given by (4.7). Then uλ∗ is a weak solution of (4.5) with λ∗.

Moreover, for β < γ, there exists cβ > 0 such that

‖uλ∗‖
W

1, N
N−β (Ω)

≤ cβ (4.25)

and ∫
Ω

ρ1−β(x)

(a− uλ∗)2
dx ≤ cβ. (4.26)

Proof. From (4.16), we have that for λ ∈ (0, λ∗),∫
Ω

uλ(−∆)ξdx =

∫
Ω

λξ

(a− uλ)2
dx, ξ ∈ C2

c (Ω). (4.27)

Now take a sequence {ξn} ⊂ C2
c (Ω) such that

ξn → GΩ[1] in C2
loc(Ω) as n→ +∞.
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Then it follows by (4.27) that∫
Ω

ρ(x)

(a− uλ)2
dx ≤ c17λ

−1

∫
Ω

uλdx ≤ c17λ
−1

∫
Ω

a(x)dx,

where c17 > 0. Again take a sequence {ξn} ⊂ C2
c (Ω) such that

ξn → GΩ[ρ−1−β] in C2
loc(Ω) as n→ +∞,

where β ∈ (0, γ). Since uλ < a, we have that∫
Ω

uλ(−∆)ξndx ≤ c18

∫
Ω

ραρ−1−βdx ≤ cβ,

where cβ > 0 satisfying cβ → +∞ as β → α−. It follows by (4.27) and Lemma
4.2.1 that

λ

∫
Ω

ρ1−β(x)

(a− uλ)2
dx ≤ c19, (4.28)

where c19 > 0 is independent of λ.

By [10, Theorem 2.6], for any β ∈ (0, γ) there exists c20 > 0 such that

‖|∇uλ|‖
M

N
N−β (Ω)

≤ c20‖(a− uλ)−2‖L1(Ω, ρ1−βdx). (4.29)

Therefore,
‖|∇uλ|‖

L
N

N−β (Ω)
≤ c19λ

−1.

That is to say that
‖uλ‖

W
1, N
N−β (Ω)

≤ c19λ
−1. (4.30)

To prove that uλ∗ is a weak solution. Since the mapping λ 7→ uλ is increasing
and uniformly bounded by function a, which is in L1(Ω), then

uλ → uλ∗ in L1(Ω) as λ→ λ∗

and the mapping λ 7→ λ
(a−uλ)2 is increasing and

λ

(a− uλ)2
→ λ

(a− uλ∗)2
a.e. in Ω as λ→ λ∗.

Therefore, it follows by (4.28) that

λ

(a− uλ)2
→ λ

(a− uλ∗)2
in L1(Ω) as λ→ λ∗

128



and then ∫
Ω

λξ

(a− uλ)2
dx→ λξ

(a− uλ∗)2
dx.

Thus, passing the limit of (4.27), uλ∗ is a extremal solution of (4.5).

To prove (4.25) and (4.25). From (4.28) and the mapping λ 7→ λρ1−β

(a−uλ)2 is
increasing, then there exists c20 > 0 such that∫

Ω

λρ1−β

(a− uλ)2
dx ≤ c20.

Then it follows by (4.29) that By [10, Theorem 2.6], we have (4.26). 2

Lemma 4.4.1 Assume that a satisfies (4.4) and (4.6) with c0 ≥ κ > 0, γ ∈ (0, 2
3
],

λ∗ is given in Theorem 4.1.1 and uλ is the minimal solution of (4.5) with λ ∈
(0, λ∗). Then uλ ∈ H1

0 (Ω) and for λ ∈ (0, λ∗), there exists c21 > 0 such that∫
Ω

|∇uλ|2dx ≤ c21λ and

∫
Ω

uλ
(a− uλ)2

dx ≤ c22.

Proof. By (4.19), for λ ∈ (0, λ∗), there exists θ ∈ (0, 1) such that a−uλ ≤ θa and
then

(i) for γ ∈ (0, 1
2
),∫

Ω

uλ
(a− uλ)2

dx ≤ cτθ
−2

∫
Ω

ρ1−2γdx <∞;

(ii) for γ = 1
2
,∫

Ω

uλ
(a− uλ)2

dx ≤ cτθ
−2

∫
Ω

ρ1−2γ[1 + (ln
1

ρ
)+]dx <∞;

(iii) for γ ∈ (1
2
, 2

3
],∫

Ω

uλ
(a− uλ)2

dx ≤ θ−2

∫
Ω

ρ2−4γdx <∞,

where 2− 4γ > −1. Taking a sequence {ξn} ⊂ C2
c (Ω) which converges to uλ, then∫

Ω

|∇uλ|2dx = λ

∫
Ω

uλ
(a− uλ)2

dx < +∞.

The proof ends. 2

Proof of Theorem 4.1.1. The existence of minimal solution for λ ∈ (0, λ∗) and
the nonexistence for λ > λ∗ follow by Proposition 4.2.1. And Theorem 4.1.1 (iii)
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see Proposition 4.2.2. The estimates of λ∗ and λ∗ see Proposition 4.3.1, Proposition
4.3.2 and Lemma 4.3.1. 2

4.4.2 Stability and regularity

Lemma 4.4.2 Assume that λ ∈ (0, λ∗), a satisfies (4.4) and (4.6) with c0 ≥ κ > 0,
γ ∈ (0, 2

3
]. Let u be a positive solution of (4.5) and v be a super solution of (4.5).

If µ1(λ, u) > 0, then
u ≤ v in Ω.

If µ1(λ, u) = 0, then
u = v in Ω.

Proof. It follows the procedure of the proof of [49, Lemma 4.1] just replaced f
(1−u)2

by 1
(a−u)2 , since 1

(a−u)2 just has the boundary singularity. 2

Proposition 4.4.2 Assume that λ ∈ (0, λ∗), a satisfies (4.4) and (4.6) with c0 ≥
κ > 0, γ ∈ (0, 2

3
], and uλ is the minimal solution of (4.5). Then uλ is stable.

Proof. Denote

λ] = sup{λ : uλ is a stable solution of (4.5)}.

Step 1. To prove λ] > 0. It follows by [71, Theorem 1] that there exists constant
c22 > 0 such that ∫

Ω

ξ2ρ−2dx ≤ c22

∫
Ω

|∇ξ|2dx, ∀ξ ∈ C2
c (Ω). (4.31)

For λ < λ∗, it follows by Theorem 4.1.1, there exists θ ∈ (0, 1) such that

uλ ≤ θa in Ω.

Together with γ ∈ (0, 2
3
], there exists constant such that

1

(a− uλ)3
≤ c23ρ

−3γ ≤ c24ρ
−2 in Ω,

where c23, c24 > 0. Then for λ small enough, it follow by (4.31) that∫
Ω

λξ2

(a− uλ)3
dx ≤

∫
Ω

|∇ξ|2dx, ∀ξ ∈ C2
c (Ω).

This means that uλ is a stable solution of (4.5) for λ > 0 small, then λ] > 0.
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Step 2. To prove λ] = λ∗. We prove λ] = λ∗ by contradiction. It is obvious
that λ] ≤ λ∗ and then we may assume that λ] < λ∗. Choose λ1 ∈ (λ], λ∗) and uλ1

satisfies that for λ ∈ (0, λ]), which is not empty from step 1,

−∆uλ1 =
λ1

(a− uλ1)2
>

λ

(a− uλ1)2
.

Moreover, since the mapping λ 7→ λ
(a−uλ)3 is increasing in L1(Ω, ρ2dx) and then

by (4.28), λ
(a−uλ)3 → λ

(a−u
λ]

)3 in L1(Ω, ρ2dx) as λ → λ]. Thus, together with uλ is

stable, we imply that uλ] is semistable. By Lemma 4.4.2, we have that uλ] = uλ1 ,
which is impossible. Therefore, λ] = λ∗. 2

Proposition 4.4.3 Assume that a satisfies (4.6) with κ > 0, γ ∈ (0, 2
3
] and uλ∗ is

given by (4.7). Then uλ∗ is semi-stable weak solution of (4.5) with λ∗.

Proof. From (4.28) and the stability of uλ, then∫
Ω

λϕ2

(a− uλ)3
dx <

∫
Ω

|∇ϕ|2dx

holds for ϕ = GB1(0)[1]. Therefore,∫
Ω

ρ2

(a− uλ)3
dx < cλ−1.

Since the mapping λ 7→ ρ2

(a−uλ)3 is strictly increasing and bounded in L1(Ω), Then

ρ2

(a− uλ)3
→ ρ2

(a− uλ∗)3
as λ→ λ∗ in L1(Ω)

and

lim
λ→λ∗

∫
Ω

λϕ2

(a− uλ)3
dx =

∫
Ω

λ∗ϕ2

(a− uλ∗)3
dx

Therefore, ∫
Ω

λ∗ϕ2

(a− uλ∗)3
dx ≤

∫
Ω

|∇ϕ|2dx, ∀ϕ ∈ C2
c (Ω),

that is, uλ∗ is semi-stable. 2

We next improve the regularity of uλ∗ and prove when N ≤ 7, the extremal
solution uλ∗ is a classical solution of (4.5) with λ = λ∗. To this end, we need the
following lemma, which is inspired by [49].

Lemma 4.4.3 Assume that λ ∈ (0, λ∗), a satisfies (4.21) with κ > 0 and γ ∈
(0, 2

3
]. Let u be a weak solution of (4.5) such that for any compact set K ⊂ Ω,
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there exists c25 > 0 such that

‖ 1

a− u
‖
L

3N
2 (K)

≤ c25. (4.32)

Then u is a classical solution of (4.5) and there exists c26 > 0 depending on K
such that

inf
x∈K

(a(x)− u(x)) > c26. (4.33)

Proof. From (4.32), we have that

1

(a− u)2
∈ L

3N
4 (K)

and then u ∈ W 2, 3N
4 (K) and by Sobolev’s Theorem we can already deduce that

u ∈ C 2
3 (K ′) with K ′ compact set in interior point set of K. To get more regularity,

it suffices to show that u < a in Ω. If not, there exists x0 ∈ Ω such that u(x0) =
a(x0). Then we have that

|a(x)− u(x)| = |a(x)− a(x0)|+ |u(x)− u(x0)|
≤ |u(x)− u(x0)| ≤ |x− x0|

2
3 ,

then

+∞ >

∫
Ω

1

(a− u)
3N
2

≥
∫

Ω

|x− x0|−
3N
2
· 2
3dx = +∞,

a contradiction, which implies that we have that a− u > 0 in Ω. 2

Proposition 4.4.4 Assume that 1 ≤ N ≤ 7, Ω = B1(0), a satisfies (4.4) and
(4.6) with c0 = κ > 0, γ ∈ (0, 2

3
] and uλ∗ is given by (4.7). Then uλ∗ is a classical

solution of (4.5) with λ = λ∗.

Proof. Since the mapping: λ 7→ uλ is increasing and bounded by a, then from (4.6)
and Lemma 4.4.3, we only have to improve the regularity of uλ∗ in any compact
set of B1(0). For λ ∈ (0, λ∗), we know that uλ is stable, then∫

Ω

λξ2

(a− uλ)3
dx ≤

∫
Ω

|∇ξ|2dx ∀ξ ∈ C2
c (B1(0)). (4.34)

Minimal solutions uλ is radially symmetric. Since the minimal solution uλ
could be approximated by the sequence functions

vn = λGB1(0)[
1

(a− vn−1)2
] v0 = 0.
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It follows by radially symmetry of vn−1 and a that vn is radially symmetry and
then uλ is radially symmetric. Then uλ∗ is radially symmetric.

We will prove that for any r ∈ (0, 1), there exists ε > 0 depending on r such
that

a− uλ ≥ ε on ∂Br(0).

Conversely, if there is r′ such that

a− uλ = 0 on ∂Br′(0).

From (4.30), we have that

uλ∗ ∈ W 1, N
N−β (Ω) for 0 < β < γ.

Then there is r0 ∈ (0, r′) and ε0 > 0 such that

a(r0)− uλ(r0) ≥ ε0 for λ ∈ (0, λ∗).

If not,
a− uλ = 0 in B1(0) \Br′(0).

there is contradiction with (4.28).

Choose

ξi =

{
(a− uλ)i − εiλ in Br0(0),

0 in B1(0) \Br0(0),

where i ∈ (−2−
√

6, 0) and ελ = a− uλ on ∂Br0 . Then ξi ∈ H1
c (B1(0)). It follows

by (4.34) with ξi, we have that∫
Br0 (0)

λ[(a− uλ)i − εiλ]2

(a− uλ)3
dx ≤

∫
Br0 (0)

|∇((a− uλ)i)|dx

= i2
∫
Br0 (0)

(a− uλ)2i−2|∇(a− uλ)|2dx. (4.35)

On the other hand, from (4.5), we have that

−∆(a− u) = −∆a− λ

(a− u)2
, Br0(0). (4.36)
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Multiplying (4.36) by i2

1−2i
[(a − uλ)2i−1 − ε2i−1] and applying integration by parts

yields that

i2

1− 2i

∫
Br0 (0)

[−∆a− λ

(a− u)2
][(a− uλ)2i−1 − ε2i−1]dx

=
i2

1− 2i

∫
Br0 (0)

∇(a− uλ) · ∇((a− uλ)2i−1)dx

= i2
∫
Br0 (0)

(a− uλ)2i−2|∇((a− uλ)|2dx,

together with (4.35), then we deduce that∫
Br0 (0)

λ[(a− uλ)i − εiλ]2

(a− uλ)3
dx ≤ i2

1− 2i

∫
Br0 (0)

[−∆a− λ

(a− u)2
][(a− uλ)2i−1 − ε2i−1]dx,

thus,

λ(2− i2

1− 2i
)

∫
Br0 (0)

1

(a− uλ)3−2i
dx ≤

∫
Br0 (0)

4λεiλ
(a− uλ)3−idx−

∫
Br0 (0)

2λε2iλ
(a− uλ)3

dx

+

∫
Br0 (0)

−∆a

(a− uλ)1−2i
dx− ε2i−1

λ

∫
Br0 (0)

∆adx− λ
∫
Br0 (0)

ε2i−1
λ

(a− uλ)2
dx.

Since ∆a ≤ 0 and ελ ≥ ε0, then

λ(2− i2

1− 2i
)

∫
Br0 (0)

1

(a− uλ)3−2i
dx ≤

∫
Br0 (0)

[
4λεiλ

(a− uλ)3−idx+
−∆a

(a− uλ)1−2i
]dx

≤
∫
Br0 (0)

[
4λ∗εi0

(a− uλ)3−idx+
−∆a

(a− uλ)1−2i
]dx.

Therefore, for (2 − i2

1−2i
) > 0, that is, i ∈ (−2 −

√
6, 0), there exists c27 > 0

independent of λ such that∫
Br0 (0)

1

(a− uλ)3−2i
dx ≤ c27. (4.37)

When N ≤ 7, 3N
2
≤ 3 − 2i, then by Lemma 4.4.3, we have that uλ has uniformly

in C2,γ
loc (Ω), then uλ∗ is a classical solution of (4.5) with λ∗ and a−uλ∗ > 0 in Ω. 2

Proof of Theorem 4.1.3. Proposition 4.4.1 shows that uλ∗ is a weak solution of
(4.5). The stability of uλ of (4.5) with λ ∈ (0, λ∗] follows by Proposition 4.4.2 and
Proposition 4.4.3. When 1 ≤ N ≤ 7 and Ω = B1(0), it from Proposition 4.4.4, uλ∗
is a classical solution of (4.5). 2
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[10] M. F. Bidaut-Véron and L. Vivier, An elliptic semilinear equation with source
term involving boundary measures: the subcritical case, Rev. Mat. Iberoamer-
icana 16, 477-513 (2000).
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[75] T. Nguyen-Phuoc and L. Véron, Initail trace of positive solutions of a class of
degenerate heat equation with absorption, arXiv:1101.1576.

[76] L. Oswald, Isolated positive singularities for a nonlinear heat equation, Hous-
ton J. Math. 14, 543-572 (1988).

[77] F. Pacella and M. Ramaswamy, Symmetry of solutions of elliptic equations
via maximum principles, Handbook of Differential Equations (M. Chipot, ed.),
Elsevier, 269-312 (2012).

[78] A. Pelesko, Mathematical modeling of electrostatic MEMS with tailores di-
electric properties, SIAM J. Appl. Math. 62(3), 888-908 (2002).

[79] H. Pham, Optimal stopping of controlled jump diffusion processes: a viscosity
solution approach, J. Math. Systems Estim. Control 8, 1-27 (1998).

[80] A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations
and systems involving fractional laplacian in the half space, Calc. Var. Partial
Differential Equations, DOI 10.1007/s00526-014-0727-8.

[81] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional laplacian:
regularity up to the boundary, J. Math. Pures Appl., 101(3), 275-302 (2014).

[82] W. Al Sayed and L. Véron, Initial trace of solutions of semilinear heat equa-
tions with absorption, Nonlinear Analysis 93, 197-225 (2013).

[83] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal.
43, 304-318 (1971).

140



[84] R. Servadei and E. Valdinoci, Variational methods for non-local operators of
elliptic type, Discrete Contin. Dyn. Syst. 33(5), 2105-2137 (2013).

[85] R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical
equations in low dimension, Comm. Pure Appl. Anal. 12, 2445-2464 (2013).

[86] R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic
operators, J. Math. Anal. Appl. 389, 887-898 (2012).

[87] L. Silvestre, Regularity of the obstacle problem for a fractional power of the
Laplace operator, Comm. Pure Appl. Math. 60, 67-112 (2007).

[88] Y. Sire and E. Valdinoci, Fractional laplacian phase transitions and boundary
reactions: a geometric inequality and a symmetry result, J. Funct. Anal. 256,
1842-1864 (2009).

[89] E. Stein, Harmonic Analysis: Real-variable methods, orthogonality and oscil-
latory integrals, Princeton University Press, Princeton NJ (1993).

[90] J. Tan, Y. Wang and J. Yang, Nonlinear fractional field equations, Nonlinear
Analysis: Theory, Methods & Applications 75, 2098-2110 (2012).

[91] S. Terracini, Symmetry properties of positive solutions to some elliptic equa-
tions with non-linear boundary conditions, Differential Integral Equations
8(8), 1911-1922 (1995).

[92] D. Valdebenito, Aportes al Estudio de Operadores Eĺıpticos no Lineales, Mas-
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