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The aim of this research work is to propose a signal processing based technique to classify and estimate
bubble sizes. Bubbles are generated by computational fluid dynamics simulations. Local measuring points
for velocity and pressure are set, and the captured data are analyzed using signal processing. The signal
analysis includes the generation of templates for signal measurements of different bubble sizes using the
short-time Fourier transform. Euclidean distances between templates of the different bubble size classes
are subsequently computed. An inter/intra-class distance based matrix methodology is proposed to
assess the discriminability of the Fourier-based template representation. The results indicate that the
proposed technique based on signal processing can lead to the discrimination of bubble sizes with the
information of bubbles passing through a single sensor point. Moreover, the model presented in this
paper suggests that the analysis window size may play a highly important role in the discriminability
according to the range of target bubble sizes.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Heterogeneous systems are found in industrial operations, such
as mineral processing, surfactant industries, food processing
plants, the pulp and paper industry, pharmaceutical applications,
and petrochemicals, among others [1]. The purpose of implement-
ing these systems ranges from conducting heterogeneous reactions
to achieving difficult separation operations. To understand the per-
formance of processes where heterogeneous systems are in use
requires achieving a correct and comprehensive description of this
environment. Studies have contributed to identifying the main fac-
tors and variables affecting the performance of different heteroge-
neous processes; however, difficulties in assessing the variables in
real systems are still found [2]. As a consequence of the latter,
many efforts have been put into developing new and improved
methodologies to obtain robust and accurate measurements of
these variables. Two- and three-phase bubble flows are not an
exception of this, particularly when the bubble size and also the
gas hold-up impacts the bubble velocity [3,4]. Many heterogeneous
reactions occur in these types of environments such as fluidized
bed reactions, froth flotation, and leaching reactions [5]. Sizing
gas bubbles could be useful in some mining processes, such as
the froth flotation process- a selective separation process used to
extract valuable minerals from raw ore, such as copper, gold and
zinc [6]. The minerals are made hydrophobic to attach to the air
bubbles that are continuously pumped into the tank [7]. Some of
the most relevant parameters to be assessed in these systems are
the bubble size, bubble velocity, bubble terminal velocity and gas
hold-up. Because many of these processes usually take place under
churn turbulent conditions, these features are difficult to evaluate
and predict [8]. The aim of this scientific contribution is to develop
a proxy based on signal processing to identify bubbles and to
extract information, namely, bubble size distribution, from a
bubbly flow created using computational fluid dynamics.

The applicability of the signal processing based method pro-
posed in this paper covers a wide range of industrial fields [9]. It
can be applied to mineral froth flotation where bubbles carrying
economically valuable particles move across a pulp phase by
defining the rate at which particles enter the froth phase that is
crucial for understanding froth drop back mechanisms and the
overall efficiency of the process. Both of the mentioned outcomes
are directly related to the bubble size [10]. Furthermore, the appli-
cability of the proposed technique also covers many gas–liquid
multiphase reactions that are relevant for refineries and
petrochemical industries where bubble size defines the rate at
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which different processes will take place [11]. It is important to
highlight that other applications within the mining industry that
do not necessarily include the use of gases such as the case of
solvent extraction could also benefit from the scheme presented
here because the droplet sizes will define the rate at which the
aqueous and organic phases separate in the settlers [12].

In general, bubble characterization methods could be based on
passive acoustic detection, capillary suction probes, high-speed
photography, endoscopic optical probes and optical waveguide
sensors [13]. Lin et al. [14] used three parallel planes of laser light
between two photo detectors to measure the refractive index, size
and velocity of the bubbles. The detectors record multiple refracted
(and reflected) beams to estimate the parameters as the bubbles
pass through. Kawaguchi et al. [15] presented an interferometer
laser imaging technique to size bubbles and droplets. They used
image analysis to estimate diameters as low as approximately
200 lm. Leung et al. [16] proposed a real-time bubble monitoring
approach and used five different carbonated drinks to flow through
a channel network passing through a laser beam. Position-sensitive
detectors measured the displacement of the laser beam due to the
lower refractive index when a bubble passed.

Vazquez et al. [13] estimated the size of air bubbles by using
photographic, acoustic, and an inverted funnel or the capillary
suction probe based techniques. The authors reported that the
inverted funnel based technique gave a 0.5% repeatability error
with a 50-bubble set, while the photographic method gave an
accuracy between 86% and 99% with a 5% repeatability error. The
passive acoustic method provided an accuracy of 97% and 99% with
a repeatability of 0.3%. It was concluded that the acoustic method
provided accurate estimation together with the optical based
scheme. Performance of the optical method was limited by the
lighting conditions and required the purity of the fluid medium.

The majority of the acoustic based techniques rely on the ability
of the bubble to oscillate with a resonance frequency that is
approximately inversely proportional to its radius. The use of a
single excitation frequency has been shown to have limitations,
such as the masking of small bubbles in the presence of large ones,
thus compelling researchers to employ two frequencies to exploit
the nonlinearity associated with the high amplitude pulsations.
The nonlinear mixing of signals, when using two frequencies,
may reduce the probability of false triggering and provide a rela-
tively accurate method to detect and size gas bubbles [17].
Pulsed ultrasound has also been employed for studying decom-
pression sickness. When humans and animals return from pressur-
ized environments, bubbles inside the blood evolve from their
tissue fluids [18–20]. It is worth highlighting that most of the
bubble resonance frequency based methods generally consider a
simplistic model and ignore the effects related to the elastic
properties of bubble walls, stiffness, multi-bubble effects, inertia,
and the proximity of the boundaries [21].

Duraiswami et al. [22] used a dispersion relation for the propa-
gation of sound waves in bubbly liquids for bubble counting.
Bubbles were artificially generated in the experiments to estimate
the bubble population. The authors also developed a technique to
measure the bubble size distributions using photography and
reported that the bubble distributions obtained by both methods
were consistent. Wu and Chahine [23] developed a device, termed
the ‘‘Acoustic Bubble Spectrometer’’, to estimate bubble size distri-
bution by measuring frequency-dependent attenuations and phase
velocities of the sound waves. Furthermore, in the boiling process,
the effects of the electrical field of the bubbles are reported in [24].
The bubble shape and ebullition cycle can be modified by strong
electric fields. Furthermore, by using the volume of fluid method
(VOF), the interaction of the electric field with the hydrodynamics
in two fluid systems has been investigated in [25] to capture the
motion of drops under the di-electrophoretic effect.
In this paper, we propose a new technique to discriminate
between different bubble sizes utilizing only a single sensor and
signal processing techniques. The discrimination is based on the
Euclidean distance between templates of the different size classes
computed using the short-time Fourier transform. The strategy
was applied to data obtained using 3D computational fluid dynam-
ics (CFD) simulations. The results presented here suggest that the
proposed technique can lead to the discrimination of bubble sizes
with a single sensor point by using signal processing methods.
Furthermore, the model proposed in this paper indicates that the
analysis window size may play a significant role in the discrim-
inability depending on the range of target bubble sizes. Finally,
the scheme described here is interesting from a theoretical and
application viewpoint.

2. Computational fluid dynamics simulations

For multiphase fluid dynamics in the volume of fluid (VOF) for-
mulation, the fluids are not interpenetrating. For each phase, the
volume fraction of the phase is introduced in each computational
cell, so that the volume fractions of all phases sum to unity. The
fields for all variables and properties are shared by the phases
and represent volume averaged values as long as the volume
fraction of each of the phases is known at each location. Thus,
the variables and properties in any given cell are either purely
representative of one of the phases or representative of a mixture
of the phases, depending upon the volume fraction values [26].

The VOF model uses the continuity and momentum equations
for incompressible fluids to describe the fluid dynamics of both
the gas and liquid phases:
~r �~u ¼ 0 ð1Þ

@q~u
@t
þ ~r � q~u �~u ¼ �~rpþ leffr2~uþ q~g ð2Þ

where u is the velocity and p is the pressure. The density q and
effective viscosity leff of the fluid are given by:

qð~x; tÞ ¼ Fð~x; tÞql þ ½1� Fð~x; tÞ� � qg ð3Þ

leff ð~x; tÞ ¼ Fð~x; tÞll;eff þ ½1� Fð~x; tÞ� � lg;eff ð4Þ

where F is the local volume fraction of the fluid. Its value is one in
the liquid phase and zero in the gas phase. A value between one and
zero indicates a density interface. The subscripts l and g indicate the
liquid and gas phases, respectively. The force due to the surface
tension acting on the gas liquid interface was considered in the pre-
sent formulation using the water surface tension and a contact
angle with the wall. The model solves the scalar advection equation
for the quantity F; this equation states that F moves with the fluid:

@F
@t
þ~u � ~rF ¼ 0 ð5Þ

For air, we have set a density qg = 1.225 [kg/m3] and a viscosity
lg = 1.79 � 10�5 [kg/ms]. For the water, we used a density
ql = 1000 [kg/m3] and a viscosity ll = 0.001 [kg/ms]. The surface
tension was set as r = 0.0728 [N/m], the gravity acceleration was
set as 9.81 [m/s2], and the contact angle of water was set as 600.
The geometry model is a cylindrical vessel with a radius of
20 mm, and it is filled with 40 mm of water. The height of the ves-
sel is 50 mm. Air is injected in the bottom with a tube with a radius
of 1 mm, and the injection tube length is 5 mm. We have injected
air at four different velocities, namely, 0.02, 0.05, 0.2 and 0.4 m/s.

2.1. Numerical method

The VOF model was solved using the commercial solver Fluent
6.3.26 on 64-bits. This package is a finite volume solver that uses
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body-fitted computational grids. Fluent uses a co-located scheme,
whereby pressure and velocity are both stored at the cell centers
[27]. The pressure–velocity coupling is obtained using the
SIMPLEC algorithm. We use the geometrical reconstruction scheme
to obtain the face fluxes, when the cell is near the interface
between two phases [26]. For the time dependent calculations,
we use a first-order implicit time scheme with convergence criteria
of 0.001. The algorithm used for pressure was body force weighted
and for the momentum, the power law scheme was used [27].

The time step was chosen so that in each time step, the conver-
gence criterion of the residuals of continuity and momentum of
0.001 was reached. We set a maximum of 20 iterations in each
time step. For the cases with inlet velocities of 0.02 and 0.04 m/s,
the time step was 8 � 10�6 s, and for the cases with inlet velocities
0.2 and 0.4 m/s, the time step was 2 � 10�6 s.

We used a 3D grid with 521,601 cells for the simulations. We
used tetrahedral elements, and the grid was refined at the air inlet.
The velocity magnitude in [m/s] and static pressure in [Pa] at the
control point were obtained with a numerical sensor, making a
vertex averaged value in the position of 10-mm high at the center-
line of the cylindrical vessel. The velocity and pressure magnitude
at this point were recorded as the data for the signal processing
analysis.

The workstation used to perform the simulations in this work is
based on Xeon E5620 with eight processors that have a 2.4-GHz
clock speed, 24 GB RAM memory, with 64 bits and running on
the Linux Debian 6.0 operating system. The simulation time for
the case of 0.05 [m/s] inlet velocity based on 1.8 s employing
8 � 10�6 time steps was approximately 6 days of CPU time.

A CFD simulation in an axisymmetric vessel with the same
methodology was reported in [28]; however, the 2D restriction
made the bubble size and frequency not completely realistic.
2.2. Preliminary theoretical analysis of the hydrodynamics

The bubble size and bubble velocity have been studied using
dimensionless numbers. Table 1 presents relevant dimensionless
numbers commonly used to characterize gas dispersion in
gas–liquid systems.

It has been reported that the bubble terminal velocity is related
to the bubble size and bubble shape [29]. In general terms, at smal-
ler bubble sizes (below 1 mm in diameter with an Eotvos number
below 0.15), the bubble shape is close to a perfect sphere and the
terminal velocity increases with the bubble size. Above a 1-mm
bubble diameter, the terminal velocity reaches a narrow region
(roughly between 10 and 40 cm/s or Eotvos numbers between
0.15 and 40.0) where upper values are reached in pure water con-
ditions while lower values are a function of the water contamina-
tion indicating that the latter reduces the bubble velocities. This
intermediate region is characterized by bubbles with ellipsoidal
shapes, bubble boundary oscillations and Reynolds numbers
Table 1
Dimensionless numbers commonly evaluated in gas-dispersed aqueous solution to
characterize these systems.

Dimensionless numbers Equation

Morton Mo ¼ gl4
l

qLr3

Eotvos Eo ¼ gql d
2
b

r
Reynolds Re ¼ qlub db

lL

Tadaki Ta ¼ ReMo0:23

Weber We ¼ ql u
2
b db

r
Froude Fr ¼ ub

ðgdbÞ
0:5
between 450 and 4700. Above 20-mm bubble diameters (Eotvos
numbers above 40), the bubble terminal velocities increase with
the diameter, exhibiting spherical cap shapes.

From Table 1, it can be observed that in the search for variables
that may impact the rate of gas–liquid reactions, bubble size and
bubble velocity have received special attention. There are a set of
mathematical relationships between bubble size, bubble velocity
and bubble shape. The bubble volume VB has been associated with
the air flow rate q crossing a closed round section [30].

VB ¼
pd3

b

6
¼ 1:378q6=5g�3=5 ð6Þ

Other research studies have estimated the Reynolds number using
the following mathematical expression [31]:

Re ¼ 4=3Eo1:5Mo�0:5

24

 !�1:2

þ 4=3Eo1:5Mo�0:5

0:43

 !�0:6
2
4

3
5
�0:83

ð7Þ

Table 2 presents a summary of the conditions tested in the CFD
computations. These outcomes will be compared to the signal
analysis. The Takadi number indicates that cases 1 and 2 exhibit
the formation of spherical bubbles, while cases 3 and 4 exhibit
spheroidal bubble shapes [32,33]. The Weber number indicates
that for cases 1 and 2, the stability of spherical bubbles is high
and no split should be produced. The critical Weber number above
in which bubbles split has been reported in a range between 1.4
and 4.7 [34]. The latter indicates that the conditions in case 4
would promote bubble split. Case 3 is an intermediate situation
that needs further analysis. Fig. 1 shows the snapshot of the four
bubble size classes obtained by CFD i.e., (a) 0.02 m/s, (b)
0.05 m/s, (c) 0.2 m/s, and (d) 0.4 m/s. As expected, it can be
observed that the bubble size increases when increasing the gas
flow rate and, at the same time, the bubble shape is increasingly
distorted.

3. Signal processing analysis and discrimination

3.1. Filtering and down sampling

Because the signals were produced at a very high sampling rate
(equal to the time step), they are first down sampled (or deci-
mated). The down sampling is performed to bring the signals
within a reasonable working range and so that they have the same
sampling rate. Down sampling is also necessary because the band-
width of the frequency spectrum is proportional to the sample rate.
This means that if the signal is sampled at a rate Fs, the spectrum
will have a frequency range from zero to Fs/2. The decimation
process includes low-pass filtering for the signals to mitigate dis-
tortion due to aliasing. An eighth-order Chebyshev Type I
low-pass filter with a cut-off frequency of 8 � Fs=2

R , where R is the
down sampling factor, was used.

3.2. Frequency domain analysis based on discrete Fourier transform

Analyzing the observed signals in the time domain may not
effectively reveal sufficient information to discriminate the
Table 2
Summary of the preliminary analysis of the bubbly flow.

Case uair [m/s] db [mm] Mo � 10�11 Eo Re Ta We ubt [m/s]

1 0.02 1.15 2.54 0.18 215 0.8 0.01 0.19
2 0.05 1.66 2.54 0.37 379 1.4 0.06 0.23
3 0.20 2.89 2.54 1.13 761 2.8 1.58 0.26
4 0.40 3.81 2.54 1.96 1011 3.7 8.35 0.26



Fig. 1. The four bubble size classes obtained by CFD, i.e., (a) 0.02 m/s, (b) 0.05 m/s, (c) 0.2 m/s, and (d) 0.4 m/s.
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different bubble size classes. For instance, cross-correlation
potentially has the following limitations in pattern recognition or
classification tasks with time varying signals: it is not suitable
for short-term frame based pattern classification because it
requires evaluation at all possible lags between reference and test-
ing windows; hence, it is constrained by the short-term analysis
windows, it restricts the analysis to the time domain, and the
use of model-based classification is not straightforward. The
signals are therefore transformed into the frequency domain
because this allows us to see how the energy of the signal is
distributed over a range of frequencies. The signals can be con-
verted to the frequency domain, for example, using the discrete
Fourier transform (DFT), obtained through Eq. (8) to provide the
spectrum of the signals. The DFT computations assume the signal
is periodic i.e., it has an integer number of complete cycles, and
determine its frequency contents. A fast Fourier transform is used
to implement the DFT that significantly reduces the computational
complexity. If f ðnÞ is the discrete time signal, where n is the
discrete time index, i.e., n ¼ 1;2; . . . ;N, the DFT can be computed as

FðxÞ ¼
XN

n¼1

f ðnÞ � e�
j2pxn

N ; x ¼ 1;2; . . . ;K ð8Þ
where FðxÞ is the DFT coefficient at the xth frequency bin and K is
the total number of frequency bins. It is worth highlighting that in
the current paper, we are proposing a framework where we are able
to discriminate between different bubble sizes with only one
sensor. In this context, the Fourier transform provides a suitable
framework, and a specific comparison with other transforms
(i.e., discrete cosine, wavelet, etc.) lies outside the scope of this
article.

3.3. Short-time Fourier transform

While the DFT of the entire time domain signal contains infor-
mation regarding the spectral components within the signal, it
cannot detect how the different frequencies change over time.
So, the time–frequency analysis is performed using the windowed
or short-time Fourier transform (STFT). The window, for example, a
Hamming window, is translated across time typically with an over-
lap of 50% between adjoining windows. The STFT is mathematically
expressed as

Fðt;xÞ ¼
XN

n¼1

f ðt þ nÞ:wðnÞ:e�
j2pxn

N ; x ¼ 1;2; . . . ;K ð9Þ



Table 3
Classifying bubble sizes by template matching based on Euclidean distances.

TEMPLATE

Class 1 (C1) Class 2 (C2) . . . Class C (CC)

INPUT (I) feature vector EdistðI;C1Þ EdistðI;C2Þ . . . EdistðI;CCÞ
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where t and x are the time and frequency indices, respectively,
while wðnÞ is the window function, commonly a Hamming window,
given as

wðnÞ ¼ 0:54� 0:46 � cos
2pn

N

� �
: ð10Þ

Eq. (9) gives the time–frequency representation of the signal i.e.,
how the signal’s energy is distributed at different frequencies over
time. The spectrogram can be obtained by taking the magnitude

squared as Oðt;xÞ ¼ jFðt;xÞj2.
A template or feature vector is then obtained by taking the

mean of the spectrogram across the time dimension. This method
is advantageous in that the average values are analyzed, and also a
comparison between signals could still be made even if they are of
a different time duration.

Template ¼ PðxÞ ¼
PT

t¼1Oðt;xÞ
T

ð11Þ

where T is the total number of windows in a template.

3.4. A discussion on the length and number of analysis windows

Before proceeding to the description on how the template
defined in Eq. (11) is used to discriminate among different bubble
sizes based on Euclidean distance based template-matching, it is
deemed necessary to provide insight on how the length of the
STFT analysis window, N, and the total number of windows in
the template, T, may potentially influence the discrimination per-
formance. The template defined in Eq. (11) corresponds to a subset
of T windows extracted from the whole signal. According to (11),
each template requires the information of T windows, where each
window is composed of N samples. The STFT analysis window size
determines the resolution of the spectral analysis: the wider
the window, the higher the spectral resolution. Additionally, the
time interval covered by each template, i.e., T � N, conditions the
time resolution: if T � N is small, the dynamics of the process
(i.e., bubble size and bubble rate) is better represented.
According to traditional signal processing theory, for a reliable
and accurate spectral analysis, the STFT analysis window length
should be such that it captures several bubble events. Adopting
this strategy in the case of the smaller bubbles that have a rela-
tively lower bubble rate would thus require the use of a very large
STFT window size, which in turn could potentially impose limita-
tions on how to describe the temporal variations contained in
the signals. However, we show that if the analysis window is short
enough, i.e., the time signal within it can be approximated as a
straight line, the signal represented by the template can be
Table 4
The inter/intra-class distance matrix used for classification performance evaluation.

Target template

Class 1 Clas

Ref template
Class 1 Edist (Class1ref, Class1target) Edist

Class 2 Edist (Class2ref,Class1target) Edist

..

. ..
. ..

.

Class C Edist (ClassCref,Class1target) Edist
modeled as a piecewise linear function. Under this condition, the
window analysis is sufficient to preserve the information related
to the average of the signal and of the absolute value of the signal
slope. By employing the piecewise linear approximation, the signal
corresponding to a given template can be expressed as:

f ðtÞ ¼ ait þ bi)f ti 6 t < tiþ1; where 1 6 i 6 T ð12Þ

where each STFT analysis window i can be expressed as

f iðtÞ ¼
ait þ bi for ti 6 t < tiþ1

0; elsewhere

�

where ti and tiþ1 define the time interval of the ith window. Note
that the model shown here corresponds to the continuous time
domain, while in the following sections for the ease of implementa-
tion, the discrete version is used. Let FiðxÞ be the Fourier transform
of the ith window f iðtÞ, while F is the Fourier operator.

FiðxÞ ¼ Fff iðtÞg ¼ Ffaitg þ Ffbig; ti 6 t < tiþ1

The template is defined as the average Fourier transform of all of
the analysis windows within the template. For the rectangular win-
dow case, the template can be written as:

PðxÞ ¼ 1
T

X
i

jFff iðtÞgj
2 ð13Þ

where the continuous time Fourier transform is defined as:

Fðf iðtÞÞ ¼
Z 1

�1
f iðtÞ:e�jxtdt

Fðf iðtÞÞ ¼
Z 1

�1
ait:rect

t� t0

d

� �
� e�jxtdtþ

Z 1

�1
bi � rect

t� t0

d

� �
:e�jxtdt

ð14Þ

where d ¼ tiþ1 � ti and t0 ¼ tiþ1þti
2 .

By replacing the Fourier transform according to Eq. (14) in Eq.
(13), the template PðxÞ is expressed as:

PðxÞ ¼ 1
T

X
i

ai
e�jxtiþ1

ð�jxÞ2
½�jxtiþ1 � 1�

 !
� ai

e�jxti

ð�jxÞ2
½�jxti � 1�

 !�����
þbi � Sa

xs
2

� �
� e�jxt0

���2 ð15Þ

As seen in Eq. (15), the absolute value of the slope of each segment
ai is preserved. The average value of f ðtÞ that corresponds to the
Fourier transform evaluated at x = 0 can be estimated from:

f ðtÞ ¼ 1
T

XT

i¼1

f iðtÞ

where

f iðtÞ ¼
1

tiþ1 � ti

Z tiþ1

ti

ðait þ biÞdt ¼ ai

2
� ½tiþ1 þ ti� þ bi

h i
ð16Þ

According to (15) and (16), a short analysis window can be a substi-
tute for a traditional window size that covers several bubble events
s 2 . . . Class C

(Class1ref,Class2 target) . . . .
(Class2ref,Class2 target) .

..

.

(ClassCref,Class2 target) . . . .
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Fig. 2. Time domain velocity signals of the four different size classes.
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if only the averages of the signal and the absolute values of the sig-
nal slopes need to be preserved. Once the analysis window size is
defined, T in Eq. (11) should be determined. If a short analysis win-
dow is selected, T should be high enough to reliably represent the
process features (i.e., signal average and slope) and should be lower
than the temporal resolution that is required. If a larger analysis
window is adopted (i.e., several bubble events per window), T
would be limited by the temporal resolution required.

3.5. Euclidean distance based template matching: nearest neighbor
classification

Signals are classified into their respective size class based on
their Euclidean distance (Edist) from the templates of known
classes. This means that Euclidean distances are first calculated
for the input signal’s feature vector (template) with all of the
available templates of different size classes as shown in Table 3,
and the class giving the smallest distance (or the nearest neighbor)
is the resulting size class. Let I ¼ i1 þ i2 þ . . .þ iy and
E ¼ e1 þ e2 þ . . .þ ez be the feature vectors or templates of two
signal classes. Thus, the Euclidean distance between vectors I
and E can be calculated as:

EdistðI;EÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði1 � e1Þ2 þ ði2 � e2Þ2 þ . . .þ ðiy � ezÞ2

q
ð17Þ

The input signal feature vector is classified according to the
minimum Euclidean distance criterion
Input signal class ¼ argminCi
fEdistðI;CiÞg ð18Þ

where Ci ¼ ½C1; C2; . . . ;CNc�, and Nc is the number of classes of bub-
ble sizes.

3.6. Discrimination performance evaluation

To evaluate the performance of the method described above, a
matrix is constructed by computing the Euclidean distances
between the reference feature vectors and the target templates
as shown in Table 4. For the performance evaluation, both the ref-
erence and target classes are assumed to be known a priori. The
first 50% of the data is used as reference class and the second
50% as target class. The order of selecting the reference and target
could be reversed i.e., the second half could be used as the refer-
ence and the first half as the target. After computing the
Euclidean distances, the inter/intra-class matrix is formed as
follows.

Once the inter/intra-class distance based matrix is formed, a
confusion versus score is calculated to determine the level of dis-
crimination as

Confusion score¼mean of diagonal values=mean of non-diagonal values

Theoretically, the values on the principal diagonal should be very
small, and the values on the off diagonal should be relatively very
large. If this is the case, then it indicates that the discrimination is
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good and the confusion score is low. A higher score would indicate
confusion in discrimination.
4. Results and Discussion

Air was injected with four different initial velocities yielding
four different bubble size classes, i.e., 0.02, 0.05, 0.2, and 0.4 m/s,
hereafter referred to as C1, C2, C3 and C4, respectively. Velocity
and pressure signals from a single sensor located 10 mm from
the bottom of the vessel were analyzed. The magnitude of the
velocity signals measured by the sensor is shown in Fig. 2, and
the pressure signals are shown in Fig. 3. The signals from the differ-
ent bubble sizes were down sampled so that they had the same
sampling rate of 250 samples/s.

Using the simulation data, the rate of the bubbles was esti-
mated for each size class by using the average duration between
the peaks in Fig. 2, indicating events crossing the sensor. From
the estimated bubble rate (number of bubbles per second), the fre-
quencies were calculated as 2.08, 4.69, 11.76, and 17.66 Hz for C1,
C2, C3, and C4, respectively. It is possible to extract directly from
the time domain pressure and velocity results the main frequency
of bubble generation. It was found that the linear gas velocities
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Fig. 3. Time domain pressure signals
increase with the frequency, which is in agreement with past
research works published [35] (see Fig. 2).

Fig. 4 depicts the time–frequency (spectrogram) representation
of the velocity signals shown in Fig. 2. The spectrograms show how
the energy in distributed in different frequencies over the duration
of the signals.

The discriminability between the four size classes for the
observed velocity and pressure signals is analyzed by construct-
ing the inter/intra-class Euclidean distance based matrices, as
described in Section 3.6. The matrices are obtained using an
STFT analysis window of 8 and 64 samples for both the velocity
and pressure signals. With the sampling rate of 250 samples/s,
an STFT analysis window of 8 samples means a 32-ms segment
of the signal in the time domain, while a STFT window of 64
samples is 256 ms. The matrices and their corresponding confu-
sion scores for the velocity and pressure signals with a window
size of eight samples are shown in Tables 5 and 6, respectively.
The matrices are normalized with their corresponding maximum
values.

It can be observed that the elements at the principal diagonal
are considerably smaller compared to the non-diagonal elements
of their corresponding rows and columns. This indicates that the
four classes are well discriminated, as also suggested by the low
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of the four different size classes.
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Fig. 4. Spectrograms of the velocity signals for the corresponding four different size classes shown in Fig. 2.

Table 5
Inter/intra-class distance matrix for velocity signal with STFT window of 8 samples.

Table 6
Inter/intra-class distance matrix for pressure signal with STFT window of 8 samples.

Table 7
Inter/intra-class distance matrix for velocity signal with STFT window of 64 samples.
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confusion score of 0.1161. The pressure signal also yields nearly
similar results, giving a confusion score of 0.1339.

Tables 7 and 8 provide the inter/intra-class distances for the
STFT with an analysis window of 64 samples. The results for the
STFT analysis window size of 64 samples also provide discrimina-
tion between the different classes. However, there is a slight degra-
dation in the discrimination performance compared to that with
the STFT window of eight samples, as indicated by the increased
score value of 0.1894 for the velocity signal and 0.1408 for the



Table 8
Inter/intra-class distance matrix for pressure signal with STFT window of 64 samples.

Table 9
Distance for velocity signal with mean removed and STFT window of 8 samples.

VELOCITY SIGNAL, MEAN REMOVED (8 sample analysis window)

Target Template

C1 C2 C3 C4

Ref template
C1 0.0535 0.4054 0.5282 0.2658
C2 0.4923 0.0624 0.1642 0.5491
C3 1.0000 0.5422 0.4304 0.9922
C4 0.9376 0.5122 0.3797 0.8683

Confusion score = 0.6269

Table 10
Confusion scores with and without the mean value removed from signals.

Confusion scores

Velocity
(8 sample)

Pressure
(8 sample)

Velocity
(64 sample)

Pressure
(64 sample)

With mean 0.1161 0.1339 0.1894 0.1408
Without mean 0.6269 0.3562 0.5716 0.2810
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pressure signal. Because the selection of the STFT analysis window
size is the trade-off between time and frequency resolutions i.e., a
smaller window gives poor frequency resolution and better time
resolution, while a larger window provides better frequency and
poor time resolution. The results suggest that when a window of
eight samples is used and provides a better time resolution,
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Fig. 5. Local confusion scores of paired size clas
information related to the bubble rate is captured and enhances
the discrimination between the different size classes. However,
when the analysis window size is increased to 64 samples where
the time resolution is relatively poor and frequency resolution is
better, the crucial information of the bubble rate is not fully cap-
tured and the discrimination performance deteriorates.

The rate of the bubbles, i.e., the number of bubbles per second,
is related to the size of the bubbles. This means that because the
larger bubbles are rising to the surface faster, they will have a
higher bubble rate, i.e., more bubbles per second. A higher bubble
rate also indicates a larger mean value of the signal, suggesting that
the information regarding the bubble rate, and thus, the bubble
size is embedded in the signal’s mean value. To investigate if this
is the case, the mean value is removed from the velocity and pres-
sure signals and the inter/intra-class distance based matrices are
reconstructed.

Table 9 shows the distance-based matrix for the velocity signal
with the mean value subtracted and an STFT window size of eight
samples. The results indicate that there is discrimination between
the first two classes, while there is confusion between C3 and C4.
Table 10 summarizes the confusion scores for the different STFT
window sizes and signals with and without the mean value.

It can be observed from the results in Tables 10 that the dis-
crimination performance deteriorates when the mean value is
removed from the signals, suggesting that significant information
for the different sizes is encoded in the time average or the rate
of bubbles.

Fig. 5 depicts the confusion scores of the velocity signal by pair-
ing the smaller sizes C1 and C2 and the larger sizes C3 and C4 for
window sizes of 8 and 64 samples, as shown in Tables 5 and 7.
Fig. 6 shows similar plots for the pressure signals by utilizing
Tables 6 and 8. Both figures suggest that a smaller analysis window
provides relatively better discrimination for smaller bubble sizes
because the linear piecewise model approximates the signal better
in these cases. Nevertheless, a larger analysis window can be used
to provide a relatively uniform discrimination over a range of smal-
ler and larger bubble sizes. This must be the result of the fact that
the bubble size and bubble rate increases when the air mass flow
also increases. Consequently, the bubble rate determines the aver-
age value of the signal: the higher the bubble rate, the higher the
density of the bubble events and the higher the time average of
C3,C4

locity
 

for 8 sample window
for 64 sampled window

ses, [C1C2] and [C3C4], for velocity signal.
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Fig. 6. Local confusion scores of paired size classes, [C1C2] and [C3C4], for pressure signal.
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the signal are. Furthermore, the higher the bubble rate, the higher
the average absolute value of the signal slope is. Both the mean
value of the signal and the absolute signal slope are well preserved
with a short analysis window when the piecewise function approx-
imation discussed in Section 3.4 is applicable.
5. Conclusions

A new scheme to classify and determine the size of bubbles
with a short-time Fourier transform based template representation
is proposed and applied to data obtained by computational fluid
dynamics simulations. The local pressure and velocity values from
a single sensor are each analyzed by using signal processing meth-
ods. Fourier-based templates are estimated to represent the pres-
sure and velocity signals. These templates are the result of
short-term spectral analysis. The results presented here with a pro-
posed inter/intra class distance based matrix analysis strongly sug-
gest that these templates can be employed to discriminate bubble
sizes by making use of a nearest neighbor pattern classification
scheme. The mean of the signal and the absolute value of signal
slopes were found to embed information regarding not only the
bubble rate but also bubble sizes. The results presented here indi-
cate that the proposed method is capable of discriminating among
bubble sizes by using only one pressure or velocity sensor mea-
surement. Moreover, the model presented in this paper suggests
that the STFT analysis window size may play a significant role in
the discriminability depending on the range of target bubble sizes.
Finally, bubble size classification experiments with real data and
the estimation of time-varying bubble size distributions are pro-
posed for future research.
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