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Esta tesis está consagrada al estudio de diferentes problemas en teoría ergódica y dinámica
topológica, relacionados a “estructuras de cubos”. Consta de seis capítulos.

En la presentación general entregamos resultados generales, ligados en cierta manera a las
estructuras de cubos que motivan esta tesis. Comenzamos por las estructuras de cubos introdu-
cidas en teoría ergódica por Host y Kra para probar la convergencia en L2 de medias ergódicas
múltiples. Luego presentamos su extensión a dinámica topológica, desarrollada por Host, Kra y
Maass (2010), que entrega herramientas para entender la estructura topológica de sistemas diná-
micos topológicos. Finalmente, mostramos las implicancias y extensiones principales derivadas de
estudiar estas estructuras, motivamos los nuevos objetos introducidos en esta tesis y bosquejamos
nuestras contribuciones.

En el Capítulo 1, entregamos antecedes generales en teoría ergódica y dinámica topológica,
dando énfasis al estudio de ciertos factores especiales.

Desde el Capítulo 2 al Capítulo 5 desarrollamos las contribuciones de esta tesis. Cada uno
está consagrado a un tópico diferente y a sus problemáticas relacionadas, tanto en teoría ergódica
como en dinámica topológica. Cada uno está asociado a un artículo científico.

En el Capítulo 2 introducimos una nueva estructura de cubos para estudiar la acción de
dos transformaciones S y T que conmutan, sobre un espacio métrico compacto X. En el mismo
capítulo estudiamos las propiedades topológicas y dinámicas de tales estructuras y las usamos
para caracterizar productos de sistemas y sus factores. También damos algunas aplicaciones,
como la construcción de factores especiales. En el mismo tema, en el Capítulo 3 usamos esta
nueva estructura para probar la convergencia casi segura de una media cúbica en un sistema con
dos transformaciones que conmutan.

En el Capítulo 4, estudiamos el semigrupo envolvente de una clase importante de sistemas
dinámicos, los nilsistemas. Usamos estructuras de cubos para mostrar relaciones entre propiedades
algebraicas del semigrupo envolvente con la geometría y dinámica de un sistema. En particular,
caracterizamos nilsistemas de orden 2 vía el semigrupo envolvente.

En el Capítulo 5 estudiamos grupos de automorfismos de sistemas simbólicos uno y dos
dimensionales. Primero consideramos sistemas simbólicos de baja complejidad y usamos factores
especiales, algunos ligados a estructuras de cubos, para estudiar el grupo de automorfismos.
Nuestro resultado principal establece que en sistemas minimales de complejidad sublineal, tales
grupos son generados por el shift y un conjunto finito. También, usando factores asociados a las
estructuras de cubos del Capítulo 2, estudiamos el grupo de automorfismos de un sistema de
embaldosados representativo.

Las referencias bibliográficas aparecen al final del documento.





Abstract

This thesis is devoted to the study of different problems in ergodic theory and topological
dynamics related to “cube structures”. It consists of six chapters.

In the General Presentation we review some general results in ergodic theory and topo-
logical dynamics associated in some way to cubes structures which motivates this thesis. We
start by the cube structures introduced in ergodic theory by Host and Kra (2005) to prove
the convergence in L2 of multiple ergodic averages. Then we present its extension to topo-
logical dynamics developed by Host, Kra and Maass (2010), which gives tools to understand
the topological structure of topological dynamical systems. Finally we present the main im-
plications and extensions derived of studying these structures, we motivate the new objects
introduced in the thesis and sketch out our contributions.

In Chapter 1 we give a general background in ergodic theory and topological dynamics
given emphasis to the treatment of special factors.

From Chapter 2 to Chapter 5 we develop the contributions of this thesis. Each one is
devoted to a different topic and related questions, both in ergodic theory and topological
dynamics. Each one is associated to a scientific article.

In Chapter 2 we introduce a novel cube structure to study the action of two commuting
transformations S and T on a compact metric space X. In the same chapter we study the
topological and dynamical properties of such structure and we use it to characterize product
systems and their factors. We also provide some applications, like the construction of special
factors. In the same topic, in Chapter 3 we use the new cube structure to prove the pointwise
convergence of a cubic average in a system with two commuting transformations.

In Chapter 4, we study the enveloping semigroup of a very important class of dynami-
cal systems, the nilsystems. We use cube structures to show connexions between algebraic
properties of the enveloping semigroup and the geometry and dynamics of the system. In
particular, we characterize nilsystems of order 2 by its enveloping semigroup.

In Chapter 5 we study automorphism groups of one-dimensional and two-dimensional
symbolic spaces. First, we consider low complexity symbolic systems and use special fac-
tors, some related to the introduced cube structures, to study the group of automorphisms.
Our main result states that for minimal systems with sublinear complexity such groups are
spanned by the shift action and a finite set. Also, using factors associated to the cube struc-
tures introduced in Chapter 2 we study the automorphism group of a representative tiling
system.

The bibliography is defer to the end of this document.
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Résumé

Cette thèse est consacrée à l’étude des différents problèmes liés aux « structures des
cubes », en théorie ergodique et en dynamique topologique. Elle est composée de six chapitres.

La présentation générale nous permet de présenter certains résultats généraux en théorie
ergodique et dynamique topologique. Ces résultats, qui sont associés d’une certaine façon
aux structures des cube, sont la motivation principale de cette thèse. Nous commençons
par les structures de cube introduites en théorie ergodique par Host et Kra (2005) pour
prouver la convergence dans L2 de moyennes ergodiques multiples. Ensuite, nous présentons
la notion correspondante en dynamique topologique. Cette théorie, développée par Host,
Kra et Maass (2010), offre des outils pour comprendre la structure topologique des systèmes
dynamiques topologiques. En dernier lieu, nous présentons les principales implications et
extensions dérivées de l’étude de ces structures. Ceci nous permet de motiver les nouveaux
objets introduits dans la présente thèse, afin d’expliquer l’objet de notre contribution.

Dans le Chapitre 1, nous nous attachons au contexte général en théorie ergodique et
dynamique topologique, en mettant l’accent sur l’étude de certains facteurs spéciaux.

Les Chapitres 2, 3, 4 et 5 nous permettent de développer les contributions de cette thèse.
Chaque chapitre est consacré à un thème particulier et aux questions qui s’y rapportent, en
théorie ergodique ou en dynamique topologique, et est associé à un article scientifique.

Les structures de cube mentionnées plus haut sont toutes définies pour un espace muni
d’une unique transformation. Dans le Chapitre 2, nous introduisons une nouvelle structure
de cube liée à l’action de deux transformations S et T qui commutent sur un espace métrique
compact X . Nous étudions les propriétés topologiques et dynamiques de cette structure et
nous l’utilisons pour caractériser les systèmes qui sont des produits ou des facteurs de pro-
duits. Nous présentons également plusieurs applications, comme la construction des facteurs
spéciaux.

Le Chapitre 3 utilise la nouvelle structure de cube définie dans le Chapitre 2 dans une ques-
tion de théorie ergodique mesurée. Nous montrons la convergence ponctuelle d’une moyenne
cubique dans un système muni deux transformations qui commutent.

Dans le Chapitre 4, nous étudions le semigroupe enveloppant d’une classe très impor-
tante des systèmes dynamiques, les nilsystèmes. Nous utilisons les structures des cubes pour
montrer des liens entre propriétés algébriques du semigroupe enveloppant et les propriétés
topologiques et dynamiques du système. En particulier, nous caractérisons les nilsystèmes
d’ordre 2 par une propriété portant sur leur semigroupe enveloppant.

Dans le Chapitre 5, nous étudions les groupes d’automorphismes des espaces symboliques

v



unidimensionnels et bidimensionnels. Nous considérons en premier lieu des systèmes symbo-
liques de faible complexité et utilisons des facteurs spéciaux, dont certains liés aux structures
de cube, pour étudier le groupe de leurs automorphismes. Notre résultat principal indique que,
pour un système minimal de complexité sous-linéaire, le groupe d’automorphismes est engen-
dré par l’action du shift et un ensemble fini. Par ailleurs, en utilisant les facteurs associés aux
structures de cube introduites dans le Chapitre 2, nous étudions le groupe d’automorphismes
d’un système de pavages représentatif.

La bibliographie, commune à l’ensemble de la thèse, se trouve en fin document.
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General Presentation

This thesis document presents four research articles concerning different problems on a
common theme in ergodic theory and topological dynamics. It consists of six chapters and
we divide it into two parts. The first one is devoted to the study of cube structures and
its applications in ergodic theory and topological dynamics. The second part is centered on
automorphism groups in symbolic dynamics. From Chapter 2 to Chapter 5 we present our
research articles with their own introduction part. In this general presentation we motivate
the main objects we study and explain our contributions. We start by explaining briefly the
historical background and framework, and then we present our main contributions and its
motivations.

Cube structures in ergodic theory

A central problem in combinatorial number theory is to understand notions of “large-
ness”of a subset of the integer numbers and when such a notion implies the existence of some
prescribed patterns. In particular, the existence of arithmetic progressions has been a widely
considered object of study. A notion of largeness that has been very well studied is the one of
having positive upper density. The upper density of a subset of the integers S is the quantity

lim sup
N→∞

](S ∩ [0, N − 1])
N

.

In 1975 Szemerédi [111] proved its celebrated theorem: any subset of the integers with
positive upper density contains arbitrarily long arithmetic progressions. Soon thereafter, in
1976 Furstenberg [50] proved the same result by using ergodic methods. Namely, he proved
that if (X,X , µ, T ) is a measure preserving system and A ∈ X is a set of positive measure
then for every d ∈ N

lim inf
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA · · · ∩ T−dnA) > 0.

A correspondence principle allows then to translate this property into a combinatorial
property of a subset of the integers. This result established a deep connection between
combinatorics, number theory and ergodic theory which has been widely exploited in the last
decades.

A fundamental question in ergodic theory that arise from Furstenberg’s result is the

1



convergence in L2 of the multiple averages

1
N

N−1∑
n=0

f1(T nx)f2(T 2nx) · · · fd(T dnx). (0.0.1)

The case d = 2 was solved by Furstenberg [50]. Several works by Lesigne [86], Conze
and Lesigne [24, 25, 26] and Host and Kra [65] dealt with the case d = 3. After more than
20 years the convergence of the general case was finally solved by Host and Kra [67]. Their
proof is a consequence of a deep structural theorem for measure preserving systems: they
built a sequence of nested factors (Zd)d∈N which are measurably isomorphic to inverse limits
of ergodic nilsystems (translations on compact homogeneous spaces of nilpotent Lie groups).
Then, they reduced the study of the multiple average by looking at Zd and its orthogonal
complement. Moreover, they showed that the limit of the average remains unchanged if one
replaces one of the functions by its conditional expectation with respect to the Zd factor. In
Furstenberg terminology, this means that the factors Zd are characteristic factors for multiple
ergodic averages.

Given a probability space (X,X , µ) and a measure preserving transformation T : X → X,
their main idea is to build for any d ∈ N a “cube”measure µ[d] in X2d and a seminorm |||·|||d
on the set of bounded measurable functions on X which is useful to study multiple ergodic
averages. They describe the orthogonal complement of Zd by the relation

E(f |Zd) = 0 if and only if |||f |||d+1 = 0.

The more remarkable (and hard) result is their structure theorem, which states that the
Zd factors have a very nice algebraic structure.

Theorem 0.0.1 (Host-Kra structure theorem). For any d ∈ N, the factor Zd is measurably
isomorphic to an inverse limit of d-step nilsystems.

Therefore, nilsystems and their inverse limits are characteristic factors for multiple aver-
ages.

The study of nilsystems as mathematical objects was considered from the 60’s, but dur-
ing the last years its study has been revitalized and has attracted the attention of several
researchers, mainly because of its applications in additive combinatorics and number theory
[49, 57, 58, 59, 60].

Moreover, the structure theorem has resulted to be very useful for the study of related
convergence problems [14, 23, 44, 46, 47, 68, 71, 83], in the study of correlation sequences
[13, 69, 48, 45] and even for the study of pointwise convergence problems [2, 3, 4, 22, 76, 77].

The idea of cubes was also studied in topological dynamics. In 2010 Host, Kra and
Maass [70] explored the topological counterpart of the cube measures introduced in [67].
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For a topological dynamical system (X,T ) they introduced the space of dynamical cubes
Q[d](X,T ) and studied its properties.

Roughly speaking, the space of topological dynamical cubes Q[d](X,T ) is a closed subset
of X2d and plays the role of the support of the measure µ[d] mentioned above. They showed
that some properties of the space of cubes can be translated into strong dynamical properties
of the system (X,T ). Namely, they introduced a relation they called RP[d](X,T ) defined
in terms of cubes which allows to characterize nilrotations. Afterwards, Shao and Ye [110]
proved that this relation is an equivalence one for general minimal systems and the quotient
of (X,T ) under this relation defines the maximal factor of (X,T ) which is (topologically)
isomorphic to a nilsystem. In other words, the factor X/RP[d](X,T ) is the topological
analogue of the Host-Kra factor Zd.

In recent years, numerous applications in ergodic theory and topological dynamics have
been found for the Host-Kra-Maass topological structural theory of nilsystems. It ranges
from the study of recurrence problems in topological dynamics [32, 72, 75] to, surprisingly,
the study of pointwise convergence of multiple ergodic averages [76, 77] (we develop this topic
later).

Objects like cube structures also appeared in the study of the convergence of averages
that generalize the ones considered by Host and Kra in [67], like

1
N

N−1∑
n=0

f1(T n1 x)f2(T n2 x) · · · fd(T nd x)

where we are considering a probability space (X,X , µ) and T1, . . . , Td are measure preserving
transformations on X such that Ti ◦ Tj = Tj ◦ Ti for every i, j = 1, . . . , d and f1, . . . , fd are
bounded functions.

The convergence of this average was first proved by Tao [112] using finitary methods.
Soon after, Townser [113], Austin [9] and Host [64] gave other proofs for the same result
using different strategies. The proof given by Towsner uses non-standard analysis and only
the proofs of Austin and Host belong to ergodic theory and try to follow the ideas of structure
theorems. In both Austin and Host proofs, the idea is to first find an extension of the ergodic
system with convenient properties. The extension given by Host is much easier to manage so
we focus our attention on that one. The main idea in Host’s proof is to build an extension
of X (magic in his terminology) such that it has a characteristic factor for the average that
looks like the Cartesian product of single transformations. To build such extension and
factor, cube structures are introduced, analogous to the ones in [67]. Recently, Walsh [115]
proved the convergence of multiple averages for nilpotent group actions but his proof follows
the original idea of Tao and does not use ergodic methods.
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Contributions

Dynamical cubes in a system with two commuting transformations

Motivated by Host’s construction in [64] and the topological theory of cubes of Host,
Kra and Maass in [70] for one single transformation, in Chapter 2 we present our work
Dynamical cubes and a criteria for systems having product extensions [34], joint work with
Wenbo Sun, where we explore a topological counterpart of the cubes introduced in [64] to see
if one can characterize interesting properties of a system with commuting transformations,
as was done in [70] for one single transformation. Given a compact metric space X and two
commuting homeomorphisms S : X → X and T : X → X we define the space of dynamical
cubes QS,T (X) as

QS,T (X) = {(x, Snx, Tmx, SnTmx) : x ∈ X,n,m ∈ Z} ⊆ X4.

Using the space QS,T (X) we succeeded to characterize a simple class of systems, namely
products of minimal topological dynamical systems and their factors. A product system is one
of the form (Y ×W,σ× id, id×τ) where (Y, σ) and (W, τ) are topological dynamical systems.
The condition “to complete the last coordinate of a point in QS,T (X) in a unique way”is equiv-
alent to be a factor of a product system. More precisely, if (x0, x1, x2, x3), (x0, x1, x2, y3) ∈
QS,T (X) then x3 = y3. We also provide several applications of these structures in topo-
logical dynamics, like the construction of “topological magic”extensions and special factors.
In what follows, further applications to the pointwise convergence of some averages and
automorphisms of symbolic systems are shown.

Pointwise convergence of cubic averages

The study of the cube structure QS,T (X) together with new results by Huang, Shao and
Ye [76] leads to prove an almost sure convergence of some cubic averages when considering
two commuting transformations. This is the joint work with Wenbo Sun A pointwise cubic
average for two commuting transformations [34].

Cubic averages are part of a plethora of non-conventional ergodic averages that has been
considered since Furstenberg’s work, like the multiple ergodic average 0.0.1. From all these
studies it follows that the nature of the problem of pointwise convergence is completely
different from the one in L2.

Historically, in the 90’s Bourgain [16] studied and proved the convergence of the average

1
N

N−1∑
n=0

f1(T anx)f2(T bnx)

for integers a and b and bounded functions f1 and f2.
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Little progress has been made since Bourgain’s result, mainly because the usual technique
to deduce pointwise convergence uses maximal inequalities, which seems not to work for
d > 2. Very recently, a significant step towards the general solution was done by Huang,
Shao and Ye [76] who introduced a new technique to study the pointwise convergence of
ergodic averages. They deeply exploited the theory of topological cubes developed in [70]
and [110] to find convenient topological models for ergodic systems. Namely, they found a
topological model with a uniquely ergodic space of dynamical cubes (and another structures
that we do not discuss here). Then they were able to show, among other things, that multiple
ergodic averages converge in a measurable distal system. They also applied this technique to
deduce the pointwise convergence of cubic averages, that is, averages like

1
N2

N−1∑
i,j=0

f1(T ix)f2(T jx)f3(T i+jx)

or like

1
N3

N−1∑
i,j,k=0

f1(T ix)f2(T jx)f3(T i+jx)f4(T kx)f5(T i+kx)f6(T j+kx)f7(T i+j+kx)

and their natural generalizations.

In the L2 setting, the first convergence result of a cubic average was given by Bergelson
[12] who showed the L2 convergence of

1
N2

N−1∑
i,j=0

f1(T ix)f2(T jx)f3(T i+jx). (0.0.2)

Host and Kra [67] generalized the L2 convergence to higher order averages using the Zd
factors (which are also characteristic for this kind of averages).

When considering more transformations, one can consider different kind of averages. For
example, one can consider averages like,

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(Ri+jx) (0.0.3)

or like

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx) (0.0.4)

The pointwise convergence of the average 0.0.3 was proved by Assani [2]. Then, Chu and
Frantzikinakis [22] proved the pointwise convergence when one consider an arbitrary number

5



of transformations. More precisely, they proved the convergence of

1
N3

N−1∑
i,j,k=0

f1(T i1x)f2(T j2x)f3(T i+j3 x)f4(T k4 x)f5(T i+k5 x)f6(T j+k6 x)f7(T i+j+k7 x)

and its natural generalizations when considering 2d − 1 transformations. In their proof, in
fact no assumption of commutativity of the transformations was needed.

In the other hand, the average 0.0.4 may not converge if one does not have commutativity
assumptions [81]. So averages 0.0.3 and 0.0.4 have a very different nature.

Interestingly, combining the cube structure introduced in Chapter 2, the Huang-Shao-Ye
strategy and the theory developed by Host in [64] we prove the pointwise convergence of the
average 0.0.4 provided that the transformations S and T commute.

Enveloping semigroups of nilsystems

Another independent application of the theory of topological cubes [70] is presented in
Chapter 4, which is based on the work Enveloping semigroups of system of order d [39]. Given
a topological dynamical system (X,T ), its enveloping semigroup is the closure of the set {T n :
n ∈ N} inXX in the product topology. This object was introduced by Ellis in the 60’s and has
proved to be a very useful tool to understand the dynamics of a system [7, 42] and properties
and applications are still being found (see [56] for example). A very important feature
of the enveloping semigroup is the fact that one can connect dynamical and geometrical
properties of a system with algebraic properties of its enveloping semigroup and vice versa.
For example, a topological dynamical system is a rotation on a compact abelian group if and
only if its enveloping semigroup is an abelian group and it is distal if and only if its enveloping
semigroup is a group. When the enveloping semigroup is not abelian a few results are known,
in particular when the enveloping semigroup is nilpotent. This question was first studied by
Glasner [53], who proved, up to some details that we do not give to simplify the discussion,
that for systems who are torus extensions of equicontinuous systems the condition of having
a 2-step nilpotent enveloping semigroup is equivalent to be a homogeneous space of a 2-step
nilpotent Polish group. We extend this result, characterizing 2-step nilsystems through the
enveloping semigroup. We introduce the notion of topologically nilpotency which is stronger
than purely algebraic nilpotency and results more convenient in our context. We show that
a topological dynamical system is a 2-step nilsystem if and only if its enveloping semigroup
is a 2-step topologically nilpotent group. For higher orders of nilpotency the questions are
more intricate and certainly require to develop new machinery. In the non abelian case,
explicit computations of enveloping semigroups are rare and one can hope to succeed in
this task only in very particular cases. Some examples in the literature of computations of
enveloping semigroups can be found in [5, 6, 92, 99, 100, 104]. In [99, 100, 104] the authors
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considered particular classes of nilsystems (affine nilsystems in tori, where the dynamics is
given by multiplication by particular matrices) and computed their enveloping semigroups.
Using the explicit description they got they were able to deduce algebraic properties from the
enveloping semigroups. Specially they deduce that such enveloping semigroups are always
nilpotent groups. Using the theory of dynamical cubes introduced by Host, Kra and Maass
we deduce algebraic properties of nilsystems and their inverse limits. Namely, we prove
that inverse limits of d-step nilsystems have d-step nilpotent enveloping semigroups, without
performing any explicit computation. These results include the previous known examples.

Automorphism groups in symbolic dynamics

The second part of this thesis is devoted to the study of automorphism groups, which is
a classical topic in symbolic dynamics studied since the 70’s in different contexts and that
is now again under study. Even if this topic seems to be far from our previous motivation
and cube structures, we arrive to them from the study of cubes. In particular, when looking
for applications of our QS,T cubes and associated factors. Indeed, the way we propose to
study automorphisms groups for tilings and other symbolic systems is by exploring in detail
the fibers over these factors. We need to give a little background in symbolic dynamics.
Given a finite set A, a space shift or subshift over A is a closed subset X ⊆ AZ (endowed
with the product topology), invariant under the shift action σ : X → X, (xi)i∈Z 7→ (xi+1)i∈Z.
Subshifts are very important objects in ergodic theory and topological dynamics, see [87] for
a nice survey about subshifts and their applications.

One associates to a subshift its automorphism group. An automorphism of a subshift
(X, σ) is a homeomorphism φ : X → X which commutes with σ (i.e. φ ◦ σ = σ ◦ φ). It is
a classical result by Curtis, Hedlund and Lyndon that such maps are given by a local map
φ̂ : A2r+1 → A such that

φ((xi)i∈Z)n = φ̂(xn−r, . . . , xn+r)

for any n ∈ Z. The map φ̂ is called the sliding block code associated to φ and the integer r is
the radius of φ. We let Aut(X, σ) denote the group of automorphisms of (X, σ) and we refer
to it as the automorphism group. The study of automorphism groups is a fundamental tool
to understand the complexity of the subshifts and provides a good invariant for classifying
them. Also, from a purely dynamical systems point of view, if φ is an automorphism of
(X, σ), the topological dynamical system (X, σ, φ) is a nice Z2 action to be studied. This
setting has been used to model the evolution of complex physical systems.

Automorphism groups has been widely studied in symbolic dynamics, both in the measur-
able and the topological setting. In ergodic theory, the group of measurable automorphisms
(i.e. measurable functions which commute with the shift almost everywhere and preserve the
measure) has been exhaustively studied for mixing systems of finite rank [43]. Orstein [94]
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proved that for mixing rank one systems this group consists only in the powers of the shift.
Then del Junco [31] proved the same result for the rank one Chacon subshift. Finally King
and Thouvenot [79] proved that for mixing systems of finite rank the group of measurable
automorphisms is spanned by the powers of the transformation and a finite set. The same
result was also proved by Host and Parreau [74] for some constant length substitutions.

In the topological setting, Boyle, Lind and Rudolph [17] describe the automorphism group
of a positive entropy mixing shift of finite type. They showed that it is a very large object, it
contains many subgroups. Recently, Hochman [62] proved similar results for multidimensional
shifts of finite type with positive entropy.

Nevertheless, little was known about the automorphism group of low complexity subshifts.
Here, by complexity we mean the increasing function PX : N → N such that PX(n) is the
number of non-empty cylinders of length n appearing in the subshift. We remark that the
topological entropy of (X, σ) is nothing but the exponential growth rate of its complexity
function. For low complexity systems, the first result in the topological setting is due to
Hedlund [61], who described the automorphism group for a family of binary substitutions
which includes the Thue-Morse system. He proved that Aut(X, σ) consists in powers of the
shift and a flip map (a map which interchanges zeros and ones). Recently, some new results
have appeared. Olli [93] proved that for Sturmian systems, Aut(X, σ) is spanned by shift
and Salo and Törmä [107] proved that for constant length or primitive Pisot substitutions
the group of automorphisms is spanned by σ and a finite set. In [107] it is asked whether
the same result holds for any primitive substitution or more generally for linearly recurrent
subshifts. In Chapter 5, we present our work On automorphisms groups of minimal low
complexity subshifts, joint with Fabien Durand, Alejandro Maass and Samuel Petite [36]. We
show, among other results that if the complexity is sublinear in a subsequence, i.e. if

lim inf
n∈N

pX(n)
n

<∞

then Aut(X, σ) is spanned by the powers of σ and a finite set. The class of systems satisfying
this condition includes primitive substitutions, linearly recurrent subshifts [39] and even some
families with polynomial complexity (since we require just liminf and not limsup). We show
that this behaviour is still true in a wide variety of examples and we illustrate methods to
deduce such results. Our main tool is the study of classical and new relations which are
preserved under the action of any automorphism. Some of those relations come from fibers
associated to nilfactors, which impose severe restrictions to the group of automorphisms.

Some of the main results in [36] were independently discovered by Cyr and Kra [30] using
different methods. They previously proved in [29] that for a subshift (X, σ) with subquadratic
growth (i.e. lim infn∈N pX(n)

n2 = 0) one has that Aut(X, σ)/〈σ〉 is a periodic group. They came
to this problem studying the Nivat conjecture, and they used a combinatorial argument for
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Z2 subshifts by Quas and Zamboni [101] that gives conditions to have periodic directions in
Z2 subshifts.

Finally, we come to the QS,T cubes and factors which provide an interesting application
to study automorphism groups of tiling systems.

The study of aperiodic tiling spaces is a topic considered by many people in very different
contexts: in logic they started to be studied to determine whether the plane can be covered
by a set of tiles satisfying adjacency rules (the Wang tiles); in geometry they provided nice
examples with interesting symmetry properties (the Penrose tilings) and in physics they
appeared in material science in the 80’s when studying the so called quasicrystals.

At the end of Chapter 5 we consider a famous tiling space, the Robinson tiling, which
was introduced by Robinson in the 70’s [105] to study undecidability problems and that has
been very useful in theoretical computer science. It is also a representative element of the
well studied class of hierarchical tilings. We use the theory of cubes introduced in Chapter 2
to deduce that the group of automorphisms of the minimal Robinson tiling is spanned by the
shift actions. We claim that this technique can be used to prove the same kind of results for
well studied families of tilings, like hierarchical tilings or others like cut and project family.
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Chapter 1

Background in ergodic theory and
topological dynamics

In this chapter we give basic definitions and background in ergodic theory and topolog-
ical dynamics. We refer to [117] for definitions for measure preserving systems and [7] for
definitions for topological dynamical systems. We also introduce the notion of nilfactors in
ergodic theory and topological dynamics which is a central object of study in this thesis.
More specific definitions will be given in every particular chapter when needed.

1.1. General definitions

1.1.1. Measure preserving systems

A measure preserving system is a 4-tuple (X,X , µ,G), where (X,X , µ) is a probability
space andG is a group of measurable, measure preserving transformations acting onX. When
there is no confusion, we omit the σ-algebra X and assume without lose of generality that the
probability space is standard, meaning that it is isomorphic to [0,1] endowed with the Borel
σ-algebra and whose measure is a combination of the Lebesgue measure and a countable or
finite set of atoms. When we consider subsets of X, we always implicitly assume that they
are measurable. Similarly, functions on X are assumed to be measurable and real valued.

For any two sub σ-algebras A and B of X, let A ∨ B denote the σ-algebra generated by
{A ∩ B : A ∈ A, B ∈ B}. It is the smallest σ-algebra containing A and B. If f is a function
on (X,X , µ) and A is a sub-algebra of X , let E(f |A) denote the conditional expectation of
f over A.

A measure preserving system (X,µ,G) is ergodic if any G-invariant set of X has measure
0 or 1.

A factor map between the measure preserving systems (Y, ν,G) and (X,µ,G) is a measure
preserving map π : Y → X such that π ◦ g = g ◦ π for all g ∈ G. We say that (X,µ,G) is
a factor of (Y, ν,G) or that (Y, ν,G) is an extension of (X,µ,G). An equivalent definition
of factor maps can be formulated via sub σ-algebras (here we need to write the σ-algebra):
a factor map of (Y,Y , ν, G) is an invariant sub σ-algebra of Y . The equivalence of these
definitions follows from considering the σ-algebra π−1(X ).
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If π is a bi-measurable (almost everywhere defined) bijection, we say that π is an isomor-
phism and that (Y, ν,G) and (X,µ,G) are isomorphic.

Some tools.

Ergodic decomposition of a measure:
Let (X,µ,G) be a measure preserving system and let I be the σ-algebra of G-invariant

sets. Let x→ µx be a regular version of conditional measures with respecto to I. This means
that the map x 7→ µx is I-measurable and

E(f |I)(x) =
∫
fdµx µ-a.e. x ∈ X

The ergodic decomposition of µ under G is µ =
∫
X µxdµ(x) and µ-a.e. the system

(X,µx, G) is ergodic.

Conditional expectation and disintegration of a measure:
Let π : Y → X be a factor map between the measure preserving systems (Y, ν,G) and

(X,µ,G) and let f ∈ L2(ν). The conditional expectation of f with respect to X is the
function E(f |X) ∈ L2(µ) defined by the equation

∫
X
E(f |X) · gdµ =

∫
Y
f · g ◦ πdν for every g ∈ L2(µ).

The following result is well known (see [51], Chapter 5 for example)

Theorem 1.1.1. Let π : Y → X be a factor map between the measure preserving systems
(Y, ν,G) and (X,µ,G). There exists a unique measurable map X → M(Y ), x 7→ νx such
that

E(f |X)(x) =
∫
fdνx (1.1.1)

for every f ∈ L1(ν).

We say that ν =
∫
X νxdµ(x) is the disintegration of ν over µ.

1.1.2. Topological dynamical systems

A topological dynamical system is a pair (X,G), where X is a compact metric space and
G is a group of homeomorphisms of the space X into itself. We always use d(·, ·) to denote
the metric in X and we let ∆X := {(x, x) : x ∈ X} denote the diagonal of X ×X.

Since we deal with both measure preserving systems and topological dynamical systems,
we always write the measure for a measure preserving system to distinguish them.

A (topological)factor map between the topological dynamical systems (Y,G) and (X,G) is
an onto, continuous map π : Y → X such that π◦g = g◦π for every g ∈ G. We say that (Y,G)
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is an extension of (X,G) or that (X,G) is a factor of (Y,G). When π is bijective, we say that
π is an isomorphism and that (Y,G) and (X,G) are isomorphic. An equivalent definition
of a (topological) factor map is given through a closed equivalence relation R ⊂ Y × Y

invariant under the diagonal G4 := {(g, g) : g ∈ G}. Given such a relation one can build the
quotient space Y/R and the canonical projection from Y onto this quotient defines a natural
factor map. Conversely, for any factor map π : Y → X one can consider the invariant closed
equivalence relation Rπ = {(y, y′) ∈ Y × Y : π(y) = π(y′)} (see [7], Chapter 1 for further
details). Building factors through invariant closed equivalence relations is a very useful way
to obtain interesting special factors (see section of special factors for example).

We say that (X,G) is transitive if there exists a point in X whose orbit OG(x) := {gx : g ∈
G} is dense. Equivalently, (X,G) is transitive if for any two non-empty open sets U, V ⊆ X

there exists g ∈ G such that U ∩ g−1V 6= ∅.
A system (X,G) is weakly mixing if the Cartesian product X ×X is transitive under the

action of the diagonal of G. Equivalently, (X,G) is weakly mixing if for any four non-empty
open sets A,B,C,D ⊆ X there exists g ∈ G such that simultaneously A ∩ g−1B 6= ∅ and
C ∩ g−1D 6= ∅.

We say that (X,G) is minimal if the orbit of any point is dense in X. Let (X,G) be a
topological dynamical system. A point x ∈ X is minimal or almost periodic if (OG(x), G)
is a minimal system. A system (X,G) is pointwise almost periodic if any x ∈ X is an almost
periodic point.

Let (X,G) be a topological dynamical system and (x, y) ∈ X ×X. We say that (x, y) is
a proximal pair if there exists a sequence (gi)i∈N in G such that

lim
i→∞

d(gix, giy) = 0,

and it is a distal pair if it is not proximal. We let P (X) denote the set of proximal pairs. A
topological dynamical system (X,G) is called distal if (x, y) is distal whenever x, y ∈ X are
distinct. Equivalently, (X,G) is distal if P (X) = 4X . Distal systems have a lot of interesting
properties which are stated later in the document when used.

In the following two sections, we focus our attention in the case where G is the cyclic
group spanned by one single transformation T .

1.2. Classical special factors

A very classical and important factor associated to a measure preserving system is the
Kronecker factor. Thinking of σ-algebras, the Kronecker factor Z1 of a system (X,µ, T ) is the
σ-algebra spanned by the eigenfunctions of the operator L2(µ)→ L2(µ), f 7→ f ◦T . It is also
the smallest σ-algebra such that any invariant function of the system (X ×X,µ⊗ µ, T × T )
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is measurable with respect to Z1 ⊗ Z1. It is well known that Z1 has a very nice algebraic
structure: it is measurably isomorphic to a rotation on a compact abelian group, meaning
that it can be represented as (Z1,m, T ) where Z1 is a compact abelian group, T is the rotation
z 7→ τz for a fixed τ ∈ Z1 and m is the Haar measure of Z1.

The topological analogue of the Kronecker factor is the maximal equicontinuous factor.
For a topological dynamical system (X,T ) its maximal equicontinuous factor is the largest
factor of X where the family {T n : n ∈ Z} is an equicontinuous one. Similarly to the
measurable case, when (X,T ) is minimal the maximal equicontinuous factor is (topologically)
isomorphic to a rotation (Z1, T ) where Z1 is a compact abelian group and T is the rotation
by a fixed τ ∈ Z1. Rotations over compact abelian groups have many good properties: for
them, minimality, transitivity, ergodicity and unique ergodicity are equivalent properties.

An important feature about the maximal equicontinuous factor is that it can be built
through the regionally proximal relation [7]. Two points x, y ∈ X are said to be regionally
proximal if for any δ > 0 there exist x′, y′ ∈ X and n ∈ Z such that

d(x, x′) < δ, d(y, y′) < δ and d(T nx′, T ny′) < δ.

We let RP(X) denote the set of regionally proximal pairs. It is clear that RP(X) is a closed
invariant relation on X. The non trivial fact is that is also an equivalence relation when
(X,T ) is minimal. Moreover, this relation characterizes being an equicontinuous system: the
quotient X/RP(X) is the maximal equicontinuous factor of (X,T ) [7].

1.3. Nilfactors

The study of nilsystems is classical in ergodic theory and topological dynamics [8, 53,
96, 116] but its relevance has grown in the last years, mainly because of its importance
in the study of multiple ergodic averages [67], in the structure analysis of measurable and
topological systems [67, 70] and in the analysis of the existence of certain patterns in a subset
of the integers [57]. We introduce the general definitions.

1.3.1. Nilpotent groups, nilmanifolds and nilsystems

Let G be a group. For g, h ∈ G, we write [g, h] = ghg−1h−1 for the commutator of g and
h and for A,B ⊆ G we write [A,B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}.
The commutator subgroups Gj, j ≥ 1, are defined inductively by setting G1 = G and
Gj+1 = [Gj, G]. Let d ≥ 1 be an integer. We say that G is d-step nilpotent if Gd+1 is
the trivial subgroup. We remark that a subgroup of a d-step nilpotent group is also d-step
nilpotent, and any abelian group is 1-step nilpotent.
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Let G be a d-step nilpotent Lie group and Γ a discrete cocompact subgroup of G. The
compact manifold X = G/Γ is called a d-step nilmanifold. The fundamental properties of
nilmanifolds were established by Malcev [88]. The group G acts on X by left translations
and we write this action as (g, x) 7→ gx. There exists a unique probability measure invariant
under the action of G, called the Haar measure of X.

Let τ ∈ G and T be the transformation x 7→ τx. Then (X,µ, T ) is called a d-step
nilsystem. We remark that (X,µ, T ) is also a topological dynamical system if we do not
consider the measure. In this case we just write (X,T ).

We show next some known examples of nilsystems.
Rotations:
Rotations over compact abelian groups are 1-step nilsystems.
The Heisenberg system :
Let G be the Heisenberg group

G =




1 x z

0 1 y

0 0 1

 : x, y, z ∈ R

 ,

and consider the cocompact subgroup

Γ =




1 n m

0 1 p

0 0 1

 : n,m, p ∈ Z


Then G/Γ is a 2-step nilmanifold. Fix an element

τ =


1 τ1 τ3

0 1 τ2

0 0 1


such that {1,τ1 ,τ2} are independent over Q. Then system (G/Γ, τ) is a 2-step minimal
nilsystem.

Affine nilsystems:
An important subclass of nilsystems is the class of affine nilsystems. Let d ∈ N and let

A be a d × d integer matrix such that (A − Id)d = 0 (such a matrix is called unipotent).
Let ~α ∈ Td and consider the transformation T : Td → Td, x 7→ Ax + ~α. Let G be the group
spanned by A and all the translations of Td. Since A is unipotent one can check that G is
a d-step nilpotent Lie group. The stabilizer of 0 is the subgroup Γ spanned by A thus we
can identify Td with G/Γ. The topological dynamical system (Td, T ) = (G/Γ, T ) is called a
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d-step affine nilsystem and it is proved in [96] that this system is minimal if the projection
of ~α on Td/ker(A− Id) defines a minimal rotation.

For example, consider A =
 1 1

0 1

 and ~α = (0, α)t. Then the transformation (y, x) 7→

A(y, x)t + ~α is nothing but the skew torus transformation (x, y) 7→ (x+ α, y + x).

Nilsystems, like rotations, possess very nice properties and we state some of them here.
Most of them appear in the works of Auslander, Green and Hahn [8], Leibman [82, 83],
Lesigne [85] and Parry [96, 97]. We refer to [63] for a nice expository of the subject.

Theorem 1.3.1. Let (X,T ) be a d-step nilsystem. Then (X,T ) is a distal system.

Moreover we have,

Theorem 1.3.2. Let (X,µ, T ) be a d-step nilsystem. The following are equivalent:

1. (X,µ, T ) is ergodic.

2. (X,T ) is transitive.

3. (X,T ) is minimal.

4. (X,T ) is uniquely ergodic, meaning that the Haar measure is the unique invariant
measure.

1.3.2. The cube measures, seminorms and Host-Kra factors

We now describe more in details the measurable cube construction of Host and Kra
[67] and the topological one of Host, Kra and Maass [70]. Let d ≥ 1 be an integer, and
write [d] = {1, 2, . . . , d}. We view an element of {0, 1}d, the Euclidean cube, either as a
sequence ε = (ε1, . . . , εd) of 0′s and 1′s; or as a subset of [d]. A subset ε corresponds to the
sequence (ε1, . . . , εd) ∈ {0, 1}d such that i ∈ ε if and only if εi = 1 for i ∈ [d]. For example,
~0 = (0, . . . , 0) ∈ {0, 1}d is the same as ∅ ⊂ [d] and ~1 = (1, . . . , 1) is the same as [d].

If ~n = (n1, . . . , nd) ∈ Zd and ε ∈ {0, 1}d, we define ~n · ε =
n∑
i=1

ni · εi = ∑
i∈ε
ni.

If X is a set, we denote X2d by X [d] and we write a point x ∈ X [d] as x = (xε : ε ∈ {0, 1}d).
Let (X,X , T ) be a probability space and T an invertible measurable measure preserving

transformation on X. For any d ∈ N let consider X [d] and let T [d] denote the diagonal action
T × T . . . × T (2d times) on X [d]. We remark that we can naturally identify X [d+1] with
X [d] ×X [d].

For d ∈ N, Host and Kra introduced the cube measure µ[d] on X [d]. These measures are
defined inductively as follows. For d = 0, µ[0] is just µ. If µ[d] is already defined, then µ[d+1]
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is the relative independent product of (X [d], µ[d], T [d]) with itself over the sigma algebra IT [d]

of T [d]-invariant sets. This means that if F and F ′ are bounded functions on X [d] then

∫
X[d+1]

F ⊗ F ′dµ[d+1] =
∫
X[d]

E(F |IT [d])E(F ′|IT [d])dµ[d].

These measures are then used to build seminorms. For a function f on X one can define
quantity

|||f |||d :=
 ∏
ε∈{0,1}d

f(xε)dµ[d]

1/2d

.

and it turns out to be a seminorm on L∞(µ) which is useful to control multiple averages.
More precisely, one has that

lim sup
N→∞

∥∥∥∥∥ 1
N

N−1∑
n=0

f1(T nx)f2(T 2nx) · · · fd(T dnx)
∥∥∥∥∥

2
≤ min

1≤j≤d
j |||fj|||

As mentioned before, the Host-Kra factors are defined with the relation

E(f |Zd) = 0 if and only if |||f |||d+1 = 0.

The connexion between multiple averages and nilsystems is the Host-Kra structure theo-
rem:

Theorem 1.3.3. d-step nilsystems and their inverse limits are characteristic factors for the
multiple average

1
N

N−1∑
n=0

f1(T nx)f2(T 2nx) · · · fd(T dnx).

This means that one can replace any function by its conditional expectation with respect
to the Zd factor without affecting the limit.

1.3.3. Topological cubes and the regionally proximal relation of
order d

Let (X,T ) be a topological dynamical system and d an integer. We define Q[d](X,T ) to
be the closure in X [d] = X2d of the elements of the form

(T ~n·εx : ε = (ε1, . . . , εd) ∈ {0, 1}d)

where ~n = (n1, . . . , nd) ∈ Zd and x ∈ X.
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As examples, Q[2](X,T ) is the closure in X [2] of the set

{(x, T nx, Tmx, T n+mx) : x ∈ X,n,m ∈ Z}

and Q[3](X,T ) is the closure in X [3] of the set

{(x, T nx, Tmx, T n+mx, T px, T n+px, Tm+px, T n+m+px) : x ∈ X,n,m, p ∈ Z}.

An element in Q[d](X,T ) is called a cube of dimension d. When there is no confusion,
we just write Q[d](X) instead of Q[d](X,T ). As mentioned before, this cube structure of a
dynamical system was introduced in [70] as the topological counterpart of the theory of cube
measures developed in [67].

The following structure theorem relates the notion of cubes and nilsystems. It motivates
the objects introduced in Chapter 2 and is the main tool used in Chapter 4.

Theorem 1.3.4 ([70]). Assume that (X,T ) is a transitive topological dynamical system and
let d ≥ 1 be an integer. The following properties are equivalent:

1. If x,y ∈ Q[d+1](X) have 2d+1 − 1 coordinates in common, then x = y.

2. If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d+1](X), then x = y.

3. X is an inverse limit of minimal d-step nilsystems.

We say that a minimal system (X,T ) is a system of order d if satisfies any of the previous
conditions.

The cube structure Q[d+1](X) also allow us to build the maximal factors of order d. Let
(X,T ) be a topological dynamical system and let d ≥ 1 be an integer. A pair (x, y) ∈ X×X
is said to be regionally proximal of order d if for any δ > 0 there exists x′, y′ ∈ X and
~n = (n1, . . . , nd) ∈ Zd such that d(x, x′) < δ, d(y, y′) < δ and

d(T ε·~nx′, T ε·~ny′) < δ

for any ε = (ε1, . . . , εd) ∈ {0, 1}d \ {~0}.
The set of regionally proximal pairs of order d is denoted by RP[d](X,T ) (or just RP[d](X)

when there is no confusion), and is called the regionally proximal relation of order d. We
remark that when d = 1, RP[1](X) is nothing but the regionally proximal relation RP(X).

The following theorem shows some properties of the regionally proximal relation of order
d.

Theorem 1.3.5 ([70], [110]). Let (X,T ) be a minimal topological dynamical system and
d ∈ N. Then
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1. (x, y) ∈ RP[d](X) if and only if there exists a sequence (~ni) in Zd+1 such that T ~ni·εx→ y

for every ε 6= ∅.

2. RP[d](X) is an equivalence relation.

3. Let π : Y → X be a factor map between the minimal systems (Y, T ) and (X,T ) and
d ∈ N. Then π × π(RP[d](Y )) = RP[d](X).

Furthermore the quotient of X under RP[d](X) is the maximal d-step nilfactor and we
denote X/RP[d](X) = Zd(X). Particularly Z1(X) is the maximal equicontinuous factor. It
also follows that every factor of a system of order d is a system of order d.

In particular, (X,T ) is a system of order d if and only if the regionally proximal relation
of order d coincides with the diagonal relation.

1.4. The Enveloping semigroup

The enveloping semigroup (or Ellis semigroup) E(X,G) of a topological dynamical system
(X,G) is defined as the closure in XX of the group G endowed with the product topology.
This notion was introduced by Ellis and has proved to be a fundamental tool in studying
topological dynamical systems. Algebraic properties of E(X,G) can be translated into dy-
namical and geometrical properties of (X,G) and vice versa. For example, a topological
dynamical system (X,G) is a rotation on a compact abelian group if and only if E(X,G) is
an abelian group and it is distal if and only if E(X,G) is a group.

So, usually an enveloping semigroup is not a group and multiplication is not a continuous
operation. In any case, for an enveloping semigroup E(X,G), the applications E(X,G) →
E(X,G), p 7→ pq and p 7→ gp are continuous for all q ∈ E(X,G) and g ∈ G.

If π : Y → X is a factor map between the topological dynamical systems (Y,G) and
(X,G), then π induces a unique factor map π∗ : E(Y,G)→ E(X,G) that satisfies π∗(u)π(y) =
π(uy) for every u ∈ E(Y,G) and y ∈ Y .

In the following we introduce some algebraic terminology which results to have an im-
portant meaning in the enveloping semigroup. We refer to Auslander’s book [7], Chapters 3
and 6 for further details.

Let (X,G) be a topological dynamical system. We say that u ∈ E(X,G) is an idempotent
if u2 = u. By the Ellis-Nakamura Theorem, any closed subsemigroup H ⊆ E(X,G) admits
an idempotent. A left ideal I ⊆ E(X,G) is a non-empty subset such that E(X,G)I ⊆ I. An
ideal is minimal if it contains no proper ideals. An idempotent u is minimal if u belongs to
some minimal ideal I ⊆ E(X,G).
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We summarize some results that connect algebraic properties of E(X,G) with dynamical
properties of (X,G). Some of those properties are useful when proving minimality of a
dynamical system and we use them in Chapter 2.

Theorem 1.4.1. Let (X,G) be a topological dynamical system and let E(X,G) be its en-
veloping semigroup. Then

1. An ideal I ⊆ E(X,G) is minimal if and only if (I,G) is a minimal system. Particularly,
minimal ideals always exist;

2. An idempotent u ∈ E(X,G) is minimal if and only if (OG(u), G) is a minimal system;

3. An idempotent u ∈ E(X,G) is minimal if vu = v for some v ∈ E(X,G) implies that
uv = u;

4. Let x ∈ X. Then (OG(x), G) is a minimal system if and only if there exists a minimal
idempotent u ∈ E(X,G) with ux = x.

Theorem 1.4.2. Let (X,G) be a topological dynamical system. Then

1. (x, y) ∈ P (X) if and only if there exists u ∈ E(X,G) with ux = uy;

2. Let x ∈ X and let u ∈ E(X,G) be an idempotent. Then (x, ux) ∈ P (X);

3. Let x ∈ X. Then there exists y ∈ X such that (x, y) ∈ P (X) and (OG(y), G) is
minimal.

4. If (X,G) is minimal, (x, y) ∈ P (X) if and only if there exists u ∈ E(X,G) a minimal
idempotent such that y = ux.

Proposition 1.4.3. Let (Y,G) and (X,G) be topological dynamical systems and let π : Y →
X be a factor map. If u ∈ E(X,G) is a minimal idempotent, then there exists a minimal
idempotent v ∈ E(Y,G) such that π∗(v) = u.

Proof. If u ∈ E(X,G) is a minimal idempotent, let v′ ∈ E(X,G) with π∗(v′) = u. Then
π∗(OG(v′)) = OG(u). Let J ⊆ OG(v′) be a minimal subsystem. Since (OG(u), G) is minimal,
we have that π∗(J) = OG(u). Let φ be the restriction of π∗ to J . Since u is idempotent,
we have that φ−1(u) is a closed subsemigroup of E(Y,G). By the Ellis-Nakamura Theorem,
we can find an idempotent v ∈ φ−1(u). Since v belongs to J we have that v is a minimal
idempotent.
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Part I

Cube structures in topological
dynamics
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Chapter 2

Dynamical cubes and a criteria for
systems having product extensions

This chapter is based on the joint work with Wenbo Sun Dynamical Cubes and a criteria
for systems having product extensions [34]. For minimal Z2-topological dynamical systems,
we introduce a cube structure and a variation of the regionally proximal relation for Z2 ac-
tions, which allow us to characterize product systems and their factors. We also introduce the
concept of topological magic systems, which is the topological counterpart of measure theoretic
magic systems introduced by Host in his study of multiple averages for commuting transfor-
mations. Roughly speaking, magic systems have a less intricate dynamic and we show that
every minimal Z2 dynamical system has a magic extension. We give various applications of
these structures, including the construction of some special factors in topological dynamics of
Z2 actions.

2.1. Introduction

We start by reviewing the motivation for characterizing cube structures for systems with
a single transformation, which was first developed for ergodic measure preserving systems.
To show the convergence of some multiple ergodic averages, Host and Kra [67] introduced for
each d ∈ N a factor Zd which characterizes the behavior of those averages. They proved that
this factor can be endowed with a structure of a nilmanifold: it is measurably isomorphic to an
inverse limit of ergodic rotations on nilmanifolds. To build such a structure, they introduced
cube structures over the set of measurable functions of X to itself and they studied their
properties. Later, Host, Kra and Maass [70] introduced these cube structures into topological
dynamics. For (X,T ) a minimal dynamical system and for d ∈ N, they introduced the space
of cubes Q[d+1](X) which characterizes being topologically isomorphic to an inverse limit
of minimal rotations on nilmanifolds. They also defined the regionally proximal relation of
order d, denoted by RP[d](X) which allows one to build the maximal nilfactor. They showed
that RP[d](X) is an equivalence relation in the distal setting. Recently, Shao and Ye [110]
proved that RP[d](X) is an equivalence relation in any minimal system and the quotient by
this relation is the maximal nilfactor of order d. This theory is important in studying the
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structure of Z-topological dynamical systems and recent applications of it can be found in
[39], [75], [77].

Back to ergodic theory, a natural generalization of the averages considered by Host and
Kra [67] are averages arise from a measurable preserving system of commuting transforma-
tions (X,B, µ, T1, . . . , Td). The convergence of these averages was first proved by Tao [112]
with further insight given by Towsner [113], Austin [9] and Host [64]. We focus our attention
on Host’s proof. In order to prove the convergence of the averages, Host built an extension
of X (magic in his terminology) with suitable properties. In this extension he found a char-
acteristic factor that looks like the Cartesian product of single transformations. Again, to
build these objects, cubes structures are introduced, analogous to the ones in [67].

2.1.1. Criteria for systems having a product extension

A system with commuting transformations (X,S, T ) is a compact metric space X endowed
with two commuting homeomorphisms S and T . The transformations S and T span a Z2-
action, but we stress that we consider this action with a given pair of generators. Throughout
Chapters 2 and 3, we always use G ∼= Z2 to denote the group generated by S and T .

A product system is a system of commuting transformations of the form (Y × W,σ ×
id, id × τ), where σ and τ are homeomorphisms of Y and W respectively (we also say that
(Y ×W,σ × id, id × τ) is the product of (Y, σ) and (W, τ)). These are the simplest systems
of commuting transformations one can imagine.

We are interested in understanding how “far”a system with commuting transformations
is from being a product system, and more generally, from being a factor of a product system.
To address this question we need to develop a new theory of cube structures for this kind of
actions which is motivated by Host’s work in ergodic theory and that results in a fundamental
tool.

Let (X,S, T ) be a system with commuting transformations S and T . The space of cubes
QS,T (X) of (X,S, T ) is the closure in X4 of the points (x, Snx, Tmx, SnTmx), where x ∈ X
and n,m ∈ Z.

One of our main results is that this structure allows us to characterize systems with a
product extension:

Theorem 2.1.1. Let (X,S, T ) be a minimal system with commuting transformations S and
T . The following are equivalent:

1. (X,S, T ) is a factor of a product system;

2. If x and y ∈ QS,T (X) have three coordinates in common, then x = y;

3. If (x, y, a, a) ∈ QS,T (X) for some a ∈ X, then x = y;
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4. If (x, b, y, b) ∈ QS,T (X) for some b ∈ X, then x = y;

5. If (x, y, a, a) ∈ QS,T (X) and (x, b, y, b) ∈ QS,T (X) for some a, b ∈ X, then x = y.

Of course not any system is a factor of a product system. Nevertheless, the cube structure
QS,T (X) also provides us a framework for studying the structure of an arbitrary system with
commuting transformations. We introduce the (S, T )-regionally proximal relation RS,T (X)
of (X,S, T ), defined as

RS,T (X) := {(x, y) : (x, y, a, a), (x, b, y, b) ∈ QS,T (X) for some a, b ∈ X}.

We remark that in the case S = T , these definitions coincide with Q[2](X) and RP[1](X)
defined in [70]. When S 6= T , the relation RS,T (X) is included in the regionally proximal
relation for Z2 actions [7] but can be different. So RS,T (X) is a variation of RP[1](X) for Z2

actions.
In a distal system with commuting transformations, it turns out that we can further

describe properties of RS,T (X). We prove that RS,T (X) is an equivalence relation and the
quotient ofX by this relation defines the maximal factor with a product extension (see Section
2.4 for definitions).

We also study the topological counterpart of the “magic extension”in Host’s work [64].
We define the magic extension in the topological setting and show that in this setting,
every minimal system with commuting transformations admits a minimal magic extension
(Proposition 2.2.11). Combining this with the properties of the cube QS,T (X) and the relation
RS,T (X), we are able to prove Theorem 2.1.1.

We provide several applications, both in a theoretical framework and to real systems.
Using the cube structure, we study some representative tiling systems. For example, we
show that the RS,T relation on the two dimensional Morse tiling system is trivial. Therefore,
it follows from Theorem 2.1.1 that it has a product extension.

Another application of the cube structure is to study the properties of a system having a
product system as an extension (see Section 2.5 for definitions), which include:

1. Enveloping semigroup: we show that (X,S, T ) has a product extension if and only if S
and T are automorphic in the enveloping semigroup.

2. Disjoint orthogonal complement: we show that if (X,S, T ) is an S-T almost periodic
system, then (X,S, T ) is disjoint from systems with a product extension if and only if
both (X,S) and (X,T ) are minimal weakly mixing systems.

3. Set of return times: we show that in the distal setting, (x, y) ∈ RS,T (X) if and only if
the set of return time of x to any neighborhood of y is an B∗S,T set.
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4. Topological complexity: we define a relative topological complexity of a system with
commuting transformations and show that in the distal setting, (X,S, T ) has a product
extension if and only if it has bounded topological complexity.

2.1.2. Organization of the Chapter

In Section 2.2, we formally define the cube structure, the (S, T )-regionally proximal re-
lation and the magic extension in the setting of systems with commuting transformations.
We prove that every minimal system with commuting transformations has a minimal magic
extension, and then we use this to give a criteria for systems having a product extension
(Theorem 2.1.1). We also present properties of the relation RS,T (X) in an arbitrary sys-
tem with commuting transformations and discuss some connections with equicontinuity and
related notions.

In Section 2.3, we compute the RS,T (X) relation for some tiling systems and provide some
applications.

In Section 2.4, we study further properties of the RS,T (X) relation in the distal case.
In Section 2.5, we study various properties of systems with product extensions, which

includes the study of its enveloping semigroup, disjoint orthogonal complement, set of return
times, and topological complexity.

2.2. Cube structures and general properties

2.2.1. Cube structures and the (S, T )-regionally proximal relation

Definition 2.2.1. For a system (X,S, T ) with commuting transformations S and T , let FS,T
denote the subgroup of G4 generated by id×S× id×S and id× id×T ×T (recall that G is
the group spanned by S and T ). Write G∆ := {g× g× g× g ∈ G4 : g ∈ G}. Let GS,T denote
the subgroup of G4 generated by FS,T and G∆.

The main structure studied in this chapter is a notion of cubes for a system with com-
muting transformations:

Definition 2.2.2. Let (X,S, T ) be a system with commuting transformations S and T . We
define

QS,T (X) = {(x, Snx, Tmx, SnTmx) : x ∈ X,n,m ∈ Z};

QS(X) = π0 × π1(QS,T (X)) = {(x, Snx) ∈ X : x ∈ X,n ∈ Z};

QT (X) = π0 × π2(QS,T (X)) = {(x, T nx) ∈ X : x ∈ X,n ∈ Z};

Kx0
S,T = {(Snx0, Tmx0, SnTmx0) ∈ X3 : n,m ∈ Z} for all x0 ∈ X,
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where πi : X4 → X is the projection to the i-th coordinate in X4 for i = 0, 1, 2, 3.

We start with some basic properties of QS,T (X). The following proposition follows im-
mediately from the definitions:

Proposition 2.2.3. Let (X,S, T ) be a minimal system with commuting transformations S
and T . Then,

1. (x, x, x, x) ∈ QS,T (X) for every x ∈ X;

2. QS,T (X) is invariant under GS,T ;

3. (Symmetries) if (x0, x1, x2, x3) ∈ QS,T (X), then (x2, x3, x0, x1), (x1, x0, x3, x2) ∈ QS,T (X)
and (x0, x2, x1, x3) ∈ QT,S(X);

4. (Projection) if (x0, x1, x2, x3) ∈ QS,T (X), then (x0, x1), (x2, x3) ∈ QS(X) and (x0, x2),
(x1, x3) ∈ QT (X);

5. If (x0, x1) ∈ QS(X), then (x0, x1, x0, x1) ∈ QS,T (X); If (x0, x1) ∈ QT (X), then
(x0, x0, x1, x1) ∈ QS,T (X);

6. (Symmetry) (x, y) ∈ QR(X) if and only if (y, x) ∈ QR(X) for all x, y ∈ X, where R is
either S or is T .

Remark 2.2.4. We remark that when S = T one has an additional symmetry, namely
(x0, x1, x2, x3) ∈ QS,T (X) if and only if (x0, x2, x1, x3) ∈ QS,T (X).

It is easy to see that (QS,T (X),GS,T ) is a topological dynamical system. Moreover, we
have:

Proposition 2.2.5. Let (X,S, T ) be a minimal system with commuting transformations S
and T . Then (QS,T (X),GS,T ) is a minimal system. Particularly, taking R to be either S or
T , QR(X) is minimal under the action generated by id×R and g × g for g ∈ G.

Proof. We use results on the enveloping semigroups given in the Background Chapter.
The proof is similar to the one given in page 46 of [55] for some similar diagonal actions.

Let E(QS,T (X),GS,T ) be the enveloping semigroup of (QS,T (X),GS,T ). For i = 0, 1, 2, 3, let
πi : QS,T (X)→ X be the projection onto the i-th coordinate and let π∗i : E(QS,T (X),GS,T )→
E(X,G) be the induced factor map.

Let u ∈ E(QS,T (X), G∆) denote a minimal idempotent. We show that u is also a
minimal idempotent in E(QS,T (X),GS,T ). By Theorem 1.4.1, it suffices to show that if
v ∈ E(QS,T (X),GS,T ) with vu = v, then uv = u. Projecting onto the corresponding coordi-
nates, we deduce that π∗i (vu) = π∗i (v)π∗i (u) = π∗i (v) for i = 0, 1, 2, 3. It is clear that the projec-
tion of a minimal idempotent to E(QS,T (X), G∆) is a minimal idempotent in E(X,G). Since
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π∗i (v)π∗i (u) = π∗i (v), by Theorem 1.4.1 we deduce that π∗i (u)π∗i (v) = π∗i (u) for i = 0, 1, 2, 3.
Since the projections onto the coordinates determine an element of E(QS,T (X),GS,T ), we
have that uv = u. Thus we conclude that u is a minimal idempotent in E(QS,T (X),GS,T ).

For any x ∈ X, (x, x, x, x) is a minimal point under G∆. So there exists a minimal
idempotent u ∈ E(QS,T (X), G∆) such that u(x, x, x, x) = (x, x, x, x). Since u is also a
minimal idempotent in E(QS,T (X),GS,T ), the point (x, x, x, x) is minimal under GS,T . Since
the orbit closure of (x, x, x, x) under GS,T is QS,T (X), we have that (QS,T (X),GS,T ) is a
minimal system.

The fact that QR(X) is minimal follows immediately by taking projections.

We remark that Kx0
S,T is invariant under Ŝ := S× id×S and T̂ := id×T ×T . We let Fx0

S,T

denote the action spanned by Ŝ and T̂ . We note that (Kx0
S,T ,Fx0

S,T ) is not necessarily minimal,
even if X is minimal (the minimality of Kx0

S,T implies the minimality of OS(x0) under S and
the minimality of OT (x0) under T , which does not always hold). See the examples in Section
2.3.

The following lemma follows from the definitions:

Lemma 2.2.6. Let π : Y → X be a factor map between two minimal systems (Y, S, T ) and
(X,S, T ) with commuting transformations S and T . Then π×π×π×π(QS,T (Y )) = QS,T (X).
Therefore, π × π(QS(Y )) = QS(X) and π × π(QT (Y )) = QT (X).

Associated to the cube structure, we define a relation in X as was done in [70] with cubes
associated to a Z-system. This is the main relation we study in this work:

Definition 2.2.7. Let (X,S, T ) be a minimal system with commuting transformations S
and T . We define

RS(X) = {(x, y) ∈ X ×X : (x, y, a, a) ∈ QS,T (X) for some a ∈ X};

RT (X) = {(x, y) ∈ X ×X : (x, b, y, b) ∈ QS,T (X) for some b ∈ X};

RS,T (X) = RS(X) ∩RT (X).

It then follows from (3) of Proposition 2.2.3 that RS(X),RT (X),RS,T (X) are symmetric
relations, i.e. (x, y) ∈ A if and only if (y, x) ∈ A for all x, y ∈ X, where A is RS(X),RT (X)
or RS,T (X). It is worth noting that in the case S = T , RS,T (X) is the regionally proximal
relation RP[1](X) defined in [70].

Using these definitions, our main Theorem 2.1.1 can be rephrased as (we postpone the
proof to Section 2.2.4):

Theorem. Let (X,S, T ) be a minimal system with commuting transformations S and T .
The following are equivalent:

1. (X,S, T ) is a factor of a product system;

28



2. If x and y ∈ QS,T (X) have three coordinates in common, then x = y;

3. RS(X) = ∆X ;

4. RT (X) = ∆X ;

5. RS,T (X) = ∆X .

Remark 2.2.8. In the case where (X,S, T ) = (Y × W,σ × id, id × τ) is exactly a product
system, we have that

QS,T (X) = {((y1, w1), (y2, w1), (y1, w2), (y2, w2)) : y1, y2 ∈ Y, w1, w2 ∈ W} .

In this case, RS,T (X) = ∆X holds for trivial reasons. Suppose that ((y1, w1), (y2, w2)) ∈
RS,T (X) for some (y1, w1), (y2, w2) ∈ X. Since ((y1, w1), (y2, w2)) ∈ RS(X), there exists
a ∈ X such that ((y1, w1), (y2, w2), a, a) ∈ QS,T (X). Therefore w2 = w1 and (y1, w2) = a =
(y2, w2), which implies that y1 = y2. Thus RS,T (X) = ∆X .

2.2.2. Magic systems

We construct an extension of a system with commuting transformations which behaves
like a product system for use in the sequel. Following the terminology introduced in [64] in
the ergodic setting, we introduce the notion of a magic system in the topological setting:

Definition 2.2.9. A minimal system (X,S, T ) with commuting transformations S and T is
called a magic system if RS(X) ∩RT (X) = QS(X) ∩QT (X).

We remark that the inclusion in one direction always holds:

Lemma 2.2.10. Let (X,S, T ) be a system with commuting transformations S and T . Then
RS(X) ∩RT (X) ⊆ QS(X) ∩QT (X).

Proof. Suppose (x, y) ∈ RS(X)∩RT (X). Then in particular (x, y) ∈ RS(X). So there exists
a ∈ X such that (x, y, a, a) ∈ QS,T (X). Taking the projections onto the first two coordinates,
we have that (x, y) ∈ QS(X). Similarly, (x, y) ∈ QT (X), and so RS(X)∩RT (X) ⊆ QS(X)∩
QT (X).

In general, not every system with commuting transformations is magic. In fact, RS(X)∩
RT (X) and QS(X) ∩ QT (X) may be very different. For example, let (T = R/Z, T ) be a
rotation on the circle given by Tx = x + α mod 1 for all x ∈ T, where α is an irrational
number. Then QT (T) ∩ QT (T) = T × T. But RT (T) ∩ RT (T) = {(x, x) ∈ T2 : x ∈ T}
(here we take S = T ). However, we can always regard a minimal system with commuting
transformations as a factor of a magic system:

29



Proposition 2.2.11 (Magic extension). Let (X,S, T ) be a minimal system with commuting
transformations S and T . Then (X,S, T ) admits a minimal magic extension, meaning it has
an extension which is a minimal magic system.

Proof. We use some results of Section 4 of [54], where Glasner studied the so called prolon-
gation relation and its relation with closed orbits to propose a topological analogue of the
ergodic decomposition. By Lemmas 4.1 and 4.5 in [54], we can find a point x0 ∈ X such that
QS[x0] := {x ∈ X : (x0, x) ∈ QS(X)} and QT [x0] := {x ∈ X : (x0, x) ∈ QT (X)} coincide
with OS(x0) and OT (x0) respectively (moreover, the set of such points is a Gδ set).

Let Y be a minimal subsystem of the system (Kx0
S,T , Ŝ, T̂ ), where Ŝ = S × id × S, T̂ =

id× T × T . Since the projection onto the last coordinate defines a factor map from (Y, Ŝ, T̂ )
to (X,S, T ), there exists a minimal point of Y of the form ~z = (z1, z2, x0). Hence, Y is the
orbit closure of (z1, z2, x0) under Ŝ and T̂ . We claim that (Y, Ŝ, T̂ ) is a magic extension of
(X,S, T ).

It suffices to show that for any ~x = (x1, x2, x3), ~y = (y1, y2, y3) ∈ Y , (~x, ~y) ∈ Q
Ŝ
(Y ) ∩

Q
T̂

(Y ) implies that (~x, ~y) ∈ R
Ŝ
(Y )∩R

T̂
(Y ). Since (~x, ~y) ∈ Q

Ŝ
(Y ) and the second coordinate

of Y is invariant under Ŝ, we get that x2 = y2. Similarly, (~x, ~y) ∈ Q
T̂

(Y ) implies that x1 = y1.
We recall that d(·, ·) is a metric in X defining its topology. Let ε > 0. Since (~x, ~y) ∈

Q
Ŝ
(Y ), there exists ~x′ = (x′1, x′2, x′3) ∈ Y and n0 ∈ Z such that d(xi, x′i) < ε for i = 1, 2, 3

and that d(Sn0x′1, x1) < ε, d(Sn0x′3, y3) < ε. Let 0 < δ < ε be such that if x, y ∈ X and
d(x, y) < δ, then d(Sn0x, Sn0y) < ε.

Since ~x′ ∈ Y , there exist n,m ∈ Z such that d(x′1, Snz1), d(x′2, Tmz2), d(x′3, SnTmx0) < δ.
Then d(Sn0x′1, S

n0+nz1), d(Sn0x′3, S
n0+nTmx0) < ε.

Let 0 < δ′ < δ be such that if x, y ∈ X and d(x, y) < δ′, then d(Snx, Sny) < δ.
Since ~z ∈ Kx0

S,T , we have that z1 ∈ QT [x0]. By assumption, there exists m0 ∈ Z such that
d(Tm0x0, z1) < δ′. Then d(SnTm0x0, S

nz1) < δ and d(Sn+n0Tm0x0, S
n+n0z1) < ε.

Denote ~z′ = (Snz1, T
mz2, S

nTmx0) ∈ Y . Then the distance between

(~z′, Ŝn0~z′, T̂m0−m~z′, Ŝn0T̂m0−m~z′)

and the corresponding coordinates of w = (~x, ~y, ~u, ~u) is smaller than Cε for some uniform
constant C > 0, where ~u = (x1, a, x1) for some a ∈ X (the existence of a follows by passing
to a subsequence). We conclude that (~x, ~y) ∈ R

Ŝ
(Y ). Similarly (~x, ~y) ∈ R

T̂
(Y ).

Moreover, if (X,S, T ) is a system with commuting transformations S and T and (Y, Ŝ, T̂ )
is the magic extension described in Proposition 2.2.11, we have:

Corollary 2.2.12. If ((x1, x2, x3), (x1, x2, y3)) ∈ Q
Ŝ
(Y ), then ((x1, x2, x3), (x1, x2, y3)) ∈

R
Ŝ
(Y ).
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The following lemma is proved implicitly in Proposition 2.2.11. We state it here for use
in the sequel:

Lemma 2.2.13. Let (X,S, T ) be a minimal system with commuting transformations S and
T . Let (Y, Ŝ, T̂ ) be the magic extension given by Proposition 2.2.11 and let ~x = (x1, x2, x3),
~y = (y1, y2, y3) be points in Y . For R being either S or T , if (~x, ~y) ∈ R

R̂
(Y ) then x1 = y1,

x2 = y2 and (x3, y3) ∈ RR(X).

2.2.3. Partially distal systems

We recall that a topological dynamical system (X,G) is distal if x 6= y implies that

inf
g∈G

d(gx, gy) > 0.

We introduce a definition of partial distality, which can be viewed as a generalization of
distality, and is the main ingredient in the proof of Theorem 2.1.1.

Let (X,S, T ) be a minimal system with commuting transformations S and T . For R
being either S or T , let PR(X) be the set of proximal pairs under R.

Definition 2.2.14. Let (X,S, T ) be a minimal system with commuting transformations S
and T . We say that (X,S, T ) is partially distal if QS(X)∩PT (X) = QT (X)∩PS(X) = ∆X .

We remark that when S = T , partial distality coincides with distality. If QS(X) is
an equivalence relation on X, then the system (X,S, T ) being partially distal implies that
the quotient map X → X/QS(X) is a distal extension between the systems (X,T ) and
(X/QS(X), T ).

The following lemma allows us to lift a minimal idempotent in E(X,G) to a minimal
idempotent in E(X4,FS,T ). Recall that taking R to be either S or T , if u ∈ E(X,R) is an
idempotent, then (x, ux) ∈ PR(X) for all x ∈ X (Theorem 1.4.2).

Lemma 2.2.15. Let (X,S, T ) be a minimal system with commuting transformations S and
T , and let u ∈ E(X,G) be a minimal idempotent. Then there exists a minimal idempotent
û ∈ E(X4,FS,T ) of the form û = (e, uS, uT , u), where uS ∈ E(X,S) and uT ∈ E(X,T ) are
minimal idempotents. Moreover, if (X,S, T ) is partially distal, we have that uSu = uTu = u.

Proof. For i = 0, 1, 2, 3, let πi be the projection from X4 onto the i-th coordinate and let
π∗i be the induced factor map in the enveloping semigroups. Hence π∗1 : E(X4,FS,T ) →
E(X,S), π∗2 : E(X4,FS,T )→ E(X,T ), and π∗3 : E(X4,FS,T )→ E(X,G) are factor maps. By
Proposition 1.4.3, we can find a minimal idempotent û ∈ E(X4,FS,T ) such that π∗3(û) = u.
Since the projection of a minimal idempotent is a minimal idempotent, û can be written in
the form û = (e, uS, uT , u), where uS ∈ E(X,S) and uT ∈ E(X,T ) are minimal idempotents.
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Now suppose that (X,S, T ) is partially distal. Let u ∈ E(X,G) and û = (e, uS, uT , u) ∈
(X4,FS,T ) be minimal idempotents in the corresponding enveloping semigroups. Note that
(ux, uSux, uTux, uux) = (ux, uSux, uTux, ux) ∈ QS,T (X) for all x ∈ X. So we have that
(ux, uSux) ∈ PS(X) ∩QT (X) and (ux, uTux) ∈ PT (X) ∩QS(X). Thus uSux = uTux = ux

for all x ∈ X since X is partially distal. This finishes the proof.

Corollary 2.2.16. Let (X,S, T ) be a partially distal system with commuting transformations
S and T . Then for every x ∈ X, the system (Kx

S,T , Ŝ = S × id × S, T̂ = id × T × T ) with
commuting transformations Ŝ and T̂ is a minimal system. Moreover, (Kx

S,T , Ŝ, T̂ ) is a magic
extension of (X,S, T ).

Proof. Since (X,S, T ) is a minimal system, there exists a minimal idempotent u ∈ E(X,G)
such that ux = x. By Lemma 2.2.15, there exists a minimal idempotent û ∈ E(X4,FS,T )
such that û(x, x, x) = (x, x, x), which implies that (x, x, x) is a minimal point of Kx

S,T . The
proof that (Kx

S,T , Ŝ, T̂ ) is a magic extension is similar to Proposition 2.2.11.

Corollary 2.2.17. Let (X,S, T ) be a partially distal system. Then (X,S) and (X,T ) are
pointwise almost periodic.

Proof. By Lemma 2.2.15, for any x ∈ X, we can find minimal idempotents uS ∈ E(X,S)
and uT ∈ E(X,T ) such that uSx = uTx = x. This is equivalent to being pointwise almost
periodic.

2.2.4. Proof of Theorem 2.1.1

Before completing the proof of Theorem 2.1.1, we start with some lemmas:

Lemma 2.2.18. For any minimal system (X,S, T ) with commuting transformations S and
T , QS(X) ∩ PT (X) ⊆ RS(X).

Proof. Suppose (x, y) ∈ QS(X) ∩ PT (X). Since (x, y) ∈ PT (X), there exists a sequence
(mi)i∈N in Z such that d(Tmix, Tmiy) → 0. We can assume that Tmix and Tmiy con-
verge to a ∈ X. Since (x, y) ∈ QS(X), we have that (x, y, x, y) ∈ QS,T (X) and therefore
(x, y, Tmix, Tmiy)→ (x, y, a, a) ∈ QS,T (X). We conclude that (x, y) ∈ RS(X).

Lemma 2.2.19. Let (X,S, T ) be a minimal system with commuting transformations S and
T such that RS(X) = ∆X . Then for every x ∈ X, (Kx

S,T , Ŝ, T̂ ) is a minimal system.
Particularly, for every x ∈ X we have that (OS(x), S) and (OT (x), T ) are minimal systems.

Proof. Since RS(X) = ∆X , by Lemma 2.2.18, we deduce that QS(X) ∩ PT (X) = ∆X . For
any x ∈ X, let u ∈ E(X,G) be a minimal idempotent with ux = x and let (e, uS, uT , u) ∈
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E(X4,FS,T ) be a lift given by Lemma 2.2.15. Then (x, uSx, uTx, ux) = (x, uSx, uTx, x) ∈
QS,T (X). Projecting to the last two coordinates, we get that (uTx, x) ∈ QS(X). On the other
hand, (uTx, x) ∈ PT (X) as uT ∈ E(X,T ) is an idempotent. Since QS(X) ∩ PT (X) = ∆X ,
we deduce that x = uTx and thus (x, uSx, uTx, ux) = (x, uSx, x, x). Since RS(X) = ∆X , we
have that (uSx, uTx, ux) = (x, x, x) and this point is minimal.

The second statement follows by projecting Kx
S,T onto the two first coordinates.

Lemma 2.2.20. Let (X,S, T ) be a minimal system with commuting transformations S and
T . If QS(X) ∩QT (X) = ∆X , then RS(X) = ∆X .

Proof. We remark that if (x, a, b, x) ∈ QS,T (X), then (x, a) and (x, b) belong to QS(X) ∩
QT (X). Consequently, if (x, a, b, x) ∈ QS,T (X), then a = b = x. Now let (x, y) ∈ RS(X) and
let a ∈ X such that (x, y, a, a) ∈ QS,T (X). By minimality we can take two sequences (ni)i∈N
and (mi)i∈N in Z such that SniTmia → x. We can assume that Sniy → y′ and Tmia → a′,
and thus (x, Sniy, Tmia, SniTmia) → (x, y′, a′, x) ∈ QS,T (X). We deduce that y′ = a′ = x

and particularly Tmia→ x. Hence (x, y, Tmia, Tmia)→ (x, y, x, x) ∈ QS,T (X) and therefore
x = y.

We are now ready to prove Theorem 2.1.1:

Proof of Theorem 2.1.1.
(1)⇒ (2). Let π : Y ×W → X be a factor map between the minimal systems (Y ×W,σ×

id, id×τ) and (X,S, T ). Let (x0, x1, x2, x3) and (x0, x1, x2, x
′
3) ∈ QS,T (X). It suffices to show

that x3 = x′3. Since π4(Qσ×id,id×τ (Y ×W )) = QS,T (X), there exist ((y0, w0), (y1, w0), (y0, w1),
(y1, w1)) and ((y′0, w′0), (y′1, w′0), (y′0, w′1), (y′1, w′1)) in Qσ×id,id×τ (Y ×W ) such that π(y0, w0) =
x0 = π(y′0, w′0), π(y1, w0) = x1 = π(y′1, w′0), π(y0, w1) = x2 = π(y′0, w′1), π(y1, w1) = x3 and
π(y′1, w′1) = x′3.

Let (ni)i∈N and (mi)i∈N be sequences in Z such that σniy0 → y1 and τmiw0 → w1. We
can assume that σniy′0 → y′′1 and τmiw′0 → w′′1 so that ((y′0, w′0), (y′′1 , w′0), (y′0, w′′1), (y′′1 , w′′1)) ∈
Qσ×id,id×τ (Y ×W ). Since π(y0, w0) = π(y′0, w′0), we have that

π4((y′0, w′0), (y′′1 , w′0), (y′0, w′′1), (y′′1 , w′′1)) = (x0, x1, x2, x3).

Particularly, π(y′1, w′0) = π(y′′1 , w′0) and π(y′0, w′1) = π(y′0, w′′1). By minimality of (Y, σ) and
(W, τ), we deduce that π(y′1, w) = π(y′′1 , w) and π(y, w′1) = π(y, w′′1) for every y ∈ Y and for
every w ∈ W . Hence x3 = π(y′′1 , w′′1) = π(y′′1 , w′1) = π(y′1, w′1) = x′3.

(2)⇒ (3). Let (x, y) ∈ RS(X) and let a ∈ X such that (x, y, a, a) ∈ QS,T (X). We remark
that this implies that (x, a) ∈ QT (X) and then (x, x, a, a) ∈ QS,T (X). Since (x, x, a, a) and
(x, y, a, a) belong to QS,T (X), we have that x = y.

(3) ⇒ (1). By Lemma 2.2.19, for every x0 ∈ X, we can build a minimal magic system
(Kx0

S,T , Ŝ, T̂ ) which is an extension of (X,S, T ) whose factor map is the projection onto the
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last coordinate. We remark that if ~x = (x1, x2, x3) and ~y = (y1, y2, y3) are such that (~x, ~y) ∈
R
Ŝ
(Kx0

S,T ), then by Lemma 2.2.13, x1 = y1, x2 = y2 and (x3, y3) ∈ RS(X). Hence, if RS(X)
coincides with the diagonal, so does R

Ŝ
(Kx0

S,T ).
Let φ : Kx0

S,T → OS(x0)×OT (x0) be the projection onto the first two coordinates. Then φ
is a factor map between the minimal systems (Kx0

S,T , Ŝ, T̂ ) and (OS(x0)×OT (x0), S×id, id×T )
with commuting transformations. We remark that the latter is a product system.

We claim that the triviality of the relation RS(X) implies that φ is actually an iso-
morphism. It suffices to show that (a, b, c), (a, b, d) ∈ Kx0

S,T implies that c = d. By min-
imality, we can find a sequence (ni)i∈N in Z such that Snia → x0. Since RS(X) = ∆X ,
we have that limSnic = b = limSnid. So lim Ŝni(a, b, c) = lim Ŝni(a, b, d) and hence
((a, b, c), (a, b, d)) ∈ P

Ŝ
(Kx0

S,T ). Since R
Ŝ
(Kx0

S,T ) is the diagonal, by Lemma 2.2.19 applied
to the system (Kx0

S,T , Ŝ, T̂ ) we have that every point in Kx0
S,T has a minimal Ŝ-orbit. This

implies that (a, b, c) and (a, b, d) are in the same Ŝ-minimal orbit closure and hence they be-
long to Q

Ŝ
(Kx0

S,T ). By Proposition 2.2.11, since they have the same first two coordinates, we
deduce that ((a, b, c), (a, b, d)) ∈ R

Ŝ
(Kx0

S,T ), which is trivial. We conclude that (Kx0
S,T , Ŝ, T̂ ) is

a product system and thus (X,S, T ) has a product extension.
(2)⇒ (4) is similar to (2)⇒ (3); (4)⇒ (1) is similar to (3)⇒ (1); (3)⇒ (5) is obvious.
(5) ⇒ (1). By Proposition 2.2.11, we have a magic extension (Y, Ŝ, T̂ ) of (X,S, T ) with

Y ⊆ Kx0
S,T for some x0 ∈ X. The magic extension satisfies Q

Ŝ
(Y )∩Q

T̂
(Y ) = R

Ŝ
(Y )∩R

T̂
(Y ).

Since RS(X) ∩ RT (X) is the diagonal, by Lemma 2.2.13, we have that R
Ŝ
(Y ) ∩ R

T̂
(Y ) =

Q
Ŝ
(Y ) ∩Q

T̂
(Y ) is also the diagonal. By Lemma 2.2.20, we have that R

Ŝ
(Y ) coincides with

the diagonal relation. Therefore, (Y, Ŝ, T̂ ) satisfies property (3) and we have proved above
that this implies that (Y, Ŝ, T̂ ) (and consequently (X,S, T )) has a product extension. This
finishes the proof.

We remark that if (X,S, T ) has a product extension, then Theorem 2.1.1 gives us an
explicit (or algorithmic) way to build such an extension. In fact, we have:

Proposition 2.2.21. Let (X,S, T ) be a minimal system with commuting transformations S
and T . The following are equivalent:

1. (X,S, T ) has a product extension;

2. There exists x ∈ X such that the last coordinate of Kx
S,T is a function of the first two

coordinates. In this case, (Kx
S,T , Ŝ, T̂ ) is a product system;

3. For any x ∈ X, the last coordinate of Kx
S,T is a function of the first two coordinates.

In this case, (Kx
S,T , Ŝ, T̂ ) is a product system.

Proof. (1) ⇒ (3). By Theorem 2.1.1, when (X,S, T ) has a product extension, then the last
coordinate of QS,T (X) is a function of the first three ones, which implies (3).
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(3)⇒ (2). Is obvious.
(2) ⇒ (1). Let Y ⊆ Kx

S,T be a minimal subsystem and let (x1, x2, x3) ∈ Y . We remark
that (Y, Ŝ, T̂ ) is an extension of (X,S, T ) and that the last coordinate of Y is a function of
the first two coordinates. Hence, the factor map (x′1, x′2, x′3) → (x′1, x′2) is an isomorphism
between (Y, Ŝ, T̂ ) and (OS(x1)×OT (x2), S × id, id× T ), which is a product system.

We can also give a criterion to determine when a minimal system (X,S, T ) with commut-
ing transformations S and T is actually a product system:

Proposition 2.2.22. Let (X,S, T ) be a minimal system with commuting transformations S
and T . Then (X,S, T ) is a product system if and only if QS(X) ∩QT (X) = ∆X .

Proof. Suppose that (X,S, T ) = (Y ×W,σ × id, id × τ) is a product system and (y1, w1),
(y2, w2) ∈ Qσ×id(Y ×W )∩Qid×τ (Y ×W ). Then ((y1, w1), (y2, w2)) ∈ Qid×τ (Y ×W ) implies
that y1 = y2, and ((y1, w1), (y2, w2)) ∈ Qσ×id(Y × W ) implies that w1 = w2. Therefore,
QS(Y ×W ) ∩QT (Y ×W ) = ∆Y×W .

Conversely, suppose that QS(X) ∩ QT (X) = ∆X . By Lemma 2.2.20, Theorem 2.1.1
and Proposition 2.2.21, we have that for any x0 ∈ X, (Kx0

S,T , Ŝ, T̂ ) is a product extension
of (X,S, T ). We claim that these systems are actually isomorphic. Recall that the factor
map π : Kx0

S,T → X is the projection onto the last coordinate. It suffices to show that
(x1, x2) = (x′1, x′2) for all (x1, x2, x), (x′1, x′2, x) ∈ Kx0

S,T . Let (ni)i∈N and (mi)i∈N be sequences
in Z such that SniTmix→ x0. We can assume that Snix1 → a1, Snix′1 → a′1, Tmix2 → b1 and
Tmix′2 → b′1. Therefore, (x0, a1, b1, x0) and (x0, a

′
1, b
′
1, x0) belong to QS,T (X). Since QS(X)∩

QT (X) = ∆X , we have that a1 = b1 = a′1 = b′1 = x0. We can assume that Snix → x′ and
thus (x0, S

nix1, x2, S
nix) → (x0, x0, x2, x

′), (x0, S
nix′1, x

′
2, S

nix) → (x0, x0, x
′
2, x
′). Moreover,

these points belong to QS,T (X). Since RS(X) is the diagonal, we conclude that x2 = x′ = x′2.
Similarly, x1 = x′1 and the proof is finished.

2.2.5. Equicontinuity and product extensions

Let (X,S, T ) be a system with commuting transformations S and T . Let suppose that
(X,S, T ) has a product extension. In this section we show that one can always find a product
extension where the factor map satisfies some kind of equicontinuity conditions.

We recall the definition of equicontinuity:

Definition 2.2.23. Let (X,G) be a topological dynamical system, where G is an arbitrary
group action. We say that (X,G) is equicontinuous if for any ε > 0, there exists δ > 0 such
that if d(x, y) < δ for x, y ∈ X, then d(gx, gy) < ε for all g ∈ G. Let π : Y → X be a factor
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map between the topological dynamical systems (Y,G) and (X,G). We say that Y is an
equicontinuous extension of X if for any ε > 0, there exists δ > 0 such that if d(x, y) < δ and
π(x) = π(y) then d(gx, gy) < ε for all g ∈ G.

The following proposition provides the connection between equicontinuity and the prop-
erty of being a factor of a product system:

Proposition 2.2.24. Let (X,S, T ) be a minimal system with commuting transformations S
and T . If either S or T is equicontinuous, then (X,S, T ) has a product extension.

Proof. Suppose that T is equicontinuous. For any ε > 0, let 0 < δ < ε be such that if two
points are δ-close to each other, then they stay ε-close under the orbit of T . Suppose (x, y) ∈
RS(X). Pick x′, a ∈ X and n,m ∈ Z such that d(x, x′) < δ, d(Snx′, y) < δ, d(Tmx′, a) <
δ, d(SnTmx′, a) < δ. By equicontinuity of T , we have that d(T−mSnTmx′, T−ma) < ε,
d(T−mTmx′, T−ma) < ε. Therefore d(x, y) < 4ε. Hence, RS(X) coincides with the diagonal
and (X,S, T ) has a product extension.

Specially, when S = T we have:

Corollary 2.2.25. Let (X,T ) be a minimal system. Then (X,T ) is equicontinous if and
only if (X,T, T ) has a product extension.

Under the assumption that QT (X) is an equivalence relation, we have a better criterion:

Proposition 2.2.26. Let (X,S, T ) be a minimal system with commuting transformations
S and T . Suppose that QT (X) is an equivalence relation. Then the system (X,S) is an
equicontinuous extension of (X/QT (X), S) if and only if (X,S, T ) has a product extension.

Proof. Suppose that (X,S, T ) has no product extensions. By Theorem 2.1.1, we can pick
x, y ∈ X, x 6= y such that (x, y) ∈ RT (X). Denote ε = d(x, y)/2. For any 0 < δ < ε/4, there
exist z ∈ X,n,m ∈ Z such that d(z, x), d(Tmz, y), d(Snz, SnTmz) < δ. Let x′ = Snz, y′ =
SnTmz. Then (x′, y′) ∈ QT (X), d(x′, y′) < δ and d(S−nx′, S−ny′) = d(z, Tmz) > ε−2δ > ε/2.
So (X,S) is not an equicontinuous extension of (X/QT (X), S).

On the other hand, if (X,S) is not an equicontinuous extension of (X/QT (X), S), then
there exists ε > 0 and there exist sequences (xi)i∈N, (yi)i∈N in X and a sequence (ni)i∈N
in Z with d(xi, yi) < 1/i, (xi, yi) ∈ QT (X), and d(Snixi, Sniyi) ≥ ε. By passing to a
subsequence, we may assume (Snixi)i∈N, (Sniyi)i∈N, (xi)i∈N and (yi)i∈N converges to x0, y0, w

and w respectively. Then x0 6= y0. For any δ > 0, pick i ∈ N such that d(Snixi, x0),
d(Sniyi, y0), d(xi, w), d(yi, w) < δ. Since (xi, yi) ∈ QT (X), we can pick z ∈ X,m ∈ Z
such that d(z, xi), d(Tmz, yi), d(Sniz, Snixi), d(SniTmz, Sniyi) < δ. So the distance between
the corresponding coordinates of (Sniz, z, SniTmz, Tmz) and (x0, w, y0, w) are all less than
Cδ for some uniform constant C. So (x0, y0) ∈ RT (X), and (X,S, T ) has not a product
extension.
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In the following we relativize the notion of being a product system to factor maps.

Definition 2.2.27. Let π : Y → X be a factor map between the systems of commuting
transformations (Y, S, T ) and (X,S, T ). We say that π is S-equicontinuous with respect to T
if for any ε > 0 there exists δ > 0 such that if y, y′ ∈ Y satisfy (y, y′) ∈ QT (Y ), d(y, y′) < δ

and π(y) = π(y′), then d(Sny, Sny′) < ε for all n ∈ Z.

Lemma 2.2.28. Let (X,S, T ) be a minimal system with commuting transformations S and
T , and let π be the projection to the trivial system. Then π is S-equicontinous with respect
to T if and only if (X,S, T ) has a product extension.

Proof. If π is not S-equicontinuous with respect to T , there exists ε > 0 such that for any
δ = 1

i
> 0 one can find (xi, x′i) ∈ QT (X) with d(xi, x′i) < δ and ni ∈ Z with d(Snixi, Snix′i) ≥

ε. For a subsequence, (xi, Snixi, x′i, Snix′i) ∈ QS,T (X) converges to a point of the form
(a, x, a, x′) ∈ QS,T (X) with x 6= x′. We remark that this is equivalent to (x, a, x′, a) ∈
QS,T (X) and hence (x, x′) ∈ RS(X). By Theorem 2.1.1 (X,S, T ) has no product extension.

Conversely, if (X,S, T ) has no product extension, by Theorem 2.1.1 we can find x 6= x′

with (x, x′) ∈ RS(X). Let 0 < ε < d(x, x′) and let 0 < δ < ε/4. We can find x′′ ∈ X and
n,m ∈ Z such that d(x′′, x) < δ, d(Snx′′, x′) < δ and d(Tmx′′, SnTmx′′) < δ. Writing w =
Tmx′′, w′ = SnTmx′′, we have that (w,w′) ∈ QS(X), d(w,w′) < δ and d(T−mw, T−mw′) >
ε/2. Hence π is not S-equicontinuous with respect to T .

A connection between a magic system and a system which is S-equicontinuous with
respect to T is:

Proposition 2.2.29. For every minimal system with commuting transformations (X,S, T ),
the magic extension constructed in Theorem 2.2.11 is S-equicontinuous with respect to T .

Proof. Let (X,S, T ) be a minimal system with commuting transformations S and T . Recall
that the magic extension Y of X is the orbit closure of a minimal point (z1, z2, x0) under
Ŝ and T̂ , and the factor map π : Y → X is the projection onto the last coordinate. Let
~x = (x1, x2, x3), ~y = (y1, y2, y3) ∈ Y be such that π(~x) = π(~y) and (~x, ~y) ∈ Q

T̂
(Y ). Then we

have that x1 = y1 and x3 = y3. Since Ŝn~x = (Snx1, x2, S
nx3) and Ŝn~y = (Snx1, y2, S

nx3), we
conclude that Ŝ preserves the distance between ~x and ~y.

A direct corollary of this proposition is:

Corollary 2.2.30. Let (X,S, T ) be a minimal system with commuting transformations S
and T . If (X,S, T ) has a product extension, then it has a product extension which is S-
equicontinuous with respect to T .

Proof. If (X,S, T ) has a product extension, by Theorem 2.1.1, we can build a magic extension
which is actually a product system. This magic extension is S-equicontinuous with respect
to T .
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2.2.6. Changing the generators

Let (X,S, T ) be a system with commuting transformations S and T . We remark that
QS,T (X) depends strongly on the choice of the generators S and T . For instance, let (X,S)
be a minimal system and consider the minimal systems (X,S, S) and (X,S, id) with com-
muting transformations. We have that (X,S, id) has a product extension, but (X,S, S) does
not (unless (X,S) is equicontinous). However, there are cases where we can deduce some
properties by changing the generators. Let (X,S, T ) be a minimal system with commut-
ing transformations S and T . Denote S ′ = T−1S, T ′ = T . We have that (X,S ′, T ′) is a
minimal system with commuting transformations S ′ and T ′. Suppose now that (X,S ′, T ′)
has a product extension. By Proposition 2.2.21, for any x ∈ X we have that (Kx

S′,T ′ , Ŝ
′, T̂ ′)

is an extension of (X,S ′, T ′) and it is isomorphic to a product system. We remark that
(Kx

S′,T ′ , T̂
′Ŝ ′, T̂ ′) is an extension of (X,S, T ) and it is isomorphic to (Y ×W,S × T, T × T ),

where Y = OS′(x) and W = OT ′(x). It follows that (X,S, T ) has an extension which is the
Cartesian product of two systems with commuting transformations with different natures:
one of the form (Y, S, id) where one of the transformations is the identity, and the other of
the form (W,T, T ) where the two transformations are the same.

2.3. Examples

In this section, we compute the RS,T (X) relation in some minimal symbolic systems
(X,S, T ). We start by recalling some general definitions.

Let A be a finite alphabet. The shift transformation σ : AZ → AZ is the map (xi)i∈Z 7→
(xi+1)i∈Z. A one dimensional subshift is a closed subset X ⊆ AZ invariant under the shift
transformation. When there is more than one space involved, we let σX denote the shift
transformation on the space X.

In the two dimensional setting, we define the shift transformation σ(1,0) : AZ2 → AZ2 ,
(xi,j)i,j∈Z 7→ (xi+1,j)i,j∈Z and σ(0,1) : AZ2 → AZ2 , (xi,j)i,j∈Z 7→ (xi,j+1)i,j∈Z. Hence σ(1,0) and
σ(0,1) are the translations in the canonical directions. A two dimensional subshift is a closed
subsetX ⊆ AZ2 invariant under the shift transformations. We remark that σ(1,0) and σ(0,1) are
a pair of commuting transformations and therefore if X ⊆ AZ2 is a subshift, (X, σ(1,0), σ(0,1))
is a system with commuting transformations σ(1,0) and σ(0,1).

Let X ⊆ AZ2 be a subshift and let x ∈ X. If B is a subset of Z2, we let x|B ∈ AB denote
the restriction of x to B and for ~n ∈ Z2, we let B + ~n denote the set {~b+ ~n : ~b ∈ B}. When
X is a subshift (one or two dimensional), we let AX denote its alphabet.

In the following we compute the relation Rσ(1,0),σ(0,1)(X) in the Morse Tiling and then we
state a general criteria for a Z2 shift space to have a product extension. See [103] for more
background about tiling and substitutions.
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2.3.1. The Morse tiling

Consider the Morse tiling system given by the substitution rule:

One can iterate this substitution in a natural way:

Figure 2.1: first, second and third iteration of the substitution

We identify 0 with the white square and 1 with the black one. Let Bn = ([−2n−1, 2n−1 −
1]∩Z)×([−2n−1, 2n−1−1]∩Z) be the square of size 2n centered at the origin. Let (xn)n∈N be a
sequence in {0, 1}Z2 such that the restriction of xn toBn coincides with the nth-iteration of the
substitution. Taking a subsequence we have that (xn)n∈N converges to a point x∗ ∈ {0, 1}Z2 .
Let XM ⊆ {0, 1}Z

2 be the orbit closure of x∗ under the shift actions. We point out that XM

does not depend on the particular choice of x∗ (we refer to Chapter 1 of [103] for a general
reference about substitution tiling systems). Moreover, the Morse system (XM , σ(1,0), σ(0,1))
is a minimal system with commuting transformations σ(1,0) and σ(0,1).

Proposition 2.3.1. For the Morse system, Rσ(1,0)(XM) = Rσ(0,1)(XM) = ∆XM . Conse-
quently, the Morse system has a product extension.

Proof. Note that for x = (xi,j)i,j∈Z ∈ XM , we have that xi,j + xi+1,j = xi,j′ + xi+1,j′ mod 2
and xi,j + xi,j+1 = xi′,j + xi,j+1 mod 2 for every i, j, i′, j′ ∈ Z. From this, we deduce that if
x0,0 = 0 then xi,j = xi,0 + x0,j for every i, j ∈ Z. From now on, we assume that x∗0,0 = 0.

For N ∈ N, let BN denote the square ([−N,N ] ∩ Z) × ([−N,N ] ∩ Z). Suppose (y, z) ∈
Rσ(1,0)(XM) and let w ∈ XM be such that (y, z, w, w) ∈ Qσ(1,0),σ(0,1)(XM). We deduce that
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there exist n,m, p, q ∈ Z such that

σp(1,0)σ
q
(0,1)x

∗|BN = y|BN ;

σp+n(1,0)σ
q
(0,1)x

∗|BN = z|BN ;

σp(1,0)σ
q+m
(0,1)x

∗|BN = σp+n(1,0)σ
q+m
(0,1)x

∗|BN = w|BN .

Since σp(1,0)σ
q+m
(0,1)x

∗|BN = σp+n(1,0)σ
q+m
(0,1)x

∗|BN , we deduce that x∗p+c,0 = x∗p+n+c,0 for all c ≤ N .
This in turn implies that y|BN = σp(1,0)σ

q
(0,1)x

∗|BN = σp+n(1,0)σ
q
(0,1)x

∗|BN = z|BN . Since N is
arbitrary we deduce that y = z. Therefore Rσ(1,0)(XM) = ∆XM and thus (XM , σ(1,0), σ(0,1))
has a product extension.

Remark 2.3.2. In fact, let (Y, σ) be the one dimensional Thue-Morse system. This is the
subshift generated by the one dimensional substitution 0 7→ 01, 1 7→ 10 (see [102]). Then we
can define π : Y × Y → XM by π(x, x′)n,m = xn + x′m and it turns out that this is a product
extension of the two dimensional Morse system. Moreover, we have that (Kx∗

S,T , Ŝ, T̂ ) is
isomorphic to (Y × Y, T × id, id× T ), where the isomorphism φ : Kx∗

S,T → Y × Y is given by
φ(a, b, c) = (a|A, b|B), where A = {(n, 0) : n ∈ Z} and B = {(0, n) : n ∈ Z}. We show in the
next subsection that this is a general procedure to build symbolic systems with a product
extension.

2.3.2. Building factors of product systems

Let (X, σX) and (Y, σY ) be two minimal one dimensional shifts and let AX and AY be
the respective alphabets.

Let x ∈ X and y ∈ Y . Consider the point z ∈ (AX × AY )Z2 defined as zi,j = (xi, yj)
for i, j ∈ Z and let Z denote the orbit closure of z under the shift transformations. Then
we can verify that (Z, σ(1,0), σ(0,1)) is isomorphic to the product of (X, σX) and (Y, σY ) (and
particularly (Z, σ(1,0), σ(0,1)) is a minimal system).

Let A be an alphabet and let ϕ : AX × AY → A be a function. We can define φ : Z →
W := φ(Z) ⊆ AZ2 such that φ(z)i,j = ϕ(zi,j) for i, j ∈ Z. Then (W,σ(1,0), σ(0,1)) is a minimal
symbolic system with a product extension and we write W = W (X, Y, ϕ) to denote this
system. We show that this is the unique way to produce minimal symbolic systems with
product extensions.

Proposition 2.3.3. Let (W,σ(1,0), σ(0,1)) be a minimal symbolic system with a product exten-
sion. Then, there exist one dimensional minimal subshifts (X, σX) and (Y, σY ) and a map
ϕ : AX ×AY → AW such that W = W (X, Y, ϕ).

Proof. We recall that AW denotes the alphabet of W . For n ∈ N we let Bn denote ([−n, n]∩
Z) × ([−n, n] ∩ Z). Let w = (wi,j)i,j∈Z ∈ W . By Proposition 2.2.21, the last coordinate in
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Kw
σ(1,0),σ(0,1)

(W ) is a function of the two first coordinates. Since Kw
σ(1,0),σ(0,1)

(W ) is a closed
subset of X3 we have that this function is continuous. Hence, there exists n ∈ N such
that for every i, j ∈ Z, wi,j is determined by w|Bn , w|Bn+(i,0) and w|Bn+(0,j). Let AX =
{w|Bn+(i,0) : i ∈ Z} and AY = {w|Bn+(0,j) : j ∈ Z}. Then AX and AY are finite alphabets
and we can define ϕ : AX ×AY → AW such that ϕ(w|Bn+(i,0),w|Bn+(0,j)) = wi,j.

We recall that since (W,σ(1,0), σ(0,1)) has a product extension, (Kw
σ(1,0),σ(0,1)

(W ), σ̂(1,0),
σ̂(0,1)) is a minimal system. Let φ1 : Kw

σ(1,0),σ(0,1)
(W ) → AZ

X and φ2 : Kw
σ(1,0),σ(0,1)

(W ) → AZ
Y

defined as φ1(w1, w2, w3) = (w1|Bn+(i,0))i∈Z and φ2(w1, w2, w3) = (w2|Bn+(0,j))j∈Z. Let X =
φ1(W ) and Y = φ2(W ). Then (X, σX) and (Y, σY ) are two minimal symbolic systems and
W = W (X, Y, ϕ).

The previous proposition says that for a minimal symbolic system (W,σ(1,0), σ(0,1)), hav-
ing a product extension means that the dynamics can be deduced by looking at the shifts
generated by finite blocks in the canonical directions.

Remark 2.3.4. It was proved in [91] that two dimensional rectangular substitutions are sofic.
It was also proved that the product of two one dimensional substitution is a two dimensional
substitution and therefore is sofic. Moreover, this product is measurably isomorphic to a
shift of finite type. Given Proposition 2.3.3, the natural question that one can formulate is
what properties can be deduced for the subshifts (X, σX) and (Y, σY )? For example, what
happens with these subshifts when (W,σ(1,0), σ(0,1)) is a two dimensional substitution with a
product extension? We do not know the answer to this question.

2.4. RS,T (X) relation in the distal case

2.4.1. Basic properties

This section is devoted to the study of the RS,T (X) relation in the distal case. We do
not know if RS,T (X), RS(X) and RT (X) are equivalence relations in the general setting.
However, we have a complete description of these relations in the distal case.

Recall that a topological dynamical system (X,G) is distal if x 6= y implies that

inf
g∈G

d(gx, gy) > 0.

Distal systems have many interesting properties (see [7], chapters 5 and 7). We recall
some of them:

Theorem 2.4.1.

1. The Cartesian product of distal systems is distal;
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2. Distality is preserved by taking factors and subsystems;

3. A distal system is minimal if and only if it is transitive;

4. If (X,G) is distal and G′ is a subgroup of G, then (X,G′) is distal.

The main property about distality is that it implies that cubes have the following tran-
sitivity property:

Lemma 2.4.2. Let (X,S, T ) be a distal minimal system with commuting transformations S
and T . Suppose that R is either S or is T . Then

1. If (x, y), (y, z) ∈ QR(X), then (x, z) ∈ QR(X);

2. If (a1, b1, a2, b2), (a2, b2, a3, b3) ∈ QS,T (X), then (a1, b1, a3, b3) ∈ QS,T (X).

Proof. We only prove (1) since the proof of (2) is similar. Let (x, y), (y, z) ∈ QR(X). Pick
any a ∈ X. Then (a, a) ∈ QR(X). By Proposition 2.2.5, there exists a sequence (gn)n∈N =
((g′n, g′′n))n∈N in GR such that gn(x, y) = (g′nx, g′′ny)→ (a, a), where GR is the group generated
by id × R and g × g, g ∈ G. We can assume (by taking a subsequence) that g′′nz → u and
thus (g′′ny, g′′nz) → (a, u) ∈ QR(X). Since (g′n, g′′n)(x, z) → (a, u), by distality we have that
(x, z) is in the closed orbit of (a, u) and thus (x, z) ∈ QR(X).

Remark 2.4.3. It is worth noting that this transitivity lemma fails in the non-distal case,
even if S = T (see [114] for an example).

The following proposition gives equivalent definitions of RS,T (X) in the distal case:

Proposition 2.4.4. Let (X,S, T ) be a distal system with commuting transformations S and
T . Suppose x, y ∈ X. The following are equivalent:

1. (x, y, y, y) ∈ QS,T (X);

2. There exists a, b, c ∈ X such that (x, a, b, c), (y, a, b, c) ∈ QS,T (X);

3. For every a, b, c ∈ X, if (x, a, b, c) ∈ QS,T (X), then (y, a, b, c) ∈ QS,T (X);

4. (x, y) ∈ RS,T (X);

5. (x, y) ∈ RS(X);

6. (x, y) ∈ RT (X).

Particularly, RS(X) = RT (X) = RS,T (X).
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Proof. (1)⇒(3). Suppose that (x, a, b, c) ∈ QS,T (X) for some a, b, c ∈ X. By (3),(4) and (5) of
Proposition 2.2.3, (x, a, b, c) ∈ QS,T (X) implies that (a, x, a, x) ∈ QS,T (X), and (x, y, y, y) ∈
QS,T (X) implies that (x, x, y, x) ∈ QT,S(X). By Lemma 2.4.2, (a, x, a, x), (x, x, y, x) ∈
QS,T (X) implies that (x, a, y, a) ∈ QS,T (X). Again by Lemma 2.4.2, (x, a, b, c), (x, a, y, a) ∈
QS,T (X) implies that (b, c, y, a) ∈ QS,T (X) and thus (y, a, b, c) ∈ QS,T (X).

(3)⇒(2). Obvious.
(2)⇒(1). Suppose that (x, a, b, c), (y, a, b, c) ∈ QS,T (X) for some a, b, c ∈ X. Then

(b, c, y, a) ∈ QS,T (X). By Lemma 2.4.2, (x, a, y, a) ∈ QS,T (X). By (4) and (5) of Proposi-
tion 2.2.3, (y, a, y, a) ∈ QS,T (X). Hence (x, y, a, a), (y, y, a, a) ∈ QT,S(X) and (a, a, y, y) ∈
QT,S(X). By Lemma 2.4.2, (x, y, y, y) ∈ QT,S(X) which is equivalent to (x, y, y, y) ∈
QS,T (X).

(1)⇒(4). Take a = y and b = y.
(4)⇒(5) and (4)⇒(6) are obvious from the definition.
(5)⇒(1). Suppose (x, y, a, a) ∈ QS,T (X) for some a ∈ X. By (4) and (5) of Proposition

2.2.3, (y, y, a, a) ∈ QS,T (X). By Lemma 2.4.2, (x, y, y, y) ∈ QT,S(X) and thus (x, y, y, y) ∈
QS,T (X).

(6)⇒(1). Similar to (4)⇒(2).

We can now prove that RS,T (X) is an equivalence relation in the distal setting:

Theorem 2.4.5. Let (X,S, T ) be a distal system with commuting transformations S and T .
Then QS(X), QT (X) and RS,T (X) are closed equivalence relations on X.

Proof. It suffices to prove the transitivity of RS,T (X). Let (x, y), (y, z) ∈ RS,T (X). Since
(y, z, z, z) and (x, y) ∈ RS,T (X), by (4) of Proposition 2.4.4, we have that (x, z, z, z) ∈
QS,T (X) and thus (x, z) ∈ RS,T (X).

We also have the following property in the distal setting, which allows us to lift an (S, T )-
regionally proximal pair in a system to a pair in an extension system:

Proposition 2.4.6. Let π : Y → X be a factor map between systems (Y, S, T ) and (X,S, T )
with commuting transformations S and T . If (X,S, T ) is distal, then π × π(RS,T (Y )) =
RS,T (X).

Proof. The proof is similar to Theorem 6.4 of [110]. Let (x1, x2) ∈ RS,T (X). Then there
exist a sequence (xi)i∈N ∈ X and two sequences (ni)i∈N, (mi)i∈N in Z such that

(xi, Snixi, Tmixi, SniTmixi)→ (x1, x1, x1, x2).

Let (yi)i∈N in Y be such that π(yi) = xi. By compactness we can assume that yi → y1,
Sniyi → a, Tmiyi → b and SniTmiyi → c. Then (y1, a, b, c) ∈ QS,T (Y ) and π4(y1, a, b, c) =
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(x1, x1, x1, x2). Particularly, (y1, a) ∈ QS(Y ). By minimality we can find gi ∈ G and pi

such that (giy1, giS
pia) → (y1, y1). We can assume that gib → b′ and giS

pic → c′, so that
(y1, y1, b

′, c′) ∈ QS,T (Y ) and π4(y1, y1, b
′, c′) = (x1, x1, x1, x

′
2), where x′2 = lim giS

pix2. Recall
that (x1, x

′
2) ∈ OG∆(x1, x2), where G∆ = {g × g : g ∈ G}. Since (y1, b

′) ∈ QT (Y ), we can
find (g′i)i∈N in G and (qi)i∈N in Z such that (g′iy1, g

′
iT

qib′)→ (y1, y1). We can assume without
loss of generality that g′iT qic′ → c′′ so that (y1, y1, y1, c

′′) ∈ QS,T (Y ) and π4(y1, y1, y1, c
′′) =

(x1, x1, x1, x
′′
2), where x′′2 = lim g′iT

qix′2. Recall that (x1, x
′′
2) ∈ OG∆(x1, x′2). So (x1, x

′′
2) ∈

OG∆(x1, x2). By distality, this orbit is minimal and thus we can find (g′′i )i∈N in G such
that (g′′i x1, g

′′
i x
′′
2) → (x1, x2). We assume without loss of generality that g′′i y1 → y′1 and

g′′i c
′′ → y′2. Then (y′1, y′1, y′1, y′2) ∈ QS,T (Y ) and π4(y′1, y′1, y′1, y′2) = (x1, x1, x1, x2). Particularly

(y′1, y′2) ∈ RS,T (Y ) and π × π(y′1, y′2) = (x1, x2).

These results allow us to conclude that cubes structures characterize factors with product
extensions:

Theorem 2.4.7. Let (X,S, T ) be a minimal distal system with commuting transformations
S and T . Then

1. (X/RS,T (X), S, T ) has a product extension, where X/RS,T (X) is the quotient of X
under the equivalence relation RS,T (X). Moreover, it is the maximal factor with this
property, meaning that any other factor of X with a product extension factorizes through
it;

2. For any magic extension (Kx0
S,T , Ŝ, T̂ ), (Kx0

S,T/RŜ,T̂
(Kx0

S,T ), Ŝ, T̂ ) is a product system.
Moreover, both (Kx0

S,T , Ŝ, T̂ ) and (Kx0
S,T/RŜ,T̂

(Kx0
S,T )) are distal systems.

We have the following commutative diagram:

(Kx0

S,T , Ŝ, T̂ ) (X,S, T )

(Kx0

S,T /RŜ,T̂ (Kx0

S,T ), Ŝ, T̂ ) (X/RS,T (X), S, T )

Proof. We remark that if (Z, S, T ) is a factor of (X,S, T ) with a product extension, then π×
π(RS,T (X)) = RS,T (Z) = ∆X , meaning that there exists a factor map from (X/RS,T (X), S, T )
to (Y, S, T ). It remains to prove that X/RS,T (X) has a product extension. To see this,
let π be the quotient map X → X/RS,T (X) and let (y1, y2) ∈ RS,T (X/RS,T (X)). By
Proposition 2.4.6, there exists (x1, x2) ∈ RS,T (X) with π(x1) = y1 and π(x2) = y2. Since
(x1, x2) ∈ RS,T (X), y1 = π(x1) = π(x2) = y2. So RS,T (X/RS,T (X)) coincides with the
diagonal. By Theorem 2.1.1, (X/RS,T (X), S, T ) has a product extension. This proves (1).
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We now prove that the factor of the magic extension is actually a product system. By
Theorem 2.4.5, we have that Q

Ŝ
(Kx0

S,T ),Q
T̂

(Kx0
S,T ) are equivalence relations and by Theorem

2.2.11 and Proposition 2.4.4, we have that Q
Ŝ
(Kx0

S,T )∩Q
T̂

(Kx0
S,T ) = RS,T (Kx0

S,T ). Consequently
(Kx0

S,T/RŜ,T̂
(Kx0

S,T ), Ŝ, T̂ ) is isomorphic to (Kx0
S,T/QT̂

(Kx0
S,T )×Kx0

S,T/QŜ
(Kx0

S,T ), Ŝ× id, id× T̂ ),
which is a product system.

Since (X,S, T ) is distal, the distality of (Kx0
S,T , Ŝ, T̂ ) and (Kx0

S,T/RS,T (Kx0
S,T ), Ŝ, T̂ ) follows

easily from Theorem 2.4.1.

2.4.2. Further remarks: The RS,T (X) strong relation

Let (X,S, T ) be a system with commuting transformations S and T . We say that x and
y are strongly RS,T (X)-related if there exist a ∈ X and two sequences (ni)i∈N and (mi)i∈N
in Z such that (x, y, a, a) = lim

i→∞
(x, Snix, Tmix, SniTmix), and there exist b ∈ X and two

sequences (n′i)i∈N and (m′i)i∈N in Z such that (x, b, y, b) = lim
i→∞

(x, Sn′ix, Tm′ix, Sn′iTm′ix).
It is a classical result that when S = T , the RT,T (X) relation coincides with the strong

one (see [7], Chap 9). We show that this is not true in the commuting case even in the distal
case, and give a counter example of commuting rotations in the Heisenberg group. We refer
to [8] and [81] for general references about nilrotations.

Let H = R3 be the group with the multiplication given by (a, b, c) · (a′, b′, c′) = (a +
a′, b + b′, c + c′ + ab′) for all (a, b, c), (a′, b′, c′) ∈ H. Let H2 be the subgroup spanned by
{ghg−1h−1 : g, h ∈ H}. By a direct computation we have that H2 = {(0, 0, c) : c ∈ R}
and thus H2 is central in H. Therefore H is a 2-step nilpotent Lie group and Γ = Z3 is
a cocompact subgroup, meaning that XH := H/Γ is a compact space. XH is called the
Heisenberg manifold. Note that T3 is a fundamental domain of XH .

Lemma 2.4.8. The map Φ: XH → T3 given by

Φ((a, b, c)Γ) = ({a}, {b}, {c− abbc})

is a well-defined homomorphism between XH and T3. Here bxc is the largest integer which
does not exceed x, {x} = x − bxc, and T3 is viewed as [0, 1)3 in this map. Moreover,
(a, b, c)Γ = ({a}, {b}, {c− abbc})Γ for all a, b, c ∈ R.

Proof. It suffices to show that (a, b, c)Γ = (a′, b′, c′)Γ if and only if ({a}, {b}, {c − abbc}) =
({a′}, {b′}, {c′ − a′bb′c}). If (a, b, c)Γ = (a′, b′, c′)Γ, there exists (x, y, z) ∈ Γ such that
(a′, b′, c′) = (a, b, c) · (x, y, z) = (x+ a, y + b, z + c+ ay). therefore,

x = a′ − a, y = b′ − b, z = c′ − c− a(b′ − b).
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Since x, y ∈ Z, we have that {a} = {a′}, {b} = {b′}. So b− b′ = bbc − bb′c. Then

(c′ − a′bb′c)− (c− abbc) = (c′ − c− a(b′ − b))− (a′ − a)bb′c = z − xbb′c ∈ Z.

So ({a}, {b}, {c− abbc}) = ({a′}, {b′}, {c′ − a′bb′c}).
Conversely, if ({a}, {b}, {c− abbc}) = ({a′}, {b′}, {c′ − a′bb′c}), suppose that

x = a′ − a, y = b′ − b, z = c′ − c− a(b′ − b).

Then (a′, b′, c′) = (a, b, c) · (x, y, z). It remains to show that (x, y, z) ∈ Γ. Since {a} =
{a′}, {b} = {b′}, we have that x, y ∈ Z and b− b′ = bbc − bb′c. Then

(c′ − a′bb′c)− (c− abbc) = (c′ − c− a(b′ − b))− (a′ − a)bb′c = z − xbb′c ∈ Z

implies that z ∈ Z.
The claim that (a, b, c)Γ = ({a}, {b}, {c−abbc})Γ for all a, b, c ∈ R is straightforward.

Let α ∈ R be such that 1, α, α−1 are linearly independent over Q. Let s = (α, 0, 0) and
t = (0, α−1, α). These two elements induce two transformations S, T : XH → XH given by

S(hΓ) = shΓ, T (hΓ) = thΓ,∀h ∈ H.

Lemma 2.4.9. Let XH , S, T be defined as above. Then (XH , S, T ) is a minimal distal system
with commuting transformations S and T .

Proof. We have that st = (α, α−1, α + 1) and ts = (α, α−1, α) and by a direct computation
we have that they induce the same action on XH . Therefore ST = TS.

It is classical that a rotation on a nilmanifold is distal [8] and it is minimal if and only
if the rotation induced on its maximal equicontinuous factor is minimal. Moreover, the
maximal equicontinuous factor is given by the projection on H/H2Γ which in our case is
nothing but the projection in T2 (the first two coordinates). See [81] for a general reference
on nilrotations.

Since ST (hΓ) = (α, α−1, α) · hΓ for all h ∈ H, we have that the induced rotation on T2

is given by the element (α, α−1). Since 1, α and α−1 are linearly independent over Q, by the
Kronecker Theorem we have that this is a minimal rotation. We conclude that (XH , ST ) is
minimal which clearly implies that (XH , S, T ) is minimal.

In this example, we show that the relation RS,T (X) is different from the strong one:
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Proposition 2.4.10. On the Heisenberg system (XH , S, T ), we have that

RS,T (XH) =
{(

(a, b, c)Γ, (a, b, c′)Γ
)
∈ XH ×XH : a, b, c, c′ ∈ R

}
.

However, for any c ∈ R\Z, Γ and (0, 0, c)Γ are not strongly RS,T (XH)-related.

Proof. Suppose that ((a, b, c)Γ, (a′, b′, c′)Γ) ∈ RS,T (XH). Then ((a, b, c)Γ, (a′, b′, c′)Γ) ∈
RT (XH). Projecting to the first coordinate, we have that ({a}, v, {a′}, v) ∈ QS,id(T) for some
v ∈ T, where in the system (T, S, id), Sx = x+ α for all x ∈ T (we regard T as [0,1)). Since
the second transformation is identity, we have that {a} = {a′}. Similarly, {b} = {b′}. So in
order to prove the first statement, it suffices to show that ((a, b, c)Γ, (a, b, c′)Γ) ∈ RS,T (XH)
for all a, b, c, c′ ∈ R. Since (XH , S, T ) is minimal, there exist a sequence (gi)i∈N in G and a
sequence (ci)i∈N in R such that

lim
i→∞

gi((0, 0, 0)Γ) = (a, b, c), lim
i→∞

gi((0, 0, ci)Γ) = (a, b, c′).

Since RS,T (XH) is closed and invariant under g × g, g ∈ G, it then suffices to show that
Γ and (0, 0, c)Γ are RS,T (XH)-related for all c ∈ R. Fix ε > 0. Let ni → +∞ be such that
|{niα}| < ε and c

niα
< ε. Let xi = (0, c

niα
, 0)Γ. Then d(xi,Γ) < ε and by Lemma 2.4.8, we

have that

Snixi = (niα,
c

niα
, c)Γ = ({niα},

c

niα
, {c− niαb

c

niα
c})Γ = ({niα},

c

niα
, c)Γ.

So d(Snixi, (0, 0, c)Γ) < 2ε. We also have that d(Sni(0, 0, c)Γ, (0, 0, c)Γ) < ε. Let δ > 0 be
such that if d(hΓ, h′Γ) < δ, then d(SnihΓ, Snih′Γ) < ε. Since the rotation on (α, α−1) is min-
imal in T2, we can find mi large enough such that 0 < {miα} + c

ni
< δ and |{miα

−1} −
c| < δ. Hence, d(Tmixi, (0, 0, c)Γ) < δ and thus d(SniTmixi, (0, 0, c)Γ) < 2ε. It fol-
lows that for large enough i, the distance between (Γ, (0, 0, c)Γ, (0, 0, c)Γ, (0, 0, c)Γ) and
(xi, Snixi, Tmixi, SniTmixi) is less than 6ε. Since ε is arbitrary, we get that

(Γ, (0, 0, c)Γ, (0, 0, c)Γ, (0, 0, c)Γ) ∈ QS,T (XH)

and thus Γ and (0, 0, c)Γ are RS,T (XH)-related. This finishes the proof of the first statement.

For the second statement, let h = (h1, h2, h3) ∈ H with hi ∈ [0, 1) for i = 1, 2, 3. We
remark that SnΓ = (nα, 0, 0)Γ = ({nα}, 0, 0)Γ. So if (Γ, hΓ) are RS,T (XH)-strongly related,
then h2 = h3 = 0. Hence for c ∈ (0, 1), Γ and (0, 0, c)Γ are notRS,T (XH)-strongly related.
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2.4.3. A Strong form of the RS,T (X) relation

We say that (x1, x2) ∈ X × X are R∗S,T (X)-related if there exist (ni)i∈N and (mi)i∈N
sequences in Z such that

(x1, S
nix1, T

mix1, S
niTmix1)→ (x1, x1, x1, x2).

Obviously, R∗S,T (X) ⊆ RS,T (X).
In this subsection, we prove that the relation generated by R∗S,T (X) coincides with the

RS,T (X) relation. We start with some lemmas:
Remark 2.4.11. It is shown in [114] that, even in the case S = T , the relation generated by
R∗S,T (X) may not coincide with the RS,T (X) relation in the non-distal setting. In fact, there
exists a system with R∗T,T = ∆X 6= RT,T .

Lemma 2.4.12. Let (X,S, T ) be a minimal distal system with commuting transformations
S and T . Then RS,T (X) = ∆X if and only if R∗S,T (X) = ∆X .

Proof. We only prove the non-trivial direction. Suppose that R∗S,T (X) coincides with the
diagonal. Fix x0 ∈ X and consider the system (Kx0

S,T , Ŝ, T̂ ). Let R
Ŝ,T̂

[(x0, x0, x0)] be the
set of points that are R

Ŝ,T̂
related with (x0, x0, x0). Pick (x1, x2, x3) ∈ R

Ŝ,T̂
[(x0, x0, x0)]. By

definition, we have that x1 = x2 = x0. Hence (x0, x0, x3) ∈ Kx0
S,T and thus (x0, x3) belongs

to R∗S,T (X). We conclude that #R
Ŝ,T̂

[(x0, x0, x0)] = 1. By distality and minimality, the
same property holds for every point in Kx0

S,T and thus R
Ŝ,T̂

(Kx0
S,T ) coincides with the diagonal

relation. Particularly, (Kx0
S,T , Ŝ, T̂ ) has a product extension and consequently so has (X,S, T ).

This is equivalent to saying that RS,T (X) = ∆X .

Let R(X) be the relation generated by R∗S,T (X). We have:

Lemma 2.4.13. Let π : Y → X be the factor map between two minimal distal systems
(Y, S, T ) and (X,S, T ) with commuting transformations S and T . Then π × π(R(Y )) ⊇
R∗S,T (X).

Proof. Similar to the proof of Proposition 2.4.6.

We can now prove the main property of this subsection:

Proposition 2.4.14. Let (X,S, T ) be a distal minimal system with commuting transforma-
tions S and T . Then R(X) = RS,T (X).

Proof. We only need to prove that RS,T (X) ⊆ R(X). Let π : X → X/R(X) be the pro-
jection map. By Lemma 2.4.13, ∆X = π × π(R(X)) ⊇ R∗S,T (X/R(X)). By Lemma 2.4.12,
RS,T (X/R(X)) = ∆X and then (X/R(X), S, T ) has a product extension. By Theorem
2.4.7 (X/RS,T (X), S, T ) is the maximal factor with this property and therefore RS,T (X) ⊆
R(X).

48



2.5. Properties of systems with product extensions

In this section, we study the properties of systems which have a product extension. We
characterize them in terms of their enveloping semigroup and we study the class of systems
which are disjoint from them. Also, in the distal case we study properties of recurrence and
topological complexity.

2.5.1. The enveloping semigroup of systems with a product exten-
sion

Let (X,S, T ) be a system with commuting transformations S and T , and let E(X,S) and
E(X,T ) be the enveloping semigroups associated to the systems (X,S) and (X,T ) respec-
tively. Hence E(X,S) and E(X,T ) are subsemigroups of E(X,G). We say that (X,S, T ) is
automorphic (or S and T are automorphic) if for any nets uS,i ∈ E(X,S) and uT,i ∈ E(X,T )
with lim uS,i = uS and lim uT,i = uT , we have that lim uS,iuT,i = uSuT . Equivalently, S and T
are automorphic if the map E(X,S)× E(X,T )→ E(X,G), (uS, uT ) 7→ uSuT is continuous.

The following theorem characterizes the enveloping semigroup for systems with production
extensions:

Theorem 2.5.1. Let (X,S, T ) be a system with commuting transformations S and T . Then
(X,S, T ) has a product extension if and only if S and T are automorphic. Particularly,
E(X,G) = E(X,S)E(X,T ) := {uSuT : uS ∈ E(X,S), uT ∈ E(X,T )}, and E(X,S) com-
mutes with E(X,T ).

Proof. First, we prove that the property of being automorphic is preserved under factor maps.
Let π : Y → X be a factor map between the systems (Y, S, T ) and (X,S, T ) and suppose that
(Y, S, T ) is automorphic. Suppose that (X,S, T ) is not automorphic. Then there exist nets
uS,i ∈ E(X,S) and uT,i ∈ E(X,T ) such that uS,iuT,i does not converge to uSuT . Taking a
subnet, we can assume that uS,iuT,i converges to u ∈ E(X,G). Let π∗ : E(Y,G)→ E(X,G)
be the map induced by π and let vS,i ∈ E(Y, S) and vT,i ∈ E(Y, T ) be nets with π∗(vS,i) = uS,i

and π∗(vT,i) = uT,i. Assume without loss of generality that vS,i → vS and vT,i → vT . Then
vS,ivT,i → vSvT . So uS,iuT,i → uSuT = u, a contradiction. On the other hand, since a product
system is clearly automorphic, we get the first implication.

Now suppose that S and T are automorphic.
Claim 1: E(X,S) commutes with E(X,T ).
Indeed, let uS ∈ E(X,S) and uT ∈ E(X,T ) . Let (ni) be a net such that Sni → uS.

Then SniuT → uSuT . On the other hand, since S commutes with E(X,T ) we have that
SniuT = uTS

ni for every i and this converges to uTuS by the hypothesis of automorphy.
Claim 2 : For any x ∈ X, Kx

S,T = {(uSx, uTx, uSuTx) : uS ∈ E(X,S), uT ∈ E(X,T )}.
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We recall that Kx
S,T in invariant under S × id × S and id × T × T . Since Kx

S,T is closed
we have that is invariant under uS × id × uS and id × uT × uT for any uS ∈ E(X,S) and
uT ∈ E(X,T ). Hence (uS × id× uS)(id× uT × uT )(x, x, x) = (uSx, uTx, uSuTx) ∈ Kx

S,T .
Conversely, let (a, b, c) ∈ Kx

S,T . Let (mi)i∈N and (ni)∈N be sequences in Z such that
Smix → a, T nix → b and SmiT nix → c. Replacing these sequences with finer filters, we
can assume that Smi → uS ∈ E(X,S) and T ni → uT ∈ E(X,T ). By the hypothesis of
automorphy, SmiT ni → uSuT and thus uSuTx = c and (a, b, c) = (uSx, uTx, uSuTx). The
claim is proved.

Let (a, b, c) and (a, b, d) ∈ Kx
S,T . We can take uS, u′S ∈ E(X,S) and uT , u

′
T ∈ E(X,T )

such that (a, b, c) = (uSx, uTx, uSuTx) and (a, b, d) = (u′Sx, u′Tx, u′Su′Tx). Since E(X,S) and
E(X,T ) commute we deduce that c = uSuTx = uSb = uSu

′
Tx = u′TuSx = u′Ta = u′Tu

′
Sx = d.

Consequently, the last coordinate of Kx
S,T is a function of the first two ones. By Proposi-

tion 2.2.21, (X,S, T ) has a product extension.

2.5.2. Disjointness of systems with a product extension

We recall the definition of disjointness:

Definition 2.5.2. Let (X,G) and (Y,G) be two dynamical systems. A joining between
(X,G) and (Y,G) is a closed subset Z of X × Y which is invariant under the action g × g
for all g ∈ G and projects onto both factors. We say that (X,G) and (Y,G) are disjoint if
the only joining between them is their Cartesian product.

Definition 2.5.3. Let (X,S, T ) be a minimal system with commuting transformations S
and T . We say that a point x ∈ X is S-T almost periodic if x is an almost periodic point
of the systems (X,S) and (X,T ). Equivalently, x is S-T almost periodic if (OS(x), S) and
(OT (x), T ) are minimal systems. The system (X,S, T ) is S-T almost periodic if every point
x ∈ X is S-T almost periodic.

Remark 2.5.4. We remark that if (Kx
S,T , Ŝ, T̂ ) is minimal, then x is S-T is almost periodic.

Consequently, if (X,S, T ) has a product extension we have that (Kx
S,T , Ŝ, T̂ ) is minimal for

every x ∈ X and then (X,S, T ) is S-T almost periodic.

The main theorem of this subsection is:

Theorem 2.5.5. Let (X,S, T ) be an S-T almost periodic system. Then (X,S) and (X,T )
are minimal and weak mixing if and only if (X,S, T ) is disjoint from all systems with product
extension.

We begin with a general lemma characterizing the relation of transitivity with the cube
structure:
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Lemma 2.5.6. Let (X,T ) be a topological dynamical system. Then (X,T ) is transitive if
and only if QT (X) = X ×X.

Proof. Let x ∈ X be a transitive point. We have that X × X is the orbit closure of (x, x)
under T × T and id× T . Since QT (X) is invariant under these transformations we conclude
that QT (X) = X ×X.

Conversely let U and V be two non-empty open subsets and let x ∈ U and y ∈ V . Since
(x, y) ∈ QT (X), there exist x′ ∈ X and n ∈ Z such that (x′, T nx′) ∈ U × V . This implies
that U ∩ T−nV 6= ∅.

We recall the following lemma ([98], page 1):

Lemma 2.5.7. Let (X,T ) be a topological dynamical system. Then (X,T ) weakly mixing if
and only if for every two non-empty open sets U and V there exists n ∈ Z with U ∩T−nU 6= ∅
and U ∩ T−nV 6= ∅.

The following lemma characterizes the weakly mixing property in terms of the cube
structure:

Lemma 2.5.8. Let (X,T ) be a topological dynamical system. The following are equivalent:

1. (X,T ) is weakly mixing;

2. QT,T (X) = X ×X ×X ×X;

3. (x, x, x, y) ∈ QT,T (X) for every x, y ∈ X.

Proof. (1) ⇒ (2). Let suppose that (X,T ) is weakly mixing and let x0, x1, x2, x3 ∈ X. Let
ε > 0 and for i = 0, 1, 2, 3 let Ui be the open balls of radius ε centered at xi. Since (X,T )
is weak mixing there exists n ∈ Z such that U0 ∩ T−nU1 6= ∅ and U2 ∩ T−nU3 6= ∅. Since
(X,T ) is transitive we can find a transitive point in x′ ∈ U0 ∩ T−nU1. Let m ∈ Z such that
Tmx′ ∈ U2∩T−nU3. Then (x′, T nx′, Tmx′, T n+mx′) ∈ U0×U1×U2×U3 and this point belongs
to QT,T (X). Since ε is arbitrary we conclude that (x0, x1, x2, x3) ∈ QT,T (X).

(2)⇒ (3). Clear.
(3) ⇒ (1). Let U and V be non-empty open sets and let x ∈ U and y ∈ V . Since

(x, x, x, y) ∈ QT,T (X), there exist x′ ∈ X and n,m ∈ Z such that (x′, T nx′, Tmx′, T n+mx′) ∈
U × U × U × V . Then x′ ∈ U ∩ T−nU and Tmx′ ∈ U ∩ T−nV and therefore U ∩ T−nU 6= ∅
and U ∩ T−nV 6= ∅. By Lemma 2.5.7 we have that (X,T ) is weak mixing.

Remark 2.5.9. When (X,T ) is minimal, a stronger results hold [110], Subsection 3.5.

The following is a well known result rephrased in our language:

Proposition 2.5.10. Let (X,T ) be a minimal system. Then RT,T (X) = X ×X if and only
if (X,T ) is weakly mixing.
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Proof. If (X,T ) is minimal we have that (x, y) ∈ RT,T (X) if and only if (x, x, x, y) ∈ QT,T (X)
[70], [110].

Remark 2.5.11. If (X,T ) is not minimal, it is not true that RT,T (X) = X ×X implies that
(X,T ) is weakly mixing. For instance, let consider the set X := {1/n : n > 1}∪{1−1/n : n >
2} ∪ {0} and let T be the transformation defined by T (0) = 0 and for x 6= 0, T (x) is the
number that follows x to the right. If x and y are different from 0, then (x, x, x, y) ∈ QT,T

implies x = y and thus (X,T ) is not weakly mixing. On the other hand, if x and y are different
from 0, then there exists n ∈ Z with y = T nx. Then lim

i→∞
(x, T nx, T ix, T n+ix) = (x, y, 0, 0)

meaning that (x, y) ∈ RT,T (X). Since RT,T (X) is closed we have that RT,T (X) = X ×X.

Lemma 2.5.12. Let (X,S, T ) be a minimal system with commuting transformations S and
T . If S is transitive, then RT,T (X) ⊆ RS,T (X) ⊆ RS,S(X).

Proof. Suppose (x, y) ∈ RS,T (X). For ε > 0, there exist z ∈ X, n,m ∈ Z such that
d(x, z) < ε, d(y, Snz) < ε and d(Tmz, SnTmz) < ε. Pick 0 < δ < ε such that d(x′, y′) < δ

implies d(Snx′, Sny′) < ε for all x′, y′ ∈ X. Since S is transitive, there exist z′ ∈ X, r ∈ Z such
that d(z, z′) < δ and d(Tmz, Srz′) < δ. So d(Snz, Snz′) < ε and d(SnTmz, Sn+rz′) < ε. Thus
d(x, z′) < 2ε, d(y, Snz′) < 2ε and d(Srz′, Sr+nz′) < 3ε. Since ε is arbitrary, (x, y) ∈ RS,S(X).

Suppose (x, y) ∈ RT,T (X). Then there exists a ∈ X such that for any ε > 0, there exists
z ∈ X,m, n ∈ Z such that d(x, z), d(y, Tmz), d(a, T nz) and d(a, T n+mz) < ε. Pick 0 < δ < ε

such that d(x′, y′) < δ implies d(T nx′, T ny′) < ε for all x′, y′ ∈ X. Since S is transitive, there
exists z′ ∈ X, r ∈ Z such that d(z, z′) < δ and d(Tmz, Srz′) < δ. So d(T nz, T nz′) < ε and
d(T n+mz, T nSrz′) < ε. Thus d(x, z′) < ε, d(y, Srz′) < ε, d(a, T nz′) < ε, d(a, T nSrz′) < 2ε.
Since ε is arbitrary, (x, y, a, a) ∈ QS,T (X). Similarly, (x, b, y, b) ∈ QS,T (X) for some b ∈ X.
So (x, y) ∈ RS,T (X).

Lemma 2.5.13. Let (X,S, T ) be a system with commuting transformations S and T such
that both S and T are minimal. Then RS,T (X) = X × X if and only if both (X,S) and
(X,T ) are weakly mixing.

Proof. If both (X,S) and (X,T ) are weakly mixing, then RS,S(X) = X × X and T is
transitive. By Lemma 2.5.12, RS,T (X) = X ×X.

Now suppose that RS,T (X) = X × X. For any x, y ∈ X, since (x, y) ∈ RS,T (X),
we may assume that (x, a, y, a) ∈ QS,T (X) for some a ∈ X. For any ε > 0, there exists
z ∈ X, n,m ∈ Z such that d(x, z) < ε, d(a, Snz) < ε, d(y, Tmz) < ε, d(a, SnTmz) < ε.
Pick 0 < δ < ε such that d(x′, y′) < δ implies d(Snx′, Sny′) < ε for all x′, y′ ∈ X. Since
(z, Tmz) ∈ RS,T (X), there exist z′ ∈ X, r ∈ Z such that d(z, z′) < δ, d(Tmz, Srz′) < δ. So
d(Snz, Snz′) < ε, d(SnTmz, Sn+rz′) < ε. Thus d(x, z′) < 2ε, d(a, Snz′) < 2ε, d(y, Srz′) < 2ε
and d(a, Sn+rz′) < 2ε. Since ε is arbitrary, (x, y) ∈ RS,S(X). So RS,S(X) = X×X and since
S is minimal we have that (X,S) is weakly mixing. Similarly, (X,T ) is weakly mixing.
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Shao and Ye proved [110] the following lemma in the case when S = T , but the same
method works for the general case. So we omit the proof:

Lemma 2.5.14. Let (X,S, T ) be a system with commuting transformations S and T such
that both S and T are minimal. Then the following are equivalent:

1. (x, y) ∈ RS,T (X);

2. (x, y, y, y) ∈ Kx
S,T ;

3. (x, x, y, x) ∈ Kx
S,T .

Remark 2.5.15. We remark that a transformation is minimal if and only if it is both almost
periodic and transitive.

Lemma 2.5.16. Let (X,S, T ) be a system with commuting transformations S and T such
that (X,S) and (X,T ) are minimal and weak mixing. Let (Y, S, T ) be a minimal system
with commuting transformations S and T such that (Y, S, T ) has a product extension. Let
Z ⊂ X ×Y be a closed subset of X ×Y which is invariant under S = S×S and T = T ×T .
Let π : Z → X be the natural factor map. For x1, x2 ∈ X, if there exists y1 ∈ Y such
that z1 = (x1, y1) ∈ Z is a S-T almost periodic point, then there exists y ∈ Y such that
(x1, y), (x2, y) ∈ Z.

Proof. By Lemma 2.5.14, (x1, x2, x2, x2) ∈ Kx1
S,T . So there exists a sequence (Fi)i∈N ∈ FS,T

such that

lim
i→∞

Fi(x1, x1, x1, x1) = (x1, x2, x2, x2).

Recall that z1 = (x1, y1) ∈ π−1(x1) . Without loss of generality, we assume that

lim
i→∞

Fi(y1, y1, y1, y1) = (y1, y2, y3, y4);

lim
i→∞

F i(z1, z1, z1, z1) = (z1, z2, z3, z4),

where F i = Fi×Fi and z2 = (x2, y2), z3 = (x2, y3), z4 = (x2, y4) are points in Z. Since (x1, y1)
is S-T almost periodic, there exists a sequence of integers (ni)i∈N such that limi→∞ S

niz2 = z1.
We can assume that limi→∞ S

niz4 = z′4 = (x1, y
′) ∈ Z. Then

lim
i→∞

(id× S × id× S)ni(z1, z2, z3, z4) = (z1, z1, z3, z
′
4).

This implies that (y1, y1, y3, y
′) ∈ QS,T (Y ) by Theorem 2.1.1 since RS(Y ) = ∆X we have

that y′ = y3. Therefore z′4 = (x1, y3) and z3 = (x2, y3) belong to Z.
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We are now finally able to prove the main theorem of this subsection:

Proof of Theorem 2.5.5. Let (X,S, T ) be a system such that (X,S) and (X,T ) are minimal
weak mixing and let (Y, S, T ) be a system with a product extension. Suppose Z ⊆ X × Y is
closed and invariant under S = S × S, T = T × T . We have to show that Z = X × Y . Let
W = {Z ⊆ X × Y : Z is closed invariant under S = S × S, T = T × T} with order Z ≤ Z ′ if
and only if Z ′ ⊂ Z. Let {Zi}i∈I be a totally ordered subset ofW and denote Z0 = ∩i∈IZi. It
is easy to see that Z0 ∈ W . By Zorn’s Lemma, we can assume Z contains no proper closed
invariant subset.

For any x ∈ X, denote Fx = {y ∈ Y : (x, y) ∈ Z}. Then Fx ⊆ Y is a closed set of Y .
For any g ∈ G, let Zg = {(x, y) ∈ X × Y : y ∈ (Fx ∩ gFx)}. Then Zg ⊆ Z is closed

invariant. Since Z contains no proper invariant subset, either Zg = ∅ or Zg = Z. Denote
U = {x ∈ X : ∃y ∈ Y, (x, y) is an almost periodic point of Z}. For any x0 ∈ U , suppose
z0 = (x0, y0) ∈ Z is an S-T almost periodic point. For any g ∈ G, (x0, gx0) ∈ RS,T (X).
By Proposition 2.5.16, there exists y ∈ Y such that (x0, y), (gx0, y) ∈ Z. So Fx0 ∩ Fgx0 =
Fx0 ∩ gFx0 6= ∅. Therefore Zg 6= ∅. So Zg = Z for all g ∈ G. Thus Fx = gFx for every x ∈ U .
Since g is arbitrary, Fx is closed invariant under G for every x ∈ U . Since (Y,G) is minimal,
and Fx 6= ∅ we get that Fx = Y for all x ∈ U .

It suffices to show that U = X. Fix x ∈ X. Since x is S-T -almost periodic, there
exist minimal idempotents uS ∈ E(X,S) and uT ∈ E(X,T ) such that uSx = x = uTx.
These idempotents can be lifted to minimal idempotents in E(Z, S) and E(Z, T ) which
can be projected onto minimal idempotents in E(Y, S) and E(Y, T ). We also denote these
idempotents by uS and uT . By Theorem 2.5.1, these idempotents commute in E(Y,G). So for
y ∈ Y such that (x, y) ∈ Z, we have that uSuT (x, y) = (x, uSuTy) ∈ Z, and uS(x, uSuTy) =
(x, uSuTy), uT (x, uSuTy) = (x, uSuTy). This means that the point (x, uSuTy) ∈ Z is S-T -
almost periodic. Hence U = X and therefore Z = X × Y .

Conversely, let (X,S, T ) be a system disjoint from systems with product extension. Let
U and V be non-empty open subsets of X and let x ∈ U and y ∈ V . Since X is S-T almost
periodic, we have that (OS(x), S) and (OT (x), T ) are minimal systems. By hypothesis,
(X,S, T ) is disjoint from (OS(x) × OT (x), S × id, id × T ). Since (x, (x, x)) and (y, (x, x))
belong to X × (OS(x) × OT (x)), we have that there exist sequences (ni)i∈N and (mi)i∈N in
Z such that (SniTmix, (Snix, Tmix)) → (y, (x, x)). Particularly (x, Smix, Tmix, SniTmix) ∈
QS,T (X) and this point converges to (x, x, x, y) ∈ QS,T (X). This implies that (x, y) ∈ QS(X),
(x, y) ∈ QT (X) and (x, y) ∈ RS,T (X) and since x and y are arbitrary we deduce that
QS(X) = QT (X) = RS,T (X) = X × X. By Lemma 2.5.6 we deduce that S and T are
transitive and since (X,S, T ) is S-T almost periodic we deduce that S and T are minimal.
By Lemma 2.5.13 we deduce that (X,S) and (X,T ) are minimal and weak mixing.
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2.5.3. Recurrence in systems with a product extension

We define the sets of return times in our setting:

Definition 2.5.17. Let (X,S, T ) be a minimal distal system with commuting transforma-
tions S and T , and let x ∈ X. Let x ∈ X and U be an open neighborhood of x. We define the
set of return times NS,T (x, U) = {(n,m) ∈ Z2 : SnTmx ∈ U}, NS(x, U) = {n ∈ Z : Snx ∈ U}
and NT (x, U) = {m ∈ Z : Tmx ∈ U}.

A subset A of Z is a set of return times for a distal system if there exists a distal system
(X,S), an open subset U of X and x ∈ U such that NS(x, U) ⊆ A.

A subset A of Z is a Bohr0 set is here exists an equicontinuous system (X,S), an open
subset U of X and x ∈ U such that NS(x, U) ⊆ A.

Remark 2.5.18. We remark that we can characterize Z2 sets of return times of distal systems
with a product extension: they contain the Cartesian product of sets of return times for distal
systems. Let (X,S, T ) be a minimal distal system with a product extension (Y ×W,σ ×
id, id× τ), and let U be an open subset of X and x ∈ U . By Theorem 2.4.7 we can assume
that the product extension is also distal. Let π denote a factor map from Y ×W → X. Let
(y, w) ∈ Y ×W such that π(y, w) = x and let UY and UW be neighborhoods of y and w such
that π(UY × UW ) ⊆ U . Then we have that that Nσ(y, UY )×Nτ (w,UW ) ⊆ NS,T (x, U).

Conversely, let (Y, σ) and (W, τ) be minimal distal systems. Let UY and UW be non-empty
open sets in Y and W and let y ∈ UY and w ∈ UW . Then Nσ(y, UY )×Nτ (w,UW ) coincides
with Nσ×id,id×τ ((y, w), UY × UW ).

Denote by BS,T the family generated by Cartesian products of sets of return times for a
distal system. Equivalently BS,T is the family generated by sets of return times arising from
minimal distal systems with a product extension.

Denote by B∗S,T the family of sets which have non-empty intersection with every set in
BS,T .

Lemma 2.5.19. Let (X,S, T ) be a minimal distal system with commuting transformations
S and T , and suppose (x, y) ∈ RS,T (X). Let (Z, S, T ) be a minimal distal system with
RS,T (Z) = ∆Z and let J be a closed subset of X × Z, invariant under T × T and S × S.
Then for z0 ∈ Z we have (x, z0) ∈ J if and only if (y, z0) ∈ J .

Proof. We adapt the proof of Theorem 3.5 [75] to our context. LetW = ZZ and SZ , TZ : W →
W be such that for any ω ∈ W , (SZω)(z) = S(ω(z)), (TZω)(z) = T (ω(z)), z ∈ Z. Let
ω∗ ∈ W be the point satisfying ω(z) = z for all z ∈ Z and let Z∞ = OGZ (ω∗), where GZ is
the group generated by SZ and TZ . It is easy to verify that Z∞ is minimal distal. So for
any ω ∈ Z∞, there exists p ∈ E(Z,G) such that ω(z) = pω∗(z) = p(z) for any z ∈ Z. Since
(Z, S, T ) is minimal and distal, E(Z,G) is a group (see [7], Chapter 5). So p : Z → Z is
surjective. Thus there exists zω ∈ Z such that ω(zω) = z0.
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Take a minimal subsystem (A, S × SZ , T × TZ) of the product system (X × Z∞, S ×
SZ , T ×TZ). Let πX : (A, S×SZ , T ×TZ)→ (X,S, T ) be the natural coordinate projection.
Then πX is a factor map between two distal minimal systems. By Proposition 2.4.6, there
exists ω1, ω2 ∈ W such that ((x, ω1), (y, ω2)) ∈ RS′,T ′(A), where S ′ = S × SZ , T ′ = T × TZ .

Let z1 ∈ Z be such that ω1(z1) = z0. Denote π : A → X × Z, π(u, ω) = (u, ω(z1)) for
(u, ω) ∈ A, u ∈ X and ω ∈ W . Consider the projection B = π(A). Then (B, S×S, T ×T ) is
a minimal distal subsystem of (X×Z, S×S, T×T ) and since π(x0, ω

1) = (x, z0) ∈ B we have
that J contains B. Suppose that π(x, ω2) = (x, z2). Then ((x, z0), (y, z2)) ∈ RS×S,T×T (B)
and thus (z0, z2) ∈ RS,T (Z). Since RS,T (Z) = ∆Z×Z we have that z0 = z2 and thus (y, z0) ∈
B ⊆ J .

Theorem 2.5.20. Let (X,S, T ) be a minimal distal system with commuting transformations
S and T . Then for x, y ∈ X, (x, y) ∈ RS,T (X) if and only if NS,T (x, U) ∈ B∗S,T for any open
neighborhood U of y.

Proof. Suppose N(x, U) ∈ B∗S,T for any open neighborhood U of y. SinceX is distal, RS,T (X)
is an equivalence relation. Let π be the projection map π : X → Y := X/RS,T (X). By Theo-
rem 2.4.7 we have that RS,T (Y ) = ∆Y . Since (X,S, T ) is distal, the factor map π is open and
π(U) is an open neighborhood of π(x). Particularly NS,T (x, U) ⊆ NS,T (π(x), π(U)). Let V be
an open neighborhood of π(x). By hypothesis we have that NS,T (x, U)∩NS,T (π(x), π(U)) 6= ∅
which implies that NS,T (π(x), π(U)) ∩NS,T (π(x), V ) 6= ∅. Particularly π(U) ∩ V 6= ∅. Since
this holds for every V we have that π(x) ∈ π(U) = π(U). Since this holds for every U we
conclude that π(x) = π(y). This shows that (x, y) ∈ RS,T (X).

Conversely, suppose that (x, y) ∈ RS,T (X), let U be an open neighborhood of y and let
A be a B∗S,T set. Then, there exists a minimal distal system (Z, S, T ) with RS,T (Z) = ∆Z ,
an open set V ⊆ Z and z0 ∈ V such that NS,T (z0, V ) ⊆ A. Let J be orbit closure of (x, z0)
under S × S and T × T . By distality we have that (J, S × S, T × T ) is a minimal system
and (x, z0) ∈ J . By Lemma 2.5.19 we have that (y, z0) ∈ J and particularly, there exist
sequences (ni)i∈N and (mi)i∈N in Z such that (SniTmix, SniTmiz0) → (y, z0). This implies
that NS,T (x, U) ∩NS,T (z0, V ) 6= ∅ and the proof is finished.

Corollary 2.5.21. Let (X,S, T ) be a minimal distal system with commuting transformations
S and T . Then (X,S, T ) has a product extension if and only if for every x ∈ X and every
open neighborhood U of x, NS,T (x, U) contains the product of two set of return times for a
distal system.

Proof. We prove the non-trivial implication. Let suppose that there exists (x, y) ∈ RS,T (X)\
∆X and let U, V be open neighborhoods of x and y respectively such that U ∩ V = ∅.
By assumption NS,T (x, U) is a BS,T set, and by Theorem 2.5.20 NS,T (x, V ) has nonempty
intersection with NS,T (x, U). This implies that U ∩ V 6= ∅, a contradiction. We conclude
that RS,T (X) = ∆X and therefore (X,S, T ) has a product extension.
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Specially, when S = T we get

Corollary 2.5.22. Let (X,T ) be a minimal distal system. Then (X,T ) is equicontinuous if
and only if for every x ∈ X and every open neighborhood U of x, NT (x, U) contains the sum
of two sets of return times for distal systems.

Proof. Suppose (X,T ) is equicontinuous, then the system (X,T, T ) with commuting transfor-
mations T and T has a product extension. So for every x ∈ X and every open neighborhood
U of x, we have that NT,T (x, U) contains a product of two sets A and B. In terms of the one
dimensional dynamics, this means that NT (x, U) contains A+B.

Conversely, if NT (x, U) contains the sum of two sets of return times for distal systems A
and B, we have that NT,T (x, U) contains the set A × B. By Corollary 2.5.21, (X,T, T ) has
a product extension and by Corollary 2.2.25 (X,T ) is an equicontinuous system.

Question 2.5.23. A natural question arising from Corollary 2.5.22 is the following: is the
sum of two set of return times for a distal system a Bohr0 set?

2.5.4. Complexity for systems with a product extension

In this subsection, we study the complexity of a distal system with a product extension.
We start recalling some classical definitions.

Let (X,G) be a topological dynamical system. A finite cover C = (C1, . . . , Cd) is a finite
collection of subsets of X whose union is all X. We say that C is an open cover if every
Ci ∈ C is an open set. Given two open covers C = (C1, . . . , Cd) and D = (D1, . . . , Dk) their
refinement is the cover C ∨D = (Ci ∩Dj : i = 1, . . . , d j = 1, . . . , k). A cover C is finer than
D if every element of C is contained in an element of D. We let D � C denote this property.

We recall that if (X,S, T ) is a minimal distal system with commuting transformations S
and T then QS(X), QT (X) and RS,T (X) are equivalence relations.

Let (X,S, T ) be a minimal distal system with commuting transformations S and T , and
let πS be the factor map πS : X → X/QS(X). Denote IS = {π−1

S y : y ∈ X/QS(X)} the set
of fibers of πS.

Given a system (X,S, T ) with commuting transformations S and T , and given a finite
cover C, denote CT,n0 = ∨n

i=0 T
−iC. For any cover C and any closed Y ⊂ X, let r(C, Y ) be the

minimal number of elements in C needed to cover the set Y . We remark that D � C implies
that r(D, Y ) ≤ r(C, Y ).

Definition 2.5.24. Let C be a finite cover of X. We define the S-T complexity of C to be
the non-decreasing function

cS,T (C, n) = max
Y ∈IS

r(CT,n0 , Y ).
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Proposition 2.5.25. Let (X,S, T ) be a distal system with commuting transformations S
and T . Then (X,S, T ) has a product extension if and only if cS,T (C, n) is bounded for any
open cover C.

Proof. Suppose first that RS,T (X) = ∆X . Since QS(X) is an equivalence relation, by
Proposition 2.2.26, we have that πS : (X,T ) → (X/QS(X), T ) is an equicontinuous exten-
sion. Let ε > 0 be the Lebesgue number of the finite open cover C, i.e. any open ball
B with radius ε is contained in at least one element of C. Then there exists 0 < δ < ε

such that d(x, y) < δ, πS(x) = πS(y) implies that d(T nx, T ny) < ε for all n ∈ Z. For
any Y ∈ IS, by compactness, let x1, . . . , xk ∈ Y be such that Y ⊂ ⋃k

i=1 B(xi, δ). Then
T j(B(xi, δ) ∩ Y ) ⊂ B(T jxi, ε) ∩ Y ⊂ B(T jxi, ε) for any j ∈ N (since QS(X) is invariant un-
der T × T ). Let Ui,j be an element of C containing B(T jxi, ε). Then T j(B(xi, δ)∩ Y ) ⊂ Ui,j.
So B(xi, δ) ∩ Y ⊂

⋂n
j=0 T

−jUi,j. Thus {⋂nj=0 T
−jUi,j : 1 ≤ i ≤ k} is a subset of CT,n0 covering

Y with cardinality k. Therefore r(CT,n0 , Y ) is bounded by the quantity of balls of radius δ
needed to cover Y .

Suppose that cS,T (C, n) is not bounded. For Y, Y ′ ∈ IS, let dH(Y, Y ) be the Hausdorff
distance between Y and Y ′. Since the factor map X → X/QS is open, for any ε′ > 0, there
exists δ′ > 0 such that if y, y′ ∈ X/QS and d(y, y′) < δ′, then dH(π−1y, π−1y′) < ε′.

Let y ∈ Y and let C ′ ⊆ C be a subcover of Y = π−1(y). Let ε′ > 0 be such that if
d(x, Y ) < ε′, then x is covered by C ′ . We can find δ′ > 0 such that if d(y, y′) < δ′, then
dH(π−1y, π−1y′) < ε′. Thus C ′ is also an open covering of Y ′ = π−1(y′).

If π−1y ⊂ ⋃k
i=1 B(xi, δ), then there exists δ′ > 0 such that d(y, y′) < δ′ implies that

π−1y′ ⊂ ⋃k
i=1 B(xi, δ). If cS,T (C, n) is not bounded, there exists yi ∈ Y such that π−1(yi)

can not be covered by i balls of radius δ > 0. We assume with out loss of generality that
yi → y (by taking a subsequence). Since π−1y can be covered by a finite number K of balls
of radius δ, we get that for large enough i, π−1yi can also be covered by K balls of radius δ,
a contradiction. Therefore cS,T (C, n) is bounded.

Conversely, let suppose that cS,T (C, n) is bounded for every open cover C and suppose
that RS,T (X) 6= ∆X . We remark that if C is an open cover and Y ∈ IS then

r(CT,n−n , Y ) := r(
n∨

i=−n
T−iC, Y ) = r(T n

2n∨
i=0

T−iC, T nT−nY ) = r(
2n∨
i=0

T−iC, T−nY ).

Since T commutes with S we have that T−nY ∈ IS and thus the condition that cS,T (C, n) is
bounded implies that r(∨ni=−n T−iC, Y ) is bounded for any Y ∈ IS.

Since RS,T (X) 6= ∆X by Proposition 2.2.26, there exist ε > 0 and x ∈ X such that
for any δ > 0, one can find y ∈ X and k ∈ Z such that d(x, y) < δ, πS(x) = πS(y) and
d(T kx, T ky) > ε. Pick any Y ∈ IS and let C ′ be a finite cover of open balls with radius ε/4.
Let C be the finite covering made up of the closures of the elements of C ′. Since C ≺ C ′ we
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have that r(CT,n−n , Y ) is also bounded.
By a similar argument of Lemma 2.1 of [15], there exist closed sets X1, . . . , Xc ⊂ X such

that Y ⊂ ⋃ci=1 Xi, where each Xi can be written as Xi = ⋂∞
j=−∞ T

−jUi,j, with Ui,j ∈ C. Then
y, z ∈ Xi implies that d(T jy, T jz) < ε/2 for any j ∈ Z.

Let (δn)n∈N be a sequence of positive numbers such that limn→∞ δn = 0. For any n ∈ N
we can find yn ∈ X and kn ∈ Z with d(x, yn) < δn, πS(x) = πS(yn) and d(T knx, T knyn) > ε.
By taking a subsequence, we may assume that all yn belong to the same set Xi. Since Xi is
closed, x ∈ Xi. Thus d(T jx, T jyn) < ε/2 for any j, n ∈ N, a contradiction.
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Chapter 3

A pointwise cubic average for two
commuting transformations

This chapter is based on the joint work with Wenbo Sun A pointwise cubic average for
two commuting transformations [35]. Huang, Shao and Ye recently studied pointwise multiple
averages by using suitable topological models. Using the notion of dynamical cubes introduced
in Chapter 2, the Huang-Shao-Ye strategy and the Host machinery of magic systems, we
prove that for an ergodic system (X,µ, S, T ) with commuting transformations S and T , the
average

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

converges a.e. as N goes to infinity for any f1, f2, f3 ∈ L∞(µ).

3.1. Introduction

3.1.1. Pointwise convergence for cube averages

A system (X,X , µ, S, T ) with two commuting transformations S and T is a probability
space (X,X , µ) endowed with two commuting measure preserving transformations S, T : X →
X. In this chapter, we study the pointwise convergence of a cubic average in such a system.

The existence of the limit in L2 of the averages

lim
N→∞

1
N2

N−1∑
i,j=0

f1(T ix)f2(T jx)f3(T i+jx) (3.1.1)

was proved by Bergelson [12] and was generalized in [66] and [67] to higher orders averages.
There are two possible generalizations of these averages to systems with commuting trans-

formations: one is to study averages of the form

lim
N→∞

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(Ri+jx) (3.1.2)
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for commuting transformations S, T and R. Another is to study averages of the form

lim
N→∞

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx) (3.1.3)

for commuting transformations S and T .
The existence of the pointwise limit of (3.1.2) was proved by Assani [2] for three trans-

formations and it was generalized to an arbitrary number of transformations by Chu and
Frantzikinakis [22]. It is worth noting that in fact no assumption of commutativity of the
transformations is required. In contrast, the average (3.1.3) has a very different nature.
Leibman [81] showed that convergence of (3.1.3) fails (even in L2) without commutativity
assumptions. When the transformations commute, the L2 convergence of (3.1.3) (and its
higher order versions) was proved by Chu [20] based on the work of Host [64] which follows
the works of Tao [112] and Austin [7]. In order to prove this result, Host introduced the
notion of magic extensions, which allows one to study such averages in an extension system
with convenient properties. It is natural to ask if the averages in (3.1.3) converges in the
pointwise sense. In this chapter, we prove:

Theorem 3.1.1. Let (X,µ, S, T ) be an ergodic measure preserving system with commuting
transformations S and T . Then the average

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

converges a.e. as N goes to infinity for any f1, f2, f3 ∈ L∞(µ).

Recently Huang, Shao and Ye [77] proved the pointwise convergence of multiple averages
for a single transformation on a distal system. So a natural question arises from Theorem
3.1.1: If (X,µ, S, T ) is an ergodic measure preserving system with commuting transformations
S and T , does the average

1
N

N−1∑
i=0

f1(Six)f2(T ix)

converge in the pointwise sense as N goes to infinity? The case when S and T are powers of
some ergodic transformation was solved by Bourgain [16] but no further results were given
until Huang, Shao and Ye result.

3.1.2. Strict ergodicity for dynamical cubes

The main ingredient in proving Theorem 3.1.1 is to find a suitable topological model for
the original system. This means finding a measurable conjugacy to a space with a conve-
nient topological structure. Jewett-Krieger’s Theorem states that every ergodic system has
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a strictly ergodic model (see Section 3.2 for definitions) and it is known that one can add
some additional properties to the topological model.

In this chapter, we are interested in the strict ergodicity property of the cube structure
introduce in Chapter 2 of a topological model. Let X be a compact metric space and
S, T : X → X be two commuting homeomorphisms. We recall that QS,T (X) is defined to be

QS,T (X) = {(x, Six, T jx, SiT jx) : x ∈ X, i, j ∈ Z}.

This object was introduced in [34] motivated by Host’s work [64] and results in a useful
tool to study products of minimal systems and their factors. A classical argument using
Birkhoff Ergodic Theorem (see, for example, the proof of Theorem 3.5.1) shows that the strict
ergodicity property of QS,T (X) is connected to pointwise multiple convergence problems such
as Theorem 3.1.1 and Theorem 3.5.1. We ask the following question:

Question 3.1.2. For any ergodic system (X,µ, S, T ) with two commuting transformations
S and T , is there a topological model (X̂, Ŝ, T̂ ) of X such that (QS,T (X̂),G

Ŝ,T̂
) is strictly

ergodic? Here G
Ŝ,T̂

is the group of action generated by id× Ŝ × id× Ŝ, id× id× T̂ × T̂ and
R̂× R̂× R̂× R̂, where R̂ = Ŝ or T̂ .

Huang, Shao and Ye [75] gave an affirmative answer to this question for the case S = T .
Although this question remains open in the general case, such a model always exists in an
extension system of the original one. We prove the following theorem, which is the main tool
to study Theorem 3.1.1:

Theorem 3.1.3. For any ergodic system (X,µ, S, T ) with two commuting transformations
S and T , there exists an extension system (Y, ν, S, T ) of X and a topological model (Ŷ , Ŝ, T̂ )
of Y such that (QS,T (Ŷ ),GS,T ) is strictly ergodic.

It is worth noting that since every measurable function on the original system can be
naturally lifted to a function on the extension system, this result is already sufficient for our
purposes.

3.1.3. Proof Strategy and organization

Conventions and background material are in Section 3.2. To prove Theorem 3.1.3, we
refine the technique of Host in [64] to find a suitable magic extension of the original system
in Section 3.3. Then we use the method of Huang, Shao and Ye [75] to find a desired model for
this extension system in Section 3.4. The announced pointwise convergence result (Theorem
3.1.1) follows from Theorem 3.1.3, and we explain how this is achieved in Section 3.5.
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3.2. Background Material

We start recalling some classical concepts. Let (X,G) be a topological dynamical sys-
tem. The Krylov-Bogolyubov Theorem states that this systems always admits an invariant
measure. When this measure is unique, we say that (X,G) is uniquely ergodic. In addition,
we say that (X,G) is strictly ergodic if it is minimal and uniquely ergodic.

We state here a well known theorem for the case when G is spanned by d commuting
transformations T1, . . . , Td.

Theorem 3.2.1. Let (X,G) be a topological dynamical system. The following are equivalent

1. (X,G) is uniquely ergodic.

2. For any continuous function f , the average

1
Nd

∑
i1,...,id∈[0,N−1]

f(T i11 · · ·T
id
d x)

converges uniformly to
∫
fdµ as N goes to infinity.

A deep connection between measure preserving systems and topological dynamical sys-
tems is the Jewett-Krieger Theorem [78, 80] which asserts that every ergodic system (X,µ, T )
is isomorphic to a strictly ergodic topological dynamical system (X̂, µ̂, T̂ ), where µ̂ is the
unique ergodic measure of (X̂, T̂ ). We say that (X̂, T̂ ) is a topological model for (X,µ, T ).

Further refinements have been given to the Jewett-Krieger Theorem. We state the one
which is useful for our purposes.

Definition 3.2.2. Let (X,µ,G) be a measure preserving system. We say that G acts freely
on X (or the system (X,µ,G) is free) if for any non-trivial g ∈ G the set {x ∈ X : gx = x}
has measure 0. If (X,µ,G) is ergodic and G is abelian and this is equivalent to say that any
non-trivial g ∈ G defines a transformation different from the identity transformation on X.

Particularly, we say that an ergodic system (X,µ, S, T ) with commuting transformations
is free if SiT j is not the identity transformation on X for any (i, j) 6= (0, 0).

Theorem 3.2.3 (Weiss-Rosenthal [118]). Let G be an amenable group and let π : Y → X

be a factor map between two measure preserving systems (Y, ν,G) and (X,µ,G). Suppose
that (X,µ,G) is free and (X̂, Ĝ) is a strictly ergodic model for (X,µ,G). Then there exits a
strictly ergodic model (Ŷ , G) for (Y, ν,G) and a topological factor map π̂ : Ŷ → X̂ such that
the following diagram commutes:

Here we mean that Φ and φ are measure preserving isomorphisms and π ◦ Φ = φ ◦ π̂.

In this case, we say that π̂ : Ŷ → X̂ is a topological model for π : Y → X.
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Y Ŷ

X X̂

π

Φ

π̂

φ

3.2.1. Host magic extensions

The Host magic extension was first introduced in [64] to prove the L2 convergence of
multiple ergodic averages for systems with commuting transformations. Then Chu [21] used
this tool to study the recurrence problems in the same setting of systems. We recall that
this construction is valid for an arbitrary number of transformations, but for convenience we
state it only for two transformations S and T .

Convention 3.2.4. We recall that we implicitly assume that all functions are measurable
and real valued but we remark that similar results hold for complex valued functions.

The Host measure

Definition 3.2.5. For any measure preserving transformation R of the system (X,X , µ), we
let IR denote the σ-algebra of R-invariant sets.

Let X∗ denote the space X4. Let µS be the relative independent square of µ over IS,
meaning that for all f0, f1 ∈ L∞(µ) we have

∫
X2
f0(x0)f1(x1)dµS =

∫
X
E(f1|IS)E(f1|IS)dµ,

where E(f |IS) is the conditional expectation of f on IS. It is obvious that µS is invariant
under id× S and g × g for g ∈ G.

Let µS,T denote the relative independent square of µS over IT×T . Hence for all f0, f1, f2, f3 ∈
L∞(µ) we have that

∫
X4
f0(x0)f1(x1)f2(x2)f3(x3)dµS,T =

∫
X2

E(f0 ⊗ f1|IT×T )E(f2 ⊗ f3|IT×T )dµS.

The measure µS,T is invariant under id×S× id×S, id× id× T × T and under g× g× g× g
for all g ∈ G.

Let S∗ and T ∗ denote the transformations id×S× id×S and id× id×T ×T respectively.
Then (X∗, µS,T , S∗, T ∗) is a system with commuting transformations S∗ and T ∗. Let π denote
the projection (x0, x1, x2, x3) → x3 from X∗ to X. Then π defines a factor map between
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(X∗, µS,T , S∗, T ∗) and (X,µ, S, T ). We remark that the system (X∗, µS,T , S∗, T ∗) may not be
ergodic even if (X,µ, S, T ) is ergodic.

The Host seminorm

Let f ∈ L∞(µ). The Host seminorm [64] is defined to be the quantity

|||f |||µ,S,T =
(∫

X4
f(x0)f(x1)f(x2)f(x3)dµS,T

)1/4
.

We have

Proposition 3.2.6 ([64], Proposition 2).

1. For f0, f1, f2, f3 ∈ L∞(µ), we have
∫
X4
f0 ⊗ f1 ⊗ f2 ⊗ f3dµS,T ≤ |||f0|||µ,S,T |||f1|||µ,S,T |||f2|||µ,S,T |||f3|||µ,S,T

2. |||·|||µ,S,T is a seminorm on L∞(µ).

We recall some standard notation. For any two σ-algebras A and B of X, let A ∨ B
denote the σ-algebra generated by {A ∩ B : A ∈ A, B ∈ B}. If f is a measurable function
on (X,X , µ) and A is a sub-algebra of X , let E(f |A) denote the conditional expectation of
f over A.

Definition 3.2.7. Let (X,µ, S, T ) be a measure preserving system with commuting trans-
formations S and T . We say that (X,µ, S, T ) is magic if

E(f |IS ∨ IT ) = 0 if and only if |||f |||µ,S,T = 0.

The connection between the Host measure µS,T and magic systems is:

Theorem 3.2.8 ([64], Theorem 2). The system (X∗, µS,T , S∗, T ∗) defined in Section 3.2.1 is
a magic extension system of (X,µ, S, T ).

3.2.2. Dynamical cubes

The following notion of dynamical cubes for a system with commuting transformations
was introduced and studied in [34] and presented in Chapter 2. We recall the definitions
here.

Definition 3.2.9. Let (X,S, T ) be a topological dynamical system with commuting trans-
formations S and T . We let GS,T denote the subgroup of G4 generated by id × S × id × S,
id× id× T × T and g × g × g × g, g ∈ G. For any R ∈ G, let GR denote the subgroup of G2

generated by id×R and g × g, g ∈ G.
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Definition 3.2.10. Let (X,S, T ) be a topological dynamical system with commuting trans-
formations S and T and let R ∈ G. We define

QS,T (X) = {(x, Six, T jx, SiT jx) : x ∈ X, i, j ∈ Z};

QR(X) = {(x,Rix) ∈ X : x ∈ X, i ∈ Z}.

3.3. The existence of free magic extensions

In this section, we strengthen Theorem 3.2.8 for our purposes by requiring the magic
extension to be also ergodic and free. We remark that there are a lot of interesting systems
with commuting transformations where the action is not free. For example, the system
(X,µ, S, Si), where S is an ergodic measure preserving transformation of X and i ∈ Z, i 6= 1.
However, we have

Theorem 3.3.1. Let (X,µ, S, T ) be an ergodic system with commuting transformations S
and T . Suppose that Si and T j are not the identity for any i, j ∈ Z \ {0}. Then there exists
a magic extension (X̂, ν, S∗, T ∗) where the action of Z2 is free and ergodic.

Remark 3.3.2. By Theorem 3.2.8, (X∗, µS,T , S∗, T ∗) is a magic extension of X, but since
(X∗, µS,T , S∗, T ∗) may not be ergodic, we need to decompose the measure µS,T in order to
get an ergodic magic extension of X.

Proof. Consider the measure µS,T on X∗ = X4. We claim that µS,T ({~x : S∗iT ∗j~x 6= ~x}) = 1
for every i, j ∈ Z. Let A∗i,j denote the set {~x : S∗iT ∗j~x 6= ~x}. Then the complement of
A∗i,j is included in the union of the sets X × A × X × X and X × X × B × X, where
A = {x : Six = x} and B = {x : T jx = x}. Since the projection of µS,T onto any coordinate
equals µ, we have that µS,T (A∗ci,j) ≤ µ(A) + µ(B) = 0. Therefore, writing A∗ = ⋂

i,j∈ZA
∗
i,j,

we have that µS,T (A∗) = 1.
Let

µS,T =
∫
µS,T,~xdµS,T (~x)

be the ergodic decompositions of µS,T under S∗ and T ∗. Then we have that µS,T,~x(A∗) = 1
for µS,T -a.e. ~x ∈ X∗. By Proposition 3.13 of [21], for µS,T -almost every ~x ∈ X∗, the system
(X∗, µS,T,~x, S∗, T ∗) is a magic extension of (X,µ, S, T ). Hence, we can pick ~x0 ∈ A∗ such
that (X∗, µS,T,~x0 , S

∗, T ∗) is a magic extension. This is a magic ergodic free extension of
(X,µ, S, T ).

We prove some properties for later use. In the rest of this section, we assume that
(X,µ, S, T ) is a free magic ergodic measure preserving system. Let W denote the σ-algebra
IS ∨ IT and let ZS,T be the factor associated to this σ-algebra.

Lemma 3.3.3. ZS,T is isomorphic to the product of two ergodic systems.
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Proof. Let A ∈ IT and B ∈ IS. We have that limN→∞
1
N2
∑N−1
i,j=0 1A ◦ Si ◦ T j converges in

L2(µ) to µ(A). Since A is invariant under T , we have that limN→∞
1
N

∑N−1
j=0 1A ◦Sj converges

to µ(A). Similarly limN→∞
1
N

∑N−1
j=0 1B ◦ Sj converges to µ(B). It follows that

lim
N→∞

1
N2

N−1∑
i,j=0

1A∩B ◦ Si ◦ T j = lim
N→∞

1
N2

N−1∑
i,j=0

1A1B ◦ Si ◦ T j = µ(A)µ(B).

Since (X,µ, S, T ) is ergodic, this limit equals µ(A∩B) and therefore µ(A∩B) = µ(A)µ(B).
We conclude that the map A ∩ B → A × B defines a measure preserving isomorphism

between (X, IT ∨ IS, µ, S, T ) and (X ×X, IT ⊗ IS, µ⊗ µ, S × id, id× T ).

For convenience, we write (ZS,T , S, T ) = (Y ×W,σ × id, id× τ).

Lemma 3.3.4. The σ-algebra of (T×T )-invariant sets on (X2, µS) is measurable with respect
to W2.

Proof. We follow the proof of Proposition 4.7 of [67]. It suffices to show that

E(f0 ⊗ f1|IT×T ) = E(E(f0|W)⊗ E(f1|W)|IT×T ).

It suffices to prove this equality when E(fi|W) = 0 for i = 0 or 1. By Proposition 3.2.6,
we have that

∫
f0 ⊗ f1 ⊗ f0 ⊗ f1dµS,T =

∫
|E(f0 ⊗ f1|IT×T )|2dµS ≤ |||f0|||2µ,S,T |||f1|||2µ,S,T ,

which implies that E(f0 ⊗ f1|IT×T ) = 0 whenever |||fi|||µ,S,T = 0 for i = 0 or 1. Since the
system is magic, this is equivalent to E(fi|W) = 0 for i = 0 or 1, and we are done.

3.4. Strict ergodicity for dynamical cubes

This section is devoted to the proof of Theorem 3.1.3. By Theorem 3.3.1, it suffices to
prove the following theorem:

Theorem 3.4.1. For any free ergodic magic system (X,µ, S, T ) with two commuting trans-
formations S and T , there exists a topological model (X̂, Ŝ, T̂ ) of X such that (QS,T (X̂),
GS,T ) is strictly ergodic.

3.4.1. A special case: product systems

We start by proving a special case of Theorem 3.4.1.
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Lemma 3.4.2. Let (Y, σ) and (W, τ) be two strictly ergodic systems with unique measures
ρY and ρW . Then (Y ×W,σ × id, id× τ) is strictly ergodic with measure ρY ⊗ ρW .

Proof. Let λ be an invariant measure on Y ×W . Since Y is uniquely ergodic, the projection
onto the first coordinate of λ is ρY . Using the disintegration with respect to Y , we have that

λ =
∫
Y
δy × λydρY .

Since λ is invariant under id× τ , we have that

(id× τ)λ = λ =
∫
Y
δy × τλydρY .

By the uniqueness of the disintegration, we get that τλy = λy ρY -a.e. Since (W, τ) is
uniquely ergodic, a.e. we have that λy = ρW and therefore

λ =
∫
Y
δy × ρWdρY = ρY ⊗ ρW .

The next corollary follows similarly.

Corollary 3.4.3. Let ((Xi, Ti))ni=1 be strictly ergodic systems with measures (ρi)ni=1. For
j = 1, . . . , n let T̃j be the transformation on ∏

Xi defined as (T̃j)i = idXi if i 6= j and
(T̃j)j = Tj. Then the system (∏Xi, T̃1, . . . , T̃n) is strictly ergodic with measure ⊗ρi.

We are now ready to prove Theorem 3.4.1 for the case when the system is a product:

Proposition 3.4.4. Let (Y, σ) and (W, τ) be two strictly ergodic systems with unique mea-
sures ρY and ρW . Then Qσ×id,id×τ (Y ×W ) is uniquely ergodic with measure νσ×id,id×τ , where
ν = ρY ⊗ ρW . Particularly, (Qσ×id(Y ×W ),Gσ×id) is strictly ergodic with measure νσ×id.

Proof. By definition, we deduce that

Qσ×id,id×τ (Y ×W ) = {((y, w), (y′, w), (y, w′), (y′, w′)) : y, y′ ∈ Y,w,w′ ∈ W}

and Gσ×id,id×τ is the group spanned by

(σ × id)× (σ × id)× (σ × id)× (σ × id)

(id× τ)× (id× τ)× (id× τ)× (id× τ)

(id× id)× (σ × id)× (id× id)× (σ × id)

(id× id)× (id× id)× (id× τ)× (id× τ).
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We may identify Qσ×id,id×τ (Y ×W ) with Y × Y ×W ×W under the map φ

((y, w), (y′, w), (y, w′), (y′, w′)) 7→ (y, y′, w, w′).

We remark that Gσ×id,id×τ is mapped to the group spanned by

σ × σ × id× id, id× id× τ × τ, id× σ × id× id and id× id× id× τ.

This is the same as the group spanned by

σ × id× id× id, id× id× τ × id, id× σ × id× id and id× id× id× τ.

By Corollary 3.4.3, this system is uniquely ergodic with measure ρY ⊗ ρY ⊗ ρW ⊗ ρW . Since
νσ×id,id×τ is an invariant measure on Qσ×id,id×τ (Y ×W ), we have that it is the unique invariant
measure and it coincides with φ−1(ρY ⊗ ρY ⊗ ρW ⊗ ρW ).

3.4.2. Proof of the general case

Throughout this section, we consider (X,µ, S, T ) as a fixed system which is magic, ergodic
and free, and we follow the notations in the previous section. By Lemma 3.3.3, the factor
associated to the σ-algebra W = IS ∨ IT has the form (Y ×W,σ × id, id× τ), where (Y, σ)
and (W, τ) are ergodic systems.

Lemma 3.4.5. There exists a strictly ergodic topological model for the factor map π : X →
Y ×W .

Proof. By the Jewett-Krieger Theorem, we can find strictly ergodic models (Ŷ , σ̂) and (Ŵ , τ̂)
for (Y, σ) and (W, τ), respectively. Let ρY and ρW denote the unique ergodic measures on
these systems. By Lemma 3.4.2, (Ŷ × Ŵ , σ̂ × id, id × τ̂) is a strictly ergodic model for
(Y ×W,σ × id, id× τ) with unique invariant measure ρY ⊗ ρW .

By Theorem 3.2.3, there exists a strictly ergodic model π̂ : X̂ → Ŷ × Ŵ for π : X →
Y ×W .

We are now ready to prove Theorem 3.4.1:

Proof of Theorem 3.4.1. For any free ergodic magic system (X,S, T ), let π : X → (Y ×W,σ×
id, id× τ) be the factor map associated to the σ-algebra W = IS ∨ IT . Let π̂ : X̂ → Ŷ × Ŵ
be the topological model given by Lemma 3.4.5. We claim that (QS,T (X̂),GS,T ) is strictly
ergodic.

70



To simplify the notation, we replace X̂, Ŵ , Ŷ , etc by X, W , Y etc. It was proved in
Proposition 3.14 of [34] that (QS,T (X),GS,T ) is a minimal system. So it suffices to show
unique ergodicity.

Claim 1: (QS(X),GS) is uniquely ergodic with measure µS.
We recall that the factor of X corresponding to IS is (W, id, τ).
Suppose that the ergodic decomposition of µ under S is

µ =
∫
W
µωdρW (ω).

Then

µS =
∫
W
µω × µωdρW (ω).

Let πW : X → W be the factor map and let λ be a GS-invariant measure on QS(X). For
i = 0, 1, let pi : (QS(X),GS)→ (X,G) be the projection onto the i-th coordinate. Then piλ
is a G-invariant measure of X. Therefore, piλ = µ. Hence we may assume that

λ =
∫
X
δx × λxdµ(x)

is the disintegration of λ over µ. Since λ is (id× S)-invariant, we have that

λ = (id× S)λ =
∫
X
δx × λSxdµ(x).

The uniqueness of disintegration implies that λSx = λx for µ-a.e. x ∈ X. So the map

F : X →M(X) : x 7→ λx

is an S-invariant function. Hence we can write λx = λπW (x) for µ-a.e. x ∈ X.
Then we have

λ =
∫
X
δx × λxdµ(x) =

∫
X
δx × λπW (x)dµ(x)

=
∫
W

∫
X
δx × λωdµω(x)dρW (ω)

=
∫
W

(
∫
X
δxdµω(x))× λωdρW (ω)

=
∫
W
µω × λωdρW (ω).

Recall that Qid(W ) = ∆W and Gid is spanned by (τ, τ). Therefore (Qid(W ),Gid) is
isomorphic to (W, τ). Particularly, it is uniquely ergodic and for convenience we let PW
denote its invariant measure.
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Let π2
Y : (QS(X),GS)→ (Qid(W ),Gid) be the natural factor map.

We have that
π2
W (λ) = PW .

Thus

π(µω) = π(λω) = δω. (3.4.1)

On the other hand, p1(λ) = p2(λ) = µ implies that

µ =
∫
W
µωdρW (ω) =

∫
W
λωdρW (ω). (3.4.2)

By (3.4.1), (3.4.2) and the uniqueness of disintegration, we have that λω = µω, ρW -a.e.
ω ∈ W . So

λ =
∫
W
µω × µωdρW (ω) = µS.

This finishes the proof of Claim 1.
Claim 2: (QS,T (X),GS,T ) is uniquely ergodic with unique measure µS,T .
Let λ be a GS,T -invariant measure on QS,T (X). Let p1, p2 : (QS,T (X),GS,T ) → (QS(X),

GS) be the projection onto the first two and last two coordinates, respectively. Then piλ is a
GS-invariant measure of QS(X) and therefore, piλ = µS. Hence we may assume that

λ =
∫

QS(X)
δx × λxdµS(x)

is the disintegration of λ over µS. Since λ is (id× id× T × T )-invariant, we have that

λ = (id× id× T × T )λ =
∫

QS(X)
δx × λ(T×T )xdµS(x).

The uniqueness of disintegration implies that λ(T×T )x = λx for µS-a.e. x ∈ QS(X). So the
map

F : QS(X)→M(X4) : x 7→ λx

is a (T × T )-invariant function and therefore F is IT×T -measurable.
Let (ΩS,T , P ) be the factor of (X ×X,µS) corresponding to the subalgebra IT×T and let

φ denote the corresponding factor map. Suppose that the ergodic decomposition of µS under
T × T is

µS =
∫

ΩS,T
µS,ωdP (ω).
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Then

µS,T =
∫

ΩS,T
µS,ω × µS,ωdP (ω).

Hence we can write λx = λφ(x) for µS-a.e. x ∈ QS(X). Then we have

λ =
∫

QS(X)
δx × λxdµS(x) =

∫
QS(X)

δx × λφ(x)dµS(x)

=
∫

ΩS,T

∫
QS(X)

δx × λωdµS,ω(x)dP (ω)

=
∫

ΩS,T
(
∫

QS(X)
δxdµS,ω(x))× λωdP (ω)

=
∫

ΩS,T
µS,ω × λωdP (ω).

Recall that π : X → Y ×W is the factor map. Let

π4 : (QS,T (X),GS,T )→ (Qσ×id,id×τ (Y ×W ),Gσ×id,id×τ )

be the natural factor map. By Lemma 3.3.4, there exists a factor map α : (Y ×W )2 → ΩS,T

such that α ◦ π2 = φ2.

Let ν = ρY ⊗ ρW denote the unique invariant measure on Y ×W . By Proposition 3.4.4,
we have that (QS,T (Y ×W ), Gσ×id,id×τ ) is uniquely ergodic and νS,T is its unique invariant
measure.

Suppose that the ergodic decomposition of νS under T × T is

νS =
∫

ΩS,T
νS,ωdP (ω).

Then we have
νS,T =

∫
ΩS,T

νS,ω × νS,ωdP (ω).

Since π4λ is an invariant measure on Qσ×id,id×τ (Y ×W ), we have that

π4(λ) = νS,T =
∫

ΩS,T
νS,ω × νS,ωdP (ω).

Since φ2 = α ◦ π2, we have that

φ2(µS,ω) = φ2(λω) = α(νS,ω) = δω. (3.4.3)
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On the other hand, p1(λ) = p2(λ) = µ implies that

µS =
∫

ΩS,T
µS,ωdP (ω) =

∫
ΩS,T

λωdP (ω). (3.4.4)

By (3.4.3), (3.4.4) and the uniqueness of disintegration, we have that λω = µS,ω, P -a.e.
ω ∈ ΩS,T . So

λ =
∫

ΩS,T
µS,ω × µS,ωdP (ω) = µS,T .

Thus (QS,T (X),GS,T ) is strictly ergodic with unique measure µS,T .

3.5. Applications to pointwise results

We apply results in previous sections to deduce some convergence results. We remark
that if Si is the identity for some i 6= 0, the averages we consider in this section reduce to the
Birkhoff ergodic theorem. So the difficult case is when the systems (X,µ, S) and (X,µ, T ) are
free, and we make this assumption throughout this section. Since the averages we consider
can be deduced by proving them in an extension of X, by Theorem 3.3.1 we may assume
that (X,µ, S, T ) is a magic free ergodic system. By Theorem 3.4.1, we may take a strictly
topological model (X̂, Ŝ, T̂ ) for X such that (QS,T (X̂),G

Ŝ,T̂
) is strictly ergodic. So (omitting

the symbol ̂ to simplify notation), throughout all this section we assume that (X,µ, S, T )
is a magic free ergodic system and that (QS,T (X),GS,T ) is strictly ergodic.

Theorem 3.5.1. Let f0, f1, f2, f3 ∈ L∞(µ). Then

lim
N→∞

1
N4

N−1∑
i,j,k,p=0

f0(SiT jx)f1(Si+kT jx)f2(SiT j+px)f3(Si+kT j+px)

converges almost everywhere to
∫
f0 ⊗ f1 ⊗ f2 ⊗ f3dµS,T .

Proof. Recall that GS,T is a Z4-action spanned by S×S×S×S, T ×T ×T ×T , id×S× id×S
and id× id× T × T .

Let f0, f1, f2, f3 ∈ L∞(µ) and fix ε > 0. Let f̂0, f̂1, f̂2, f̂3 be continuous functions on X

such that ‖fi − f̂i‖1 < ε for i = 0, 1, 2, 3. We can assume that all functions are bounded by
1 in L∞ norm. For simplicity, denote

I(h0, h1, h2, h3) =
∫
h0 ⊗ h1 ⊗ h2 ⊗ h3dµS,T

and

EN(h0 ⊗ h1 ⊗ h2 ⊗ h3)(x) = 1
N4

N−1∑
i,j,k,p=0

h0(SiT jx)h1(Si+kT jx)h2(SiT j+px)h3(Si+kT j+px)
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for x ∈ X, h0, h1, h2, h3 ∈ L∞(µ).
By the telescoping inequality

|EN(f0 ⊗ f1 ⊗ f2 ⊗ f3)(x)− I(f0, f1, f2, f3)|

≤
∣∣∣EN(f0 ⊗ f1 ⊗ f2 ⊗ f3)(x)− EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)

∣∣∣
+
∣∣∣EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)− I(f0, f1, f2, f3)

∣∣∣
≤ 1
N2

∑
i,j

|f0(SiT jx)− f̂0(SiT jx)|+ 1
N3

∑
i,j,k

|f1(Si+kT jx)− f̂1(Si+kT jx)|

+ 1
N3

∑
i,j,p

|f2(SiT j+px)− f̂2(SiT j+px)|+ 1
N4

∑
i,j,k,p

|f3(Si+kT j+px)− f̂3(Si+kT j+px)|

+
∣∣∣EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)− I(f̂0, f̂1, f̂2, f̂3)

∣∣∣+ ∣∣∣I(f0, f1, f2, f3)− I(f̂0, f̂1, f̂2, f̂3)
∣∣∣ .

Since (QS,T (X),GS,T ) is uniquely ergodic, we have that
∣∣∣EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)− I(f̂0, f̂1, f̂2, f̂3)

∣∣∣
converges to 0 for every x ∈ X as N goes to infinity.

On the other hand, by Birkhoff ergodic theorem, we have that the four first terms of the
last inequality converge a.e. to ‖f0− f̂0‖1, ‖f1− f̂1‖1, ‖f2− f̂2‖1 and ‖f3− f̂3‖1, respectively.

Finally, using again the telescoping inequality and the fact that the marginals of µS,T are
equal to µ we deduce that
∣∣∣I(f0, f1, f2, f3)− I(f̂0, f̂1, f̂2, f̂3)

∣∣∣ ≤ ‖f0 − f̂0‖1 + ‖f1 − f̂1‖1 + ‖f2 − f̂2‖1 + ‖f3 − f̂3‖1.

Therefore, we can find N large enough and a subset XN ⊂ X with measure larger than
1− ε such that for every x ∈ XN ,

|EN(f0 ⊗ f1 ⊗ f2 ⊗ f3)(x)− I(f0, f1, f2, f3)| ≤ 13ε.

Since ε is arbitrary, we conclude that EN(f0 ⊗ f1 ⊗ f2 ⊗ f3) converges to I(f0, f1, f2, f3)
a.e. as N goes to infinity.

Since (QS,T (X),GS,T ) is uniquely ergodic, we also have:

Lemma 3.5.2. Let f̂0, f̂1, f̂2, f̂3 be continuous functions on X. Then

1
N4

N−1∑
i,j=0

N−1−i∑
k=−i

N−1−j∑
p=−j

f̂0(SiT jx)f̂1(Si+kT jx)f̂2(SiT j+px)f̂3(Si+kT j+px)
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converges to I(f̂0, f̂1, f̂2, f̂3).

Proof. Suppose that the averages does not converge to I(f̂0, f̂1, f̂2, f̂3). Then there exist
x ∈ X, a sequence Nm →∞ and ε > 0 such that the Nm-average at x and the integral differs
at least ε. Take any weak∗-limit of the sequence

1
N4

Nm−1∑
i,j=0

Nm−1−i∑
k=−i

Nm−1−j∑
p=−j

(SiT j × Si+kT j × SiT j+p × Si+kT j+p)δ(x,x,x,x).

Such a limit is clearly invariant under GS,T and therefore it equals to µS,T by unique ergodicity.
Hence,

1
N4
m

Nm−1∑
i,j=0

Nm−1−i∑
k=−i

Nm−1−j∑
p=−j

f̂0(SiT jx)f̂1(Si+kT jx)f̂2(SiT j+px)f̂3(Si+kT j+px)

converges to I(f̂0, f̂1, f̂2, f̂3) as m goes to infinity, a contradiction.

For any N ∈ N, denote

AN := {(i, j, k, p) ∈ Z4 : i, j ∈ [0, N − 1], k ∈ [−i, N − 1− i], p ∈ [−j,N − 1− j]}.

Let (X,µ, S, T ) be a measure preserving system with commuting transformations S and T .
For any f ∈ L∞(X) and any x ∈ X, denote

SN(f, x) :=
∣∣∣∣ 1
N4

∑
(i,j,k,p)∈AN

f(SiT jx)f(Si+kT jx)f(SiT j+px)f(Si+kT j+px)
∣∣∣∣.

Lemma 3.5.3. Let (X,µ, S, T ) be a measure preserving system with commuting transforma-
tions S and T and let f1, f2, f3 ∈ L∞(X) with ‖fi‖∞ ≤ 1, i = 1, 2, 3. Then there exists a
universal constant C, such that for any x ∈ X and any N ∈ N, we have that

( 1
N2

N−1∑
i=0

N−1∑
j=0

f1(Six)f2(T jx)f3(SiT jx)
)4
≤ C|SN(f3, x)|.

Proof. By Cauchy-Schwartz inequality and the boundedness of f1, the expression inside the
parenthesis on the left hand side is bounded by a multiple of the square of

1
N

N−1∑
i=0

( 1
N

N−1∑
j=0

f2(T jx)f3(SiT jx)
)2

= 1
N3

N−1∑
j=0

N−1−j∑
p=−j

N−1∑
i=0

f2(T jx)f2(T j+px)f3(SiT jx)f3(SiT j+px).
(3.5.1)

By Cauchy-Schwartz inequality and the boundedness of f2, the square of (3.5.1) is bounded
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by a multiple of

1
N

N−1∑
j=0

1
N

N−1−j∑
p=−j

( 1
N

N−1∑
i=0

f3(SiT jx)f3(SiT j+px)
)2

= 1
N

N−1∑
j=0

1
N

N−1−j∑
p=−j

1
N

N−1∑
i=0

1
N

N−1−i∑
k=−i

f3(SiT jx)f3(SiT j+px)f3(Si+kT jx)f3(Si+kT j+px)

= SN(f3, x).

Now we are able to prove the main result:

Theorem. Let f1, f2, f3 ∈ L∞(µ). Then

lim
N→∞

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

converges a.e.

Proof. We may assume without loss of generality that all the functions are bounded by 1 in
L∞ norm. Suppose first that f3 = h3h

′
3, where h3 is measurable with respect to IT and h′3 is

measurable with respect to IS. In this case, we have that f3(SiT jx) = h3(Six)h′3(T jx) and
thus

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx) = 1
N2

N−1∑
i,j=0

f1(Six)h3(Six)f2(T jx)h′3(T jx),

and so the average converges by Birkhoff Theorem. Therefore the average converges a.e. for
any f3 in the subspace L spanned by those kind of functions. Any function f3 measurable with
respect to W can be approximated in the L1 norm by functions in L. So, for f3 measurable
with respect to W we can take a sequence (gk)k∈N in L that converge to f3 in L1 norm. By
Birkhoff Theorem, there exists a set A of full measure such that

lim sup
N→∞

∣∣∣∣∣∣ 1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)(f3(SiT jx)− gk(SiT jx))

∣∣∣∣∣∣ ≤ ‖f3 − gk‖1

for every x ∈ A and k ∈ N. Again by Birkhoff Theorem, let B be a set of full measure such
that the average

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)gk(SiT jx)

converges for all x ∈ B and all k ∈ N. It is easy to check that for x ∈ A ∩ B, the sequence
AN = 1

N2
∑N−1
i,j=0 f1(Six)f2(T jx)f3(SiT jx) forms a Cauchy sequence and therefore it converges.
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We then suppose that E(f3|W) = 0. Let ε > 0 and let f̂3 be a continuous function on X
such that ‖f3 − f̂3‖1 < ε. We have that

∣∣∣∣∣∣ 1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)(f3(SiT jx)− f̂3(SiT jx))

∣∣∣∣∣∣ ≤ 1
N2

N−1∑
i,j=0

∣∣∣f3(SiT jx)− f̂3(SiT jx)
∣∣∣ .

(3.5.2)
By Birkhoff Theorem, the right hand side converges a.e. to ‖f3 − f̂3‖1 as N goes to infinity.
On the other hand, by Lemma 3.5.3, we have

( 1
N2

N−1∑
i=0

N−1∑
j=0

f1(Six)f2(T jx)f̂3(SiT jx)
)4
≤ |SN(f̂3, x)|.

By Lemma 3.5.2, the right hand side converges to

∣∣∣∣∣∣∣∣∣f̂3

∣∣∣∣∣∣∣∣∣4
µ,S,T

≤
(∣∣∣∣∣∣∣∣∣f̂3 − f3

∣∣∣∣∣∣∣∣∣
µ,S,T

+ |||f3|||µ,S,T
)4
≤ ‖f3 − f̂3‖4

1 ≤ ε

as N goes to infinity. We deduce that a.e.

lim sup
N→∞

∣∣∣∣∣∣ 1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

∣∣∣∣∣∣ ≤ 2ε.

Since ε is arbitrary, we have that this average goes to 0 a.e.
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Chapter 4

Enveloping semigroups of systems of
order d

This chapter is based on the work Enveloping semigroups of systems of order d [33],
published in the journal Discrete and Continuous Dynamical Systems. We study the Ellis
semigroup of a d-step nilsystem and the inverse limit of such systems. By using the machin-
ery of cubes developed by Host, Kra and Maass, we prove that such a system has a d-step
topologically nilpotent enveloping semigroup. In the case d = 2, we prove that these notions
are equivalent, extending a previous result by Glasner.

4.1. Introduction

In this chapter we consider a topological dynamical system (X,T ), meaning that T : X →
X is a homeomorphism of the compact metric space X to itself.

Several aspects of the dynamics of (X,T ) can be deduced from algebraic properties of its
enveloping semigroup E(X,T ). In particular, a topological dynamical system is a rotation on
a compact abelian group if and only if its enveloping semigroup is an abelian group. Other
interesting applications can be found in [7], [42] and [56].

In recent years the study of the dynamics of rotations on nilmanifolds and inverse limits
of this kind of dynamics has drawn much interest. In particular, we point to the applications
in ergodic theory [67], number theory and additive combinatorics (see for example [57]).

We recall that a minimal topological dynamical system is a system of order d if it is either
a d-step nilsystem or an inverse limit of d-step nilsystems. It is revealed in [70] that they are
a natural generalization of rotations on compact abelian groups and they play an important
role in the structural analysis of topological dynamical systems. Particularly, systems of
order 2 are the correct framework to study Conze-Lesigne algebras [67].

In this chapter we are interested in algebraic properties of the enveloping semigroup of
a system of order d. A first question one can ask is if an enveloping semigroup is a d-
step nilpotent group. Secondly, a deeper one : Does the property of having an enveloping
semigroup that is a d-step nilpotent group characterize systems of order d?

Even when E(X,T ) is a compact group, multiplication needs not to be a continuous
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operation. For this reason we introduce the notion of topologically nilpotent group, which
is a stronger condition than algebraically nilpotent, and it is more convenient to establish a
characterization of systems of order d.

Using the machinery of cubes developed by Host, Kra and Maass [70], we prove:

Theorem 4.1.1. Let (X,T ) be a system of order d. Then, its enveloping semigroup is a
d-step topologically nilpotent group and thus it is a d-step nilpotent group.

Let A be an integer unipotent matrix (this means that (A− I)k = 0 for some k ∈ N) and
let α ∈ Td. Let X = Td and consider the transformation Tx = Ax + α. We recall that the
topological dynamical system (X,T ) is an affine d-step nilsystem. In [99] it was proved that
affine d-step nilsystems have nilpotent enveloping semigroups, and an explicit description of
those semigroups was given. Theorem 4.1.1 generalizes this for more general systems, though
does not give the explicit form of the enveloping semigroup.

The second question is more involved and has been tackled before by Glasner in [53].
There, in the case d = 2, he proved that when (X,T ) is an extension of its maximal equicon-
tinuous factor by a torus K, the following are equivalent:

1. E(X,T ) is a 2-step nilpotent group;

2. There exists a 2-step nilpotent Polish group G of continuous transformations of X,
acting transitively on X and there exists a closed cocompact subgroup Γ ⊆ G such
that: (i) T ∈ G, (ii) K is central in G, (iii) [G,G] ⊆ K and the homogeneous space
(G/Γ, T ) is isomorphic to (X,T ).

The assumption that K is a torus can be removed, but one only obtain an extension of
the system (X,T ) where condition (2) is satisfied.

We proved that systems satisfying condition (2) are actually systems of order 2 (but not
every system of order 2 needs to satisfy condition (2)). More generally we prove:

Theorem 4.1.2. Let (X,T ) be a minimal topological dynamical system. Then the following
are equivalent:

1. (X,T ) is a system of order 2;

2. E(X,T ) is a 2-step topologically nilpotent group;

3. E(X,T ) is a 2-step nilpotent group and (X,T ) is a group extension of an equicontinuous
system;

4. E(X,T ) is a 2-step nilpotent group and (X,T ) is an isometric extension of an equicon-
tinuous system.
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We do not know if the condition of having a 2-step nilpotent enveloping semigroup by
itself is enough to guarantee that (X,T ) is a system is of order 2.

The natural question that arises from this result is the converse of Theorem 4.1.1 in
general:

Question 4.1.3. Let (X,T ) be a system with a d-step topologically nilpotent enveloping
semigroup with d > 2. Is (X,T ) a system of order d?

We recall a classical definition concerning factor and group extensions. Let (X,T ) be
a topological dynamical system and suppose that we have a compact group U of home-
omorphism of X commuting with T (where U is endowed with the topology of uniform
convergence). The quotient space Y = X\U = {Ux : x ∈ X} is a metric compact space
and if we endow it with the action induced by T we get a topological dynamical system. By
definition, the quotient map from X to Y defines a factor map. We say that (X,T ) is an
extension of (Y, T ) by the group U .

Let (X,T ) and (Y, T ) be minimal topological dynamical systems and let π : X → Y be a
factor map. We say that (X,T ) is an isometric extension of (Y, T ) if for every y ∈ Y there
exists a metric dy in π−1(y)× π−1(y) with the following properties:

(i) (Isometry) If x, x′ ∈ π−1(y) then dy(x, x′) = dTy(Tx, Tx′).

(ii) (Compatibility of the metrics) If (xn, x′n) ∈ π−1(yn) and (xn, x′n) → (x, x′) ∈ π−1(y)
then dyn(xn, x′n)→ dy(x, x′).

Since we work with groups which are also topological spaces (but not necessarily topolog-
ical groups), we can also consider a topological definition of nilpotent which is more suitable
for our purposes. Let G be a topological space with a group structure. For A,B ⊆ G, we
define [A,B]top as the closed subgroup spanned by {[a, b] : a ∈ A, b ∈ B}. The topological
commutators subgroups Gtop

j , j ≥ 1, are defined by setting Gtop
1 = G and Gtop

j+1 = [Gtop
j , G]top.

Let d ≥ 1 be an integer. We say that G is d-step topologically nilpotent if Gtop
d+1 is the trivial

subgroup.
Since Gj ⊆ Gtop

j for every j ≥ 1, we have that if G is d-step topologically nilpotent, then
G is also d-step nilpotent. In this sense Theorem 4.1.1 has stronger conclusions than the
previous known particular cases.

For a distal system, we let (Etop
j (X,T ))j∈N denote the sequence of topological commuta-

tors of E(X,T ).
Let (X,T ) and (Y, T ) be topological dynamical systems and π : X → Y a factor map. We

recall that there is a unique continuous semigroup homomorphism π∗ : E(X,T ) → E(Y, T )
such that π(ux) = π∗(u)π(x) for all x ∈ X and u ∈ E(X,T ).
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Note that if π : X → Y is a factor map between distal systems, we have that

π∗(Etop
j (X,T )) = Etop

j (Y, T ) for every j ≥ 1.

4.2. Enveloping semigroups of systems of order d

In this section we prove Theorem 4.1.1. We introduce some notation.
Let d ≥ 1 be an integer. For 0 ≤ j ≤ d, let J ⊂ [d], with cardinality d − j and let

η ∈ {0, 1}J . The subset

α = {ε ∈ {0, 1}d : εi = ηi for every i ∈ J} ⊆ {0, 1}d

is called a face of dimension j or equivalently, a face of codimension d− j.
Given u : X → X, d ∈ N and α ⊆ {0, 1}d a face of a given dimension, we define

u[d]
α : X [d] → X [d] as

u[d]
α x =

 (u[d]
α x)ε = uxε, ε ∈ α;

(u[d]
α x)ε = xε, ε 6∈ α.

Our theorem follows from the following lemma.

Lemma 4.2.1. Let (X,T ) be a distal topological dynamical system and let E(X,T ) be its
enveloping semigroup. Then, for every d, j ∈ N with j ≤ d and u ∈ Etop

j (X,T ), we have that
Q[d](X) is invariant under u[d]

α for every face α of codimension j.

Proof. Let d ∈ N. Let u ∈ E(X,T ) and let (ni) be a net with T ni → u pointwise. Let α
be a face of codimension 1. Since Q[d](X) is invariant under T [d]

α , it is also invariant under
(T niα )[d] for every i. Since Q[d](X) is closed and (T niα )[d] → u[d]

α we get that Q[d](X) is invariant
under u[d]

α . Let 1 < j ≤ d and suppose that the statement is true for every i < j. Let α be
a face of codimension j. We can see α as the intersection of a face β of codimension j − 1
and a face γ of codimension 1. Let uj−1 ∈ Etop

j−1(X,T ) and v ∈ E(X,T ) and remark that
[uj−1, v][d]

α = [(uj−1)[d]
β , v

[d]
γ ]. Since (uj−1)[d]

β and v[d]
γ leave invariant Q[d](X), so does [uj−1, v][d]

α .
As Q[d](X) is closed, Eα = {u ∈ E(X,T ) : u[d]

α leaves invariant Q[d](X)} is a closed
subgroup of E(X,T ) and contains the elements of the form [uj−1, v] for uj−1 ∈ Etop

j−1(X,T ),
v ∈ E(X,T ). We conclude that Etop

j (X,T ) ⊆ Eα, completing the proof.

We use this to prove Theorem 4.1.1:

Proof of Theorem 4.1.1. Let (X,T ) be a system of order d. Recall that E(X,T ) is a group
since (X,T ) is a distal system. Let u ∈ Etop

d+1(X,T ) and x ∈ X. By Lemma 4.2.1 we have
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that (x, . . . , x, ux) ∈ Q[d+1](X) and by Theorem 1.3.4 we have that ux = x. Since x and u
are arbitrary, we conclude that Etop

d+1(X,T ) is the trivial subgroup.

4.3. Proof of Theorem 4.1.2

We start with some lemmas derived from the fact that E(X,T ) is topologically nilpotent.

Lemma 4.3.1. Let (X,T ) be a distal minimal topological dynamical system. Then the center
of E(X,T ) is the group of elements of E(X,T ) which are continuous.

Proof. Since T commutes with every element of E(X,T ) it is clear that every continuous
element of E(X,T ) belongs to the center of E(X,T ). Conversely, let u be in the center of
E(X,T ) and x0 ∈ X. We prove that u is continuous at x0. Suppose this is not true, and
let xn → x0 with u(xn) → x′ 6= u(x0). By minimality, we can find un ∈ E(X,T ) such that
un(x0) = xn. For a subnet we have that un → v and v(x0) = x0. Since u is central, we have
u(xn) = u(un(x0)) = un(u(x0))→ v(u(x0)) = u(v(x0)) = u(x0), a contradiction.

Recall the following classical theorem:

Theorem 4.3.2. (See [7], Chapter 4) Let G be a group of homeomorphisms of a compact
Hausdorff space X and suppose that G is compact in the pointwise topology. Then, the action
of G on X is equicontinuous.

A direct consequence is:

Corollary 4.3.3. Let (X,T ) be distal topological dynamical system. If E(X,T ) is d-step
topologically nilpotent, then Etop

d (X,T ) is a compact group of automorphisms of (X,T ) in
the uniform topology.

Proof. If E(X,T ) is d-step topologically nilpotent, then Etop
d (X,T ) is a compact group (in

the pointwise topology) and by definition is included in the center of E(X,T ), meaning that
every element is an automorphism of (X,T ). By Theorem 4.3.2, Etop

d (X,T ) is a compact
group of automorphisms in the uniform topology.

If a system has a 2-step topologically nilpotent enveloping semigroup we can describe the
extension of its maximal equicontinuous factor.

For this, first we give a short proof of [106] in our context.

Theorem 4.3.4. Let π : X → Y be a distal finite-to-one factor map between the minimal
systems (X,T ) and (Y, T ). Then (Y, T ) is equicontinuous if and only if (X,T ) is equicontin-
uous.

83



Proof. We prove the non trivial direction by studying the regionally proximal relation on X.
We denote by dX and dY the metrics on X and Y . We can assume that T is an isometry
on Y . Since π is open and finite-to-one, there exists ε0 > 0 such that for every y ∈ Y

every ball of radius 2ε0 in X intersects π−1(y) in at most one point. Let ε1 < ε0 such that
T (B(x, ε1)) ⊆ B(Tx, ε0). Since π is open, there exists δ > 0 with the property that if y, y′ ∈ Y
are such that dY (y, y′) < δ then there exists x, x′ ∈ X with dX(x, x′) < ε1 and π(x) = y,
π(x′) = y′. Let 0 < ε < ε1 such that π(B(x, ε)) ⊆ B(π(x), δ). Let (x, x′) be a regionally
proximal pair, and let x′′ ∈ X and n0 ∈ N satisfying dX(x, x′′) < ε and dX(T n0x′, T n0x′′) < ε.
We have that dY (T nπ(x), T nπ(x′′)) = dY (π(T nx), π(T nx′′)) < δ for every n ∈ N and by
openness, we can find xn ∈ X such that π(xn) = π(T nx) and dX(xn, T nx′′) < ε1.

We claim that xn = T nx. We proceed by induction. For n = 0 we have dX(x0, x) < 2ε0,
π(x) = π(x0) and thus x = x0. Suppose now that xn = T nx. We have that dX(T nx, T nx′′) <
ε1 and then dX(T n+1x, T n+1x′′) < ε0. We conclude that dX(xn+1, T

n+1x) < 2ε0, and since
they have the same projection, they are equal. This proves the claim.

Particularly, for n = n0, we have dX(T n0x, T n0x′) < 2ε0 and since they are regionally
proximal, they have the same projection and thus x = x′. We conclude that the regionally
proximal relation is trivial and (X,T ) is equicontinuous.

Lemma 4.3.5. Let (X,T ) be a topological dynamical system with a 2-step topologically nilpo-
tent enveloping semigroup. Then, it is an extension of Z1(X) by the compact abelian group
Etop

2 (X,T ). Moreover, Etop
2 (X,T ) is connected.

Proof. By Corollary 4.3.3 we have that Etop
2 (X,T ) is a compact group of automorphisms of

(X,T ) and by Lemma 4.2.1 it acts trivially in every equicontinuous factor, meaning that
there exists a factor map from Z = X\Etop

2 (X,T ) to Z1(X). Denote by π the factor map
from X to Z and note that if u ∈ Etop

2 (X,T ), then π(x) = π(ux) = π∗(u)π(x) for every
x ∈ X and therefore π∗(u) is trivial. Since e = π∗(Etop

2 (X,T )) = Etop
2 (Z, T ), we conclude

that Z has an abelian enveloping semigroup and thus it is an equicontinuous factor. By
maximality Z1(X) = X\Etop

2 (X,T ).
If Etop

2 (X,T ) is not connected, there exists an open (hence closed) subgroup U ⊆ Etop
2 (X,T )

such that Etop
2 (X,T )/U is isomorphic to Z/nZ for some n > 1. Note that X\U is a finite-to-

one extension of Z1(X) and therefore by Theorem 4.3.4 it is an equicontinuous system. By
maximality we get that X\U = Z1(X), a contradiction.

This lemma establish the implication (2)⇒ (3) of Theorem 4.1.2. A direct corollary is:

Corollary 4.3.6. Let (X,T ) be a system of order 2. Then, it is an extension of its maximal
equicontinuous factor by the compact connected abelian group Etop

2 (X,T ).

We now prove the main implication in Theorem 4.1.2, namely implication (2)⇒ (1).
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Proof of implication (2)⇒ (1) . We divide the proof into four parts. The first two parts
follow, with some simplifications, the scheme proposed in [53], but the second two parts are
new.

Step 1: Building a suitable extension of (X,T ).
Let (X,T ) be a topological dynamical system with a 2-step topologically nilpotent en-

veloping semigroup. By Lemma 4.3.5, (X,T ) is an extension of (Z1(X), T ) by the compact
abelian group Etop

2 (X,T ). We denote this factor map by π. In order to avoid confusions,
we denote the element of Z1(X) defining the dynamics by τ (instead of T ). Let Ẑ1 be the
dual group of Z1(X). Since {τn : n ∈ Z} is dense in Z1(X) every χ ∈ Ẑ1 is completely
determined by its value at τ and thus we can identify Ẑ1 with a discrete subgroup of S1.
Consider Ẑ∗ = {λ ∈ S1 : ∃n ∈ N, λn ∈ Ẑ1}, the divisible group generated by Ẑ1. It is a
discrete subgroup of S1, and we can consider its compact dual group Z∗ = ̂̂

Z∗. Since Ẑ∗ is
a subgroup of the circle, Z∗ is a monothetic group with generator the identity character τ ∗:
Ẑ∗ → S. Since Ẑ1 ⊆ Ẑ∗, there exists a homomorphism φ : Z∗ → Z1(X). Since τ ∗ is projected
to τ , φ also defines a factor map from (Z∗, τ ∗) to (Z1(X), τ). Consider (X∗, T×τ ∗) a minimal
subsystem of

({(x, z∗) ∈ X × Z∗ : π(x) = φ(z∗)}, T × τ ∗).

It is an extension of (X,T ) and (Z∗, τ ∗) and we can see E(X∗, T × τ ∗) as a subset of
E(X,T ) × E(Z∗, τ ∗) = E(X,T ) × Z∗. It follows that Etop

2 (X∗, T × τ ∗) = Etop
2 (X,T ) × {e}

and E(X∗, T × τ ∗) is 2-step topologically nilpotent. By Lemma 4.3.5 we have that Z1(X∗) =
X∗\Etop

2 (X∗, T × τ ∗) = Z∗.

Step 2: Finding a transitive group in X∗.
For simplicity we denote the transformation on X∗ by T ∗. Let (x0, x1) ∈ X∗ ×X∗. We

construct a homeomorphism h of X∗ such that h(x0) = x1. For this, define Y as the closed
orbit of (x0, x1) under T ∗ × T ∗. Since (X∗, T ∗) is distal, (Y, T ∗ × T ∗) is a minimal distal
system and E(Y, T ∗ × T ∗) = E(X∗, T ∗)4 := {(u, u) : u ∈ E(X∗, T ∗)} (and we can identify
E(X∗, T ∗) and E(Y, T ∗×T ∗)). It follows that E(Y, T ∗×T ∗) is 2-step topologically nilpotent
and by Lemma 4.3.5 Z1(Y ) = Y \Etop

2 (Y, T ∗ × T ∗) = Y \Etop
2 (X∗, T ∗)4.

We obtain the following commutative diagram:

(Y, T ∗ × T ∗)
pY
��

π1
// (X∗, T ∗)
pX∗

��
(Z1(Y ), τY ∗) ρ

// (Z∗, τ ∗)

Since Z∗ has a divisible dual group, we can identify Z1(Y ) as a product group Z∗ × G0

and we can write pY (x, x′) = (pX∗(x),Θ(x, x′)) with Θ(x, x′) ∈ G0. Since Z1(Y ) is a product
group, there exists g0 ∈ G0 such that τ ∗Y = τ ∗× g0. We remark that if (x, x′) and (x, x′′) ∈ Y
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then (x, x′) = u(x, x′′) for some u ∈ E(X∗, T ∗). Writing x′ = vx for v ∈ E(X∗, T ∗) we deduce
that x′′ = [u, v]x′. From this, we deduce that G0 = {id×u : u ∈ Etop

2 (X∗, T ∗), (id×u)Y = Y }.
For x ∈ X∗, define h(x) as the unique element in X∗ such that

(x, h(x)) ∈ Y and pY (x, h(x)) = (pX∗(x), e). (4.3.1)

By multiplying the second coordinate by a constant, we can suppose that pY (x0, x1) =
(pX∗(x), e) and thus h(x0) = x1.

Claim 1: h is a homeomorphism of X∗:

If xn → x ∈ X∗, then pY (xn, h(xn)) = (pX∗(xn), e) → (pX∗(x), e) = pY (x, h(x)) and h
is continuous (if pY (x, x′) = pY (x, x′′) then x′ = x′′).

If h(x) = h(x′) then (x, h(x)) and (x′, h(x)) belong to Y and then x′ = ux for u ∈
Etop

2 (X∗, T ∗). We have that pY (x′, h(x)) = (pX∗(x), e) = pY (x, h(x)) and thus x = x′.

If x′ ∈ X∗, we can find x ∈ X such that (x, x′) ∈ Y and pY (x, x′) = (pX∗(x),Θ(x, x′)).
It follows that

pY (x, x′) = (id×Θ(x, x′))(pX∗(x), e) and pY (Θ−1(x, x′)x, x′) = (pX∗(Θ−1(x, x′)x), e).

By definition h(Θ−1(x, x′)x) = x′ and therefore h is onto. This proves the claim.

Claim 2: h commutes with Etop
2 (X∗, T ∗):

For u ∈ Etop
2 (X∗, T ∗) we have that pY (ux, uh(x)) = pY (x, h(x)) = (pX∗(x), e) = (pX∗(ux),

e) = pY (ux, h(ux)) and we deduce that h commutes with Etop
2 (X∗, T ∗).

Claim 3: [h, T ∗] = g0 ∈ Etop
2 (X∗, T ∗):

By a simple computation we have that

pY (T ∗x, T ∗h(x)) = τ ∗Y (pY (x, h(x))) = (pX∗(Tx), g0) = (pX∗(T ∗x), g0h(T ∗x))

and T ∗h = g0hT
∗. This proves the claim.

Define G as the group of homeomorphisms h of X∗ such that

[h, T ∗] ∈ Etop
2 (X∗, T ∗) and h commutes with Etop

2 (X∗, T ∗). (4.3.2)

Then, for every pair of points in X∗ × X∗ we can consider a homeomorphism h as in
(4.3.1) and this transformation belongs to G. Thus G is a group acting transitively on X∗.

Let Γ be the stabilizer of a point x0 ∈ X∗. We can identity (as sets) X∗ and G/Γ.
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Step 3: The application g → gx0 is open
Claim 4: There exists a group homomorphism p : G → Z∗ such that p(g)pX∗(x) =

pX∗(gx).
Since Etop

2 (X∗, T ∗) is central in G, we have gpX∗(x) = gEtop
2 (X∗, T ∗)x = Etop

2 (X∗, T ∗)gx
and so the action of g ∈ G can descend to an action p(g) in X∗\Etop

2 (X∗, T ∗) = Z∗. By
definition this action satisfies p(g)pX∗(x) = pX∗(gx) and p(T ∗) = τ ∗. From this, we can
see that p(g) commutes with τ ∗ and thus p(g) belongs to Z∗. Particularly, if h1, h2 ∈ G,
we have that p([h1, h2]) is trivial and then [h1, h1]x0 = ux0 for some u ∈ Etop

2 (X∗, T ∗). By
(4.3.2), [h1, h2] commutes with T ∗ and thus [h1, h2] coincides with u in every point. Therefore
[G,G] ⊆ Etop

2 (X∗) and thus G is a 2-step nilpotent Polish group. Since G is transitive in X∗

we can check that p is an onto continuous group homomorphism. This proves the claim.
Since G and Z∗ are Polish groups and p is onto, we have that p is an open map and the

topology of Z∗ coincides with the quotient topology of G/Ker(p) = G/Etop
2 (X∗, T ∗)Γ (see

[11], Chapter 1, Theorem 1.2.6).
Now we prove that the map g → gx0 is open. Consider a sequence gn ∈ G such that

gnx0 is convergent in X∗. Projecting to Z∗ we have that p(gn)pX∗(x0) is convergent and
taking a subsequence we can assume that p(gn) is convergent in Z∗. Since p is open, we can
find a convergent sequence hn ∈ G such that p(gn) = p(hn). This implies that pX∗(gnx0) =
pX∗(hnx0) and therefore there exists un ∈ Etop

2 (X∗, T ∗) such that gnx0 = unhnx0. By the
compactness of Etop

2 (X∗, T ∗) we can assume that un is convergent and unhn is convergent
too. This proves that the map is open.

Step 4: Cubes of order 3 in X∗ are completed in a unique way.
Let consider a sequence ~ni = (ni,mi, pi) ∈ Z3 such that T ∗~ni·εx0 → x0 for every ε 6= ~1.

We prove that T ∗~ni·~1x0 → x0. We see every transformation T ∗~ni·ε as an element of G. Since
the application g → gx0 is open, taking a subsequence, we can find hi, h′i, h′′i in G, converging
to h, h′, h′′ ∈ G such that T ∗nix0 = hix0, T ∗mix0 = h′ix0 and T ∗pix0 = h′′i x0.

We have that

T ∗ni+mix0 = T ∗nih′ix0 = [T ∗ni , h′i]h′ihix0

T ∗ni+pix0 = T ∗nih′′i x0 = [T ∗ni , h′′i ]h′′i hix0

T ∗mi+pix0 = T ∗mih′′i x0 = [T ∗mi , h′′i ]h′′i h′ix0

T ∗ni+mi+pix0 = [T ∗mi , h′′i ][T ∗
ni , h′′i ][T ∗

ni , h′i]h′′i h′ihix0.

Since [G,G] is included in Etop
2 (X∗, T ∗), by taking a subsequence we can assume that

[T ∗ni , h′i]→ g1, [T ∗ni , h′′i ]→ g2 and [T ∗mi , h′′i ]→ g3 and these limits belong to Etop
2 (X∗, T ∗).

Taking limits we conclude that g1x0 = g2x0 = g3x0 = x0 and since these transformations
commute with T ∗, we have that they are trivial.
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We conclude that lim
i→∞

T ∗ni+mi+pix0 = x0 and thus (x0, x0, x0, x0, x0, x0, x0) ∈ (X∗)7 can
be completed in a unique way to an element of Q[3](X∗). If π2 is the factor map from X∗

to Z2(X∗), we have that #π−1
2 (π2(x0)) = 1 and since (X∗, T ∗) is distal, the same property

holds for every element in X∗. We conclude that X∗ = Z2(X∗) and thus (X∗, T ∗) is a system
of order 2.

Since being a system of order 2 is a property preserved under factor maps, (X,T ) is a
system of order 2.

We have established (1)⇔ (2) and (2)⇒ (3). Since implication (3)⇒ (4) is obvious, we
only have to prove (4)⇒ (2).

For this, we first prove the following lemma:

Lemma 4.3.7. Let π : X → Y be an isometric extension between the minimal distal systems
(X,TX) and (Y, TY ). Then, there exists a minimal distal system (W,TW ) which is a group
extension of X and a group extension of Y . If E(X,TX) is d-step nilpotent then E(W,TW )
is also d-step nilpotent.

Proof. Fix y0 ∈ Y and let F0 = π−1(y0). Define

Z̃ = {(y, h) : y ∈ Y, h ∈ Isom(F0, π
−1(y))}

It is compact metrizable space and we can define T
Z̃

: Z̃ → Z̃ as T
Z̃

(y, g) = (TY (y), TX ◦ h).
We remark that (Z̃, T

Z̃
) is a distal system and we can see E(Z̃, T

Z̃
) as a subset of E(Y, TY )×

E(X,TX). It follows that E(Z̃, T
Z̃

) is d-step nilpotent.
Let H denote the compact group of isometries of F0 which are restrictions of elements

of E(X,TX). We define the action of H on Z̃ as g(y, h) = (y, h ◦ g−1) and we define the
maps πY (y, h) = y and πX(y, h) = h(x0) from Z̃ to X and Y . Define W as the orbit of
(y0, id) under T

Z̃
and let TW denote the restriction of T

Z̃
to W . Since (Z̃, T

Z̃
) is a distal

system, (W,TW ) is a minimal system and therefore the restrictions of πY and πX define
factor maps from (W,TW ) to (Y, TY ) and (X,TX). Since (X,TX) is a distal system we have
that (E(X,TX), TX) is a minimal system and we have that {y0} × H ⊆ W . We conclude
that (W,TW ) is an extension of (Y, TY ) by the group H and thus it is an extension of (X,T )
by the group H0 = {h ∈ H : h(x0) = x0}. Since (W,TW ) is a subsystem of (Z̃, T

Z̃
), we also

have that E(W,TW ) is d-step nilpotent. The lemma is proved.

Now we prove the implication (4)⇒ (2).

Proof of implication (4)⇒ (2). Let (X,T ) be system with a 2-step nilpotent enveloping
semigroup and let π : X → Y be an isometric extension of the equicontinuous system (Y, T ).
By Lemma 4.3.7 we can find (W,T ) which is an extension of (Y, T ) by a group H and such
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that E(W,T ) is a 2-step nilpotent group. By Lemma 4.2.1, for u ∈ E2(W,T ) and w ∈ W
we have that uw and w have the same projection on Y and therefore there exists hw ∈ H
such that uw = hww. Since u and hw are automorphisms of the minimal system (W,T ), they
are equal. Thus we have that E2(W,T ) is a subgroup of H and therefore Etop

2 (W,T ) is just
the closure (pointwise or uniform) of E2(W,T ). We conclude that Etop

2 (W,T ) is included in
H and therefore is central in E(W,T ). Since (X,T ) is a factor of (W,T ), Etop

2 (X,T ) is also
central in E(X,T ). This finishes the proof.

4.4. Some further comments

We finish with some remarks about the structure of systems having topologically nilpotent
enveloping semigroups.

Let (X,T ) be a topological dynamical system and let d > 2. Suppose that E(X,T ) is
a d-step topologically nilpotent group. By Corollary 4.3.3 Etop

d (X,T ) is a compact group of
automorphisms of (X,T ) and thus we can build the quotient Xd−1 = X\Etop

d (X,T ).

Lemma 4.4.1. Xd−1 has a (d− 1)-step topologically nilpotent enveloping semigroup. More-
over it is the maximal factor of X with this property and consequently (Xd−1, T ) is an exten-
sion of (Zd−1(X), T )

Proof. Denote by π : X → Xd−1 the quotient map. If u ∈ Etop
d (X,T ), by definition we

have that π(x) = π(ux) = π∗(u)π(x) and thus π∗(u) is trivial. Since π∗(Etop
d (X,T )) =

Etop
d (Xd−1, T ) we have that Etop

d (Xd−1, T ) is trivial.
Let (Z, T ) be a topological dynamical system with a (d− 1)-step topologically nilpotent

enveloping semigroup and let φ : X → Z be a factor map. Since φ∗(Etop
d (X,T )) = e, for

u ∈ Etop
d (X,T ) we have that φ(ux) = φ∗(u)φ(x) = φ(x) and therefore φ can be factorized

through Xd−1.
As Zd−1(X) has a (d−1)-step enveloping semigroup, we have that (Xd−1, T ) is an extension

of (Zd−1(X), T ).

Iteratively applying Lemma 4.4.1, we construct a sequence of factorsXj, for j ≤ d−1 with
the property that Xj is an extension of Zj(X) and is an extension of Xj−1 by the compact
abelian group Etop

j (Xj, T ).
By Theorem 4.1.2, the factors X2 and Z2(X) coincide and we obtain the following com-

mutative diagram:

(X, T ) //

��

(Xd−1, T )

��

// · · · // (X3, T )

&&NN
NNN

NNN
NNN

����
(Zd(X), T ) // (Zd−1(X), T ) //// · · · // (Z3(X), T ) // (Z2(X), T ) // (Z1(X, T )
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We conjecture that the factor Xj and Zj(X) also coincide for j > 2.
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Part II

Automorphism groups of symbolic
systems
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Chapter 5

Automorphism groups of low
complexity symbolic systems

This chapter is mostly based on the article On automorphism groups of low complexity
minimal subshifts [36], joint work with Fabien Durand, Alejandro Maass and Samuel Petite,
accepted for publication in the journal Ergodic Theory and Dynamical Systems. We study
the automorphism group Aut(X, σ) of a minimal subshift (X, σ) of low word complexity. In
particular, we prove that Aut(X, σ) is virtually Z for aperiodic minimal subshifts with affine
complexity on a subsequence, more precisely, the quotient of this group by the one generated
by the shift map is a finite group. In addition, we provide examples to show that any finite
group can be obtained in this way. The class considered includes minimal substitutions, lin-
early recurrent subshifts and even some minimal subshifts with polynomial complexity. In
the case of polynomial complexity, first we prove that for minimal subshifts with polynomial
recurrence any finitely generated subgroup of Aut(X, σ) is virtually nilpotent. Then, we de-
scribe a variety of examples where we illustrate how to apply the methods we propose in this
work to study automorphism groups. Some of the examples have polynomial complexity and
are obtained by coding some nilrotations. Another ones are subshifts with subaffine complex-
ity on a subsequence, but with a superpolynomial complexity. In all these examples we get a
virtually Z group of automorphisms. The main technique in this work relies on the study of
classical relations among points used in topological dynamics, in particular asymptotic pairs.

In the last section we present a section of the article presented in Chapter 2, where we
use the QS,T cubes to study the group of automorphisms of the minimal part of the Robinson
tiling.

5.1. Introduction

We recall that an automorphism of a topological dynamical system (X,T ), where T : X →
X is a homeomorphism of the compact metric space X, is a homeomorphism from X to
itself which commutes with T . We call Aut(X,T ) the group of automorphisms of (X,T ).
There is a similar definition for measurable automorphisms when we consider an invariant
measure µ for the system (X,T ) or a general measure preserving system. The group of
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measurable automorphisms is historically denoted by C(T ) that stands for the centralizer
group of (X,µ, T ).

The study of automorphism groups is a classical and widely considered subject in ergodic
theory. The group C(T ) has been intensively studied for mixing systems of finite rank.
We refer to [43] for an interesting survey. Let us mention some key theorems. Ornstein
proved in [94] that a mixing rank one dynamical system (X,µ, T ) has a trivial (measurable)
automorphism group: it consists of powers of T . Later, del Junco [31] showed that the famous
weakly mixing (but not mixing) rank one Chacon subshift also shares this property. Finally,
for mixing systems of finite rank King and Thouvenot proved in [79] that C(T ) is virtually
Z. That is, its quotient by the subgroup 〈T 〉 generated by T is a finite group.

In the non weakly mixing case, Host and Parreau [74] proved, for a family of constant
length substitution subshifts, that C(σ) is also virtually Z and equals to Aut(X, σ), where σ
is the shift map. Concomitantly, Lemańczyk and Mentzen [84] realized any finite group as
the quotient of C(σ) by 〈σ〉 with constant length substitution subshifts.

Priorly to these results, in the topological setting Hedlund in [61] described the auto-
morphism groups for a family of binary substitutions including the Thue-Morse subshift.
Precisely, he proved that Aut(X, σ) is generated by the shift and a flip map (a map which
interchanges the letters). In the positive entropy situation, Boyle, Lind and Rudolph [17]
obtained that the group of automorphisms of mixing subshifts of finite type contains various
subgroups, so this group is large in relation to previous examples.

In this work we focus on the group of automorphisms Aut(X, σ) of minimal subshifts of
subaffine complexity and, more generally, on zero entropy subshifts without assuming any
mixing condition. All evidence described before in the measurable and topological context
shows that we must expect that low complexity systems have a simple automorphism group.
This is one of the main questions we want to address in this paper. Here, by complexity
we mean the increasing function pX : N → N that for n ∈ N counts the number of words of
length n appearing in points of the subshift.

Recently Salo and Törmä in [107] proved that for subshifts generated by constant length
or primitive Pisot substitutions the group of automorphisms is virtually Z. This generalizes
a result of Coven for constant length substitutions on two letters [28]. In [107] is asked
whether the same result holds for any primitive substitution or more generally for linearly
recurrent subshifts. In this paper we answer positively this question, proving the following
more general theorem whose proof is given in Section 5.3.

Theorem 5.1.1. Let (X, σ) be an aperiodic minimal subshift. If

lim inf
n∈N

pX(n)
n

<∞

then Aut(X, σ) is virtually Z.
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The class of systems satisfying the condition of Theorem 5.1.1 includes primitive substi-
tutions, linearly recurrent subshifts [39] and more generally subaffine complexity subshifts or
even some families with polynomial complexity (see Section 5.4). In addition, we illustrate
this by realizing any finite group as the quotient group Aut(X, σ)/〈σ〉, where (X, σ) is a sub-
stitutive subshift. We observe that this result can be obtained combining the main results of
[74] and [84] but we prefer to present here a different and straightforward proof.

Extending Theorem 5.1.1 for subshifts of polynomial complexity seems to be more intrigu-
ing. Nevertheless, several classes of examples still show that Aut(X, σ) has small growth rate.
Indeed, in Sections 5.3 and 5.4 we give classes of minimal subshifts with polynomial com-
plexity where Aut(X, σ) is virtually nilpotent (Theorem 5.3.8) and in most cases the finite
group is abelian. Also, very recently, Cyr and Kra [29] proved the fact that for transitive
subshifts with subquadratic complexity Aut(X, σ)/〈σ〉 is periodic, meaning that any element
in this group has finite order.

Their proof translates the question into a coloring problem of Z2 and uses a deep combina-
torial result of Quas and Zamboni [101]. Our results arise from obstructions related to some
classical and some less classical equivalence relations associated to fibers of special topologi-
cal factors. This idea was already used by Olli in [93] to prove that Aut(X, σ) of Sturmian
subshifts consists only in powers of the shift by studying the irrational rotation defining the
subshift. Here, we consider the maximal nilfactor ([70],[110]) of a minimal subshift to find a
class of examples with arbitrarily big polynomial complexity whose group of automorphisms
is virtually Z.

5.2. Preliminaries, notation and background

5.2.1. Topological dynamical systems

Let (X,T ) be a topological dynamical system. We say that x, y ∈ X are proximal if there
exists a sequence (ni)i∈N in Z such that

lim
i→+∞

d(T nix, T niy) = 0.

A stronger condition than proximality is asymptoticity. Two points x, y ∈ X are said to be
asymptotic if

lim
n→+∞

d(T nx, T ny) = 0.

Nontrivial asymptotic pairs may not exist in an arbitrary topological dynamical system but
it is well known that a nonempty aperiodic subshift always admits one [7].

Let π : (Y, T ) → (X,T ) be a factor map. We say that (Y, T ) is a proximal extension
of (X,T ) if for y, y′ ∈ Y the condition π(y) = π(y′) implies that y, y′ are proximal. For
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minimal systems, (Y, T ) is an almost one-to-one extension of (X,T ) via the factor map
π : (Y, T )→ (X,T ) if there exists x ∈ X with a unique preimage for the map π. The relation
between these two notions is given by the following folklore lemma.

Lemma 5.2.1. Let (Y, T ) be an almost one-to-one extension of (X,T ) via the factor map
π : (Y, T )→ (X,T ). Then, (Y, T ) is a proximal extension of (X,T ).

Proof. Let x0 ∈ X be a point with a unique preimage by π and consider points y, y′ ∈ Y such
that π(y) = π(y′). By minimality of (X,T ), there exists a sequence (ni)i∈N in Z such that
T ni(π(y)) (= T ni(π(y′))) converges to x0 as i goes to infinity. By continuity of π and since T
commutes with π, the sequences (T niy)i∈N and (T niy′)i∈N converge to the same unique point
in the preimage of x0 by π. This shows that points y and y′ are proximal.

We recall that an automorphism of the topological dynamical system (X,T ) is a homeo-
morphism φ of the space X such that φ ◦ T = T ◦ φ. We let Aut(X,T ) denote the group of
automorphisms of (X,T ). We have,

Lemma 5.2.2. Let (X,T ) be a minimal topological dynamical system. Then, the action of
Aut(X,T ) on X is free, meaning that every nontrivial element in Aut(X,T ) has no fixed
points.

Proof. Take φ ∈ Aut(X,T ) and x ∈ X such that φ(x) = x. Since φ commutes with T and
is continuous, by minimality we deduce that φ(y) = y for all y ∈ X. Thus φ is the identity
map.

Lemma 5.2.3. Let (X,T ) be a minimal topological dynamical system. Let x ∈ X and
φ ∈ Aut(X,T ). Then x and φ(x) are proximal if and only if φ is the identity map.

Proof. We prove the nontrivial direction. Let x ∈ X and φ ∈ Aut(X,T ) such that x and
φ(x) are proximal points. By definition, there exists a sequence (ni)i∈N in Z such that
limi→+∞ d(T nix, T niφ(x)) = 0. We can assume that T nix converges to some y ∈ X. Therefore
d(y, φ(y)) = 0. By Lemma 5.2.2 φ is the identity map.

Let π : (Y, T )→ (X,T ) be a factor map between the minimal systems (Y, T ) and (X,T ),
and let φ be an automorphism of (Y, T ). We say that π is compatible with φ if π(y) = π(y′)
implies π(φ(y)) = π(φ(y′)) for all y, y′ ∈ Y . We say that π is compatible with Aut(Y, T ) if π
is compatible with all φ ∈ Aut(Y, T ).

If the factor map π : (Y, T ) → (X,T ) is compatible with Aut(Y, T ) we can define the
projection π̂(φ) ∈ Aut(X,T ) by the equation π̂(φ)(π(y)) = π(φ(y)) for all y ∈ Y . We have
that π̂ : Aut(Y, T )→ Aut(X,T ) is a group morphism.

Notice that π̂ might not be onto or injective. Indeed, for an irrational rotation of the
circle, the group of automorphisms is the whole circle but for its Sturmian extension the
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group of automorphisms is Z [93]. We will show in Lemma 5.2.10 that this factor map is
compatible, hence π̂ is well defined but is not onto. On the other hand, the map π̂ associated
to the projection on the trivial system cannot be injective.

In the case of proximal extension between minimal systems we have.

Lemma 5.2.4. Let π : (Y, T )→ (X,T ) be a proximal extension between minimal systems and
suppose that π is compatible with Aut(Y, T ). Then π̂ : Aut(Y, T )→ Aut(X,T ) is injective.

Proof. It suffices to prove that π̂(φ) = idX , where idX is the identity map on X, implies
that φ = idY . Let φ be an automorphism with π̂(φ) = idX . For y ∈ Y we have that
π(φ(y)) = π̂(φ)π(y) = π(y). Since π is proximal, then y and φ(y) are proximal points. From
Lemma 5.2.3 we conclude that φ is the identity map.

5.2.2. Subshifts

Let A be a finite set or alphabet. Elements in A are called letters or symbols. The set
of finite sequences or words of length ` ∈ N in A is denoted by A` and the set of twosided
sequences (xn)n∈Z in A is denoted by AZ. Also, a word w = w1 . . . w` ∈ A` can be seen as
an element of the free monoid A∗ endowed with the operation of concatenation. The length
of w is denoted by |w| = `.

The shift map σ : AZ → AZ is defined by σ((xn)n∈Z) = (xn+1)n∈Z. To simplify notations
we denote the shift map by σ independently of the alphabet, the alphabet will be clear from
the context.

A subshift is a topological dynamical system (X, σ) where X is a closed σ-invariant subset
of AZ (we consider the product topology in AZ). For convenience, when we state general
results about topological dynamical systems we use the notation (X,T ), and to state specific
results about subshifts we use (X, σ).

Let (X, σ) be a subshift. The language of (X, σ) is the set L(X) containing all words w
such that w = xm . . . xm+`−1 for some (xn)n∈Z ∈ X, m ∈ Z and ` ∈ N. We say that w appears
in the sequence (xn)n∈Z ∈ X. We denote by L`(X) the set of words of length ` in L(X). The
map pX : N→ N defined by pX(`) = ]L`(X) is called the complexity function of (X, σ).

In the proof of Theorem 5.1.1 we will need the following well-known notion that is inti-
mately related to the concept of asymptotic pairs. A word w ∈ L(X) is said to be left special
if there exist at least two distinct letters a and b such that aw and bw belong to L(X). In
the same way we define right special words.

Let φ : (X, σ) → (Y, σ) be a factor map between subshifts. By the Curtis-Hedlund-
Lyndon Theorem, φ is determined by a local map φ̂ : A2r+1 → A in such way that φ(x)n =
φ̂(xn−r . . . xn . . . xn+r) for all n ∈ Z and x ∈ X, where r ∈ N is called a radius of φ. The local
map φ̂ naturally extends to the set of words of length at least 2r + 1, and we also denote this
map by φ̂.
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5.2.3. Equicontinuous systems

We recall that a topological dynamical system (X,T ) is equicontinuous if the family of
transformations {T n;n ∈ Z} is equicontinuous. Let (X,T ) be an equicontinuous minimal
system. It is well-known that the closure of the group 〈T 〉 in the set of homeomorphisms of
X for the uniform topology is a compact abelian group acting transitively on X (see [7]).

When X is a Cantor set, the dynamical system (X,T ) is called an odometer. In this case
one shows that X is a profinite group. More precisely, there exists a nested sequence of finite
index subgroups . . . ⊂ Γn+1 ⊂ Γn ⊂ · · · ⊂ Γ0 ⊂ Z with trivial intersection such that X is
isomorphic to the inverse limit

lim
←n

(Z/Γn, πn) = {(xn)n∈N;xn ∈ Z/Γn, xn = πn(xn+1) ∀n ≥ 0},

where πn : Z/Γn+1 → Z/Γn denotes the canonical projection. The addition in this group is
given by

(xn)n∈N + (yn)n∈N = (xn +n yn)n∈N

for (xn)n∈N, (yn)n∈N ∈ lim←n(Z/Γn, πn), where +n stands for the addition in Z/Γn. The
group Z is a dense subgroup through the injection i : k 7→ (k mod Γn)n∈N. The action T

is then given by the addition by i(1) in the group X. It is a minimal and uniquely ergodic
action on X.

5.2.4. Nilsystems

The class of nilsystems will allow us to compute the automorphism group of some inter-
esting subshifts of polynomial complexity of arbitrary degree.

5.2.5. Automorphism group of d-step nilsystems

In this section we prove that the automorphism group of a proximal extension of a system
of order d (and thus of a d-step nilsystem) is d-step nilpotent. This will be used later in the
chapter to construct subshifts of polynomial complexity whose automorphism groups behave
like subaffine complexity subshifts. Before we need some preliminary lemmas.

Let π : (Y, T ) → (X,T ) be a factor map between minimal systems. For d ≥ 1 recall
that πd : Y → Zd(Y ) and π̃d : X → Zd(X) are the quotient maps induced by the regionally
proximal relations of order d in each system. Since (Zd(Y ), T ) is the maximal d-step nilfactor
of (Y, T ) and (Zd(X), T ) is a system of order d and a factor of (Y, T ), then by Theorem 1.3.5
there exists a unique factor map ϕd : (Zd(Y ), T )→ (Zd(X), T ).

Lemma 5.2.5. Let π : (Y, T )→ (X,T ) be an almost one-to-one extension between minimal
systems. Then, for any integer d ≥ 1 the canonical induced factor map ϕd : (Zd(Y ), T ) →
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(Zd(X), T ) is a topological conjugacy (or the maximal d-step nilfactors of (Y, T ) and (X,T )
coincide).

Proof. Let πd : Y → Zd(Y ) and π̃d : X → Zd(X) denote the quotient maps as above. First
we prove that ϕd : (Zd(Y ), T )→ (Zd(X), T ) is an almost one-to-one extension.

Let y ∈ Y be such that π−1{π(y)} = {y}. We claim that ϕ−1
d {ϕd(πd(y))} = {πd(y)}.

Let y′ ∈ Y be such that ϕd(πd(y)) = ϕd(πd(y′)). Then π̃d(π(y)) = π̃d(π(y′)) and thus
(π(y), π(y′)) ∈ RP[d](X). By Theorem 1.3.5, there exists a sequence (~ni)i∈N in Zd+1 such
that T ~ni·επ(y′) converges to π(y) for every ε ∈ {0, 1}d+1 \ {(0, . . . , 0)}. Taking a subsequence
we can assume that T ~ni·εy′ converges to y, the unique point in π−1{π(y)}, for every ε ∈
{0, 1}d+1 \ {(0, . . . , 0)}. Then, by Theorem 1.3.5, we deduce that (y, y′) ∈ RP[d](Y ). This
implies that πd(y) = πd(y′) and then ϕd is an almost one-to-one extension.

Finally, by Lemma 5.2.1, πd is a proximal extension. But (Zd(Y ), T ) is a distal system,
so there are no proximal pairs. We conclude that ϕd must be a topological conjugacy.

We deduce that,

Corollary 5.2.6. Let π : (Y, T )→ (X,T ) be an almost one-to-one extension between minimal
systems. If (X,T ) is a system of order d, then it is the maximal d-step nilfactor of (Y, T ).

For instance, since any Sturmian subshift is an almost one-to-one extension of a rotation
on the circle [39], this rotation is its maximal 1-step nilsystem or more classically its maxi-
mal equicontinuous factor. Similarly, Toeplitz subshifts are the symbolic almost one-to-one
extensions of odometers [37]. These odometers are hence their maximal 1-step nilsystems.

The next result is a characterization of the group of automorphisms of an equicontinuous
system. In particular, we get that it is abelian.

Lemma 5.2.7. Let (X,T ) be an equicontinuous minimal system. Then Aut(X,T ) is the
closure of the group 〈T 〉 in the set of homeomorphisms of X for the topology of uniform
convergence. Moreover, Aut(X,T ) is homeomorphic to X.

Proof. Let G denote the closure in the set of homeomorphisms of X of the group 〈T 〉 for the
topology of uniform convergence. Clearly G ⊆ Aut(X,T ). Moreover, by Ascoli’s Theorem it
is a compact abelian group.

Now we prove that Aut(X,T ) ⊆ G. Consider a point x ∈ X and an automorphism φ ∈
Aut(X,T ). By minimality, there exists a sequence of integers (ni)i∈N such that (T nix)i∈N
converges to φ(x). Taking a subsequence we can assume that the sequence of maps (T ni)i∈N
converges uniformly to a homeomorphism g in G. Combining both previous facts we get
that φ(x) = g(x) and thus g−1 ◦ φ(x) = x. Since g−1 ◦ φ ∈ Aut(X,T ), by Lemma 5.2.2 we
conclude that φ = g and consequently φ ∈ G.
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To finish remark that Lemma 5.2.2 ensures that the map from G to X sending g ∈ G

to g(x) ∈ X is a homeomorphism onto its image Y ⊂ X. Since Y is T invariant and T is
minimal we get that Y = X. This proves that Aut(X,T ) is homeomorphic to X.

We generalise previous result for systems of order d for any d ∈ N.

Theorem 5.2.8. Let (X,T ) be a system of order d. Then, its automorphism group Aut(X,T )
is a d-step nilpotent group.

To prove this theorem, we need to introduce some notation. Given a function φ : X → X,
for k = 1, . . . , d we define the k-face transformation associated to φ asφ[d],k(x) =

(φ[d],kx)ε = φxε, εk = 1;
(φ[d],kx)ε = xε, εk = 0.

For example, for d = 2 the face transformations associated to φ : X → X are φ[2],1 = id×φ×
id×φ and φ[2],2 = id× id×φ×φ. When φ = T , the transformations T [d],1, T [d],2, . . . , T [d],d are
called the face transformations. We let Fd denote the group spanned by the face transforma-
tions. We remark that Q[d](X) is invariant under Fd and under the diagonal transformation
T × T · · · × T (2d times). We denote by Gd the group spanned by Fd and the diagonal
transformation.

We relate cube structures and automorphisms with the following lemma.

Lemma 5.2.9. Let (X,T ) be a minimal topological dynamical system and let φ ∈ Aut(X,T).
Then for every d ∈ N, any face transformation φ[d],k, k = 1, . . . , d, leaves invariant Q[d](X).

Proof. Let x ∈ Q[d](X) and k ∈ {1, . . . , d}. By definition of Q[d](X), we can find x ∈ X and
a sequence (gi)i∈N in Gd such that gix[d] → x. We remark that by minimality of (X,T ), there
exists a sequence (ni)i∈N in Z such that T nix→ φ(x). Therefore (T [d],k)ni(x[d])→ φ[d],k(x[d])
and thus φ[d],k(x[d]) ∈ Q[d](X). Since φ commutes with T we have that φ[d],k commutes
with Gd and thus φ[d],kgi(x[d]) = giφ

[d],k(x[d]) ∈ Q[d](X). Taking the limit we conclude that
φ[d],kx ∈ Q[d](X) and then φ[d],k leaves invariant Q[d](X).

Proof of Theorem 5.2.8. Let φ1, . . . , φd+1 ∈ Aut(X,T ). Using Lemma 5.2.9 we have that
φ

[d+1],i
i leaves invariant Q[d+1](X) for every i = 1, . . . , d + 1. Therefore, their iterated

commutator [· · · [φ[d+1],1
1 , φ

[d+1],2
2 ], · · · , φ[d+1],d

d ], φ[d+1],d+1
d+1 ] also leaves invariant Q[d+1](X). Let

h = [· · · [φ1, φ2], · · · , φd], φd+1] be the iterated commutator of φ1, . . . , φd+1. A simple compu-
tation shows that

[· · · [φ[d+1],1
1 , φ

[d+1],2
2 ], · · · , φ[d+1],d

d ], φ[d+1],d+1
d+1 ] = id× id · · · × id× h.

100



Therefore, we have that id× id · · · × id× h(x[d]) = (x, x, . . . , x, hx) ∈ Q[d+1](X) for every
x ∈ X. By Theorem 1.3.5 we get that hx = x for every x ∈ X. We conclude that h is the
identity automorphism.

On the other hand, by definition of the regionally proximal relation of order d and the
continuity of an automorphism we have that,

Lemma 5.2.10. Let (X,T ) be a minimal topological dynamical system. Let φ ∈ Aut(X,T ).
Then (x, y) ∈ RP[d](X) if and only if (φ(x), φ(y)) ∈ RP[d](X). Consequently, the projection
πd : X → Zd(X) from X to its maximal d-step nilfactor is compatible with Aut(X,T ).

Combining Theorem 5.2.8, Lemma 5.2.10 and Lemma 5.2.4 we get,

Corollary 5.2.11. Let (X,T ) be a proximal extension of a minimal system of order d. Then,
Aut(X,T ) is a d-step nilpotent group.

Since Sturmian and Toeplitz subshifts are almost one-to-one extensions of their maximal
equicontinuous factors, they are also proximal extensions (Lemma 5.2.1). We obtain as a
corollary that their automorphism groups are abelian. More precisely, Lemma 5.2.10 and
Lemma 5.2.4 imply that their automorphism groups are subgroups of the automorphism
group of their maximal equicontinuous factors, characterized in Lemma 5.2.7. In addition,
it is not difficult to construct minimal symbolic almost one-to-one extensions of d-step nil-
systems by considering codings on well chosen partitions. An example will be developed in
Section 5.4.

5.3. On the automorphisms of subshifts with polyno-
mial complexity

In this section we prove the main results of this paper. We start by proving Theorem
5.1.1 and in a second part we give new proofs of byproduct results from [74, 84]. Namely, a
characterization of the automorphisms of bijective constant length substitutions and the real-
ization of any finite group as the quotient Aut(X,T )/〈T 〉. We end this section by presenting
a tentative generalization of Theorem 5.1.1 to polynomial complexity by using a result on
the growth rate of groups.

For the sequel, we recall that a group G satisfies virtually a property P (e.g., nilpotent,
solvable, isomorphic to a given group, ...) if there is a finite index subgroup H ⊂ G satisfying
the property P.
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5.3.1. Proof of Theorem 5.1.1

Let (X,T ) be a topological dynamical system. It is clear from the definition that for
any proximal (asymptotic) pair (x, y) ∈ X × X and for any φ ∈ Aut(X,T ) we have that
(φ(x), φ(y)) is a proximal (asymptotic) pair. We say that the asymptotic pairs (x, y) and
(x′, y′) belong to the same class if they are in the same orbit, meaning that there exists n ∈ Z
such that (x′, y′) = (T nx, T ny). A class of asymptotic pairs is a (non closed) T ×T -invariant
subset of X ×X. We denote by [(x, y)] the class of the asymptotic pair (x, y). We say that
two classes [(x, y)], [(x′, y′)] are equivalent if there is an asymptotic pair (x′1, y′1) ∈ [(x′, y′)]
such that x = x′1 or x and x′1 are asymptotic. This defines an equivalence relation and any
class is called an asymptotic component. We denote by AS [(x,y)] the asymptotic component
of the class [(x, y)] and by AS the collection of asymptotic components.

It is also plain to check for φ ∈ Aut(X,T ) and two equivalent asymptotic classes [(x, y)]
and [(x′, y′)], that classes [(φ(x), φ(y))] and [(φ(x′), φ(y′))] are also equivalent. So the au-
tomorphism φ induces a permutation j(φ) on the collection AS of asymptotic components
of (X,T ). By denoting PerAS the set of such permutations, formally we have the group
morphism

j : Aut(X,T ) → PerAS (5.3.1)

φ 7→
(
AS [x,y] 7→ AS [(φ(x),φ(y))]

)
.

In the case of subshifts, the following lemma is a key observation which relates the com-
plexity of the subshift with asymptotic classes. The proof relies in classical ideas from [102].

Lemma 5.3.1. Let (X, σ) be a subshift. If (X, σ) has a sublinear complexity, then there is
a finite number of asymptotic classes. More generally, if the complexity pX(n) satisfies

lim inf
n→+∞

pX(n)
n

< +∞ ,

then there is a finite number of asymptotic classes.

In particular, this lemma provides a sufficient condition to bound the number of asymp-
totic components.

Proof. For the first statement see [102] Lemma V. 22. For the second claim we proceed as
follows. The hypothesis implies the existence of a constant κ and an increasing sequence
(ni)i∈N in N such that pX(ni + 1) − pX(ni) ≤ κ. Indeed, if not, for any A > 0 and for any
integer n large enough we have pX(n + 1) − pX(n) ≥ A. It follows that pX(n) − pX(m) =∑n−1
i=m pX(i + 1) − pX(i) ≥ (n − m)A for any n ≥ m enough large. From here we get that

lim infn→+∞
pX(n)
n
≥ A which is a contradiction since A is arbitrary.
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Hence, the number of left special words of length ni (see Section 5.2.2 for the definition)
is bounded by κ. Any asymptotic pair defines a sequence with arbitrarily long special words,
so there are at most κ asymptotic classes.

A second main ingredient for proving Theorem 5.1.1 is the following direct corollary of
Lemma 5.2.3. We recall that an asymptotic pair is proximal and that the map j used in the
following corollary has been defined in (5.3.1).

Corollary 5.3.2. Let (X,T ) be a minimal topological dynamical system with at least one
asymptotic pair. We have the following exact sequence

1 // 〈T 〉 Id // Aut(X,T ) j // PerAS,

where PerAS denotes the set of permutations on the collection of asymptotic components of
(X,T ). Moreover, for any automorphism φ, the permutation j(φ) has a fixed point if and
only if φ is a power of T .

As a byproduct of this result and Lemma 5.3.1 we get Theorem 5.1.1 that we recall and
extend here.

Theorem. Let (X, σ) be a minimal aperiodic subshift with lim inf
n→+∞

pX(n)
n

< +∞. Then,

1. Aut(X, σ) is virtually isomorphic to Z.

2. The quotient group Aut(X, σ)/〈σ〉 is isomorphic to a finite subgroup of permutations
without fixed points. In particular, ]Aut(X, σ)/〈σ〉 divides the number of asymptotic
components.

Proof. Only the second part of statement (2) is not straightforward from Corollary 5.3.2.
The group Aut(X, σ)/〈σ〉 acts freely on the finite set of asymptotic component AS: the
stabilizer of any point is trivial. Thus, AS is decomposed into disjoint Aut(X, σ)/〈σ〉-orbits,
and any such orbit has the same cardinality as Aut(X, σ)/〈σ〉.

Statement (2) of the theorem enables us to perform explicit computations of the automor-
phism group for easy cases. A first example comes from Sturmian subshifts. It is well-known
that this system admits just one asymptotic component, so any automorphism is a power of
the shift map. A bit more general case is when the number of asymptotic components is a
prime p (e.g., 2 for the Thue-Morse subshift), then the group Aut(X, σ)/〈σ〉 is a subgroup
of Z/pZ: either the trivial one or Z/pZ. In particular, since the Thue-Morse subshift admits
an automorphism which is not the power of the shift map, then the quotient automorphism
group is isomorphic to Z/2Z.
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One could ask whether the automorphism group is computable algorithmically, at least
for substitution subshifts, or explicitly by theoretical arguments for some families of subshifts.
This will be achieved in [41] for substitutive and linearly recurrent subshifts.

Statement (2) is not a real restriction. Given any finite group G, it acts on itself by left
multiplication Lg(h) = g · h for g, h ∈ G. The map Lg defines then a permutation on the
finite set G without fixed points. So G is a subgroup of elements of the permutation group on
]G elements which verifies statement (2) in the theorem. Thus, it is natural to ask whether
we can realize any finite group as Aut(X,T )/〈T 〉 or if we can characterize those finite groups.
This is done in the next subsection.

Finally, notice that the complexity condition of Theorem 5.1.1 is compatible with
lim sup
n→+∞

pX(n)
n

= +∞. In Section 5.4.4 we construct a minimal subshift with subexponential
complexity satisfying

lim inf
n→+∞

pX(n)/n < +∞ and lim sup
n→+∞

pX(n)/nd = +∞ for every d > 1.

Thus, in this case, the automorphism group is virtually Z by Theorem 5.1.1.

5.3.2. A characterization of Aut(X, σ)/〈σ〉 for constant length sub-
stitutions

In this section, by using the results of Section 5.3.1, we provide a characterization of the
automorphism group for subshifts given by a constant length substitution τ : A → A∗ on
a finite alphabet A. Our characterization follows from the one of asymptotic components.
We deduce then new and direct proofs of two already known results. The first one is due
to Host and Parreau [74] on the characterization of the automorphism group of bijective
constant length substitutions. The second one is a combination of results in [84] and [74],
giving an explicit example of a substitutive minimal subshift (X, σ) such that Aut(X, σ)/〈σ〉
is isomorphic to an arbitrary finite group G. Notice that in [84] the authors have a similar
statement but in the measurable setting.

We recall that a substitution τ : A → A∗ is of constant length ` > 0 if any word τ(a)
for the letter a ∈ A is of length `. A substitution of constant length is bijective if the
corresponding letters at position i ∈ {0, . . . , ` − 1} of all τ(a)’s are pairwise distinct. We
denote by Xτ the subshift

Xτ = {x ∈ AZ; any word of x appears in τn(a) for some n ≥ 0 and a ∈ A}.

For constant length substitution, it is well known (e.g. see [102]) that the subshift (Xτ , τ)
is minimal if and only if the substitution τ is primitive, that is, for some power p ≥ 0 and
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any letter a ∈ A, the word τ p(a) contains all the letters of the alphabet. Recall that the
substitution τ is aperiodic if and only if Xτ is infinite.

Lemma 5.3.3. Let τ be a primitive aperiodic bijective constant length substitution. Let
(x, y) = ((xn)n∈Z, (yn)n∈Z) ∈ X2

τ be an asymptotic pair with xn = yn for any n ≥ 0 and
x−1 6= y−1. Then, there exists an asymptotic pair ((x′n)n∈Z, (y′n)n∈Z) ∈ X2

τ with x′n = y′n for
any n ≥ 0 and x′−1 6= y′−1, such that

τ((x′n)n∈Z) = (xn)n∈Z and τ((y′n)n∈Z) = (yn)n∈Z.

Proof. Let ` be the length of the substitution τ . By the classical result of Mossé [89, 90]
on recognizability, the substitution τ : Xτ → τ(Xτ ) is one-to-one. Moreover, the collection
{σkτ(Xτ ) : k = 0, . . . , ` − 1} is a clopen partition of Xτ . So, there are x′ = (x′n)n∈Z, y′ =
(y′n)n∈Z ∈ Xτ and 0 ≤ kx, ky < ` such that σkxτ(x′) = x and σkyτ(y′) = y.

We claim that we have kx = ky = 0. Since the sequences x and y are asymptotic, there
are integers n ≥ 0, k′ ∈ {0, . . . , `− 1} such that σn(x), σn(y) ∈ σk′(τ(Xτ )). The substitution
τ is of constant length `, so we have σ` ◦ τ = τ ◦ σ. Therefore, we get x and y are in the
same clopen set σk(τ(Xτ )) for some k ∈ {0, . . . , `−1}. Let us assume that k ≥ 1. The words
x−1x0 . . . xk−1, y−1y0 . . . yk−1 are then prefixes of the words τ(x′−1) and τ(y′−1) respectively.
Since the substitution τ is bijective and x0 = y0, we have x′−1 = y′−1. In particular, we get
x−1 = y−1: a contradiction.

To finish the proof, notice that the substitution τ is injective on the letters, so we obtain
x′n = y′n for any n ≥ 0 and x′−1 6= y′−1.

Lemma 5.3.4. Let τ be a primitive aperiodic bijective constant length substitution. Then,
there exists an integer p ≥ 0 such that for any asymptotic pair ((xn)n∈Z, (yn)n∈Z) ∈ X2

τ the
one-sided infinite sequences

(xn+n0)n≥0, (yn+n0)n≥0 are equal for some n0 ∈ Z and fixed by τ p.

Proof. Shifting the indices if needed by some σn0 , we can assume that for the asymptotic
pair (x, y) = ((xn)n∈Z, (yn)n∈Z) we have xn = yn for any integer n ≥ 0 and x−1 6= y−1. Let
p ≥ 0 be an integer such that for any letter a ∈ A, any word in {τ pn(a)}n≥1 starts with
the same letter. Hence, the sequence of sequences (τ pn(aa · · · ))n≥0 converges to a one-sided
infinite word fixed by τ p.

Applying inductively Lemma 5.3.3 to the substitution τ p, we get a sequence of asymptotic
pairs ((x(i), y(i)))i≥0 verifying the conclusions of the lemma and such that τ p(x(i+1)) = x(i),
τ p(y(i+1)) = y(i), x(0) = x and y(0) = y. By the definition of p, all sequences x(i) and
also y(i), i ≥ 0, share the same letter a at index 0. The conclusion of the lemma follows
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straightforwardly since we assume that τ pn(a · · · ) converges to a one-sided infinite word fixed
by τ p.

Thanks to this lemma we can obtain another proof of the following result due to Host
and Parreau.

Theorem 5.3.5. [74] Let τ be a primitive bijective constant length substitution. Then,
any automorphism of the subshift Xτ is the composition of some power of the shift with an
automorphism φ of radius 0. Moreover, its local rule φ̂ : A → A satisfies

τ ◦ φ̂ = φ̂ ◦ τ. (5.3.2)

Conversely, notice that a local map satisfying (5.3.2) defines an automorphism of the
subshift. Hence we obtain an algorithm to determine in this case the group of automorphisms
since there is just a finite number of local rules of radius 0.

Proof. Notice first that when Xτ is finite, it is reduced to a finite orbit. Hence any automor-
phism is a power of the shift map by Lemma 5.2.7.

Let us assume now that the substitution τ is aperiodic and let x = (xn)n∈Z, y = (yn)n∈Z ∈
Xτ be two asymptotic sequences. Lemma 5.3.4 provides a power p ≥ 0 such that, shifting
the sequences if needed by some σn0 , we can assume that (xn)n≥0 and (yn)n≥0 coincide and
are fixed by τ p.

Let φ be an automorphism of the subshift (Xτ , σ). The pair (φ(x), φ(y)) is also an
asymptotic pair. Again, Lemma 5.3.4 ensures that for some integer n1 ∈ Z, the sequences
(φ(x)n+n1)n≥0 and (φ(y)n+n1)n≥0 coincide and are also fixed by τ p (observe as stated in Lemma
5.3.4, we can use the same power p for any couple of asymptotic pairs). In the following, we
will consider the automorphism φ′ = σn1 ◦ φ, thus by definition, the sequence (φ′(x)n)n≥0 is
also fixed by τ p.

Let r and φ̂′ denote the radius and the local map of φ′ respectively. Taking a power of τ p

if needed, we can assume that the length ` of τ p is greater than 2r + 1. Suppose now that
xn = xm for some n,m ≥ 0. We have φ′(x)m`+r = φ̂′(xm` . . . xm`+2r) = φ̂′(τ p(xm)[0,2r]) =
φ̂′(τ p(xn)[0,2r]) = φ′(x)n`+r, where for a word u = u0 . . . u`−1, u[0,2r] stands for the prefix
u0 . . . u2r. Since φ′(x)n`+r and φ′(x)m`+r are the r + 1th letters of the words τ p(φ′(x)n) and
τ p(φ′(x)m) respectively, and the substitution τ is bijective, we obtain that φ′(x)n = φ′(x)m.

Hence, we can define the local map ψ̂ : A → A by ψ̂(xn) = φ′(x)n for any n ≥ 0. This
provides a shift commuting map ψ : AZ → AZ such that for any word w in the language
L(Xτ ), we have that ψ(τ p(w)) = τ p(ψ(w)). Thus ψ(Xτ ) ⊂ Xτ . Since the substitution τ is
bijective we also get relation (5.3.2). In the same way, using φ′−1 instead of φ′ we obtain that
ψ is invertible. By construction, we have that ψ−1φ′(x) is asymptotic to x, so by Lemma
5.2.3, ψ = φ′ = σn1 ◦ φ.

106



A second consequence of Lemma 5.3.4 is the realization of any finite group as the group
Aut(X, σ)/〈σ〉 for a substitutive subshift of constant length.

Proposition 5.3.6. Given a finite group G, there is a substitutive minimal subshift (X, σ)
such that Aut(X, σ)/〈σ〉 is isomorphic to G.

Proof. The Fibonacci subshift is both a substitutive and a Sturmian subshift, then by pre-
vious discussion the quotient group Aut(X, σ)/〈σ〉 is trivial. Then, let us assume that the
finite group G is not trivial. We choose an enumeration of its elements G = {g0, g1, . . . ,

gp−1} with p ≥ 2 where g0 denotes the neutral element.
For an element h ∈ G, we denote by Lh : G → G the bijection g 7→ hg. We consider the

alphabet G, viewed as a finite set, and define the substitution τ from the set of letters G into
the set of words G∗, by

τ : g 7→ Lg(g0)Lg(g1) · · ·Lg(gp−1).

Since the map Lg is a bijection on G, the substitution τ of constant length is primitive and
bijective. Thus the associated subshift (Xτ , σ) is minimal.

Moreover observe that for any letter g ∈ G, the word τ(g) starts by the letter g, so any
sequence (τn(gg · · · ))n≥1 converges to a τ -invariant infinite word.

We claim that the subshift (Xτ , σ) is not periodic, i.e., not reduced to a periodic orbit.
To show this it suffices to give an example of an asymptotic pair. The word g0g1 belongs
to the language L(Xτ ) of the subshift Xτ . Hence the words τ(g0)τ(g1) and its sub-word
gp−1g1 (which is different from the word g0g1) also belong to L(Xτ ). It follows for any integer
n ≥ 0 that the words τn(g0).τn(g1) and τn(gp−1).τn(g1) are also in the language. Taking a
subsequence if needed, these words converge as n goes to infinity to two sequences x and
y ∈ Xτ that are, by construction, asymptotic.

Given an element g ∈ G we extend the definition of the map Lg to G∗ by defining for a
word w = h1 . . . hn, Lg(w) := Lg(h1) . . . Lg(hn). By concatenation, it defines a left continuous
G-action on GZ. It is important to note that we have the relation for any g, h ∈ G

Lg(τ(h)) = τ(Lg(h)). (5.3.3)

Hence any map Lg preserves the subshift Xτ and we have a left action of G on Xτ . It is plain
to check that L : g 7→ Lg defines an injection of G into Aut(Xτ , σ). Actually, we claim that
we have a converse which allows to finish the proof.

Lemma 5.3.7. For the subshift Xτ defined above the map

ϕ : Z×G → Aut(Xτ , σ)

(n, g) 7→ σn ◦ Lg
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is a group isomorphism.

Proof of Lemma 5.3.7. To show the injectivity of the map ϕ let us assume there are g ∈ G
and an integer k such that Lg(x) = σk(x) for any x ∈ X. Necessarily k = 0, otherwise the
infinite sequence Lg

(
limn→+∞ τ

n(g−1g−1 · · · )
)
, which is equal to limn τ

n(g0g0 · · · ) by formula
(5.3.3), is ultimately periodic. This is impossible since the subshift Xτ is not periodic. The
injectivity of the map L implies finally that the map ϕ is injective.

To show it is also onto, it is enough to prove that any automorphism φ ∈ Aut(Xτ , σ)
may be written as a power of the shift composed with a map of the kind Lg. Let (x, y) be
an asymptotic pair. By Lemma 5.3.4 up to shift x, y and compose φ with a power of the
shift map, there exist g1, g2 ∈ G such that the sequences x, y are positively asymptotic to
limn→+∞ τ

n(g1), and φ(x), φ(y) are positively asymptotic to limn→+∞ τ
n(g2g2 · · · ). It follows

from (5.3.3) that the points x and Lg1(g−1
2 ) ◦ φ(x) are asymptotic. So, by Lemma 5.2.3 the

maps φ and (Lg1(g−1
2 ))−1 = Lg2(g−1

1 ) coincide.

5.3.3. Recurrence and growth rate of groups

We try to extend Theorem 5.1.1 to subshifts with higher complexity. For this, we need to
introduce a stronger condition. We define, for a topologically transitive subshift (X, σ) and
an integer n ≥ 1, a local recurrence time:

NX(n) := inf{|w|; w ∈ L(X) contains any word of X of length n}.

Clearly, this value is well defined and satisfies NX(n) ≥ pX(n) + n. For instance, it is well-
known that any primitive substitutive subshift is linearly repetitive meaning that supn≥1

NX(n)
n

< +∞. We obtain the following result.

Theorem 5.3.8. Let (X, σ) be a transitive subshift such that supn≥1
NX(n)
nd

< +∞ for some
d ≥ 1. Then, there is a constant C depending only on d, such that any finitely generated
subgroup of Aut(X, σ) is virtually nilpotent of step at most C.

Proof. Let S = 〈φ1, . . . , φ`〉 ⊂ Aut(X, σ) be a finitely generated group. Let r be an upper
bound of the radii of the local maps associated to all generators φi of S and their inverses.
For n ∈ N consider

Bn(S) = {φs1i1 · · ·φ
sm
im ; 1 ≤ m ≤ n, i1, . . . , im ∈ {1, . . . , `}, s1, . . . , sm ∈ {1,−1}} .

Let w be a word of length NX(2nr + 1) containing any word of length (2nr + 1) of X.
If φ, φ′ ∈ Bn(S) are different then φ(w) 6= φ′(w). Then, Bn(S) can be injected into the set
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of words of length NX(2nr + 1) − 2r (the injection is just the valuation of φ on w). This
implies that ]Bn(S) ≤ pX(NX(2nr + 1) − 2r). We deduce from the hypothesis on NX that
]Bn(S) ≤ nd

2+1 for all large enough integers n ∈ N. Therefore, by the quantitative result of
Shalom and Tao in [109] generalizing Gromov’s classical result on the growth rate of groups,
we get the conclusion.

Notice that the constant C may be given explicitly in the result of [109]. It is clear
that a subshift of polynomial local recurrence complexity has a polynomial complexity. The
converse is not clear, but an additional possible condition is that the subshift has bounded
repetitions of words. The natural question here is whether the automorphism group of a
minimal subshift of polynomial local recurrence complexity, or just polynomial complexity,
is finitely generated.

5.4. Gallery of examples

We present here examples of subshifts with various complexities. The first two examples
are substitutive subshifts with superlinear complexity. Even if we can not apply straightfor-
wardly the main results of the paper (e.g., the substitutions are not primitive), we study their
asymptotic components to prove their automorphism groups are isomorphic to Z. Next, we
define a coding of a nil-translation with a polynomial complexity of arbitrary high degree but
having an automorphism group which is virtually Z. To enlarge the zoology of automorphism
groups we provide a subshift whose automorphism group is isomorphic to Zd. We end with
a subshift whose complexity is, for infinitely many integers, subaffine and superpolynomial.
Theorem 5.1.1 applies in this case.

5.4.1. Substitutions with superlinear complexity

Recall that substitutive subshifts have a prescribed complexity: with growth bounded or
equivalent to n, n log log n, n log n, or to n2 (see [95]). Below we give two examples having a
unique asymptotic component. This is enough to conclude that their automorphism groups
are isomorphic to Z.

A n log log n complexity substitutive subshift

Let A = {a, b} and consider the substitution τ1 : A → A∗ defined by

τ1(a) = aba and τ1(b) = bb.
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We set

Xτ1 = {x ∈ {a, b}Z; any word of x appears in some τn1 (c), n ≥ 0, c ∈ {a, b}}.

It can be checked that (Xτ1 , σ) is a non minimal transitive subshift. Moreover, it is proven
in [18] that its complexity is equivalent to n log2 log2 n.

In the sequel we need some specific notations. For a sequence x ∈ {a, b}Z we set x− =
· · ·x−2x−1, x+ = x0x1 · · · and x = x−.x+. Let b+∞ = bbbbb . . . ∈ AN and b−∞ = . . . bbbbb ∈
AZ<0 , where Z<0 is the set of negative integers. Thus the sequence x = . . . bb.bb . . . ∈ {a, b}Z

can be written b−∞.b+∞. In the same spirit we put τ+∞
1 (c) for limn→+∞ τ

n
1 (cc . . .), when it

exists in {a, b}N, and, τ−∞1 (c) for limn→+∞ τ
n
1 (· · · cc), when it exists in {a, b}Z<0 .

Let us ckeck (Xτ1 , σ) has a unique asymptotic component. We show that asymptotic
points should end with b+∞.

Let (x, y) be an asymptotic pair. We can suppose, shifting if needed, that

x = x−a.x+ = · · ·x−−4x
−
−3x

−
−2a.x

+
0 x

+
1 x

+
2 · · ·

y = y−b.x+ = · · · y−−4y
−
−3y

−
−2b.x

+
0 x

+
1 x

+
2 · · · .

Observe that x+
0 = b because aa does not belong to L(Xτ1):

x = · · ·x−−4x
−
−3x

−
−2a.bx

+
1 x

+
2 x

+
3 · · ·

y = · · · y−−4y
−
−3y

−
−2b.bx

+
1 x

+
2 x

+
3 · · · .

Suppose x+
1 = a. Then, we should have x+

2 x
+
3 = bb because aba is necessarily followed by bb.

Thus, bbabb should appear in some element of x which is not the case. Therefore x+
1 = b:

x = · · ·x−−4x
−
−3x

−
−2a.bbx

+
2 x

+
3 x

+
4 · · ·

y = · · · y−−4y
−
−3y

−
−2b.bbx

+
2 x

+
3 x

+
4 · · · .

Suppose x+ begins with b2n+1a for some n ≥ 1. Then, abab2n+1aba should belong to the
language of Xτ1 . But it should appear in some τ1(u) and then we must have abab2n+1aba =
τ1(ava) for some word v ∈ L(Xτ1), hence b2n+1 = τ1(v), which is not possible. Thus, x+

begins with b2na for some n ≥ 1 or it is equal to b+∞. Suppose we are in the first situation:

x = · · ·x−−4aba.b
2nabax+

2n+3 · · ·

y = · · · y−−4y
−
−3y

−
−2b.b

2nabax+
2n+3 · · · .
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It can be checked that τ1 is one-to-one on Xτ1 . Consequently, there are two unique sequences

x(1) = x(1−)a.bnabax(1+) and y(1) = y(1−)b.bnabax(1+) (5.4.1)

belonging to Xτ1 such that

x = τ1(x(1−)a).τ(bnabax(1+)) and y = τ1(y(1−)b).τ(bnabax(1+)).

Thus, (x(1), y(1)) is also an asymptotic pair. From the observation made before, n should be
even and we can obtain a new asymptotic pair (x(2), y(2)) having the shape given by (5.4.1).
Of course n is decreasing at each step and we can continue until n = 1: we get an asymptotic
pair (x(k), y(k)) such that

x(k) = · · · a.baba · · ·

y(k) = · · · b.baba · · · .

But ababa does not belong to L(Xτ1). Consequently x+ = b+∞ and (Xτ1 , σ) has a unique
asymptotic component.

Furthermore, it can be checked, using already used arguments, that z−.b+∞ is in Xτ1 \
{b−∞.b+∞} if and only if z− = τ−∞1 (a)bn for some non-negative integer n. Hence, if (x, y) is
an asymptotic pair then x and y belong to

{b−∞.b+∞, σi(τ−∞(a).b+∞); i ∈ Z}.

A n2 complexity substitutive subshift

Below we use the notation of the previous section. Consider the substitution τ2 : A → A∗

defined by
τ2(a) = aab and τ2(b) = b.

It is easy to check that the subshift (Xτ2 , σ) is transitive but not minimal. Moreover, from
[95] its complexity is of the order n2. Before showing it has a unique asymptotic component,
let us introduce some key concepts for the treatment of this example.

Let x be a sequence of BN, where B is an alphabet. We denote by L(x) the set of words
having an occurrence in x. A return word to u ∈ L(x) is a word w ∈ L(x) such that wu
belongs to L(x), contains exactly two occurrences of u and has u as a prefix. We denote by
Rx(u) the set of return words to u.

In [19] is defined the notion of sparse sequence on the alphabet B. It is an element x of
BN satisfying:

∃b ∈ A, ∀n ∈ N, bn ∈ L(x) and #Rx(bn) = 2.
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It is proven that px(n) (the number of words of length n appearing in x) is less than or
equal to (n2 + n + 2)/2 whenever x is sparse. In Example 4.7.67 of [19] it is claimed that
x = τ+∞

2 (a) is sparse. Using Lemma 4.5.15 in [19] one can deduce that for all n ≥ 1,

Rx(bn) = {b, bnu}, where τn2 (a) = ubn. (5.4.2)

We show (Xτ2 , σ) has a unique asymptotic component. Let (x, y) be an asymptotic pair.
It suffices to prove that x and y end with b+∞. We can suppose that x = x−.x+

0 ax
+ and

y = y−.y+
0 bx

+. We set x+ = x+
2 x

+
3 · · · .

Suppose that x+
2 = a. Then the only possibility to have bax+

3 in L(Xτ2) is x+
3 = a.

Consequently, aaa would belong to L(Xτ2), which is not the case. Therefore, x+
2 = b and

necessarily x−−1x
−
0 = ba:

x = · · ·x−−1b.aabx
+
3 x

+
4 x

+
4 · · ·

y = · · · y−−2y
−
−1.y

+
0 bbx

+
3 x

+
4 x

+
5 · · · .

Suppose we are in the following situation:

x = · · ·x−−1b.aab
naax+

n+4 · · ·

y = · · · y−−2y
−
−1.y

+
0 bb

naax+
n+4 · · · .

From (5.4.2) one gets that

x = · · ·x−−1b.aab
nτn+1

2 (a) · · ·

y = · · · y−−2y
−
−1.y

+
0 bb

nτn+1
2 (a) · · · .

Then, using (5.4.2) again, x would have an occurrence of w = τn2 (a)τn2 (a)τn2 (a), but w
does not belong to L(Xτ2). Indeed, if it was the case, by a finite recurrence we prove that
aaa should belong to L(Xτ2), which is not the case. Hence, x+

3 x
+
4 x

+
4 · · · = b+∞ and (Xτ2 , σ)

has a unique asymptotic component.

Observe that (σ−n(τn2 (a−∞)).b+∞) converges in Xτ2 . Let z denote its limit. We can check
that if (x, y) is an asymptotic pair then x and y belong to

{b−∞.b+∞, σi(z); i ∈ Z}.

We finish this section by proving that in both examples (Xτ1 , σ) and (Xτ2 , σ) the group
of automorphisms is isomorphic to Z.
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Lemma 5.4.1. Let τ denote either the substitution τ1 or τ2. Then, the group Aut(Xτ , σ) is
generated by the shift map σ.

Observe that the main result of [29] gives only that the group Aut(Xτ1 , σ) is a periodic
group.

Proof. Let us first recall that for any asymptotic pair (x, y) of (Xτ , σ), x and y belong to

{b−∞.b+∞, σi(z); i ∈ Z},

for some z ∈ Xτ .
Notice that (Xτ , σ) has a unique minimal subsystem, namely ({b−∞.b+∞}, σ). Moreover,

it is clear that an automorphism φ of the subshift (Xτ , σ) maps any minimal subsystem onto
a minimal subsystem, so φ fixes the sequence b−∞.b+∞. The morphism φ mapping asymptotic
pairs onto asymptotic pairs, σi(z) should be mapped to some σj(z). The orbit {σk(z); k ∈ Z}
being dense in Xτ one deduces that φ ◦ σi = σj. Thus, φ is a power of the shift map.

5.4.2. Coding a nil-translation

We introduce a class of examples of symbolic systems with polynomial complexity of
arbitrarily high degree and with a group of automorphisms which is virtually Z. We build
these systems as symbolic extensions of minimal nilsystems.

We start by stating some general results we need and then review some generalities about
the coded systems.

Let (X,T ) be a minimal topological dynamical system and let U = {U1, . . . , Um} be a
finite collection of subsets of X. We say that U covers X if ⋃mi=1 Ui = X. For two covers
U = {U1, . . . , Um} and V = {V1, . . . , Vp} of X we let U ∨ V denote the cover given by
{Ui ∩ Vj; i = 1, . . .m, j = 1, . . . p}.

Let U = {U1, . . . , Um} be a finite cover of X and let A denote the set {1, . . . ,m}. We say
that ω = (wi)i∈Z ∈ AZ is a U -name of x if x ∈ ⋂

i∈Z
T−iUwi . Let XU denote the set

{ω ∈ AZ;
⋂
i∈Z

T−iUwi 6= ∅} ⊆ AZ.

It is easy to check that XU is closed when each Ui is closed and if we let U denote the
collection {U1, . . . , Um} we have that XU ⊂ XU . For N ∈ N, let

UN =
N∨

i=−N
T−iU .

We say that the cover U separates points if every ω ∈ XU is a name of exactly one x ∈ X.
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If U separates points in X, we can build a factor map π between (XU , σ) and (X,T ) where
π(ω) is defined as the unique point in ⋂

i∈Z
T−iUwi .

Lemma 5.4.2. Let (X,T ) be a minimal topological dynamical system and let U =
{U1, . . . , Um} be a partition which covers and separates points in X. Suppose that for every
N ∈ N every atom of UN has non-empty interior, then (XU , σ) is a minimal system.

Proof. Let ω, ω′ ∈ XU and let N ∈ N. We denote x = π(ω) and x′ = π(ω′). By definition we
have that ⋂N−N T−iUwi 6= ∅ and therefore it has non-empty interior. Since (X,T ) is minimal,
there exists n ∈ Z such that T nx′ ∈ int(⋂N−N T−iUwi). This implies that w′[n−N,n+N ] = w[−N,N ]

and the proof is finished.

Now we compute the automorphism groups of symbolic extensions of some nilsystems.
First we recall the construction of the systems studied in [1]. Let us consider the infinite
matrix A = (ai,j)i,j∈N where ai,j =

(
j
i

)

A =



1 1 1 1 1 · · ·
1 2 3 4 · · ·

1 3 6 · · ·
1 4 · · ·

1 · · ·
· · · · · ·


.

It is proven in Section 4 of [1] that for all i ∈ N, Ai is well defined and

Ai =



1 i i2 i3 i4 · · ·
1 2i 3i2 4i3 · · ·

1 3i 6i2 · · ·
1 4i · · ·

1 · · ·
· · · · · ·


.

Let α ∈ [0, 1] be an irrational number. For any d ∈ N, consider Ad+1 the restriction of A to
(d+1)×(d+1) coordinates. We let Td : Td → Td denote the function that maps (x0, . . . xd−1)
to the d first coordinates of Ad+1(x0, . . . , xd−1, α)t. For example, T2 is the function (x0, x1) 7→
(x0+x1+α, x1+2α) and T3 is the function (x0, x1, x2) 7→ (x0+x1+x2+α, x1+2x2+3α, x2+3α).

We can represent the transformation Td as Td(x) = Adx + ~α where ~α is the restriction
to the first d-coordinates of the last column of Ad+1 multiplied by α. This is the classical
presentation of an affine nilsystem.

Fix d ∈ N and for i, n ∈ Z let Hi,n be the plane given by the equation∑d−1
k=0 i

kxk+idα = n.
It can be proven that Hi,n = T−id H0,n and for a fixed value of i, the planes Hi,n are projected
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in Td to the same plane Ĥi. We remark that

Ĥ0 = {(0, x1, . . . , xd−1); (x1, . . . , xd−1) ∈ Td−1}.

We refer to Section 4 of [1] for further details.
We consider the partition U given by the cells generated by the planes Ĥ0, . . . , Ĥd−1.

The partition ∨n+d−1
i=0 T−id U coincides with the cells generated by the planes Ĥ0, . . . , Ĥn+d−1

(see Section 6 of [1]). Let (x0, . . . , xd−1) and (y0, . . . , yd−1) be different points in Td and let
k = max{k;xk 6= yk}. Then the difference (in R) between∑d−1

k=0 i
kxk+idα and∑d−1

k=0 i
kyk+idα

grows to infinity as i goes to infinity since this difference behaves like ik(xk−yk). This implies
that for big enough N , (x0, . . . , xd−1) and (y0, . . . , yd−1) lie on different cells of ∨Ni=−N T−id U
since for big enough i these points are separated by the cells generated by Ĥi.

We recall that (XU , σ) is the subshift associated to U . By Lemma 5.4.2, one can see
that (XU , σ) is a minimal system and it is an extension of (Td, Td) since U separates points.
Moreover, the complexity function of (XU , σ) is given by

p(n) = 1
V (0, 1, . . . , d− 1)

∑
0≤k1<k2<···<kd≤n+d−1

V (k1, k2, · · · , kd)

where V (k1, k2, · · · , kd) = ∏
1≤i<j≤d

(kj − ki) is a Vandermonde determinant. We remark

that varying d ∈ N we get an arbitrarily large complexity with a polynomial growth.
By construction and Corollary 5.2.6 we also get:

Lemma 5.4.3. The maximal d-step nilfactor of (XU , σ) is the nilsystem (Td, Td).

Proposition 5.4.4. The group Aut(XU , σ) is virtually Z.

Proof. Let φ be an automorphism of (XU , σ) and let π : XU → Td be the natural factor map.
Let W = {ω ∈ X; #π−1{π(ω)} ≥ 2} be the set of points where π is not one-to-one. Since φ
preserves the regionally proximal pairs of order d, we have that W is invariant under φ. We
remark that the projection ofW under π are the points which fall in F := Ĥ0∪Ĥ1∪· · ·∪Ĥd−1

under some power of T , which is nothing but ⋃j∈Z T jF = ⋃
j∈Z T

jĤ0. We have that the
projection π̂(φ) is an automorphism that commutes with the affine ergodic transformation
T which has eigenvalues equal to 1. By Theorem 2 and Corollary 1 in [116] we have that
π̂(φ) has the form (x0, . . . , xd−1)t 7→ B(x0, . . . , xd−1)t + β where B is an integer matrix and
β ∈ Td. Since W is invariant under φ we get that the projection π̂(φ) leaves invariant⋃
j∈Z T

jĤ0. Particularly, since Ĥ0 is the restriction of a plane to Td, so is its image under
π̂(φ) and therefore there exists j ∈ Z such that π̂(φ)Ĥ0 = T jĤ0. Hence, the automorphism
T−jπ̂(φ) leaves invariant Ĥ0. So we are left to study the automorphisms of (T, Td) which
leave invariant Ĥ0. Let ϕ be such an automorphism. By [116] we can assume that ϕ has the
form
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ϕ


x0

x1
...

xd−1

 = B


x0

x1
...

xd−1

+


β0

β1
...

βd−1


where the matrix B = (bj,k)j,k=1...,d has integer entries and ~β = (β0, . . . , βd−1)t ∈ Td. Since
ϕ commutes with T we have that B commutes with Ad (as real matrices) and (B − Id)~α =
(Ad − Id)~β in Td.

Since ϕ(0, x1, . . . , xd−1) ∈ Ĥ0, for any (x1, . . . , xd−1) ∈ Td−1 we deduce that b1,2 = · · · =
b1,d = 0 = β0. Since AidB = BAid for any i ∈ N, by looking at the first row of these matrices
we deduce that for any j = 1, . . . , d and any i ∈ N

d∑
k=1,k 6=j

(bj,k)ik−1 + (bj,j − b1,1)ij−1 = 0.

Since the vectors (1, i, i2, . . . , id−1) are linearly independent for different values of i we
deduce that B = b1,1Id. Therefore, (Ad − Id)β = (B − Id)~α = (b1,1 − 1)~α. Since Ad is
upper triangular with ones in the diagonal, this condition implies that (b1,1 − 1)α ∈ Q and
thus b1,1 = 1. We conclude that B is the identity matrix and then ϕ is the rotation by
~β := (0, β1, . . . , βd−1)t and (Ad − Id)~β ∈ Zd. We can write this system as



0 1 1 1 1 · · ·
0 2 3 4 · · ·

0 3 6 · · ·
0 4 · · ·

0 d

· · · 0





0
β1

β1
...

βd−1


∈ Z.

This implies that dβd−1 ∈ Z and this is possible for finitely many βd−1 ∈ T. Inductively,
we deduce that there are finitely many (and rational) solutions ~β = (0, β1, . . . , βd−1)t in Td.
This means that the group of automorphisms that leaves invariant Ĥ0 is a finite group of
rational rotations. Therefore, π̂(Aut(XU , σ)) is spanned by Td and a finite set. Since the map
π̂ : Aut(XU , σ)→ Aut(T, Td) is an injection we have that Aut(XU , σ) is spanned by σ and a
finite set. The result follows.

5.4.3. Example of a larger automorphism group

We remark that the statement of Theorem 5.1.1 is no longer valid for an arbitrary poly-
nomial complexity, as the following shows.
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Proposition 5.4.5. For any d ∈ N, there exists a minimal subshift (X, σ) with complexity
satisfying limn→+∞ pX(n)/nd+1 = 0 and where Aut(X, σ) is isomorphic to Zd.

Proof. Let α1, . . . , αd ∈ R \Q be rationally independent numbers. For every i = 1, . . . , d, let
(Xi, σi) be the Sturmian extension of the rotation Rαi by the angle αi on the circle S1, and
let X = X1 × X2 · · · × Xd and σ = σ1 × σ2 · · · × σd. We remark that for any i = 1, . . . , d,
on (Xi, σi) the proximal relation and the regionally proximal relation coincide and thus the
proximal relation is an equivalence relation. Since the maximal equicontinuous factor of
(Xi, σi) is (S1, Rαi) via the factor map πi, by [7], Chapter 11, theorems 7 and 9, we have that
(X, σ) is a minimal system and the product system ((S1)d, Rα1 × · · · × Rαd) is its maximal
equicontinuous factor.

The complexity function of any (Xi, σi) is n + 1, so we get that the complexity function
of (X, σ) is (n+ 1)d. On the other hand, we observe that φ1× · · · × φd belongs to Aut(X, σ)
for any choice of φi ∈ Aut(Xi, σi). Since for every i, Aut(Xi, σi) is Z, we conclude that Zd

can be embedded as a subgroup of Aut(X, σ).
We claim this embedding is actually an isomorphism. To prove this, recall that the

Sturmian subshift Xi is an almost one-to-one extension of a rotation on the circle via an onto
map πi : Xi → S1 that it is injective except on the orbit of the unit ORαi (1), where any point
has two pre-images (e.g., see [39]). By Lemma 5.2.10, for any automorphism φ ∈ Aut(X, σ),
the automorphism π̂(φ) preserves the set of points in (S1)d having a maximum number
(namely 2d) of pre-images for the factor map π = π1 × · · · × πd. This set is the product set
ORα1

(1)×· · ·×ORαd (1). Clearly, the group of automorphisms of the form π̂(σn1
1 ×· · ·×σndd ),

n1, . . . , nd ∈ Z, acts transitively on this set. Since the group Aut((S1)d, Rα1 × · · · × Rαd)
acts freely and the morphism π̂ is injective (Lemma 5.2.4), we get that any automorphism
φ ∈ Aut(X, σ) may be written as a product of automorphisms in Aut(Xi, σi).

5.4.4. Subshift with subexponential complexity

In this section we give an example of a minimal subshift (X, σ) generated by a uniformly
recurrent sequence x ∈ {0, 1}Z such that:

There exists C such that for infinitely many n’s one has pX(n) ≤ Cn.

For any subexponential function φ there are infinitely many n’s such that pX(n) ≥ φ(n),
where subexponential means that limn→+∞ φ(n)/αn = 0 for all α ∈ R.

As for subshifts pz(n) will stand for the number of words of length n occurring in the
sequence z ∈ {0, 1}Z or z ∈ {0, 1}N.

The proofs of the two following lemmas are left to the reader.
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Lemma 5.4.6. Let ξ be a substitution on {0, 1}∗ of constant length L and τ be an endomor-
phism of {0, 1}∗ having all words of length 2 in its images. Let x ∈ {0, 1}N. Then, for any
y ∈ {0, 1}N having occurrences of all words of length 2 and 0 ≤ l ≤ L we have

pξ◦τ(x)(l) = pξ(y)(l).

Below ρ stands for the Morse substitution: ρ(0) = 01 and ρ(1) = 10.

Lemma 5.4.7. Let ξ be a substitution on {0, 1}∗ of constant length L. Let x ∈ {0, 1}N. We
have

pξ◦ρ3(x)(2L) ≤ 6L.

Below, when a substitution τ is of constant length L we set |τ | = L. Let us construct
inductively the sequence x. In fact, we will construct two increasing sequences of integers
(ai)i≥1 and (bi)i≥1, and a sequence of morphisms (τi)i≥1 such that

1. x = limi→∞ ρ
3τ1 . . . ρ

3τi(0∞), where 0∞ = 00 · · · ,

2. a1 < b1 < a2 < b2 < . . .,

3. px(ai) ≤ 3ai, i ∈ N and

4. px(bi) ≥ φ(bi), i ∈ N.

We start fixing a1 = 2. Let x(1) = ρ3(0∞). Then, px(1)(a1) = 4, which is less than 3a1.
Let k1 be such that 2k1 ≥ φ(k1|ρ3|) (observe it is always possible because φ has a subexpo-

nential growth) and τ1 be a substitution of {0, 1}∗ of length L1 = 2m1 such that τ1(0) starts
with 0 and the number of words of length k1 in τ1(0) and τ1(1) is 2k1 . We set

b1 = k1|ρ3| and y(1) = ρ3τ1(0∞).

One gets
py(1)(b1) ≥ φ(b1).

Moreover, notice that from Lemma 5.4.6 one has that

py(1)(l) = px(1)(l)

for all l ≤ |ρ3|. Now consider x(2) = ρ3τ1ρ
3(0∞). Then from Lemma 5.4.7

p(2|ρ3τ1|) ≤ 6|ρ3τ1|.

Setting a2 = 2|ρ3τ1|, one gets px(2)(a2) ≤ 3a2.
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Let k2 ≥ k1 be such that 2k2 ≥ φ(k2|ρ3τ1ρ
3|) and τ2 be a substitution of {0, 1}∗ of length

L2 = 2m2 such that the number of words of length k2 in τ2(0) and τ2(1) is 2k2 . We set

b2 = k2|ρ3τ1ρ
3| and y(2) = ρ3τ1ρ

3τ2(0∞).

One gets that py(2)(b2) is greater than φ(b2). Moreover, notice that from Lemma 5.4.6 one
has that

py(2)(l) = px(2)(l) ∀l ≤ |ρ3τ1ρ
3|,

px(2)(l) = py(1)(l) ∀l ≤ |ρ3τ1|,

py(1)(l) = px(1)(l) ∀l ≤ |ρ3|.

Thus, py(2)(a1) ≤ 3a1, py(2)(b1) ≥ φ(b1) and py(2)(a2) ≤ 3a2.
Now suppose we have constructed:

1. morphisms τi of constant length such that τi(0) starts with 0, 1 ≤ i ≤ n,

2. x(i) = ρ3τ1 . . . τi−1ρ
3(0∞),

3. y(i) = ρ3τ1 . . . τi−1ρ
3τi(0∞), 1 ≤ i ≤ n,

4. a1 < b1 < a2 < · · · < an < bn, such that

a) ai = 2|ρ3τ1 . . . ρ
3τi−1|,

b) bi ≥ |ρ3τ1 . . . ρ
3τi−1ρ

3|,

c) x(i)[0, |ρ3τ1 . . . τi−1ρ
3|] is a prefix of y(i),

d) y(i)[0, |ρ3τ1 . . . τi−1ρ
3τi|] is a prefix of x(i+1),

e) py(i)(l) = px(i)(l) for all l ≤ |ρ3τ1 . . . τi−1ρ
3|,

f ) py(n)(ai) ≤ 3ai, 1 ≤ i ≤ n, and,

g) py(n)(bi) ≥ φ(bi), 1 ≤ i ≤ n− 1.

We have seen this construction is realizable for n = 2. Proceeding as we did for the first
cases, it is not difficult to see that it can be achieved for every n ≥ 1.

To conclude, it suffices to observe that (y(n))n≥1 converges to the sequence x we are looking
for. Indeed, the convergence follows from (4c) and (4d). Also observe that y(n) is a prefix
of x. It is a classical exercise to show that x is uniformly recurrent. From (4g) we get that
px(bi) ≥ φ(bi) for all i ∈ N. For the last point, px(ai) ≤ 3ai for all i ∈ N, it comes from (4f )
because it is true for all n ≥ 1.
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5.5. Comments and open questions

A standard question related to automorphisms is to determine if the transformation T

has a root. That is, does it exist a transformation U such that Up = T for some integer
p ≥ 0. A classical way to deal with this problem is to notice that a root is an automorphism.

The automorphism group is also related to the collection of conjugacy maps between two
systems. If π1 and π2 are two conjugacy maps between the same systems, then π1 ◦ π−1

2 is
an automorphism. Hence, a characterization of when the automorphism group is trivial, i.e.
Aut(X,T ) is generated by T , implies rigidity results in both problems.

5.5.1. Automorphisms and nilfactors

We have shown that a large family of minimal subshifts, either with sublinear or other
type of polynomial complexity, have automorphisms groups that are virtually Z. Even in the
case of minimal subshifts obtained as extensions of minimal systems whose automorphism
group is much complex (the case of extensions of nilsystems). So a natural question is whether
this behaviour is generally true just because the fibres over particular topological factors are
constrained.

5.5.2. Eigenvalues, roots of T and automorphisms.

We obtain, in the good cases, that the group of automorphisms is a subgroup of the
corresponding one of a maximal nilfactor. This proves that there are connections between
automorphisms and continuous eigenvalues. To study these relations we can focus on rational
eigenvalues. So it is natural to ask: does a Cantor minimal system (X,T ) admit a non trivial
automorphism with finite order or have some roots, are there constraints on the rational
continuous eigenvalues of (X,T ) ?

Classical examples of Toeplitz sequences with a unique asymptotic component (so Aut(X, σ)
is generated by σ) show that the converse is false: a system may have rational eigenvalues
and no automorphisms of finite order.

5.5.3. Complexity versus group of automorphisms

The results of [29] and of this paper show a relation between complexity and the growth
rate of the groups. Is it possible to be more precise ? For instance, is it true that for a
transitive subshift with a subquadratic complexity the group Aut(X, σ)/〈σ〉 is finite? Very
recently, Salo [108] showed a Toeplitz subshift with subquadratic complexity and whose
automorphism group is not finitely generated, answering negatively this question. So, in
the polynomial complexity case one cannot expect to have always virtually Z groups of
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automorphisms. It is an interesting question to describe automorphism groups of subshifts
with polynomial complexity.

5.5.4. Measurable versus continuous automorphisms

The main result in [74] shows a rigidity result, any measurable automorphism is almost
everywhere continuous for bijective constant length substitutions. Is it possible to enlarge
this class of subshifts with the same rigidity property ? A first answer is negative: This is not
true for substitution of non-constant length and even for Pisot substitution on the alphabet
{0, 1}. Consider the two substitutions τ and ξ defined by τ(0) = 010, τ(1) = 01, ξ(0) = 001
and ξ(1) = 10. Let (Xτ , σ) and (Xξ, σ) be the subshift they generate. It can be shown
that they are both measure theoretically isomorphic to (S1, Rα) (see [10]), where Rα is the
rotation of angle α = (1 +

√
5)/2, and, thus (Xτ , σ) and (Xξ, σ) are measure theoretically

isomorphic. But they cannot be topologically isomorphic because their dimension groups are
not isomorphic (see [38] for their computations).

5.5.5. Realization of automorphism groups

By the Curtis-Hedlund-Lyndon theorem, the collection of automorphisms of a subshift is
countable. We leave open the realization of any countable group as an automorphism group.
More precisely,

Question. Given a countable group G (not necessarily finitely generated). Does it exist
a minimal subshift (X, σ) such that Aut(X, σ)/〈σ〉 is isomorphic to G ?

Notice that Toeplitz sequences can also be realized on residually finite groups [27]. A
priori, they may provide interesting solutions in this class. But, as stated in the remark
below Corollary 5.2.11, their automorphism group is abelian. This kills any non commutative
group realization by this way.

If we restrict to some families of subshifts (e.g. Sturmian or Toeplitz sub shifts), we prove
that their automorphism groups are subgroups of their maximal equicontinuous factors. Can
we characterize these groups for the Sturmian and Toeplitz cases ?

5.6. Computing the group of automorphisms of tilings
by using cubes

In this section we show an application of the cubes introduced in Chapter 2 to study
automorphism groups of two dimensional tilings. Even if one wants to understand the auto-
morphism group of a one dimensional subshift, the study of the two (or higher) dimensional
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setting could provide useful information for the one dimensional one. The work of Cyr and
Kra [29] illustrates this fact.

In what follows, we compute a special factor (built using cubes) of the minimal part of the
Robinson tiling. The Robinson tiling was introduced by Robinson [105] in the 70’s to study
undecidability problems and showed how to tile the plane in a nonperiodical way. This tile
has been well studied in symbolic dynamics, specially in the context of theoretical computer
science. We refer to [103] and [52] for further details.

We give a useful general result and then we briefly introduce the Robinson tiling.

Lemma 5.6.1. Let (X,S, T ) be a minimal system with commuting transformations S and
T , and let φ be an automorphism of (X,S, T ). Then φ × φ × φ × φ(QS,T (X)) = QS,T (X).
Particularly, if (x, y) ∈ RS(X) (or RT (X) or RS,T (X)), then (φ(x), φ(y)) ∈ RS(X) (or
RT (X) or RS,T (X)).

Proof. We recall that G denotes the Z2 action spanned by S and T . Let x ∈ QS,T (X)
and let x ∈ X. There exist sequences (gi)i∈N in G and (ni)i∈N, (mi)i∈N in Z such that
(gix, giSnix, giTmix, giSniTmix)→ x. Since (φ(x), φ(x), φ(x), φ(x)) ∈ QS,T (X) we have that

(giφ(x), giSniφ(x), giTmiφ(x), giSniTmiφ(x)) ∈ QS,T (X)

=(φ(gix), φ(giSnix), φ(giTmix), φ(giSniTmix)) ∈ QS,T (X)

→(φ× φ× φ× φ)(x) ∈ QS,T (X).

Hence φ× φ× φ× φ(QS,T (X)) = QS,T (X).
If (x, y) ∈ RS(X), then there exists a ∈ X with (x, y, a, a) ∈ QS,T (X) and thus (φ(x), φ(y),

φ(a), φ(a)) ∈ QS,T (X). This means that (φ(x), φ(y)) ∈ RS(X). The proof for the cases
RS(X) and RS,T (X) are similar.

Remark 5.6.2. In general we do not know if RS(X) (or RT (X) or RS,T (X)) is an equivalence
relation. In any case, if σ(RS(X)) is the smallest closed and T×T -invariant relation generated
by RS(X) one easily check that (x, y) ∈ σ(RS(X)) if and only if (φ(x), φ(y)) ∈ σ(RS(X)).
Therefore the factor map π : X → X/σ(RS(X)) is compatible with Aut(X,T ).

5.6.1. The Robinson Tiling

Consider the following set of tiles and their rotations and reflections:
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Figure 5.1: The Robinson Tiles (up to rotation and reflection). The first tile and its rotations
are called crosses.

Let A be the set of the 28 Robinson tiles. Let Y ⊆ AZ2 be the subshift defined by the
following rules:

1. The outgoing arrows match with the ingoing arrows;

2. There exists ~n ∈ Z2 such that there is a cross in every position of the form {~n+(2i, 2j)}
for i, j ∈ Z ( this means that there is a 2-lattice of crosses).

This system is not minimal but it has a unique minimal subsystem [52]. We let XR denote
this unique minimal subsystem. Then (XR, σ(1,0), σ(0,1)) is a minimal system with commuting
transformations σ(1,0) and σ(0,1) and we call it the minimal Robinson system. For n ∈ N we
define supertiles of order n inductively. Supertiles of order 1 correspond to crosses and if we
have defined supertiles of order n, supertiles of order n+ 1 are constructed putting together
4 supertiles of order n in a consistent way and adding a cross in the middle of them (see
Figure 5.6.1). We remark that supertiles of order n have size 2n− 1 and they are completely
determined by the cross in the middle. Particularly, for every n ∈ N there are four supertiles
of order n. It can be proved [52], [103] that for every x ∈ XR, given n ∈ N, supertiles of
order n appear periodically (figure 5.3 illustrates this phenomenon).
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Figure 5.2: A supertile of order 3. The four 3x3 squares of the corners are supertiles of
order 2.

Let x ∈ XR. A horizontal line in x is the restriction of x to a set of the form {(i, j0) : i ∈ Z}
where j0 ∈ Z. Similarly, a vertical line in x is the restriction of x to a set of the form
{(i0, j) : j ∈ Z} where i0 ∈ Z. We remark that a line passing through the center of a
supertile of order n has only one cross restricted to the supertile. The presence of supertiles
of any order, forces the the existence of lines (vertical or horizontal) with at most one cross
that are called fault lines. A point x ∈ XR can have 0,1 or 2 fault lines. When x is a
point with two fault lines, then these lines divide the plane in four quarter planes (one line
is horizontal and the other is vertical). On each one of these quarter planes the point is
completely determined. The tile in the intersection of two fault lines determines completely
the fault lines and therefore this tile determines x. See [103], Chapter 1, Section 4 for more
details.

Given a point x ∈ XR and n ∈ N, supertiles of order n appear periodically, leaving lines
between them (which are not periodic). We remark that the center of one of the supertiles of
order n determines the distribution of all the supertiles of order n. We say that we decompose
x into supertiles of order n if we consider the distribution of its supertiles of order n, ignoring
the lines between them.

Let Bn := ([−2n−1, 2n−1] ∩ Z) × ([−2n−1, 2n−1] ∩ Z) be the square of side of size 2n + 1.
Recall that x|Bn ∈ ABn is the restriction of x to Bn. Then, looking at x|Bn , we can find the
center of at least one supertile of order n, and therefore we can determine the distribution of
supertiles of order n in x. We remark that if x and y are points in X such that x|Bn = y|Bn ,
then we can find the same supertile of order n in the same position in x and y, and therefore
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x and y have the same decomposition into tiles of order n.

We study the Rσ(1,0),σ(0,1)(XR) relation in the minimal Robinson system. We have:

Proposition 5.6.3. Let (XR, σ(1,0), σ(0,1)) be the minimal Robinson system. Then (x, y) ∈
Rσ(1,0),σ(0,1)(XR) if and only if they coincide in the complement of its fault lines. Particularly,
points which have no fault lines are not related to any point by Rσ(1,0),σ(0,1)(XR).

Proof. We start computing the Rσ(1,0)(XR) relation. Let x, y ∈ Rσ(1,0)(XR) with x 6= y (the
case Rσ(0,1)(XR) is similar). Let p ∈ N be such that x|Bp 6= y|Bp and let x′ ∈ X, n,m ∈ Z
and z ∈ XR with x′|Bp = x|Bp , σn(1,0)x

′|Bp = y|Bp , σm(0,1)x
′|Bp = z|Bp and σn(1,0)σ

m
(0,1)x

′|Bp =
z|Bp . Then σn(1,0)σ

m
(0,1)x

′|Bp = σm(0,1)x
′|Bp and thus σn(1,0)σ

m
(0,1)x

′ and σm(0,1)x
′ have the same

decomposition into supertiles of order p, which implies that x and y have also the same
decomposition. Particularly, the difference between x and y must occur in the lines which
are not covered by the supertiles of order p (we remark that these lines have at most one
cross). Let Lp be such a line on x. For q larger than p, we decompose into tiles of order q and
we conclude that Lp lies inside Lq. Taking the limit in q, we deduce that x and y coincide
everywhere except in one or two fault lines.

Now suppose that x and y coincide everywhere except in fault lines. For instance, suppose
that x and y have two fault lines and let n ∈ N. We can find z ∈ XR with no fault lines
and p ∈ Z such that z|Bn = x|Bn and σp(1,0)z|Bn = yBn . Then, we can find a supertile of large
order containing z|Bn and σp(0,1)z|Bn . Hence, along the horizontal we can find q ∈ Z such that
σq(0,1)z|Bn = σq(0,1)σ

p
(1,0)z|Bn . Since n is arbitrary, we have that (x, y) ∈ Rσ(1,0)(XR).
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Figure 5.3: For an arbitrary n ∈ N, the colored squares represent tiles of order n. In this
picture we illustrate how points with two fault lines, with different crosses in the middle are
related.

Let π : XR → XR/Rσ(1,0),σ(0,1)(XR) be the quotient map. Then in the minimal Robinson
system we can distinguish three types of fibers for π: fibers with cardinality 1 (tilings with no
fault lines), fibers with cardinality 6 (tilings with one fault line), and fibers with cardinality
28 (tilings with 2 fault lines).

Corollary 5.6.4. The group of automorphisms of the minimal Robinson system is spanned
by σ(1,0) and σ(0,1).

Proof. Let π : XR → XR/Rσ(1,0),σ(0,1)(XR) be the quotient map. By Proposition 5.6.3 and
Lemma 5.2.4 we have that that π̂ : Aut(XR, σ(1,0), σ(0,1)) → Aut(XR/Rσ(1,0),σ(0,1)(XR)) is an
injection. Let φ be a automorphism of the minimal Robinson system and let F be a fiber
with maximum cardinality. Since π is a compatible factor map, we have that φ(F ) is also
a fiber with maximum cardinality, but there is only one (up to shift) fiber with maximum
cardinality. This implies that φ(F ) = σn(1,0)σ

m
(0,1)(F ) and therefore π̂(φ) = π̂(σn(1,0)σ(0,1)).

Since π̂ is an injection we get the result.

The Robinson tiling is a tiling space which has a “hierarchical structure”, meaning that
patterns that “look similar”appear with an arbitrary big size. This concept has not been
mathematically formalized but many people use it when describing this kind of phenomenon.
We believe our methods can be used to study automorphism groups of other tilings, or
families of tilings having this property.
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Chapter 6

Perspectives

In this Chapter we present some open questions and comments that stem from the dis-
cussion in this thesis document. All these problems conform a future plan of research.

In Chapter 2 and 3 we have derived applications from introducing cube structures for
a dynamical system given by two commuting transformations. The results discovered in
this case let us think in the natural generalization of the new cubes when one introduce a
larger number of transformations. There is a natural, and even obvious, way to do this:
suppose that X is a compact metric space and that T1, . . . , Td : X → X are commuting
transformations on X (i.e. Ti ◦ Tj = Tj ◦ Ti for i, j = 1, . . . , d). We should define the space
of dynamical cubes QT1,...,Td(X) as the closure of the points

{(T ε1n1
1 · · ·T εdndd x)ε∈{0,1}d : x ∈ X, n1 . . . , nd ∈ Z}.

The space QT1,...,Td(X) is a topological dynamical system as well. It is invariant under
the diagonal transformations T̃i := Ti × · · · × Ti (2d times), i = 1, . . . , d and under the face
transformations T̂i, i = 1, . . . , d defined as

T̂i(x) =

 (T̂ix)ε = Tixε, εi = 1;
(T̂ix)ε = xε, εi = 0.

For example, for three commuting transformations T1, T2, T3 on X, QT1,T2,T3(X) is the
closure of the set

{(x, T n1 x, Tm2 x, T n1 Tm2 x, T
p
3 x, T

n
1 T

p
3 x, T

m
2 T

p
3 x, T

n
1 T

m
2 T

p
3 x) : x ∈ X, n,m, p ∈ Z}.

Having proposed this space of dynamical cubes, beyond natural topological properties,
the main question to be understood is “what means to deduce the last (or any) coordinate of
a dynamical cube looking at the other ones ?”. The answer to this property must reflect the
topological structure of the underlying dynamical system together with its structural factors.
Then, the next step is to use the cube structures to build invariant closed relations and use
them to build factors. Hopefully, those factors will have the property that a coordinate in
a cube is determined by the other ones and thus it will have an understandable topological
structure.
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A second very involving question is whether the study of these cube structures could help
to deduce other pointwise convergence results, as shown in Chapter 3. Given a probability
space (X,X , µ) and measure preserving commuting transformations T1, . . . , Td, the structure
QT1,...,Td(X) (defined in a suitable topological representation of X) should help to study the
average

1
Nd

∑
0≤n1,...,nd<N

∏
ε∈{0,1}d\{~0}

fε(T ε1n1
1 · · ·T εdndd x)

for bounded functions fε, ε ∈ {0, 1}d \ {~0}.
For example, the cube structure QT1,T2,T3 should help to understand the average

1
N3

∑
0≤n<N
0≤m<N
0≤p<N

f1(T n1 x)f2(Tm2 x)f3(T n1 Tm2 x)f4(T p3 x)f5(T n1 T
p
3 x)f6(Tm2 T

p
3 x)f7(T n1 Tm2 T

p
3 x)

for bounded functions f1, f2, f3, f4, f5, f6, f7.
This of course requires to have a better understanding in the measure theoretical situation.

For example, in order to study pointwise convergence of higher order cubic averages, one
should study the sigma algebra ∨ ITi in a convenient extension of the original system, like
Host’s magic extensions in [64]. Up to now, it is not clear what is the structure of this σ-
algebra, and no topological representations are known. This is because at the time they were
studied, they were used to get L2 convergence of multiple averages and no representations
were needed to achieve this result.

A very ambitious question that remained open during this thesis is the study of the
pointwise convergence of the average

1
N

N−1∑
i=0

f1(Six)f2(T ix), (6.0.1)

where (X,µ, S, T ) is an ergodic system with commuting transformation S and T . This
question appeared naturally when studying the convergence of averages in Chapter 3. In fact,
the hope was to use the new cubes or some modifications to solve the problem. Nevertheless,
it was clear that we need to have a better understanding of another structures. In order to
study the average 6.0.1 we propose to study the structure NS,T (X) defined as the closure in
X3 of

{(x, Six, T ix) : x ∈ X, i ∈ Z}.

Then translate the strategy proposed by Huang, Shao and Ye in [76] to this setting. That
is, produce a topological representation of the system where our new structure is uniquely
ergodic. Here we remark that the structure NS,T (X) is a topological dynamical: the trans-
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formations S×S×S, T ×T ×T and id×S×T act on it. In order to get unique ergodicity of
NS,T (X) we have to understand several σ-algebras like IS ∨ IT ∨ IS−1T , IS ∨ IT , IT ∨ IS−1T

and IS ∨ IS−1T . This is work in progress and we do not present further details here.
Another direction of research derived from Chapter 2 is to look for more applications of

the QS,T cubes to the theory of tiling systems, as was done at the end of Chapter 5. A
first step is to pass from Z2 actions to R2 actions (mainly because people interested in tiling
theory consider R2 actions instead of Z2 actions). Then we will explore examples or classes
of examples where the structure of fibers over the special factors produced by cubes can shed
light of the structure of their automorphism groups.

In Chapter 4, we study the enveloping semigroup of a system of order d. We left open
the converse of Theorem 4.1.1, namely: Does some property of the enveloping semigroup
characterize systems or order d? We think we need some new tools coming from a pure
topological analogue of the theory developed by Host and Kra [67] in measure preserving
setting. Here we remark that the result by Host, Kra and Maass [70] uses results from the
measure preserving context. To make a pure topological proof of the structure theorem in
[70] does not seem to be an easy task. Very recently Gutman, Manners and Varjú have
claimed to have a purely topological proof of the Host-Kra-Maass structure theorem, so we
expect to apply some of their methods in the resolution of our problem.

Another problem we would like to tackle is to understand the automorphism group of
one dimensional minimal subshifts with polynomial complexity. In this direction Cyr and
Kra showed that a better understanding of the dynamics of multidimensional subshifts helps
to deduce results about the automorphism group of one dimensional ones. Because of this,
we are also interested in the study of asymptoticity and related notions in multidimensional
subshifts. For example, we are interested in study relations given by special factors built
through cube structures, as was done in Chapter 2. Many of these relations may result
proximal (meaning that two points that are related need to be proximal) which is the case
when the factor defined by the relation is an almost one-to-one extension. As was shown in
Chapter 5 these kind of results allow to inject the group of automorphisms into the group
of automorphisms of the factor and then one can have a better understanding by studying
properties in the factor. In this topic we will also study what kind of countable groups can
appear as the automorphism group of a minimal subshift. In particular, which groups are
automorphisms groups of Toeplitz subshifts. In Chapter 5 we have shown that such groups
are always abelian, but we do not know if any abelian group can be realized in this way.
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