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Abstract We study a more complex case of Hohmann or-
bital transfer of a satellite by considering non-coplanar and
elliptical orbits, instead of planar and circular orbits. We use
as parameter the angle between the initial and transference
planes that minimizes the energy, and therefore the fuel of a
satellite, through the application of two non-tangential im-
pulses for all possible cases. We found an analytical expres-
sion that minimizes the energy for each configuration. Some
reasonable physical constraints are used: we apply impulses
at perigee or apogee of the orbit, we consider the duration of
the impulse to be short compared to the duration of the trip,
we take the nodal line of three orbits to be coincident and
the three semimajor axes to lie in the same plane. We study
the only four possible cases but assuming non-coplanar el-
liptic orbits. In addition, we validate our method through a
numerical solution obtained by using some of the actual or-
bital elements of Sputnik I and Vanguard I satellites. For
these orbits, we found that the most fuel-efficient transfer
is obtained by applying the initial impulse at apocenter and
keeping the transfer orbit aligned with the initial orbit.
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1 Introduction

In 1925, Hohmann studied the transfer between coplanar
circular orbits and found that the minimum fuel transfer
in a Newtonian gravitational field occurs when two im-
pulses are applied producing an elliptic transfer orbit which
is tangent to both of the terminal circular orbits. A first
impulse is used to set the vehicle into the elliptic transfer
orbit, while a second impulse leads to a circular orbit at
the final radius (Hohmann 1960; Prussing 1992). Many re-
searchers have made contributions to the improvement and
understanding of this type of orbital transfers. More recently,
Hohmann transfer has been generalized from the original
idea to more general cases: Broucke and Prado (1994) con-
sidered N -impulse transfers between any two coplanar or-
bits (∀N � 4) and for the two-impulse maneuver developed
optimality conditions that lead to a non-linear system of
three equations and three unknowns, whereas Arlulkar and
Naik (2012) discussed Hohmann transfer between two cir-
cular orbits but including a dynamical approach Lambert
solution (i.e., considering the transfer time of the orbit to
change from one point to another). Mabsout et al. (2009)
addressed the optimization of the orbital Hohmann trans-
fer considering only the coplanar case using as optimization
parameter the eccentricity of the transfer orbit. On the other
hand, different techniques of standard optimization had been
used for minimizing a cost function. For example, one stud-
ied the isoperimetric problem of finding the extremal trans-
fers for the given characteristic velocity for the orbits (Kir-
pichnikov et al. 2003). Some of the authors of this paper
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(Lacruz 2010) have calculated the solution for the general-
ized non-coplanar Hohmann transfer only for the first con-
figuration (there exist four configurations that minimize the
energy according to Kamel and Soliman 1999). In this pa-
per we consider elliptic orbits and N = 2 impulse transfers
(Broucke and Prado 1994); taking a split between initial
and transference planes (iit �= 0◦), this improves and gen-
eralizes the work of Mabsout et al. (2009) and differs from
Kirpichnikov et al. (2003), since we will not consider the
launch time of spacecraft. We consider non-coplanar orbits,
which improve the solution of Arlulkar and Naik (2012). It
is relevant to discuss the role of orbital transfer in astron-
omy and engineering: the orbital transfers are required for
a standard space mission. Generalized coplanar Hohmann
transfer had been used to model a space vehicle traveling
in elliptic orbits of the Earth and Jupiter around the Sun
(Kamel et al. 2011) and shows the importance of this kind
of study in astronomy and the planetary sciences. The stan-
dard (non-perturbed) transfer between orbits is treated us-
ing Kepler problem theory, i.e. considering Keplerian orbits,
because these are non-perturbed solutions of the two body
problem as a first approximation to a typical orbital motion.
We choose to work with the standard set of inertial orbital
elements: O := {a, e, i,Ω,ω, τ }, where a is the semimajor
axis, e is the eccentricity, i is the inclination, Ω is the lon-
gitude of the ascending node, and ω is the argument of peri-
apsis. Finally, the sixth parameter is the epoch τ indicating
the time at which the orbiter passes through periapsis. Us-
ing the solution of the Kepler problem and some constraints
in orbital elements, we develop an extension of the original
Hohmann model considering elliptical and non-coplanar or-
bits. We investigate orbital changes between elliptical orbits
using non-tangential impulses which are applied at periapsis
and apoapsis of the orbit in order to obtain minimum cost of
fuel. In this paper we find several minimum solutions and we
determine which case (Kamel and Soliman 1999) is optimal
from an energetic point of view. The present paper is orga-
nized as follows. In Sect. 2 we discuss the problem and the
physical constraints used to solve it. In Sect. 3 we use a stan-
dard optimization technique for each configuration and get
a polynomial function, whose solution (once we found its
inverse) gives the angle between the initial orbit and transfer
orbit. In Sect. 4 we consider some numerical values in order
to use our solution in a particular example whereas in Sect. 5
we discuss briefly the solution and consequences. Finally, in
Sect. 6 we present some relevant conclusions of this paper.

2 Problem to solve: a general approach

In order to visualize all possible trajectories of an orbiter
we consider the initial, transfer, and final orbits, with the
same nodal line (see Fig. 1). The initial orbit is where first

Fig. 1 POi
is the plane (blue color) where the initial orbit is located,

POt is the plane (green color) that contains the transfer orbit. POf
is

the plane (red color) that contains the final orbit. The arrow directions
indicate the motion of the satellite in each orbit. lOi

is the so-called line
of apsides for the initial orbit. Note that it is not required for the initial
orbit to be interior to the projection final orbit we just take rf � ri as
a particular case

impulse is applied and has a set of orbital parameters given
by O(a, e, i,Ω,ω, τ)i . The second orbit, the transfer orbit,
is described by a set of parameters O(a, e, i,Ω,ω, τ)t ; this
orbit is where the second impulse will be applied. The arrival
orbit has orbital parameters O(a, e, i,Ω,ω, τ)f . We want
to emphasize that each orbit lies in a plane and between any
two planes it is possible to define an inclination angle. This
is an important point since we want to find the minimum
value given by the minimization of cost function (usually
the cost function is defined as the sum of impulses per unit
mass), taking one of the orbital elements as parameter. This
will be commented on in Sect. 3.

2.1 Model constraints

• The radius of the initial impulse is lower than the radius
of the final impulse.

• The initial, Oi , and final, Of , orbits form an inclination
angle iif ∈ (0◦,180◦), between their orbital planes PO i

and POf , respectively.
• When we apply the first impulse �v1 = ‖��v1‖, where

��v1 is the vector of the first maneuver, it produces an in-
clination angle iit �= 0◦, between the PO i and PO t plane
of the transfer orbit, Ot .

• When we apply the second impulse �v2 = ‖��v2‖, where
��v2 is the vector of the second maneuver, it produces an
inclination angle itf , between the PO t , and POf .

• The apsides of the three orbits are collineal with the nodal
line of the three orbits.

• The primary focus, Fp , is common in the three orbits and
coincides with the origin of inertial reference frame.

In Fig. 1 we show the three angles iif , iit , and itf . Now,
the angle iif is fixed and defined (because we know in ad-
vance the angle between initial and arrival orbits), so we will
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choose one of the angles iit and itf as the parameter to min-
imize. In order to do the minimization, we need to define
a function that allows us to calculate the angles previously
mentioned. This is the necessary energy for the orbital ma-
neuvers. We call this function F the cost function; it may
depend on all orbital parameters.

2.2 Mathematical aspects

Hohmann (1960) found the transfer of minimum cost be-
tween two circular orbits using an elliptical transfer orbit. In
this work we choose the inclination iit as parameter. How-
ever, it is possible to choose any orbital parameter in order
to find a minimum of cost function and get the best possi-
ble trajectory (Abad 2012). We need to write down the cost
function in terms of the two impulses. In order to compute
the impulses, we need to get the norm of each one and relate
them with the orbital parameters. This is given by the Vis
Viva equation (Montenbruck and Gill 2005),

ε = − μ

2a
= 1

2
v2 − μ

r
, (1)

where ε is the orbital energy, μ = GM⊕ is a constant (with
M⊕ Earth mass), r is the relative distance between the two
bodies, and v = ‖�v‖, where �v is the required velocity vector.
Since the two impulses will be applied, one at the perigee
and the other at the apogee, we need to obtain the velocities
in perigee and apogee for each orbit. Using the formulation
for a general conic section we get, in polar coordinates,

ra = (1 + e)a, (2a)

rp = (1 − e)a. (2b)

Considering Eqs. (2a), (2b), and (1) it is possible to obtain
the norm of velocity in perigee and apogee which induces a
simple solution,

va =
√

μ

a

(
1 − e

1 + e

)
. (3a)

vp =
√

μ

a

(
1 + e

1 − e

)
. (3b)

Using (3a), (3b), and the standard impulse definition we get
the two impulses applied at perigee and apogee, and we de-
fine the cost function F as the sum of this two maneuvers. In
the following section we will show this procedure in detail.

3 Method and results

We define the cost function F as

F ≡ ‖��v1‖ + ‖��v2‖, (4)

where these impulses (per unit mass) are non-tangential, ap-
plied at apside extreme lines, that is, perigee and apogee,
respectively (see Fig. 2). The impulsive maneuver vectors
are given by

��v1 ≡ �ui − �vi, (5)

��v2 ≡ �vf − �uf , (6)

Fig. 2 Configurations
considering two non-tangential
impulses applied in perigee and
apogee orbit (only four cases).
We show constraints relative to
this for each case. The figure in
the upper left panel corresponds
to our first configuration, the
upper right figure corresponds
to the second. The lower left and
right figures are the third and
fourth configurations,
respectively. These figures are a
plane projection of the
three-dimensional problem
(Lacruz 2010)
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where the vectors �vi and �ui refer to the initial velocities of
the initial and transfer orbits, respectively. In the same way,
�vf and �uf are the final velocities of the final and transfer
orbits, respectively. The first impulse, �v1 = ‖��v1‖, is ap-
plied in the initial orbit and the second impulse is applied in
the transfer orbit, necessary to switch to the final orbit. When
the first impulse is applied, the initial and transfer orbits co-
incide; that happens just in this point, as is seen in Fig. 2,
for different configurations. For the first configuration (up-
per left panel of Fig. 2) the initial impulse ��v1 is located at
the perigee of the transfer elliptic orbit rpOt

and this coin-
cides with the initial orbit, whereas the final impulse ��v2 is
located at the apogee of the transfer elliptic orbit raOt

and
this coincides with the final orbit. Note that the other three
configurations are easily obtained using the corresponding
impulse maneuvers according to Fig. 2. Thus, a link between
the parameters of the orbits is established. A similar situa-
tion occurs between the transfer and arrival orbits when the
second impulse is applied. We found an expression for the
impulse maneuvers in terms of the velocity vectors for each
orbit and angles between orbital planes; their norms are

‖��v1‖ =
√

u2
i + v2

i − 2uivi cos(iit ), (7)

‖��v2‖ =
√

v2
f + u2

f − 2uf vf cos(iif − iit ), (8)

where ui = ‖�ui‖, vi = ‖�vi‖, uf = ‖�uf ‖, and vf = ‖�vf ‖.
Notice that we used the fact iif ≡ iit + itf . To find the mini-
mum value for the F function it is necessary to calculate the
derivative with respect to one of the orbital parameters or an-
other free parameter. As we already said, we can choose any
parameter we want. The variation respect to iit has been lit-
tle studied in the literature, so we decided to work this case.
In order to find the minimum value with respect to iit for the
function F , it is required that

∂F
∂iit

= 0, (9a)

∂2F
∂i2

it

> 0. (9b)

Putting (7) and (8) into (9a) and rearranging terms in a con-
venient way

uivi sin(iit )

vf uf sin(iif − iit )
=

√
Ki − 2uivi cos(iit )

Kf − 2uf vf cos(iif − iit )
, (10)

with Ki and Kf being the kinetic energies before and after
applying the impulses, per mass unit, respectively. To facil-
itate the algebra we make the following definitions:

σ = cos(iit ), (11a)

1 − σ 2 = sin2(iit ), (11b)

cos(iif − iit ) = A1σ +A2

√
1 − σ 2, (11c)

sin2(iif − iit ) = A2
1 +A3σ

2 +A4σ
√

1 − σ 2, (11d)

where the A	 set, with 	 = 1,2,3,4, is given by

A	 = {
cos(iif ), sin(iif ),− cos(2iif ),− sin(2iif )

}
. (12)

Substituting Eqs. (11a), (11b), (11c), and (11d) into (10)
and after some calculations we obtain a polynomial of the
form (Lacruz 2010)

j=3∑
j=0

bjσ
j =

√
1 − σ 2

j=6∑
j=4

bjσ
j−4, (13)

where the constant bj are

b0 = u2
i v

2
i

(
v2
f + u2

f

) − v2
f u2

f

(
u2

i + v2
i

)
cos2(iif ), (14a)

b1 = 2v2
f u2

f uivi cos2(iif ) − 2u2
i v

2
i vf uf cos(iif ), (14b)

b2 = v2
f u2

f

(
u2

i + v2
i

)
cos(2iif ) − u2

i v
2
i

(
v2
f + u2

f

)
, (14c)

b3 = 2u2
i v

2
i vf uf cos(iif ) − 2v2

f u2
f uivi cos(2iif ), (14d)

b4 = 2u2
i v

2
i vf uf sin(iif ), (14e)

b5 = −v2
f u2

f

(
u2

i + v2
i

)
sin(2iif ), (14f)

b6 = 2v2
f u2

f uivi sin(2iif ) − 2u2
i v

2
i vf uf sin(iif ). (14g)

Squaring Eq. (13) and regrouping terms, we obtain the fol-
lowing sixth-degree polynomial function:

P(σ ) =
j=6∑
j=0

cjσ
j = 0, (15)

where the cj are

c0 = b2
0 − b2

4, (16a)

c1 = 2(b0b1 − b4b5), (16b)

c2 = 2(b0b2 − b4b6) + b2
1 + b2

4 − b2
5, (16c)

c3 = 2(b0b3 − b5b6 + b1b2 + b4b5), (16d)

c4 = 2(b1b3 + b4b6) + b2
2 + b2

5 − b2
6, (16e)

c5 = 2(b2b3 + b5b6), (16f)

c6 = b2
3 + b2

6, (16g)

which are represented in an implicit form in terms of the ve-
locities and angles, respectively. Now we need to obtain the
roots of Eq. (15), since they will provide the angle that min-
imizes the cost function. This procedure is similar in each
case, but some important differences appear due to the trans-
fer parameters eccentricity and semimajor axis (Kamel et al.
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Table 1 Selective parameter k
(n)
f and k

(n)
i for each case

Case 1 Case 2 Case 3 Case 4

k
(n)
i −1 −1 +1 +1

k
(n)
f +1 −1 −1 +1

Table 2 Initial and final velocity vectors for each case, where �vpOi
,

�vpOt
, and �vpOf

are the velocity vectors in the perigee in initial, trans-

fer, and final orbits, respectively. �vaOi
, �vaOt

, and �vaOf
are the velocity

vectors in the perigee in initial, transfer, and final orbits, respectively

Case 1 Case 2 Case 3 Case 4

�vi �vpOi
�vpOi

�vaOi
�vaOi

�vf �vaOf
�vpOf

�vpOf
�vaOf

�ui �vpOt
�vpOt

�vaOt
�vpOt

�uf �vaOt
�vaOt

�vpOt
�vaOt

2011). In order to keep this discussion in general terms, we
need to define both parameters appropriately:

a
(n)
t = 1

2

((
1 + k

(n)
f ef

)
af + (

1 + k
(n)
i ei

)
ai

)
, (17)

e
(n)
t = (1 + k

(n)
f ef )af − (1 + k

(n)
i ei)ai

(1 + k
(n)
f ef )af + (1 + k

(n)
i ei)ai

, (18)

where k
(n)
f and k

(n)
i are parameters that change depending of

each case (see Table 1 for specific values). In the same way,
the initial and final velocities are different, depending on the
configurations. All the possible cases are shown in Table 2,
according to Fig. 2.

4 Numerical example

In order to illustrate the solution of this problem (i.e. find
the minimum value of the cost function with respect to the
iit variable), we get the cost function for each case using
some known reference values. First of all, we need to get
two impulse maneuvers to produce Hohmann transfer with
orbital plane change. For this purpose in general six con-
stants are required: μ⊕ ≡ GM⊕ = 3.98 × 1011 km3 s−2, the
initial-final angle iif = π/2 rad, and the set {ei, ai, ef , af }
where we have taken ei = 0.052, ai = 6948 km correspond-
ing to the Sputnik I satellite (NASA 1957), and ef = 0.190,
af = 8682.5 km corresponding to the Vanguard I satel-
lite (NASA 1958). Using previous parameters, our solutions
give different roots where one of this is the minimum global
in the cost function between all possible roots (six in the
most general case). The roots are in Table 3 displayed case
by case. For instance, in the Case 1 〈iit 〉p = 0.0577968 rad

Table 3 Inclination angle obtained by two different techniques: us-
ing our sixth-degree polynomial function 〈iit 〉p and by the numerical
solution 〈iit 〉e . �〈iit 〉 indicates absolute error in radians. The angles
obtained using our procedure and the numerical solution are given in
radians

Case 1 Case 2 Case 3 Case 4

〈iit 〉p 0.0577968 0.0269421 0.0260117 0.0505942

〈iit 〉e 0.0577970 0.0269422 0.0260117 0.0505981

�〈iit 〉 0.0000002 0.0000001 0 O(7) 0.0000039

and 〈iit 〉e = 0.0577970 rad, equivalently 3.31152417 degree
and 3.3115127 degree, respectively. Therefore, the absolute
error is �〈iit 〉 = |〈iit 〉p − 〈iit 〉e| = 10−5 degree. In Table 3,
the term O(7) means the exact value and the numerical val-
ues are in agreement to the seventh order of a polynomial
expansion of the correct result.

5 Discussion

Since all cases share the same initial and final orbital el-
ements, the efficiency between them can be compared. In
this sense, we note that the cases 1 and 4 (such as the cases
2 and 3) can be directly compared, since the cost function
looks similar. It can be understood due to cases 1–4 and 2–3
presenting some symmetry degree (reflection). In spite of it,
the cost functions of cases 1 and 4 (and cases 2 and 3) are
different because of the particular start and arrival points in
the orbit (Fig. 2). We find that two cases are the ones most
efficient, the first case has the initial impulse at pericenter,
with the corresponding final impulse at apocenter, whereas
the fourth case has the initial impulse at apocenter, with the
corresponding final impulse at apocenter. On the other hand,
cases 2 and 3 are the ones worst with respect to the energy
used to change between orbits. By revisiting the cost func-
tion plot we note that the more economical configurations
arrive at the apocenter whereas the more expensive cases ar-
rive at the pericenter (Fig. 3). Furthermore, as we need to
apply an extra impulse to stop the vehicle from the transfer
orbit to final orbit (cases 2 and 3), a difference between the
cost functions is established.

6 Conclusions

In this paper we obtain the analytical minimum cost func-
tion of an orbital transference between two non-coplanar el-
liptical orbits considering as free parameter the inclination
between the initial and transfer plane. We recovered the so-
lution obtained by Lacruz (2010) for the first configuration
and calculate the solution for the other three possible cases.
We compared the only four possible cases (Kamel and Soli-
man 1999) of the orbital transfer considering two impulses
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Fig. 3 Cost functions (by case) F put together as a function of the
initial-transfer angle iit . Black points are the minimum values of the
cost function for each case. The fourth case is the most economical
case relative to the other three cases

applied in perigee and apogee, and we determine the best
model for a given set of orbital elements. We compare our
analytical solution using orbital data from well-known satel-
lites. Comparing the exact solution and our solution, we ob-
serve that the roots where the cost function is minimal are
approximately equal so our result is considered valid. In the
same way, in accordance with our solution, the fourth case is
the optimal possible case. Finally, we show that it is always
cheaper to have the final impulse at apocenter.
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