
UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

SELF-OPTIMIZING SKELETON EXECUTION USING EVENTS

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN

COMPUTACIÓN

GUSTAVO ADOLFO PABÓN SÁNCHEZ

PROFESOR GUÍA:

JOSE MIGUEL PIQUER GARDNER

MIEMBROS DE LA COMISIÓN:

LUIS MATEU BRULE

JOHAN FABRY

FERNANDO RANNOU FUENTES

SANTIAGO DE CHILE
2015

Resumen

Esta tesis propone una forma novedosa para introducir caracteŕısticas autonómicas de auto-confi-

guración y auto-optimización a Patrones de Paralelismo (o Algorithmic Skeletons en inglés) usando

técnicas de la Programación Dirigida por Eventos (o EDP por sus siglas en inglés).

Gracias al uso de la programación dirigida por eventos, la solución propuesta en esta tesis

presenta las siguientes contribuciones a las soluciones actuales:

• No está relacionada a una arquitectura de aplicaciones en particular, por ejemplo la arqui-

tectura de componentes. De esta forma, presenta una solución con un mayor alcance y es

independiente de la arquitectura usada para la implementación de los patrones de paralelismo.

• Provee un mayor nivel de adaptabilidad por permitir la introducción de cambios estructurales

en tiempo de ejecución. A diferencia de otras soluciones que solo permiten la introducción de

este tipo de cambios durante la compilación.

• Los estimados de trabajo futuro pueden ser calculados en tiempo de ejecución y no hay

dependencia a estimados pre-calculados en ejecuciones anteriores.

Las caracteŕısticas autonómicas presentadas en esta tesis se enfocan principalmente en garantizar

un tiempo de ejecución a un patron de paralelismo por medio de la optimización de la cantidad de

hilos de ejecución usados. Las calidades de servicio (QoS por sus siglas en inglés) usadas para este

fin son: (1) tiempo de ejecución percibido por el usuario y (2) nivel de paralelismo.

Otras contribuciones de esta tesis son:

• Diseño e implementación de una novedosa solución a la separación de asuntos en los pa-

trones de paralelismo usando técnicas de la programación dirigida por eventos. Esta solución

novedosa permite la introducción de asuntos no-funcionales a los patrones de paralelismo sin

disminuir sus abstracciones de alto nivel.

• Evaluación de diferentes estrategias de estimación de trabajo futuro con el fin de realizar

recomendaciones relacionadas a responder a la pregunta ¿Qué estrategia produce mejores

estimados bajo qué circunstancias?

i

Abstract

This thesis presents a novel way to introduce self-configuration and self-optimization autonomic

characteristics to Algorithmic Skeletons using Event-Driven Programming (EDP) techniques.

Due to the use of event driven programming, the approach proposed in this thesis contributes

to the current solutions as follows:

• It is not related to a specific application architecture, like the component architecture. Thus,

it has a broader scope, and is independent of the architecture used to implement skeletons.

• It allows the introduction of structural changes during execution time. Therefore, it provides

a higher level of adaptability compared with other solutions that only allows to introduce

structural changes during compilation.

• The estimates of expected future work can be calculated on-the-fly, and it is not limited to

pre-calculated estimates.

This thesis focuses mainly on guaranteeing a given execution time for a skeleton, by optimizing

the number of threads allocated to execute an skeleton. The QoSs (Quality of Services) autonom-

ically managed to be self-configured and self-optimized are: (1) Execution Wall Clock Time, and

(2) Level of Parallelism.

Other contributions are:

• Design and implementation of a novel skeleton’s separation-of-concerns based on event driven

programing. This novel approach allows the introduction of non-functional concerns to skele-

tons without lowering its higher-level programming.

• Evaluation of different estimation strategies of future work was done. As result, a recommen-

dation is presented to answer the question: Which strategy produces better estimates under

which circumstances?.

ii

To Mayi, Sofi, and Migue

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Prof. José M. Piquer, Dr.

Mario Leyton and Prof. Ludovic Henrio who have been my mentors, for their continuous support,

their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped throughout

the research and writing of this thesis. I can not imagine having had better mentors for my M.Sc

study.

My sincere thanks also go to NIC Chile Research Labs for its financial support and the schol-

arship granted to me during my M.Sc study. It was a pleasure to have worked for such great

institution.

I thank my previous employer, IBM, and my current employer, SAB Miller, for its support and

understanding during my studies, and for all the time that I have had to take from them to make

this thesis a reality.

Last but not the least, I would like to thank my family: my wife Maria Cecilia, my daughter

Sofia and my son Miguel, for their love and continuous support, and for understanding that I had

to dedicate some of my time off to my studies and this thesis. Thank you very much.

GUSTAVO ADOLFO PABÓN SÁNCHEZ

iv

Contents

Resumen i

Abstract ii

Acknowledgments iv

1 Introduction 1

1.1 Problem . 1

1.2 Objectives and Contributions . 2

1.3 Overview . 3

2 State of the Art 4

2.1 Algorithmic Skeletons . 4

2.2 Autonomic Computing . 5

2.3 Autonomic Skeleton’s Related work . 7

2.4 Skeleton’s Separation-of-Concerns Related Work . 9

2.5 Context: The Skandium Library . 10

3 Separation of Concerns using Events 13

3.1 Very brief summary of Aspect-oriented Programming 13

3.2 Event Driven Programming benefits . 14

3.3 Inversion of control problem . 15

3.4 Events for skeletons . 15

3.5 Event Listeners . 17

3.6 Event hooks . 18

3.7 Roles . 19

3.8 Logger and Online Performance Monitoring . 20

3.9 Overhead analysis . 20

3.10 Conclusions . 24

v

4 Autonomic Skeletons 25

4.1 Wall Clock time, and Level of Parallelism . 25

4.2 Evaluating the remaining execution time . 26

4.3 Event-based monitoring . 28

4.4 Execution example . 30

5 Estimating the muscle’s execution time and cardinality 35

5.1 Exponential Moving Average (EMA) . 36

5.2 Weighted Moving Average (WMA) . 36

5.3 Evaluation . 36

5.4 Conclusions . 39

6 Perspectives and Conclusions 40

6.1 Conclusions . 40

6.2 Research perspectives . 41

Bibliography 42

vi

List of Tables

3.1 Comparison of Listener’s type . 18

3.2 Event hooks . 19

vii

List of Figures

3.1 Online Performance Monitor . 20

3.2 Absolute overhead processing time . 21

3.3 Relative overhead processing time . 21

4.1 Example of an Activity Dependency Graph . 28

4.2 Example of timeline used to estimate the total WCT and the optimal level of paral-

lelism . 29

4.3 StateMachine(seq(fe)) definition . 29

4.4 StateMachine(map(fs,∆, fm)) definition . 30

4.5 “Goal Without Initialization” execution . 31

4.6 “Goal With Initialization” execution . 32

4.7 “WCT Goal of 10.5 secs” execution . 33

5.1 Normalized deviation grouped by benchmark . 38

5.2 Normalized deviation grouped by type variable . 38

viii

Chapter 1

Introduction

Large-scale parallel environments allow the resolution of large-scale problems. However, as stated by

Patterson in [32], parallel software development is hard, and currently, we are facing an increasing

challenge due to the increasing number of cores available for a single computation.

According to Gartner [33], IT operations management costs are 36% of the total IT operation

budget. As a solution, IBM in 2001, introduced the concept of Autonomic Computing (AC) [24].

It refers to the self-managing (self-configuration, self-optimization, self-healing, and self-protecting)

characteristics of computing resources. In autonomic computing, each entity is able to adapt itself

to changes in the runtime environment, or in the quality of service desired. The vision of autonomic

computing is based on the idea of self-governing systems to reduce its management costs. These

systems can manage themselves given high-level objectives from an administrator [26].

On another note, Algorithmic Skeletons [21] (skeletons for short) is a high-level parallel program-

ming model introduced by Cole [10]. Skeletons take advantage of recurrent parallel programming

patterns to hide the complexity of parallel and distributed applications. Lately, the use of skele-

tons has risen because of the increasing popularity of MapReduce pattern [8] for data-intensive

processing.

This thesis presents a novel approach for introducing autonomic characteristics to skeletons

based on event driven programming.

1.1 Problem

The introduction of autonomic characteristics to skeletons is an active research topic in the parallel

and distributed computing area [3, 12,22]. The benefits of this type of technology are:

1. reducing management costs of parallel systems, and

2. hiding the complexity of parallel programming to the developer.

1

As presented in more detail in chapter 2, State of the Art, the current solutions found in the

literature suffer from at least one of the following issues:

• They are related to a specific application architecture, like the component architecture.

• Structural information is introduced only during compilation.

• The prediction mechanism at execution time uses only pre-calculated estimates to construct

an execution plan.

1.2 Objectives and Contributions

The main objective of this thesis is the design and implementation of a novel approach to the

introduction of autonomic characteristics to skeletons using event driven programming.

Due to the use of event driven programming, the approach proposed in this thesis contributes

to the current solutions as follows:

• It is not related to a specific application architecture, like the component architecture. Thus,

it has a broader scope, and is independent of the architecture used to implement skeletons.

• It allows for the introduction of structural changes during execution time. It, therefore pro-

vides a higher level of adaptability compared with other solutions that only allows to introduce

structural changes during compilation.

• Estimates of expected future work can be calculated on-the-fly, and it is not limited to pre-

calculated estimates.

Chapter 3 presents in detail why event driven programming makes these contributions possible.

To show the feasibility of the approach, self-configuring and self-optimizing characteristics were

implemented on the Skandium framework. Skandium will be introduced in more detail in section

2.5.

This thesis focuses on guaranteeing a given execution time for a skeleton by optimizing the

number of threads allocated. The QoSs (Quality of Services) autonomically managed to be self-

configured and self-optimized are: (1) Execution Wall Clock Time, and (2) Level of Parallelism.

Other contributions are:

• Design and implementation of a novel skeleton’s separation-of-concerns based on event driven

programing. This novel approach allows the introduction of non-functional concerns to skele-

tons without lowering its higher-level abstractions. See chapter 3.

2

• Evaluation of different estimation strategies of future work was done. As result, a recommen-

dation is presented to answer the question: Which strategy produces better estimates under

which circumstances?. See chapter 5.

1.3 Overview

This document is organized as follows:

• Chapter 2 provides relevant background and a state of the art of the current approaches found

in the literature to introduce autonomic characteristics to skeletons. The chapter begins by

introducing Algorithmic Skeletons and Autonomic Computing. Then, the chapter provides

a survey of current autonomic skeleton approaches. Then, skeleton’s separation-of-concerns

related work is presented. The chapter finishes by introducing Skandium, the skeleton frame-

work used to demonstrate the feasibility of the novel approach proposed in this thesis.

• Chapter 3 presents a novel skeleton’s separation-of-concerns based on event driven programing.

The chapter includes a discussion about the “Inversion of Control” introduced by skeletons

and how it is the main issue to be tackled when introducing separation-of-concerns. The

chapter then shows how events provide an elegant solution. The chapter finishes with an

example of a simple logger and a visualization-of-the-execution tool implemented using the

proposed approach.

• Chapter 4 provides the actual description of the proposed approach to introduce self-confi-

guration and self-optimization characteristics to skeletons using events. The chapter begins

presenting the particular Quality of Services (QoSs) to be autonomically managed. Then,

the chapter shows how to track the skeleton’s execution and how to predict the remaining

work. The chapter finishes by showing the viability of the proposed approach by presenting

the evaluation of a case study.

• Chapter 5 presents the evaluation result of two estimation strategies to provide a recommen-

dation of which strategy produces better estimates and in which circumstances. The chapter

includes the analysis of two statistical strategies for estimating new values of a variable based

on its previous values: Weighted Moving Average, and Exponential Moving Average; differ-

ent parameters of each strategy are included in the analysis. The chapter finishes with the

recommended strategy that should be used under certain circumstances.

• Chapter 6 concludes this thesis by providing future research perspectives and summarizes the

contributions.

3

Chapter 2

State of the Art

This chapter provides a relevant background and state of the art of current approaches found

in the literature to introduce autonomic characteristics to skeletons. The chapter begins with a

general background on Skeletons. Section 2.2 introduces the concept “Autonomic Computing”.

The following section provides a survey of the current skeleton frameworks that have introduced

autonomic characteristics, and demonstrates how this thesis contributes to each one. Finally, this

chapter describes Skandium, the skeleton framework used to demonstrate the feasibility of the novel

approach proposed in this thesis.

2.1 Algorithmic Skeletons

As stated by Mario Leyton in his Ph.D. Thesis [28], Algorithmic Skeletons (skeletons for short)

are a high-level parallel programming model for parallel and distributed computing. Skeletons

take advantage of recurrent parallel programming patterns to hide the complexity of parallel and

distributed applications. Starting from a basic set of patterns (skeletons), more complex patterns

can be built by combining the basic ones.

The most outstanding feature of skeletons, which differentiates them from other high-level pro-

gramming models, is that orchestration and synchronization of the parallel activities is implicitly

defined by the skeleton patterns. Programmers do not have to specify the synchronizations be-

tween the application’s sequential parts. This yields two implications. First, as the communica-

tion/data access patterns are known in advance, cost models can be applied to schedule skeletons

programs [23]. Second, that algorithmic skeleton programming reduces the number of errors when

compared to traditional lower-level parallel programming models (e.g. Threads, MPI).

Algorithmic skeletons were first introduced by Cole in 1989 [10]. Several frameworks have been

proposed by different research groups using different techniques based on functional, imperative,

custom and object oriented languages. A survey of algorithmic skeleton frameworks can be found

4

in González-Vélez & Leyton [21].

The following are some well-known skeleton patterns 1.

• FARM is also known as master-slave. Farm represents task replication where the execution

of different tasks in the same farm are replicated and executed in parallel.

• PIPE represents staged computation. Different tasks can be computed simultaneously on

different pipe stages. A pipe can have a variable number of stages, each stage of a pipe may be

a nested skeleton pattern. Note that an n-stage pipe can be composed by nesting n-1, 2-stage

pipes.

• FOR represents fixed iteration, where a task is executed a fixed number of times. In some

implementations the executions may take place in parallel.

• WHILE represents conditional iteration, where a given skeleton is executed until a condition

is met.

• IF represents conditional branching, where the execution choice between two skeleton patterns

is decided by a condition.

• MAP & REDUCE represents split, execute, merge computation. A task is divided into sub-

tasks, sub-tasks are executed in parallel according to a given skeleton, and finally sub-task’s

results are merged to produce the original task’s result.

• D&C represents divide and conquer parallelism. A task is recursively sub-divided until a

condition is met, then the sub-task is executed and results are merged while the recursion is

unwound.

• SEQ represents sequential execution and it is often used a convenient tool to wrap code as

the leaves of the skeleton nesting tree.

Lately, the use of skeletons has risen due to the increasing popularity of the MapReduce pattern

[8] for data-intensive processing.

2.2 Autonomic Computing

In 2001 IBM introduced the concept of Autonomic Computing (AC) [24]. It refers to the self-

managing characteristics of computing resources. In autonomic computing, each entity is able to

1Taken from the ”Algorithmic Skeleton´´ article of Wikipedia: http://en.wikipedia.org/wiki/Algorithmic_

skeleton

5

http://en.wikipedia.org/wiki/Algorithmic_skeleton
http://en.wikipedia.org/wiki/Algorithmic_skeleton

adapt itself to changes in the runtime environment, or in the quality of service desired. The vision

of autonomic computing is based on the idea of self-governing systems to reduce its management

costs. These systems can manage themselves given high-level objectives from an administrator [26].

According to Horn [24], the current obstacle in keeping the very benefits information technology

aims to provide, is complexity. “Dealing with it is the single most important challenge facing the

I/T industry” he says. Horn supports it by arguing: “Follow the evolution of computers from single

machines to modular systems to personal computers networked with larger machines and an unmis-

takable pattern emerges: incredible progress in almost every aspect of computing—microprocessor

power up by a factor of 10.000, storage capacity by a factor of 45.000, communication speeds by

a factor of 1.000.000—but at a price. Along with that growth has come increasingly sophisticated

architectures governed by software whose complexity now routinely demands tens of millions of lines

of code. Up until now, we’ve relied mainly on human intervention and administration to manage

this complexity. Unfortunately, we are starting to gunk up the works. Even if we could somehow

come up with enough skilled people, the complexity is growing beyond human ability to manage

it. Without new approaches, things will only get worse. Paradoxically, to solve the problem -make

things simpler for administrators and users of I/T- we need to create more complex systems. By

embedding the complexity in the system infrastructure itself -both hardware and software- then

automating its management.” [24].

“It’s time to design and build computing systems capable of running themselves, adjusting to

varying circumstances, and preparing their resources to handle most efficiently the workloads we

put upon them. These autonomic systems must anticipate needs and allow users to concentrate on

what they want to accomplish rather than figuring how to rig the computing systems to get them

there.” [24].

In his argument, Horn presented eight characteristics that an autonomic system must have.

1. Self-awareness. To be autonomic, a computing system needs to “know itself” and ”be aware”

of the system-wide components and its relations. A system cannot monitor what it does not

know exists, or control specific points if its domain of control remains undefined.

2. Self-configuration. An autonomic computing system must configure and reconfigure itself

under varying and unpredictable conditions. System configuration or “setup” must occur

automatically, just like the human autonomous nervous system.

3. Self-optimization. Horn argues that an autonomic computing system never settles for the

status quo. It should always look for ways to optimize its workings. This consistent effort to

6

optimize itself is the only way a computing system will be able to meet the complex and often

conflicting I/T demands of a business, its customers, suppliers and employees.

4. Self-healing. An autonomic computing system must be able to be aware of its malfunctioning

and try to heal itself, just like the human immune system. It must be able to discover problems

or potential problems, then find an alternative way of using resources or reconfiguring the

system to keep functioning smoothly.

5. Self-protection. An autonomic computing system must detect, identify and protect itself

against various types of attacks to maintain overall system security and integrity.

6. Context-awareness. An autonomic computing system knows its environment and the context

surrounding its activity, and acts accordingly.

7. Use of open standards. Advances in autonomic computing systems will need a foundation of

open standards for system identification, communication and negotiation.

8. Hidden complexity. About complexity, Horn says: this is the ultimate goal of autonomic

computing, the marshaling of I/T resources to shrink the gap between the business or personal

goals of our customers, and the I/T implementation necessary to achieve those goals-without

involving the user in that implementation.

Horn concludes, “Realistically, such systems will be very difficult to build and will require

significant exploration of new technologies and innovations. That’s why we view this as a grand

challenge for the entire I/T industry. We’ll need to make progress along two tracks: making

individual system components autonomic, and achieving autonomic behavior at the level of global

enterprise I/T systems. Autonomic computing represents both this change and the inevitable

evolution of I/T automation. This next era of computing will enable progress and abilities we

can barely envision today.” [24].

This thesis presents a novel approach for introducing self-configuration and self-optimization

characteristics to skeletons based on Event-Driven Programming (EDP). EDP allows to improve

self- and context- awareness while keeping the complexity hidden from the user of skeletons.

2.3 Autonomic Skeleton’s Related work

Autonomic capabilities of skeletons have often been associated to component models [6]. Among

them, the ParaPhrase project [22] is probably the most important project in the area. It aims

7

to produce a new design and implementation process based on adaptable parallel patterns. How-

ever, algorithmic skeletons are better adapted to express pure computational application patterns,

compared to the structural pattern described by components. Thus the approach proposed in this

thesis is better adapted to provide autonomic features for the computational aspects, while the

ParaPhrase project gives those possibilities at the level of the application architecture. Also in

the domain of components, several efforts have been made to give autonomic features in hierarchi-

cal structured component models like Fractal [7] and GCM [5] (Grid Component Model). Those

works generally focus on the structure of the autonomic features and also on the application ar-

chitecture [15, 34]. Again, the approach presented in this document is much more focused on the

Computational Aspects, and thus is complementary with these component-oriented approaches.

The ASSIST framework [4] showed the complementarity of the two approaches by providing both

structural support and computational support for autonomic Aspects. The approach proposed

in this thesis only focuses on the Computational Aspect, and improves the state of the art on

the autonomic adaptation of skeletons; consequently, it can be used in a framework like ASSIST

to improve the autonomic adaptation capacities of the framework, and finally obtain large-scale

complex and structured component applications with efficient autonomic adaptations.

Another important solution in the literature is part of the ASPARA project [20] lead by Murray

Cole and Horacio Gónzales-Vélez. This work proposes a methodology to introduce adaptability

in skeletons. In ASPARA, structural information is introduced during compilation. Compared to

the ASPARA project, the solution proposed in this document allows the introduction of structural

information during execution. This produces a higher level of adaptability because it is possible to

react faster to mismatch in the quality of service (QoS) desired.

The next related work is the Auto-tuning SkePU [14]. Here the prediction mechanism of ex-

ecution time uses online pre-calculated estimates to construct an execution plan for any desired

configuration with minimal overhead. The proposed solution here does not need pre-calculated

estimates, as it calculates estimates at runtime. Again from the dynamic estimation of runtime and

the dynamic adaptation of the skeletons, the approach proposed in this thesis is able to react faster

to unsatisfactory quality of service.

To summarize, the approach presented in this thesis: to introduce self-configuration and self-

optimization characteristics to skeletons, is much more focused on the computational aspects. It

allows the introduction of structural information during at execution time, it does not need pre-

calculated estimates since it can calculate them at runtime, and thus is complementary with the

current approaches to obtain large-scale complex and structured component applications with effi-

8

cient autonomic adaptations.

2.4 Skeleton’s Separation-of-Concerns Related Work

One of the contributions of this thesis is the design and implementation of a novel skeleton’s

separation-of-concerns based on event driven programing. There are several related work On this

topic. This section summarizes the closest ones with respect to the purpose of this thesis.

In [1], Aldinucci et al, introduces muskel, a full Java library providing a skeleton based parallel-

and-distributed programming environment. Aldinucci et al propose annotations and AOP, to ex-

tend the possibility for users to control some non-functional features in a high-level way. The

non-functional concerns discussed include autonomic managers (optimization), portability, security,

parallelism exploitation properties, and expandability.

Another Skeleton Framework that incorporates AOP is SBASCO [16]. SBASCO includes the no-

tion of aspect in conjunction with the original paradigms. Aspects are implemented as components

and connectors, achieving in this way an homogeneous and clean implementation since skeletons are

based on the same model. The proposed approach in this chapter provides an extension based on

specific skeletons rather than a tertiary generic abstraction, which conforms a more generic solution

independent of the application architecture.

The Join Calculus [18] introduced join-patterns, which are also another important type of paral-

lelism pattern (skeleton). A join-pattern is like a super pipeline to match and join a set of messages

available from different message queues, then handles them all simultaneously with one handler. In

2014, [36], Van Ham et al, introduces JEScala, a Join language based on EScala, [19], an advanced

event driven OO language. JEScala language explores the synergy of Join-pattern skeleton and

EDP just as proposed in this section. One of the key contributions of JEScala is the introduction of

asynchronous execution of event handlers. On this thesis, it only supports synchronous execution

of event handlers in order to guarantee that the “before” and “after” events are executed on the

same muscle thread. Another important difference is the disjunction’s consume. Where multiple

join-patterns in a disjunction can share an event; when such event is raised it is non-deterministic

consumed by one of the join-patterns. The approach presented in this section does not include

disjunctions and all listeners registered to an event are executed once the event is raised. The main

similarities with JEScala are: event listeners can be added and removed at runtime, event data is

not sent to a single destination but to multiple destinations, support to implicit events to create

a clear separation of concerns, support of declarative events by the use of Generic Listeners, and

support to function operators by the use of listener guards.

9

2.5 Context: The Skandium Library

To show the feasibility of the approach proposed in this thesis, it was implemented as an extension

of Skandium framework [29]. Skandium is a Java based Algorithmic Skeleton library for high-level

parallel programming of multi-core architectures. Skandium provides basic nestable parallelism

patterns, which can be composed to program more complex applications.

In Skandium, skeletons are provided as a Java Library. The library can nest task and data

parallel skeletons according to the following syntax:

∆ ::= seq(fe)|farm(∆)|pipe(∆1,∆2)|while(fc,∆)|if(fc,∆true,∆false)|

for(n,∆)|map(fs,∆, fm)|fork(fs, {∆}, fm)|d&c(fc, fs,∆, fm)

Each skeleton represents a different pattern of parallel computation. All the communication

details are implicit for each pattern and hidden away from the programmer.

The task-parallel skeletons are:

• seq for wrapping execution functions;

• farm for task replication;

• pipe for staged computation;

• while/for for iteration;

• if for conditional branching.

The data-parallel skeletons are:

• map for single instruction multiple data;

• fork is like map but applies multiple instructions to multiple data;

• d&c for divide and conquer.

The nested skeleton pattern (∆) relies on sequential blocks of the application. These blocks

provide the business logic and transform a general skeleton pattern into a specific application. These

blocks are called “muscles”, as they provide the real (non-parallel) functionality of the application.

In Skandium, muscles come in four flavors:

1. “Execution”, fe : P → R;

2. “Split”, fs : P → {R};

3. “Merge”, fm : {P} → R;

4. “Condition”, fc : P → boolean

10

where P is the parameter type, R the result type, and {X} represents a list of elements of type

X. Muscles are black boxes invoked during the computation of the skeleton program. Multiple

muscles may be executed either sequentially or in parallel with respect to each other, in accordance

with the defined ∆. The result of a muscle is passed as a parameter to other muscle(s) following

dependencies defined by the skeleton program. When no further muscles need to be executed, the

final result is delivered.

Listing 2.1 shows an example of a simple Skandium program for counting words; it is a skeleton

with the following structure: map(fs, fe, fm) . Here fs takes as input an String and splits it by

its tokens (e.g. words between spaces). In parallel, each token (word) is capitalized by fe to make

the Word Count skeleton not case-sensitive. Finally, fm counts words by filling a HashMap structure

that is returned.

11

// Muscle ’ s d e f i n i t i o n
Sp l i t<Str ing , Str ing> f s = new Sp l i t<Str ing , Str ing >() {

@Override
public St r ing [] s p l i t (S t r ing p) {

return p . s p l i t (”\\ s+”) ;
}

} ;

Execute<Str ing , Str ing> f e = new Execute<Str ing , Str ing >() {
@Override
public St r ing execute (S t r ing p) {

return p . toUpperCase () ;
}

} ;

Merge<Str ing , HashMap<Str ing , Integer>> fm =
new Merge<Str ing , HashMap<Str ing , Integer >>() {

@Override
public HashMap<Str ing , Integer> merge (S t r ing [] p) {

HashMap<Str ing , Integer> wc = new HashMap<>();
for (S t r ing w: p) {

i f (! wc . containsKey (w)) wc . put (w, 1) ;
else wc . put (w, wc . get (w)+1);

}
return wc ;

}
} ;

// S k e l e t o n ’ s d e f i n i t i o n
Map<Str ing , HashMap<Str ing , Integer>> s k e l = new Map<>(f s , fe , fm) ;

// Input parameter
St r ing input = ”She s e l l s sea−s h e l l s on the sea−shore ” +

”The s h e l l s she s e l l s are sea−s h e l l s I ’m sure ” +
”For i f she s e l l s sea−s h e l l s on the sea−shore ” +
”Then I ’m sure she s e l l s sea−shore s h e l l s ” ;

Future<HashMap<Str ing , Integer>> f u tu r e = s k e l . input (input) ;

// do something e l s e

// Wait f o r r e s u l t
HashMap<Str ing , Integer> output = fu tu r e . get () ;

Listing 2.1: Word count, example of a skeleton processing

12

Chapter 3

Separation of Concerns using Events

This chapter shows one of the contributions of this thesis: the design and implementation of a novel

skeleton’s separation-of-concerns based on event driven programing. This novel approach allows the

introduction of non-functional concerns to skeletons without lowering its higher-level programming.

There are different programming models or strategies to address separation of concerns (SoC).

Aspect Oriented Programming (AOP) [27] is the preferred and widely used programming model.

However, this thesis proposes a novel approach, based on Event-Driven Programming (EDP) [31],

published on 2012, that does not require the introduction of another programming framework, like

AspectJ, which could potentially introduce conceptual disruption to the programmer. The proposed

approach still applies the main concepts of Aspect Oriented Programming (AOP).

3.1 Very brief summary of Aspect-oriented Programming

As mentioned before Aspect Oriented Programming (AOP) is the preferred and widely used pro-

gramming model for the design of a clear separation of concerns. The main AOP concepts [37]

are

• Cross-cutting concerns. Even though implementing modular programming, by means of

Object-oriented Programming or structured programming, where a class or a module will per-

form a single, specific function, they often share common, secondary requirements with other

classes or modules. For example, if it is necessary to add logging or security to classes or

modules. Even though each class or module has a very different primary functionality, the

code needed to perform the secondary functionality (or concern) is often identical.

• Advice code. This is the additional code that includes the secondary functionality (or con-

cern). For example, the code to implement logging or security concerns.

• Pointcut. This is the term given to the point of execution in the application at which

13

cross-cutting concern needs to be applied. For example the beginning of a method execution

for introducing logging concerns, or just before a module call when implementing security

concerns.

• Aspect The combination of the pointcut and the advice code is termed an aspect. An aspect

is normally related only to one concern.

Since the concerns are secondary functionality they are normally called non-functional concerns.

Therefore, aspects, typically, implements non-functional concerns like autonomic characteristics.

3.2 Event Driven Programming benefits

Event-Driven Programming (EDP) is a programming model where the program flow is determined

by events. EDP has been mainly used on interactive applications, like graphical user interfaces,

and has been successfully used on real-time and embedded systems [17,35] thanks to its lightweight

implementation and its signal (event) processing nature.

Main AOP concepts can be introduced into Algorithmic Skeletons using EDP as follows:

• Both, AOP and EDP allow the addition of custom code: Advice code in AOP and Event

Handlers in EDP.

• Such custom code can be introduced in specific points on the execution flow of a program:

Join Points in AOP and Event Hooks in EDP.

On this thesis, it has been chosen to apply AOP concepts using EDP instead of using AOP

directly. First, because there is no need to weave non-functional code as we can statically create

event hooks as part of the Skeleton Framework. And second, to minimize programmer conceptual

disruption, one of the principles presented by Cole in its manifesto [11], by avoiding the necessity

of adding another framework.

The use of Events for implementing SoC in summary offers two concrete benefits:

1. It allows for precise monitoring the status of the skeleton execution with a high level of adapt-

ability by providing on-the-fly information about the run-time execution without lowering the

skeleton’s high-level of abstraction and

2. It improves the separation of concerns between functional code (muscles) and non-functional

concerns, in a lightweight and efficient manner.

14

3.3 Inversion of control problem

Skeletons use inversion of control [25] to provide high-level programming patterns to hide the com-

plexity of parallel and distributed programming to the user. At the same time, inversion of control

hide the actual execution flow to the programmer, which is essential to the implementation of

non-functional concerns like autonomic computing.

Inversion of control is a design pattern where the “main” code does not control the program’s

execution flow. Instead the framework (caller) receives the business code as parameter and decides

when and where it is executed. This allows common and reusable code being developed indepen-

dently from problem-specific code, producing valuable abstraction layers.

Algorithmic Skeleton Frameworks use these abstraction layers to provide high-level parallelism

exploitation patterns, hiding the primitives and explicit scheduling of parallel and distributed ap-

plications.

The cost of this high-level parallel programming abstraction is paid in control over the execu-

tion flow. This produces batch-like processing where intermediate results and information about

execution are hidden from programmers, which can make handling non-functional concerns difficult.

Listing 2.1 shows an example of a common Skandium program. Once execution starts there

is no mechanism to get information of the current execution or to get partial results. Therefore,

working with intermediate results and information about execution, to implement non-functional

concerns, lowers the programming model’s high-level abstraction.

3.4 Events for skeletons

It is proposed that by triggering events during skeleton execution, intermediate results and run-time

information can be used to implement non-functional concerns using event listeners.

Events are triggered during a skeleton execution. Those events are statically defined during the

skeleton’s design and provide information on the actual skeleton execution (e.g., partial solutions

and skeleton’s trace).

By means of event listeners, the non-functional programmer can implement non-functional con-

cerns without touching the business logic code, i.e., the muscles. For example, Seq skeleton has two

events defined:

• the beginning of the skeleton: Seq Before, represented as seq(fe)@b(i)

• the end of the skeleton: Seq After, represented as seq(fe)@a(i)

Map skeleton has eight events defined:

15

• the beginning of the skeleton: map(fs,∆, fm)@b(i)

• before split muscle execution: map(fs,∆, fm)@bs(i)

• after split muscle execution: map(fs,∆, fm)@as(i, |fs|)

• before each nested skeleton: map(fs,∆, fm)@b∆(i)

• after each nested skeleton: map(fs,∆, fm)@a∆(i)

• before merge muscle execution: map(fs,∆, fm)@bm(i)

• after merge muscle execution: map(fs,∆, fm)@am(i)

• the end of map: map(fs,∆, fm)@a(i)

All events provide partial solutions, skeleton’s trace, and an event identification, i, which allows

correlation between Before and After events. Events also provide additional run-time information

related to the computation; e.g., “Map After Split” provides the number of sub-problems created

when splitting, |fs|.

Listing 3.1 shows an example of a simple logger implemented using a generic listener. A generic

listener is registered on all events raised during a skeleton execution. As parameters of handler

method, there is information of the event identification: skeleton trace, when (before or after),

where (e.g. skeleton, split, merge), and i parameter. Additionally the partial solution, param, is

sent and should be returned. This allows the possibility of modifying partial solutions which could

be very useful on non-functional concerns like encryption during communication. It is guaranteed

that the handler is executed on the same thread as the related muscle (i.e. the next muscle to be

executed after a before event, and the previous muscle executed before an after event).

mainSkeleton . addLis tener (new Gener i cL i s t ene r () {
@Override
public Object handler (Object param , Ske le ton [] st ,

int i , When when , Where where) {

St r ing logText =
”CURR SKEL: ” + s t [s t . length −1] . g e tC la s s () . getSimpleName () +
” ; WHEN/WHERE: ” + when + ”/” + where +
” ; INDEX: ” + i +
” ; THREAD: ” + Thread . currentThread () . ge t Id () ;

l o g g e r . l og (Leve l . INFO, logText) ;

return param ;
}

}) ;

Listing 3.1: Example of a simple logger implemented using a generic listener

16

Listing 3.2 shows the first and last five events captured by the logger defined in 3.1 of the word

count program presented in previous chapter, listing 2.1.

Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Map; WHEN/WHERE: BEFORE/SKELETON; INDEX: 1 ; THREAD: 9
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Map; WHEN/WHERE: BEFORE/SPLIT ; INDEX: 1 ; THREAD: 9
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Map; WHEN/WHERE: AFTER/SPLIT ; INDEX: 1 ; THREAD: 9
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Seq ; WHEN/WHERE: BEFORE/SKELETON; INDEX: 5 ; THREAD:10
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Seq ; WHEN/WHERE: AFTER/SKELETON; INDEX: 5 ; THREAD:10
. . .
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Seq ; WHEN/WHERE: AFTER/SKELETON; INDEX: 37 ; THREAD:19
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Seq ; WHEN/WHERE: AFTER/SKELETON; INDEX: 53 ; THREAD:12
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Map; WHEN/WHERE: BEFORE/MERGE; INDEX: 1 ; THREAD:12
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Map; WHEN/WHERE: AFTER/MERGE; INDEX: 1 ; THREAD:12
Feb 13 , 2015 6 : 4 1 : 1 5 PM wcount . Main$4 handler
INFO: CURR SKEL: Map; WHEN/WHERE: AFTER/SKELETON; INDEX: 1 ; THREAD:12

Listing 3.2: Output of the example of a simple logger

3.5 Event Listeners

The non-functional programmer should implement non-functional concerns as Event listeners. Event

listeners can be registered or removed from event hooks on-the-fly which allows a high level of

flexibility to activate or deactivate non-functional concerns during execution.

In our proposed implementation there are four listener types as interfaces. Programmers must

implement any of the four following interfaces to create a new event listener. Each listener type

provides a different set of information, lowering the abstraction level on a need-to-know basis.

• SimpleListener<P> is the most high-level listener which specifies a guard/handler receiving

a parameter P passed between skeletons and muscles at some point in the computation, and

specifies the correlation parameter i between event hooks.

• TraceListener<P> additionally specifies a Skeleton[] trace containing as its first element the

root skeleton of a nested skeleton composition, and as its last element the currently executed

17

Parameters Received Skeletons

Simple Listener Parameters P and i All skeletons
Trace Listener + Skeleton trace All skeletons
Condition Listener + Condition result if , while, d&c
Generic Listener + Event hook identifiers All skeletons

Table 3.1: Comparison of Listener’s type

element. This is useful when the event listener is registered in more than one part of the

skeleton nesting tree.

• ConditionListener<P> additionally specifies a boolean parameter as a result of Condition

muscles in if , while and d&c skeletons.

• GenericListener is a special listener that can be applied to any event hook and additionally

specifies the event hook identification (when and where).

Table 3.1 shows the comparison of the different listener’s types available and their parameters.

It also shows the Skeletons supported by each type.

Programmers also have the possibility of registering/removing Generic Listeners. A Generic

Listener can be registered in any event hook, and can be used to create common functionality for

several events, just like point cuts in AOP, at the price of sacrificing type verification. The listener

is applied to all the event hooks of nested skeletons. If the users needs to only apply the listener to

some event hooks, he/she can use the following parameters to filter them:

• Class pattern. Filters by the Skeleton dimension (e.g. Map.class, so the listener will be

registered/removed on all the Map events), the wild card is Skeleton.class.

• When when can take the values When.BEFORE or When.AFTER, the wild card is null.

• Where where filters event hooks related to a specific skeleton element, for example a condition

muscle, split muscle, nested skeleton, etc; the wild card is null.

3.6 Event hooks

Event Hooks define specific location in the code of the skeletons where additional code could be

integrated. Each pattern provides a different set of hooks, and each hook applies to a specific set

of Event Listener types.

Hooks are presented in the following notation: ∆@whenwhere(params). For example, all skele-

tons provide before,∆@b(i), and after,∆@a(i) hooks. More specific hooks are also available depend-

ing on the pattern. For example, the if skeleton provides the before condition, if(fc,∆t,∆f)@bc(i),

18

Skeleton Before After

∆ ∆ : i, P ∆ : i, R

pipe(∆1,∆2) ∆i : i, Pi ∆i : i, Ri

if(fc,∆t,∆f)
fc : i, P fc : i, P, fc(P)
∆x : i, P, x ∆x : i, R, x

while(fc,∆)
fc : i, P, iteration fc : i, P, fc(P), iteration
∆ : i, P, iteration ∆ : i, R, iteration

for(n,∆) ∆ : i, P, iteration ∆i : i, R, iteration

map(fs,∆, fm)
fs : i, P fs : i, {Pj}
∆i : i, Pi ∆i : i, Ri
fm : i, {Rj} fm : i, R

fork(fs,∆, fm)
fs : i, P fs : i, {Pj}
∆i : i, Pi ∆i : i, Ri
fm : i, {Rj} fm : i, R

d&c(fc, fs,∆, fm)

fc : i, P fc : i, fc(P)
fs : i, P fs : i, {Pj}
∆i : i, Pi ∆i : i, Ri
fm : i, {Rj} fm : i, R

Table 3.2: Event hooks

and after condition, if(fc,∆t,∆f)@ac(i, return(fc)) hooks. Note that the “after condition” hook

sends also as parameter the result of the execution of fc.

Hooks for before and after nested skeletons are more specific on each pattern. For example, pipe

has two subskeletons while if has one and the hooks definition differ accordingly. However, the

only type unsafe hooks correspond to pipe’s nested parameter. This could be resolved, however, by

extending pipe’s definition from Pipe<P,R> to Pipe<P,X,R> to account for the intermediary type.

Table 3.2 shows the current set of event hooks implemented in Skandium. The second and third

columns show what parameters are sent for each stage of the skeleton’s execution. The first row

implies that all skeletons have a before and- after event hook. The parameters P and R correspond

to the input and output of each stage.

3.7 Roles

Separation of concerns is essentially a software engineering matter. The proposed separation of

concerns recognizes three different roles:

• Skeleton programmer whose job is to materialize parallelism patterns into skeletons.

• Non-functional programmer who implements other, non-parallel, non-functional features,

and

• Business programmer who uses both skeleton patterns and non-functional features to im-

plement the final business application.

19

Figure 3.1: Online Performance Monitor

3.8 Logger and Online Performance Monitoring

As proof of concept of the approach proposed in this chapter, a logger and a visual performance

monitor were developed.

The logger, similar to the example in listing 3.1 is a generic tool that can be activated and

deactivated on the fly during a skeleton’s execution. The logger traces relevant information about

the execution which can be used to identify performance bottlenecks.

The visual execution monitor is an extension of the work in [9] which now provides online

performance monitoring rather than post-mortem. As shown in Figure 3.1, for each muscle and

skeleton, the number of invocations and processing time spent is updated continuously.

3.9 Overhead analysis

An overhead analysis was made using a parallel QuickSort algorithm implemented as one divide and

conquer skeleton. The implementation is based on the QuickSort definition found in [29] and can

be seen in listing 3.3. Here Range is a simple class that envelop the array to be sorted and the left

and right indexes defining a sub-problem (listing 3.4). The split condition is based on a THRESHOLD

that controls the size of the range to be sorted by a Java native sorting. The partition algorithm

used during split muscle is defined in listing 3.5. The rarray algorithm is a simple algorithm that

produces an array of size SIZE of random integers. The variable THREADS defines the number of

threads to be used for sorting.

The Divide and Conquer skeleton generates a variable number of event hooks that is linearly

proportional to the size of the input. All tests were run on a dual core processor of 2.40 GHz with

20

Figure 3.2: Absolute overhead processing time

Figure 3.3: Relative overhead processing time

2GB of RAM.

The analysis compares the execution of the same problem with two different versions of Skandium,

the one before the events support, and the one that includes events. This analysis calculates the

overhead caused only by the inclusion of the event instructions (event hooks) during the transfor-

mation and reduction steps. Time presented is an approximation of CPU time.

Figure 3.2 shows the result of the analysis; The x-axis corresponds to the number (in millions)

of event hooks, while y-axis shows the calculated overhead (CPU time with events minus CPU time

without events). As result we see a linear increase with a slope of 19.80 seconds for each million of

event hooks created. Therefore the overhead is 19.80 microseconds per event hook.

Figure 3.3 shows the relative overhead processing time where x-axis corresponds to the problem

size in MB. The light gray part on the bottom of each bar shows the percentage of total CPU time

used to solve the problem, and the dark gray part of the top of each bar shows the percentage used

21

// Muscle ’ s d e f i n i t i o n
Condition<Range> f c = new Condition<Range>() {

@Override
public boolean cond i t i on (Range r) throws Exception {

return r . r i g h t − r . l e f t > THRESHOLD;
}

} ;
Sp l i t<Range , Range> f s = new Sp l i t<Range , Range>() {

@Override
public Range [] s p l i t (Range r) {

int i = p a r t i t i o n (r . array , r . l e f t , r . r i g h t) ;
Range [] i n t e r v a l s = { new Range (r . array , r . l e f t , i −1) ,

new Range (r . array , i +1, r . r i g h t) } ;
return i n t e r v a l s ;

}
} ;
Execute<Range , Range> f e = new Execute<Range , Range>() {

@Override
public Range execute (Range r) {

i f (r . r i g h t <= r . l e f t) return r ;
Arrays . s o r t (r . array , r . l e f t , r . r i g h t +1);
return r ;

}
} ;
Merge<Range , Range> fm = new Merge<Range , Range>() {

@Override
public Range merge (Range [] r) throws Exception {

Range r e s u l t = new Range (r [0] . array , r [0] . l e f t , r [1] . r i g h t) ;
return r e s u l t ;

}
} ;

// S k e l e t o n ’ s d e f i n i t i o n
Skeleton<Range , Range> s o r t = new DaC<Range , Range>(fc , f s , fe , fm) ;

// Input parameters wi th the d e f a u l t s s i n g l e t o n Skandium o b j e c t
Skandium skandium = new Skandium (THREADS) ;
Stream<Range , Range> stream = skandium . newStream (s o r t) ;
Future<Range> f u tu r e = stream . input (new Range (ra r ray (SIZE) , 0 , SIZE−1)) ;

// Do something e l s e here .

// Get r e s u l t s
Range r e s u l t = fu tu r e . get () ;

Listing 3.3: Quick Sort implementation

22

public class Range {

int array [] ;
int l e f t ;
int r i g h t ;

public Range (int array [] , int l e f t , int r i g h t){
this . array=array ;
this . l e f t=l e f t ;
this . r i g h t=r i g h t ;

}
}

Listing 3.4: Range class definition

public stat ic int p a r t i t i o n (int [] a , int l e f t , int r i g h t) {
int i = l e f t − 1 ;
int j = r i g h t ;
while (true) {

while (l e s s (a[++ i] , a [r i g h t]))
;

while (l e s s (a [r i g h t] , a[−− j]))
i f (j == l e f t) break ;

i f (i >= j) break ;
exch (a , i , j) ;

}
exch (a , i , r i g h t) ;
return i ;

}

private stat ic boolean l e s s (int x , int y) {
return (x < y) ;

}

private stat ic void exch (int [] a , int i , int j) {
int swap = a [i] ;
a [i] = a [j] ;
a [j] = swap ;

}

Listing 3.5: Partition algorithm definition

23

to interpret the empty event hooks.

This is the worst case behavior expected since DaC is the skeleton that generates the most event

hooks in proportion to the input size. Furthermore the implementation of events in Skandium is

itself a parallel problem and thus in actual parallel execution this overhead is linearly parallelized

with respect to the wallclock overhead time.

3.10 Conclusions

This chapter proposed a novel separation of concern approach extending the skeletons model based

on Event-Driven Programming, by means of event hooks and event listeners. This novel approach

improves on a clear separation of concerns between the non-functional aspects, implemented using

event handlers, and functional code (muscles). Secondly, it provides access to users of run-time

execution information on the fly without lowering the skeleton’s high-level abstraction.

The proposed approach has been verified by implementing a logger and a visual performance

tool, and our implementation has been measured to have a negligent performance overhead. This

separation of concerns (SoC) can be used to implement several other non-functional concerns like:

• Audit, control, and reporting. As well as the logger already implemented, another controlling

and reporting tools could be built in order to address an online quality goals analysis (e.g.

processor speed, memory, disk space, network bandwidth, etc.)

• Error analysis. Using events, a full skeleton debugger could be implemented. Another tool

that can be implemented using the ability of registering and removing listeners dynamically,

is a tracer that increases/decreases trace level online.

• Security. Using the ability to manipulate intermediate results, algorithms of encryption/de-

cryption could be used during communication.

Next chapter describes the use of such events to provide a framework for the execution of

skeletons with a high level of adaptability by introducing autonomic characteristics. Which is

the main purpose of this thesis. The introduction of autonomic characteristics to skeletons is

an active research topic in the parallel and distributed computing area [3, 12, 22]. The benefits

of this type of technology are: (1) reduction of management costs of parallel systems, and (2)

hiding the complexity of parallel programming to the developer. Without events, the introduction

of autonomic characteristics to skeletons is a very challenging problem because of the skeleton’s

inversion of control.

24

Chapter 4

Autonomic Skeletons

This chapter is the core of this thesis because it presents the proposed approach to introduce self-

configuration and self-optimization characteristics to skeletons using events. This chapter begins by

defining the particular Quality of Services (QoSs) implemented. Then, it shows how to track the

skeleton’s execution and how to predict the remaining work. This chapter finishes by presenting an

example of the execution.

Autonomic Computing (AC) is often used to achieve a given QoS that the system has to guar-

antee as much as possible. For example, a type of QoS is Wall Clock Time (WCT, time needed to

complete the task). On an AC system that supports the WCT QoS, it is possible to ask for a WCT

of 100 seconds for the completion of a specific task. This means that the system should try to finish

the job within 100 seconds by means of self-managing activities (e.g., modifying process priorities

or number of threads).

This thesis focuses on guaranteeing a given execution time for a skeleton by optimizing the

number of threads allocated. The QoSs autonomically managed to be self-configured and self-

optimized are: (1) Execution Wall Clock Time, and (2) Level of Parallelism.

4.1 Wall Clock time, and Level of Parallelism

The proposed autonomic characteristics related to the QoSs WCT and LP works as follows: if the

system realizes that it will not reach the WCT goal with the current LP, but it will reach it, if the

LP is increased, it autonomically increases the LP. However, if the system realizes that it will target

the WCT goal even if it decreases the LP, it autonomically decreases the LP. To avoid potential

overloading of the system, it is possible to define a maximum LP.

Why would it not always use the maximum number of threads in order to get the fastest possible

WCT? There are several reasons that drive the decision to not do so. First, energy consumption

and heat production. The more work a processor does, the more energy it consumes, and the more

25

heat it produces, implying even more energy needed for the cooling system. Another reason is to

improve the overall system performance over the performance of a single application, when it is

possible to free resources that could be used by other processes.

It is not always true that the WCT decreases if the number of active threads increases. The

hardware cache system could lead to situations where higher performance is achieved with a number

of threads even smaller than the available hardware threads. For simplicity, it was assumed that the

LP produces a non-strictly increasing speedup. This simplification obeys the complexity of inferring

the memory access pattern of the functional code.

The principles of the proposed autonomic adaptation framework are the following. Using events,

it is possible to observe the computation and monitor its progress, find out when tasks start and

finish, and how many tasks are currently running. Thanks to the use of events, it is possible to

monitor this information without modifying the business code, and in a very dynamic way: the

execution of each individual skeleton is monitored. Consequently, the execution can be adapted as

soon as it is “detected” that the quality of service expected will not be achieved.

In practice, Skandium uses functions to estimate the size and the duration of the problem to be

solved, and, if necessary, to allocate more resources to the resolution of a given skeleton. This way,

the autonomic adaptation targets the currently evaluated instance, and not the next execution of

the whole problem as in most other approaches.

Skandium uses events both to build up an estimation of the execution time, and to react instantly

if the current execution may not be achieved in time. In the last case, more resources are allocated

to improve the execution time. On the contrary, if the execution is fast enough or if the degree of

parallelism must be limited, the number of threads allocated for the task can be decreased.

The algorithm to calculate the optimal WCT is a greedy one, while the algorithm to calculate

the minimal number of threads to guarantee a WCT goal is NP-Complete. Therefore Skandium

does not reduce the LP as fast as it increases it. The algorithm implemented for decreasing the

number of threads first checks if the goal could be targeted using half the number of threads; if it

can, it decreases the number of threads to the half.

4.2 Evaluating the remaining execution time

This section shows how it is possible to estimate in advance the WCT. Let t(m) be the estimated

execution time of the muscle m and let |m| be the estimated cardinality of the muscle m. The

estimated cardinality is only defined to the muscles of type Split and Condition. The cardinality of

a muscle of type Split is the estimated size of the sub-problem set returned after its execution; the

26

cardinality of a Condition muscle is the estimated number of times the muscle will return “true”

over the execution of a While skeleton, or the estimated depth of the recursion tree of a Divide &

Conquer skeleton.

Assume that the values of the functions t(m) and |m| are known in advance. It is then possible

to draw an Activity Dependency Graph (ADG) like the one shown in Figure 4.1.

Figure 4.1 shows an example of an ADG related to an actual skeleton execution of two nested

Map skeletons, map(fs,map(fs, seq(fe), fm), fm). Let’s assume that t(fs) = 10, t(fe) = 15, t(fm) =

5, and |fs| = 3. Each activity is shown as a rectangle with three columns and corresponds to a

muscle execution. The middle column shows the muscle related to the activity. The first and third

columns represent the start and end time respectively. If the activity has been executed, the first

and third columns contain the actual time measured after execution, in a light-gray box. If the

activity has not yet been executed, estimations are shown for the start or for the end time: the top

box shows the “best effort” estimated time, and the bottom box shows the “limited LP” estimated

time. The skeleton of Figure 4.1 has been executed using an LP of 2 threads, and the ADG has

been taken at WCT= 70.

For example, the ADG of figure 4.1 shows that the execution started at time 0 where the first

split muscle was executed, and finished its execution at time 10, producing 3 sub problems. Two of

them started at time 10, but one started at time 65. As the ADG represents the situation at time

70, it is shown that the split that started at 65 has not yet finished, but it is expected to finish at

75 in either the Best Effort case or in the LP (2) case.

The best effort strategy for estimating ti uses the following formula: ti = maxa∈A(atf), where

A is the set of predecessor activities and atf is the end time of activity a. If maxa∈A(atf) is in the

past, ti = currentT ime. Best effort strategy assumes an infinite LP; it calculates the best WCT

possible, i.e. the end time of the last activity with a best-effort strategy.

Optimal LP is calculated using a time-line like the one presented on Figure 4.2. Figure 4.1 and

figure 4.2 shows the same situation but in different ways. Figure 4.2 shows the estimated LP changes

during the skeleton execution. It is possible to build the timetable on the Best Effort case using the

estimated start and end times and the above formulas. Figure 4.2 shows a maximum requirement of

3 active threads during the interval [75, 90). Therefore the optimal LP for this example is 3 threads.

Limited LP strategy is used to calculate the total WCT under a limit of LP. In this case LP is

not infinite, therefore the ti calculation has an extra constraint: at any point of time, LP should

not exceed the limit. As you can see on Figure 4.2, the LP for the Limited LP case never exceeds

2 threads, and the total WCT will be 115.

27

fe35 50

fe50 65

fe50 65

fs10 20 fm65 70

fe75
75

90
90

fe75
90

90

fe75
75

90
90

fs 75
7565 fm90 95

Limited LP (2)
Best Effort

105 110

fe20 35

fe20 35

fe35 50

fs10 20fs0 10 fm70
70

75
75 fm95

110
100
115

105

t(fs) = 10
t(fe) = 15
t(fm) = 5
|fs| = 3

Figure 4.1: Example of an Activity Dependency Graph

If we set the WCT QoS goal to 100, Skandium will autonomically increase LP to 3 in order to

achieve the goal.

Notice that this estimation algorithm implies that the system has to wait until all muscles have

been executed at least once. In the example, Figure 4.1, it is possible to estimate the work left

of the skeletons still running because all muscles have been executed at least once at the moment

of ADG analysis (black box). However, Skandium also supports the initialization of t(m) and |m|

values.

4.3 Event-based monitoring

All these previous analyses have been conducted under the assumption that we already know the

values of t(m) and |m|. We will explain below how to estimate these values. The estimation

algorithm implemented on Skandium is based on history: “the best predictor of the future behavior

is past behavior”.

This section shows how to monitor execution time and skeleton cardinality using events. Chap-

ter 5 presents the evaluation of different strategies for time and cardinality prediction.

Using events make it possible to trace a skeleton execution without touching functional code.

The natural way to design a system based on events is by state machines. We use state machines

for tracking the Skeleton execution to create or update the ADG. Figures 4.3 and 4.4 show the

28

0

1

2

3

4

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
A

ct
iv

e
T

h
re

a
d

s

Wall Clock Time

Limited LP (2 Threads) Best effort

Figure 4.2: Example of timeline used to estimate the total WCT and the optimal level of parallelism

𝑠𝑒𝑞 𝑓𝑒 @𝑏 𝑖 / 𝑖𝑑𝑥 = 𝑖; 𝑒𝑡𝑖 = 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒;

I 𝑠𝑒𝑞 𝑓𝑒 @𝑎 𝑖 [𝑖𝑑𝑥 == 𝑖] / 𝑡(𝑓𝑒) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 − 𝑒𝑡𝑖, 𝑡 𝑓𝑒);
F

Figure 4.3: StateMachine(seq(fe)) definition

state machines implemented for Seq and Map skeletons respectively. On those figures, predict is a

function that takes the previous prediction and the current value of the last execution and predicts

the new value of t(m) and |m|. Different predict functions are investigated in Chapter 5.

Each type of skeleton included on Skandium has its corresponding state machine except if

and fork skeletons which are not yet supported. If skeleton produces a duplication of the whole

ADG that could lead to performance issues, and fork skeleton produces a non-deterministic state

machine. The support for those types of skeletons are under construction.

The state machine for Seq skeleton is shown in Figure 4.3. It is activated once the seq before

event, seq(fe)@b(i), have been triggered. seq before event has a parameter, i, that identifies the

executed skeleton. Its value is stored on the local variable idx. Another local variable, eti, holds

the time-stamp of the start of the muscle execution; once seq after event, seq(fe)@a(i), of the

corresponding idx is triggered, the t(fe) value is computed and updated according to the evaluation

strategy presented in Chapter 5.

The state machine for Map skeleton, Figure 4.4, is a little more complex but its general idea

is the same- to trace the skeleton’s execution, and to update the values of t(fs), t(fm), and |fs| as

follows.

29

Map State Machine starts when a Map Before Split event, map(fs,∆, fm)@bs(i) is triggered.

Similar to Seq case, it has an identification parameter, i, that is stored in a local variable idx that

serves as guard for the following state transitions. The time-stamp of the start of split muscle is

stored in a local variable sti. The transition from state I to S occurs when the Map After Split

event,map(fs,∆, fm)@as(i, fsCard), is triggered, where the t(fs) and |fs| estimations are updated.

At this point all the children State Machines, StateMachine(∆), are on hold waiting to start. When

all children State Machines are in F state, the Map State Machine is waiting for the Map Before

Merge event, map(fs,∆, fm)@bm(i). Once it is raised, the mti local variable stores the time-stamp

just before the execution of merge muscle. The transition from M to F state occurs when the Map

After Merge event, map(fs,∆, fm)@am(i), occurs, where the t(fm) estimate is updated.

map 𝑓𝑠, ∆, 𝑓𝑚 @𝑏𝑠 𝑖 / 𝑖𝑑𝑥 = 𝑖; 𝑠𝑡𝑖 = 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒;

I
map 𝑓𝑠, ∆, 𝑓𝑚 @𝑎𝑠 𝑖, 𝑓𝑠𝐶𝑎𝑟𝑑 [𝑖𝑑𝑥 == 𝑖] / 𝑡(𝑓𝑠) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 − 𝑠𝑡𝑖, 𝑡(𝑓𝑠) ;

S 𝑓𝑠 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑓𝑠𝐶𝑎𝑟𝑑, 𝑓𝑠);

map 𝑓𝑠, ∆, 𝑓𝑚 @𝑏𝑚 𝑖 [𝑖𝑑𝑥 == 𝑖] / 𝑚𝑡𝑖 = 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒;

M

F

𝑆𝑡𝑎𝑡𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒(∆)

F

𝑆𝑡𝑎𝑡𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒(∆)

⋯
𝑓𝑠𝐶𝑎𝑟𝑑

times

map 𝑓𝑠, ∆, 𝑓𝑚 @𝑏𝑚 𝑖 [𝑖𝑑𝑥 == 𝑖] / 𝑚𝑡𝑖 = 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒;

F
map 𝑓𝑠, ∆, 𝑓𝑚 @𝑎𝑚 𝑖 [𝑖𝑑𝑥 == 𝑖] / 𝑡(𝑓𝑚) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 − 𝑚𝑡𝑖, 𝑡(𝑓𝑚) ;

Figure 4.4: StateMachine(map(fs,∆, fm)) definition

As presented in this section, a given execution time is guaranteed for a skeleton by optimizing

autonomically the number of threads allocated to its execution and estimating the remaining ex-

ecution time while the skeleton is running. The next section shows an execution example of this

approach, demonstrating that it is indeed light-weight and allows autonomic adaptation to occur

while the skeleton is being evaluated.

4.4 Execution example

This section presents an execution example to show the feasibility of our approach.

The example is an implementation of a Hashtag and Commented-Users count of 1.2 million

Colombian Tweets from July 25th to August 5th of 2013 [13]. The problem was modeled as two

30

nested Map skeletons: map(fs,map(fs, seq(fe), fm), fm), where fs splits the input file on smaller

chunks; fe produces a Java HashMap of words (Hashtags and Commented-Users) and its corre-

sponding partial count; and finally fm merges partial counts into a global count.

The executions were done on an Intel(R) Xeon(R) E5645 at 2.4 GHz each, with a total of 12

cores and 24 CPU Threads, 64 GB RAM Memory, running Skandium v1.1b1.

To show the feasibility of our approach we present the comparison of three different execution

scenarios:

1. Goal Without Initialization - autonomic execution with a WCT QoS set at 9.5 secs without

initializing the estimation functions;

2. Goal With Initialization - autonomic execution with a WCT QoS goal set at 9.5 secs with

initialization of estimation functions.

3. WCT Goal of 10.5 secs - autonomic execution with WCT QoS goal of 10.5 secs.

Figures 4.5, 4.6 and 4.7 show the change on number of active threads during execution and the

WCT goal is shown as a vertical red line.

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000 12000

N
u

m
b

er
 o

f
A

ct
iv

e
T

h
re

a
d

s

Wall Clock Time (ms)

Figure 4.5: “Goal Without Initialization” execution

Goal Without Initialization (figure 4.5)

The purpose of the first scenario is to show the behavior of the autonomic properties without any

previous information with an achievable goal.

In this scenario Skandium waits until the first Merge muscle is executed in order to have all the

information necessary to build the ADG. This occurs at 7.6 secs.

31

At that point, the first estimation analysis occurs and Skandium increases to 3 threads. It

reaches its maximum number of active threads, 17, at 8.6 secs when almost all the fe muscles

can be executed in parallel. This scenario finishes its execution at a WCT of 9.3 secs reaching its

targeted goal.

But why was a goal of 9.5 secs chosen? The total sequential work (WCT of the execution with

1 thread) takes 12.5 secs, therefore any goal greater than 12.5 secs does not produce the necessity

of an LP increase. On the other hand, Skandium took 7.6 secs to execute at least the first Split,

one other Split, all the execution muscles of the second Split, and one Merge. The first split took

6.4 secs (as we will see in scenario 2), and the second level split is expected to be 7 times faster

than the first one, and 0.04 secs per Execution and Merge muscles. Therefore in the best case it is

expected that the system could finish at 8.63 secs. What could occur is that the increase of threads

happened after any of the left splits have already started their execution. In such case, Skandium

cannot achieve the maximum LP. Therefore, in the worst case, it is necessary to wait an extra split

execution. A WCT of 9.54 secs is expected in this situation.

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000 12000

N
u

m
b

er
 o

f
A

c
ti

v
e

T
h

re
a

d
s

Wall Clock Time (ms)

Figure 4.6: “Goal With Initialization” execution

Goal With Initialization (figure 4.6)

The purpose of the second scenario is to show how a previous execution could offer important

information that can be used to improve the estimations. In this scenario we chose a goal of 9.5

secs to compare with the same parameters of the first scenario except the initialization of variables.

Here the t(m) and |m| functions are initialized with their corresponding final value of a previous

execution. Figure 4.6 shows that Skandium increases the number of threads to 8 at 6.4 secs of WCT

execution. As you can notice, this increase has to occurred before the first Merge muscle has been

32

executed. Skandium does not increase the number of threads before because it is performing I/O

tasks, i.e., reading the input file stream on the first split muscle where there is no need for more than

one thread. The execution reaches its maximum LP, 19 active threads, at 7.6 secs. This scenario

finishes its execution at a WCT of 8.4 secs. It shows a better execution time than experiment (1)

where Skandium needed some time to detect that the WCT could not be achieved. One can notice

that experiment (1) shows the additional cost paid during the first execution in order to initialize

the cost functions.

This experiment finishes at 1.1 secs earlier than targeted goal. The reason is that Skandium

does not reduce the LP as fast as it increases. In fact, Skandium increased the number of threads

from 1 to 8 in a single step, but, as described in previous section, Skandium decreases the number

of threads by a maximum factor of 2. This produces the early WCT.

It could be expected that this execution uses all 24 threads in its maximum LP. Theoretically all

the execution muscles should have been executed in parallel and therefore all physical threads should

be used. However, in practice some execution muscles took less time than others, and therefore the

same thread is used to solve more than one execution muscle. As consequence, the parallelism is

reduced.

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000 12000

N
u

m
b

er
 o

f
A

c
ti

v
e

T
h

re
a

d
s

Wall Clock Time (ms)

Figure 4.7: “WCT Goal of 10.5 secs” execution

WCT Goal of 10.5 secs (figure 4.7)

The purpose of this scenario is to show the behavior of the LP when it is needed to increase the

number of threads but not as much as in the first scenario. In this scenario Skandium has more

clearance. Therefore, a lower LP is expected.

Figure 4.7 shows that Skandium, at 8.7 secs of execution, realizes that it won’t reach its goal

33

with the current LP, therefore it increases the LP to a maximum of 10 active threads.

Note that the maximum LP of this execution is lower than the used on the two previous execu-

tions because the WCT goal has more room to allocate activities with less number of threads. It

finishes at 10.6 secs.

These examples have shown the feasibility of the proposed solution. It has been illustrated how

instrumenting skeletons with events allows to discover that the execution of a skeleton might be too

slow or too fast and to adapt the degree of parallelism dynamically, during the execution of this

same skeleton. Not only this methodology allows to adapt the degree of parallelism faster, but it

is also adapted to cases where the execution time is dependent on the input data, while strategies

using the execution time of the previous instance to adapt the degree of parallelism of the next

skeleton are unable to achieve this.

34

Chapter 5

Estimating the muscle’s execution
time and cardinality

As stated in chapter 4, it is possible to monitor execution time and skeleton cardinality using events

and state machines. This chapter presents the result of the evaluation of two statistical strategies

to estimate the muscle’s execution time and cardinality. The goal of this chapter is to provide a

recommendation of which strategy produces better estimates under which circumstances.

There is other work in the literature that needs to predict execution time of parallel applications.

One of most relevant is [30], where the authors introduce an estimation method for parallel execution

times, based on identifying separate ”parts” of the work done by parallel programs. The time

of parallel program execution is expressed in terms of the sequential work (muscles) and of the

parallel penalty. The parallel work estimation proposed in this thesis uses a different approach

based on Activity Dependency Graphs (ADGs), chapter 4, which models the work estimation as

an activity scheduling problem. The sequential work estimation, presented in this chapter, uses

a lightweight history-based estimation algorithm that allows on-the-fly estimation tuning, and is

therefore complementary.

The estimating strategies used in this thesis should fulfill the next two characteristics:

• they should allow online prediction,

• and they should be based on previous values, but they should not store all of them. Therefore

they should be lightweight.

Moving average [39] calculations are simple metrics that fit with those requirements. Specifically,

two algorithms were evaluated: Exponential Moving Average (EMA) [38] and Weighted Moving

Average (WMA) [41].

35

5.1 Exponential Moving Average (EMA)

EMA has the form:

En+1 = ρ×An + (1− ρ)× En

where En+1 is new estimated value, An is the last actual value, En is the previous estimated value,

and ρ is a system parameter between 0 and 1.

ρ defines an exponential decrease of the weight of the samples: the weight of the last actual

value is ρ, the weight of the next-to-the-last value is ρ× (1− ρ), and so on. Finally, the weight of

the first value is ρ × (1 − ρ)(n−1). A proper value for ρ depends on the relation among previous

values and the new expected value. For example, if ρ is set to 1, then only the last measure will be

taken into account; but, if ρ is set to 0, then only the first value will be taken into account. Overall,

if ρ is closed to 0 then the value will not be too sensitive to recent variations and the adaptation

will be triggered slowly, following a stable tendency of results. If ρ is close to 1, the framework will

quickly react to recent values. This measure should be adapted to cases where the last measure is

a good prediction for the next one, but can still be slightly stabilised in case one of these measures

is erratic.

5.2 Weighted Moving Average (WMA)

WMA is defined as follows:

En+1 =
α×An + n× En

α+ n

Here, n, the number of samples, is taken into account producing a smoother distribution of

weights. The parameter α allows for changing the weight factor. If α = 1, we will get a constant

distribution of weights, therefore En+1 will be the mean; if α = 2, we will get a linear distribution

of weights; and if α > 2, we will get an exponential distribution of weights, similar to EMA with

a ρ = α
α+n , but it has an important difference: here, ρ depends on n. Therefore for large enough

n, WMA will be less sensitive to recent variations. This measure should work fine if variables are

stable enough, though some of the measures might be erratic: if a stable result has been produced

enough times, one erratic measure will not influence very much the prediction.

5.3 Evaluation

The accuracy of the estimations made by several prediction algorithms was evaluated:

• EMA with ρ ∈ {0.5, 0.25, 0.125},

36

• WMA with α ∈ {2, 5, 10}.

The evaluation was performed on six benchmarks:

• Bubblesort, ordering an array of 65, 536 random elements.

• Mergesort, ordering an array of 65, 536 random elements.

• Naive NQueens for a board of 15× 15 board size.

• Pi calculation with 3, 000 decimals.

• Quicksort, ordering an array of 65, 536 random elements.

• Strassen matrix multiplication of two 2048× 2048 random matrixes.

• Word count for 1.2 million twitter posts.

In order to evaluate the accuracy of the estimations and to compare different algorithms with dif-

ferent parameters on different benchmarks we used Normalized root-mean-square deviation (NRMSD) [40]

as a measure of prediction accuracy:

RMSD =

√∑n
k=1(Ek−Ak)2

n

NRMSD = RMSD
maxnk=1(Ak)−minn

k=1(Ak)

As introduced above, Ak is the actual measure for sample k and Ek is the prediction for sample

k.

Figures 5.1 and 5.2 show two views of the result of the estimation algorithm evaluation. Figure

5.1 shows the different NRMSD grouped by benchmark, while figure 5.2 shows a drill down of the

different NRMSD grouped by type of variable: execution time or cardinality. Only variables that

change their value over time are taken into account. For example, |fs| in Quicksort and Mergesort

is always 2, and the NRMSD will be 0 for all estimation algorithms. Therefore |fs| in Quicksort

and Mergesort is not included in the analysis.

As shown in figure 5.1, there is not much discrepancy on the use of the different estimation

algorithms for the benchmarks Mergesort and Strassen, which means that the execution time and

cardinality of the estimated variables do not change too much.

Bubblesort, PI, and Quicksort show a similar distribution of NRMSDs. Here EMA with an

α = 0.5 have a slightly better behavior. Among the estimation algorithms, EMA(0.5) is the one

that gives more weight to the last value with respect to the previous ones. This means that these

benchmarks behave accordingly. This is evident in Bubblesort, since each iteration reduces the

number of comparisons in a constant factor. This means that the expected value of the execution

37

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

EMA(0.125)

EMA(0.25)

EMA(0.5)

WMA(10)

WMA(2)

WMA(5)

Figure 5.1: Normalized deviation grouped by benchmark

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

EMA(0.125)

EMA(0.25)

EMA(0.5)

WMA(10)

WMA(2)

WMA(5)

Figure 5.2: Normalized deviation grouped by type variable

38

time of the next iteration should be closest to execution time of the last iteration and farthest from

the first one.

Similar behavior is expected in PI and QuickSort due to their D&C nature. During the split

phase, the execution time of the deeper muscles should be closer to the one of the other deeper

muscles than the outer ones. Similarly, during the merge phase the execution time of the outer

muscles should be closer to the execution time of other outer muscles rather than the deeper ones.

|fc| has a different behavior as shown in figure 5.2. |fc| is the depth of the recursion tree in a D&C

skeleton. Here, WMA(10) offers better prediction, because the average value of |fc| is quite stable

but the EMA prediction with higher α values is too sensitive to the last observation that might be

too erratic.

Naive NQueens has a similar behavior. In NQueens, some of the explored states are much

shorter, because they lead to no solution (or few solutions). Having too much weight on the last

elapsed time is harmful. This is why WMA behaves considerably better than the other algorithms.

As stated before, the case of WordCount is seriously affected by the execution time of the first

split that loads ∼100MB to main memory. However, this case shows a slight tendency to behave

better with the algorithms that gives not too much relevance to the last value. Here, WMA behaves

better than the EMA, because this benchmark produces a lot of IO exceptions with irregular waiting

time, and WMA is less sensitive to irregular values than EMA.

5.4 Conclusions

From the analysis we can draw the following conclusions:

• EMA behaves better than the other algorithms evaluated on computation intensive muscles.

• WMA behaves better then the other algorithms evaluated on muscles with erratic behavior

(e.g., IO intensive muscles).

• When using EMA, ρ = 0.5 and offers an average good behavior.

• When using WMA, α = 10 and offers an average good behavior.

• Comparing WMA(10) and EMA(0.5), the first one offers a better result on average because the

second performs badly on irregular use-cases, however, most of the time, EMA(0.5) performs

slightly better than WMA(10).

39

Chapter 6

Perspectives and Conclusions

This chapter summarises the conclusions of this thesis and presents research perspectives that this

research could open.

6.1 Conclusions

In this thesis I have shown how skeletons together with autonomic computing present a promising

solution for the autonomic adaptation of parallel applications by the design and implementation of

a novel approach using event driven programming.

It has been shown that the proposed approach contributes to the current solutions as follows:

• It is not related to a specific application architecture, like the component architecture. Thus,

it has a broader scope, and is independent of the architecture used to implement skeletons.

• It allows for the introduction of structural changes during execution time. Therefore, it

provides a higher level of adaptability compared with other solutions that only allows to

introduce structural changes during compilation.

• The estimates of expected future work can be calculated on-the-fly, and it is not limited to

pre-calculated estimates.

The feasibility of the approach has been shown by designing and implementing self-configuring

and self-optimizing characteristics on the Skandium framework to guarantee a given execution time

for a skeleton, by optimizing the number of threads allocated. The QoSs implemented as part of

this thesis are: (1) Execution Wall Clock Time, and (2) Level of Parallelism.

This thesis has shown that the use of events allows for precise monitoring of the status of skeleton

execution and permits the estimation of the remaining computation time.

Other contributions of this thesis are:

40

• a novel skeleton’s separation-of-concerns based on event-driven programing. This approach

allows the introduction of non-functional concerns to skeletons without lowering its higher-

level programming.

• the evaluation of two different estimation strategies and a recommendation of which of them

better estimates under what circumstances. Despite their simplicity the predictors analyzed

are reliable enough and can be chosen easily depending on the application.

6.2 Research perspectives

This thesis discusses the QoSs level of parallelism and Wall Clock Time. As discussed by Aldin-

ucci et al in [2], there are different QoS and non-functional concerns that are widely studied and

incorporated as autonomic characteristics: e.g. dynamic load balancing, adaptation of parallelism

exploitation pattern to varying features of the target architecture and/or application, among others.

This research creates the basis for the design and implementation of different QoS in skeletons to

improve their scalability and maintainability.

Another future research project based on this work will consist in designing autonomic decision

procedures for deciding whether local execution with increased number of threads, distributed eval-

uation or a mix of the two will be the best for improving the performance or achieving a required

QoS. This thesis shows that the framework proposed is convenient for this research, but the design

of such a complex autonomic adaptation procedure requires additional work.

The proposed solution here is independent of the platform chosen for executing the skeleton. It

has been illustrated in a multi-core setting, but it could also be adapted to a distributed execution

environment by a centralized distribution of tasks to a distributed set of workers, adding or removing

workers like adding or removing threads in a centralized manner. Taking decisions in a distributed

manner would require more work. It is likely that a hierarchical distributed algorithm would be

more feasible than a purely distributed one.

41

Bibliography

[1] M. Aldinucci and M. Danelutto. Securing skeletal systems with limited performance penalty:

The muskel. Journal of Systems Architecture - Embedded Systems Design, 54(9):868–876, 2008.

[2] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Autonomic management of non-functional

concerns in distributed & parallel application programming. In Parallel Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium on, pages 1–12, 2009.

[3] M. Aldinucci, M. Danelutto, P. Kilpatrick, C. Montangero, and L. Semini. Managing adaptivity

in parallel systems. In B. Beckert, F. Damiani, F. Boer, and M. Bonsangue, editors, Formal

Methods for Components and Objects, volume 7542 of Lecture Notes in Computer Science,

pages 199–217. Springer Berlin Heidelberg, 2013.

[4] M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic qos in assist grid-aware compo-

nents. In 14th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP 2006).

[5] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez. GCM:

a grid extension to Fractal for autonomous distributed components. Annals of Telecommuni-

cations, 64(1-2):5–24, 2009.

[6] F. Baude, L. Henrio, and P. Naoumenko. A Component Platform for Experimenting with

Autonomic Composition. In First International Conference on Autonomic Computing and

Communication Systems (Autonomics 2007). Invited Paper. ACM Digital Library, Oct. 2007.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal component

model and its support in java. Software: Practice and Experience, 36(11-12):1257–1284, 2006.

[8] D. Buono, M. Danelutto, and S. Lametti. Map, reduce and mapreduce, the skeleton way.

Procedia Computer Science, 1(1):2095 – 2103, 2010. ¡ce:title¿ICCS 2010¡/ce:title¿.

42

[9] D. Caromel and M. Leyton. Fine tuning algorithmic skeletons. In A.-M. Kermarrec, L. Bougé,

and T. Priol, editors, Euro-Par 2007 Parallel Processing, volume 4641 of Lecture Notes in

Computer Science, pages 72–81. Springer Berlin Heidelberg, 2007.

[10] M. Cole. Algorithmic skeletons: structured management of parallel computation. MIT Press,

Cambridge, MA, USA, 1991.

[11] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel

programming. Parallel Computing, 30(3):389–406, 2004.

[12] A. Collins, C. Fensch, and H. Leather. Auto-tuning parallel skeletons. Parallel Processing

Letters, 22(2), 2012.

[13] D. created using Twitter4j (http://twitter4j.org). Source raw data used for the exam-

ple on section 5: 1.2 million colombian twits from july 25th to august 5th of 2013.

https://drive.google.com/file/d/0B KljwYYwPn0S0Nob3NTX29XcHc, August 2013. [Online; accessed 7-January-

2014].

[14] U. Dastgeer, J. Enmyren, and C. W. Kessler. Auto-tuning skepu: a multi-backend skeleton

programming framework for multi-gpu systems. In Proceedings of the 4th International Work-

shop on Multicore Software Engineering, IWMSE ’11, pages 25–32, New York, NY, USA, 2011.

ACM.

[15] P.-C. David and T. Ledoux. An aspect-oriented approach for developing self-adaptive frac-

tal components. In W. Löwe and M. Südholt, editors, Software Composition, volume 4089

of Lecture Notes in Computer Science, pages 82–97. Springer Berlin / Heidelberg, 2006.

10.1007/11821946 6.

[16] M. Diaz, S. Romero, B. Rubio, E. Soler, and J. Troya. Adding aspect-oriented concepts to

the high-performance component model of sbasco. In Parallel, Distributed and Network-based

Processing, 2009 17th Euromicro International Conference on, pages 21–27, Feb 2009.

[17] B. Douglass. Doing Hard Time: Developing Real-time Systems with UML, Objects, Frame-

works, and Patterns. Doing hard time : developing real-time systems with UML, objects,

frameworks and patterns / Bruce Powel Douglass. Addison-Wesley, 1999.

[18] C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Proceedings of the

23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’96, pages 372–385, New York, NY, USA, 1996. ACM.

43

[19] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, and J. Noyé. Escala: Modular event-driven

object interactions in scala. In Proceedings of the Tenth International Conference on Aspect-

oriented Software Development, AOSD ’11, pages 227–240, New York, NY, USA, 2011. ACM.

[20] H. González-Vélez and M. Cole. Adaptive structured parallelism for distributed heterogeneous

architectures: a methodological approach with pipelines and farms. Concurr. Comput. : Pract.

Exper., 22(15):2073–2094, Oct. 2010.

[21] H. González-Vélez and M. Leyton. A survey of algorithmic skeleton frameworks: high-level

structured parallel programming enablers. Softw. Pract. Exper., 40(12):1135–1160, Nov. 2010.

[22] K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto, H. González-Vélez, P. Kil-

patrick, R. Keller, M. Rossbory, and G. Shainer. The paraphrase project: Parallel patterns for

adaptive heterogeneous multicore systems. In B. Beckert, F. Damiani, F. Boer, and M. Bon-

sangue, editors, Formal Methods for Components and Objects, volume 7542 of Lecture Notes

in Computer Science, pages 218–236. Springer Berlin Heidelberg, 2013.

[23] K. Hammond and G. Michelson, editors. Research Directions in Parallel Functional Program-

ming. Springer-Verlag, London, UK, UK, 2000.

[24] P. Horn. Autonomic Computing: IBM’s Perspective on the State of Information Technology.

Technical report, 2001.

[25] R. Johnson, E. Gamma, J. Vlissides, and R. Helm. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[26] J. Kephart and D. Chess. The vision of autonomic computing. Computer, 36(1):41 – 50, Jan.

2003.

[27] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-oriented programming. In ECOOP, pages 220–242, 1997.

[28] M. Leyton. Advanced Features for Algorithmic Skeleton Programming. PhD thesis, l’Université

de Nice - Sophia Antipolis, 2008.

[29] M. Leyton and J. Piquer. Skandium: Multi-core programming with algorithmic skeletons. In

Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro International

Conference on, pages 289–296, 2010.

44

[30] O. Lobachev, M. Guthe, and R. Loogen. Estimating parallel performance. Journal of Parallel

and Distributed Computing, 73(6):876 – 887, 2013.

[31] G. Pabon and M. Leyton. Tackling algorithmic skeleton’s inversion of control. In Parallel, Dis-

tributed and Network-Based Processing (PDP), 2012 20th Euromicro International Conference

on, pages 42–46, 2012.

[32] D. Patterson. The trouble with multi-core. Spectrum, IEEE, 47(7):28–32, 2010.

[33] K. Potter, M. Smith, J. K. Guevara, L. Hall, and E. Stegman. It metrics: It spending and

staffing report, 2011. Technical Report G00210146, Gartner, Inc., January 2011.

[34] C. Ruz, F. Baude, and B. Sauvan. Using components to provide a flexible adaptation loop to

component-based soa applications. International Journal on Advances in Intelligent Systems,

5(1 2):32–50, July 2012. ISSN: 1942-2679.

[35] M. Samek. Practical UML Statecharts in C/C++: Event-Driven Programming for Embedded

Systems. Electronics & Electrical. Taylor & Francis, 2009.

[36] J. M. Van Ham, G. Salvaneschi, M. Mezini, and J. Noyé. Jescala: Modular coordination with

declarative events and joins. In Proceedings of the 13th International Conference on Modularity,

MODULARITY ’14, pages 205–216, New York, NY, USA, 2014. ACM.

[37] Wikipedia. Aspect-oriented programming - terminology, 2015. http://en.wikipedia.org/

wiki/Aspect-oriented_programming#Terminology [Online; accessed 15-May-2015].

[38] Wikipedia. Exponential moving average, 2015. http://en.wikipedia.org/wiki/Moving_

average#Exponential_moving_average [Online; accessed 3-May-2015].

[39] Wikipedia. Moving average, 2015. http://en.wikipedia.org/wiki/Moving_average [Online;

accessed 3-May-2015].

[40] Wikipedia. Root-mean-square deviation, 2015. http://en.wikipedia.org/wiki/

Root-mean-square_deviation [Online; accessed 3-May-2015].

[41] Wikipedia. Weighted moving average, 2015. http://en.wikipedia.org/wiki/Moving_

average#Weighted_moving_average [Online; accessed 3-May-2015].

45

http://en.wikipedia.org/wiki/Aspect-oriented_programming#Terminology
http://en.wikipedia.org/wiki/Aspect-oriented_programming#Terminology
http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
http://en.wikipedia.org/wiki/Moving_average
http://en.wikipedia.org/wiki/Root-mean-square_deviation
http://en.wikipedia.org/wiki/Root-mean-square_deviation
http://en.wikipedia.org/wiki/Moving_average#Weighted_moving_average
http://en.wikipedia.org/wiki/Moving_average#Weighted_moving_average

	Resumen
	Abstract
	Acknowledgments
	Introduction
	Problem
	Objectives and Contributions
	Overview

	State of the Art
	Algorithmic Skeletons
	Autonomic Computing
	Autonomic Skeleton's Related work
	Skeleton's Separation-of-Concerns Related Work
	Context: The Skandium Library

	Separation of Concerns using Events
	Very brief summary of Aspect-oriented Programming
	Event Driven Programming benefits
	Inversion of control problem
	Events for skeletons
	Event Listeners
	Event hooks
	Roles
	Logger and Online Performance Monitoring
	Overhead analysis
	Conclusions

	Autonomic Skeletons
	Wall Clock time, and Level of Parallelism
	Evaluating the remaining execution time
	Event-based monitoring
	Execution example

	Estimating the muscle's execution time and cardinality
	Exponential Moving Average (EMA)
	Weighted Moving Average (WMA)
	Evaluation
	Conclusions

	Perspectives and Conclusions
	Conclusions
	Research perspectives

	Bibliography

