
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

EFFICIENT ALGORITHMS FOR RISK AVERSE OPTIMIZATION

TESIS PARA OPTAR AL GRADO DE DOCTOR EN SISTEMAS DE INGENIERÍA

RENAUD PIERRE CHICOISNE

PROFESOR GUÍA:
FERNANDO ORDÓÑEZ PIZARRO

PROFESOR CO-GUÍA:
DANIEL ESPINOZA GONZÁLEZ

MIEMBROS DE LA COMISIÓN:
EDUARDO MORENO ARAYA

MAGED DESSOUKY

SANTIAGO DE CHILE
JULIO 2015

ii

Resumen

Muchos problemas de decisión industriales o loǵısticos pueden ser vistos como problemas
de optimización y para muchos de ellos no es razonable ocupar datos deterministas. Como
veremos en este trabajo en el contexto de despachos de emergencia o de planificación de
seguridad, las condiciones reales son desconocidas y tomar decisiones sin considerar esta in-
certidumbre pueden llevar a resultados catastróficos. La teoŕıa y la aplicación de optimización
bajo incertidumbre es un tema que ha generado un amplio área de investigación. Sin em-
bargo, aún existen grandes diferencias en complejidad entre optimización determinista y su
versión incierta. En esta tesis, se estudian varios problemas de optimización con aversión
al riesgo con un énfasis particular en el problema de camino más corto (RASP), problemas
estocásticos en redes en general y juegos de seguridad de Stackelberg.

Para obtener distribuciones de tiempos de viaje precisos sobre una red vial a partir de
datos GPS del sistema de tránsito, se presenta una revisión de los métodos existentes para
proyectar trayectorias GPS y se definen dos nuevos algoritmos: Uno que permite la proyección
de datos óptima con respecto a una medida de error convenientemente definida (MOE), y
un método heuŕıstico rápido que permite proyectar grandes cantidades de datos de man-
era cont́ınua (MMH). Se presentan resultados computacionales en redes reales y generadas
de gran tamaño. Luego, se desarrollan algoritmos eficientes para problemas de ruteo con
aversión al riesgo utilizando métodos de Sample Average Approximation, técnicas de lineal-
ización y métodos de descomposición. Se estudian la medida de riesgo entrópica y el Condi-
tional Value at Risk considerando correlaciones entre las variables aleatorias. Se presentan
resultados computacionales prometedores en instancias generadas de tamaño mediano. Sin
embargo, la naturaleza combinatorial de los problemas los vuelve rápidamente intratable a
medida que el tamaño del problema crece. Para hacer frente a esta dificultad computacional,
se presentan nuevas formulaciones para problemas en redes dif́ıciles, que tienen un menor
número de variables enteras. Estas formulaciones ayudan a derivar esquemas de brancheo
que se aprovechan de la estructura especial de las formulaciones propuestas. Se muestra
cómo aplicar estas ideas a los conjuntos de camino simple y de circuito hamiltoniano en re-
des generales, aśı como los conjuntos de camino simple y de corte en grafos dirigidos aćıclicos
(DAG). Este trabajo preliminar muestra ideas prometedoras para resolver problemas dif́ıciles.
Finalmente, se exploran las implicaciones de los métodos algoŕıtmicos y las formulaciones de-
sarrolladas para resolver RASP en un área diferente. Se presentan nuevas formulaciones y
enfoques de resolución para juegos de seguridad de Stackelberg cuando el defensor es averso
al riesgo con respecto a la estrategia del atacante. Esto se puede resolver de manera polino-
mial cuando se enfrenta a un adversario y resolviendo un problema de optimización convexa
en números enteros cuando el defensor enfrenta varios tipos de adversarios.

iii

iv

Abstract

Many decision problems in industry or logistics can be viewed as optimization problems and
it is commonly accepted that for a number of them it is unreasonable to assume deterministic
data. In emergency dispatching or security planning, the unknown actual conditions are a
significant source of uncertainty and wrong decisions can lead to dire situations. The theory
and application of optimization under uncertainty has been a source of substantial research.
Nevertheless, there still exist huge gaps in difficulty between deterministic optimization and
its version with uncertainty. In this thesis, we study several risk averse optimization problems,
with a particular emphasis on risk averse shortest path (RASP), stochastic problems in
networks in general, and risk averse Stackelberg security games.

To obtain accurate travel time distribution data on road networks from real world GPS
transit system trajectory data, we first present an overview of existing methods of projecting
GPS trajectories and define two new algorithms: One allowing optimal data projection with
respect to a suitably defined error measure, and a fast heuristic method that enables online
data projection for large datasets. We present computational results on large scale networks
(real and generated). We then develop efficient algorithms for RASP problems using sample
average approximation, linearization techniques and decomposition methods. We studied
the Entropic risk measure and the Conditional Value at Risk and considered correlations
between the random variables. We present promising computational results on medium sized
generated instances. Nevertheless, as the problem size grows we show that the problem can
become intractable. To address this computational difficulty, we present new formulations
for difficult network problems that have fewer integer variables. These formulations help
derive constraint branching schemes that take advantage of the special structure of the new
formulations. We show how to apply these formulations and associated branching schemes
to the st-path and the Hamiltonian circuit sets in general networks as well as the st-path
and st-cut sets in Directed Acyclic Graphs (DAGs). This preliminary work shows promising
ideas for the development of practical resolution schemes for hard network problems. Finally,
we explore the implications of the algorithmic methods and formulations developed to solve
RASP in a whole different domain. We present novel formulations and solution approach
for Stackelberg security games when the defender is risk averse with respect to the attacker
strategy. This leads to a polynomial method when facing one adversary and a convex Mixed
Integer Non Linear Programming (MINLP) formulation when the defender faces several types
of adversaries.

v

vi

To my father and grandmother.

vii

Acknowledgements

For the past five years, I have been a PhD student at the DSI doctoral program of the
University of Chile in Santiago. I have carried my research in the Operations Research
group, which turned out to be a fertile basis for my investigation on the combination of
mathematical programming and real life optimization. I want to thank Fernando Ordóñez
and Daniel Espinoza whose guidance was more than useful to go on with the research and
helped me personally more than once in the day-to-day life. At the Department of Industrial
Engineering, I have benefited greatly from the AGCO seminars and the knowledge of its top-
notch members. In particular, I thank all the professors of the University of Chile and the
University Adolfo Ibáñez who gave me five minutes countless times for all the weird questions
I had in mind. A special thank to Roberto Cominetti who was always available for a short
chat.
As well, all my gratitude goes to all the people with whom I shared an office, a course
or a common project, in particular to Alvaro Echeverŕıa, Francisco Muñoz and the three
Victors, I would like to thank the long list of roommates I had during those five PhD years:
Tchomas, Nico, Ale, Pelao Galvez, Roberto, Cacho, Dani, Steffi, Alex, Mathieu, Panchopin
and Jimador among others. They were a great support all the times I got flooded with the
thesis workload. It was a great pleasure to be the teacher of a lot of skillful students like
Ignacio, Mat́ıas, Ángela or Nicolás, who are beginning what I am finishing right now.
I thank my family and friends in France that accompanied me all the time in spite of the
thousands of kilometers that separated us, and Javiera and the two felines who were always
here when coming back home. Last but not least, a special thought to my father and my
hundred springs old grandmother who both left us during these five years.

viii

Contents

List of Tables xi

List of Figures xiii

List of Algorithms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions and outline . 2

2 Distribution estimation via data projection 4
2.1 Introduction . 4
2.2 Map Matching Heuristic (MMH) . 6

2.2.1 Heuristic Outline . 6
2.2.2 Complexity . 8
2.2.3 Improved version . 8
2.2.4 Known issues . 8

2.3 Minimum Oriented Error algorithm (MOE) 10
2.3.1 Oriented error measure . 10
2.3.2 Shortest path reduction . 11
2.3.3 Theoretical complexity . 13
2.3.4 An improved optimal algorithm . 13

2.4 Experimental results . 14
2.4.1 Data sets . 14
2.4.2 Results . 15

2.5 Conclusions . 18

3 Risk averse routing problems 20
3.1 Introduction . 20
3.2 Solution Approaches Proposed . 23

3.2.1 Conditional Value at Risk . 24
3.2.2 Entropic Risk Measure . 27

3.3 General solution framework . 31
3.3.1 Stochastic lower bound . 31
3.3.2 Stochastic upper bound . 32

3.4 Computational Experiments . 33
3.4.1 Experimental Set-up . 33

ix

3.4.2 Computational results . 35
3.5 Conclusions . 39

4 Reformulations for hard network problems 40
4.1 Introduction . 40
4.2 SOS1 with a logarithmic number of {0, 1} variables 42

4.2.1 Equivalent formulation . 42
4.2.2 Implicit branching of the extended formulation 43
4.2.3 Explicit branching for the original formulation 44

4.3 Application to simple path and Hamiltonian circuit 45
4.3.1 Simple path set . 45
4.3.2 Direct application: Traveling salesman problem 48

4.4 New formulations for hard problems in DAGs 49
4.4.1 Path set in DAGs . 49
4.4.2 Cut set in DAGs . 54

4.5 Conclusions . 56

5 Risk averse Stackelberg security games 57
5.1 Introduction . 57
5.2 Quantal response equilibria in security games 58
5.3 Risk averse defender . 60
5.4 Multiple types of adversary . 62
5.5 Solution quality . 66
5.6 Conclusions . 67

6 Conclusion 68

Appendix 70

Bibliography 72

Vita 79

List of Tables

2.1 General statistics . 16
2.2 Transantiago statistics . 17

3.1 Frameworks abbreviations . 35
3.2 Average solution time for different instance parameters (time[s](gap[%])) . . 36
3.3 Algorithms comparison Vs. risk measure parameters (time[s](gap[%])) 36
3.4 Price of correlation for one instance of the base case. 37

1 CVaR framework Vs. parameters . 70
2 Entropy framework Vs. parameters . 71

xi

List of Figures

2.1 S/T zones. 7
2.2 Sparse trajectory Vs. dense graph. 9
2.3 Tight U-turn type errors. 10
2.4 Classical closest point-edge association. 10
2.5 Oriented closest point-edge association. 11
2.6 Example of graph with trajectory . 12
2.7 Ḡ associated to G. 12
2.8 Example of potential auto-looping instance 13
2.9 Instance with preprocessing. 14
2.10 Preprocessed Ḡ. 15
2.11 E [RE(C)] [m] Vs. Sampling step [m] . 16
2.12 avg. RE(C)[m] Vs. noise’s standard deviation σ[m] 17
2.13 Geometric mean T [s] Vs. Sampling step [m] 17
2.14 Geometric mean T [ms] Vs. σ[m] . 18
2.15 Cumulative distributions. Proportion of edges Vs. Distance to real path [m] 18

3.1 Without considering correlations . 22
3.2 Considering correlations . 22
3.3 Reduction to Set Partition Problem . 23
3.4 Lower piecewise linear approximations of t 7−→ et and t 7−→ e

M
α
+t 30

3.5 Example of Grid networks generated for r = 13 33
3.6 Execution time [s] Vs. parameter and LP+IP or IP frameworks. 37
3.7 Stochastic optimality bounds Vs. number of samples S. 37
3.8 Stochastic optimality bounds Vs. Risk Aversion parameter 38
3.9 Example of upper bound for entropy and scenario realizations (cs)> x Vs. S ′ 38
3.10 Comparison of risk averse optimal path for CVaR1% and a risk neutral optimal

path . 39

4.1 Example of partitions
({

S+
d (l), S

−
d (l)

})
l∈{1,..,dlog2 de}

. 43

4.2 Classic variable branching . 43
4.3 SOS1 branching . 44
4.4 Constraint branching . 44
4.5 Constraint branching for the simple path set 47
4.6 Constraint branching for the path set in a DAG 50
4.7 Layer representation of a DAG from longest distance tree 52
4.8 Maximum st-cut from minimum st-flow . 53

xiii

5.1 Example of Gray code and sets (QK(p))p∈{0,...,K} for K = 8 65

5.2 Example of sets
({

S+
K(l), S

−
K(l)

})
l∈{1,..,dlog2 Ke} and their implications for K = 8 66

List of Algorithms

1 Pseudocode of MMH Heuristic . 7
2 Pseudocode of MMH heuristic on the fly . 9
3 Pseudocode of CS algorithm . 26
4 Pseudocode of CA algorithm . 27
5 Pseudocode of EEA algorithm . 31

xv

Chapter 1

Introduction

1.1 Motivation

Many real life problems require making decisions in uncertain or changing environments. To
address this there exists a large literature of research on optimization models and methods
that consider parameter uncertainty. We can name, among others, finding the cheapest
routing of a fleet of trucks delivering packages from depots to customers under uncertain travel
times ([50]), locating facilities in the most efficient way given variable customers demand
([40]) or determining stock levels depending on a variable demand over time ([32, 41]). All
these examples require a thorough understanding of the structure of the travel times or the
demand pattern which are inherently uncertain in the general case. The same goes in a
game theoretical context ([60]) where a player - although knowing the mixed strategy of
the other agents - is unaware of the exact decisions of the adversaries in the general case.
Consequently, we cannot assume a priori that we know the exact duration of travel through
some road section or that we have perfect knowledge of a future demand or the adversaries
actions in a game. Consequently, in many cases problem parameters must be represented by
a random variable with some probability distribution probability distribution rather than a
single number. We can note that any problem assuming distributions is at least as difficult
as a problem assuming deterministic data as the latter is a special case of the former.

This Ph.D. thesis began with a work done for the redesign of the dispatching system
for the Santiago Fire Department (SFD) that is in use since December 2012 ([34]). The
previous system used static dispatching rules, matching every possible emergency location
with predetermined fire stations. The static nature of this assignment and its independence
on the hour of the emergency and the network topology could lead to inefficient dispatching
rules. As it is crucial to have the fastest possible response, we built a network representation
of the Santiago transportation system and decided which fire stations must dispatch firemen
to an emergency according to the shortest paths in this network. We needed new algorithms
to efficiently project GPS data from the transit system to estimate congestion on roads as
this new system required accurate travel time estimations on all road segments in Santiago
at different times of day. Furthermore, as delays in emergency services can lead to dire
consequences, it is reasonable to select shortest paths to an emergency that are risk averse.

1

Moreover, deterministic Shortest Paths Problems (SPP) are polynomially solvable in theory
and fast to solve in practice ([3]) so we can easily observe the gap in difficulty when including
uncertainty. Indeed, when including risk aversion into this polynomially solvable problem,
it loses its nice structure in general and for the problems considered in this work lead to
computationally intensive solution methods.

We first present fast algorithms to project real transit system location data on road net-
works to obtain accurate estimations of travel time probability distributions. We then use
decomposition techniques that improve the solution time of risk averse problems in general
and present combinatorial procedures to reduce the number of binary variables for a family of
combinatorial network problems. In the last chapter, we study a class of Stackelberg security
games where not properly modeling uncertainty can have the same disastrous consequences
as in emergency dispatching. In the classic setup, a defender aims to maximize its utility
covering a set of targets against not perfectly rational human adversaries. We extend this ex-
pected payoff maximization model into its risk averse minimization counterpart and consider
the possibility of several types of attacker.

1.2 Contributions and outline

In chapter 2 we propose efficient methodologies to obtain accurate travel time distribution
data and then present in chapter 3 algorithms to efficiently solve risk averse shortest path
problems. In chapter 4 we propose reformulations and branching schemes for hard network
problems and we finish this document with chapter 5 where we propose solution approaches
to Stackelberg security games with a risk averse objective facing quantal response adversaries.

Distribution estimation via data projection This chapter gives an overview of existing
GPS data projection and defines two new algorithms: One allowing optimal data projection
with respect to a new distance criterion, and a fast heuristic method that enables on the
fly projection for large datasets. We present computational results on real and generated
networks. This chapter is an extension and revised version of the working paper [22]

Risk averse routing In this chapter we develop efficient algorithms to solve risk averse
shortest path problems via sample average approximation, linearization techniques and de-
composition methods. We considered the Entropic risk measure and Conditional value at
risk in presence of correlations between the random variables. We present promising com-
putational results on medium sized generated instances. This chapter is an extension and
revised version of the working paper [23].

Reformulations for hard network problems In this chapter, we show how to model
certain difficult network problems with fewer integer variables. We then derive constraint
branching schemes taking advantage of the special structure of these new models. We present
several approaches to apply our methodology to the st-path and the Hamiltonian circuit sets

2

with a special emphasis on the st-path and st-cut sets in DAGs. This chapter is preliminary
work in the development of practical resolution schemes for hard network problems. This
chapter is part of the working paper [20].

Risk averse Stackelberg games with quantal response adversaries In this chapter
we present a novel approach to Stackelberg security games with human adversaries. We show
a fast way to compute the best defense strategy when the defender is risk averse and propose
a Nonlinear Integer Programming formulation to solve the problem when extended to several
types of adversaries. This chapter is part of the working paper [24]

3

Chapter 2

Distribution estimation via data
projection

2.1 Introduction

One of our objectives was the development of efficient and reliable algorithms for the problem
of projecting GPS trajectories onto a graph representing a transportation network. These
algorithms can enable estimates of travel conditions (say travel times) from the large po-
tential sources of real-time GPS positioning data in a transportation system, such as cell
phones (think waze), GPS on transit system vehicles, and pilot vehicles. Building travel time
distributions requires repeatedly projecting a massive amount of travel information onto a
graph representing the transportation network. It becomes therefore important to be able to
reliably and efficiently project real travel information onto graphs.

Finding the correct path that generates a GPS trajectory is, however, more complicated
than it appears at first sight. In addition to difficulties induced by the size of realistic trans-
portation networks and the volume of GPS data to process - as part of an online application
or to estimate accurately a distribution - the problem might not be well posed. Specifically,
errors in the GPS data, the sampling rate of this data, and inaccuracies incurred in repre-
senting a transportation network can make it difficult to discern which is the road segment
that corresponds to certain GPS trajectory. Therefore, an important quality measure of a
solution method is how sensitive it is to the uncertainties in the information being processed.
Previous work on projecting GPS data on a graph have used a wide range of methodologies:
some designed algorithms locally fitting the data to a subgraph of the network that is closest
to every measurement point ([84]). Namely, for each point of the GPS trajectory, they find
the closest node or edge in the network, and return this possibly disconnected subgraph. The
approach used a heuristic to decide how to identify the subgraph at the intersections, where
it is most difficult to match. Other authors preprocess the input data with Kalman filters to
eliminate inconsistent data, and then apply an algorithm that builds sequentially the output
path ([89]). Some algorithms build the solution path sequentially based on geometric con-
siderations and store a buffer of past states. This enables to backtrack if the current path

4

deviates too much from the trajectory ([17, 56]). The method introduced in [19] finds first
paths that locally match the input GPS trajectory according to the Frechet distance, i.e.:
whose local point to curve distance is minimum, and then stitches these partial solutions
together. In [26] the authors simplify dense GPS trajectories with Douglas-Peucker based
algorithms ([31]) and then identify the road segments that match these simplified trajecto-
ries locally. [49] introduced a similar approach applying linear regressions to simplify and
depurate high rate sampling GPS trajectories. [66] used a fuzzy logic based algorithm to
sequentially evaluate the direction to take when dealing with an intersection. The subgraphs
found by these so-called point-to-point or point-to-curve matching methods are not neces-
sarily connected, which limits their use when dealing with complex trajectories. The articles
by [55] and [61] designed algorithms that find the most probable road taken by a trajectory
assuming that the measurement error of the velocity data follows a normal distribution. To
find a path - eventually containing loops - in the graph that matches the GPS trajectory,
these prior works construct an acyclic network from the trajectory information and the net-
work topology. The longest path on this related network is the path that maximizes the
likelihood of generating that trajectory data. Our approach to project GPS trajectory data
on a map is similar to this last idea, in that we also use a related network built from the GPS
trajectory information and the topological information of the network. In our work we take
into account the geometrical considerations between the GPS trajectory and the network
topology and also some upper bound of the maximum measurement error of modern GPS
devices. We propose two optimization-based algorithms to find the path of graph edges that
correspond to a given sequence of geo-referenced points. A driving feature of our approaches
is that they lead to computationally efficient methods as we apply these algorithms to large
amounts of data or looking for an immediate response. The first method modifies the arc
traversal cost in proportion with how close the geo-referenced points are, thus making the
shortest path between the first and last geo-referenced points on this modified network a
good candidate for the path that generated these points. As for previous methods in the
literature, this approach is sensitive to the density of GPS points and their measurement
error hence leading to potentially mismatched paths. This motivates our second approach
which, for new suitable definitions of the error incurred in selecting a certain path, selects
the path that minimizes this error on a modified network similar to the one mentioned in [55]
and [61]. It consists in measuring the error in a way that forbids to associate GPS points to
edges of the graph that are not in the continuity of the path already constructed. Our com-
putational results, on two networks that represent real road networks (Santiago, Chile and
Seattle, WA) and a square grid, compare the accuracy and computational efficiency of the
proposed methods. The networks we considered have several hundreds of thousands nodes
and edges. We show that solving for the path that minimizes the error measure achieves
the most accurate solutions, while the first approach achieves solutions that are slightly less
precise but in a fraction of the running time in some cases.

Through this chapter we will use the following notations: We will consider that the trans-
portation network is represented by a graph G = (V,E), where the set of nodes has |V | = n
elements, and there are |E| = m elements in the set of edges. We denote by de the non-
negative length of edge e ∈ E, with d ∈ Rm

+ its vector notation, and by {pk}k∈{0,...,q} the
sorted sequence of q trajectory points. By sorted we refer to having p0 denote the first tra-
jectory point and pq the last one. We denote the non-negative distance of a given trajectory
point pk to node v ∈ V by d(pk, v) and to edge e ∈ E by d(pk, e).

5

We structured the rest of the chapter as follows: In the next section we present the
first optimization based approach, which we refer to as Map Matching Heuristic (MMH).
Section 2.3 introduces our second optimization based approach, referred to as Minimization of
Oriented Error (MOE). We describe the computational experiments and their corresponding
results in section 2.4. We present our conclusions in section 2.5.

2.2 Map Matching Heuristic (MMH)

In this section we present a heuristic method to select a path within the graph representing
the transportation network that is close to the sequence of geo-referenced points, or trajectory
of points for short. The central idea of this approach is to modify the graph by lowering the
physical length of edges that are close to the trajectory of points. On this modified graph
then solve a shortest path problem between the first point of the trajectory and the last one.
This method guarantees that the subgraph returned is a path in the given network, which
can be false with some of the existing projection methods. In addition to presenting the
heuristic, in this section we describe algorithmic improvements, discuss its computational
complexity and exhibit some examples where this heuristic has difficulty and fails to identify
the correct path.

2.2.1 Heuristic Outline

The central idea of the heuristic is that for every point in the trajectory, say pk, we find
the edges of the graph that are within a radius R > 0 of pk. We then lower their lengths
by the distance d(pk, pk+1) between pk and pk+1. Once we have iterated this procedure over
the entire sequence of trajectory points, we need to identify the starting and ending nodes
according to the trajectory. For this we define two sets of candidate nodes

S := {v ∈ V : d(p0, v) 6 R} and T := {v ∈ V : d(pq, v) 6 R} .

The set S corresponds to nodes that are close to the first trajectory point p0 and T to nodes
that are close to the last trajectory node pq.

As illustrated in figure 2.1 we define an artificial starting node s and connect it to every
node v ∈ S with a directed arc of length d(p0, v) and connect every node v ∈ T to an artificial
end node t with a directed arc of length d(pq, v). Since the nodes in S and T are closer than
R to a trajectory point, the first part of this heuristic modified the edges incident to these
nodes s and t. Since this procedure can potentially decrease the length of an arc multiple
times, we make sure to keep the positive part of the modified edge lengths to avoid defining
negative cost arcs. We select a path corresponding to a given trajectory of points from this
modified network by solving a shortest path problem between s and t. Since all arcs are
non-negative we can find the shortest path using Dijkstra’s algorithm.

We note that if a trajectory point is close to an intersection, this procedure can reduce the
length of all edges on the intersection an amount equal to the distance to the next trajectory

6

s

t

b
b

b

b

p1 p2

p3

p4

S

T

Figure 2.1: S/T zones.

point. This can reduce significantly the length of edges that are not oriented in the direction
of the trajectory. For this reason it is preferable to reduce several times the length of edges
with small quantities - due to several close trajectory points - rather than just one large
reduction. This was achieved adding a number of artificial points in a straight line between
every two consecutive trajectory points. We implemented this densification of the trajectory
points imposing that the distance between consecutive points has to be at most dmax. This
ensures that weight reductions of arcs that do not follow the trajectory are maintained small.
We present these ideas in the pseudo-code of the MMH Heuristic outline in Algorithm 1
where we denote by dijkstra(G,w, u, v) the implementation of a Dijkstra algorithm that
computes a shortest path inside graph G = (V,E) with weights w ∈ Rm

+ starting at node u
and ending at node v.

Algorithm 1: Pseudocode of MMH Heuristic

Data: G = (V,E), P = (pk)k∈{1,...,q}, R, d ∈ Rm , dmax

Result: A path SP
w ← d, pt ← p1;1

for k = 1, . . . , q − 1 do2

nk ← bd(pk, pk+1)/dmaxc;3

for l = 0, . . . , nk do4

ph ← pk + (pk+1 − pk) · l dmax

d(pk,pk+1)
;5

for e : d(pt, e) 6 R do we ← [we − d(pt, ph)]+;6

pt ← ph;7

for e : d(pt, e) 6 R do we ← [we − d(pt, pq)]+;8

S ← {v ∈ V : d(p0, v) 6 R};9

T ← {v ∈ V : d(pq, v) 6 R};10

Ḡ = (V ∪ {s, t}, E ∪ {(s, v)v∈S , (v, t)v∈T});11

for v ∈ S do w(s,v) ← d(p0, v);12

for v ∈ T do w(v,t) ← d(pq, v);13

SP ←dijkstra(Ḡ, w, s, t);14

return SP15

7

2.2.2 Complexity

There are at most

Q =
1

dmax

q−1∑
k=1

d (pk, pk+1)

points belonging to the dense data. The complexity of the entire projection framework is as
follows: for each of the (at most) Q points of the dense trajectory, find its closest edges has
O(m) complexity, giving a total complexity for all the dense points of O(Qm). Dijkstra’s
algorithm using binary heap over the graph with modified weights has a complexity in O(m+
n log n). Putting everything together, the total complexity of the projection algorithm for
each trajectory is in O(Qm+ n log n) which is fast in an algorithmic sense, but can be slow
in practice because it requires the computation of the distance between every point-edge pair
of the graph. To avoid to compute every combination, we propose in the following section a
way to speed up the last method.

2.2.3 Improved version

First, we notice that the only weights we need during the execution of our algorithm are the
ones picked by Dijkstra’s algorithm. Consequently, when considering the current node with
the lowest label, we only have to compute the modified weights we of its outgoing edges e.
Although the theoretical worst-case complexity stays the same, doing so granted considerable
speed-ups in practice. We present the pseudo-code of this Map Matching Heuristic (MMH)
in Algorithm 2 where (p̄k)k∈{1,...,Q} represents the densified trajectory, H is a binary heap,
insert heap(H,v,π) is a routine that inserts the node index v with value π into the heap
H, change val(H,v,π) is a routine that changes the value of the node index v inside the
heap H to the value π, get root(H) is a routine that returns the node index of the root
node of the heap H and delete root(H) is a routine that deletes the root node of heap H.

During computational experimentation we observed that several paths had equal objective
values, mainly because of entire zero-cost sections. To differentiate them, we decided to use
a modified heap during the execution of Dijkstra’s algorithm. This special heap follows a
lexicographic order in terms of error first and then in terms of physical distance. This way,
we still find a path with minimum cost with the extra requirement that amongst all the paths
having the same cost, it finds the one having the shortest length. This modifications permits
to tackle ’zero-zero’ ties between edges.

2.2.4 Known issues

Some problems can show up with this heuristic: in some situations the algorithm can identify
a path different from the original itinerary. One of these problems occurs when the trajectory
passes through a dense street zone and has longer segments than the edges in the neighbor-
hood. In this context the algorithm can choose to pass through closer but incorrect edges: as

8

Algorithm 2: Pseudocode of MMH heuristic on the fly

Data: G = (V,E), P = (p̄k)k∈{1,...,Q}, R, d ∈ RE , dmax

Result: The last node of a path, a precedence array fatheri and distance labels πi

w ← d;1

T ← {v ∈ V : d(pq, v) 6 R};2

H ← ∅;3

for v ∈ V do if d(p0, v) 6 R then insert heap(H,v,d(p0, v));4

while H 6= ∅ do5

i←get root(H);6

delete root(H);7

if i ∈ T then return i;8

for j ∈ δ+(i) do9

for k = 1, . . . , Q− 1 do if d(p̄k, (i, j)) 6 R then wij ← [wij − d(pk, pk+1)]+;10

if πj > πi + wij then11

πj ← πi + wij;12

fatherj ← i;13

if j /∈ H then insert heap(H,j,πj) else change val(H,j,πj);14

return T not reached.15

we see in figure 2.2 where the dotted path is the real one and the dashed path the subgraph
found by the algorithm. Note that this data-induced problem comes from low GPS sampling
rates and is sometimes unavoidable with geometrical considerations only. The computational
results we obtained on the grid network illustrate perfectly this bad behavior.

b

b

b

b

Figure 2.2: Sparse trajectory Vs. dense graph.

Another common partial failure of the algorithm can occur when the trajectory contains
a tight U-turn like part. Due to the proximity between the forward and the backward pieces
of the trajectory, the edges connecting them in the entire graph will have their lengths at low
values. Sometimes those connecting edges will have lower values than the real path edges
and consequently, as we can see in figure 2.3 the algorithm will cut off an entire U-turn part
(dotted) passing directly at the end of it (dashed).

Although MMH is assured to have a short execution time, we have no guarantee to obtain
a good solution. Moreover, the latter category of error is sometimes unavoidable and MMH

9

b
b

b

b

b
b

b

b

b

b

b
b

Figure 2.3: Tight U-turn type errors.

cannot identify path containing cycles or backtracking parts. In the next section we present
a way to avoid the latter category of error and have a guarantee that we find the closest path
with respect to some special error measure.

2.3 Minimum Oriented Error algorithm (MOE)

2.3.1 Oriented error measure

One of the first and simplest way to find a map matching was to associate each point to its
closest edge in the network. One of the drawbacks of this method was to have total freedom
over the choice of the edge for each point. For example, in figure 2.4 we can see that point
p5 is associated to an edge that cannot possibly be the right one.

b
b

b

b

b

b

p1 p2

p3

p4

p5

p6

Figure 2.4: Classical closest point-edge association.

This type of wrong association appears because we allow the projection on any edge with-
out any consideration for the topology of the network. From this observation we introduced
the notion of oriented error of a subgraph. As for the classical error, the oriented error is a
measure that computes the closest edge of each trajectory point with the important difference
that it allows a point-edge association only if this edge is either the edge associated to the
last point or one of its outgoing edges. We show an example of such a situation in figure 2.5.

Formally, given some path C =
(
c1, ..., c|C|

)
⊆ E we define its ordered error as follows:

OE(C) :=
1

q

q∑
k=1

d(pk, ce(k))

10

b
b

b

b

b

b

p1 p2

p3

p4

p5

p6

Figure 2.5: Oriented closest point-edge association.

With: {
e(k) := argmin {d(pk, ci) : i > e(k − 1)}
e(0) := 1

It represents the least distance between a point and the edges of the path C following the edge
associated with the previous point. We can notice that this error measure heavily penalizes
the paths cutting U-turns. In the following section we present an algorithmically fast way to
find the optimal path for the ordered error measure.

2.3.2 Shortest path reduction

To find a path that minimizes the oriented error, we only have to find a minimum oriented
error point-edge association such that any point is projected on the edge associated with
the previous point or one of its outgoing edges. We will show that this procedure yields a
polynomial time complexity using a shortest path algorithm in a derived network. Define the
directed graph Ḡ = (V̄ , Ē) such that V̄ = {s} ∪ V1 ∪ V2 ∪ ... ∪ Vq ∪ {t} where for each point
pr of the trajectory we define the node set Vr as Vr := {ver ,∀e ∈ E}. We define the edge set
Ē as the union Ē = E1 ∪ E2 ∪ ... ∪ Eq ∪ Eq+1 where the subsets Eq are defined as follows:

E1 = {(s, ve1),∀e ∈ E}

Er =
∪

(i,j)∈E

{
(v

(i,j)
r−1 , v

(i,j)
r),

(
(v

(i,j)
r−1 , v

(j,k)
r)

)
k∈δ−(j)

}
∀r ∈ {2, ..., q}

Eq+1 =
{
(veq , t),∀e ∈ E

}
With the following edge weights:

w(s,ve1)
= dep1 ∀e ∈ E

w
(v

(i,j)
r−1 ,v

(i,j)
r)

= d
(i,j)
pr ∀r ∈ {2, ..., q},∀(i, j) ∈ E

w
(v

(i,j)
r−1 ,v

(j,k)
r)

= d
(j,k)
pr ∀r ∈ {2, ..., q},∀(i, j) ∈ E, ∀k ∈ δ−(j)

w(veq ,t) = 0 ∀e ∈ E

Where dep = d(e, p) is the distance between some edge e and some trajectory point p. In the
following we show an example of graph G in figure 2.6 and its associated graph Ḡ in figure
2.7. Let us prove that we can extract a path that minimizes the total ordered distance with

11

i1

i2 i3

i4

e1

e4

e3 e5

e2

b
b

b

b

b

p1
p2

p3

p4

p5

Figure 2.6: Example of graph with trajectory

ve1p1 ve1p2 ve1p3 ve1p4 ve1p5

ve2p1 ve2p2 ve2p3 ve2p4 ve2p5

s ve3p1 ve3p2 ve3p3 ve3p4 ve3p5 t

ve4p1 ve4p2 ve4p3 ve4p4 ve4p5

ve5p1 ve5p2 ve5p3 ve5p4 ve5p5

de1p1

de2p1

de3p1

de4p1

de5p1

de1p2

de2p2

de3p2

de4p2

de5p2

de2p2

de5p2

de1p3

de2p3

de3p3

de4p3

de5p3

de2p3

de5p3

de1p4

de2p4

de3p4

de4p4

de5p4

de2p4

de5p4

de1p5

de2p5

de3p5

de4p5

de5p5

de2p5

de5p5

0

0

0

0

0

Figure 2.7: Ḡ associated to G.

the trajectory from every shortest (s, t)-path C = (ck)k∈{1,...,q} in the graph Ḡ. First, we can

see that a (s, t)-path in Ḡ has exactly q+1 edges, the last one being dummy. The k-th edge
ck associates the k-th trajectory point pk with some edge ek of the graph and induces a cost
equal to the distance between pk and ek. By construction, we know that ek is an outgoing
edge of ek−1 or ek−1 itself. Consequently, (e1, ..., ek) defines a path in the original network G,
and allows an association with the outgoing edges of ek−1 only. Putting everything together,
a shortest (s, t)-path in Ḡ is giving an association path-trajectory that has the minimum
oriented error. An important observation about this algorithm is enables to backtrack and
form cycles, which is a good feature when we know that the trajectory loops at some point.
Nevertheless, in this current form, it can lead to situations where, for instance, consecutive
GPS points are successively projected on an edge and its counterpart. In the example of figure
2.8, we show that the path going through the edge {(i1, i2)} and the path going through the
edges {(i1, i2), (i2, i1), (i1, i2)} have exactly the same oriented error. We tackled this problem
using a double priority shortest path algorithm optimizing first with the oriented error, and
when facing a tie between edges, take the one adding the least real distance to the actual
path. In this goal, when running Dijkstra’s algorithm, we used a double priority heap instead
of the classical one: we first optimize with respect to the lengths of the network Ḡ, and then
we force it to choose the path with the minimum real path length.

12

i1 i2

b

b

bp1

p2

p3

Figure 2.8: Example of potential auto-looping instance

2.3.3 Theoretical complexity

Noticing that Ḡ is acyclic, we can find a (s, t)-shortest path in O(|Ē|) time with a breadth first
search or a depth first search. Let us compute the total complexity in function of the original
parameters. The number of edges of each subset Eq is |E1| = |Eq+1| = m for the first and
the q + 1-th one, and we have |Er| =

∑
(i,j)∈E

[1 + |δ−(j)|] = m+
∑
i∈V

δ+(i)δ−(i), ∀r ∈ {2, ..., q}

in between. Putting everything together the total number of edges in Ē is

|Ē| = 2m+ (q − 1)

(
m+

∑
i∈V

δ+(i)δ−(i)

)
= (q + 1)m+ (q − 1)

∑
i∈V

δ+(i)δ−(i)

6 m(q + 1) +m(q − 1)min
{
D+

G, D
−
G

}
= O

(
qm2

)
With D+

G = max
i∈V

δ+(i) and D−
G = max

i∈V
δ−(i) respectively the in-degree and out-degree of

G. Therefore the total complexity C(Ḡ) of finding a shortest (s, t)-path over graph Ḡ is
C(Ḡ) = O (qm2).

2.3.4 An improved optimal algorithm

The computationally heavy part of the previous algorithm is the construction of the derived
network Ḡ. If we have some upper bound δ over the maximum error between the real path
and its trajectory - a distance - we can omit a priori the point-edge associations having a
distance greater than δ We give an example of such a situation in figure 2.9. This process
permits to build the derived network Ḡ only with the edges of E in a corridor of width
δ around the trajectory as depicted in figure 2.10. Further, we can use the same trick we
used to improve the last heuristic to speed up the algorithm. Indeed, the only weights we
need during the execution of Dijkstra’s algorithm are the outcoming edges of the minimum
label nodes. Consequently we can modify the shortest path algorithm in the same way and
compute dynamically the distances between trajectory points and edges.

13

i1

i2 i3

i4

e1

e4

e3 e5

e2

b
b

b

b

b

p1
p2

p3

p4

p5

Figure 2.9: Instance with preprocessing.

2.4 Experimental results

2.4.1 Data sets

We ran our two algorithms over two real networks: Santiago de Chile (SAN, n ≈ 330000
and m ≈ 660000) and Seattle, WA (SEA, n ≈ 420000 and m ≈ 860000) and a ficti-
cial grid network (GRI) of 100 × 100 nodes with edges of length 100 meters. For each
network we generated 100 different paths between nodes distant of a distance between 5
and 10 kilometers (then generating path of at least that length). The generated paths are
shortest paths between two nodes uniformly drawn in a box of the densest zone of its net-
work with respect to a random uniform weight. Consequently, the family of trajectories we
generated in this chapter have a minimal number of edges on average. Second, we sam-
pled and noised with Gaussian perturbation each of these paths with a sampling rate in
s ∈ {10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210, 250, 300, 400, 500}[m] and a Gaussian error
e ∼ N (µ = 0, σ) such as σ ∈ {1, 2, 5, 7, 10, 20, 50}[m] in both directions, without correla-
tion between them. The total number of instances we used was then 31500 (3[networks] x
100[trajectories] x 15[s] x 7[σ]). The parameters we used for the algorithms were the fol-
lowing: two consecutive points of the trajectory must be closer than dmax = 20[m] and the
radius parameter used in the algorithms is δ = R = 500[m]

We had about 900 real GPS trajectories for the particular case of Santiago de Chile, and
applied our two methods on them without knowing what their real paths were. This implied
that we were unable to compute the real difference between the original path and the output
of the algorithms. For these real instances we only present the oriented error and classic path
to trajectory distance.

14

ve1p1

ve2p4 ve2p5

s ve3p1 ve3p2 ve3p4 ve3p5 t

ve4p1 ve4p2 ve4p3

ve5p2 ve5p3 ve5p4 ve5p5

de1p1

de3p1

de4p1

de3p2

de4p2

de5p2

de4p3

de5p3

de5p3

de5p4

de5p4

de2p5

de3p5

de5p5

0

0

0

Figure 2.10: Preprocessed Ḡ.

2.4.2 Results

Define R =
(
r1, ..., r|R|

)
⊆ E to be the real path of the trajectory. To check if the algorithm

is efficiently identifying the correct subgraph of each trajectory, we defined an error measure
comparing the real path R and the one computed by some algorithm C. Define the distance
d(e, a) between two edges e = (i, j) ∈ E and a = (u, v) ∈ E as the minimum distance between
two points of the segments defined by the two edges. In other words:

d(e, a) := min
(α,β)∈[0,1]2

d (αi+ (1− α)j, βu+ (1− β)v)

assuming the abuse of notation that a node v can represent its geometric point as well. Now
we can define the notion of maximum real error of path C, RE(C):

RE(C) := max
i∈{1,...,|C|}

min
j∈{1,...,|R|}

d(ci, rj)

that represents the maximum distance between an edge of the path found and the real path
the trajectory comes from. The classic error measure, defined as the average of the point-to-
closest-edge distances, is written as follows:

CE(C) :=
1

q

q∑
k=1

min
i∈{1,...,|C|}

d(pk, ci)

The algorithms presented in this chapter were coded in C programming language and run
over a cluster node of 2.4GHz with 6Go Ram.

In Table 2.1 we will compare the real error (RE), the oriented error (OE) and the classic
error (CE) of the solutions returned by MMH and MOE ever the networks we considered.

The numbers presented in table 2.1 are the average and maximum from the 10500 instances
generated for each network (i.e.: 31500 for the overall line total). As expected, all the types

15

Table 2.1: General statistics

RE(C)[m] OE(C)[m] CE(C)[m]
Network Algorithm Geom. avg T [s] max avg max avg max avg

SAN
MOE 2.72 13.26 0.59 5.28 0.86 3.94 0.73
MMH 2.08 15.24 0.91 7.57 1.10 6.97 1.04

SEA
MOE 2.64 14.63 0.63 4.12 0.71 3.57 0.66
MMH 2.04 16.60 1.20 8.11 1.30 7.49 1.24

GRI
MOE 2.80 18.77 0.51 3.01 0.72 2.54 0.67
MMH 1.91 15.56 1.19 6.64 1.11 6.56 1.08

Overall
MOE 2.72 15.56 0.57 4.14 0.76 3.35 0.69
MMH 2.01 15.80 1.10 7.44 1.17 7.01 1.12

of error measures are lower for the paths found by the optimal algorithm MOE than those
computed by the heuristic MMH. In particular, this result holds for the real error measure,
meaning that the map matching of the optimal algorithm is better than for the heuristic
but also takes up to 35% of extra computation time on average. Figure 2.11 show that the
real error measures of both algorithm depend of the sampling rate in an almost linear way
(RE(C) ≈ 0.07 × s). Again, we can see that MOE behaves always better than MMH on
average.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500

b b MOE (SAN)
rs rs MMH (SAN)

b b MOE (SEA)
rs rs MMH (SEA)

b b MOE (GRI)
rs rs MMH (GRI)

b

b b
b

b
b

b

b
b

b

b

b

b

b

b

rs rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

b

b

b

b
b

b

b
b

b

b
b

b

b

b

b

rs

rs rs
rs

rs
rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

b
b

b

b

b
b

b

b

b
b

b

b

b

b

b

rs
rs rs rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

Figure 2.11: E [RE(C)] [m] Vs. Sampling step [m]

Furthermore, figure 2.12 shows that the standard deviation of the Gaussian noise has close
to no influence up to σ 6 20[m], which is in the range of modern GPS sensitivity. In figure
2.13 we can see that the sampling step has a weak influence on the execution time of both
algorithms given that our densification procedure always put back to instances where the
artificial sampling step is at most dmax. Nevertheless, its influence comes from the presence
of similarly good candidates for the edges to project the trajectory on. The presence of these
candidates implies a deeper - then slower - search of Dijkstra’s algorithm. In figure 2.14 we
can observe that the standard deviation σ of the Gaussian noise we applied has an influence
on the execution time for the MOE algorithm. Indeed, a high dispersion of the trajectory
raises the size of the derived network Ḡ - i.e.: the number of possible paths to explore - then
slowing the overall execution time of Dijkstra’s algorithm. In figure 2.15 we can see that any

16

10
11
12
13
14
15
16
17
18
19
20

0 10 20 30 40 50

b b MOE (SAN)
rs rs MMH (SAN)

b b MOE (SEA)
rs rs MMH (SEA)

b b MOE (GRI)
rs rs MMH (GRI)

b b
b b

b
b

b

rs rs rs rs rs

rs

rs

b b b b b
b

b

rs rs rs rs rs
rs

rs

b b b b b
b

b

rs
rs rs rs rs

rs

rs

Figure 2.12: avg. RE(C)[m] Vs. noise’s standard deviation σ[m]

1.5

2.0

2.5

3.0

3.5

0 100 200 300 400 500

b b MOE (SAN)
rs rs MMH (SAN)

b b MOE (SEA)
rs rs MMH (SEA)

b b MOE (GRI)
rs rs MMH (GRI)

b

b
b b b b b b b b b b b b b

rs

rs rs rs rs rs rs rs rs rs rs
rs

rs

rs
rs

b

b
b b b b b b b b b b b b b

rs
rs rs rs rs rs rs rs rs rs rs rs

rs
rs rs

b

b
b

b
b

b b b b b b b b b b

rs

rs
rs rs rs rs rs rs rs rs rs rs rs rs rs

Figure 2.13: Geometric mean T [s] Vs. Sampling step [m]

algorithm on any network (Santiago (SAN), Seattle(SEA), Grid(GRI)) returns (on average)
map matching paths where at least 89% of their edges are within a corridor of 1 meter from
the real path. Once again, we can see that MOE behaves better than MMH with at least
92% on average of their path edges in a corridor of one meter around the real path. Further,
on the artificial grid instances, we can see that there is a peak of the cumulative distributions
at 100 meters, which corresponds to the length of all the edges, and another one at 133
meters which roughly corresponds to 100

√
2 meters, i.e.: to point-edge associations wrongly

associated with a neighboring edge or an edge which is at an opposite corner (at a distances
of 100

√
2 meters) of the square the edge belongs to. The same phenomenon occurs as well

at 200 and 233 meters.

Table 2.2: Transantiago statistics

OE(C)[m] CE(C)[m]
Algorithm Geometric mean T [ms] max avg max avg

MOE 3.21 137.68 12.53 65.09 3.29
MMH 0.08 317.71 30.82 303.56 26.52

We tested the algorithms on the real trajectories coming from the public transportation

17

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

0 10 20 30 40 50

b b MOE (SAN)

rs rs MMH (SAN)

b b MOE (SEA)

rs rs MMH (SEA)

b b MOE (GRI)

rs rs MMH (GRI)

b
b

b
b

b

b

b

rs rs rs rs rs
rs

rs

b
b

b
b

b

b

b

rs rs rs rs rs rs

rs

b

b

b
b

b

b

b

rs rs rs rs rs rs

rs

Figure 2.14: Geometric mean T [ms] Vs. σ[m]

0.85

0.88

0.91

0.94

0.97

1.00

0 100 200 300 400

b b MOE (SAN)

rs rs MMH (SAN)

b b MOE (SEA)

rs rs MMH (SEA)

b b MOE (GRI)

rs rs MMH (GRI)

b

b

b

b

b

b
b

b
b b b b b b b b

rs

rs

rs

rs

rs

rs
rs

rs
rs

rs
rs rs rs rs rs rs

b

b

b

b

b
b

b
b

b b b b b b b b

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs rs rs rs rs rs

b b b b

b
b b b

b
b b b

b b b b

rs rs rs rs

rs

rs rs rs
rs

rs rs rs
rs rs rs rs

Figure 2.15: Cumulative distributions. Proportion of edges Vs. Distance to real path [m]

system of Santiago City. We summarize the general statistics over these real instances in
table 2.2 Again, we see that MOE has a way better behavior than MMH in terms of distances
between the output path and the trajectory. Indeed, on average, a trajectory point is four
times closer of the output path returned by MOE than the path returned by MMH. On
another hand, MMH is 35% faster than MOE on average.

2.5 Conclusions

In this chapter, we defined an oriented measure of error that takes in account the ordering
of the path when computing its discrepancy level with the trajectory. We developed an al-
gorithm that finds in an optimal way the path minimizing the oriented error measure and
added some algorithmic steps speeding it up when we have information about the measure-
ment error of the GPS signal. This algorithm can yield prohibitive execution times when
used as a dynamic map matching routine projecting very large trajectories. To do so, we
constructed a heuristic that runs on average 35% faster at a - relatively small - cost of the
fidelity of the path it finds and the impossibility of detecting cycles or backtrack. The work
in this chapter constitutes a way to develop accurate estimates of travel time distributions
on a large portion of the different arcs representing the road network and thus to generate

18

a risk averse dispatch of emergency vehicles under different congestion conditions. Being
able to construct a distribution of travel times on each arc becomes a first step to accurately
evaluate different risk measures.

19

Chapter 3

Risk averse routing problems

3.1 Introduction

Real life problems such as the vehicle routing problem ([50]), the facility location problem
([33]) or the lot sizing problem ([32, 41]) contain inherent shortest path problems as an
important component. Given that deterministic shortest path sub-problems are solvable in
polynomial time ([3]), decomposition techniques are a natural option to tackle these problems
in a fast way. Nevertheless, assuming deterministic data is unreasonable in a number of
applications and doing so can lead to poor solutions in practice ([15]). Consequently, other
ways to evaluate the cost of a path that take into account its uncertainty are necessary.
Unfortunately, doing so spoils the special properties of the classical shortest path problem
and leads to problems that are more difficult to solve. For instance, the shortest path
problem satisfies total unimodularity, which guarantees that when we use a linear objective,
the linear programming relaxation reaches an integer optimal solution. Nevertheless, taking
into account uncertainty leads to a convex objective that cannot make use of this property.
Previous work has put a lot of effort into methods to incorporate uncertainty in optimization
problems ([10, 73, 83]). For an introduction to stochastic programming in general, the reader
may refer to [16, 70] or [14] for an introduction to robust optimization. Specific methods have
been developed for optimization problems under uncertainty exploiting particular problem
structure. For instance, the lot sizing problem with uncertain costs or lead times in [8],
the vehicle routing problem with time windows and uncertain data in [37] and the facility
location problem with uncertainty in [71].

Taking the expected value of the cost of a path appears as a natural way to quantify the
uncertain travel time of the path but ignores the dispersion of the underlying distributions,
which can be significant. For example, consider two nodes s and t connected by two paths.
The first path has a fixed travel time of 6 minutes and the second one has an uncertain
travel time, it can be 1 minute or 9 minutes, each with probability 0.5. Then, in expected
value, the best choice is the second path with an expected travel time of 4.5 minutes, but it
has the highest variability between the two possibilities. Taking the second path is riskier
with a 50% delay half of the time. This amount of delay can be unacceptable in certain
applications, such as emergency dispatching systems, where increases in delay can lead to

20

increases in fatalities. This notion of risk aversion was mathematically defined in the early
work of [80] where the risk perceived by a rational agent is modeled by the expected value of
their convex disutility function. Such a way to define risk is also called certainty equivalent
under some utility function ([87, 86]).

A risk measure ρ(·) is a real valued mapping of a set of random variables used to quantify
the degree of risk aversion of a random variable. There are some desirable features a risk
measure could have. It should be normalized, i.e.: the zero random variable has zero risk,
invariant by translation, i.e.: when minimizing a random cost X, the risk associated to the
random variable X + a for any real a is exactly ρ(X) + a, and finally should be monotone,
i.e.: if a random variable X dominates stochastically another random variable Y ([53]) which
we write X � Y , then we have ρ(X) 6 ρ(Y) in the case of a minimization problem, and
ρ(X) > ρ(Y) in a maximization context. Convexity is also a desired property of a risk
measure. For example, when optimizing a portfolio mixing different assets is a good way to
reduce the dispersion of a portfolio in practice. The latter can be modeled via the convexity of
the risk measure considered. The expected value or the CVaR of a random variable are typical
examples of convex risk measures. The concept of coherent risk measures axiomatically
defines the set of properties that a risk measure should satisfy ([6, 7]), and shows that
CVaR is a coherent risk measure. In [48] they prove that CVaR is central among coherent
risk measures, showing that any coherent, co-monotone and law invariant risk measure - or
distortion risk measures - is equivalently representable as a convex combination of CVaRs at
different levels of security.

An early work presenting a solution approach for a risk averse problem appears in [57],
where they use the variance to represent the dispersion of the data, giving birth to the
mean-risk model. [62, 54] used this latter model to solve CVaR minimization shortest path
problems with uncorrelated and normal distributions on edge travel times. [67] proved that
minimizing a CVaR objective is a standard convex optimization problem. Nevertheless, this
requires the minimization of an expectation, which can even be difficult to compute for a large
number of correlated random variables. Sample average approximation (SAA) methods ([44])
provide a standard framework to approximately solve these difficult problems. To the best of
our knowledge, all the literature on risk averse shortest path problems assumes uncorrelated
uncertain travel times (or costs). Ignoring the correlation that may be present in random
travel times might return shortest paths solutions failing to consider the path travel time
distribution ([2, 1]). As shown in [88] the correlation in uncertain travel times is indeed
present in transportation networks.

In figures 3.2 and 3.1 we see an illustration of the influence of correlations on the shortest
path problem. Let X,Y, Z ∼ B(1, 3) be Bernoulli random variables that can take the values
1 or 3 with the same probability 0.5. The risk associated to a path P in this example will be
the mean-risk objective, given by the sum of the expected value and variance over path P ,
explicitly ρ(P) = E[P] + σ2[P]. Let P1 and P2 be the paths passing respectively through the
upper edge and the lower edge. In a first case (figure 3.1) there is no correlation between the
three edges. We have E(P1) = 4, E(P2) = 3 and σ2(P1) = σ2(P2) = 2. The risk associated
to the path P1 is then ρ(P1) = 6 while the risk of the lower path is ρ(P2) = 5, making the
second one preferable. In the second case (figure 3.2) the distributions remain the same, but
we assume there is full correlation between the edges’ travel times, i.e.: X = Y = Z. We

21

X

4− Y

Z − 1

Figure 3.1: Without considering correlations

have E(P1) = 4, E(P2) = 3, σ2(P1) = 0 and σ2(P2) = 4. The risk associated to the path P1

passing through the upper edge is ρ(P1) = 4 while the risk of the lower path is ρ(P2) = 7
meaning that the first one is chosen. In this example we can see that ignoring correlations

X

4−X

X − 1

Figure 3.2: Considering correlations

can lead to take a path that is 75% worse than the optimal one. SAA methods can handle
correlations between the random variables. Nevertheless, it may sometimes require large
samples to guarantee the quality of the solution obtained ([54]) at the cost of solving larger
optimization problems.

In this chapter, we assume a given directed network G = (V,E) with m = |E| edges,
n = |V | nodes, a source node s ∈ V , and a sink node t ∈ V . We define the set of paths from
s to t on G with the standard st-path polytope ([3]) below

x ∈ X =

x ∈ {0, 1}m :
∑

k:(j,k)∈E

xjk −
∑

i:(i,j)∈E

xij = bj ∀j ∈ V

 , (3.1)

where the right hand side vector b satisfies bs = 1, bt = −1, and bj = 0 for all j ∈ V \ {s, t}.
The uncertain shortest path problem considers uncertain costs cij on every edge (i, j) ∈ E
such that the cost vector c = (cij)(i,j)∈E follows some distribution that we can sample. We
make no further assumptions regarding the uncertain cost vector, in particular we do not
assume the uncertainty between arcs is independent.

Given an st-path solution x ∈ X and an uncertain cost vector c, its total cost c>x is a
random variable that we can evaluate with a convex risk measure with ρ

(
c>x
)
. The problem

considered in this work is to find the st-path which minimizes this risk aversion measure,
namely

(Pρ) w∗ = min
x∈X

ρ
(
c>x
)
. (3.2)

In this chapter, we will only consider risk measures of the form ρ
(
c>x
)
= E

[
u
(
c>x
)]

with
u some positive, nondecreasing and strictly convex disutility function such that ρ(0) = 0. At
least with this type of risk measures, we can prove that problem (3.2) is NP-hard by reducing
it to the set partition problem: Given a set of N positive integers (ai)i∈{1,...,N}, we want to

22

find a partition {N1, N2}, N1 ∩ N2 = ∅, N1 ∪ N2 = {1, ..., N} such that
∑
i∈N1

ai =
∑
i∈N2

ai.

Assuming that the ai are ”deterministic random variables”, finding the shortest path in the

a1

−a1

a2

−a2

aN

−aN

Figure 3.3: Reduction to Set Partition Problem

network depicted in figure 3.3 with respect to the quadratic risk measure
(
c>x
)2

solves the
set partition problem. Indeed, for this construction we have that this shortest path problem
has an optimal solution of value 0 if and only if the parameters (ai)i∈{1,...,N} define a solvable
instance of the partition problem. Further, if the instance is not solvable then the optimal
path defines the partition minimizing the difference of weights between N1 and N2.

In general, even the evaluation ρ
(
c>x
)
of some solution x ∈ X can be challenging. We can

approximate this optimization problem using SAA methods if we can sample the uncertain
total cost. In this chapter we propose efficient implementations of the SAA methodology to
solve large instances of the risk averse shortest path problem (Pρ) in (3.2). In particular we
focus on algorithms to solve problem (Pρ) when using the Conditional Value at Risk measure
and the Entropic risk measure.

In the next section we present basic definitions and the general framework of the SAA
methodology. We present the different formulations and algorithms that we implemented
to solve (Pρ) under each risk measure in section 3.2. This section states the SAA problems
that we have to solve and introduces the decomposition algorithms implemented for each
risk measure. We discuss simplifications that are possible when considering the entropic risk
measure with uncorrelated uncertainty. The chapter then presents the computational results
in section 3.4 and concludes in section 3.5.

3.2 Solution Approaches Proposed

In the following, we assume that we can generate samples of the random variable c. We focus
our attention on SAA methods to solve these problems. Given a sample of S realizations
of c, (cs)s∈{1,...,S} of respective probabilities (ps)s∈{1,...,S}, we can approximate the risk of a
solution x ∈ X as follows:

E
[
u
(
c>x
)]
≈

S∑
s=1

psu
(
(cs)> x

)
(3.3)

Consequently, the sample average approximation of (3.2) can be written:

(PS) wS := min
x∈X

{
wS(x) :=

S∑
s=1

psu
(
(cs)> x

)}
(3.4)

23

In our study, we will consider two specific risk measures for the random cost c>x: the
Conditional Value at Risk which for a given tolerance ε ∈]0, 1] can be written as described
in [67]:

CVaRε(c
>x) = min

z∈R

{
z + ε−1E

[(
c>x− z

)
+

]}
(3.5)

and the Entropic Risk Measure ([65, 5]) at level α ∈ R that can be defined as:

Eα

(
c>x
)
= α lnE

[
e

c>x
α

]
(3.6)

Notice that the entropic risk measure is a risk aversion measure whenever α > 0, a risk seeking
measure when α < 0 and models a risk neutrality as Eα

(
c>x
)
−→
α→0

E
[
c>x
]
. We remark that

minimizing risk measure (3.6) is equivalent to minimizing E
[
e

c>x
α

]
. This allows us to use

the SAA formulation (3.4) to solve the optimization problem. The CVaR risk measure is
equivalent to the minimization problem (3.5). This shows that it is the minimization of the
expectation of some function.

3.2.1 Conditional Value at Risk

Monolithic form (CM). A first way to solve the CVaR minimization problem is to di-
rectly solve its associated sampled problem (3.7):

(CVaRS
ε) wS := min

x∈X

{
CVaRS

ε (c
>x) := min

z∈R
z + ε−1

S∑
s=1

ps

(
(cs)> x− z

)
+

}
(3.7)

which is equivalent to the following MIP formulation:

wS := min
z,η,x

z + ε−1

S∑
s=1

ηs

(CVaRS
ε) s.t. :x ∈ X

ηs > ps

(
(cs)> x− z

)
∀s ∈ {1, ...S}

η > 0

(3.8a)

(3.8b)

(3.8c)

(3.8d)

Given some feasible solution x ∈ X, an important remark done in [35] provides a quick
way to compute an estimated value CVaRS

ε (c
>x) of CVaRε(c

>x). Indeed, given a sample
(cs, ps)s∈{1,...,S} we have:

CVaRS
ε (c

>x) := min
η,z

{
z + ε−1

S∑
s=1

psηs : ηs > (cs)> x− t, ηs > 0, t ∈ R

}
(3.9)

when taking the dual and changing variables we obtain:

CVaRS
ε (c

>x) := max
π

{
ε−1

S∑
s=1

psπs (c
s)> x :

S∑
s=1

psπs = ε, π ∈ [0, 1]S

}
(3.10)

24

We can solve this second problem sorting the scenarios by decreasing csx and fill the equality
constraint with the best scenarios. Let suppose we have such an ordering c(1)x > c(2)x >

... > c(S) and let s∗ := max

{
s′ ∈ {1, ..., S} :

s′∑
s=1

p(s) 6 ε

}
. Then it is easy to see that an

optimal solution for the dualized problem (3.10) is:

π∗
s =

1 ∀s ∈ {(1), ..., (s∗)}

ε−
s∗∑

s′=1

p(s′) s = (s∗ + 1)

0 ∀s ∈ {(s∗ + 2), ..., (S)}

(3.11)

We can compute this optimal solution in O(S lnS) time and extract an upper bound on the
optimal value of problem (3.8) from it. Based on the solution given by (3.11) we define the
partition induced by x as:

Qx := {{(1), ..., (s∗)} , {(s∗ + 1)} , {(s∗ + 2), ..., (S)}} (3.12)

Although we are able to cast the problem directly as a MIP and evaluate its estimated value
quickly, we expect this monolithic form to be slow to solve in practice due to the large number
of scenarios we must potentially generate to have a good approximation. To tackle this, we
will present in the following two algorithms tailored to solve the monolithic formulation: a
subgradient algorithm and a decomposition based method.

Subgradient (CS). As suggested in [47], given that the functions ρ(c>·) : x 7−→ ρ
(
c>x
)

are convex, we can represent them as the point-wise maximum of its subgradients. Replacing
in problem (3.2) we obtain formulation (3.13):

w∗ := min
η,x

η

(∂Pρ) s.t. :x ∈ X

η > ρ
(
c>x0

)
+ d>(x− x0) ∀x0 ∈ X, ∀d ∈ ∂[ρ(c>·)](x0)

(3.13a)

(3.13b)

(3.13c)

Which has an infinite number of constraints in general. Nevertheless, the piecewise linearity
of CVaR allows to cast the latter problem (3.13) into the following formulation (3.14):

wS := min
z,x,η

z + ε−1η(
∂CVaRS) s.t. :x ∈ X

η >
∑
s∈C

ps

(
(cs)> x− z

)
∀C ∈ S

(3.14a)

(3.14b)

(3.14c)

Where S is the set of all subsets of {1, ..., S}. This suggests an iterative algorithm solving
relaxed problems and generating cuts whenever constraints (3.14c) are violated. We first
solve a relaxation of problem (3.14) containing only one constraint of type (3.14c) with
S = {{1, ..., S}}. Let (x̃, z̃, η̃) be the current optimal solution of problem (3.14) of objective

value w̃. We remark that (x̃, z̃) is feasible for (3.8), so we have w̃ 6 z̃+ε−1
S∑

s=1

(
(cs)> x̃− z̃

)
+
.

25

Let us define C̃ =
{
s ∈ {1, ..., S} : (cs)> x̃− z̃ > 0

}
. If w̃ >

∑
s∈C̃

ps

[
(cs)> x̃− z̃

]
then we can

easily see that the current solution (x̃, z̃) is feasible and optimal for the complete problem

(3.7). In the other case we add the constraint corresponding to C̃ and we solve again the

resulting problem with S ← S ∪ C̃. We remark that the first step with S = {{1, ..., S}} is
equivalent to solve the original problem (3.2) with ρ ≡ E, which is as hard as solving the
deterministic version. In our context of a shortest path problem, any existing polynomial
algorithm like Dijkstra’s solves it efficiently. We show a pseudo code of this method in
Algorithm 3.

Algorithm 3: Pseudocode of CS algorithm

Data: A problem (CVaRS
ε)

Result: A δ-optimal solution x̃ of (CVaRS
ε)

Generate S equiprobable samples cs;1

S ← {1, ..., S};2

repeat3

compute the optimal solution x̃ of (∂CVaRS
ε) with objective value w̃;4

C̃ = {s ∈ {1, ..., S} : csx̃− z̃ > 0};5

S ← S ∪ C̃;6

until CVaRS
ε (c

>x̃)− w̃ 6 δ ;7

return x̃8

Aggregation scheme (CA). In [35] the authors developed a computationally fast aggre-
gation technique to solve the CVaR minimization problem in the case of continuous linear
programming problems (i.e.: when X is a polyhedron). We show that their approach is valid
as well for any feasible set X ⊆ Rm. Let Q =

{
Q1, ...,QQ

}
be a partition of {1, ..., S}.

Summing of all type (3.8c) constraints corresponding to the scenarios of a single bundle Qq

we obtain the following aggregated constraint:∑
s∈Qq

ηs >
∑
s∈Qq

ps

(
(cs)> x− z

)
∀q ∈ {1, ..., Q}

Defining η̃q =
∑

s∈Qq

ηs, p̃q =
∑

s∈Qq

ps and c̃q = p̃−1
q

∑
s∈Qq

psc
s, we can write this last constraint as

follows:

η̃q > p̃q

[
(c̃q)> x− z

]
∀q ∈ {1, ..., Q}

Given that the η̃s are built upon a partition the following problem is a relaxation of (3.8):

w̃Q := min
z,η̃,x

z + ε−1

Q∑
q=1

η̃q

(CVaRQ
ε) s.t. :x ∈ X

η̃q > p̃q

(
(c̃q)> x− z

)
∀q ∈ {1, ..., Q}

η̃ > 0

(3.15a)

(3.15b)

(3.15c)

(3.15d)

26

Consequently we have w̃Q 6 wS, which is tight when the optimal solution x̃ of (3.15) is
optimal as well for (3.8). On the contrary, when w̃Q < wS, we can refine the constraints
(3.15c) when evaluating the optimal solution of problem (3.15). [35] propose the follow-
ing refinement scheme: start with Q = {{1, ..., S}} and solve (CVaRQ

ε), then get its op-
timal solution x̃’s estimated objective value CVaRS

ε (c
>x̃) and its induced partition Qx̃. If

CVaRS
ε (c

>x̃)− w̃Q 6 10−6, we stop because x̃ is optimal with respect to machine precision.
Otherwise we refine the partitionQ ← {Qi

x̃ ∩Qj : Qi
x̃ ∈ Qx̃,Qj ∈ Q} and iterate. We remark

that when refining Q we always obtain another partition of {1, ..., S} with a greater or equal
number of subsets. Furthermore, if refining the partition does not change its cardinality we
can deduce that for each Qj ∈ Q we have ∃i ∈ {1, 2, 3} : Qj ⊂ Qi

x̃. This implies that the
solution (x̃, z̃, η̄) with η̄s := η̃q, ∀s ∈ Qq is feasible for (3.8) and has the same objective value
as the relaxed problem (3.15), implying its optimality.

The algorithm solves at most S aggregated problems until Q = {1, ..., S}, where the
problem becomes exactly the one in (3.8). Aside from this worst case, we expect from this
procedure to solve only a few problems with reduced size instead of a brute force resolution of
the complete problem. In [35] they show that for LP problems this procedure can be several
orders of magnitude better than standard methods when using LP-tailored approaches. We
show a pseudo code of this algorithm in Algorithm 4.

Algorithm 4: Pseudocode of CA algorithm

Data: A problem (CVaRS
ε)

Result: A δ-optimal solution x̃ of (CVaRS
ε)

Generate S equiprobable samples cs;1

Q ← {{1, ..., S}};2

repeat3

compute the optimal solution x̃ of (CVaRQ) with objective value w̃;4

Q ← {Qi
x ∩Qj : Qi

x ∈ Qx,Qj ∈ Q};5

until CVaRS
ε (c

>x̃)− w̃ 6 δ ;6

return x̃7

Our implementation of these two methods (CA and CS) considers the case when X has
integer solutions, given by the shortest path polytope. We tested two different frameworks:
one solving directly the MIP, and another one solving first the LP relaxation - obtaining a
partition for CA and a set of subgradient cuts for CS - and then solve the MIP with the
same algorithm but starting with the constraints added during the first step for CS or the
partition returned by the LP for CA. We will denote CA/IP(CS/IP) the direct resolution of
the integer programming problem and CA/LP+IP(CS/LP+IP) the latter way.

3.2.2 Entropic Risk Measure

We want to solve the following optimization problem:

min
x∈X

Eα

(
c>x
)
:= α lnE

[
e

c>x
α

]
(3.16)

27

Uncorrelated case In the case where the variables are uncorrelated, the problem (3.16)
can be solved with a single run of any shortest path algorithm. Indeed, if random variables
are independent, the expected value of their product is the product of their expected values
and we have:

Eα

(
c>x
)
= α

m∑
i=1

lnE
[
e

cixi
α

]
Noticing that:

lnE
[
e

cixi
α

]
=

{
0 If xi = 0

lnE
[
e

ci
α

]
If xi = 1

we can solve (3.16) by solving the equivalent following problem:

min
x∈X

α

m∑
i=1

xi lnE
[
e

ci
α

]
which is a standard shortest path problem with arc costs given by α lnE

[
e

ci
α

]
. This expected

value can be approximated by the following SAA formulation:

min
x∈X

{
ES
α

(
c>x̃
)
:= α

m∑
i=1

xi ln
S∑

s=1

pse
csi
α

}
(3.17)

In practice, C programming language’s ’double’ type accepts numbers up to 10308 so the sums
S∑

s=1

pse
csi
α cannot be allowed to be greater than 10308. In order to give more slack to the values

of α used, i.e.: be able to tackle cases with smaller values of α, for each edge i ∈ {1, ...,m}
we compute c̄i = max

s∈{1,...,S}
csi which can be used to write the following equivalence:

ES
α

(
c>x̃
)
= α ln

[
S∑

s=1

pse
csi
α

]
= c̄i + α ln

[
S∑

s=1

pse
csi−c̄i

α

]
(3.18)

Noticing that
csi−c̄i
α

6 0, the exponential values will then always be below one, turning the
problems numerically tractable.

We will not consider this formulation further in our work as it heavily relies on the ab-
sence of correlation between the random variables. Nevertheless, the scaling method we just
described will be extensively used in the next algorithms.

Subgradient (ES). Similar to CVaR, given that the function Eα(c
>·) : x 7−→ α lnE

[
e

c>x
α

]
is convex, so we can represent it as the point-wise maximum of its tangent planes. We can
write the subgradient-cuts formulation of the SAA version of (3.16) as follows:

min
x∈X,t∈R

t : t > α ln

[
S∑

s=1

pse
(cs)>x0

α

]
+

S∑

s=1

pse
(cs)>x0

α cs

S∑
s=1

pse
(cs)>x0

α

> (

x− x0
)
, ∀x0 ∈ X

 (3.19)

28

In contrast with CVaR, formulation 3.19 has an infinite number of constraints. We can
use the iterative Algorithm 3 to solve the problem with a given tolerance. Indeed, at each
iteration k we can add the subgradient cut corresponding to the current incumbent solution
xk and compare the lower bound it returns with the sampled value of the incumbent solution
to evaluate the optimality gap. Again, there are scaling issues with the computation of
the entropy and its gradient values so the cut we add at each iteration can be equivalently
transformed to:

t > mk + α ln

[
S∑

s=1

pse
(cs)>xk−mk

α

]
+

S∑

s=1

pse
(cs)>xk−mk

α cs

S∑
s=1

pse
(cs)>xk−mk

α

> (

x− xk
)

(3.20)

With mk := max
s∈{1,...,S}

{
(cs)> xk

}
. As for CVaR we notice that the first step with only one

gradient cut is equivalent to solving a deterministic version of the original problem and we can
solve it with Dijkstra’s algorithm because of the positiveness of the gradient of the entropic
risk measure. As for algorithms CS and CA, we tested the IP and LP+IP frameworks for
ES.

Exponential approximation (EEA). Since α ln(·) is nondecreasing we have that mini-
mizing the entropic risk measure is equivalent to solving the following problem:

min
x∈X

S∑
s=1

pse
(cs)>x

α (3.21)

This last method consists in approximating each of the exponentials rather than the entire
function. The classical way to approximate a convex function is to define a priori a set
(tk)k∈{0,...,K} of K + 1 points on the domain [l, u] of the function to approximate such that
l = t0 < t1 < ... < tK−1 < tK = u. Adding an extra continuous variable for each scenario, we
approximate each exponential by the point-wise maximum of its tangents in the discretization
points as follows:

w̃K := min
z,x

S∑
s=1

pszs

(ES
K) s.t. : x ∈ X

zs > etk

[
1 +

(cs)> x

α
− tk

]
∀s ∈ {1, ..., S},∀k ∈ {1, ..., K}

(3.22a)

(3.22b)

(3.22c)

Which is a relaxation of the original problem since tangents are always under the function
for convex functions. One can choose the discretization such that the error of approximation
is arbitrarily small at the cost of the number of breakpoints. Nevertheless, there are several
reasons to limit the number of breakpoints for our discretization: 1) each scenario must have
its own discretization, adding together S(K + 1) extra constraints and S extra continuous
variables, 2) the original path polyhedron can already be large, 3) the interval [l, u] can be

29

particularly large if the random variables have a high variability and 4) scaling issues can be
prohibitive: as u grows etk can be out of the acceptable range of modern computing abilities.

Our approach consists in premultiplying the whole objective function by e−
M
α with (cs)> x 6

M, ∀x ∈ X, ∀s ∈ {1, ..., S} and use an approximation of t 7−→ et on]−∞, 0] resulting in the
following formulation:

w̃K(M) := min
z,x

S∑
s=1

pszs

(ES
K(M)) s.t. : x ∈ X

zs > etk

[
1 +

(cs)> x−M

α
− tk

]
∀s ∈ {1, ..., S}

∀k ∈ {1, ..., K}

(3.23a)

(3.23b)

(3.23c)

We notice that the exponential can be well approximated over]−∞, 0] with a fairly small
number of points. Using the points tk := 2 ln

(
k
K

)
with K = 10 gives an approximation of

maximum absolute error of 6.15 · 10−3. Due to the structure of the exponential function, we
have that the optimal solution of formulation (3.23) gives a lower bound for problem (3.16).
Indeed, we have that:

e
M
α w̃K(M) = min

x

S∑
s=1

ps max
k∈{1,...,K}

{
etk+

M
α

[
1 +

(cs)> x

α
−
(
tk +

M

α

)]}
(3.24)

Which is a piecewise linear lower approximation of the exponential function with points(
tk +

M
α

)
k∈{1,...,K}. Further, given that

S∑
s=1

ps = 1 the absolute error of the approximated

objective function is the same as the individual absolute error across the scenarios. Figure
3.4 illustrates the approximations done here.

t 7−→ et

t 7−→ e
M
α
+t

t0 tK M
α
+ t0

M
α
+ tK

b

b

b

b

b

b

b

b

Figure 3.4: Lower piecewise linear approximations of t 7−→ et and t 7−→ e
M
α +t

Given that e−M > 0, the resulting problem to solve is equivalent to (3.22). Still, although
this approach has no scaling issues it loses numerical precision in practice because of big
values of M . We can see that taking M∗ := max

s∈{1,...,S}
(cs)> x∗ with x∗ the optimal solution

of the real problem (3.16), then solving (3.23) must return x∗ as every (cs)>x−M∗

α
is negative,

30

i.e.: where the exponential is correctly approximated. This suggests an iterative search of the
value of M∗, successively solving (3.23) and updating M := max

s∈{1,...,S}
(cs)> x̃ with x̃ the last

optimal solution. We repeat the process until the gap between the estimated entropic value
of x̃, ES

α

(
c>x̃
)
and M + α ln w̃K(M) is smaller than a given tolerance δ. In practice, there

is a last computational issue with the lower bound returned by the approximated problem
(3.23). Actually, CPLEX solver considers zero every value smaller than 10−6 so in reality
the solver stops whenever the reduced costs are smaller than this tolerance. Hence, there are
two issues with the solution returned: 1) The absolute gap of the solution returned by the

relaxed problem is a 10−6e
M
α approximation of the linear approximation problem and hence,

can be suboptimal and can fail to provide a lower bound. and 2) The approximation provides
a solution of objective value zero hence providing a −∞ lower bound. This can be tackled
considering that the value e

M
α w̃K(M) is a genuine lower bound whenever w̃K(M) > 10−6.

Because of these computational problems, there is no guarantee that EEA returns an optimal
solution for (ES

α). We show a pseudo code in Algorithm 5.

Algorithm 5: Pseudocode of EEA algorithm

Data: A problem (ES
α)

Result: A feasible solution x̃ of (ES
α)

Generate S equiprobable samples cs;1

x̃ ∈ argmin

{
S∑

s=1

ps (c
s)> x : x ∈ X

}
;

2

M ← max
{
(cs)> x̃ : s ∈ {1, ..., S}

}
;3

repeat4

Solve (ES
K(M)) of ’optimal’ solution x̃ and objective value w̃;5

M ← max
s∈{1,...,S}

(cs)> x̃;
6

until (w̃ > 10−6) ∧
(
ES

α

(
c>x̃
)
− w̃ 6 δ

)
;7

return x̃ is a feasible solution of (ES
α).8

3.3 General solution framework

Now that we can formulate the sample average approximation of our problems, we want to
guarantee how close the solution to this approximate problem is to the real solution. In this
goal, [44] developed a framework successively solving SAA problems for discrete stochastic
optimization problems giving computational bounds on the real (not sampled) optimization
problem (3.2). In what follows we assume that the scenarios are uniformly distributed, i.e.:
ps =

1
S
for any scenario s ∈ S.

3.3.1 Stochastic lower bound

The optimal sampled value wS is a random variable whose realizations depend on the samples
that were selected. Its relation to the optimal value of (3.2), w∗, is given by (3.25) due to

31

the convexity of the expected value:

E [wS] 6 w∗ (3.25)

We can estimate this expected value averaging the optimal values of problem PS generating
several samples of size S and solving the associated problem. Let T be the number of times
we generate a different set of samples and solve PS. Then, given a confidence level γ ∈ [0, 1]
and the objective values (wt

S)t∈{1,...,T} of the T different problems, by the central limit theorem
we have:

P

[
LN,T :=

1

T

T∑
t=1

wt
S − φ−1

(
1− γ

2

) 1√
T
σS 6 w∗

]
> 1− γ

2
(3.26)

With:

σ2
S =

1

T − 1

T∑
t=1

(
wt

S −
1

T

T∑
t′=1

wt′

S

)2

(3.27)

Namely, the resolution of several sampled problems gives a lower bound of the real optimal
value with confidence at least 1− γ

2
. When using suboptimal resolutions with known relative

gaps (gt)t∈{1,...,T} and objective values (wt
S)t∈{1,...,T}, notice that we cannot directly multiply

each sampled objective value wt
S by 1

1+gt
because of the correcting term containing the stan-

dard deviation. One way to tackle this issue is to adjust the sampled objective values by a
factor of 1

1+max{gt:t∈{1,...,T}} .

3.3.2 Stochastic upper bound

When solving the T sampled problems we can keep some feasible solution x ∈ X and we
know that w∗ 6 E

[
u
(
c>x
)]
. Now, we can have an estimation of E

[
u
(
c>x
)]

generating
another sample of size S ′ >> S. It is common practice to refer to the sample S used for
each of the sampled problems solved for the lower bound as the ”in-sample” and this larger
sample S ′ as the ”out-of-sample”. Again, by the central limit theorem we have that:

P
[
w∗ 6 US′(x) := wS′(x) + φ−1

(
1− γ

2

) 1√
S ′
σS′(x)

]
> 1− γ

2
(3.28)

With:

σ2
S′(x) :=

1

S ′ − 1

S′∑
s=1

[
u
(
(cs)> x

)
− wS′(x)

]2
(3.29)

In other words, it is possible to obtain an upper bound of the real optimal value by computing
an accurate estimation of the objective value of some feasible solution. Now that we have
lower and upper bounds we can compute the stochastic gap, i.e.: the real gap of our solution
x ∈ X with the real optimal value with confidence at least 1− γ:

P [LN,T 6 w∗ 6 US′(x)] > 1− γ (3.30)

A common practice is to store the solution corresponding to the lowest objective value wt
S

returned by one of the T deterministic equivalent problems and use it to build the stochastic
upper bound.

32

3.4 Computational Experiments

3.4.1 Experimental Set-up

Network generation. We generated grid networks of r×r nodes with r ∈ {5, 7, 10, 13, 15}.
Each network has exactly the same geographical dimensions (a square with sides of 1.5
kilometer on each side), the only difference residing in the topology of the network. In
addition to the grid roads, each instance includes a ’highway’ that can be of three types as
depicted in figure 3.5: straight crosses (dashed), tilted crosses (dotted) or ring-shaped (solid).

Figure 3.5: Example of Grid networks generated for r = 13

Distributions generation. For each edge i ∈ E we considered a constant mean speed µi of
50 km (80 km) for grid edges (highway edges). To generate more instances we perturbed these
reference values with an uniform noise ui ∼ U [0.5, 1.5] such that the resulting mean speed on
edge i is µ′

i := µiui. For each instance, we generated ten times a perturbation with a different
random seed. We also generated randomly special covariance matrices Σ = (σij)(i,j)∈{1,...,m}2 ,
where σii = σ2

i is the variance of the random variable associated with edge i ∈ {1, ...,m}.
Given a vector of expected values µ′ = (µ′

i)i∈{1,...,m} we considered instances with different
coefficients of variation c ∈ {0.5, 2} for normal streets and c ∈ {1, 4} for highways (riskier)
such that the standard deviations are defined as σi = cµ′

i. We considered the uncorrelated
and correlated cases. We built the correlations in a way that all the highway edges (street
edges) are positively correlated with each other, but there is negative correlation between
highway and street edges. This will highlight the risk-hedging effect obtained by forcefully
passing through both types of edges in spite that one type is riskier than the other. We
generated correlation matrices C defined by a product C = LL> with L = (lij)(i,j)∈{1,...,m}2
a lower triangular matrix whose rows are unitary vectors. Given a covariance matrix C and

33

standard deviations (σi)i∈{1,...,m} we can then compute a covariance matrix Σ as follows:

Σ = Diag
(
(σi)i∈{1,...,m}

)
· C ·Diag

(
(σi)i∈{1,...,m}

)
(3.31)

Which has all the required properties to be a correlation matrix. We considered that travel
times on graph edges are random following Log-normal distributions as indicated by [82]
in the case of transportation networks, of joint-parameters (p, S) with p = (pi)i∈{1,...,m} and
S = (sij)(i,j)∈{1,...,m}2 . Given some expected value vector µ and a covariance matrix Σ we
wanted to generate samples from the associated log-normal distribution. We know that such
a distribution is a log-normal of parameters (p, S) with:pi = ln

(
µ2
i√

µ2
i+σii

)
sij = ln

(
1 +

σij

µiµj

) (3.32)

Moreover, given some decomposition S = L>L we have LX+p ∼ N (p, S) with Xi ∼ N (0, 1).
Putting everything together, we can sample multivariate log-normal distributions of mean
vector µ and covariance matrix Σ by generating univariate standard normal samples x = (xi)i
and applying the transformation z = exp (Lx+ p). We generated the standard normal
distribution samples via Box-Muller transform: given u and u′ two independent draws of an
uniform law U [0, 1] then:

x =
√
−2 lnu cos(2πu′)

x′ =
√
−2 lnu sin(2πu′)

Are distributed as independent N (0, 1) random variables.

Parameters used. We chose the sample sizes used for each deterministic equivalent prob-
lem (in-sample) to be in S ∈ {0.5, 1, 2, 5, 10} · 103 and the sample used for upper bounding

(out of sample) in S ′ ∈
{
(2k)k∈{1,...,10}

}
· 104. The base problem we want to solve is to find

the less risky path between the north-western and the south-eastern corners of each grid
network. We tested CVaRε for ε ∈ {1, 5, 10, 50, 90, 95, 99}%. For the entropic risk mea-
sure, the parameter α has units (like travel time) so we had to carefully choose its values.
We chose a reference path inside the grid network of 15 × 15 nodes with circular highway
and computed the sampled cumulative distribution of the travel time on that path, F (·),
with correlated travel times across edges and a high dispersion factor (c = 2). We then
chose α ∈ F−1 ({0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99}), whose rounded computed values are:
α ∈ {10, 15, 20, 50, 200, 250, 400} [s]. The parameter α captures an absolute risk aversion
and penalizes greatly paths whose random travel time exceeds α. This is why we kept the
same geographical dimensions for the grid networks to keep the same set of parameters for
testing all the instances.

Experiments. To evaluate the influence of each parameter on the efficiency of the proposed
algorithms, we defined a base case and conducted experiments that let varied one parameter
at a time. First, we wanted to compare the computational efficiency of each solution algorithm

34

on deterministic equivalent problems. We took as a base case the grid network of 10 × 10
nodes with circular highway, presence of correlation, high dispersion and a sample size of
S = 2000. If an algorithm does not reach the optimal solution within 250 minutes, we return
the incumbent solution with its respective optimality gap. We then chose the algorithm with
best computational behavior for each risk measure and used it to solve T = 50 experiments
with samples of size S = 2000 with a time limit of 250 minutes for the whole run and 50
minutes for each deterministic equivalent problem solution. We computed the stochastic
bounds with 95% confidence (i.e. with γ = 0.05).

Risk measure Algorithm Framework Abbreviation

CVaR

Monolithical resolution - CM

Subgradient Algorithm
LP+IP CS/LP+IP

IP CS/IP

Aggregation method
LP+IP CA/LP+IP

IP CA/IP

Entropy
Subgradient algorithm

LP+IP ES/LP+IP
IP ES/IP

Exponential approximation method - EEA

Table 3.1: Frameworks abbreviations

3.4.2 Computational results

Deterministic Equivalent problems. In this section, we will present computational re-
sults comparing the efficiency of the different methods we presented earlier. In this goal,
we compared the runtimes and the optimality gaps of the solutions returned by each of the
algorithms over a single deterministic equivalent problem. This determined which method
is most fit to compute stochastic bounds later. In table 3.2 we show averaged results over
ten random instances for each cell. We see that the monolithic version of CVaR has largest
solution times than the other algorithms, except when there are no correlations. We see that
CA/IP outperforms greatly all the other algorithms in terms of execution time. In the general
correlated case, we can rank - on average - the CVaR algorithms proposed here as follows:
[CA/IP] � [CA/LP+IP] � [CS/IP] � [CS/LP+IP] � [CM]. For the entropic risk measure,
we can see that ES/IP is always much faster than the other algorithms. EEA behaves slowly
in practice due to the number of iterations needed to find an adequate M∗ and then ap-
proximate correctly the exponentials. Furthermore, the optimality gaps are often strictly
positive because there is no guarantee that the stopping criterion ensures that EEA returns
an optimal solution. On average, we can rank the Entropy frameworks as follows: [ES/IP]
� [ES/LP+IP] � [EEA]. In the end, first solving the LP relaxation and then the original
problem with the constraints generated is always slower. Although the number of iterations
is smaller for LP+IP frameworks, the fact they begin the integer resolution with a larger
problem instead of starting with a small one slows down significantly the algorithm. The
correlations have a great influence over the execution time. Indeed, we designed Σ such that
alternating between both types of streets helps to hedge against variability and thus reduces
the optimal region, speeding up the procedure. The correlation also groups several edges

35

Param Value CM CA/LP+IP CA/IP CS/LP+IP CS/IP EEA ES/LP+IP ES/IP

Σ
I 59.1 195.6 154.7 1392(8) 1313(10.9) 1658.7(1.8) 1318.7(5.6) 1312.5(4.4)
6= I 15.3 2.2 1.9 4.2 4.1 1243.7(3.6) 4.35 3.1

c
0.5 10.9 1.8 1.5 2 2 849.1(2.3) 2.1 1.7
2 15.3 2.2 1.9 4.2 4.1 1135.3(3.9) 4.4 3.1

Shape
+ 13.6 2.2 1.9 6 5 1173.8(2.9) 7 4
× 15.2 2.2 2 6.9 6.6 1287.5(3.3) 9.3 5.7
O 15.3 2.2 1.9 4.2 4.1 1135.3(3.9) 4.4 3.1

r

5 3.6 0.3 0.1 0.5 0.3 104.9(6.4) 0.3 0.2
7 7.5 0.7 0.4 1.1 0.9 329.6(3.8) 1 0.6
10 15.3 2.2 1.9 4.2 4.1 1135.3(3.9) 4.4 3.1
13 24.8 4.5 4.4 6.9 6.3 2043.1(5.2) 9.9 8.7
15 33.9 7.7 7.7 10.4 9.9 1890.8(6.3) 17 13.2

S

500 2.1 0.6 0.7 2.4 2.8 156.9(1.9) 4.3 2.7
1000 6 1.3 1.2 3.3 3.7 379(3.6) 2.5 1.9
2000 15.3 2.2 1.9 4.2 4.1 1135.32(3.9) 4.4 3.1
5000 58.3 5 4.2 6.6 6.3 cutoff(2) 12.8 8.3
10000 177.5 9.5 7.7 10.7 9.6 cutoff(7.3) 19.6 10.5

Table 3.2: Average solution time for different instance parameters (time[s](gap[%]))

together in their behaviors, having the solver aggregating variables and making branching
more efficiently. In a future work, we shall investigate the influence of weaker correlations.
As expected, having more dispersion makes the problem harder as we are getting further
from an easy expected value minimization problem. The instance parameters that are the
most influential to the solution times are the network size and the number of samples we
used for the SAA. The network size being directly linked to the number of integer variables,
the execution time grows significantly fast with r. In a similar way, each sample used adds
an extra constraint and an extra continuous variable to CVaR problems. The execution time
for CA/IP grows linearly with S. For the entropy, although the number of samples does
not enlarge the problem solved by ES, it does substantially increase the solution time. In

Param Value CM CA/LP+IP CA/IP CS/LP+IP CS/IP Param Value EEA ES/LP+IP ES/IP

ε

0.01 16.6 2.5 2.6 9.7 11.4

α

1000 1733.5 4.2 2.9
0.05 19.9 3.0 2.6 7.0 6.5 1500 1511.5 4.8 3.2
0.1 20.4 3.1 2.6 5.8 4.4 2000 1435 5.5 3.3
0.5 19.3 2.4 1.7 2.3 1.9 5000 1117.2(1) 7.4 5.7
0.9 11.0 1.4 1.4 1.5 1.5 20000 802.1(12.2) 3.8 2.6
0.95 10.2 1.4 1.3 1.4 1.4 25000 728.4(8.3) 2.7 2.0
0.99 9.9 1.3 1.3 1.4 1.4 40000 619.6(5.4) 2.1 1.6

Table 3.3: Algorithms comparison Vs. risk measure parameters (time[s](gap[%]))

table 3.3, we can see once more than CA/IP (ES/IP) is the best scheme for CVaR (Entropy)
resolution as we vary the risk measure parameters. In the following we used these two algo-
rithms to solve the repeated procedure with stochastic bounds computation. When loosening
the risk aversion, we observe that the difficulty lowers significantly for the less conservative
parameters (see figure 3.6). Indeed, when the parameter changes to reduce risk aversion the
problem to solve tends to a determininistic problem which - in our particular case - has a
particularly nice structure. Nevertheless, we see that for both risk measures(see figures 3.6a
and 3.6b) the most difficult problems to solve are not necessarily the most risk averse. We
remark that entropy minimization problems are slightly slower to solve than CVaR.

36

0

1

2

3

0 0.2 0.4 0.6 0.8 1.0

CA/IP
CA/LP+IP

(a) CA time [s] Vs. ε ∈]0, 1]

0

2

4

6

8

0 10 20 30 40

ES/IP
ES/LP+IP

(b) ES time [s] Vs. α > 0

Figure 3.6: Execution time [s] Vs. parameter and LP+IP or IP frameworks.

Stochastic bounds. In this section, we will present computational results comparing the
quality of the solutions returned by the entire SAA framework. We ran the T experiments

Param Value gap[%] co gap[%] unco Param Value gap[%] co gap[%] unco

ε

0.01 11.87 46.24

α

1000 68.26 81.04
0.05 4.91 38.78 1500 69.23 87
0.1 4.12 34.53 2000 71.05 86.31
0.5 2.71 29 20000 90.58 96
0.9 1.8 19.28 25000 50.31 93.38
0.95 1.77 19.1 5000 56.92 94.56
0.99 1.75 18.93 40000 13.74 67.66

Table 3.4: Price of correlation for one instance of the base case.

for both measures and confirmed that solving the problems without considering correlations
can lead to solutions of poor quality. In table 3.4 we can see that for a random instance
of the base case, an uncorrelated solution can have a difference of optimality gap between
[17;43]%([5;53]%) when minimizing CVaR(Entropy). In figure 3.7, we can see that the sample
size S is important for two reasons: it approximates better the original problem, improving
the lower bound and returns better candidate solutions, improving the upper bound. In

0.000

4.000

8.000

12.000

16.000

20.000

500 2500 4500 6500 8500

US′

LS,T

(a) Bounds for CVaR Vs. S

0

40.000

80.000

120.000

160.000

500 2500 4500 6500 8500

US′

LS,T

(b) Bounds for Entropy Vs. S

Figure 3.7: Stochastic optimality bounds Vs. number of samples S.

figure 3.8, we observe that the risk aversion parameter plays a critical role in the difficulty
of our problem. In particular for the entropy, the gap is high for almost all the values of α
we considered, closing slowly when the risk aversion lowers. For CVaR, the optimality gap
becomes acceptable (< 5%) starting from ε > 0.1.

Increasing the sample size S ′ improves (reduces) the quality of the upper bound of CVaR

37

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1.0

US′

LS,T

(a) Bounds For CVaR Vs. ε ∈]0, 1]

0

40

80

120

160

0 8 16 24 32 40

US′

LS,T

(b) Bounds for Entropy Vs. α

Figure 3.8: Stochastic optimality bounds Vs. Risk Aversion parameter

and is computationally cheap. Nevertheless, for the Entropy the size S ′ of the out of sample
needed to have accurate upper bounds can be potentially large. For conservative parameters
α, we observe that the upper bound is still unstable for the values of S ′ we considered. In
figure 3.9, the curve represents the upper bound in function of S ′ and the dots the contribution
of each scenario.

0

20.000

40.000

60.000

80.000

100.000

120.000

0 1000 2000 3000 4000 5000

US′

b b (cs)>x

b
b

b

b

b

b
b b b
b b

b

b
b

b
b

b b

b
b

b

b
b

b b
b b b
b

b

b

b
b b

b

b

b
b

b
b

b
b
b b b b
b b

b

b
b b

b

b

b
b

b
b

b b b

b

b

b

b b

b
b

b

b
b b

b
b

b

b
b
b

b

b

b
b

b

b
b

b

b

b

b b

b

b
b

b

b

b

b
b b b
b

b

b

b

b
b

b

b

b
b

b

b
b b

b

b

b

b

b
b b
b

b
b

b
b b
b b

b

b

b

b

b

b

b

b

b

b b b b

b b b

b
b
b b

b

b b

b

b
b

b

b
b b

b
b
b

b

b b b
b

b

b

b

b

b

b
b
b b
b b b b

b
b

b
b

b

b

b

b

b

b

b
b

b
b
b
b b b

b

b b

b

b
b

b
b b

b
b
b
b

b

b
b
b

b
b b

b
b

b b

b b

b

b b
b
b

b b
b

b

b

b

b

b

b

b

b

b

b b
b
b
b

b

b

b

b
b

b
b

b

b

b

b
b
b

b

b

b

b

b

b

b

b

b

b b
b b
b b

b

b b
b b
b

b

b b b

b

b b

b

b

b

b b

b

b b

b

b

b
b

b

b

b b
b b
b

b

b
b b b b
b
b b b

b b
b
b

b
b b b b

b

b
b

b

b

b
b b
b

b

b

b

b

b

b
b

b b
b b

b

b
b

b

b

b

b

b

b

b

b b b

b

b b

b b
b

b

b

b b

b
b
b b

b

b

b
b
b
b
b b

b

b

b
b

b b
b

b b

b

b b
b
b b

b

b

b

b

b

b
b

b

b

b

b b

b

b

b b
b
b

b

b
b b

b

b
b

b

b
b

b

b

b

b
b
b

b
b
b

b b
b

b

b
b b

b

b

b b b b b

b
b

b

b b

b

b

b

b

b

b
b

b b

b b b

b

b
b

b b
b
b

b
b

b b b b

b

b

b

b
b

b b

b

b
b

b b

b

b
b
b

b
b

b
b

b
b
b

b

b b b
b
b b

b b

b
b
b
b

b

b

b

b
b b

b

b
b
b
b
b b b

b
b b
b

b
b b

b

b b

b b

b

b

b

b

b

b b

b
b

b

b

b

b

b

b b b

b
b

b

b
b

b

b
b

b
b

b
b
b

b
b

b
b
b
b

b

b b
b
b b b
b
b

b

b

b

b

b

b b

b

b

b b b b
b

b

b b

b

b

b b

b b

b

b

b

b

b

b
b
b b

b

b

b

b

b b

b

b
b b

b

b
b
b
b
b

b
b

b

b
b
b

b

b

b

b

b
b

b

b b
b

b

b b
b

b b b

b
b b

b

b b
b b
b b b

b
b
b
b

b
b

b b

b
b
b

b

b

b

b
b

b

b
b

b b

b

b
b

b

b

b
b b
b b

b b
b
b

b

b
b
b

b

b

b

b

b b

b
b b

b
b

b
b
b
b

b

b

b

b

b

b b
b b
b

b
b
b b b
b b

b

b

b

b

b

b

b b

b
b

b

b

b

b

b b
b b

b

b b
b
b
b

b
b

b

b

b

b

b

b

b

b

b

b

b b
b b

b
b
b
b

b

b

b

b

b

b

b b b b b b

b

b
b

b b

b
b
b

b

b b b b b

b

b

b

b b

b

b b

b
b

b
b

b b b
b

b

b
b

b

b

b
b b
b

b
b

b

b

b
b
b
b
b

b
b b
b b

b
b
b
b
b
b
b b b
b

b

b b b

b

b

b

b
b b b
b

b

b b

b

b

b

b

b
b b
b b

b

b

b

b

b

b b b b

b

b

b

b
b b b b

b
b

b b

b

b b

b b b

b

b
b
b

b b b

b

b

b

b

b

b

b

b

b b

b

b

b
b

b
b

b
b b
b

b
b b

b

b

b
b

b

b

b

b b

b

b

b

b

b

b
b b b b

b

b

b

b b b

b

b b
b

b b

b

b

b

b
b
b b
b
b

b

b

b

b

b b

b

b

b

b

b
b

b
b

b

b

b b

b

b

b

b
b b b
b
b b

b
b

b b

b

b
b

b
b b
b
b
b

b

b
b

b

b

b

b
b b
b b

b

b

b

b

b

b

b

b
b b
b

b

b

b
b b b
b

b

b

b b

b b
b

b
b b b
b b

b

b b
b

b

b b

b

b
b

b
b
b
b
b

b

b

b
b b
b
b b b
b b
b b b

b

b

b

b b

b

b
b

b b

b

b

b b b b

b

b
b b
b

b

b b b

b

b

b

b

b

b

b

b

b

b b b
b

b

b
b

b

b b b

b
b

b

b

b

b
b

b

b b b b

b

b

b

b

b
b
b

b

b
b
b

b

b

b
b

b

b

b
b

b
b
b b b
b

b
b
b b b

b

b

b

b

b

b
b

b

b

b

b
b

b

b b b
b

b

b b

b

b

b

b b

b

b

b b
b

b
b b b b b

b

b

b

b b
b b b
b

b

b b

b
b b
b b b b

b

b b b

b

b

b

b
b

b

b b b
b b
b
b
b

b

b b

b
b

b
b

b

b

b

b
b

b

b
b

b

b

b

b
b

b b

b

b

b
b

b

b

b
b
b

b

b

b
b

b

b

b

b

b

b

b b b

b

b b

b

b

b

b

b

b b b
b b
b

b
b
b
b
b b
b

b

b

b

b

b

b

b

b
b b

b b
b
b b
b

b

b

b
b

b

b
b

b

b
b

b

b
b b

b

b

b

b

b

b

b
b

b

b

b

b
b
b b
b

b

b

b b b b b b

b

b

b

b

b

b

b

b

b b
b
b b
b

b

b

b b

b
b b
b

b
b
b

b

b

b
b

b
b

b

b

b b b b b

b

b
b

b

b

b b
b b

b

b
b

b

b

b

b
b
b
b b
b b
b
b

b

b

b b

b

b b b b

b

b

b b b b

b

b

b

b

b

b

b

b

b

b

b b

b

b
b

b b b
b

b
b b

b

b

b
b b

b

b

b

b b
b

b

b

b

b b

b

b
b
b

b

b
b

b

b
b

b
b
b b

b

b

b

b b

b
b b

b

b

b

b

b
b

b b b
b
b

b
b
b
b
b b

b

b

b
b b

b
b

b

b
b

b

b

b
b

b b

b

b

b
b
b

b

b

b

b

b

b

b

b

b

b
b
b

b
b

b

b

b

b

b

b

b b

b

b b

b

b b b b

b
b
b

b b

b

b

b

b
b
b

b

b
b

b b

b

b b

b

b

b
b

b

b

b

b
b
b
b
b
b

b

b

b

b

b

b b
b
b b

b
b
b

b

b
b

b b b b b

b

b
b
b
b b
b b

b
b
b
b b

b b

b

b b

b

b

b

b

b
b
b b

b
b b

b

b

b

b
b

b

b

b
b
b
b
b
b b b

b

b

b b b
b
b
b

b

b

b
b

b

b b

b
b

b

b

b
b

b
b

b

b

b

b b b

b

b
b

b b
b
b

b

b b

b
b
b

b

b

b

b

b

b
b b
b
b

b

b

b b

b b

b

b b

b
b

b b b b b

b

b

b
b b

b

b b

b

b

b

b

b b

b
b
b b

b

b
b

b

b

b

b b
b b b
b b b b

b

b b
b
b b
b
b
b
b

b

b

b

b

b b
b
b

b

b

b

b
b

b

b

b b

b

b
b
b
b
b

b

b

b

b b

b

b

b
b
b

b
b b

b
b b

b

b

b

b
b b
b

b
b

b
b

b
b

b

b
b

b

b
b

b

b

b
b
b

b

b
b
b b b b b

b
b b

b

b
b b
b b b b

b

b b

b

b

b
b b

b

b b
b
b
b b

b
b

b
b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b b b

b

b
b
b

b

b b b b
b
b b

b
b b

b
b

b
b
b

b

b
b
b
b b
b
b

b

b

b
b
b

b

b
b
b

b
b
b
b
b
b
b b b

b
b

b

b
b
b b
b

b

b

b
b
b b
b b b b
b

b

b

b

b

b

b
b
b b
b b

b

b
b

b

b

b
b
b b
b b b

b

b

b

b

b

b

b
b
b

b

b

b

b

b

b

b

b

b

b
b

b

b b b b

b

b

b b
b
b

b

b

b

b

b
b
b b b
b

b

b
b

b

b
b b b

b

b b

b

b
b

b

b
b
b b
b b

b

b
b
b b

b

b

b b
b b

b

b
b

b b
b
b

b
b

b

b

b b b
b

b b b

b b
b

b b
b b b b

b

b
b

b
b

b b
b
b

b

b

b
b
b b
b b
b

b

b b b b
b b b
b

b

b

b

b

b
b
b

b

b

b
b

b

b
b b

b
b b b

b

b b

b b

b b
b
b

b

b b b
b b

b

b
b
b b b

b
b
b b b b b

b

b
b
b b b
b

b

b

b

b

b
b b b b
b
b b
b
b
b

b

b

b b

b b
b b

b

b

b
b

b

b
b

b

b b b
b

b

b
b b b

b

b

b b

b

b

b

b b

b
b

b
b b b
b

b

b

b
b

b

b b
b b
b
b

b

b

b

b b

b
b
b
b b

b

b b

b

b b b

b

b

b

b

b

b

b
b
b b

b

b

b

b
b
b
b

b

b

b b b

b

b
b

b b

b

b

b

b

b b

b

b b
b
b
b

b b b

b

b

b
b

b

b

b

b

b

b

b b b
b b

b

b

b

b

b b

b

b
b
b
b

b b

b b b
b

b b

b b
b b

b

b
b
b
b
b b
b

b

b

b

b b
b

b

b

b b

b

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b b

b
b
b

b

b b

b

b

b b

b

b
b b b

b

b

b

b
b

b

b

b

b
b

b

b

b

b
b

b b

b
b b b

b

b

b b b

b

b

b b b

b
b b

b

b

b
b

b b
b b b

b

b b
b
b b b
b b

b

b
b b b
b

b

b

b b b

b b

b b

b

b

b

b
b
b b b

b

b

b

b

b b

b

b

b b
b

b
b

b b

b

b
b b

b

b
b b
b
b b b

b

b

b
b

b

b

b

b
b
b

b
b b b

b

b
b

b
b

b

b b b
b

b

b

b

b

b

b
b

b

b

b

b
b
b

b
b

b
b

b

b

b
b

b
b b
b
b b

b

b

b

b
b b b

b

b

b

b

b

b
b

b
b

b
b

b b
b b

b b

b b

b

b

b b

b

b
b
b
b b b
b

b

b

b

b

b

b b b b

b b
b

b
b

b
b

b

b
b b
b

b

b
b

b
b

b

b

b
b
b b
b b

b

b
b

b

b b b
b b

b

b

b

b
b

b

b b

b
b b b
b b

b
b

b
b
b b
b
b
b
b

b

b

b
b

b b
b
b b
b
b

b

b
b

b

b b b
b

b

b
b

b

b

b

b

b

b
b

b

b
b b b

b
b
b

b

b

b
b

b

b
b

b

b

b
b
b
b

b b

b
b b
b

b b
b

b
b b b

b

b
b

b

b b
b
b

b

b b
b
b

b

b

b b
b

b

b

b b b b
b

b

b

b

b

b b

b

b

b

b

b b b
b

b

b

b b b
b
b

b
b

b

b
b b
b

b

b b

b b
b

b b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b b b

b

b

b b
b
b
b

b
b

b

b

b b b b b b
b
b

b

b
b b
b

b

b

b

b
b
b b b
b
b
b
b b
b

b
b
b

b b

b

b

b b
b
b
b

b

b
b b
b

b

b

b

b

b

b

b

b b b
b
b

b b
b

b b

b b

b
b

b

b
b

b

b
b
b
b
b

b

b

b
b

b b

b
b

b

b
b

b

b b b b
b
b b b

b

b

b

b

b

b

b
b

b
b b
b

b b

b
b b b b
b b

b

b

b

b

b
b
b

b b

b

b

b

b b b b b b b b
b b
b
b b
b

b

b
b
b

b

b

b

b

b

b

b

b
b

b

b b b b
b b

b

b

b

b

b

b

b

b

b

b b

b

b
b b b
b
b
b b

b b

b

b

b

b
b

b

b

b

b
b
b
b
b

b

b b b
b
b

b
b b
b b b
b

b

b

b

b b

b
b b b b b
b b

b
b

b

b

b b
b

b

b

b

b
b b
b b

b b

b b b
b
b

b

b

b

b b
b
b b b

b

b b b

b

b b
b b b b b
b
b b
b

b

b

b
b
b b

b
b b
b

b

b

b b

b
b

b
b

b b

b b

b

b
b

b

b
b
b

b b
b b b b

b

b

b

b

b

b b b
b
b

b

b

b

b
b

b

b

b
b

b b b
b b
b b
b

b

b

b b

b
b

b b b

b

b

b
b b
b

b b
b
b

b

b

b b
b

b

b
b b
b b

b

b

b b
b

b

b

b b
b b
b

b
b

b

b

b
b
b
b b

b

b

b

b
b
b

b

b
b
b

b

b
b

b

b

b

b

b b b
b
b
b

b

b

b b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b b

b b

b
b
b b

b b

b b

b

b
b b b b
b

b

b

b
b b b

b
b

b

b

b

b

b b

b

b

b

b

b

b
b
b
b

b b

b

b
b

b

b
b
b

b

b
b

b

b

b b

b

b

b
b b b
b
b

b

b

b

b b

b
b

b

b b

b b b
b
b
b b

b b

b

b

b

b

b

b

b b
b

b

b b
b
b b

b

b b

b

b
b

b

b

b b

b
b

b
b

b b
b

b
b

b

b
b

b b

b

b b b

b b
b

b
b
b b

b b
b

b

b

b
b
b b
b
b

b
b b b

b

b

b
b
b b b
b
b

b

b

b

b

b b b
b b b b
b b
b

b

b

b

b b

b

b
b b
b b b b b
b

b

b

b

b

b b
b

b

b

b
b b

b

b

b b b
b
b b b b b

b
b
b
b

b

b

b

b

b b b
b b
b
b

b

b b
b

b

b

b

b
b

b

b

b

b
b b

b

b

b

b
b
b b

b

b

b

b
b

b

b
b b

b

b
b b b

b

b

b b

b

b

b

b

b

b

b
b b b

b
b

b

b
b
b

b b

b
b b

b
b b
b b

b

b
b b b
b b

b

b

b

b

b

b

b b

b

b b

b

b b

b

b
b
b

b

b
b b
b

b

b

b

b
b

b

b

b

b

b

b
b

b b b b

b
b
b

b

b

b

b

b

b

b

b

b b b

b

b b

b
b

b

b
b
b

b b

b
b

b

b
b b

b

b

b
b b
b

b

b
b
b
b

b

b

b b b

b b

b

b

b b

b b

b

b b
b

b

b

b

b

b b

b

b

b

b

b
b

b

b b

b

b
b

b

b
b

b

b

b

b

b

b b b
b b
b

b

b
b b

b
b b

b

b

b

b

b

b

b

b b
b

b
b b
b b
b

b b

b
b b

b

b

b

b

b
b

b

b

b

b b

b

b b b
b

b

b
b

b b b

b

b

b
b
b b

b
b

b

b

b

b b
b

b

b

b

b b b

b
b

b

b

b b b
b
b

b

b

b

b

b
b b b
b
b

b

b

b

b b

b

b
b

b

b

b
b

b

b

b

b

b

b

b
b b
b
b b

b

b
b

b

b

b

b
b
b
b
b
b

b
b
b

b
b

b

b
b

b b b b
b

b
b
b
b

b

b

b

b

b

b
b b

b

b

b
b b
b
b b
b b b
b b

b

b b b
b b

b

b
b
b

b b

b
b
b b b b b

b
b
b
b b

b

b

b

b
b b b

b

b

b

b
b
b
b b

b

b

b

b

b

b

b b b

b b
b

b

b

b

b

b

b

b

b
b b b b
b
b b

b
b

b

b b b b b
b

b b b
b b

b

b
b b

b
b

b b

b

b

b
b
b
b b
b
b b
b b
b b

b

b
b b b b b
b

b

b b

b

b b b
b
b b b b
b
b

b
b

b

b

b

b
b

b b
b

b b

b

b

b
b

b
b

b

b

b

b b

b

b

b

b

b

b
b

b b
b
b

b

b
b
b b
b

b b b b

b
b

b b

b
b b
b

b

b b b b b
b
b

b

b
b b

b
b

b

b

b b

b

b
b

b

b b
b b

b

b b

b

b
b

b

b b

b
b

b

b b
b

b

b

b

b
b
b b

b

b b
b b

b b b

b
b

b
b

b
b

b

b

b
b
b b b
b

b

b

b

b

b

b

b b

b

b

b b b b
b

b

b
b b b
b

b

b
b
b b

b

b b b

b

b

b

b

b b

b
b b
b

b b b
b b b
b
b
b b b b

b

b b b

b

b

b
b

b
b
b

b

b

b

b

b

b

b b
b b
b

b
b
b

b

b

b

b b b

b

b
b

b

b b

b

b b

b

b

b

b b b b

b b
b

b

b b
b b
b
b
b
b

b

b b
b
b
b b b

b b

b

b b
b b
b
b b

b

b b b b

b

b

b

b
b
b b b
b b b

b

b
b
b b b b
b

b

b

b

b

b

b

b

b

b

b b

b b
b
b

b
b

b
b

b

b

b b
b b
b

b

b

b
b b
b

b

b

b
b
b
b
b b

b
b

b b b b

b
b
b
b

b
b

b
b

b
b

b
b

b

b
b

b

b

b

b b
b

b
b

b

b

b b b b
b
b
b

b

b

b b

b b b b

b

b
b

b
b b b
b b

b

b

b

b

b

b
b b
b b
b b
b

b
b
b
b

b

b

b b b b

b b
b

b
b b
b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b b

b

b

b

b

b

b

b
b b b
b

b

b

b

b
b

b b b

b

b
b
b

b

b b

b
b
b

b b
b

b b
b b b b
b
b

b b

b

b
b

b b
b
b b b
b
b b
b
b
b

b

b

b

b

b
b

b

b

b
b b
b b b

b

b

b b
b b b
b

b

b

b

b

b
b b b

b

b

b b b

b
b
b

b
b

b

b

b
b

b

b

b
b

b

b

b b b b

b

b
b b
b b b
b
b b b b

b

b

b
b

b

b

b

b
b
b
b b

b

b

b

b

b
b b b b

b
b b b b

b

b

b

b

b
b b
b
b

b

b
b
b

b

b
b

b

b
b

b

b

b

b
b
b
b

b

b b

b

b b b
b b

b
b

b b
b
b

b b
b
b

b
b

b

b

b

b

b
b b

b

b b

b

b

b

b

b

b
b

b
b b b
b b b

b

b b
b

b

b

b

b

b

b b b
b
b
b
b b

b

b
b

b b

b
b b
b b
b

b

b b

b

b

b

b
b b

b

b

b b

b

b b
b
b b b

b

b

b

b

b
b b

b

b

b
b
b

b b

b

b b

b

b
b

b

b

b

b
b
b

b
b b b
b b

b b b

b
b

b
b
b
b b
b

b

b b

b

b

b

b

b

b

b
b

b b

b
b

b b
b

b
b

b
b

b

b
b
b

b

b

b
b b b
b b
b b b
b

b

b

b

b
b

b
b
b

b
b b b

b
b
b

b
b b b

b

b
b b
b

b

b
b
b
b
b b

b b b

b
b b b b
b

b

b

b
b

b
b

b

b

b

b
b

b
b

b
b
b
b

b

b

b b

b

b

b
b

b
b

b

b
b b b

b
b b

b
b
b

b

b b

b

b

b

b b

b

b b

b

b
b

b

b

b
b

b b
b
b b
b

b b
b

b
b

b

b

b

b

b b b

b

b b
b

b

b

b

b

b
b
b

b

b
b

b

b b
b
b
b

b

b
b

b

b b

b

b
b b

b

b b b b

b

b
b

b

b

b

b b b b b
b
b
b
b

b

b

b

b

b b b
b
b
b

b
b
b b

b
b b b

b
b
b
b

b
b b
b

b

b

b

b

b b
b b b

b

b

b
b

b

b

b

b b

b

b

b

b
b

b b

b

b

b b
b

b

b

b

b

b

b
b
b

b
b
b b b

b
b b
b

b

b

b b b

b

b

b b

b b b
b
b b

b
b

b

b

b

b b
b

b

b
b b
b

b
b

b

b

b
b b b
b
b b

b

b

b

b
b b

b
b

b

b
b

b

b

b b
b

Figure 3.9: Example of upper bound for entropy and scenario realizations (cs)
>
x Vs. S′

We can see jumps in the upper bound curve between - expected - lowering periods. These
jumps appear because the entropic risk measure can be highly sensitive to worst cases. We
can show that we have:

max
s∈{1,...,S′}

(cs)> x− α lnS ′ 6 α ln
S′∑
s=1

1

S ′ e
(cs)>x

α 6 max
s∈{1,...,S′}

(cs)> x

These bounds show that the entropic risk measure highly sensitive to big realizations (cs)> x.
Instead of having a smoothing effect of big values of S ′ we can observe the upper bound
US′ worsening. We ran a couple of small instances with very large out of samples and could
observe that for S ′ ≈ 106 an expected nonincreasing smooth curve appears.

In figure 3.10a we see an example where the risk averse response (solid) of CVaR1% passes
trough ”highway” edges to hedge against risk, using the negative correlations to its advantage,
while the risk neutral (dashed) - minimizing the expected value - passes right where the

38

(a) Risk averse path Vs. Risk neutral path

0.25

0.40

0.55

0.70

0.85

1.00

0 150 300 450 600 750 900
(b) Cumulative distributions of a risk averse

path Vs. risk neutral path.

Figure 3.10: Comparison of risk averse optimal path for CVaR1% and a risk neutral optimal path

mean value is minimal, without taking the volatility of travel times into account. As such,
in figure 3.10b we can see their respective cumulative distributions obtained with a large out
of sample of size S ′ = 100000. Without surprise, we can notice that the risk averse path
(solid) stochastically dominates the risk neutral one (dashed) in the worst 20% of the cases
(for both solutions) lowering in a 2% the probability to have a travel time greater than two
minutes. Moreover, the expected travel time of a risk averse traveler is about 1 minute 41
seconds against 1 minute 38 for the risk neutral traveler, but the variances are respectively 1
minute 46 seconds for the risk averse traveler and 2 minutes 17 seconds for the risk neutral
one.

3.5 Conclusions

In this chapter, we developed a complete framework to solve shortest path problems with
uncertainty in the travel times. We developed efficient techniques to solve SAA equivalent
problems for the CVaR and the Entropic risk measures. We showed that our algorithms
for CVaR minimization return provably decent solutions within a reasonable CPU time. A
natural way to tackle the difficulty inherent to big samples and extend these results to real
sized networks could come with the use of importance sampling methods, where less samples
but more representative are used.

39

Chapter 4

Reformulations for hard network
problems

4.1 Introduction

Including uncertainty into shortest path problems destroys the structure of the original com-
binatorial problem. With some exceptions, such as the robust SP with interval data ([9]),
the SP problem with uncertainty turns NP-hard in most cases ([46]). Consequently, we in-
vestigated methods reducing the computational effort required by the solution process. Such
a problem can be roughly cast as an integer programming problem finding the path in a
network G = (V,E) (n = |V | and m = |E|) that minimizes a convex risk measure ρ. In other
words, we want to solve the problem (4.1):

min
x∈X∩{0,1}m

ρ(x) (4.1)

where X ⊆ [0, 1]m is the path polyhedron lattice (4.2):

x ∈ X =

x ∈ [0, 1]m :
∑

k:(j,k)∈E

xjk −
∑

i:(i,j)∈E

xij = bj ∀j ∈ V

 , (4.2)

where the right hand side vector b satisfies bs = 1, bt = −1, and bj = 0 for all j ∈ V \ {s, t}.
We will assume that in our case the function ρ is such that an optimal solution is cycle free.
This occurs for example when ρ(x) = c>x with c > 0. This important assumption implies
that at most one outgoing (or incoming) edge of each node can be nonzero, in other words
we have

∑
e∈δ+(i)

xe 6 1.

Type 1 Special Ordered Set constraints (SOS1, [13]) are a special type of constraints where
at most one variable from a subset I can be nonzero (4.3). In the case of binary variables, a

40

SOS1 is equivalent to:

∑
i∈I

xi 6 1 (4.3)

xi ∈ {0, 1}, ∀i ∈ I (4.4)

This type of constraint has been thoroughly studied in the past decades in the context of
disjunctive programming ([12, 11]). Instead of branching over one variable at some Branch
and Bound (Branch and Bound) node, one can look for such implicit inequalities in order to
branch over a set of variables that can separate more evenly the feasible set ([4, 29, 28, 42]).
This idea of constraint branching can be traced back to the late 70’ with the work of [36, 68]
and is extensively used in column generation algorithms ([75, 77, 76, 59]). A number of
network problems admit implicit disjunctive constraints, e.g.: in flow conservation constraints
of paths as mentioned before. We extensively used the work of [79] where they present a
way to represent generic disjunctive constraints with a logarithmic number of extra binary
variables and constraints, generalizing the work in [51, 52]. They prove that for a broad class
of hard combinatorial problems this type of representation is as strong as the original one,
i.e.: provides equally good Linear Programming (LP) bounds. Further, they point out that
it actually simulates a smart constraint branching on the original variables.

We show that it is always possible to enforce the integrality of the original variables with a
smaller number of integer variables. In particular, we identify implicit disjunctive constraints
allowing to cast the simple path and Hamiltonian circuit sets into formulations having at
most n

(
1 + log2

(
m
n
+ 1
))

integer variables instead of the m integer variables of the original
formulation. For the TSP, we extend a formulation of [74] where the disjunctive constraints
are explicit.and cast it with a smaller number of zero-one variables of order O

(
n log2

(
m
n

))
.

For st-path or st-cut problems in Directed Acyclic Graphs (DAGs), we present several ways
to generate coverings of all the binary variables by SOS1 constraints, and we present the
associated extended formulations for these problems. In particular, we showed that any
st-path problem in DAGs can be modeled with O

(
d log2

(
m
d

))
binary variables, with d the

length of the longest path. Similarly, we showed that any st-cut problem in DAGs can be

modeled with O
(
f log2

(
m
f

))
binary variables, with f the size of the maximum cut.

As we mentioned above, the proposed formulations are as strong as the standard formu-
lations, but while they consider less integer variables they have overall more variables and
constraints. Therefore the practical benefits of these formulations for computation are not
clear. Nevertheless, the proposed formulations can help improve solution methods. Instead
of directly solving the proposed formulations, we propose to solve the original models with-
out the additional variables but using a modified branching procedure when calling CPLEX
([27]), explicitly using those implicit inequalities and branch on them.

The rest of the chapter is structured as follows: In the next section we present the funda-
mental result of [79] that we will extensively use in the whole chapter. Section 4.3 introduces
a way to reduce the number of integer variables of any simple path problem, with a direct
application to the Travelling Salesman Problem (TSP). We then present several ways to
reformulate path or cut problems in DAGs in 4.4 and we finally conclude in section 4.5.

41

4.2 SOS1 with a logarithmic number of {0, 1} variables

4.2.1 Equivalent formulation

A result of [78] shows that any disjunctive constraint of the type∑
i∈I

xi = 1 (4.5)

xi ∈ {0, 1},∀i ∈ I (4.6)

Can be expressed equivalently relaxing the integrality in (4.6) and adding dlog2 |I|e extra
zero-one variables and extra constraints.
Proposition 1. [79]

∑
i∈I

xi = 1

xi ∈ {0, 1},∀i ∈ I
⇔

∑
i∈I

xi = 1

x > 0

∃!z ∈ {0, 1}L(|I|) :
∑

p∈S+
|I|(l)

xp = zl ∀l ∈ {1, ..., L (|I|)}
(4.7)

With L(d) := dlog2 de for any d ∈ N. And for any l ∈ {1, ..., L(d)}:

S+
d (l) :=

2L(d)−l∪
s=1

2l−1∪
t=1

(
t+ 2l−1 + (s− 1)2l

) (4.8)

S−
d (l) := I \ S+

d (l) =
2L(d)−l∪
s=1

2l−1∪
t=1

(
t+ (s− 1)2l

) (4.9)

First, the sets S−
d (l) and S+

d (l) are a partition of {1, ..., 2L(d) > d} for any l ∈ {1, ..., L(d)}.
We can see in figure 4.1 an example of them for d = 5:

The intuition behind the sets is that they can define the binary decomposition of any
number between one and d. For example, let consider the tautological case where we want
to find the index of the third element - which is obviously three - in the array of the last
example by binary search. We first try to know if 3 is in the lower or the upper half of
the array, finding out that it is in the former implying that 3 ∈ S−

d (1). Second, we want to
find out in which quarter of the array 3 is, hence finding out that 3 ∈ S+

d (2). The last step
indicates that 3 ∈ S−

d (3), concluding that index 3’s index is 3(!).

With this simple observation, when looking for some index we can define a binary variable
zl ∈ {0, 1} for each l ∈ {1, ..., L(|I|)} representing if the index belongs to S+

|I|(l) or not (i.e.:

belongs to S−
|I|(l)). It is easy to see that the z variables are in fact the binary decomposition

of the index we are looking for. In our case, where our variables xi are positive and sum one,
the only possibility left is to have exactly one of them at one and the rest to zero.

42

d 2L(d)

I 1 2 3 4 5 6 7 8

S+
d (1)

S−
d (1)

S+
d (2)

S−
d (2)

S+
d (3)

S−
d (3)

Figure 4.1: Example of partitions
({

S+
d (l), S−

d (l)
})

l∈{1,..,dlog2 de}

We notice that in the case of inequality constrained SOS1, we can add a slack variable s
to transform it into an equality constrained SOS1. Applying the last result we can model an
inequality constrained SOS1 with dlog2(|I| + 1)e extra binary variables and constraints and
relax the integrality of the original variables.

4.2.2 Implicit branching of the extended formulation

Implicitly, the introduction of these new variables and constraints allows the use of constraint
branchings on whole sets of variables instead of branching on variables.

Single variable branching. Given some fractional solution x̄, classical branching methods
choose some fractional variable x̄i and divide the current Branch and Bound node into two
new branches where xi 6 bx̄ic = 0 and xi > dx̄ie = 1 respectively (see figure 4.2).

xi = 0 xi = 1

Figure 4.2: Classic variable branching

Traditional SOS1 Branching. In presence of SOS1 constraints, a classic approach ([13])
specialized for SOS1 determines some index t separating at least two fractional variables
xi and xj such that i 6 t 6 j and then branches over the disjunction (xp 6 0, ∀p 6 t) ∨
(xp 6 0,∀p > t+ 1) (See figure 4.3). When doing a depth first search in this branching tree,
we will branch at most dlog2 |I|e times. Nevertheless, it can lead to unbalanced trees because
of its dependence in t at each disjunction.

43

xp = 0,∀p 6 t xp = 0, ∀p > t+ 1

Figure 4.3: SOS1 branching

Independent SOS1 Branching. In the case of the extended formulation of Proposition
1, the underlying branching done has obviously the same depth of dlog2 |I|e (the number of
extra variables). The main difference is that in order to reach any leaf of the tree, we have
to branch over the same separations in order to reach any leaf of the tree (in general in a
different order).

Given a fractional solution x̄, the constraints (4.7) ensure that there exists some extra
variable z̄l which is fractional as well and we can branch on it, generating the disjunction
(zl = 0)∨(zl = 1). The interpretation in terms of the original variables is the following: Given
that z̄l is fractional then the extra constraints (4.7) imply that we have simultaneously:∑

p∈S+
|I|(l)

x̄p > 0 (4.10)

∑
p∈S−

|I|(l)

x̄p > 0 (4.11)

This way, branching on zl separates fractional variables x with the branching depicted in
figure 4.4: During a Branch and Bound, there is a lot of effort put into the selection of

xp = 0,∀p ∈ S+
|I|(l) xp = 0,∀p ∈ S−

|I|(l)

Figure 4.4: Constraint branching

the variable we branch on and in the selection of the branch we take to go on with the
search. So an advantage of this formulation is that we have smaller Branch and Bound trees
- because there are less integer variables - and that we let the solver decide the branch and
node selections as usual. However, it leads to bigger formulations and eventually breaks any
structure the original problem had, turning the LP resolutions heavier. One of the purposes
of the next subsections is to detail the extended formulations and the underlying branching
schemes for the original formulation so that we can compare their practical behavior in a
future work.

4.2.3 Explicit branching for the original formulation

In [79], they show that the extended formulation is as strong as the original formulation,
i.e.: that both LP relaxations of the formulations have the same set of feasible points. This

44

remark is of great importance: The reformulation’s strength lies in its reduced number of
integer variables but on another hand, the LP relaxations we have to solve are bigger in
terms of number of variables and constraints. Eventually, any structure the original problem
had can be altered by adding these additional constraints. In consequence, when solving our
problem via Branch and Bound the extended LP relaxations we solve are more of a burden
than the original ones. We propose a mixed approach that seeks to use the best of both
formulations. The idea is to use a branching rule suggested by the extended formulation but
to solve the LP relaxations of the original problem.

From the equivalence we showed in the last section, we can derive a constraint branching
scheme for the original formulation. Indeed, when relaxing the integrality of all the variables
we can always find a feasible fractional value of z̄ given a fractional x̄ from equalities (4.7).
Actually, equations (4.7) explicitly show that we have a bijection between the values of the
variables z and x. From this last observation we can deduce that if we had solved the
extended formulation, the LP relaxation would have returned z̄l =

∑
p∈S+

|I|(l)

x̄p. Moreover, if

the optimal LP solution x̄ is fractional, the disjunctive constraint implies that there are at
least two variables x̄i and x̄j that are fractional. Consequently, there exists some fractional

z̄l as well and as such, we can branch on the entire partition
{
S+
|I|(l), S

−
|I|(l)

}
. In the next

subsection, we will define a general methodology to solve difficult combinatorial problems on
networks.

4.3 Application to simple path and Hamiltonian circuit

In the following, we present how the formulations presented above adapt to two network
problems where we can always partition the variables such that the variables of each subset
are bound by a single disjunctive constraint.

4.3.1 Simple path set

For every node v ∈ V let give an index to each of its outgoing edges: δ+(v) :=
{
ev1, ..., e

v
|δ+(v)|

}
.

For the problems whose formulation implies that each solution must be a simple path - i.e.:
that does not contain any cycle - we can remark that if the path goes through some node
v ∈ V , then it does it only once and as such, the following implicit disjunctive constraints
are valid:

|δ+(v)|∑
i=1

xevi
6 1 ∀v ∈ V (4.12)

45

For each node v ∈ V we add a slack variable xev0
corresponding to a dummy edge ev0. This

way we obtain the following equality constrained SOS1:

|δ+(v)|∑
i=0

xevi
= 1 ∀v ∈ V (4.13)

Extended formulation for simple paths problems Given that each node v ∈ V defines
a disjunctive constraint, we can apply the result of proposition 1 and replace the integrality
of each xe ∈ {0, 1},∀e ∈ δ+(v) by introducing new variables zvl and the following constraints:∑

p∈S+

|δ+(v)|+1
(l)

xevp = zvl ∀l ∈ {1, ..., L(|δ+(v)|+ 1)} (4.14)

zv ∈ {0, 1}L(|δ+(v)|) (4.15)

We remark that using the sets of ingoing edges instead of the outgoing edges sets to cover
the original variables is perfectly fine as well. Repeating the process for every node of G we
obtain the following formulation:

min
xe,zvl

ρ(x) (4.16)

s.t.: x ∈ X (4.17)

|δ+(v)|∑
i=0

xevi
= 1 ∀v ∈ V (4.18)∑

p∈S+

|δ+(v)|+1
(l)

xevp = zvl ∀v ∈ V, ∀l ∈ {1, ..., L(|δ+(v)|+ 1)} (4.19)

zvl ∈ {0, 1} ∀v ∈ V, ∀l ∈ {1, ..., L(|δ+(v)|+ 1)} (4.20)

xe > 0 ∀e ∈ E (4.21)

This extended formulation has
∑
v∈V
dlog2(|δ+(v)|+1)e zero-one variables, which can be upper

bounded by:

∑
v∈V

dlog2(|δ+(v)|+ 1)e 6 max
α∈Rn

{∑
v∈V

dlog2(αv + 1)e :
∑
v∈V

αv 6 m

}

< max
α∈Rn

{
n+

∑
v∈V

log2(αv + 1) :
∑
v∈V

αv 6 m

}
= n+ n log2

(m
n

+ 1
)

We can show that this bound is asymptotically tight with the following family of instances:
Let Kn be the complete directed graph with n = 2q + 1. Given that Kn is complete we have

46

m = n(n− 1) and for each node v ∈ V we have that |δ+(v)| = n− 1. Consequently:

n
(
1 + log2(

m
n
+ 1)

)
n∑

i=1

dlog2(|δ+(i)|+ 1)e
=

1 + log2(2
q + 1)

dlog2(2q + 1)e

=
1 + q + log2(1 +

1
2q
)

1 + q
−→

q→+∞
1

Putting everything together, the extended formulation has:

O(m) continuous variables

O
(
n log2

m

n

)
binary variables

O
(
n log2

m

n

)
constraints

In the worst case we have m = n(n − 1) and hence the maximal size of a search tree drops
from 2m in the original case to O (2n)n with the extended formulation.

Although it reduces the number of integer variables, the extended formulation still has
more variables and constraint than the original one. In consequence the LP relaxations can
be slower and last but not least, destroy the good structure we had with the path polyhedron
alone. For example, if we solve the relaxed problem with interior point methods or gradient
descent algorithms, the iterations are very fast thanks to the special structure the problem
has, using shortest path algorithm at every descent direction lookup. In this goal it can be
hypothetically faster to use directly the underlying constraint branching that the extended
formulation simulates. We can point out that this formulation can be beneficial for highly
connected graphs, when the degrees of nodes are large and comparable to n. If the graph
has bounded degree, then the reduction in integer variables is really minor. As in the last
section, if at some node of the Branch and Bound tree the relaxed solution is fractional then
we know that there is at least one of the nodes v ∈ V of the network that has two outgoing
edges evi and evj having fractional flows. Choosing the node with most fractional outgoing
edges variables could be a first natural approach. In consequence, we can branch over the

SOS1 constraint corresponding to the node v,
|δ+(v)|∑
p=1

xevp 6 1 and we already know that there

exists some l ∈ {1, ..., L (|δ+(v)|)} such that we can separate the fractional variables xevi
and

xevj
as depicted in figure 4.5.

xevp = 0,∀p ∈ S+
|δ+(v)|(l) xevp = 0,∀p ∈ S−

|δ+(v)|(l)

Figure 4.5: Constraint branching for the simple path set

A natural choice of the partitioning index l could be to select the one separating the
most the fractional variables of the outgoing edges of v (i.e.:half of them in each subset of

the partition
{
S+
|δ+(v)|(l), S

−
|δ+(v)|(l)

}
). This way we ensure that the Branch and Bound tree

47

remains balanced using this constraint branching. We notice that for simple path problems,
the extra slack variable for each node is unnecessary as the structure of the problem ensures
that the solution is integer if and only if there is at most one outgoing edge used by the
solution.

Cycle cancelling The typical path set formulation allows the formation of cycles and
although mathematically correct, it is a clearly undesirable feature for a lot of routing prob-
lems. For example, in [92] they model the risk aversion of a st-traveler constraining its path
to stochastically dominate a benchmark path. They prove that when the random variables
describing the travel times are uncorrelated, their model returns cycle-free paths but in the
general case the structure of this problem drives the model to return paths that could have
cycles. Our constraint branching has the nice ability to deal with cycle formation whenever
they are not isolated, i.e.: if the graph induced by the solution is connected. We can notice
that if a cycle is entangled with the path, then there is at least one node crossed at least
twice by the solution. Although the current node solution is integral, we can branch in the
same way as before choosing a partition separating the two or more outcoming edges of some
node crossed several times by the solution. However, such an approach will not cut isolated
cycles.

4.3.2 Direct application: Traveling salesman problem

There exists an IP formulation for the TSP due to [74] that is formulated as a shortest path
in a derived acyclic digraph with disjunctive side constraints:

min
xe,xk

e

∑
e∈E

cexe (4.22)

s.t.: xe =
n∑

k=1

xk
e ∀e ∈ E (4.23)∑

e∈δ−(i)

xk
e −

∑
e∈δ+(i)

xk+1
e = 0 ∀i ∈ V \ {1},∀k ∈ {2, ..., n− 1} (4.24)

∑
e∈δ+(1)

x1
e = 1 (4.25)

∑
e∈δ−(1)

xn
e = 1 (4.26)

∑
e∈δ−(i)

xe = 1 ∀i ∈ V (4.27)

∑
e∈δ+(i)

xe = 1 ∀i ∈ V (4.28)

xk
e > 0 ∀k ∈ {1, ..., n},∀e ∈ E (4.29)

xe ∈ {0, 1} ∀e ∈ E (4.30)

Where the variable xk
e indicates if the edge e is in position k in the tour or not, and xe if the

edge is taken by the tour or not. The variables xk
e are defined as continuous as their integrality

48

is enforced by the xe. In this case, we can directly use the extended formulation with equalities
described in the last section using either the constraints (4.28) or the constraints (4.27) as
the disjunctive constraints to branch on. In either case, the extended formulation associated
with this branching has

O(mn) continuous variables

O
(
n log2

m

n

)
binary variables

O
(
n2
)
constraints

To the best of our knowledge, this is the first formulation for the TSP with so few binary
variables. Nevertheless, even solving the LP relaxation of the original formulation is expected
to be challenging with O(mn) variables and O(n2) constraints.

4.4 New formulations for hard problems in DAGs

In the last section, we saw that we could cover all the integer variables by disjunctive con-
straints in the case of the simple path set. In the case of DAGs, we will show that we can
build a different type of covering for the path set and that a similar result can be found for
the st-cut set.

4.4.1 Path set in DAGs

A number of difficult problems involve paths in DAGs: For example, given a fractional
solution x̄ of problem (4.1) at some node of the Branch and Bound, we can heuristically find
a feasible solution looking for the best path contained in the graph induced by x̄, G(x̄) :=
(V, {e ∈ E : x̄e > 0}). For the type of problems we are interested in, we assume that any
optimal solution is cycle-free. Consequently, G(x̄) is a DAG and is smaller than the original
network. In another context, the project management problem with resource constraints
([32]) consists in finding a longest path in a DAG subject to side constraints and has been
proved to be NP hard.

We will assume that all the nodes of G are reachable from the source node s and that the
sink node t is reachable from every node. If it is not the case, we can trivially preprocess all
the nodes not connected to t or from s. In what follows we consider st-cuts with a particular
structure. A cut is an edge set C ⊆ E such that there is no st-path in (V,E \ C). In
particular we are interested in cuts C such that they cut every path in a DAG only once. In
consequence, given any such cut C the following disjunctive constraint is a valid equality for
the simple st-path set: ∑

e∈C

xe = 1

This implies that whenever we obtain a fractional solution at some Branch and Bound node,
there always exists one such cut C ⊆ E such that at least two edges have fractional value. In-
dexing the edges of C as follows C :=

{
e1, ..., e|C|

}
, there always exists some l ∈ {1, ..., L(|C|)}

49

such that we can branch as depicted in figure 4.6. Now, we want to find a set of such cuts

xep = 0,∀p ∈ S+
|C|(l) xep = 0,∀p ∈ S−

|C|(l)

Figure 4.6: Constraint branching for the path set in a DAG

{C1, ..., CK} such that the number of extra variables in the extended formulation is mini-
mized. We first define the notion of st-blocking cut and introduce a way to compute the
best edge covering with such cuts solving a MIP. Second, we propose a fast method to find
an edge covering candidate and we then show a fast way to dynamically compute the best cut.

Definition: A set C ⊆ E is an st-blocking cut for a DAG if there exists a set Y ⊆
[0, 1]m × {0, 1}n described below and e ∈ C if and only if ye = 1.

(y, π) ∈ Y ⇔

yij = πi − πj ∀(i, j) ∈ E

πs − πt = 1

ye ∈ [0, 1] ∀e ∈ E

πi ∈ {0, 1} ∀i ∈ V

(4.31)

Where ye represents if edge e ∈ E is in the st-blocking cut C ⊆ E or not and πi is one if i ∈ V
is reachable from s in (V,E\C) and πi is zero if i ∈ V can reach t in (V,Ei\C). Let prove that
Y defines a cut: If (y, π) ∈ Y , let prove that there is no st-path in (V,E \ {e ∈ E : ye = 1}).
By integrality of π we can notice that we necessarily have πs = 1 and πt = 0, so given any
st-path P there exists some edge (i, j) ∈ P such that yij = πi − πj = 1 − 0 = 1. In other
words, any st-path is cut by the set {e ∈ E : ye = 1}. Moreover, the positivity of y variables
implies that there are no edges with a tail πi = 0 and head πj = 1. Therefore it is impossible
for an st-path P to intersect more than once the cut characterized by the set Y . In a graph
without incoming arcs on s, e.g. a DAG, there is always one such st-blocking cut : letting
πs = 1 and all other πi = 0 for all i ∈ V \ {s}. In what follows we formulate a problem to
identify in a DAG a set of such blocking st-cuts. We notice that having such a st-blocking cut
C at hand defines an equality constrained SOS1 constraint. The reformulation of proposition
1 allows to relax the integrality of the variables ye for any e ∈ C adding (dlog2 |C|e) extra
binary variables and constraints. This problem aims to partition the set of edges of the graph
into different st-blocking cuts with the fewer number of extra binary variables induced by
proposition 1 for each blocking st-cut.

An optimal edge cover by st-blocking cuts. Lets define Ḡ := (V ∪ {s̄}, E ∪ {(s̄, s)})
with s̄ an additional node linked only to s. Let define Ȳ as the homologue in Ḡ of Y in G.
Consequently the optimal decomposition of E in terms of number of binary variables of the

50

extended formulation can be found solving the following problem:

min
yke ,π

k
i ,te

m∑
k=1

⌈
log2

∑
e∈E

yke

⌉
+
∑
e∈E

te (4.32)

s.t.: te +
m∑
k=1

yke > 1 ∀e ∈ E (4.33)

(yk, πk) ∈ Ȳ ∀k ∈ {1, ...,m} (4.34)

te > 0 ∀e ∈ E (4.35)

Where the variables (yk, πk) represent the k-th cut, and trivially we cannot have more than

m cuts. The number of extra binary variables induced by the k-th cut is

⌈
log2

∑
e∈E

yke

⌉
.

Each variable te is one if edge e is not present in any cut and then count as a single stray
variable. The extra edge we added in Ḡ represents the fact that if it is not convenient for
some of the m st-blocking cuts to be used then it contains only this extra edge and has zero
contribution in the objective value. This last problem is a nonlinear, non convex integer
problem. Nevertheless, for any integer r > 1 and any number λ ∈ R, we can notice that we
have dlogr λe = min

{
l ∈ N : rl > λ

}
which we can rewrite as follows:

dlogr λe = min
bl

L∑
l=0

lbl (4.36)

s.t.:
L∑
l=0

rlbl > λ (4.37)

L∑
l=0

bl = 1 (4.38)

b ∈ {0, 1}L (4.39)

With L an a priori upper bound of dlogr qe. Putting everything together, we can find the
optimal edge covering with st-blocking cuts solving the following MIP (4.4.1)

min
bkl ,y

k
e ,π

k
i ,te

m∑
k=1

L(m)∑
l=0

lbkl +
∑
e∈E

te (4.40)

s.t.: (yk, πk) ∈ Ȳ ∀k ∈ {1, ...,m} (4.41)

te +
m∑
k=1

yke > 1 ∀e ∈ E (4.42)

L(m)∑
l=0

2lbkl >
∑
e∈E

yke ∀k ∈ {1, ...,m} (4.43)

L(m)∑
l=0

bkl = 1 ∀k ∈ {1, ...,m} (4.44)

bk ∈ {0, 1}L(m) ∀k ∈ {1, ...,m} (4.45)

te > 0 ∀e ∈ E (4.46)

51

which is likely harder than the original problem in general, but can be useful for method
comparison purposes.

A practical decomposition for DAGs. Now we will present a practical way to build an
a priori edge covering with st-blocking cuts. A layered directed graph is a graph whose nodes
are partitioned into several layers such that there is no edge linking two nodes of a same
layer. In [30], they show that we can always draw a layered graph representation of any DAG
in linear time. Further, they show that the resulting layered graph is the one with the least
number of layers. To draw such a representation, they first build the tree of longest distances
in G, which in the case of DAGs can be done in O(m) with any search algorithm (but is NP-
hard for general graphs). Second, they build the layers grouping the vertices having the same
distance from s with respect to the number of edges (see figure 4.7). From this transformation

1 2 1 2

s 3 4 t s 3 4 t

5 6 5 6

V0 V1 V2 V3 V4 V5

Tree edges

Figure 4.7: Layer representation of a DAG from longest distance tree

we can find a very natural edge cover: Defining Vk as the set of nodes at a longest distance
of k from s, each set Ck := {(i, j) ∈ E : ∃p 6 k − 1, q > k, i ∈ Vp, j ∈ Vq} defines a blocking
st-cut. As indicated earlier, this edge cover {C1, ..., Cd} has at most d layers, with d the
length of the longest path in G. We can directly replace the SOS1 constraints but we could
potentially have some variables in several blocking cuts. To tackle this, we notice that for
any set of indices defining an equality constrained SOS1, any subset defines a inequality
constrained SOS1. Adding a slack variable we get an equality constrained SOS1 and we
can reformulate it with a logarithmic number of extra binary variables and constraints. In
our case, we will take the sets C̄k := {(i, j) ∈ δ+(Vk)} ⊆ Ck to cover all the original integer
variables. This edge cover {C̄1, ..., C̄d} is also a partition of E and as in the simple path case,
we can easily show that the total number of extra binary variables and constraints of the
reformulation is at most d

(
1 + log2

(
m
d
+ 1
))
.

On the fly disjunction generation Taking the original formulation of (4.1) in a DAG,
at each node of the Branch and Bound tree we can generate the best valid set of variables
separating the maximum number of fractional variables. To do so, given a fractional st
1-flow we want to find the st-blocking cut containing the maximum number of edges with
fractional flow and then partition in two the edges of this st-blocking cut by assigning half of
the fractional variables to each part in order top have a balanced disjunction. In the special
case of DAGs, finding the maximum capacity st-blocking cut proved to be easily solvable.

52

In [25] they show that the maximum st-blocking cut problem in DAGs is in fact the dual of
finding a minimum feasible flow in a capacitated network. Given a fractional solution x̄, the
problem of finding a st-blocking cut maximizing the number of fractional edges it contains
can be written as follows:

max
y,π

∑
e∈E

dx̄eeye (4.47)

s.t.: yij 6 πi − πj ∀(i, j) ∈ E (4.48)

πs − πt 6 1 (4.49)

ye > 0 ∀e ∈ E (4.50)

πi > 0 ∀i ∈ V (4.51)

Notice that in the case of DAGs, we can relax the integrality of all the variables. Now we
can easily show that its dual problem is:

min
φ,f

f (4.52)

s.t.:
∑

e∈δ+(i)

φe −
∑

e∈δ−(i)

φe 6

f If i = s

0 ∀i ∈ V \ {s, t}
−f If i = t

(4.53)

φe > dx̄ee ∀e ∈ E (4.54)

f > 0 (4.55)

Which is equivalent to a minimum cost flow problem and hence can be solved by sev-
eral algorithms ([3]) in O (n(m+ n log2 n)) time. Next, we can retrieve the maximum cut
from the minimum flow in almost the same way that we retrieve a minimum cut from a
maximum flow: we run a search starting from s considering that we cannot pass trough
edges where the minimum flow is equal to its lower bound on this edge. The maximum
cut is the set of outgoing edges of the explored node set from s (see figure 4.8 where we
assumed that all the edges had fractional x̄e). Once we have the st-blocking cut C :=

1 2 1 2

s 3 4 t s 3 4 t

5 6 5 6

3

3

1

1

1

3

1 1

1

1

2

3

1

2

1

φ∗
e

Max cut edges

Figure 4.8: Maximum st-cut from minimum st-flow{
e1, ..., e|C|

}
containing the maximum number of fractional edges and we branch on a dis-

junction
(
xe[i] = 0, ∀i ∈

{
1, ...,

⌈
|C|
2

⌉})
∨
(
xe[i] = 0,∀i ∈

{⌈
|C|
2

⌉
+ 1, ..., |C|

})
having half of

53

the fractional variables on each side. This way we ensure that we have a balanced tree, and
we are branching on the biggest disjunction of fractional variables, then trying to minimize
the depth of the tree. We could not find any bound for this methodology but we expect it to
be more efficient than the other approaches presented in this chapter. In the next section,
we will consider the same approach applied to the st-blocking cut set, where an interesting
duality with this section appears in several results.

4.4.2 Cut set in DAGs

In this section, we will adapt the optimal covering method for the st-blocking cut set in
DAGs and use in a dual way the other methods of the last section. This approach could help
to solve more efficiently hard problems like resource constrained open pit mining scheduling
problems ([21]) which can be formulated as the problem of finding a minimum st-cut in a
DAG subject to side constraints.

As we noticed earlier, any st-blocking cut in a DAG destroys exactly one edge of any
st-path. Consequently, for any st-path P ⊆ E and any st-blocking cut defined by (y, π) ∈ Y
we have the following disjunctive constraint:

∑
e∈P

ye = 1

As in the last section, we propose two ways to build an a priori edge cover of E with st-paths:
We first show an optimal decomposition solving a MIP and then show how to quickly find
a valid edge covering with st-paths. A dynamic search for the best covering at each Branch
and Bound node is also presented.

An optimal edge cover by st-paths. Defining the graph G̃ = (V,E ∪ {(s, t)}) and X̃

the homologue in G̃ of X in G, we can use the same trick for computing logarithms as in the
last section, and then the optimal decomposition of E with st-paths in terms of number of

54

potential enumerations can be found solving the following MIP:

min
bkl ,x

k
e te

m∑
k=1

L(m)∑
l=0

lbkl +
∑
e∈E

te (4.56)

s.t.: xk ∈ X̃ ∀k ∈ {1, ...,m} (4.57)

te +
m∑
k=1

xk
e > 1 ∀e ∈ E (4.58)

L(m)∑
l=0

2lbkl >
∑
e∈E

xk
e ∀k ∈ {1, ...,m} (4.59)

L(m)∑
l=0

bkl = 1 ∀k ∈ {1, ...,m} (4.60)

bk ∈ {0, 1}L(m) ∀k ∈ {1, ...,m} (4.61)

te > 0 ∀e ∈ E (4.62)

Which can be harder than the original problem in general so we can just use a heuristic to
determine some edge covering by st-paths but keeping it in mind for practical comparison
purposes. Ironically, this kind of problem can see its number of integer variables reduced
applying the approach of the last section.

A practical decomposition. In the last section, the problem of finding a minimum num-
ber of st-blocking cuts covering E needed the computation of the longest path in G. These
two problems are actually dual to each other ([30]). In [25] they show that finding an edge
cover with the minimum number of st-paths is in fact equivalent to find a minimum st-flow
such that at least one unit of flow goes through each edge. Indeed, the amount of flow passing
through each edge represents the number of covering st-paths crossing it, and the total flow
f sent from s to t is the total number of covering st-paths. So in the end we just have to
solve the minimum cost flow problem used in the last section to find a maximum cut, with
an unitary lower bound on the flow of each edge:

min
f,φ

f (4.63)

s.t.:
∑

e∈δ+(i)

φe −
∑

e∈δ−(i)

φe 6

f If i = s

0 ∀i ∈ V \ {s, t}
−f If i = t

(4.64)

φe > 1 ∀e ∈ E (4.65)

f > 0 (4.66)

Which can be done in O (n(m+ n log2 n)) using minimum cost flow algorithms ([3]). Now
that we can cover all the edges of E with f st-paths {P1, ..., Pf} (with f the size of the
maximum st-directed cut, as shown in the last section), we can directly reformulate each
equality constrained SOS1 by its logarithmic reformulation. As in the st-path case, it is
likely that {P1, ..., Pf} is not a partition of E as some edges can belong to several paths

55

of {P1, ..., Pf}. To tackle this we can use the same trick as in the last section and define{
P̄1, ..., P̄f

}
as a partition of E such that P̄k ⊆ Pk for every k ∈ {1, ..., f}. Such a partition

is easy to find from {P1, ..., Pf} letting each edge belonging to exactly one P̄k for some k.
Adding a slack variable to each of the SOS1 defined by the sets P̄k, we can use the logarithmic

reformulation and prove that the final problem has at most f
(
1 + log2

(
m
f
+ 1
))

extra binary

variables and constraints.

On the fly disjunction generation Taking the original formulation, at each node of
the Branch and Bound tree we can generate the best valid set of variables separating the
maximum number of fractional variables. To do so, given a fractional st st-blocking cut
we want to find the st-path containing the maximum number of edges with fractional value
and then partition in two the edges of this path, assigning half of the fractional variables
to each part in order top have a balanced disjunction. In the special case of DAGs, finding
the longest path with respect to some weights can be done in linear time with any search
algorithm. The longest path P :=

{
e1, ..., e|P |

}
with respect to weights (dx̄ee)e∈E will return

the biggest disjunction, separating the maximum number of fractional variables as follows:(
ye[i] = 0, ∀i ∈

{
1, ...,

⌈
|P |
2

⌉})
∨
(
ye[i] = 0,∀i ∈

{⌈
|P |
2

⌉
+ 1, ..., |P |

})

4.5 Conclusions

We built extended formulations for path problems and TSP having less variables than their
original formulations and proposed several resolution schemes for cut or path problems in
DAGs. In future work we shall see if these methods are competitive against state of the
art solvers. In particular, we are particularly interested in the performance of the branching
schemes involving DAGs. It could help to find feasible solutions at each Branch and Bound
node of shortest path problems with convex and nondecreasing functions, and speed up the
resolution of Resource Constrained Open Pit Mining scheduling problems. Moreover, we
should investigate if we can build the associated node and branch selections in the context
of constraint branching

56

Chapter 5

Risk averse Stackelberg security
games

5.1 Introduction

Our last contribution was to introduce risk aversion in a special class of Stackelberg games
([81]) where a leader player moves first and then the followers decide their actions, maximizing
their utility. In airport security or coast guard patrol, security forces - the leader or defender
- have limited capacity to defend a finite set of targets against human adversaries - the
followers or attackers. A Stackelberg security game ([43]) is defined as a game where the
leader decides a mixed strategy to maximize its utility, taking into account that the follower
will observe this strategy and in turn decide its action to maximize its utility. In this situation,
it is crucial to use resources wisely to minimize the damage done to the targets. Hence, an
accurate knowledge of the attackers’ behavior is central. Standard models assume a perfectly
rational attacker that maximizes its utility knowing the defense strategy ([63, 43]), or that
can deviate from an small ε from the optimal attack ([64]). Nevertheless, it is commonly
accepted that human decisions are in general different from the best policy to use ([18]).
Consequently, assuming a highly intelligent adversary can lead to weak defense strategies,
failing to take advantage of the attackers’ known weaknesses. The work presented in [58]
assumes that human adversaries do not behave rationally, sometimes selecting actions that
do not maximize their utility. The model considered assumed attackers followed a Quantal
Response Equilibria (QRE). This idea models the decision probability of an attacker with a
logit based expression derived from discrete choice theory. Its parametrization with a degree
of rationality contains, in fact, the perfect rationality or the indifference as special cases, and
is strongly backed in the literature and in practice by its superior ability to model human
behavior ([39, 72, 85, 90]). In [91] they solve in polynomial time the problem of finding an
optimal - in expectation - defense strategy against quantal response adversaries in security
games casting it as a continuous convex programming problem. In this work, we defined a
natural extension of this expected utility maximization approach including risk aversion in the
objective of the defender. We use a change of variables presented in [91] to polynomially find
the best defense strategy when the defender wants to minimize an Entropic risk measure.

57

We show that the same method becomes useless when extending our latter model to the
case where there are several types of attacker with different rationality degrees and different
impacts on the payoffs of the defender. Nevertheless, we show how find an ε-approximation
of the problem solving convex MINLP.

We structured the rest of the chapter as follows: in the next section we present the result
of [91] which solves the security game with risk neutral defender. In section 5.3 we prove that
we can solve polynomially the problem when introducing risk aversion. Section 5.4 shows
how to formulate as a convex integer programming problem the game with risk aversion when
facing several types of adversary. We show in section 5.5 how to quickly evaluate the payoffs
probability distributions of the defender without sampling. We present our conclusions in
section 5.6.

5.2 Quantal response equilibria in security games

We first consider a Stackelberg security game with a single leader (defender) maximizing
its expected utility and a single attacker ([43]) following a quantal response (QR) as was
considered in [91]. If the attacker targets place i ∈ {1, ..., n} and the defender blocks the
attack, then the reward of the defender is R̄i > 0 and the penalty of the attacker is Pi 6 0.
On the other hand, if there is an attack on an undefended target i ∈ {1, ..., n}, the defender
receives a penalty P̄i 6 0 but the attacker obtains a reward Ri > 0. Taking the role of the
defender we want to know how to maximize our utility using a total of m < n resources to
cover the n targets. Let xi ∈ [0, 1] be the frequency of protecting target i. It follows that the
expected utility of the defender when the target i is attacked is:

Ūi(xi) = xiR̄i + (1− xi)P̄i (5.1)

and the expected utility of the attacker when targeting place i is:

Ui(xi) = xiPi + (1− xi)Ri (5.2)

Assuming that the attacker is not perfectly rational and follows a quantal response of ratio-
nality factor λ > 0 ([58]), its probability to attack target i has probability yi(x):

yi(x) =
eλUi(xi)

n∑
j=1

eλUj(xj)

(5.3)

We can see that perfect rationality (λ = +∞) or indifference (λ = 0) of the adversary are
special cases of the QR in equation (5.3). As the defender is trying to maximize its expected
utility the problem to solve is then:

max
x∈[0,1]n

{
n∑

i=1

yi(x)Ūi(xi) :
n∑

i=1

xi 6 m

}

58

Defining: βi := eλRi > 0, γi := λ(Ri − Pi) > 0 and δi := R̄i − P̄i > 0, We obtain:

max
x∈[0,1]n

n∑

i=1

βie
−γixi

(
P̄i + δixi

)
n∑

i=1

βie−γixi

:
n∑

i=1

xi 6 m

 (5.4)

Which is a highly nonlinear and non-convex optimization problem. We will now present the
approach of [91] that solves polynomially problem (5.4).
Proposition 2. Given two functions N : X ⊆ Rn 7−→ R and D : X ⊆ Rn 7−→ R+ \ {0},
and any r ∈ R we have:

max
x∈X

N(x)

D(x)
6 r ⇔ ∀x ∈ X : N(x)− rD(x) 6 0 (5.5)

Proof. Let x∗ ∈ argmax
x∈X

N(x)
D(x)

.

⇒: If N(x∗)
D(x∗)

6 r by optimality of x∗ we have: N(x̄)
D(x̄)

6 r for any x̄ ∈ X

⇐: If N(x∗)
D(x∗)

> r, then ∃x̄ = x∗ ∈ X : N(x̄)− rD(x̄) > 0

The last proposition suggests the following scheme to solve approximately the optimization
problem of equation (5.5):

Proposition 3. Given a lower bound L and an upper bound U of max
x∈X

N(x)
D(x)

, we can find an

ε-optimal solution of the optimization problem (5.5) solving the following problem

w(r) = max
x∈X
{N(x)− rD(x)} (5.6)

with at most log2
U−L
ε

different values of r.

Proof. We first compute the value w
(
r := U+L

2

)
. If w

(
U+L
2

)
> 0, then by proposition 2 we

can deduce that w∗ > r and we replace L ← r else, if w
(
U+L
2

)
6 0, then by proposition 2

we can deduce that w∗ 6 r and we replace U ← r. We actualize r ← U+L
2

and we repeat the
procedure until U − L 6 ε. At each step, we half the width of the interval so we reach the
tolerance ε in at most log2

U−L
ε

steps.

Let see how to apply this binary search scheme. The most important part is how to solve
efficiently the subproblems at each step of the binary search.
Proposition 4. Solving an iteration of the binary search is equivalent to solving the following
problem:

max
z
−

n∑
i=1

δiβi

γi
zi ln zi +

n∑
i=1

(
P̄i − r

)
βizi (5.7)

s.t.: −
n∑

i=1

1
γi
ln zi 6 m (5.8)

zi ∈ [e−γi , 1] ∀i ∈ {1, ..., n} (5.9)

Which is a concave maximization problem over a convex set.

59

Proof. First, the problem we have to solve at each iteration of the binary search is:

max
x

n∑
i=1

βie
−γixi

(
P̄i + δixi

)
− r

n∑
i=1

βie
−γixi (5.10)

s.t.:
n∑

i=1

xi 6 m (5.11)

xi ∈ [0, 1] ∀i ∈ {1, ..., n} (5.12)

Introducing the following invertible change of variables: zi := e−γixi (i.e.:xi := − 1
γi
ln zi) the

problem we have to solve can be rewritten as:

max
z
−

n∑
i=1

δiβi

γi
zi ln zi +

n∑
i=1

(
P̄i − r

)
βizi (5.13)

s.t.: −
n∑

i=1

1
γi
ln zi 6 m (5.14)

zi ∈ [e−γi , 1] ∀i ∈ {1, ..., n} (5.15)

It is easy to show that the feasible set is convex thanks to the convexity of the functions
zi → − 1

γi
ln zi. In the same way the objective function is concave given that the functions

zi → − δiβi

γi
zi ln zi are all concave.

Proposition 5. L :=

n∑
i=1

βie
−γi

m
n (P̄i+δi

m
n)

n∑
i=1

βie
−γi

m
n

and U :=

n∑
i=1

βie
−γi(P̄i+δi)

n∑
i=1

βie−γi

are respectively lower and

upper bounds for the optimal value of problem (5.4)

Proof. Because we are maximizing, the expected value of any feasible solution provides a
lower bound. In particular, we obtain L evaluating the uniform strategy xi =

m
n
. If we relax

the resource constraint, the corresponding problem is a relaxation and then yields a greater
optimal value. Further, we know that the optimal solution of this relaxation is to defend all
the targets with frequency one, hence obtaining U .

Using the last propositions, we can solve efficiently problem (5.4). We will now show that
we can use this methodology to solve a generalization of (5.4) where the defender is risk
averse and there are several types of adversary.

5.3 Risk averse defender

A natural extension of the last model is to assume that the defender is risk averse. Conse-
quently, the defender must minimize the risk associated to have bad outcomes even if it can
imply a lower expected payoff. In the following, we assume that the leader is risk averse and
wants to minimize an entropic risk measure of parameter α > 0. We define the entropic risk

measure of parameter α > 0 of a random variable X by α lnE
[
e

X
α

]
. With this definition at

60

hand the leader wants to solve the following optimization problem:

min
x∈[0,1]n

{
α ln

(
n∑

i=1

yi(x)e
− Ūi(xi)

α

)
:

n∑
i=1

xi 6 m

}
We notice that the expected value maximization model of section 5.2 is a special case of the

last problem as α lnE
[
e

X
α

]
7−→

α→+∞
E[X]. And given that t → α ln t is non decreasing, the

general problem the defender solves is:

min
x∈[0,1]n

n∑

i=1

eλUi(xi)e−
Ūi(xi)

α

n∑
i=1

eλUi(xi)

:
n∑

i=1

xi 6 m

Defining: βi := eλRi > 0, γi := λ (Ri − Pi) > 0 and µi := eλRi−α−1P̄i > 0 and θi :=
λ (Ri − Pi) + α−1

(
R̄i − P̄i

)
> 0, we obtain:

min
x∈[0,1]n

n∑

i=1

µie
−θixi

n∑
i=1

βie−γixi

:
n∑

i=1

xi 6 m

 (5.16)

Proposition 6. We can solve problem (5.16) using a binary search in r that solves at each
iteration the following problem:

w(r) := min
z

n∑
i=1

µiz
θi
γi
i − r

n∑
i=1

βizi (5.17)

s.t.: −
n∑

i=1

1
γi
ln zi 6 m (5.18)

zi ∈ [e−γi , 1] ∀i ∈ {1, ..., n} (5.19)

Which is a convex minimization problem.

Proof. Given that problem (5.16) is a fractional programming problem, we can solve it with
binary search from proposition 3. At each iteration of the binary search, we have to solve
the following problem:

min
x∈[0,1]n

{
n∑

i=1

µie
−θixi − r

n∑
i=1

βie
−γixi :

n∑
i=1

xi 6 m

}
Using the following invertible change of variables: zi := e−γixi (i.e.: xi := − 1

γi
ln zi), the

problem we have to solve is:

min
z

n∑
i=1

µiz
θi
γi
i − r

n∑
i=1

βizi

s.t.: −
n∑

i=1

1
γi
ln zi 6 m

zi ∈ [e−γi , 1] ∀i ∈ {1, ..., n}

We already proved that the feasible set is convex and given that θi > γi the objective function
is convex as well.

61

Proposition 7. L :=

n∑
i=1

µie
−θi

n∑
i=1

βie−γi

and U :=

n∑
i=1

µie
−θi

m
n

n∑
i=1

βie
−γi

m
n

are respectively lower and upper bounds

for the optimal value of problem (5.16)

Proof. Similar to the proof of proposition 5.2.

In the next section, we will show that we can solve the risk averse problem (5.16) when
there is several types of adversary casting the problem as a convex MINLP.

5.4 Multiple types of adversary

In the following, we will assume that the attack can come from one of several types of
adversary a ∈ {1, ..., A} of respective penalties P a

i 6 0, rewards Ra
i > 0 and degrees of

rationality λa. The reward and penalty of the defender when defending target i against an
attacker of type a are respectively R̄a

i and P̄ a
i and yield an utility Ūa

i (xi). We will assume
a priori that the probability that the attack come from an adversary of type a is pa, with
A∑

a=1

pa = 1. The extended problem to solve is:

min
x∈[0,1]n

{
α ln

(
A∑

a=1

pa

n∑
i=1

yai (x)e
− Ūa

i (xi)

α

)
:

n∑
i=1

xi 6 m

}

As in section 5.3, let define: βa
i := eλaRa

i > 0, γa
i := λa(R

a
i −P a

i) > 0 and µa
i := eλaRa

i −α−1P̄a
i >

0 and θai := λa(R
a
i − P a

i) + α−1(R̄a
i − P̄ a

i) > 0, We then obtain:

min
x∈[0,1]n

A∑

a=1

pa

n∑
i=1

µa
i e

−θai xi

n∑
i=1

βa
i e

−γa
i xi

:
n∑

i=1

xi 6 m

 (5.20)

Proposition 8. The optimal solution of the following problem is an optimal solution for
problem (5.20).

min
x,t,z

A∑
a=1

pa
n∑

i=1

µa
i e

−θai xi−ta (5.21)

s.t.:
n∑

i=1

xi 6 m (5.22)

eta 6
n∑

i=1

βa
i z

γai
γ̄i
i ∀a ∈ {1, ..., A} (5.23)

zi 6 e−γ̄ixi ∀i ∈ {1, ..., n} (5.24)

x ∈ [0, 1]n (5.25)

t ∈ RA (5.26)

zi ∈ [e−γ̄i , 1] ∀i ∈ {1, ..., n} (5.27)

62

Where γ̄i := max
a∈{1,...,A}

γa
i . Constraints (5.24) are the only non-convex constraints.

Proof. First, because the denominators of the objective function of problem (5.20) are

strictly positive, let introduce new variables ta ∈ R such that eta :=
n∑

i=1

βa
i e

−γa
i xi . Prob-

lem (5.20) is then equivalent to:

min
x∈[0,1]n,t∈RA

A∑
a=1

pa
n∑

i=1

µa
i e

−θai xi−ta

s.t.:
n∑

i=1

xi 6 m

eta 6
n∑

i=1

βa
i e

−γa
i xi ∀a ∈ {1, ..., A}

Which has a convex objective function, but a non-convex feasible set. Let γ̄i := max
a∈{1,...,A}

γa
i .

Introducing new variables zi := e−γ̄ixi we can reformulate the last problem as follows:

min
x,t,z

A∑
a=1

pa
n∑

i=1

µa
i e

−θai xi−ta

s.t.:
n∑

i=1

xi 6 m

eta 6
n∑

i=1

βa
i z

γai
γ̄i
i ∀a ∈ {1, ..., A}

zi 6 e−γ̄ixi ∀i ∈ {1, ..., n}
x ∈ [0, 1]n

t ∈ RA

zi ∈ [e−γ̄i , 1] ∀i ∈ {1, ..., n}

Given that γ̄i > γa
i , we can notice that the functions zi 7−→ z

γai
γ̄i
i are concave, finishing the

proof.

To cast this last problem into something solvable, we will use the method described by
[79] to piecewise linear approximate non-convex functions.
Proposition 9. [79]. We can model any univariate function f : [l, u] 7−→ R in the following

63

way:

f(x) ≈
K∑
k=0

wkf(dk) (5.28)

x =
K∑
k=0

wkdk (5.29)

K∑
k=0

wk = 1 (5.30)∑
p∈S+

K(l)

wp 6 vl ∀l ∈ {1, ..., L(K)} (5.31)

∑
p∈S−

K(l)

wp 6 1− vl ∀l ∈ {1, ..., L(K)} (5.32)

vl ∈ {0, 1} ∀l ∈ {1, ..., L(K)} (5.33)

wk > 0 ∀k ∈ {1, ..., K} (5.34)

With l = d0 < d1 < ... < dK a discretization of [l, u], L(K) = dlog2Ke and for any
l ∈ {1, ..., L(K)}:

S+
K(l) := {p ∈ {0, ..., K} : ∀q ∈ QK(p), (BK(q))l = 1} (5.35)

S−
K(l) := {p ∈ {0, ..., K} : ∀q ∈ QK(p), (BK(q))l = 0} (5.36)

Where QK(p) := {q ∈ {1, ..., K} : p ∈ {q − 1, q}} and BK : {1, ..., K} 7−→ {0, 1}L(K) a bijec-
tive mapping such that for all q ∈ {1, ..., K − 1}, BK(q) and BK(q + 1) differ in at most one
component (See reflected binary or Gray code in [38]). Such a gray code can be found quickly
with the recursive algorithm of [45].

Proof. This is only a sketch of the proof, as a detailed one can be found in [79] and is out of
the scope of this work. The general idea here is to find with a logarithmic number of integer
variables the interval [dk, dk+1] where x lies and approximate f(x) ≈ wkf(dk) +wk+1f(dk+1)
where we have implicitly that x = wkdk + wk+1dk+1. A model of [13] tackles this so called
convex combination method using type 2 Special Ordered Set constraints (SOS2). SOS2
constraints force a set of variables to sum up to one, with at most two of them with nonzero
values and the extra requirement that the two nonzero variables must have adjacent indexes.
The model used in this proposition simulates the SOS2 constraint of the convex combination
method using a logarithmic number of extra variables and extra constraints to determine in
which interval x belongs to. Let take the example of K = 8. One of the possible gray codes
associated to the set of pairs ({q − 1, q})q∈{1,...,8} and the corresponding sets (QK(p))p∈{0,...,8}
are shown is figure 5.1. The special structure of the sets S+

K(l) and S−
K(l) is illustrated with

the same case where K = 8 in figure 5.2a. In figure 5.2a, the black cells represent the indices
contained in each set, In figure 5.2b, we can see all possible combinations of v ∈ {0, 1}L(K)

and their implications in terms of the SOS2 constrained original variables w ∈ [0, 1]K+1.

Proposition 10. Defining γ̄i := max
a∈{1,...,A}

γa
i and given a discretization in K intervals:

min
i∈{1,...,n}

e−γ̄i = d0 < d1 < ... < dK = 0

64

q {q − 1, q} BK(q)
1 {0, 1} 0 0 0
2 {1, 2} 0 0 1
3 {2, 3} 0 1 1
4 {3, 4} 0 1 0
5 {4, 5} 1 1 0
6 {5, 6} 1 1 1
7 {6, 7} 1 0 1
8 {7, 8} 1 0 0

(a) Example of Gray code for K = 8.

p QK(p)
0 {1}
1 {1, 2}
2 {2, 3}
3 {3, 4}
4 {4, 5}
5 {5, 6}
6 {6, 7}
7 {7, 8}
8 {8}

(b) Sets (QK(p))p∈{0,...,K} for K = 8

Figure 5.1: Example of Gray code and sets (QK(p))p∈{0,...,K} for K = 8

we can approximately solve problem (5.20) by solving the following convex MINLP:

min
x,t,z,v,w

A∑
a=1

pa
n∑

i=1

µa
i e

−θai xi−ta (5.37)

s.t.:
n∑

i=1

xi 6 m (5.38)

eta 6
n∑

i=1

βa
i z

γai
γ̄i
i ∀a ∈ {1, ..., A} (5.39)

zi 6
K∑
k=0

wk
i e

dk ∀i ∈ {1, ..., n} (5.40)

−γ̄ixi =
K∑
k=0

wk
i dk ∀i ∈ {1, ..., n} (5.41)

K∑
k=0

wk
i = 1 ∀i ∈ {1, ..., n} (5.42)∑

p∈S+
K(l)

wp
i 6 vli ∀i ∈ {1, ..., n}, ∀l ∈ {1, ..., L(K)} (5.43)∑

p∈S−
K(l)

wp
i 6 1− vli ∀i ∈ {1, ..., n}, ∀l ∈ {1, ..., L(K)} (5.44)

vli ∈ {0, 1} ∀i ∈ {1, ..., n}, ∀l ∈ {1, ..., L(K)} (5.45)

wk
i > 0 ∀i ∈ {1, ..., n}, ∀k ∈ {1, ..., K} (5.46)

x ∈ [0, 1]n (5.47)

t ∈ RA (5.48)

zi ∈ [e−γ̄i , 1] ∀i ∈ {1, ..., n} (5.49)

Where L(K) = dlog2 Ke and for any l ∈ {1, ..., L(K)}:

S+
K(l) := {p ∈ {0, ..., K} : ∀q ∈ QK(p), (BK(q))l = 1}

S−
K(l) := {p ∈ {0, ..., K} : ∀q ∈ QK(p), (BK(q))l = 0}

Where QK(p) := {q ∈ {1, ..., K} : p ∈ {q − 1, q}} and BK : {1, ..., K} 7−→ {0, 1}L(K) is a
Gray code.

65

0 1 2 3 4 5 6 7 8
S+
K(1)

S−
K(1)

S+
K(2)

S−
K(2)

S+
K(3)

S−
K(3)

(a) Example of sets
({

S+
K(l), S−

K(l)
})

l∈{1,..,dlog2 Ke}

(v1, v2, v3) w0 w1 w2 w3 w4 w5 w6 w7 w8

(0, 0, 0)
(1, 0, 0)
(1, 1, 0)
(0, 1, 0)
(0, 1, 1)
(1, 1, 1)
(1, 0, 1)
(0, 0, 1)

(b) All combinations of extra variables vl and effect over variables wk

Figure 5.2: Example of sets
({

S+
K(l), S−

K(l)
})

l∈{1,..,dlog2 Ke} and their implications for K = 8

We can solve this nonlinear mixed integer problem by Branch and Bound solving its
successive continuous relaxations with interior point methods and use the branching scheme
suggested in [79].

5.5 Solution quality

To compare a risk neutral solution with a risk averse solution, we want to see if there is some
kind of stochastic dominance of a risk averse strategy versus a risk neutral one. To do so, we
want to compare the payoffs distributions of the defender depending of its risk aversion. In
a real situation, the defender covers m targets out of the n and the attacker targets a single
place.

The only possible outcomes for the defender are: 1)being attacked by a type a adversary
on a defended target i with payoff V = R̄a

i > 0 or 2)being attacked by a type a adversary
on an undefended target i with payoff V = P̄ a

i < 0. Consequently, if we assume that all the
payoffs R̄a

i and P̄ a
i are different the only values possible are in

V ∈ {V1 < V2 < ... < V2An−1 < V2An} =
n∪

i=1

A∪
a=1

{
R̄a

i , P̄
a
i

}
66

Let see what is the probability to obtain each of these outcomes. Given a mixed defense
strategy x ∈ [0, 1]n and the associated quantal response, the probability to block an attack
at target i is:

P
[
V = R̄a

i

]
= paxi

eλa(xiP
a
i +(1−xi)R

a
i)

n∑
j=1

eλa(xjPa
j +(1−xj)Ra

j)

and the probability to undergo a type a attack at a defenseless target i is:

P
[
V = P̄ a

i

]
= pa(1− xi)

eλa(xiP
a
i +(1−xi)R

a
i)

n∑
j=1

eλa(xjPa
j +(1−xj)Ra

j)

This way we can compute the probability distribution of the payoff of any defender with
quantal response adversary without sampling a large number of simulations.

5.6 Conclusions

In this chapter, we extended the classic model of Stackelberg security games with quantal
response (SSGQR). We showed a way to optimally solve in polynomial time a risk averse
version of SSGQR. Furthermore we proposed a Branch and Bound scheme to solve an ap-
proximation of the problem when facing different types of adversaries. The models proposed,
however, result in difficult optimization problems as there are several exponentials causing
numerical issues. Our current work consists in tackling this numerical instability and improve
the accuracy of our formulations.

67

Chapter 6

Conclusion

In this thesis, we first developed fast and accurate algorithms projecting GPS data on trans-
portation networks. We designed a computationally efficient method able to dynamically
match GPS trajectories in an online setting. We then defined a new error measure and a
computationally fast algorithm to find the associated optimal matching with respect to this
error measure that has the extra ability to detect and project cycles. These methods provide
us the data needed to solve real instances of Risk Averse Shortest Path (RASP) problems.
Further, they have the potential to allow fast and precise online localization of vehicles on
transportation networks.

In Chapter 2, we then developed solution schemes for risk averse combinatorial optimiza-
tion problems. We showed that problems minimizing an Entropic risk measure were difficult
to solve with a good stochastic guarantee of the solution returned. The combinatorial nature
of our base problem prohibits the use of extremely large samples. Combined with the poten-
tially high sensitivity of the entropic risk measure to ”bad” realizations - hence needing large
samples to stabilize its behavior - it leads to a clear computational bottleneck. Although
encouraging computational results were found for CVaR, the time needed to obtain stochas-
tically good solutions for real instances still proved to be too long for emergency dispatching.
In a future work we want to investigate the use of Importance Sampling techniques to reduce
the computational burden of our problems without lowering the quality of the returned so-
lutions. Also, having showed that the decomposition technique of [35] is applicable to CVaR
minimization problem, we want to investigate further the structure of this method. More
specifically, we want to know if we can quickly find a minimal partition of the scenarios
such that the relaxation it induces leads to an optimal solution of the disaggregated original
problem. Another future line of work we want to explore is the central role that CVaR has
for coherent risk measures: [48] proved that any coherent risk measure is representable as a
convex combination of CVaRs at different security levels. [69] presents a practical approach
of this result. Using the decomposition methods for CVaR presented in this thesis, we want
to derive efficient solution schemes for minimization problems with coherent risk measures
objectives. We also want to apply directly the methodology described in this chapter to solve
risk averse facility location problems as the routing from the facilities to the customers is an
important part of them.

68

The preliminary work of Chapter 3 introduced novel formulations that can be theoretically
useful to tackle difficult path problems in a faster way. We introduce the first formulation for
the TSP having O

(
n log2

m
n

)
zero-one variables. Furthermore, we introduce new extended

formulations and branching schemes for st-path and st-cut problems in Directed Acyclic
Graphs. In future work, we want to test these formulations to check if they provide a com-
putational advantage against state of the art solvers like [27]. Further, we noticed that the
extended formulation introduced by [79] increases the size of the formulation thus poten-
tially slowing the LP solution and possibly destroying any special structure in the original
formulation. On another hand, the extended formulation allows the use of all the machinery
of typical solvers containing advanced routines for branch and node selection automatically.
So it seems natural to compare the computational performances of the direct resolution of
an extended formulation against a tailored LP resolution (e.g.: interior point methods using
shortest path subroutines) combined with the constraint branching scheme induced by the
extended formulation. In this chapter, we also showed that for particular network problems,
we can cover the entire set of binary variables by disjunctive constraints and consequently
reduce the binary variables number significantly. We also want to investigate if we can find
such complete or - more likely - partial coverings for generic combinatorial problems.

The last chapter introduced a new type of Quantal Response Equilibrium in Security
games (QRES) where the defender is risk averse. We show that we can solve it in polynomial
time using a trick from [91], and we extend the model when there is several types of adversary
(QRESMA). We could not solve this last type of problem in polynomial time but instead
we formulated it as a MINLP and reduced its number of integer variables thanks to a result
of [79]. The formulations obtained for the risk averse version of QRES include a number
of exponential functions, which are likely to lead to problems that are particularly unstable
numerically. Future work should take into account this instability using robust algorithms.
For QRESMA, we also should consider Branch and Bound algorithms with tailored methods
for solving the continuous relaxations and the use of specialized branching schemes ([79]).

69

Appendix

In this appendix, we show some extra computational results of the methods described in
chapter 3.

Param Value µS,T σ2
S,T LS,T US′ gap[%] t[s]

Σ
6= I 9011.2 137.3 8955.7 9208.4 1.9 2975.5
I 17291.4 924.1 16937.7 18206.5 4.2 92.9

c
0.5 8938.9 148.7 8881.7 9013.8 1.2 75.3
2 17291.4 924.1 16937.7 18206.5 4.2 92.9

S

500 16187.8 1573.1 15586.5 19007.2 10.3 32.8
1000 16864.8 1206.8 16403.2 18658.0 6.8 53.4
2000 17291.4 924.1 16937.7 18206.5 4.2 92.9
5000 17461.4 591.5 17234.7 18058.9 3.0 207.3
10000 17532.9 440.2 17363.9 18007.8 2.4 395.7

T

2 17149.4 759.6 15699.1 18206.5 9.3 8.1
10 17203.9 868.0 16462.5 18206.5 6.1 19.2
20 17276.1 875.4 16747.1 18206.5 4.9 43.5
30 17276.1 920.3 16821.8 18206.5 4.6 67.6
40 17298.2 915.6 16906.6 18206.5 4.3 89.4
50 17291.4 924.1 16937.7 18206.5 4.2 92.9

S ′

40000 17291.4 924.1 16937.7 18721.3 5.9 92.9
80000 17291.4 924.1 16937.7 18466.6 5.0 92.9
120000 17291.4 924.1 16937.7 18318.8 4.5 92.9
160000 17291.4 924.1 16937.7 18268.2 4.3 92.9
200000 17291.4 924.1 16937.7 18206.5 4.2 92.9

ε

0.01 42809.3 3419.2 41501.6 47392.4 12.3 119.3
0.05 27278.1 1374.0 26751.9 28288.1 5.4 128.8
0.1 21161.1 875.2 20826.0 21714.1 4.1 121.7
0.5 10083.6 284.6 9974.3 10173.0 1.9 83.3
0.9 6843.2 179.4 6774.3 6901.7 1.8 66.5
0.95 6547.6 171.1 6481.8 6605.4 1.9 65.6
0.99 6316.7 165.1 6253.6 6370.7 1.8 65.4

Table 1: CVaR framework Vs. parameters

70

Param Value µS,T σ2
S,T LS,T US′ gap[%] t[s]

Σ
6= I 6515.1 70.7 6487.7 6560.9 1.1 693.8
I 29142.3 5434.4 27065.9 105480.5 57.3 151.1

c
0.5 7585.1 251.3 7308.0 10914.5 19.3 82.5
2 28267.1 4619.9 23174.6 105480.5 60.8 151.1

S

500 20307.3 4324.7 18655.2 135362.5 71.2 88.6
1000 24253.1 4981.3 22349.9 125367.5 65.9 101.7
2000 29142.3 5434.4 27065.9 105480.5 57.3 151.1
5000 35060.5 4594.4 33304.0 104970.2 50.7 340.3
10000 38767.0 4976.9 36864.7 109026.7 52.8 540.7

T

2 28088.4 3129.0 22114.6 105480.5 62.3 8.2
10 28159.8 4629.6 24206.7 105480.5 59.8 25.1
20 28944.4 4861.1 26008.9 105480.5 58.3 70.3
30 29131.0 5418.0 26459.3 105480.5 57.9 102.6
40 29108.5 5328.0 26832.8 105480.5 57.5 110.3
50 29142.3 5434.4 27065.9 105480.5 57.3 151.1

S ′

40000 29142.3 5434.4 27065.9 81573.9 52.7 151.1
80000 29142.3 5434.4 27065.9 91536.6 55.3 151.1
120000 29142.3 5434.4 27065.9 98024.9 56.8 151.1
160000 29142.3 5434.4 27065.9 97793.1 56.3 151.1
200000 29142.3 5434.4 27065.9 105480.5 57.3 151.1

α

1000 53695.5 9564.2 50040.1 185968.0 72.1 149.0
1500 50291.9 9481.9 46669.9 180529.0 73.1 161.3
2000 46996.3 9360.3 43419.8 173733.2 74.0 173.8
5000 29412.1 7952.3 26374.4 146096.3 80.7 288.8
20000 8524.6 768.6 8230.8 27925.2 54.8 109.3
25000 7915.2 565.4 7699.1 16216.3 36.3 94.6
40000 7160.3 348.5 7027.1 7895.3 10.3 80.6

Table 2: Entropy framework Vs. parameters

71

Bibliography

[1] S. Agrawal, Y. Ding, A. Saberi, and Y. Ye. Correlation robust stochastic optimization. In
Proceedings of the 21st annual ACM-SIAM Symposium on discrete algorithms, Austin,
TX, pages 1087–1096, 2010.

[2] S. Agrawal, Y. Ding, A. Saberi, and Y. Ye. Price of correlations in stochastic optimiza-
tion. Operations Research, 60(1):150–162, 2012.

[3] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and
applications. Prentice hall, 1993.

[4] J. A. Appleget and R. K. Wood. Explicit-constraint branching for solving mixed-integer
programs. Springer, 2000.

[5] K. J. Arrow. Aspects of the theory of risk-bearing. Yrjö Jahnssonin Säätiö, 1965.

[6] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Thinking coherently: Generalized
scenarios rather than VaR should be used when calculating regulatory capital. RISK-
LONDON-RISK MAGAZINE LIMITED-, 10:68–71, 1997.

[7] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathe-
matical finance, 9(3):203–228, 1999.

[8] A. Atamtürk and M. Zhang. Two-stage robust network flow and design under demand
uncertainty. Operations Research, 55(4):662–673, 2007.

[9] I. Averbakh. On the complexity of a class of combinatorial optimization problems with
uncertainty. Mathematical Programming, 90(2):263–272, 2001.

[10] M. Avriel and A.C. Williams. The value of information and stochastic programming.
Operations Research, 18(5):947–954, 1970.

[11] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51, 1979.

[12] E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimiza-
tion problems. SIAM Journal on Algebraic Discrete Methods, 6(3):466–486, 1985.

[13] E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables. OR, 69(447–

72

454):99, 1970.

[14] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University
Press, 2009.

[15] D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53,
2004.

[16] J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Science
& Business Media, 2011.

[17] C.A. Blazquez. A decision-rule topological map-matching algorithm with multiple spatial
data. In Global Navigation Satellite Systems: Signal, Theory and Applications, pages
215–240. InTech, 2012.

[18] C.F. Camerer, T.-H. Ho, and J.-K. Chong. A cognitive hierarchy model of games. The
Quarterly Journal of Economics, 119(3):861–898, 2004.

[19] F. Chen, M. Shen, and Y. Tang. Local path searching based map matching algorithm
for floating car data. Procedia Environmental Sciences, 10:576–582, 2011.

[20] R. Chicoisne. Solving hard integer problems on networks: Branching strategies. Working
paper, 2015.

[21] R. Chicoisne, D. Espinoza, M. Goycoolea, E. Moreno, and E. Rubio. A new algorithm for
the open-pit mine production scheduling problem. Operations research, 60(3):517–528,
2012.

[22] R. Chicoisne, F. Ordóñez, and D. Espinoza. Efficient algorithms to match gps data on
a map. Submitted to Annals of Operations Research, 2014.

[23] R. Chicoisne, F. Ordóñez, and D. Espinoza. Risk averse shortest paths: A computational
study. To be submitted to Mathematical Programming, 2015.

[24] R. Chicoisne, F. Ordóñez, and M. Tambe. Optimal risk averse defense strategies against
quantal response in security games. Working paper, 2015.

[25] E. Ciurea and L. Ciupalâ. Sequential and parallel algorithms for minimum flows. Journal
of Applied Mathematics and Computing, 15(1-2):53–75, 2004.

[26] C.E. Cortés, J. Gibson, A. Gschwender, M. Munizaga, and M. Zúñiga. Commercial
bus speed diagnosis based on gps-monitored data. Transportation Research Part C:
Emerging Technologies, 19(4):695–707, 2011.

[27] IBM ILOG CPLEX. V12. 1: Users Manual for CPLEX, 2009.

[28] I.R. De Farias, E.L. Johnson, and G.L. Nemhauser. Branch-and-cut for combinatorial
optimization problems without auxiliary binary variables. The Knowledge Engineering
Review, 16(01):25–39, 2001.

73

[29] I.R. de Farias Jr, E.L. Johnson, and G.L. Nemhauser. A generalized assignment prob-
lem with special ordered sets: a polyhedral approach. Mathematical Programming,
89(1):187–203, 2000.

[30] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph drawing: algorithms for
the visualization of graphs. Prentice Hall PTR, 1998.

[31] D.H. Douglas and T.K. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization, 10(2):112–122, 1973.

[32] A. Drexl and A. Kimms. Lot sizing and schedulingsurvey and extensions. European
Journal of Operational Research, 99(2):221–235, 1997.

[33] E. Drezner. Facility location: A survey of applications and methods. Journal of the
Operational Research Society, 47(11):1421–1421, 1996.

[34] A. Echeverŕıa, R. Chicoisne, D. Espinoza, and F. Ordóñez. Redesign of the dispatching
system for the santiago fire department. Working paper, 2015.

[35] D. Espinoza and E. Moreno. A primal-dual aggregation algorithm for minimizing con-
ditional value-at-risk in linear programs. Computational Optimization and Applications,
59(3):617–638, 2014.

[36] B.A. Foster and D.M. Ryan. An integer programming approach to the vehicle scheduling
problem. Journal of the Operational Research Society, 27(2):367–384, 1976.

[37] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Real-time vehicle routing:
Solution concepts, algorithms and parallel computing strategies. European Journal of
Operational Research, 151(1):1–11, 2003.

[38] E.N. Gilbert. Gray codes and paths on the n-cube. Bell System Technical Journal,
37(3):815–826, 1958.

[39] P.A. Haile, A. Hortaçsu, and G. Kosenok. On the empirical content of quantal response
equilibrium. The American Economic Review, 98(1):180–200, 2008.

[40] H.W. Hamacher and Z. Drezner. Facility location: applications and theory. Springer,
2002.

[41] R. Jans and Z. Degraeve. Modeling industrial lot sizing problems: a review. International
Journal of Production Research, 46(6):1619–1643, 2008.

[42] A.B. Keha, I.R. de Farias Jr, and G.L. Nemhauser. A branch-and-cut algorithm with-
out binary variables for nonconvex piecewise linear optimization. Operations research,
54(5):847–858, 2006.

[43] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe. Computing
optimal randomized resource allocations for massive security games. In Proceedings of

74

the 8th AAMAS Conference, Budapest, Hungary, volume 1, pages 689–696. International
Foundation for AAMAS, 2009.

[44] A.J. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–
502, 2002.

[45] D. E. Knuth. The art of computer programming: sorting and searching, volume 3.
Pearson Education, 1998.

[46] P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14.
Springer, 1997.

[47] A. Künzi-Bay and J. Mayer. Computational aspects of minimizing conditional value-at-
risk. Computational Management Science, 3(1):3–27, 2006.

[48] S. Kusuoka. On law invariant coherent risk measures. Advances in mathematical eco-
nomics, 3(1):83–95, 2001.

[49] K. Lakakis, P. Savvaidis, I. M. Ifadis, and D.I. Doukas. Quality of map matching
procedures based on DGPS and stand alone GPS positioning in an urban area. In
Proceedings of FIG Working Week, Athens, Greece, pages 22–27, 2004.

[50] G. Laporte. The vehicle routing problem: An overview of exact and approximate algo-
rithms. European Journal of Operational Research, 59(3):345–358, 1992.

[51] J. Lee. All-different polytopes. Journal of Combinatorial Optimization, 6(3):335–352,
2002.

[52] J. Lee and F. Margot. On a binary-encoded ILP coloring formulation. INFORMS
Journal on Computing, 19(3):406–415, 2007.

[53] H. Levy. Stochastic dominance: Investment decision making under uncertainty, vol-
ume 12. Springer Science & Business Media, 2006.

[54] A. E.-B. Lim, J.G. Shanthikumar, and G.-Y. Vahn. Conditional value-at-risk in portfolio
optimization: Coherent but fragile. Operations Research Letters, 39(3):163–171, 2011.

[55] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for low-
sampling-rate gps trajectories. In Proceedings of the 17th ACM SIGSPATIAL, Seattle,
WA, pages 352–361. ACM, 2009.

[56] F. Marchal, J. Hackney, and K. W. Axhausen. Efficient map matching of large global
positioning system data sets: Tests on speed-monitoring experiment in zürich. Trans-
portation Research Record: Journal of the Transportation Research Board, 1935:93–100,
2005.

[57] H. Markowitz. Portfolio selection. The journal of finance, 7(1):77–91, 1952.

75

[58] R.D. McKelvey and T.R. Palfrey. Quantal response equilibria for normal form games.
Games and economic behavior, 10(1):6–38, 1995.

[59] A. Mehrotra and M.A. Trick. A branch-and-price approach for graph multi-coloring. In
Extending the horizons: Advances in computing, optimization, and decision technologies,
pages 15–29. Springer, 2007.

[60] R. B. Myerson. Game theory. Harvard university press, 2013.

[61] P. Newson and J. Krumm. Hidden markov map matching through noise and sparseness.
In Proceedings of the 17th ACM SIGSPATIAL, Seattle, WA, pages 336–343. ACM, 2009.

[62] E. Nikolova, M. Brand, and D.R. Karger. Optimal route planning under uncertainty. In
Proceedings of International Conference on Automated Planning and Scheduling, Am-
bleside, U.K., 2006.

[63] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway, M. Tambe, C. Western,
P. Paruchuri, and S. Kraus. Deployed armor protection: the application of a game
theoretic model for security at the los angeles international airport. In Proceedings of
the 7th AAMAS: industrial track, Cascais Miragem, Portugal, pages 125–132. Interna-
tional Foundation for AAMAS, 2008.

[64] J. Pita, M. Jain, F. Ordóñez, M. Tambe, and S. Kraus. Solving stackelberg games
in the real-world: Addressing bounded rationality and limited observations in human
preference models. Artificial Intelligence Journal, 174(15):1142–1171, 2010.

[65] J. W. Pratt. Risk aversion in the small and in the large. Econometrica: Journal of the
Econometric Society, 32(1/2):122–136, 1964.

[66] M. A. Quddus, R. B. Noland, and W. Y. Ochieng. A high accuracy fuzzy logic based map
matching algorithm for road transport. Journal of Intelligent Transportation Systems,
10(3):103–115, 2006.

[67] R.T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of
risk, 2:21–42, 2000.

[68] D.M. Ryan and B. A. Foster. An integer programming approach to scheduling. Computer
scheduling of public transport urban passenger vehicle and crew scheduling, pages 269–
280, 1981.

[69] A. Shapiro. On kusuoka representation of law invariant risk measures. Mathematics of
Operations Research, 38(1):142–152, 2013.

[70] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory, volume 16. SIAM, 2014.

[71] L.V. Snyder. Facility location under uncertainty: a review. IIE Transactions, 38(7):547–
564, 2006.

76

[72] D.O. Stahl II and P.W. Wilson. Experimental evidence on players’ models of other
players. Journal of economic behavior & organization, 25(3):309–327, 1994.

[73] G. Tintner. Stochastic linear programming with applications to agricultural economics.
In Proceedings of the Second Symposium in Linear Programming, Washington, DC, vol-
ume 1, pages 197–228. National Bureau of Standards Washington, D. C, 1955.

[74] S. Vajda. Mathematical Programming. Addison Wesley,London, 1961.

[75] F. Vanderbeck and L.A. Wolsey. An exact algorithm for IP column generation. Opera-
tions Research Letters, 19(4):151–159, 1996.

[76] François Vanderbeck. Implementing mixed integer column generation. In G. Desaulniers,
J. Desrosiers, and M.M. Solomon, editors, Column Generation, pages 331–358. Springer,
2005.

[77] François Vanderbeck. Branching in branch-and-price: a generic scheme. Mathematical
Programming, 130(2):249–294, 2011.

[78] J.P. Vielma. Mixed integer linear programming formulation techniques. SIAM Review,
57:3–57, 2015.

[79] J.P. Vielma and G.L. Nemhauser. Modeling disjunctive constraints with a logarithmic
number of binary variables and constraints. Mathematical Programming, 128(1-2):49–72,
2011.

[80] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior. Prince-
ton University Press, Princeton, 1944.

[81] H. Von Stackelberg. The theory of the market economy. William Hodge, 1952.

[82] B. S. Westgate, D. B. Woodward, D.S. Matteson, and S. G. Henderson. Large-network
travel time distribution estimation, with application to ambulance fleet management.
Under review, 2013.

[83] R. J.-B. Wets. Programming under uncertainty: the equivalent convex program. SIAM
Journal on Applied Mathematics, 14(1):89–105, 1966.

[84] C.E. White, D. Bernstein, and A.L. Kornhauser. Some map matching algorithms for
personal navigation assistants. Transportation Research Part C: Emerging Technologies,
8(1):91–108, 2000.

[85] J.R. Wright and K. Leyton-Brown. Beyond equilibrium: Predicting human behavior in
normal-form games. In Proceedings of the 24th AAAI conference on artificial intelligence,
Atlanta, GA, 2010.

[86] M. E. Yaari. The dual theory of choice under risk. Econometrica, 55(1):95–115, 1987.

[87] M.E. Yaari. Some remarks on measures of risk aversion and on their uses. Journal of

77

Economic theory, 1(3):315–329, 1969.

[88] B. Yang, C. Guo, and C.S. Jensen. Travel cost inference from sparse, spatio temporally
correlated time series using markov models. In Proceedings of the VLDB Endowment,
Riva del Garda, Italy, volume 6, pages 769–780. VLDB Endowment, 2013.

[89] J. Yang, S. Kang, and K. Chon. The map matching algorithm of gps data with relatively
long polling time intervals. Journal of the Eastern Asia Society for Transportation
Studies, 6:2561–2573, 2005.

[90] R. Yang, C. Kiekintveld, F. Ordóñez, M. Tambe, and R. John. Improving resource allo-
cation strategy against human adversaries in security games. In 22th IJCAI Proceedings,
Barcelona, Spain, volume 22, pages 458–464. AAAI Press, 2011.

[91] R. Yang, F. Ordóñez, and M. Tambe. Computing optimal strategy against quantal re-
sponse in security games. In Proceedings of the 11th AAMAS, Valencia, Spain, volume 2,
pages 847–854. International Foundation for AAMAS, 2012.

[92] L. Zhang and T. Homem-de Mello. An optimal path model for the risk-averse trav-
eler. Technical report, Working paper, School of Business, Universidad Adolfo Ibañez,
Santiago, Chile, 2014.

78

Vita

Renaud Chicoisne was born in Gien, France, on 21 December 1984. After two internships in
Universidad Adolfo Ibañez in Santiago, Chile, he received in 2009 his Mathematical Engineer-
ing Title from CUST and his Master of Science in Operations Research from the Université
Blaise Pascal, both in Clermont-Ferrand, France. After working as a research engineer at
the Université de Bordeaux-1 in Talence, France, he enrolled in the Department of Indus-
trial Engineering at the Universidad de Chile in Santiago, Chile in March of 2010 where he
completed his doctoral research on efficient algorithms for risk averse optimization problems.

79

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Contributions and outline

	Distribution estimation via data projection
	Introduction
	Map Matching Heuristic (MMH)
	Heuristic Outline
	Complexity
	Improved version
	Known issues

	Minimum Oriented Error algorithm (MOE)
	Oriented error measure
	Shortest path reduction
	Theoretical complexity
	An improved optimal algorithm

	Experimental results
	Data sets
	Results

	Conclusions

	Risk averse routing problems
	Introduction
	Solution Approaches Proposed
	Conditional Value at Risk
	Entropic Risk Measure

	General solution framework
	Stochastic lower bound
	Stochastic upper bound

	Computational Experiments
	Experimental Set-up
	Computational results

	Conclusions

	Reformulations for hard network problems
	Introduction
	SOS1 with a logarithmic number of {0,1} variables
	Equivalent formulation
	Implicit branching of the extended formulation
	Explicit branching for the original formulation

	Application to simple path and Hamiltonian circuit
	Simple path set
	Direct application: Traveling salesman problem

	New formulations for hard problems in DAGs
	Path set in DAGs
	Cut set in DAGs

	Conclusions

	Risk averse Stackelberg security games
	Introduction
	Quantal response equilibria in security games
	Risk averse defender
	Multiple types of adversary
	Solution quality
	Conclusions

	Conclusion
	Appendix
	Bibliography
	Vita

